
ptg16518469

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

Core Java®

Volume I—Fundamentals

Tenth Edition

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

Core Java®

Volume I—Fundamentals
Tenth Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

The author and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connection

with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to

your business, training goals, marketing focus, or branding interests), please contact our

corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Names: Horstmann, Cay S., 1959- author.

Title: Core Java / Cay S. Horstmann.

Description: Tenth edition. | New York : Prentice Hall, [2016] | Includes

 index.

Identifiers: LCCN 2015038763| ISBN 9780134177304 (volume 1 : pbk. : alk.

 paper) | ISBN 0134177304 (volume 1 : pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 H6753 2016 | DDC 005.13/3—dc23

LC record available at http://lccn.loc.gov/2015038763

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

500 Oracle Parkway, Redwood Shores, CA 94065

Portions © Cay S. Horstmann

All rights reserved. Printed in the United States of America. This publication is protected

by copyright, and permission must be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, request forms and the appropriate contacts within the Pearson Education

Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Oracle America Inc. does not make any representations or warranties as to the accuracy,

adequacy or completeness of any information contained in this work, and is not responsible

for any errors or omissions.

ISBN-13: 978-0-13-417730-4

ISBN-10: 0-13-417730-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, December 2015

www.allitebooks.com

http://lccn.loc.gov/2015038763
http://www.pearsoned.com/permissions/
http://www.allitebooks.org

ptg16518469

Contents

xixPreface ..

xxvAcknowledgments ...

1Chapter 1: An Introduction to Java ...

1Java as a Programming Platform ...1.1

2The Java “White Paper” Buzzwords ..1.2

3Simple ...1.2.1

4Object-Oriented ...1.2.2

4Distributed ...1.2.3

4Robust ...1.2.4

4Secure ..1.2.5

5Architecture-Neutral ...1.2.6

6Portable ...1.2.7

7Interpreted ..1.2.8

7High-Performance ...1.2.9

7Multithreaded ..1.2.10

8Dynamic ..1.2.11

8Java Applets and the Internet ...1.3

10A Short History of Java ...1.4

13Common Misconceptions about Java ...1.5

17Chapter 2: The Java Programming Environment

18Installing the Java Development Kit ...2.1

18Downloading the JDK ...2.1.1

20Setting up the JDK ...2.1.2

22Installing Source Files and Documentation2.1.3

23Using the Command-Line Tools ..2.2

26Using an Integrated Development Environment2.3

30Running a Graphical Application ...2.4

33Building and Running Applets ..2.5

v

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

41Chapter 3: Fundamental Programming Structures in Java

42A Simple Java Program ...3.1

46Comments ...3.2

47Data Types ...3.3

47Integer Types ..3.3.1

48Floating-Point Types ...3.3.2

50The char Type ..3.3.3

51Unicode and the char Type ..3.3.4

52The boolean Type ..3.3.5

53Variables ..3.4

54Initializing Variables ...3.4.1

55Constants ..3.4.2

56Operators ..3.5

57Mathematical Functions and Constants3.5.1

59Conversions between Numeric Types3.5.2

60Casts ..3.5.3

61Combining Assignment with Operators3.5.4

61Increment and Decrement Operators3.5.5

62Relational and boolean Operators ..3.5.6

63Bitwise Operators ..3.5.7

64Parentheses and Operator Hierarchy3.5.8

65Enumerated Types ..3.5.9

65Strings ..3.6

66Substrings ...3.6.1

66Concatenation ..3.6.2

67Strings Are Immutable ..3.6.3

68Testing Strings for Equality ..3.6.4

69Empty and Null Strings ..3.6.5

70Code Points and Code Units ..3.6.6

71The StringAPI ..3.6.7

74Reading the Online API Documentation3.6.8

77Building Strings ...3.6.9

78Input and Output ...3.7

79Reading Input ..3.7.1

82Formatting Output ..3.7.2

Contentsvi

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

87File Input and Output ...3.7.3

89Control Flow ...3.8

89Block Scope ...3.8.1

90Conditional Statements ..3.8.2

94Loops ...3.8.3

99Determinate Loops ..3.8.4

103Multiple Selections—The switch Statement3.8.5

106Statements That Break Control Flow3.8.6

108Big Numbers ...3.9

111Arrays ..3.10

113The “for each” Loop ..3.10.1

114Array Initializers and Anonymous Arrays3.10.2

114Array Copying ...3.10.3

116Command-Line Parameters ...3.10.4

117Array Sorting ...3.10.5

120Multidimensional Arrays ...3.10.6

124Ragged Arrays ...3.10.7

129Chapter 4: Objects and Classes ..

130Introduction to Object-Oriented Programming4.1

131Classes ...4.1.1

132Objects ...4.1.2

133Identifying Classes ..4.1.3

133Relationships between Classes ..4.1.4

135Using Predefined Classes ...4.2

136Objects and Object Variables ..4.2.1

139The LocalDate Class of the Java Library4.2.2

141Mutator and Accessor Methods ..4.2.3

145Defining Your Own Classes ...4.3

145An Employee Class ...4.3.1

149Use of Multiple Source Files ..4.3.2

149Dissecting the Employee Class ..4.3.3

150First Steps with Constructors ..4.3.4

152Implicit and Explicit Parameters ...4.3.5

153Benefits of Encapsulation ...4.3.6

156Class-Based Access Privileges ..4.3.7

viiContents

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

156Private Methods ...4.3.8

157Final Instance Fields ..4.3.9

158Static Fields and Methods ...4.4

158Static Fields ...4.4.1

159Static Constants ..4.4.2

160Static Methods ..4.4.3

161Factory Methods ..4.4.4

161The main Method ...4.4.5

164Method Parameters ..4.5

171Object Construction ...4.6

172Overloading ..4.6.1

172Default Field Initialization ...4.6.2

173The Constructor with No Arguments4.6.3

174Explicit Field Initialization ...4.6.4

175Parameter Names ..4.6.5

176Calling Another Constructor ...4.6.6

177Initialization Blocks ...4.6.7

181Object Destruction and the finalize Method4.6.8

182Packages ..4.7

183Class Importation ..4.7.1

185Static Imports ...4.7.2

185Addition of a Class into a Package ...4.7.3

189Package Scope ..4.7.4

190The Class Path ...4.8

193Setting the Class Path ..4.8.1

194Documentation Comments ..4.9

194Comment Insertion ...4.9.1

195Class Comments ..4.9.2

195Method Comments ...4.9.3

196Field Comments ..4.9.4

196General Comments ...4.9.5

198Package and Overview Comments ...4.9.6

198Comment Extraction ...4.9.7

200Class Design Hints ..4.10

Contentsviii

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

203Chapter 5: Inheritance ..

204Classes, Superclasses, and Subclasses ..5.1

204Defining Subclasses ...5.1.1

206Overriding Methods ...5.1.2

207Subclass Constructors ...5.1.3

212Inheritance Hierarchies ..5.1.4

213Polymorphism ..5.1.5

214Understanding Method Calls ..5.1.6

217Preventing Inheritance: Final Classes and Methods5.1.7

219Casting ..5.1.8

221Abstract Classes ...5.1.9

227Protected Access ..5.1.10

228Object: The Cosmic Superclass ...5.2

229The equals Method ..5.2.1

231Equality Testing and Inheritance ...5.2.2

235The hashCode Method ..5.2.3

238The toString Method ..5.2.4

244Generic Array Lists ..5.3

247Accessing Array List Elements ..5.3.1

251Compatibility between Typed and Raw Array Lists5.3.2

252Object Wrappers and Autoboxing ...5.4

256Methods with a Variable Number of Parameters5.5

258Enumeration Classes ...5.6

260Reflection ..5.7

261The Class Class ..5.7.1

263A Primer on Catching Exceptions ...5.7.2

265Using Reflection to Analyze the Capabilities of Classes5.7.3

271Using Reflection to Analyze Objects at Runtime5.7.4

276Using Reflection to Write Generic Array Code5.7.5

279Invoking Arbitrary Methods ...5.7.6

283Design Hints for Inheritance ..5.8

287Chapter 6: Interfaces, Lambda Expressions, and Inner Classes

288Interfaces ...6.1

288The Interface Concept ...6.1.1

ixContents

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

295Properties of Interfaces ...6.1.2

297Interfaces and Abstract Classes ...6.1.3

298Static Methods ..6.1.4

298Default Methods ..6.1.5

300Resolving Default Method Conflicts6.1.6

302Examples of Interfaces ..6.2

302Interfaces and Callbacks ...6.2.1

305The Comparator Interface ..6.2.2

306Object Cloning ...6.2.3

314Lambda Expressions ...6.3

314Why Lambdas? ..6.3.1

315The Syntax of Lambda Expressions ..6.3.2

318Functional Interfaces ...6.3.3

319Method References ..6.3.4

321Constructor References ...6.3.5

322Variable Scope ..6.3.6

324Processing Lambda Expressions ...6.3.7

328More about Comparators ...6.3.8

329Inner Classes ...6.4

331Use of an Inner Class to Access Object State6.4.1

334Special Syntax Rules for Inner Classes6.4.2

335Are Inner Classes Useful? Actually Necessary? Secure?6.4.3

339Local Inner Classes ..6.4.4

339Accessing Variables from Outer Methods6.4.5

342Anonymous Inner Classes ...6.4.6

346Static Inner Classes ..6.4.7

350Proxies ...6.5

350When to Use Proxies ...6.5.1

350Creating Proxy Objects ...6.5.2

355Properties of Proxy Classes ..6.5.3

357Chapter 7: Exceptions, Assertions, and Logging

358Dealing with Errors ...7.1

359The Classification of Exceptions ..7.1.1

361Declaring Checked Exceptions ..7.1.2

364How to Throw an Exception ..7.1.3

Contentsx

ptg16518469

365Creating Exception Classes ..7.1.4

367Catching Exceptions ..7.2

367Catching an Exception ..7.2.1

369Catching Multiple Exceptions ...7.2.2

370Rethrowing and Chaining Exceptions7.2.3

372The finally Clause ...7.2.4

376The Try-with-Resources Statement ...7.2.5

377Analyzing Stack Trace Elements ..7.2.6

381Tips for Using Exceptions ...7.3

384Using Assertions ..7.4

384The Assertion Concept ..7.4.1

385Assertion Enabling and Disabling ..7.4.2

386Using Assertions for Parameter Checking7.4.3

387Using Assertions for Documenting Assumptions7.4.4

389Logging ...7.5

389Basic Logging ...7.5.1

390Advanced Logging ..7.5.2

392Changing the Log Manager Configuration7.5.3

393Localization ..7.5.4

394Handlers ...7.5.5

398Filters ...7.5.6

399Formatters ..7.5.7

399A Logging Recipe ..7.5.8

409Debugging Tips ..7.6

415Chapter 8: Generic Programming ..

416Why Generic Programming? ..8.1

416The Advantage of Type Parameters ...8.1.1

417Who Wants to Be a Generic Programmer?8.1.2

418Defining a Simple Generic Class ...8.2

421Generic Methods ..8.3

422Bounds for Type Variables ..8.4

425Generic Code and the Virtual Machine ..8.5

425Type Erasure ..8.5.1

426Translating Generic Expressions ...8.5.2

427Translating Generic Methods ..8.5.3

xiContents

ptg16518469

429Calling Legacy Code ...8.5.4

430Restrictions and Limitations ..8.6

430

Type Parameters Cannot Be Instantiated with Primitive

Types ...

8.6.1

431Runtime Type Inquiry Only Works with Raw Types8.6.2

431You Cannot Create Arrays of Parameterized Types 8.6.3

432Varargs Warnings ..8.6.4

433You Cannot Instantiate Type Variables8.6.5

434You Cannot Construct a Generic Array8.6.6

436

Type Variables Are Not Valid in Static Contexts of Generic

Classes ...

8.6.7

436You Cannot Throw or Catch Instances of a Generic Class ...8.6.8

437You Can Defeat Checked Exception Checking8.6.9

439Beware of Clashes after Erasure ..8.6.10

440Inheritance Rules for Generic Types ...8.7

442Wildcard Types ..8.8

442The Wildcard Concept ..8.8.1

444Supertype Bounds for Wildcards ..8.8.2

447Unbounded Wildcards ...8.8.3

448Wildcard Capture ..8.8.4

450Reflection and Generics ..8.9

450The Generic Class Class ..8.9.1

452Using Class<T> Parameters for Type Matching8.9.2

452Generic Type Information in the Virtual Machine8.9.3

459Chapter 9: Collections ..

460The Java Collections Framework ...9.1

460Separating Collection Interfaces and Implementation9.1.1

463The Collection Interface ..9.1.2

463Iterators ...9.1.3

466Generic Utility Methods ...9.1.4

469Interfaces in the Collections Framework9.1.5

472Concrete Collections ..9.2

474Linked Lists ..9.2.1

484Array Lists ..9.2.2

485Hash Sets ..9.2.3

Contentsxii

ptg16518469

489Tree Sets ..9.2.4

494Queues and Deques ..9.2.5

495Priority Queues ..9.2.6

497Maps ..9.3

497Basic Map Operations ...9.3.1

500Updating Map Entries ..9.3.2

502Map Views ..9.3.3

504Weak Hash Maps ...9.3.4

504Linked Hash Sets and Maps ..9.3.5

506Enumeration Sets and Maps ..9.3.6

507Identity Hash Maps ..9.3.7

509Views and Wrappers ...9.4

509Lightweight Collection Wrappers ...9.4.1

510Subranges ...9.4.2

511Unmodifiable Views ...9.4.3

512Synchronized Views ..9.4.4

513Checked Views ..9.4.5

514A Note on Optional Operations ..9.4.6

517Algorithms ..9.5

518Sorting and Shuffling ..9.5.1

521Binary Search ...9.5.2

522Simple Algorithms ..9.5.3

524Bulk Operations ...9.5.4

525Converting between Collections and Arrays9.5.5

526Writing Your Own Algorithms ..9.5.6

528Legacy Collections ...9.6

528The Hashtable Class ...9.6.1

528Enumerations ...9.6.2

530Property Maps ...9.6.3

531Stacks ...9.6.4

532Bit Sets ...9.6.5

537Chapter 10: Graphics Programming ..

538Introducing Swing ...10.1

543Creating a Frame ..10.2

546Positioning a Frame ...10.3

xiiiContents

ptg16518469

549Frame Properties ...10.3.1

549Determining a Good Frame Size ...10.3.2

554Displaying Information in a Component ...10.4

560Working with 2D Shapes ..10.5

569Using Color ...10.6

573Using Special Fonts for Text ...10.7

582Displaying Images ...10.8

587Chapter 11: Event Handling ..

587Basics of Event Handling ..11.1

591Example: Handling a Button Click ...11.1.1

595Specifying Listeners Concisely ..11.1.2

598Example: Changing the Look-and-Feel11.1.3

603Adapter Classes ...11.1.4

607Actions ...11.2

616Mouse Events ...11.3

624The AWT Event Hierarchy ...11.4

626Semantic and Low-Level Events ...11.4.1

629Chapter 12: User Interface Components with Swing

630Swing and the Model-View-Controller Design Pattern12.1

630Design Patterns ..12.1.1

632The Model-View-Controller Pattern12.1.2

636A Model-View-Controller Analysis of Swing Buttons12.1.3

638Introduction to Layout Management ..12.2

641Border Layout ..12.2.1

644Grid Layout ..12.2.2

648Text Input ..12.3

649Text Fields ...12.3.1

651Labels and Labeling Components ..12.3.2

652Password Fields ...12.3.3

653Text Areas ...12.3.4

654Scroll Panes ...12.3.5

657Choice Components ..12.4

657Checkboxes ...12.4.1

660Radio Buttons ...12.4.2

Contentsxiv

ptg16518469

664Borders ..12.4.3

668Combo Boxes ..12.4.4

672Sliders ..12.4.5

678Menus ..12.5

679Menu Building ...12.5.1

682Icons in Menu Items ..12.5.2

683Checkbox and Radio Button Menu Items12.5.3

684Pop-Up Menus ...12.5.4

686Keyboard Mnemonics and Accelerators12.5.5

689Enabling and Disabling Menu Items12.5.6

694Toolbars ...12.5.7

696Tooltips ..12.5.8

699Sophisticated Layout Management ...12.6

701The Grid Bag Layout ...12.6.1

703The gridx, gridy, gridwidth, and gridheight Parameters ...12.6.1.1

703Weight Fields ..12.6.1.2

704The fill and anchor Parameters12.6.1.3

704Padding ...12.6.1.4

705

Alternative Method to Specify the gridx, gridy,

gridwidth, and gridheight Parameters

12.6.1.5

706

A Helper Class to Tame the Grid Bag

Constraints ..

12.6.1.6

713Group Layout ...12.6.2

723Using No Layout Manager ..12.6.3

724Custom Layout Managers ..12.6.4

729Traversal Order ..12.6.5

730Dialog Boxes ...12.7

731Option Dialogs ...12.7.1

741Creating Dialogs ..12.7.2

746Data Exchange ..12.7.3

752File Dialogs ...12.7.4

764Color Choosers ..12.7.5

770Troubleshooting GUI Programs ...12.8

770Debugging Tips ...12.8.1

774Letting the AWT Robot Do the Work12.8.2

xvContents

ptg16518469

779Chapter 13: Deploying Java Applications ...

780JAR Files ..13.1

780Creating JAR files ..13.1.1

781The Manifest ...13.1.2

782Executable JAR Files ...13.1.3

783Resources ..13.1.4

787Sealing ...13.1.5

788Storage of Application Preferences ...13.2

788Property Maps ...13.2.1

794The Preferences API ..13.2.2

800Service Loaders ..13.3

802Applets ..13.4

803A Simple Applet ..13.4.1

808The applet HTML Tag and Its Attributes13.4.2

810Use of Parameters to Pass Information to Applets13.4.3

816Accessing Image and Audio Files ...13.4.4

818The Applet Context ...13.4.5

818Inter-Applet Communication ..13.4.6

819Displaying Items in the Browser ...13.4.7

820The Sandbox ...13.4.8

822Signed Code ...13.4.9

824Java Web Start ...13.5

824Delivering a Java Web Start Application13.5.1

829The JNLP API ...13.5.2

839Chapter 14: Concurrency ...

840What Are Threads? ..14.1

846Using Threads to Give Other Tasks a Chance14.1.1

851Interrupting Threads ...14.2

855Thread States ...14.3

855New Threads ..14.3.1

855Runnable Threads ..14.3.2

856Blocked and Waiting Threads ..14.3.3

857Terminated Threads ..14.3.4

858Thread Properties ...14.4

858Thread Priorities ..14.4.1

Contentsxvi

ptg16518469

859Daemon Threads ..14.4.2

860Handlers for Uncaught Exceptions ..14.4.3

862Synchronization ...14.5

862An Example of a Race Condition ..14.5.1

866The Race Condition Explained ..14.5.2

868Lock Objects ...14.5.3

872Condition Objects ..14.5.4

878The synchronized Keyword ..14.5.5

882Synchronized Blocks ...14.5.6

884The Monitor Concept ..14.5.7

885Volatile Fields ...14.5.8

886Final Variables ..14.5.9

886Atomics ...14.5.10

889Deadlocks ...14.5.11

892Thread-Local Variables ...14.5.12

893Lock Testing and Timeouts ..14.5.13

895Read/Write Locks ...14.5.14

896Why the stop and suspend Methods Are Deprecated14.5.15

898Blocking Queues ..14.6

905Thread-Safe Collections ..14.7

905Efficient Maps, Sets, and Queues ..14.7.1

907Atomic Update of Map Entries ..14.7.2

909Bulk Operations on Concurrent Hash Maps14.7.3

912Concurrent Set Views ...14.7.4

912Copy on Write Arrays ...14.7.5

912Parallel Array Algorithms ..14.7.6

914Older Thread-Safe Collections ...14.7.7

915Callables and Futures ..14.8

920Executors ...14.9

921Thread Pools ...14.9.1

926Scheduled Execution ...14.9.2

927Controlling Groups of Tasks ..14.9.3

928The Fork-Join Framework ..14.9.4

931Completable Futures ...14.9.5

934Synchronizers ...14.10

xviiContents

ptg16518469

935Semaphores ..14.10.1

936Countdown Latches ..14.10.2

936Barriers ..14.10.3

937Exchangers ...14.10.4

937Synchronous Queues ..14.10.5

937Threads and Swing ..14.11

939Running Time-Consuming Tasks ..14.11.1

943Using the Swing Worker ..14.11.2

951The Single-Thread Rule ..14.11.3

953Appendix ..

957Index ...

Contentsxviii

ptg16518469

Preface

To the Reader
In late 1995, the Java programming language burst onto the Internet scene and

gained instant celebrity status. The promise of Java technology was that it would

become the universal glue that connects users with information wherever it comes

from—web servers, databases, information providers, or any other imaginable

source. Indeed, Java is in a unique position to fulfill this promise. It is an extremely

solidly engineered language that has gained wide acceptance. Its built-in security

and safety features are reassuring both to programmers and to the users of Java

programs. Java has built-in support for advanced programming tasks, such as

network programming, database connectivity, and concurrency.

Since 1995, nine major revisions of the Java Development Kit have been released.

Over the course of the last 20 years, the Application Programming Interface (API)

has grown from about 200 to over 4,000 classes. The API now spans such diverse

areas as user interface construction, database management, internationalization,

security, and XML processing.

The book you have in your hands is the first volume of the tenth edition of Core

Java

®
. Each edition closely followed a release of the Java Development Kit, and

each time, we rewrote the book to take advantage of the newest Java features.

This edition has been updated to reflect the features of Java Standard Edition

(SE) 8.

As with the previous editions of this book, we still target serious programmers who

want to put Java to work on real projects. We think of you, our reader, as a program-

mer with a solid background in a programming language other than Java, and

we assume that you don’t like books filled with toy examples (such as toasters,

zoo animals, or “nervous text”). You won’t find any of these in our book. Our

goal is to enable you to fully understand the Java language and library, not to

give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every language

and library feature that we discuss. We keep the sample programs purposefully

simple to focus on the major points, but, for the most part, they aren’t fake and

they don’t cut corners. They should make good starting points for your own code.

xix

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

We assume you are willing, even eager, to learn about all the advanced features

that Java puts at your disposal. For example, we give you a detailed treatment of

• Object-oriented programming

• Reflection and proxies

• Interfaces and inner classes

• Exception handling

• Generic programming

• The collections framework

• The event listener model

• Graphical user interface design with the Swing UI toolkit

• Concurrency

With the explosive growth of the Java class library, a one-volume treatment of

all the features of Java that serious programmers need to know is no longer pos-

sible. Hence, we decided to break up the book into two volumes. The first volume,

which you hold in your hands, concentrates on the fundamental concepts of the

Java language, along with the basics of user-interface programming. The second

volume, Core Java

®

, Volume II—Advanced Features, goes further into the enterprise

features and advanced user-interface programming. It includes detailed discus-

sions of

• The Stream API

• File processing and regular expressions

• Databases

• XML processing

• Annotations

• Internationalization

• Network programming

• Advanced GUI components

• Advanced graphics

• Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much

like to know about them. But, of course, we’d prefer to learn about each of them

only once. We have put up a list of frequently asked questions, bug fixes, and

workarounds on a web page at http://horstmann.com/corejava. Strategically placed at

the end of the errata page (to encourage you to read through it first) is a form you

can use to report bugs and suggest improvements. Please don’t be disappointed

if we don’t answer every query or don’t get back to you immediately. We do read

Prefacexx

http://horstmann.com/corejava

ptg16518469

all e-mail and appreciate your input to make future editions of this book clearer

and more informative.

A Tour of This Book
Chapter 1 gives an overview of the capabilities of Java that set it apart from other

programming languages. We explain what the designers of the language set out

to do and to what extent they succeeded. Then, we give a short history of how

Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program

examples for this book. Then we guide you through compiling and running three

typical Java programs—a console application, a graphical application, and an

applet—using the plain JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the

basics: variables, loops, and simple functions. If you are a C or C++ programmer,

this is smooth sailing because the syntax for these language features is essentially

the same as in C. If you come from a non-C background such as Visual Basic, you

will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming

practice, and Java is an object-oriented programming language. Chapter 4 intro-

duces encapsulation, the first of two fundamental building blocks of object orien-

tation, and the Java language mechanism to implement it—that is, classes and

methods. In addition to the rules of the Java language, we also give advice on

sound OOP design. Finally, we cover the marvelous javadoc tool that formats your

code comments as a set of hyperlinked web pages. If you are familiar with C++,

you can browse through this chapter quickly. Programmers coming from a non-

object-oriented background should expect to spend some time mastering the OOP

concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 in-

troduces the other—namely, inheritance. Inheritance lets you take an existing class

and modify it according to your needs. This is a fundamental technique for pro-

gramming in Java. The inheritance mechanism in Java is quite similar to that in

C++. Once again, C++ programmers can focus on the differences between the

languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you

go beyond the simple inheritance model of Chapter 5. Mastering interfaces allows

you to have full access to the power of Java’s completely object-oriented approach

to programming. After we cover interfaces, we move on to lambda expressions, a

xxiPreface

ptg16518469

concise way for expressing a block of code that can be executed at a later point

in time. We then cover a useful technical feature of Java called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with the

fact that bad things can happen to good programs. Exceptions give you an efficient

way of separating the normal processing code from the error handling. Of course,

even after hardening your program by handling all exceptional conditions, it still

might fail to work as expected. In the final part of this chapter, we give you a

number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming

makes your programs easier to read and safer. We show you how to use strong

typing and remove unsightly and unsafe casts, and how to deal with the complex-

ities that arise from the need to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. When-

ever you want to collect multiple objects and retrieve them later, you should use

a collection that is best suited for your circumstances, instead of just tossing the

elements into an array. This chapter shows you how to take advantage of

the standard collections that are prebuilt for your use.

Chapter 10 starts the coverage of GUI programming. We show how you can make

windows, how to paint on them, how to draw with geometric shapes, how to

format text in multiple fonts, and how to display images.

Chapter 11 is a detailed discussion of the event model of the AWT, the abstract

window toolkit. You’ll see how to write code that responds to events, such as mouse

clicks or key presses. Along the way you’ll see how to handle basic GUI elements

such as buttons and panels.

Chapter 12 discusses the Swing GUI toolkit in great detail. The Swing toolkit al-

lows you to build cross-platform graphical user interfaces. You’ll learn all about

the various kinds of buttons, text components, borders, sliders, list boxes, menus,

and dialog boxes. However, some of the more advanced components are discussed

in Volume II.

Chapter 13 shows you how to deploy your programs, either as applications or

applets. We describe how to package programs in JAR files, and how to deliver

applications over the Internet with the Java Web Start and applet mechanisms.

We also explain how Java programs can store and retrieve configuration

information once they have been deployed.

Chapter 14 finishes the book with a discussion of concurrency, which enables

you to program tasks to be done in parallel. This is an important and exciting

Prefacexxii

ptg16518469

application of Java technology in an era where most processors have multiple

cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions
As is common in many computer books, we use monospace type to represent

computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between
Java and C++.You can skip over them if you don’t have a background in C++
or if you consider your experience with that language a bad dream of which
you’d rather not be reminded.

Java comes with a large programming library, or Application Programming In-

terface (API). When using an API call for the first time, we add a short summary

description at the end of the section. These descriptions are a bit more informal

but, we hope, also a little more informative than those in the official online API

documentation. The names of interfaces are in italics, just like in the official doc-

umentation. The number after a class, interface, or method name is the JDK version

in which the feature was introduced, as shown in the following example:

Application Programming Interface 1.2

xxiiiPreface

ptg16518469

Programs whose source code is on the book’s companion web site are presented

as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code
The web site for this book at http://horstmann.com/corejava contains all sample code

from the book, in compressed form. You can expand the file either with one of

the familiar unzipping programs or simply with the jar utility that is part of the

Java Development Kit. See Chapter 2 for more information on installing

the Java Development Kit and the sample code.

Prefacexxiv

http://horstmann.com/corejava

ptg16518469

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem to

be much easier, especially with the continuous change in Java technology. Making

a book a reality takes many dedicated people, and it is my great pleasure to

acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall provided valuable assistance but

managed to stay behind the scenes. I’d like them all to know how much I appre-

ciate their efforts. As always, my warm thanks go to my editor, Greg Doench, for

steering the book through the writing and production process, and for allowing

me to be blissfully unaware of the existence of all those folks behind the scenes.

I am very grateful to Julie Nahil for production support, and to Dmitry Kirsanov

and Alina Kirsanova for copyediting and typesetting the manuscript. My thanks

also to my coauthor of earlier editions, Gary Cornell, who has since moved on to

other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors

and made lots of thoughtful suggestions for improvement. I am particularly

grateful to the excellent reviewing team who went over the manuscript with an

amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley Univer-

sity), Lance Andersen (Oracle), Paul Anderson (Anderson Software Group), Alec

Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch, David Brown,

Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),

Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David

Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon,

Dan Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford),

Cameron Gregory (olabs.com), Marty Hall (coreservlets.com, Inc.), Vincent Hardy

(Adobe Systems), Dan Harkey (San Jose State University), William Higgins (IBM),

Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies), Tim Kimmet

(Walmart), Chris Laffra, Charlie Lai (Apple), Angelika Langer, Doug Langston,

Hang Lau (McGill University), Mark Lawrence, Doug Lea (SUNY Oswego),

Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne (consultant),

Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida

Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges

(University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders

(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and

xxv

ptg16518469

Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),

Yoshiki Shibata, Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,

Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet

Traub, Paul Tyma (consultant), Peter van der Linden, Christian Ullenboom, Burt

Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Cay Horstmann

Biel/Bienne, Switzerland

November 2015

Acknowledgmentsxxvi

ptg16518469

1CHAPTER

An Introduction to Java

In this chapter

• 1.1 Java as a Programming Platform, page 1

• 1.2 The Java ‘White Paper’ Buzzwords, page 2

• 1.3 Java Applets and the Internet, page 8

• 1.4 A Short History of Java, page 10

• 1.5 Common Misconceptions about Java, page 13

The first release of Java in 1996 generated an incredible amount of excitement,

not just in the computer press, but in mainstream media such as the New York

Times, the Washington Post, and BusinessWeek. Java has the distinction of being

the first and only programming language that had a ten-minute story on National

Public Radio. A $100,000,000 venture capital fund was set up solely for products

using a specific computer language. I hope you will enjoy the brief history of Java

that you will find in this chapter.

1.1 Java as a Programming Platform
In the first edition of this book, my coauthor Gary Cornell and I had this to write

about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good pro-

gramming language. There is no doubt that it is one of the better languages

1

ptg16518469

available to serious programmers. We think it could potentially have been a great

programming language, but it is probably too late for that. Once a language is

out in the field, the ugly reality of compatibility with existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at Sun

Microsystems, the company that originally developed Java. The Java language

has a lot of nice features that we will examine in detail later in this chapter. It has

its share of warts, and some of the newer additions to the language are not as

elegant as the original features because of the ugly reality of compatibility.

But, as we already said in the first edition, Java was never just a language. There

are lots of programming languages out there, but few of them make much of a

splash. Java is a whole platform, with a huge library, containing lots of reusable

code, and an execution environment that provides services such as security,

portability across operating systems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and compre-

hensible semantics (i.e., not C++). Java fits the bill, as do dozens of other fine

languages. Some languages give you portability, garbage collection, and the like,

but they don’t have much of a library, forcing you to roll your own if you want

fancy graphics or networking or database access. Well, Java has everything—a

good language, a high-quality execution environment, and a vast library.

That combination is what makes Java an irresistible proposition to so many

programmers.

1.2 The Java “White Paper” Buzzwords
The authors of Java wrote an influential white paper that explains their design

goals and accomplishments. They also published a shorter overview that is

organized along the following 11 buzzwords:

1. Simple

2. Object-Oriented

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

Chapter 1 An Introduction to Java2

ptg16518469

10. Multithreaded

11. Dynamic

In this section, you will find a summary, with excerpts from the white paper, of

what the Java designers say about each buzzword, together with a commentary

based on my experiences with the current version of Java.

NOTE: The white paper can be found at www.oracle.com/technetwork/java/
langenv-140151.html.You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf.

1.2.1 Simple
We wanted to build a system that could be programmed easily without a lot of eso-

teric training and which leveraged today’s standard practice. So even though we

found that C++ was unsuitable, we designed Java as closely to C++ as possible in

order to make the system more comprehensible. Java omits many rarely used,

poorly understood, confusing features of C++ that, in our experience, bring more

grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is no

need for header files, pointer arithmetic (or even a pointer syntax), structures,

unions, operator overloading, virtual base classes, and so on. (See the C++ notes

interspersed throughout the text for more on the differences between Java and

C++.) The designers did not, however, attempt to fix all of the clumsy features

of C++. For example, the syntax of the switch statement is unchanged in Java. If

you know C++, you will find the transition to the Java syntax easy.

At the time that Java was released, C++ was actually not the most commonly

used programming language. Many developers used Visual Basic and its drag-

and-drop programming environment. These developers did not find Java

simple. It took several years for Java development environments to catch up.

Nowadays, Java development environments are far ahead of those for most other

programming languages.

Another aspect of being simple is being small. One of the goals of Java is to enable

the construction of software that can run stand-alone on small machines. The size

of the basic interpreter and class support is about 40K; the basic standard libraries

and thread support (essentially a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since grown

to huge proportions. There is now a separate Java Micro Edition with a smaller

library, suitable for embedded devices.

31.2 The Java “White Paper” Buzzwords

www.allitebooks.com

http://www.oracle.com/technetwork/java/
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf
http://www.allitebooks.org

ptg16518469

1.2.2 Object-Oriented
Simply stated, object-oriented design is a programming technique that focuses on

the data (= objects) and on the interfaces to that object. To make an analogy with

carpentry, an “object-oriented” carpenter would be mostly concerned with the chair

he is building, and secondarily with the tools used to make it; a “non-object-oriented”

carpenter would think primarily of his tools. The object-oriented facilities of Java

are essentially those of C++.

Object orientation was pretty well established when Java was developed.

The object-oriented features of Java are comparable to those of C++. The major

difference between Java and C++ lies in multiple inheritance, which Java has re-

placed with the simpler concept of interfaces. Java has a richer capacity for runtime

introspection than C++ (which is discussed in Chapter 5).

1.2.3 Distributed
Java has an extensive library of routines for coping with TCP/IP protocols like

HTTP and FTP. Java applications can open and access objects across the Net via

URLs with the same ease as when accessing a local file system.

Nowadays, one takes this for granted, but in 1995, connecting to a web server

from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust
Java is intended for writing programs that must be reliable in a variety of ways.

Java puts a lot of emphasis on early checking for possible problems, later dynamic

(runtime) checking, and eliminating situations that are error-prone. . . The single

biggest difference between Java and C/C++ is that Java has a pointer model that

eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show

up only at runtime. As for the second point, anyone who has spent hours chasing

memory corruption caused by a pointer bug will be very happy with this aspect

of Java.

1.2.5 Secure
Java is intended to be used in networked/distributed environments. Toward that

end, a lot of emphasis has been placed on security. Java enables the construction of

virus-free, tamper-free systems.

Chapter 1 An Introduction to Java4

ptg16518469

From the beginning, Java was designed to make certain kinds of attacks impossible,

among them:

• Overrunning the runtime stack—a common attack of worms and viruses

• Corrupting memory outside its own process space

• Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!” Un-

trusted code was executed in a sandbox environment where it could not impact

the host system. Users were assured that nothing bad could happen because Java

code, no matter where it came from, was incapable of escaping from the sandbox.

However, the security model of Java is complex. Not long after the first version

of the Java Development Kit was shipped, a group of security experts at Princeton

University found subtle bugs that allowed untrusted code to attack the host

system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers got

quite good at spotting subtle flaws in the implementation of the security

architecture. Sun, and then Oracle, had a tough time keeping up with bug fixes.

After a number of high-profile attacks, browser vendors and Oracle became in-

creasingly cautious. Java browser plug-ins no longer trust remote code unless it

is digitally signed and users have agreed to its execution.

NOTE:Even though in hindsight, the Java security model was not as successful
as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft relied on digital signatures alone for security.
Clearly this was not sufficient—as any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create damage.

1.2.6 Architecture-Neutral
The compiler generates an architecture-neutral object file format—the compiled

code is executable on many processors, given the presence of the Java runtime system.

The Java compiler does this by generating bytecode instructions which have nothing

to do with a particular computer architecture. Rather, they are designed to be both

easy to interpret on any machine and easily translated into native machine code on

the fly.

Generating code for a “virtual machine” was not a new idea at the time. Program-

ming languages such as Lisp, Smalltalk, and Pascal had employed this technique

for many years.

51.2 The Java “White Paper” Buzzwords

ptg16518469

Of course, interpreting virtual machine instructions is slower than running ma-

chine instructions at full speed. However, virtual machines have the option of

translating the most frequently executed bytecode sequences into machine code—a

process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it can

check the behavior of instruction sequences.

1.2.7 Portable
Unlike C and C++, there are no “implementation-dependent” aspects of the

specification. The sizes of the primitive data types are specified, as is the behavior

of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a

16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes.

The only restriction is that the int type must have at least as many bytes as a short
int and cannot have more bytes than a long int. Having a fixed size for number

types eliminates a major porting headache. Binary data is stored and

transmitted in a fixed format, eliminating confusion about byte ordering. Strings

are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,

there is an abstract Window class and implementations of it for UNIX, Windows, and

the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has ever

tried knows, it is an effort of heroic proportions to implement a user interface

that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0

made the heroic effort, delivering a simple toolkit that provided common user

interface elements on a number of platforms. Unfortunately, the result was a li-

brary that, with a lot of work, could give barely acceptable results on different

systems. That initial user interface toolkit has since been replaced, and replaced

again, and portability across platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java libraries do

a great job of letting you work in a platform-independent manner. You can work

with files, regular expressions, XML, dates and times, databases, network connec-

tions, threads, and so on, without worrying about the underlying operating system.

Not only are your programs portable, but the Java APIs are often of higher quality

than the native ones.

Chapter 1 An Introduction to Java6

ptg16518469

1.2.8 Interpreted
The Java interpreter can execute Java bytecodes directly on any machine to which

the interpreter has been ported. Since linking is a more incremental and lightweight

process, the development process can be much more rapid and exploratory.

This seems a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,

Python, R, or Scala knows what a “rapid and exploratory” development process

is. You try out something, and you instantly see the result. Java development

environments are not focused on that experience.

1.2.9 High-Performance
While the performance of interpreted bytecodes is usually more than adequate, there

are situations where higher performance is required. The bytecodes can be translated

on the fly (at runtime) into machine code for the particular CPU the application is

running on.

In the early years of Java, many users disagreed with the statement that the per-

formance was “more than adequate.” Today, however, the just-in-time compilers

have become so good that they are competitive with traditional compilers and,

in some cases, even outperform them because they have more information

available. For example, a just-in-time compiler can monitor which code is executed

frequently and optimize just that code for speed. A more sophisticated optimiza-

tion is the elimination (or “inlining”) of function calls. The just-in-time compiler

knows which classes have been loaded. It can use inlining when, based upon the

currently loaded collection of classes, a particular function is never overridden,

and it can undo that optimization later if necessary.

1.2.10 Multithreaded
[The] benefits of multithreading are better interactive responsiveness and real-time

behavior.

Nowadays, we care about concurrency because Moore’s law is coming to an end.

Instead of faster processors, we just get more of them, and we have to keep them

busy. Yet when you look at most programming languages, they show a shocking

disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to support

concurrent programming. As you can see from the white paper, its motivation

was a little different. At the time, multicore processors were exotic, but web pro-

gramming had just started, and processors spent a lot of time waiting for a

71.2 The Java “White Paper” Buzzwords

ptg16518469

response from the server. Concurrent programming was needed to make sure

the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job making

it manageable.

1.2.11 Dynamic
In a number of ways, Java is a more dynamic language than C or C++. It was de-

signed to adapt to an evolving environment. Libraries can freely add new methods

and instance variables without any effect on their clients. In Java, finding out

runtime type information is straightforward.

This is an important feature in the situations where code needs to be added to a

running program. A prime example is code that is downloaded from the Internet

to run in a browser. In C or C++, this is indeed a major challenge, but the Java

designers were well aware of dynamic languages that made it easy to evolve a

running program. Their achievement was to bring this feature to a mainstream

programming language.

NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. At this point, Microsoft is no longer supporting J++ and has
instead introduced another language called C# that also has many similarities
with Java but runs on a different virtual machine. This book does not cover J++
or C#.

1.3 Java Applets and the Internet
The idea here is simple: Users will download Java bytecodes from the Internet

and run them on their own machines. Java programs that work on web pages are

called applets. To use an applet, you only need a Java-enabled web browser, which

will execute the bytecodes for you. You need not install any software. You get

the latest version of the program whenever you visit the web page containing the

applet. Most importantly, thanks to the security of the virtual machine, you never

need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image. The

applet becomes a part of the page, and the text flows around the space used for

the applet. The point is, this image is alive. It reacts to user commands, changes

its appearance, and exchanges data between the computer presenting the applet

and the computer serving it.

Chapter 1 An Introduction to Java8

ptg16518469

Figure 1.1 shows a good example of a dynamic web page that carries out sophis-

ticated calculations. The Jmol applet displays molecular structures. By using the

mouse, you can rotate and zoom each molecule to better understand its structure.

This kind of direct manipulation is not achievable with static web pages, but

applets make it possible. (You can find this applet at http://jmol.sourceforge.net.)

Figure 1.1 The Jmol applet

When applets first appeared, they created a huge amount of excitement. Many

people believe that the lure of applets was responsible for the astonishing popu-

larity of Java. However, the initial excitement soon turned into frustration. Various

versions of the Netscape and Internet Explorer browsers ran different versions

of Java, some of which were seriously outdated. This sorry situation made it in-

creasingly difficult to develop applets that took advantage of the most current

Java version. Instead, Adobe’s Flash technology became popular for achieving

dynamic effects in the browser. Later, when Java was dogged by serious security

issues, browsers and the Java browser plug-in became increasingly restrictive.

Nowadays, it requires skill and dedication to get applets to work in your browser.

For example, if you visit the Jmol web site, you will likely encounter a message

exhorting you to configure your browser for allowing applets to run.

91.3 Java Applets and the Internet

http://jmol.sourceforge.net

ptg16518469

1.4 A Short History of Java
This section gives a short history of Java’s evolution. It is based on various pub-

lished sources (most importantly an interview with Java’s creators in the July

1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton

and James Gosling (a Sun Fellow and an all-around computer wizard), wanted

to design a small computer language that could be used for consumer devices

like cable TV switchboxes. Since these devices do not have a lot of power or

memory, the language had to be small and generate very tight code. Also, as

different manufacturers may choose different central processing units (CPUs), it

was important that the language not be tied to any single architecture. The project

was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to design

a portable language that generated intermediate code for a virtual machine.

The Sun people came from a UNIX background, so they based their language on

C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling says in the interview,

“All along, the language was a tool, not the end.” Gosling decided to call his

language “Oak” (presumably because he liked the look of an oak tree that was

right outside his window at Sun). The people at Sun later realized that Oak

was the name of an existing computer language, so they changed the name to

Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an extreme-

ly intelligent remote control. Unfortunately, no one was interested in producing

this at Sun, and the Green people had to find other ways to market their technol-

ogy. However, none of the standard consumer electronics companies were inter-

ested either. The group then bid on a project to design a cable TV box that could

deal with emerging cable services such as video-on-demand. They did not get

the contract. (Amusingly, the company that did was led by the same Jim Clark

who started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and

half of 1994 looking for people to buy its technology. No one was found. (Patrick

Naughton, one of the founders of the group and the person who ended up doing

most of the marketing, claims to have accumulated 300,000 air miles in trying to

sell the technology.) First Person was dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the Internet

was growing bigger and bigger. The key to the World Wide Web was the

browser translating hypertext pages to the screen. In 1994, most people were using

Mosaic, a noncommercial web browser that came out of the supercomputing

Chapter 1 An Introduction to Java10

ptg16518469

center at the University of Illinois in 1993. (Mosaic was partially written by Marc

Andreessen as an undergraduate student on a work-study project, for $6.85 an

hour. He moved on to fame and fortune as one of the cofounders and the chief

of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers

realized that “We could build a real cool browser. It was one of the few things in

the client/server mainstream that needed some of the weird things we’d done:

architecture-neutral, real-time, reliable, secure—issues that weren’t terribly

important in the workstation world. So we built a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and

evolved into the HotJava browser, which was designed to show off the power of

Java. The builders made the browser capable of executing Java code inside web

pages. This “proof of technology” was shown at SunWorld ’95 on May 23, 1995,

and inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized that

Java 1.0 was not going to cut it for serious application development. Sure, you

could use Java 1.0 to make a nervous text applet that moved text randomly around

in a canvas. But you couldn’t even print in Java 1.0. To be blunt, Java 1.0 was not

ready for prime time. Its successor, version 1.1, filled in the most obvious gaps,

greatly improved the reflection capability, and added a new event model for GUI

programming. It was still rather limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2,

which replaced the early toylike GUI and graphics toolkits with sophisticated

scalable versions and came a lot closer to the promise of “Write Once, Run Any-

where”™ than its predecessors. Three days after (!) its release in December 1998,

Sun’s marketing department changed the name to the catchy Java 2 Standard Edition

Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro

Edition for embedded devices such as cell phones, and the Enterprise Edition for

server-side processing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental improvements

over the initial Java 2 release, with an ever-growing standard library, increased

performance, and, of course, quite a few bug fixes. During this time, much of the

initial hype about Java applets and client-side applications abated, but Java became

the platform of choice for server-side applications.

Version 5.0 was the first release since version 1.1 that updated the Java language

in significant ways. (This version was originally numbered 1.5, but the version

number jumped to 5.0 at the 2004 JavaOne conference.) After many years of

research, generic types (roughly comparable to C++ templates) have been

111.4 A Short History of Java

ptg16518469

added—the challenge was to add this feature without requiring changes in the

virtual machine. Several other useful language features were inspired by C#: a

“for each” loop, autoboxing, and annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again, there

were no language changes but additional performance improvements and library

enhancements.

As datacenters increasingly relied on commodity hardware instead of specialized

servers, Sun Microsystems fell on hard times and was purchased by Oracle in

2009. Development of Java stalled for a long time. In 2011, Oracle released a new

version with simple enhancements as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to the

Java language in almost two decades. Java 8 embraces a “functional” style of

programming that makes it easy to express computations that can be executed

concurrently. All programming languages must evolve to stay relevant, and Java

has shown a remarkable capacity to do so.

Table 1.1 shows the evolution of the Java language and library. As you can see,

the size of the application programming interface (API) has grown tremendously.

Table 1.1 Evolution of the Java Language

Number of Classes
and Interfaces

New Language FeaturesYearVersion

211The language itself19961.0

477Inner classes19971.1

1,524The strictfp modifier19981.2

1,840None20001.3

2,723Assertions20021.4

3,279Generic classes, “for each” loop, varargs,

autoboxing, metadata, enumerations, static

import

20045.0

3,793None20066

4,024Switch with strings, diamond operator,

binary literals, exception handling

enhancements

20117

4,240Lambda expressions, interfaces with default

methods, stream and date/time libraries

20148

Chapter 1 An Introduction to Java12

ptg16518469

1.5 Common Misconceptions about Java
This chapter closes with a commented list of some common misconceptions

about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a

web page. They have nothing in common except that there are HTML extensions

for placing Java applets on a web page.

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can process

XML data with any programming language, but the Java API contains excellent

support for XML processing. In addition, many important XML tools are

implemented in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to dis-

tinguish between how easy it is to write toy programs and how hard it is to do

serious work. Also, consider that only seven chapters in this book discuss the Java

language. The remaining chapters of both volumes show how to put the language

to work, using the Java libraries. The Java libraries contain thousands of classes

and interfaces and tens of thousands of functions. Luckily, you do not need to

know every one of them, but you do need to know surprisingly many to use Java

for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other languages

are entrenched. Objective C and its successor, Swift, are not going to be replaced

on iOS devices. Anything that happens in a browser is controlled by JavaScript.

Windows programs are written in C++ or C#. Java has the edge in server-side

programming and in cross-platform client applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C, C++, or

C#. But there have been hundreds of nice programming languages that never

gained widespread popularity, whereas languages with obvious flaws, such as

C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the

utility of the support system surrounding it than by the elegance of its syntax. Are

there useful, convenient, and standard libraries for the features that you need to

implement? Are there tool vendors that build great programming and debugging

131.5 Common Misconceptions about Java

ptg16518469

environments? Do the language and the toolset integrate with the rest of the

computing infrastructure? Java is successful because its libraries let you easily

do things such as networking, web applications, and concurrency. The fact that

Java reduces pointer errors is a bonus, so programmers seem to be more

productive with Java—but these factors are not the source of its success.

Java is proprietary, and it should therefore be avoided.

When Java was first created, Sun gave free licenses to distributors and end users.

Although Sun had ultimate control over Java, they involved many other companies

in the development of language revisions and the design of new libraries. Source

code for the virtual machine and the libraries has always been freely available,

but only for inspection, not for modification and redistribution. Java was “closed

source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that future

versions of Java would be available under the General Public License (GPL), the

same open source license that is used by Linux. Oracle has committed to keeping

Java open source. There is only one fly in the ointment—patents. Everyone is

given a patent grant to use and modify Java, subject to the GPL, but only on

desktop and server platforms. If you want to use Java in embedded systems, you

need a different license and will likely need to pay royalties. However,

these patents will expire within the next decade, and at that point Java will be

entirely free.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java vir-

tual machine uses a just-in-time compiler. The “hot spots” of your code will run

just as fast in Java as they would in C++, and in some cases even faster.

People used to complain that Java desktop applications are slow. However, today’s

computers are much faster than they were when these complaints started. A slow

Java program will still run quite a bit better today than those blazingly fast C++

programs did a few years ago.

All Java programs run inside a web page.

All Java applets run inside a web browser. That is the definition of an applet—a

Java program running inside a browser. But most Java programs are stand-alone

applications that run outside of a web browser. In fact, many Java programs run

on web servers and produce the code for web pages.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures in

the Java security system. Researchers viewed it as a challenge to find chinks

in the Java armor and to defy the strength and sophistication of the applet security

Chapter 1 An Introduction to Java14

ptg16518469

model. The technical failures that they found have all been quickly corrected.

Later, there were more serious exploits, to which Sun, and later Oracle, responded

too slowly. Browser manufacturers reacted, and perhaps overreacted, by deacti-

vating Java by default. To keep this in perspective, consider the literally millions

of virus attacks in Windows executable files and Word macros that cause real

grief but surprisingly little criticism of the weaknesses of the attacked platform.

Some system administrators have even deactivated Java in company browsers,

while continuing to permit their users to download executable files and Word

documents which pose a far greater risk. Even 20 years after its creation, Java is

far safer than any other commonly available execution platform.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was invented

by Netscape and originally called LiveScript. JavaScript has a syntax that is rem-

iniscent of Java, and the languages’ names sound similar, but otherwise they are

unrelated. A subset of JavaScript is standardized as ECMA-262. JavaScript is more

tightly integrated with browsers than Java applets are. In particular, a JavaScript

program can modify the document that is being displayed, whereas an applet

can only control the appearance of a limited area.

With Java, I can replace my desktop computer with a cheap “Internet appliance.”

When Java was first released, some people bet big that this was going to happen.

Companies produced prototypes of Java-powered network computers, but users

were not ready to give up a powerful and convenient desktop for a limited ma-

chine with no local storage. Nowadays, of course, the world has changed, and

for a large majority of end users, the platform that matters is a mobile phone or

tablet. The majority of these devices are controlled by the Android platform,

which is a derivative of Java. Learning Java programming will help you with

Android programming as well.

151.5 Common Misconceptions about Java

ptg16518469

This page intentionally left blank

ptg16518469

2CHAPTER

The Java Programming
Environment

In this chapter

• 2.1 Installing the Java Development Kit, page 18

• 2.2 Using the Command-Line Tools, page 23

• 2.3 Using an Integrated Development Environment, page 26

• 2.4 Running a Graphical Application, page 30

• 2.5 Building and Running Applets, page 33

In this chapter, you will learn how to install the Java Development Kit (JDK) and

how to compile and run various types of programs: console programs, graphical

applications, and applets. You can run the JDK tools by typing commands in a

terminal window. However, many programmers prefer the comfort of an inte-

grated development environment. You will learn how to use a freely available

development environment to compile and run Java programs. Although easier

to learn, integrated development environments can be resource-hungry and te-

dious to use for small programs. Once you have mastered the techniques in this

chapter and picked your development tools, you are ready to move on to

Chapter 3, where you will begin exploring the Java programming language.

17

ptg16518469

2.1 Installing the Java Development Kit
The most complete and up-to-date versions of the Java Development Kit (JDK)

are available from Oracle for Linux, Mac OS X, Solaris, and Windows. Versions

in various states of development exist for many other platforms, but those

versions are licensed and distributed by the vendors of those platforms.

2.1.1 Downloading the JDK
To download the Java Development Kit, visit the web site at www.oracle.com/
technetwork/java/javase/downloads and be prepared to decipher an amazing amount of

jargon before you can get the software you need. See Table 2.1 for a summary.

You already saw the abbreviation JDK for Java Development Kit. Somewhat

confusingly, versions 1.2 through 1.4 of the kit were known as the Java SDK

(Software Development Kit). You will still find occasional references to the old

term. There is also a Java Runtime Environment (JRE) that contains the virtual

machine but not the compiler. That is not what you want as a developer. It is

intended for end users who have no need for the compiler.

Next, you’ll see the term Java SE everywhere. That is the Java Standard Edition,

in contrast to Java EE (Enterprise Edition) and Java ME (Micro Edition).

You might run into the term Java 2 that was coined in 1998 when the marketing

folks at Sun felt that a fractional version number increment did not properly

communicate the momentous advances of JDK 1.2. However, because they had

that insight only after the release, they decided to keep the version number 1.2

for the development kit. Subsequent releases were numbered 1.3, 1.4, and 5.0. The

platform, however, was renamed from Java to Java 2. Thus, we had Java 2 Standard

Edition Software Development Kit Version 5.0, or J2SE SDK 5.0.

Fortunately, in 2006, the numbering was simplified. The next version of the Java

Standard Edition was called Java SE 6, followed by Java SE 7 and Java SE 8.

However, the “internal” version numbers are 1.6.0, 1.7.0, and 1.8.0.

When Oracle makes a minor version change to fix urgent issues, it refers to the

change as an update. For example, Java SE 8u31 is the 31st update of Java SE 8,

and it has the internal version number 1.8.0_31. An update does not need to be

installed over a prior version—it contains the most current version of the whole

JDK. Also, not all updates are released to the public, so don’t panic if update 31

isn’t followed by update 32.

Chapter 2 The Java Programming Environment18

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

ptg16518469

Table 2.1 Java Jargon

ExplanationAcronymName

The software for programmers who want

to write Java programs

JDKJava Development Kit

The software for consumers who want to

run Java programs

JREJava Runtime Environment

The software for running Java programs

on servers

—Server JRE

The Java platform for use on desktops

and simple server applications

SEStandard Edition

The Java platform for complex server

applications

EEEnterprise Edition

The Java platform for use on cell phones

and other small devices

MEMicro Edition

An alternate toolkit for graphical user

interfaces that is included in Oracle’s Java

SE distribution

—Java FX

A free and open source implementation

of Java SE. It does not include browser

integration or JavaFX.

—OpenJDK

An outdated term that described Java

versions from 1998 until 2006

J2Java 2

An outdated term that described the JDK

from 1998 until 2006

SDKSoftware Development Kit

Oracle’s term for a bug fix releaseuUpdate

Oracle’s integrated development

environment

—NetBeans

With Windows or Linux, you need to choose between the x86 (32-bit) and x64
(64-bit) versions. Pick the one that matches the architecture of your operating

system.

With Linux, you have a choice between an RPM file and a .tar.gz file. We

recommend the latter—you can simply uncompress it anywhere you like.

Now you know how to pick the right JDK. To summarize:

192.1 Installing the Java Development Kit

ptg16518469

• You want the JDK (Java SE Development Kit), not the JRE.

• Windows or Linux: Choose x86 for 32 bit, x64 for 64 bit.

• Linux: Pick the .tar.gz version.

Accept the license agreement and download the file.

NOTE: Oracle offers a bundle that contains both the Java Development Kit and
the NetBeans integrated development environment. I suggest that you stay away
from all bundles and install only the Java Development Kit at this time. If you
later decide to use NetBeans, simply download it from http://netbeans.org.

2.1.2 Setting up the JDK
After downloading the JDK, you need to install it and figure out where it was

installed—you’ll need that information later.

• Under Windows, launch the setup program. You will be asked where to install

the JDK. It is best not to accept a default location with spaces in the path name,

such as c:\Program Files\Java\jdk1.8.0_version. Just take out the Program Files part of the

path name.

• On the Mac, run the installer. It installs the software into /Library/Java/
JavaVirtualMachines/jdk1.8.0_version.jdk/Contents/Home. Locate it with the Finder.

• On Linux, simply uncompress the .tar.gz file to a location of your choice, such

as your home directory or /opt. Or, if you installed from the RPM file,

double-check that it is installed in /usr/java/jdk1.8.0_version.

In this book, the installation directory is denoted as jdk. For example, when

referring to the jdk/bin directory, I mean the directory with a name such as

/opt/jdk1.8.0_31/bin or c:\Java\jdk1.8.0_31\bin.

When you install the JDK on Windows or Linux, you need to carry out one addi-

tional step: Add the jdk/bin directory to the executable path—the list of directories

that the operating system traverses to locate executable files.

• On Linux, add a line such as the following to the end of your ~/.bashrc or

~/.bash_profile file:

export PATH=jdk/bin:$PATH

Be sure to use the correct path to the JDK, such as /opt/jdk1.8.0_31.

• Under Windows, start the Control Panel, select System and Security, select

System, then select Advanced System Settings (see Figure 2.1). In the System

Properties dialog, click the Advanced tab, then click the Environment button.

Chapter 2 The Java Programming Environment20

http://netbeans.org

ptg16518469

Scroll through the System Variables list until you find a variable named Path.

Click the Edit button (see Figure 2.2). Add the jdk\bin directory to the beginning

of the path, using a semicolon to separate the new entry, like this:

jdk\bin;other stuff

Be careful to replace jdk with the actual path to your Java installation, such as

c:\Java\jdk1.8.0_31. If you ignored the advice to drop the Program Files directory,

enclose the entire path segment in double quotes: "c:\Program Files\Java\
jdk1.8.0_31\bin";other stuff.

Save your settings. Any new console windows that you start will have the

correct path.

Figure 2.1 Setting system properties in Windows 7

Here is how you test whether you did it right: Start a terminal window. Type

the line

javac -version

and press the Enter key. You should get a display such as this one:

javac 1.8.0_31

212.1 Installing the Java Development Kit

ptg16518469

If instead you get a message such as “javac: command not found” or “The name

specified is not recognized as an internal or external command, operable program

or batch file”, then you need to go back and double-check your installation.

Figure 2.2 Setting the Path environment variable in Windows 7

2.1.3 Installing Source Files and Documentation
The library source files are delivered in the JDK as a compressed file src.zip. Unpack

that file to get access to the source code. Simply do the following:

1. Make sure the JDK is installed and that the jdk/bin directory is on the

executable path.

2. Make a directory javasrc in your home directory. If you like, you can do this

from a terminal window.

mkdir javasrc

Chapter 2 The Java Programming Environment22

ptg16518469

3. Inside the jdk directory, locate the file src.zip.

4. Unzip the src.zip file into the javasrc directory. In a terminal window, you can

execute the commands

cd javasrc
jar xvf jdk/src.zip
cd ..

TIP: The src.zip file contains the source code for all public libraries. To obtain
even more source (for the compiler, the virtual machine, the native methods,
and the private helper classes), go to http://jdk8.java.net.

The documentation is contained in a compressed file that is separate from the

JDK. You can download the documentation from www.oracle.com/technetwork/java/javase/
downloads. Simply follow these steps:

1. Download the documentation zip file. It is called jdk-version-docs-all.zip, where

version is something like 8u31.

2. Unzip the file and rename the doc directory into something more descriptive,

like javadoc. If you like, you can do this from the command line:

jar xvf Downloads/jdk-version-docs-all.zip
mv doc javadoc

where version is the appropriate version number.

3. In your browser, navigate to javadoc/api/index.html and add this page to your

bookmarks.

You should also install the Core Java program examples. You can download them

from http://horstmann.com/corejava. The programs are packaged into a zip file corejava.zip.

Just unzip them into your home directory. They will be located in a directory

corejava. If you like, you can do this from the command line:

jar xvf Downloads/corejava.zip

2.2 Using the Command-Line Tools
If your programming experience comes from using a development environment

such as Microsoft Visual Studio, you are accustomed to a system with a built-in

text editor, menus to compile and launch a program, and a debugger. The JDK

contains nothing even remotely similar. You do everything by typing in commands

in a terminal window. This sounds cumbersome, but it is nevertheless an essential

232.2 Using the Command-Line Tools

www.allitebooks.com

http://jdk8.java.net
http://www.oracle.com/technetwork/java/javase/downloads
http://horstmann.com/corejava
http://www.oracle.com/technetwork/java/javase/downloads
http://www.allitebooks.org

ptg16518469

skill. When you first install Java, you will want to troubleshoot your installation

before you install a development environment. Moreover, by executing the

basic steps yourself, you gain a better understanding of what a development

environment does behind your back.

However, after you have mastered the basic steps of compiling and running Java

programs, you will want to use a professional development environment. You

will see how to do that in the following section.

Let’s get started the hard way: compiling and launching a Java program from the

command line.

1. Open a terminal window.

2. Go to the corejava/v1ch02/Welcome directory. (The corejava directory is the directory

into which you installed the source code for the book examples, as explained

in Section 2.1.3, “Installing Source Files and Documentation,” on p. 22.)

3. Enter the following commands:

javac Welcome.java
java Welcome

You should see the output shown in Figure 2.3 in the terminal window.

Figure 2.3 Compiling and running Welcome.java

Chapter 2 The Java Programming Environment24

ptg16518469

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file

Welcome.java into the file Welcome.class. The java program launches the Java virtual

machine. It executes the bytecodes that the compiler placed in the class file.

The Welcome program is extremely simple. It merely prints a message to the console.

You may enjoy looking inside the program, shown in Listing 2.1. You will see

how it works in the next chapter.

Listing 2.1 Welcome/Welcome.java

1 /**
2 * This program displays a greeting for the reader.
3 * @version 1.30 2014-02-27
4 * @author Cay Horstmann
5 */
6 public class Welcome
7 {
8 public static void main(String[] args)
9 {
10 String greeting = "Welcome to Core Java!";
11 System.out.println(greeting);
12 for (int i = 0; i < greeting.length(); i++)
13 System.out.print("=");
14 System.out.println();
15 }
16 }

In the age of visual development environments, many programmers are unfamiliar

with running programs in a terminal window. Any number of things can go

wrong, leading to frustrating results.

Pay attention to the following points:

• If you type in the program by hand, make sure you correctly enter the upper-

case and lowercase letters. In particular, the class name is Welcome and not welcome
or WELCOME.

• The compiler requires a file name (Welcome.java). When you run the program, you

specify a class name (Welcome) without a .java or .class extension.

• If you get a message such as “Bad command or file name” or “javac: command

not found”, then go back and double-check your installation, in particular the

executable path setting.

252.2 Using the Command-Line Tools

ptg16518469

• If javac reports that it cannot find the file Welcome.java, then you should check

whether that file is present in the directory.

Under Linux, check that you used the correct capitalization for Welcome.java.

Under Windows, use the dir command, not the graphical Explorer tool. Some

text editors (in particular Notepad) insist on adding an extension .txt to every

file’s name. If you use Notepad to edit Welcome.java, it will actually save it as

Welcome.java.txt. Under the default Windows settings, Explorer conspires with

Notepad and hides the .txt extension because it belongs to a “known file type.”

In that case, you need to rename the file, using the ren command, or save it

again, placing quotes around the file name: "Welcome.java".

• If you launch your program and get an error message complaining about a

java.lang.NoClassDefFoundError, then carefully check the name of the offending class.

If you get a complaint about welcome (with a lowercase w), then you should

reissue the java Welcome command with an uppercase W. As always, case matters

in Java.

If you get a complaint about Welcome/java, it means you accidentally typed java
Welcome.java. Reissue the command as java Welcome.

• If you typed java Welcome and the virtual machine can’t find the Welcome class,

check if someone has set the CLASSPATH environment variable on your system.

It is not a good idea to set this variable globally, but some poorly written

software installers in Windows do just that. Follow the same procedure as for

setting the PATH environment variable, but this time, remove the setting.

TIP:The excellent tutorial at http://docs.oracle.com/javase/tutorial/getStarted/cupojava
goes into much greater detail about the “gotchas” that beginners can run into.

2.3 Using an Integrated Development Environment
In the preceding section, you saw how to compile and run a Java program from

the command line. That is a useful skill, but for most day-to-day work, you should

use an integrated development environment. These environments have become

Chapter 2 The Java Programming Environment26

http://docs.oracle.com/javase/tutorial/getStarted/cupojava

ptg16518469

so powerful and convenient that it simply doesn’t make much sense to labor on

without them. Excellent choices are the freely available Eclipse, NetBeans, and

IntelliJ IDEA programs. In this chapter, you will learn how to get started with

Eclipse. Of course, if you prefer a different development environment, you can

certainly use it with this book.

In this section, you will see how to compile a program with Eclipse, an integrated

development environment that is freely available from http://eclipse.org/downloads.

Versions exist for Linux, Mac OS X, Solaris, and Windows. When you visit the

download site, pick the “Eclipse IDE for Java Developers”. Choose between

the 32- or 64-bit versions, matching your operating system.

Simply unzip Eclipse to a location of your choice, and execute the eclipse program

inside the zip file.

Here are the steps to write a program with Eclipse.

1. After starting Eclipse, select File → New → Project from the menu.

2. Select “Java Project” from the wizard dialog (see Figure 2.4).

Figure 2.4 The New Project dialog in Eclipse

272.3 Using an Integrated Development Environment

http://eclipse.org/downloads

ptg16518469

3. Click the Next button. Uncheck the “Use default location” checkbox. Click

on Browse and navigate to the corejava/v1ch02/Welcome directory (see Figure 2.5).

Figure 2.5 Configuring a project in Eclipse

4. Click the Finish button. The project is now created.

5. Click on the triangles in the left pane next to the project until you locate the

file Welcome.java, and double-click on it. You should now see a pane with

the program code (see Figure 2.6).

Chapter 2 The Java Programming Environment28

ptg16518469

Figure 2.6 Editing a source file with Eclipse

6. With the right mouse button, click on the project name (Welcome) in the left

pane. Select Run → Run As → Java Application. The program output is

displayed in the console pane.

Presumably, this program does not have typos or bugs. (It was only a few lines

of code, after all.) Let us suppose, for the sake of argument, that your code occa-

sionally contains a typo (perhaps even a syntax error). Try it out—ruin your file,

for example, by changing the capitalization of String as follows:

string greeting = "Welcome to Core Java!";

Note the wiggly line under string. In the tabs below the source code, click on

Problems and expand the triangles until you see an error message that complains

about an unknown string type (see Figure 2.7). Click on the error message. The

cursor moves to the matching line in the edit pane, where you can correct your

error. This feature allows you to fix your errors quickly.

292.3 Using an Integrated Development Environment

ptg16518469

Figure 2.7 Error messages in Eclipse

TIP: Often, an Eclipse error report is accompanied by a lightbulb icon. Click on
the lightbulb to get a list of suggested fixes.

2.4 Running a Graphical Application
The Welcome program was not terribly exciting. Next, try out a graphical application.

This program is a simple image file viewer that loads and displays an image.

Again, let us first compile and run it from the command line.

1. Open a terminal window.

2. Change to the directory corejava/v1ch02/ImageViewer.

3. Enter the following:

javac ImageViewer.java
java ImageViewer

Chapter 2 The Java Programming Environment30

ptg16518469

A new program window pops up with the ImageViewer application (see

Figure 2.8).

Figure 2.8 Running the ImageViewer application

Now, select File → Open and look for an image file to open. (There are a couple

of sample files in the same directory.) To close the program, click on the Close

box in the title bar or select File → Exit from the menu.

Have a quick look at the source code (Listing 2.2). The program is substantially

longer than the first program, but it is not too complex if you consider how much

code it would take in C or C++ to write a similar application. You’ll learn how

to write graphical programs like this in Chapters 10 through 12.

Listing 2.2 ImageViewer/ImageViewer.java

1 import java.awt.*;
2 import java.io.*;
3 import javax.swing.*;
 4

5 /**
6 * A program for viewing images.
7 * @version 1.30 2014-02-27

(Continues)

312.4 Running a Graphical Application

ptg16518469

Listing 2.2 (Continued)

8 * @author Cay Horstmann
9 */
10 public class ImageViewer
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() -> {
15 JFrame frame = new ImageViewerFrame();
16 frame.setTitle("ImageViewer");
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);
19 });
20 }
21 }
22

23 /**
24 * A frame with a label to show an image.
25 */
26 class ImageViewerFrame extends JFrame
27 {
28 private JLabel label;
29 private JFileChooser chooser;
30 private static final int DEFAULT_WIDTH = 300;
31 private static final int DEFAULT_HEIGHT = 400;
32

33 public ImageViewerFrame()
34 {
35 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
36

37 // use a label to display the images
38 label = new JLabel();
39 add(label);
40

41 // set up the file chooser
42 chooser = new JFileChooser();
43 chooser.setCurrentDirectory(new File("."));
44

45 // set up the menu bar
46 JMenuBar menuBar = new JMenuBar();
47 setJMenuBar(menuBar);
48

49 JMenu menu = new JMenu("File");
50 menuBar.add(menu);
51

52 JMenuItem openItem = new JMenuItem("Open");
53 menu.add(openItem);

Chapter 2 The Java Programming Environment32

ptg16518469

54 openItem.addActionListener(event -> {
55 // show file chooser dialog
56 int result = chooser.showOpenDialog(null);
57

58 // if file selected, set it as icon of the label
59 if (result == JFileChooser.APPROVE_OPTION)
60 {
61 String name = chooser.getSelectedFile().getPath();
62 label.setIcon(new ImageIcon(name));
63 }
64 });
65

66 JMenuItem exitItem = new JMenuItem("Exit");
67 menu.add(exitItem);
68 exitItem.addActionListener(event -> System.exit(0));
69 }
70 }

2.5 Building and Running Applets
The first two programs presented in this book are Java applications—stand-alone

programs like any native programs. On the other hand, as mentioned in the pre-

vious chapter, most of the early hype about Java came from its ability to run applets

inside a web browser.

If you are interested in experiencing a “blast from the past,” follow along to see

how to build and run an applet and how to display it in a web browser; if you

aren’t interested, by all means, skip this example and move on to Chapter 3.

Open a terminal window and go to the directory corejava/v1ch02/RoadApplet, then enter

the following commands:

javac RoadApplet.java
jar cvfm RoadApplet.jar RoadApplet.mf *.class
appletviewer RoadApplet.html

Figure 2.9 shows what you see in the applet viewer window. This applet visualizes

how traffic jams can be caused by drivers who randomly slow down. In 1996,

applets were a great tool for creating such visualizations.

The first command is the now-familiar command to invoke the Java compiler.

This compiles the RoadApplet.java source into the bytecode file RoadApplet.class.

This time, however, you do not run the java program. First, you bundle the class

files into a “JAR file,” using the jar utility. Then you invoke the appletviewer program,

a tool included with the JDK that lets you quickly test an applet. You need to give

this program an HTML file name, rather than the name of a Java class file. The

contents of the RoadApplet.html file are shown at the end of this section in Listing 2.3.

332.5 Building and Running Applets

ptg16518469Figure 2.9 The RoadApplet as viewed by the applet viewer

If you are familiar with HTML, you will notice standard HTML markup and the

applet tag, telling the applet viewer to load the applet whose code is stored in

RoadApplet.jar. The applet viewer ignores all HTML tags except for the applet tag.

Of course, applets are meant to be viewed in a browser. Unfortunately, nowadays,

many browsers do not have Java support, or make it difficult to enable it. Your

best bet is to use Firefox.

If you use Windows or Mac OS X, Firefox should automatically pick up the Java

installation on your computer. Under Linux, you need to enable the plug-in with

the following commands:

mkdir -p ~/.mozilla/plugins
cd ~/.mozilla/plugins
ln -s jdk/jre/lib/amd64/libnpjp2.so

To double-check, type about:plugins into the address bar and look for the Java Plug-in.

Make sure it uses the Java SE 8 version of the plug-in—look for a MIME type of

application/x-java-applet;version=1.8.

Next, turn your browser to http://horstmann.com/applets/RoadApplet/RoadApplet.html, agree to

all the scary security prompts, and make sure the applet appears.

Chapter 2 The Java Programming Environment34

http://horstmann.com/applets/RoadApplet/RoadApplet.html

ptg16518469

Unfortunately, that is not enough to test the applet that you just compiled. The

applet on the horstmann.com server is digitally signed. I had to expend some effort,

getting a certificate issuer that is trusted by the Java virtual machine to trust me

and sell me a certificate, which I used to sign the JAR file. The browser plug-in

will no longer run untrusted applets. This is a big change from the past, when a

simple applet that draws pixels on the screen would have been confined to the

“sandbox” and would work without being signed. Sadly, not even Oracle has

faith in the security of the sandbox any more.

To overcome this problem, you can temporarily configure Java to trust applets

from the local file system. First, open the Java control panel.

• In Windows, look inside the Programs section of the control panel.

• On a Mac, open System Preferences.

• On Linux, run jcontrol.

Then click the Security tab and the Edit Site List button. Click Add and type in

file:///. Click OK, accept another security prompt, and click OK again (see

Figure 2.10).

Figure 2.10 Configuring Java to trust local applets

Now you should be able to load the file corejava/v1ch02/RoadApplet/RoadApplet.html into

your browser and have the applet appear, together with the surrounding text. It

will look something like Figure 2.11.

352.5 Building and Running Applets

ptg16518469

Figure 2.11 Running the RoadApplet in a browser

The code for the applet class is shown in Listing 2.4. At this point, do not give it

more than a glance. We will come back to writing applets in Chapter 13.

Listing 2.3 RoadApplet/RoadApplet.html

1 <html xmlns="http://www.w3.org/1999/xhtml">
 2 <head><title>A Traffic Simulator Applet</title></head>
 3 <body>
 4 <h1>Traffic Simulator Applet</h1>
 5

 6 <p>I wrote this traffic simulation, following the article "Und nun die
 7 Stauvorhersage" of the German Magazine <i>Die Zeit</i>, June 7,
 8 1996. The article describes the work of Professor Michael Schreckenberger
 9 of the University of Duisburg and unnamed collaborators at the University
10 of Cologne and Los Alamos National Laboratory. These researchers model
11 traffic flow according to simple rules, such as the following: </p>

Chapter 2 The Java Programming Environment36

ptg16518469

12
13 A freeway is modeled as a sequence of grid points.
14 Every car occupies one grid point. Each grid point occupies at most
15 one car.
16 A car can have a speed of 0 - 5 grid points per time interval.
17 A car with speed of less than 5 increases its speed by one unit in
18 each time interval, until it reaches the maximum speed.
19 If a car's distance to the car in front is <i>d</i> grid points, its
20 speed is reduced to <i>d</i>-1 if necessary to avoid crashing into it.
21
22 With a certain probability, in each time interval some cars slow down
23 one unit for no good reason whatsoever.
24
25

26 <p>This applet models these rules. Each line shows an image of the same
27 stretch of road. Each square denotes one car. The first scrollbar lets you
28 adjust the probability that some cars slow down. If the slider is all the
29 way to the left, no car slows down. If it is all the way to the right,
30 every car slows down one unit. A typical setting is that 10% - 20% of the
31 cars slow down. The second slider controls the arrival rate of the cars.
32 When it is all the way to the left, no new cars enter the freeway. If it
33 is all the way to the right, a new car enters the freeway every time
34 interval, provided the freeway entrance is not blocked. </p>
35

36 <p>Try out the following experiments. Decrease the probability of slowdown
37 to 0. Crank up the arrival rate to 1. That means, every time unit, a new
38 car enters the road. Note how the road can carry this load. </p>
39

40 <p>Now increase the probability that some cars slow down. Note how traffic
41 jams occur almost immediately. </p>
42

43 <p>The moral is: If it wasn't for the rubberneckers, the cellular phone
44 users, and the makeup-appliers who can't keep up a constant speed, we'd all
45 get to work more quickly. </p>
46

47 <p>Notice how the traffic jam is stationary or even moves backwards, even
48 though the individual cars are still moving. In fact, the first car
49 causing the jam has long left the scene by the time the jam gets bad.
50 (To make it easier to track cars, every tenth vehicle is colored red.) </p>
51

52 <p><applet code="RoadApplet.class" archive="RoadApplet.jar"
53 width="400" height="400" alt="Traffic jam visualization">
54 </applet></p>
55

56 <p>For more information about applets, graphics programming and
57 multithreading in Java, see
58 Core Java. </p>
59 </body>
60 </html>

372.5 Building and Running Applets

ptg16518469

Listing 2.4 RoadApplet/RoadApplet.java

1 import java.awt.*;
2 import java.applet.*;
3 import javax.swing.*;
 4

5 public class RoadApplet extends JApplet
6 {
 7 private RoadComponent roadComponent;
 8 private JSlider slowdown;
 9 private JSlider arrival;
10

11 public void init()
12 {
13 EventQueue.invokeLater(() ->
14 {
15 roadComponent = new RoadComponent();
16 slowdown = new JSlider(0, 100, 10);
17 arrival = new JSlider(0, 100, 50);
18

19 JPanel p = new JPanel();
20 p.setLayout(new GridLayout(1, 6));
21 p.add(new JLabel("Slowdown"));
22 p.add(slowdown);
23 p.add(new JLabel(""));
24 p.add(new JLabel("Arrival"));
25 p.add(arrival);
26 p.add(new JLabel(""));
27 setLayout(new BorderLayout());
28 add(p, BorderLayout.NORTH);
29 add(roadComponent, BorderLayout.CENTER);
30 });
31 }
32

33 public void start()
34 {
35 new Thread(() ->
36 {
37 for (;;)
38 {
39 roadComponent.update(
40 0.01 * slowdown.getValue(),
41 0.01 * arrival.getValue());
42 try { Thread.sleep(50); } catch(InterruptedException e) {}
43 }
44 }).start();
45 }
46 }

Chapter 2 The Java Programming Environment38

ptg16518469

In this chapter, you learned about the mechanics of compiling and running Java

programs. You are now ready to move on to Chapter 3 where you will start

learning the Java language.

392.5 Building and Running Applets

ptg16518469

This page intentionally left blank

ptg16518469

3CHAPTER

Fundamental Programming
Structures in Java

In this chapter

• 3.1 A Simple Java Program, page 42

• 3.2 Comments, page 46

• 3.3 Data Types, page 47

• 3.4 Variables, page 53

• 3.5 Operators, page 56

• 3.6 Strings, page 65

• 3.7 Input and Output, page 78

• 3.8 Control Flow, page 89

• 3.9 Big Numbers, page 108

• 3.10 Arrays, page 111

At this point, we are assuming that you successfully installed the JDK and were

able to run the sample programs that we showed you in Chapter 2. It’s time to

start programming. This chapter shows you how the basic programming concepts

such as data types, branches, and loops are implemented in Java.

41

ptg16518469

Unfortunately, in Java you can’t easily write a program that uses a GUI—you

need to learn a fair amount of machinery to put up windows, add text boxes and

buttons that respond to them, and so on. Introducing the techniques needed to

write GUI-based Java programs would take us too far away from our goal of

covering the basic programming concepts, so the sample programs in this chapter

are “toy” programs designed to illustrate a concept. All these examples simply

use a terminal window for input and output.

Finally, if you are an experienced C++ programmer, you can get away with just

skimming this chapter: Concentrate on the C/C++ notes that are interspersed

throughout the text. Programmers coming from another background, such as

Visual Basic, will find most of the concepts familiar, but the syntax is very

different—you should read this chapter very carefully.

3.1 A Simple Java Program
Let’s look more closely at one of the simplest Java programs you can have—one

that simply prints a message to console:

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("We will not use 'Hello, World!'");
 }
}

It is worth spending all the time you need to become comfortable with the

framework of this sample; the pieces will recur in all applications. First and

foremost, Java is case sensitive. If you made any mistakes in capitalization (such

as typing Main instead of main), the program will not run.

Now let’s look at this source code line by line. The keyword public is called an access

modifier; these modifiers control the level of access other parts of a program have

to this code. We have more to say about access modifiers in Chapter 5. The key-

word class reminds you that everything in a Java program lives inside a class.

Although we will spend a lot more time on classes in the next chapter, for now

think of a class as a container for the program logic that defines the behavior of

an application. As mentioned in Chapter 1, classes are the building blocks with

which all Java applications and applets are built. Everything in a Java program

must be inside a class.

Chapter 3 Fundamental Programming Structures in Java42

ptg16518469

Following the keyword class is the name of the class. The rules for class names in

Java are quite generous. Names must begin with a letter, and after that, they can

have any combination of letters and digits. The length is essentially unlimited.

You cannot use a Java reserved word (such as public or class) for a class name. (See

Appendix A for a list of reserved words.)

The standard naming convention (which we follow in the name FirstSample) is that

class names are nouns that start with an uppercase letter. If a name consists of

multiple words, use an initial uppercase letter in each of the words. (This use of

uppercase letters in the middle of a word is sometimes called “camel case” or,

self-referentially, “CamelCase”.)

You need to make the file name for the source code the same as the name of the

public class, with the extension .java appended. Thus, you must store this code

in a file called FirstSample.java. (Again, case is important—don’t use firstsample.java.)

If you have named the file correctly and not made any typos in the source code,

then when you compile this source code, you end up with a file containing the

bytecodes for this class. The Java compiler automatically names the bytecode file

FirstSample.class and stores it in the same directory as the source file. Finally, launch

the program by issuing the following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply

displays the string We will not use 'Hello, World!' on the console.

When you use

java ClassName

to run a compiled program, the Java virtual machine always starts execution with

the code in the main method in the class you indicate. (The term “method” is Java-

speak for a function.) Thus, you must have a main method in the source file for

your class for your code to execute. You can, of course, add your own methods

to a class and call them from the main method. (We cover writing your own

methods in the next chapter.)

NOTE: According to the Java Language Specification, the main method must be
declared public. (The Java Language Specification is the official document that
describes the Java language.You can view or download it from http://docs.
oracle.com/javase/specs.)

433.1 A Simple Java Program

http://docs.oracle.com/javase/specs
http://docs.oracle.com/javase/specs

ptg16518469

However, several versions of the Java launcher were willing to execute Java
programs even when the main method was not public. A programmer filed a bug
report. To see it, visit http://bugs.java.com/bugdatabase/index.jsp and enter the
bug identification number 4252539. That bug was marked as “closed, will not
be fixed.” A Sun engineer added an explanation that the Java Virtual Machine
Specification (at http://docs.oracle.com/javase/specs/jvms/se8/html) does not mandate
that main is public and that “fixing it will cause potential troubles.” Fortunately,
sanity finally prevailed. The Java launcher in Java SE 1.4 and beyond enforces
that the main method is public.

There are a couple of interesting aspects about this story. On the one hand, it
is frustrating to have quality assurance engineers, who are often overworked
and not always experts in the fine points of Java, make questionable decisions
about bug reports. On the other hand, it is remarkable that Sun made the bug
reports and their resolutions available for anyone to scrutinize, long before Java
was open source. At one point, Sun even let programmers vote for their most
despised bugs and used the vote counts to decide which of them would get fixed
in the next JDK release.

Notice the braces { } in the source code. In Java, as in C/C++, braces delineate

the parts (usually called blocks) in your program. In Java, the code for any method

must be started by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We follow

a style that lines up matching braces. As whitespace is irrelevant to the Java

compiler, you can use whatever brace style you like. We will have more to say

about the use of braces when we talk about the various kinds of loops.

For now, don’t worry about the keywords static void—just think of them as part

of what you need to get a Java program to compile. By the end of Chapter 4, you

will understand this incantation completely. The point to remember for now is

that every Java application must have a main method that is declared in the

following way:

public class ClassName

{
 public static void main(String[] args)
 {

program statements

 }
}

Chapter 3 Fundamental Programming Structures in Java44

http://bugs.java.com/bugdatabase/index.jsp
http://docs.oracle.com/javase/specs/jvms/se8/html

ptg16518469

C++ NOTE: As a C++ programmer, you know what a class is. Java classes are
similar to C++ classes, but there are a few differences that can trap you. For
example, in Java all functions are methods of some class. (The standard termi-
nology refers to them as methods, not member functions.) Thus, in Java you
must have a shell class for the main method.You may also be familiar with the
idea of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The main method in Java is always
static. Finally, as in C/C++, the void keyword indicates that this method does not
return a value. Unlike C/C++, the main method does not return an “exit code” to
the operating system. If the main method exits normally, the Java program has
the exit code 0, indicating successful completion. To terminate the program with
a different exit code, use the System.exit method.

Next, turn your attention to this fragment:

{
 System.out.println("We will not use 'Hello, World!'");
}

Braces mark the beginning and end of the body of the method. This method has

only one statement in it. As with most programming languages, you can think

of Java statements as sentences of the language. In Java, every statement must

end with a semicolon. In particular, carriage returns do not mark the end of a

statement, so statements can span multiple lines if need be.

The body of the main method contains a statement that outputs a single line of text

to the console.

Here, we are using the System.out object and calling its println method. Notice the

periods used to invoke a method. Java uses the general syntax

object.method(parameters)

as its equivalent of a function call.

In this case, we are calling the println method and passing it a string parameter.

The method displays the string parameter on the console. It then terminates the

output line, so that each call to println displays its output on a new line. Notice

that Java, like C/C++, uses double quotes to delimit strings. (You can find more

information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero, one,

or more parameters (some programmers call them arguments). Even if a method

453.1 A Simple Java Program

ptg16518469

takes no parameters, you must still use empty parentheses. For example, a variant

of the println method with no parameters just prints a blank line. You invoke it

with the call

System.out.println();

NOTE: System.out also has a print method that doesn’t add a newline character
to the output. For example, System.out.print("Hello") prints Hello without a newline.
The next output appears immediately after the letter o.

3.2 Comments
Comments in Java, as in most programming languages, do not show up in the

executable program. Thus, you can add as many comments as needed without

fear of bloating the code. Java has three ways of marking comments. The most

common form is a //. Use this for a comment that runs from the // to the end of

the line.

System.out.println("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you can

use the /* and */ comment delimiters that let you block off a longer comment.

Finally, a third kind of comment can be used to generate documentation automat-

ically. This comment uses a /** to start and a */ to end. You can see this type of

comment in Listing 3.1. For more on this type of comment and on automatic

documentation generation, see Chapter 4.

Listing 3.1 FirstSample/FirstSample.java

1 /**
2 * This is the first sample program in Core Java Chapter 3
3 * @version 1.01 1997-03-22
4 * @author Gary Cornell
5 */
6 public class FirstSample
7 {
 8 public static void main(String[] args)
 9 {
10 System.out.println("We will not use 'Hello, World!'");
11 }
12 }

Chapter 3 Fundamental Programming Structures in Java46

ptg16518469

CAUTION: /* */ comments do not nest in Java. That is, you might not be able
to deactivate code simply by surrounding it with /* and */ because the code you
want to deactivate might itself contain a */ delimiter.

3.3 Data Types
Java is a strongly typed language. This means that every variable must have a de-

clared type. There are eight primitive types in Java. Four of them are integer types;

two are floating-point number types; one is the character type char, used for code

units in the Unicode encoding scheme (see Section 3.3.3, “The char Type,” on p. 50);

and one is a boolean type for truth values.

NOTE: Java has an arbitrary-precision arithmetic package. However, “big
numbers,” as they are called, are Java objects and not a new Java type.You
will see how to use them later in this chapter.

3.3.1 Integer Types
The integer types are for numbers without fractional parts. Negative values are

allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1 Java Integer Types

Range (Inclusive)Storage RequirementType

–2,147,483,648 to 2,147,483, 647 (just over 2 billion)4 bytesint

–32,768 to 32,7672 bytesshort

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,8078 byteslong

–128 to 1271 bytebyte

In most situations, the int type is the most practical. If you want to represent the

number of inhabitants of our planet, you’ll need to resort to a long. The byte and

short types are mainly intended for specialized applications, such as low-level file

handling, or for large arrays when storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on

which you will be running the Java code. This alleviates a major pain for the

programmer who wants to move software from one platform to another, or even

between operating systems on the same platform. In contrast, C and C++ programs

use the most efficient integer type for each processor. As a result, a C program

473.3 Data Types

ptg16518469

that runs well on a 32-bit processor may exhibit integer overflow on a 16-bit sys-

tem. Since Java programs must run with the same results on all machines, the

ranges for the various types are fixed.

Long integer numbers have a suffix L or l (for example, 4000000000L). Hexadecimal

numbers have a prefix 0x or 0X (for example, 0xCAFE). Octal numbers have a prefix

0 (for example, 010 is 8)—naturally, this can be confusing, so we recommend

against the use of octal constants.

Starting with Java SE 7, you can write numbers in binary, with a prefix 0b or 0B.

For example, 0b1001 is 9. Also starting with Java SE 7, you can add underscores to

number literals, such as 1_000_000 (or 0b1111_0100_0010_0100_0000) to denote one million.

The underscores are for human eyes only. The Java compiler simply removes them.

C++ NOTE: In C and C++, the sizes of types such as int and long depend on
the target platform. On a 16-bit processor such as the 8086, integers are 2 bytes,
but on a 32-bit processor like a Pentium or SPARC they are 4-byte quantities.
Similarly, long values are 4-byte on 32-bit processors and 8-byte on 64-bit pro-
cessors.These differences make it challenging to write cross-platform programs.
In Java, the sizes of all numeric types are platform independent.

Note that Java does not have any unsigned versions of the int, long, short, or byte
types.

3.3.2 Floating-Point Types
The floating-point types denote numbers with fractional parts. The two

floating-point types are shown in Table 3.2.

Table 3.2 Floating-Point Types

RangeStorage RequirementType

Approximately ±3.40282347E+38F (6–7 significant

decimal digits)

4 bytesfloat

Approximately ±1.79769313486231570E+308

(15 significant decimal digits)

8 bytesdouble

The name double refers to the fact that these numbers have twice the precision of

the float type. (Some people call these double-precision numbers.) The limited pre-

cision of float (6–7 significant digits) is simply not sufficient for many situations.

Use float values only when you work with a library that requires them, or when

you need to store a very large number of them.

Chapter 3 Fundamental Programming Structures in Java48

ptg16518469

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-point

numbers without an F suffix (such as 3.14) are always considered to be of type

double. You can optionally supply the D or d suffix (for example, 3.14D).

NOTE: You can specify floating-point literals in hexadecimal. For example, 0.125
= 2–3 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an e,
to denote the exponent. (An e is a hexadecimal digit.) Note that the mantissa is
written in hexadecimal and the exponent in decimal. The base of the exponent
is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular,

there are three special floating-point values to denote overflows and errors:

• Positive infinity

• Negative infinity

• NaN (not a number)

For example, the result of dividing a positive number by 0 is positive infinity.

Computing 0/0 or the square root of a negative number yields NaN.

NOTE:The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and Double.NaN
(as well as corresponding Float constants) represent these special values, but
they are rarely used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number” values
are considered distinct. However, you can use the Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

CAUTION: Floating-point numbers are not suitable for financial calculations in
which roundoff errors cannot be tolerated. For example, the command
System.out.println(2.0 - 1.1) prints 0.8999999999999999, not 0.9 as you would expect.
Such roundoff errors are caused by the fact that floating-point numbers are
represented in the binary number system. There is no precise binary represen-
tation of the fraction 1/10, just as there is no accurate representation of the
fraction 1/3 in the decimal system. If you need precise numerical computations
without roundoff errors, use the BigDecimal class, which is introduced later in this
chapter.

493.3 Data Types

ptg16518469

3.3.3 The char Type
The char type was originally intended to describe individual characters. However,

this is no longer the case. Nowadays, some Unicode characters can be described

with one char value, and other Unicode characters require two char values. Read

the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is a

character constant with value 65. It is different from "A", a string containing a

single character. Values of type char can be expressed as hexadecimal values that

run from \u0000 to \uFFFF. For example, \u2122 is the trademark symbol (™) and \u03C0
is the Greek letter pi (π).

Besides the \u escape sequences, there are several escape sequences for special

characters, as shown in Table 3.3. You can use these escape sequences inside

quoted character literals and strings, such as '\u2122' or "Hello\n". The \u escape se-

quence (but none of the other escape sequences) can even be used outside quoted

character constants and strings. For example,

public static void main(String\u005B\u005D args)

is perfectly legal—\u005B and \u005D are the encodings for [and].

Table 3.3 Escape Sequences for Special Characters

Unicode ValueNameEscape sequence

\u0008Backspace\b

\u0009Tab\t

\u000aLinefeed\n

\u000dCarriage return\r

\u0022Double quote\"

\u0027Single quote\'

\u005cBackslash\\

Chapter 3 Fundamental Programming Structures in Java50

ptg16518469

CAUTION: Unicode escape sequences are processed before the code is parsed.
For example, "\u0022+\u0022" is not a string consisting of a plus sign surrounded
by quotation marks (U+0022). Instead, the \u0022 are converted into " before
parsing, yielding ""+"", or an empty string.

Even more insidiously, you must beware of \u inside comments. The comment

// \u00A0 is a newline

yields a syntax error since \u00A0 is replaced with a newline when the program
is read. Similarly, a comment

// Look inside c:\users

yields a syntax error because the \u is not followed by four hex digits.

3.3.4 Unicode and the char Type
To fully understand the char type, you have to know about the Unicode encoding

scheme. Unicode was invented to overcome the limitations of traditional character

encoding schemes. Before Unicode, there were many different standards: ASCII

in the United States, ISO 8859-1 for Western European languages, KOI-8 for

Russian, GB18030 and BIG-5 for Chinese, and so on. This caused two problems.

A particular code value corresponds to different letters in the different encoding

schemes. Moreover, the encodings for languages with large character sets have

variable length: Some common characters are encoded as single bytes, others

require two or more bytes.

Unicode was designed to solve these problems. When the unification effort

started in the 1980s, a fixed 2-byte code was more than sufficient to encode all

characters used in all languages in the world, with room to spare for future ex-

pansion—or so everyone thought at the time. In 1991, Unicode 1.0 was released,

using slightly less than half of the available 65,536 code values. Java was designed

from the ground up to use 16-bit Unicode characters, which was a major advance

over other programming languages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond 65,536

characters, primarily due to the addition of a very large set of ideographs used

for Chinese, Japanese, and Korean. Now, the 16-bit char type is insufficient to

describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in Java,

beginning with Java SE 5.0. A code point is a code value that is associated with

513.3 Data Types

ptg16518469

a character in an encoding scheme. In the Unicode standard, code points are

written in hexadecimal and prefixed with U+, such as U+0041 for the code point of

the Latin letter A. Unicode has code points that are grouped into 17 code planes.

The first code plane, called the basic multilingual plane, consists of the “classic”

Unicode characters with code points U+0000 to U+FFFF. Sixteen additional planes,

with code points U+10000 to U+10FFFF, hold the supplementary characters.

The UTF-16 encoding represents all Unicode code points in a variable-length

code. The characters in the basic multilingual plane are represented as 16-bit

values, called code units. The supplementary characters are encoded as consecutive

pairs of code units. Each of the values in such an encoding pair falls into a range

of 2048 unused values of the basic multilingual plane, called the surrogates area

(U+D800 to U+DBFF for the first code unit, U+DC00 to U+DFFF for the second code unit). This

is rather clever, because you can immediately tell whether a code unit

encodes a single character or it is the first or second part of a supplementary

character. For example, (the mathematical symbol for the set of octonions,

http://math.ucr.edu/home/baez/octonions) has code point U+1D546 and is encoded by the two

code units U+D835 and U+DD46. (See http://en.wikipedia.org/wiki/UTF-16 for a description of

the encoding algorithm.)

In Java, the char type describes a code unit in the UTF-16 encoding.

Our strong recommendation is not to use the char type in your programs unless

you are actually manipulating UTF-16 code units. You are almost always better

off treating strings (which we will discuss in Section 3.6, “Strings,” on p. 65) as

abstract data types.

3.3.5 The boolean Type
The boolean type has two values, false and true. It is used for evaluating logical

conditions. You cannot convert between integers and boolean values.

C++ NOTE: In C++, numbers and even pointers can be used in place of boolean
values. The value 0 is equivalent to the bool value false, and a nonzero value is
equivalent to true. This is not the case in Java. Thus, Java programmers are
shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java, the test
does not compile because the integer expression x = 0 cannot be converted to
a boolean value.

Chapter 3 Fundamental Programming Structures in Java52

http://math.ucr.edu/home/baez/octonions
http://en.wikipedia.org/wiki/UTF-16

ptg16518469

3.4 Variables
In Java, every variable has a type. You declare a variable by placing the type first,

followed by the name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary

because a declaration is a complete Java statement.

A variable name must begin with a letter and must be a sequence of letters or

digits. Note that the terms “letter” and “digit” are much broader in Java than in

most languages. A letter is defined as 'A'–'Z', 'a'–'z', '_', '$', or any Unicode char-

acter that denotes a letter in a language. For example, German users can use

umlauts such as 'ä' in variable names; Greek speakers could use a π. Similarly,

digits are '0'–'9' and any Unicode characters that denote a digit in a language.

Symbols like '+' or '©' cannot be used inside variable names, nor can spaces. All

characters in the name of a variable are significant and case is also significant. The

length of a variable name is essentially unlimited.

TIP: If you are really curious as to what Unicode characters are “letters” as far
as Java is concerned, you can use the isJavaIdentifierStart and isJavaIdentifierPart
methods in the Character class to check.

TIP: Even though $ is a valid Java letter, you should not use it in your own code.
It is intended for names that are generated by the Java compiler and other tools.

You also cannot use a Java reserved word as a variable name. (See Appendix A

for a list of reserved words.)

You can declare multiple variables on a single line:

int i, j; // both are integers

However, we don’t recommend this style. If you declare each variable separately,

your programs are easier to read.

533.4 Variables

ptg16518469

NOTE: As you saw, names are case sensitive, for example, hireday and hireDay
are two separate names. In general, you should not have two names that only
differ in their letter case. However, sometimes it is difficult to come up with a
good name for a variable. Many programmers then give the variable the same
name as the type, for example

Box box; // "Box" is the type and "box" is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.1 Initializing Variables
After you declare a variable, you must explicitly initialize it by means of an as-

signment statement—you can never use the value of an uninitialized variable.

For example, the Java compiler flags the following sequence of statements as an

error:

int vacationDays;
System.out.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on the

left, an equal sign (=), and then some Java expression with an appropriate value

on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For example,

the following is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as possible to

the point where they are first used.

Chapter 3 Fundamental Programming Structures in Java54

ptg16518469

C++ NOTE: C and C++ distinguish between the declaration and definition of a
variable. For example,

int i = 10;

is a definition, whereas

extern int i;

is a declaration. In Java, no declarations are separate from definitions.

3.4.2 Constants
In Java, you use the keyword final to denote a constant. For example:

public class Constants
{
 public static void main(String[] args)
 {

final double CM_PER_INCH = 2.54;
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "

+ paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }
}

The keyword final indicates that you can assign to the variable once, and then its

value is set once and for all. It is customary to name constants in all uppercase.

It is probably more common in Java to create a constant so it’s available to multiple

methods inside a single class. These are usually called class constants. Set up a

class constant with the keywords static final. Here is an example of using a class

constant:

public class Constants2
{
 public static final double CM_PER_INCH = 2.54;

 public static void main(String[] args)
 {
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "

+ paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }
}

553.4 Variables

ptg16518469

Note that the definition of the class constant appears outside the main method. Thus,

the constant can also be used in other methods of the same class. Furthermore,

if the constant is declared, as in our example, public, methods of other classes can

also use it—in our example, as Constants2.CM_PER_INCH.

C++ NOTE: const is a reserved Java keyword, but it is not currently used for
anything.You must use final for a constant.

3.5 Operators
The usual arithmetic operators +, -, *, / are used in Java for addition, subtraction,

multiplication, and division. The / operator denotes integer division if both argu-

ments are integers, and floating-point division otherwise. Integer remainder

(sometimes called modulus) is denoted by %. For example, 15 / 2 is 7, 15 % 2 is 1, and

15.0 / 2 is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division

by 0 yields an infinite or NaN result.

NOTE: One of the stated goals of the Java programming language is portability.
A computation should yield the same results no matter which virtual machine
executes it. For arithmetic computations with floating-point numbers, it is surpris-
ingly difficult to achieve this portability. The double type uses 64 bits to store a
numeric value, but some processors use 80-bit floating-point registers. These
registers yield added precision in intermediate steps of a computation. For
example, consider the following computation:

double w = x * y / z;

Many Intel processors compute x * y, leave the result in an 80-bit register, then
divide by z, and finally truncate the result back to 64 bits. That can yield a more
accurate result, and it can avoid exponent overflow. But the result may be differ-
ent from a computation that uses 64 bits throughout. For that reason, the initial
specification of the Java virtual machine mandated that all intermediate compu-
tations must be truncated. The numeric community hated it. Not only can the
truncated computations cause overflow, they are actually slower than the more
precise computations because the truncation operations take time. For that
reason, the Java programming language was updated to recognize the
conflicting demands for optimum performance and perfect reproducibility. By
default, virtual machine designers are now permitted to use extended precision
for intermediate computations. However, methods tagged with the strictfp
keyword must use strict floating-point operations that yield reproducible results.

Chapter 3 Fundamental Programming Structures in Java56

ptg16518469

For example, you can tag main as

public static strictfp void main(String[] args)

Then all instructions inside the main method will use strict floating-point computa-
tions. If you tag a class as strictfp, then all of its methods must use strict
floating-point computations.

The gory details are very much tied to the behavior of the Intel processors. In
the default mode, intermediate results are allowed to use an extended exponent,
but not an extended mantissa. (The Intel chips support truncation of the mantissa
without loss of performance.) Therefore, the only difference between the default
and strict modes is that strict computations may overflow when default
computations don’t.

If your eyes glazed over when reading this note, don’t worry. Floating-point
overflow isn’t a problem that one encounters for most common programs. We
don’t use the strictfp keyword in this book.

3.5.1 Mathematical Functions and Constants
The Math class contains an assortment of mathematical functions that you may

occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

NOTE: There is a subtle difference between the println method and the sqrt
method.The println method operates on the System.out object. But the sqrt method
in the Math class does not operate on any object. Such a method is called a
static method.You can learn more about static methods in Chapter 4.

The Java programming language has no operator for raising a quantity to a

power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method’s parameters are both of

type double, and it returns a double as well.

The floorMod method aims to solve a long-standing problem with integer remainders.

Consider the expression n % 2. Everyone knows that this is 0 if n is even and 1 if n
is odd. Except, of course, when n is negative. Then it is -1. Why? When the first

573.5 Operators

ptg16518469

computers were built, someone had to make rules for how integer division and

remainder should work for negative operands. Mathematicians had known the

optimal (or “Euclidean”) rule for a few hundred years: always leave the remainder

≥ 0. But, rather than open a math textbook, those pioneers came up with rules

that seemed reasonable but are actually inconvenient.

Consider this problem. You compute the position of the hour hand of a clock. An

adjustment is applied, and you want to normalize to a number between 0 and 11.

That is easy: (position + adjustment) % 12. But what if the adjustment is negative? Then

you might get a negative number. So you have to introduce a branch, or use

((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

The floorMod method makes it easier: floorMod(position + adjustment, 12) always yields a

value between 0 and 11. (Unfortunately, floorMod gives negative results for negative

divisors, but that situation doesn’t often occur in practice.)

The Math class supplies the usual trigonometric functions:

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function with its inverse, the natural logarithm, as well as

the decimal logarithm:

Math.exp
Math.log
Math.log10

Finally, two constants denote the closest possible approximations to the

mathematical constants π and e:

Math.PI
Math.E

TIP: You can avoid the Math prefix for the mathematical methods and constants
by adding the following line to the top of your source file:

import static java.lang.Math.*;

For example:

System.out.println("The square root of \u03C0 is " + sqrt(PI));

We discuss static imports in Chapter 4.

Chapter 3 Fundamental Programming Structures in Java58

ptg16518469

NOTE: The methods in the Math class use the routines in the computer’s floating-
point unit for fastest performance. If completely predictable results are more
important than performance, use the StrictMath class instead. It implements the
algorithms from the “Freely Distributable Math Library” fdlibm, guaranteeing
identical results on all platforms. See www.netlib.org/fdlibm for the source code of
these algorithms. (Whenever fdlibm provides more than one definition for a
function, the StrictMath class follows the IEEE 754 version whose name starts
with an “e”.)

3.5.2 Conversions between Numeric Types
It is often necessary to convert from one numeric type to another. Figure 3.1 shows

the legal conversions.

Figure 3.1 Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information loss.

The three dotted arrows denote conversions that may lose precision. For example,

a large integer such as 123456789 has more digits than the float type can represent.

When the integer is converted to a float, the resulting value has the correct

magnitude but loses some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

593.5 Operators

http://www.netlib.org/fdlibm

ptg16518469

When two values are combined with a binary operator (such as n + f where n is

an integer and f is a floating-point value), both operands are converted to a

common type before the operation is carried out.

• If either of the operands is of type double, the other one will be converted to a

double.

• Otherwise, if either of the operands is of type float, the other one will be

converted to a float.

• Otherwise, if either of the operands is of type long, the other one will be

converted to a long.

• Otherwise, both operands will be converted to an int.

3.5.3 Casts
In the preceding section, you saw that int values are automatically converted to

double values when necessary. On the other hand, there are obviously times when

you want to consider a double as an integer. Numeric conversions are possible in

Java, but of course information may be lost. Conversions in which loss of infor-

mation is possible are done by means of casts. The syntax for casting is to give

the target type in parentheses, followed by the variable name. For example:

double x = 9.997;
int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value to an

integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which in most

cases is a more useful operation), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when you

call round. The reason is that the return value of the round method is a long, and a

long can only be assigned to an int with an explicit cast because there is the

possibility of information loss.

CAUTION: If you try to cast a number of one type to another that is out of range
for the target type, the result will be a truncated number that has a different value.
For example, (byte) 300 is actually 44.

Chapter 3 Fundamental Programming Structures in Java60

ptg16518469

C++ NOTE: You cannot cast between boolean values and any numeric type.This
convention prevents common errors. In the rare case when you want to convert
a boolean value to a number, you can use a conditional expression such as
b ? 1 : 0.

3.5.4 Combining Assignment with Operators
There is a convenient shortcut for using binary operators in an assignment. For

example,

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

NOTE: If the operator yields a value whose type is different than that of the left-
hand side, then it is coerced to fit. For example, if x is an int, then the statement

x += 3.5;

is valid, setting x to (int)(x + 3.5).

3.5.5 Increment and Decrement Operators
Programmers, of course, know that one of the most common operations with a

numeric variable is to add or subtract 1. Java, following in the footsteps of C and

C++, has both increment and decrement operators: n++ adds 1 to the current value

of the variable n, and n-- subtracts 1 from it. For example, the code

int n = 12;
n++;

changes n to 13. Since these operators change the value of a variable, they cannot

be applied to numbers themselves. For example, 4++ is not a legal statement.

There are two forms of these operators; you’ve just seen the postfix form of the

operator that is placed after the operand. There is also a prefix form, ++n. Both

change the value of the variable by 1. The difference between the two appears

only when they are used inside expressions. The prefix form does the addition

first; the postfix form evaluates to the old value of the variable.

int m = 7;
int n = 7;

613.5 Operators

ptg16518469

int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside expressions because this often leads to

confusing code and annoying bugs.

3.5.6 Relational and boolean Operators
Java has the full complement of relational operators. To test for equality, use a

double equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal),

and >= (greater than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the logical

“or” operator. As you can easily remember from the != operator, the exclamation

point ! is the logical negation operator. The && and || operators are evaluated in

“short circuit” fashion: The second argument is not evaluated if the first argument

already determines the value. If you combine two expressions with the && operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false, then

it is impossible for the result to be true. Thus, the value for the second expression

is not calculated. This behavior can be exploited to avoid errors. For example, in

the expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if

x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if the first

expression is true, without evaluating the second expression.

Finally, Java supports the ternary ?: operator that is occasionally useful. The

expression

condition ? expression1 : expression2

Chapter 3 Fundamental Programming Structures in Java62

ptg16518469

evaluates to the first expression if the condition is true, to the second expression

otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

3.5.7 Bitwise Operators
When working with any of the integer types, you have operators that can work

directly with the bits that make up the integers. This means that you can use

masking techniques to get at individual bits in a number. The bitwise operators are

& ("and") | ("or") ̂ ("xor") ~ ("not")

These operators work on bit patterns. For example, if n is an integer variable, then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n is 1,

and 0 otherwise. Using & with the appropriate power of 2 lets you mask out all

but a single bit.

NOTE: When applied to boolean values, the & and | operators yield a boolean
value. These operators are similar to the && and || operators, except that the
& and | operators are not evaluated in “short circuit” fashion—that is, both
arguments are evaluated before the result is computed.

There are also >> and << operators which shift a bit pattern to the right or left.

These operators are convenient when you need to build up bit patterns to do bit

masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends the sign

bit into the top bits. There is no <<< operator.

CAUTION: The right-hand argument of the shift operators is reduced modulo
32 (unless the left-hand argument is a long, in which case the right-hand argument
is reduced modulo 64). For example, the value of 1 << 35 is the same as 1 << 3
or 8.

633.5 Operators

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

C++ NOTE: In C/C++, there is no guarantee as to whether >> performs an
arithmetic shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whichever is more efficient. That means the
C/C++ >> operator may yield implementation-dependent results for negative
numbers. Java removes that uncertainty.

3.5.8 Parentheses and Operator Hierarchy
Table 3.4 shows the precedence of operators. If no parentheses are used, operations

are performed in the hierarchical order indicated. Operators on the same

level are processed from left to right, except for those that are right-associative,

as indicated in the table. For example, && has a higher precedence than ||, so the

expression

a && b || c

means

(a && b) || c

Table 3.4 Operator Precedence

AssociativityOperators

Left to right[] . () (method call)

Right to left! ~ ++ -- + (unary) - (unary) () (cast) new

Left to right* / %

Left to right+ -

Left to right<< >> >>>

Left to right< <= > >= instanceof

Left to right== !=

Left to right&

Left to right^

Left to right|

Left to right&&

Left to right||

Right to left?:

Right to left= += -= *= /= %= &= |= ̂ = <<= >>= >>>=

Chapter 3 Fundamental Programming Structures in Java64

ptg16518469

Since += associates right to left, the expression

a += b += c

means

a += (b += c)

That is, the value of b += c (which is the value of b after the addition) is added to a.

C++ NOTE: Unlike C or C++, Java does not have a comma operator. However,
you can use a comma-separated list of expressions in the first and third slot of
a for statement.

3.5.9 Enumerated Types
Sometimes, a variable should only hold a restricted set of values. For example,

you may sell clothes or pizza in four sizes: small, medium, large, and extra large.

Of course, you could encode these sizes as integers 1, 2, 3, 4 or characters S, M, L,

and X. But that is an error-prone setup. It is too easy for a variable to hold a wrong

value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises. An

enumerated type has a finite number of named values. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type declaration,

or the special value null that indicates that the variable is not set to any value at all.

We discuss enumerated types in greater detail in Chapter 5.

3.6 Strings
Conceptually, Java strings are sequences of Unicode characters. For example, the

string "Java\u2122" consists of the five Unicode characters J, a, v, a, and ™. Java does

not have a built-in string type. Instead, the standard Java library contains a pre-

defined class called, naturally enough, String. Each quoted string is an instance of

the String class:

String e = ""; // an empty string
String greeting = "Hello";

653.6 Strings

ptg16518469

3.6.1 Substrings
You can extract a substring from a larger string with the substring method of the

String class. For example,

String greeting = "Hello";
String s = greeting.substring(0, 3);

creates a string consisting of the characters "Hel".

The second parameter of substring is the first position that you do not want to copy.

In our case, we want to copy positions 0, 1, and 2 (from position 0 to position 2

inclusive). As substring counts it, this means from position 0 inclusive to position

3 exclusive.

There is one advantage to the way substring works: Computing the length of the

substring is easy. The string s.substring(a, b) always has length b − a. For example,

the substring "Hel" has length 3 − 0 = 3.

3.6.2 Concatenation
Java, like most programming languages, allows you to use + to join (concatenate)

two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string "Expletivedeleted". (Note the

lack of a space between the words: The + operator joins two strings in the order

received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is con-

verted to a string. (As you will see in Chapter 5, every Java object can be converted

to a string.) For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,

System.out.println("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with the correct

spacing because of the space after the word is).

Chapter 3 Fundamental Programming Structures in Java66

ptg16518469

If you need to put multiple strings together, separated by a delimiter, use the

static join method:

String all = String.join(" / ", "S", "M", "L", "XL");
 // all is the string "S / M / L / XL"

3.6.3 Strings Are Immutable
The String class gives no methods that let you change a character in an existing

string. If you want to turn greeting into "Help!", you cannot directly change the last

positions of greeting into 'p' and '!'. If you are a C programmer, this will make

you feel pretty helpless. How are we going to modify the string? In Java, it is

quite easy: Concatenate the substring that you want to keep with the characters

that you want to replace.

greeting = greeting.substring(0, 3) + "p!";

This declaration changes the current value of the greeting variable to "Help!".

Since you cannot change the individual characters in a Java string, the documen-

tation refers to the objects of the String class as immutable. Just as the number 3 is

always 3, the string "Hello" will always contain the code-unit sequence for the

characters H, e, l, l, o. You cannot change these values. Yet you can, as you just

saw, change the contents of the string variable greeting and make it refer to a different

string, just as you can make a numeric variable currently holding the value 3 hold

the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units than

to build up a whole new string from scratch. Well, yes and no. Indeed, it isn’t

efficient to generate a new string that holds the concatenation of "Hel" and "p!".

But immutable strings have one great advantage: The compiler can arrange that

strings are shared.

To understand how this works, think of the various strings as sitting in a common

pool. String variables then point to locations in the pool. If you copy a string

variable, both the original and the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs

the inefficiency of string editing by extracting substrings and concatenating. Look

at your own programs; we suspect that most of the time, you don’t change

strings—you just compare them. (There is one common exception—assembling

strings from individual characters or from shorter strings that come from the

keyboard or a file. For these situations, Java provides a separate class that we

describe in Section 3.6.9, “Building Strings,” on p. 77.)

673.6 Strings

ptg16518469

C++ NOTE: C programmers are generally bewildered when they see Java strings
for the first time because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is a wrong analogy: A Java string is roughly analogous to a char* pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does roughly the
following:

char* temp = malloc(6);
strncpy(temp, greeting, 3);
strncpy(temp + 3, "p!", 3);
greeting = temp;

Sure, now greeting points to the string "Help!". And even the most hardened C
programmer must admit that the Java syntax is more pleasant than a sequence
of strncpy calls. But what if we make another assignment to greeting?

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on the
heap. Fortunately, Java does automatic garbage collection. If a block of memory
is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI C++,
you will be much more comfortable with the Java String type. C++ string objects
also perform automatic allocation and deallocation of memory. The memory
management is performed explicitly by constructors, assignment operators, and
destructors. However, C++ strings are mutable—you can modify individual
characters in a string.

3.6.4 Testing Strings for Equality
To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can

be string variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the

upper/lowercase letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Chapter 3 Fundamental Programming Structures in Java68

ptg16518469

Do not use the == operator to test whether two strings are equal! It only determines

whether or not the strings are stored in the same location. Sure, if strings are in

the same location, they must be equal. But it is entirely possible to store multiple

copies of identical strings in different places.

String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello") . . .
 // probably true
if (greeting.substring(0, 3) == "Hel") . . .
 // probably false

If the virtual machine always arranges for equal strings to be shared, then you

could use the == operator for testing equality. But only string literals are shared,

not strings that are the result of operations like + or substring. Therefore, never use

== to compare strings lest you end up with a program with the worst kind of

bug—an intermittent one that seems to occur randomly.

C++ NOTE: If you are used to the C++ string class, you have to be particularly
careful about equality testing.The C++ string class does overload the == operator
to test for equality of the string contents. It is perhaps unfortunate that Java goes
out of its way to give strings the same “look and feel” as numeric values but then
makes strings behave like pointers for equality testing. The language designers
could have redefined == for strings, just as they made a special arrangement for
+. Oh well, every language has its share of inconsistencies.

C programmers never use == to compare strings but use strcmp instead. The
Java method compareTo is the exact analog to strcmp.You can use

if (greeting.compareTo("Hello") == 0) . . .

but it seems clearer to use equals instead.

3.6.5 Empty and Null Strings
The empty string "" is a string of length 0. You can test whether a string is empty

by calling

if (str.length() == 0)

or

if (str.equals(""))

An empty string is a Java object which holds the string length (namely 0) and an

empty contents. However, a String variable can also hold a special value, called

null, that indicates that no object is currently associated with the variable. (See

693.6 Strings

ptg16518469

Chapter 4 for more information about null.) To test whether a string is null, use

the condition

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use the

condition

if (str != null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is an error

to invoke a method on a null value.

3.6.6 Code Points and Code Units
Java strings are implemented as sequences of char values. As we discussed in

Section 3.3.3, “The char Type,” on p. 50, the char data type is a code unit for repre-

senting Unicode code points in the UTF-16 encoding. The most commonly used

Unicode characters can be represented with a single code unit. The supplementary

characters require a pair of code units.

The length method yields the number of code units required for a given string in

the UTF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5.

To get the true length—that is, the number of code points—call

int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at position n, where n is between 0 and

s.length() – 1. For example:

char first = greeting.charAt(0); // first is 'H'
char last = greeting.charAt(4); // last is 'o'

To get at the ith code point, use the statements

int index = greeting.offsetByCodePoints(0, i);
int cp = greeting.codePointAt(index);

NOTE: Like C and C++, Java counts code units and code points in strings
starting with 0.

Chapter 3 Fundamental Programming Structures in Java70

ptg16518469

Why are we making a fuss about code units? Consider the sentence

 is the set of octonions

The character (U+1D546) requires two code units in the UTF-16 encoding. Calling

char ch = sentence.charAt(1)

doesn’t return a space but the second code unit of . To avoid this problem, you

should not use the char type. It is too low-level.

If your code traverses a string, and you want to look at each code point in turn,

you can use these statements:

int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i += 2;
else i++;

You can move backwards with the following statements:

i--;
if (Character.isSurrogate(sentence.charAt(i))) i--;
int cp = sentence.codePointAt(i);

Obviously, that is quite painful. An easier way is to use the codePoints method that

yields a “stream” of int values, one for each code point. (We will discuss streams

in Chapter 2 of Volume II.) You can just turn it into an array (see Section 3.10,

“Arrays,” on p. 111) and traverse that.

int[] codePoints = str.codePoints().toArray();

Conversely, to turn an array of code points to a string, use a constructor. (We

discuss constructors and the new operator in detail in Chapter 4.)

String str = new String(codePoints, 0, codePoints.length);

3.6.7 The String API
The String class in Java contains more than 50 methods. A surprisingly large

number of them are sufficiently useful so that we can imagine using them

frequently. The following API note summarizes the ones we found most useful.

NOTE: These API notes, found throughout the book, will help you understand
the Java Application Programming Interface (API). Each API note starts with the
name of a class, such as java.lang.String (the significance of the so-called package
name java.lang is explained in Chapter 4). The class name is followed by the
names, explanations, and parameter descriptions of one or more methods.

713.6 Strings

ptg16518469

We typically do not list all methods of a particular class but select those that are
most commonly used and describe them in a concise form. For a full listing,
consult the online documentation (see Section 3.6.8, “Reading the Online API
Documentation,” on p. 74).

We also list the version number in which a particular class was introduced. If a
method has been added later, it has a separate version number.

java.lang.String 1.0

• char charAt(int index)

returns the code unit at the specified location.You probably don’t want to call this

method unless you are interested in low-level code units.

• int codePointAt(int index) 5.0

returns the code point that starts at the specified location.

• int offsetByCodePoints(int startIndex, int cpCount) 5.0

returns the index of the code point that is cpCount code points away from the code

point at startIndex.

• int compareTo(String other)

returns a negative value if the string comes before other in dictionary order, a positive

value if the string comes after other in dictionary order, or 0 if the strings are equal.

• IntStream codePoints() 8

returns the code points of this string as a stream. Call toArray to put them in an array.

• new String(int[] codePoints, int offset, int count) 5.0

constructs a string with the count code points in the array starting at offset.

• boolean equals(Object other)

returns true if the string equals other.

• boolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase distinction.

• boolean startsWith(String prefix)
• boolean endsWith(String suffix)

returns true if the string starts or ends with suffix.

(Continues)

Chapter 3 Fundamental Programming Structures in Java72

ptg16518469

java.lang.String 1.0 (Continued)

• int indexOf(String str)
• int indexOf(String str, int fromIndex)
• int indexOf(int cp)
• int indexOf(int cp, int fromIndex)

returns the start of the first substring equal to the string str or the code point cp,

starting at index 0 or at fromIndex, or -1 if str does not occur in this string.

• int lastIndexOf(String str)
• int lastIndexOf(String str, int fromIndex)
• int lastindexOf(int cp)
• int lastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the string str or the code point cp,

starting at the end of the string or at fromIndex.

• int length()

returns the number of code units of the string.

• int codePointCount(int startIndex, int endIndex) 5.0

returns the number of code points between startIndex and endIndex - 1.

• String replace(CharSequence oldString, CharSequence newString)

returns a new string that is obtained by replacing all substrings matching oldString
in the string with the string newString. You can supply String or StringBuilder objects

for the CharSequence parameters.

• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

returns a new string consisting of all code units from beginIndex until the end of the

string or until endIndex - 1.

• String toLowerCase()

String toUpperCase()

returns a new string containing all characters in the original string, with uppercase

characters converted to lowercase, or lowercase characters converted to uppercase.

• String trim()

returns a new string by eliminating all leading and trailing whitespace in the original

string.

• String join(CharSequence delimiter, CharSequence... elements) 8

Returns a new string joining all elements with the given delimiter.

733.6 Strings

ptg16518469

NOTE: In the API notes, there are a few parameters of type CharSequence. This is
an interface type to which all strings belong.You will learn about interface types
in Chapter 6. For now, you just need to know that you can pass arguments of
type String whenever you see a CharSequence parameter.

3.6.8 Reading the Online API Documentation
As you just saw, the String class has lots of methods. Furthermore, there are

thousands of classes in the standard libraries, with many more methods. It is

plainly impossible to remember all useful classes and methods. Therefore, it

is essential that you become familiar with the online API documentation that lets

you look up all classes and methods in the standard library. The API documenta-

tion is part of the JDK. It is in HTML format. Point your web browser to the

docs/api/index.html subdirectory of your JDK installation (Figure 3.2).

Figure 3.2 The three panes of the API documentation

Chapter 3 Fundamental Programming Structures in Java74

ptg16518469

The screen is organized into three frames. A small frame on the top left shows all

available packages. Below it, a larger frame lists all classes. Click on a class name,

and the API documentation for the class is displayed in the large frame to the

right (see Figure 3.3). For example, to get more information on the methods of

the String class, scroll the second frame until you see the String link, then click

on it.

Figure 3.3 Class description for the String class

753.6 Strings

ptg16518469

Then scroll the frame on the right until you reach a summary of all methods,

sorted in alphabetical order (see Figure 3.4). Click on any method name for a de-

tailed description of that method (see Figure 3.5). For example, if you click on the

compareToIgnoreCase link, you’ll get the description of the compareToIgnoreCase
method.

Figure 3.4 Method summary of the String class

TIP: Bookmark the docs/api/index.html page in your browser right now.

Chapter 3 Fundamental Programming Structures in Java76

ptg16518469

Figure 3.5 Detailed description of a String method

3.6.9 Building Strings
Occasionally, you need to build up strings from shorter strings, such as keystrokes

or words from a file. It would be inefficient to use string concatenation for this

purpose. Every time you concatenate strings, a new String object is constructed.

This is time consuming and wastes memory. Using the StringBuilder class avoids

this problem.

Follow these steps if you need to build a string from many small pieces. First,

construct an empty string builder:

StringBuilder builder = new StringBuilder();

Each time you need to add another part, call the append method.

builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will get a

String object with the character sequence contained in the builder.

String completedString = builder.toString();

773.6 Strings

ptg16518469

NOTE: The StringBuilder class was introduced in JDK 5.0. Its predecessor,
StringBuffer, is slightly less efficient, but it allows multiple threads to add or remove
characters. If all string editing happens in a single thread (which is usually the
case), you should use StringBuilder instead.The APIs of both classes are identical.

The following API notes contain the most important methods for the StringBuilder
class.

java.lang.StringBuilder 5.0

• StringBuilder()

constructs an empty string builder.

• int length()

returns the number of code units of the builder or buffer.

• StringBuilder append(String str)

appends a string and returns this.

• StringBuilder append(char c)

appends a code unit and returns this.

• StringBuilder appendCodePoint(int cp)

appends a code point, converting it into one or two code units, and returns this.

• void setCharAt(int i, char c)

sets the ith code unit to c.

• StringBuilder insert(int offset, String str)

inserts a string at position offset and returns this.

• StringBuilder insert(int offset, char c)

inserts a code unit at position offset and returns this.

• StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startIndex to endIndex - 1 and returns this.

• String toString()

returns a string with the same data as the builder or buffer contents.

3.7 Input and Output
To make our example programs more interesting, we want to accept input and

properly format the program output. Of course, modern programs use a GUI for

Chapter 3 Fundamental Programming Structures in Java78

ptg16518469

collecting user input. However, programming such an interface requires more

tools and techniques than we have at our disposal at this time. Our first order of

business is to become more familiar with the Java programming language, so we

make do with the humble console for input and output for now. GUI programming

is covered in Chapters 10 through 12.

3.7.1 Reading Input
You saw that it is easy to print output to the “standard output stream” (that is,

the console window) just by calling System.out.println. Reading from the “standard

input stream” System.in isn’t quite as simple. To read console input, you first

construct a Scanner that is attached to System.in:

Scanner in = new Scanner(System.in);

(We discuss constructors and the new operator in detail in Chapter 4.)

Now you can use the various methods of the Scanner class to read input. For

example, the nextLine method reads a line of input.

System.out.print("What is your name? ");
String name = in.nextLine();

Here, we use the nextLine method because the input might contain spaces. To read

a single word (delimited by whitespace), call

String firstName = in.next();

To read an integer, use the nextInt method.

System.out.print("How old are you? ");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

The program in Listing 3.2 asks for the user’s name and age and then prints a

message like

Hello, Cay. Next year, you'll be 57

Finally, note the line

import java.util.*;

at the beginning of the program. The Scanner class is defined in the java.util package.

Whenever you use a class that is not defined in the basic java.lang package, you

need to use an import directive. We look at packages and import directives in more

detail in Chapter 4.

793.7 Input and Output

ptg16518469

Listing 3.2 InputTest/InputTest.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates console input.
5 * @version 1.10 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class InputTest
9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13

14 // get first input
15 System.out.print("What is your name? ");
16 String name = in.nextLine();
17

18 // get second input
19 System.out.print("How old are you? ");
20 int age = in.nextInt();
21

22 // display output on console
23 System.out.println("Hello, " + name + ". Next year, you'll be " + (age + 1));
24 }
25 }

NOTE: The Scanner class is not suitable for reading a password from a console
since the input is plainly visible to anyone. Java SE 6 introduces a Console class
specifically for this purpose. To read a password, use the following code:

Console cons = System.console();
String username = cons.readLine("User name: ");
char[] passwd = cons.readPassword("Password: ");

For security reasons, the password is returned in an array of characters rather
than a string. After you are done processing the password, you should immedi-
ately overwrite the array elements with a filler value. (Array processing is
discussed in Section 3.10, “Arrays,” on p. 111.)

Input processing with a Console object is not as convenient as with a Scanner.You
must read the input a line at a time. There are no methods for reading individual
words or numbers.

Chapter 3 Fundamental Programming Structures in Java80

ptg16518469

java.util.Scanner 5.0

• Scanner(InputStream in)

constructs a Scanner object from the given input stream.

• String nextLine()

reads the next line of input.

• String next()

reads the next word of input (delimited by whitespace).

• int nextInt()
• double nextDouble()

reads and converts the next character sequence that represents an integer or

floating-point number.

• boolean hasNext()

tests whether there is another word in the input.

• boolean hasNextInt()
• boolean hasNextDouble()

tests whether the next character sequence represents an integer or floating-point

number.

java.lang.System 1.0

• static Console console() 6

returns a Console object for interacting with the user through a console window if

such an interaction is possible, null otherwise. A Console object is available for any

program that is launched in a console window. Otherwise, the availability is system

dependent.

java.io.Console 6

• static char[] readPassword(String prompt, Object... args)
• static String readLine(String prompt, Object... args)

displays the prompt and reads the user input until the end of the input line. The

args parameters can be used to supply formatting arguments, as described in

the next section.

813.7 Input and Output

ptg16518469

3.7.2 Formatting Output
You can print a number x to the console with the statement System.out.print(x). That

command will print x with the maximum number of nonzero digits for that type.

For example,

double x = 10000.0 / 3.0;
System.out.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

In early versions of Java, formatting numbers was a bit of a hassle. Fortunately,

Java SE 5.0 brought back the venerable printf method from the C library. For

example, the call

System.out.printf("%8.2f", x);

prints x with a field width of 8 characters and a precision of 2 characters. That is,

the printout contains a leading space and the seven characters

3333.33

You can supply multiple parameters to printf. For example:

System.out.printf("Hello, %s. Next year, you'll be %d", name, age);

Each of the format specifiers that start with a % character is replaced with the corre-

sponding argument. The conversion character that ends a format specifier indicates

the type of the value to be formatted: f is a floating-point number, s a string, and

d a decimal integer. Table 3.5 shows all conversion characters.

Table 3.5 Conversions for printf

ExampleTypeConversion
Character

159Decimal integerd

9fHexadecimal integerx

237Octal integero

15.9Fixed-point floating-pointf

(Continues)

Chapter 3 Fundamental Programming Structures in Java82

ptg16518469

Table 3.5 (Continued)

ExampleTypeConversion
Character

1.59e+01Exponential floating-pointe

—General floating-point (the shorter of e
and f)

g

0x1.fccdp3Hexadecimal floating-pointa

HelloStrings

HCharacterc

truebooleanb

42628b2Hash codeh

Obsolete, use the java.time
classes instead—see

Chapter 6 of Volume II

Date and time (T forces uppercase)tx or Tx

%The percent symbol%

—The platform-dependent line separatorn

In addition, you can specify flags that control the appearance of the formatted

output. Table 3.6 shows all flags. For example, the comma flag adds group

separators. That is,

System.out.printf("%,.2f", 10000.0 / 3.0);

prints

3,333.33

You can use multiple flags, for example "%,(.2f" to use group separators and enclose

negative numbers in parentheses.

NOTE: You can use the s conversion to format arbitrary objects. If an arbitrary
object implements the Formattable interface, the object’s formatTo method is invoked.
Otherwise, the toString method is invoked to turn the object into a string. We
discuss the toString method in Chapter 5 and interfaces in Chapter 6.

You can use the static String.format method to create a formatted string without

printing it:

String message = String.format("Hello, %s. Next year, you'll be %d", name, age);

833.7 Input and Output

ptg16518469

Table 3.6 Flags for printf

ExamplePurposeFlag

+3333.33Prints sign for positive and negative numbers.+

| 3333.33|Adds a space before positive numbers.space

003333.33Adds leading zeroes.0

|3333.33 |Left-justifies field.-

(3333.33)Encloses negative numbers in parentheses.(

3,333.33Adds group separators.,

3,333.Always includes a decimal point.# (for f format)

0xcafeAdds 0x or 0 prefix.# (for x or o format)

159 9FSpecifies the index of the argument to be

formatted; for example, %1$d %1$x prints the first

argument in decimal and hexadecimal.

$

159 9FFormats the same value as the previous

specification; for example, %d %<x prints the

same number in decimal and hexadecimal.

<

In the interest of completeness, we briefly discuss the date and time formatting

options of the printf method. For new code, you should use the methods of the

java.time package described in Chapter 6 of Volume II. But you may encounter the

Date class and the associated formatting options in legacy code. The format consists

of two letters, starting with t and ending in one of the letters of Table 3.7; for

example,

System.out.printf("%tc", new Date());

prints the current date and time in the format

Mon Feb 09 18:05:19 PST 2015

As you can see in Table 3.7, some of the formats yield only a part of a given

date—for example, just the day or just the month. It would be a bit silly if you

had to supply the date multiple times to format each part. For that reason, a format

string can indicate the index of the argument to be formatted. The index must

immediately follow the %, and it must be terminated by a $. For example,

System.out.printf("%1$s %2$tB %2$te, %2$tY", "Due date:", new Date());

prints

Due date: February 9, 2015

Chapter 3 Fundamental Programming Structures in Java84

ptg16518469

Alternatively, you can use the < flag. It indicates that the same argument as in

the preceding format specification should be used again. That is, the statement

System.out.printf("%s %tB %<te, %<tY", "Due date:", new Date());

yields the same output as the preceding statement.

Table 3.7 Date and Time Conversion Characters

ExampleTypeConversion
Character

Mon Feb 09 18:05:19 PST 2015Complete date and timec

2015-02-09ISO 8601 dateF

02/09/2015U.S. formatted date (month/day/year)D

18:05:1924-hour timeT

06:05:19 pm12-hour timer

18:0524-hour time, no secondsR

2015Four-digit year (with leading zeroes)Y

15Last two digits of the year (with leading

zeroes)

y

20First two digits of the year (with leading

zeroes)

C

FebruaryFull month nameB

FebAbbreviated month nameb or h

02Two-digit month (with leading zeroes)m

09Two-digit day (with leading zeroes)d

9Two-digit day (without leading zeroes)e

MondayFull weekday nameA

MonAbbreviated weekday namea

069Three-digit day of year (with leading zeroes),

between 001 and 366

j

18Two-digit hour (with leading zeroes), between

00 and 23

H

(Continues)

853.7 Input and Output

ptg16518469

Table 3.7 (Continued)

ExampleTypeConversion
Character

18Two-digit hour (without leading zeroes),

between 0 and 23

k

06Two-digit hour (with leading zeroes), between

01 and 12

I

6Two-digit hour (without leading zeroes),

between 1 and 12

l

05Two-digit minutes (with leading zeroes)M

19Two-digit seconds (with leading zeroes)S

047Three-digit milliseconds (with leading zeroes)L

047000000Nine-digit nanoseconds (with leading zeroes)N

pmMorning or afternoon markerp

-0800RFC 822 numeric offset from GMTz

PSTTime zoneZ

1078884319Seconds since 1970–01–01 00:00:00 GMTs

1078884319047Milliseconds since 1970–01–01 00:00:00 GMTQ

CAUTION: Argument index values start with 1, not with 0: %1$... formats the first
argument. This avoids confusion with the 0 flag.

You have now seen all features of the printf method. Figure 3.6 shows a syntax

diagram for format specifiers.

Figure 3.6 Format specifier syntax

Chapter 3 Fundamental Programming Structures in Java86

ptg16518469

NOTE: The formatting of numbers and dates is locale specific. For example, in
Germany, the group separator is a period, not a comma, and Monday is formatted
as Montag. Chapter 7 of Volume II shows how to control the international behavior
of your applications.

3.7.3 File Input and Output
To read from a file, construct a Scanner object like this:

Scanner in = new Scanner(Paths.get("myfile.txt"), "UTF-8");

If the file name contains backslashes, remember to escape each of them with an

additional backslash: "c:\\mydirectory\\myfile.txt".

NOTE: Here, we specify the UTF-8 character encoding, which is common (but
not universal) for files on the Internet.You need to know the character encoding
when you read a text file—see Volume II, Chapter 2 for more information. If you
omit the character encoding, then the “default encoding” of the computer running
the Java program is used. That is not a good idea—the program might act
differently depending on where it is run.

Now you can read from the file, using any of the Scanner methods that we already

described.

To write to a file, construct a PrintWriter object. In the constructor, supply the file

name and the character encoding:

PrintWriter out = new PrintWriter("myfile.txt", "UTF-8");

If the file does not exist, it is created. You can use the print, println, and printf
commands as you did when printing to System.out.

CAUTION: You can construct a Scanner with a string parameter, but the scanner
interprets the string as data, not a file name. For example, if you call

Scanner in = new Scanner("myfile.txt"); // ERROR?

then the scanner will see ten characters of data: 'm', 'y', 'f', and so on. That is
probably not what was intended in this case.

873.7 Input and Output

ptg16518469

NOTE: When you specify a relative file name, such as "myfile.txt",
"mydirectory/myfile.txt", or "../myfile.txt", the file is located relative to the directory
in which the Java virtual machine was started. If you launched your program
from a command shell, by executing

java MyProg

then the starting directory is the current directory of the command shell. However,
if you use an integrated development environment, it controls the starting
directory. You can find the directory location with this call:

String dir = System.getProperty("user.dir");

If you run into grief with locating files, consider using absolute path names such
as "c:\\mydirectory\\myfile.txt" or "/home/me/mydirectory/myfile.txt".

As you just saw, you can access files just as easily as you can use System.in and

System.out. There is just one catch: If you construct a Scanner with a file that does not

exist or a PrintWriter with a file name that cannot be created, an exception occurs.

The Java compiler considers these exceptions to be more serious than a “divide

by zero” exception, for example. In Chapter 7, you will learn various ways of

handling exceptions. For now, you should simply tell the compiler that you are

aware of the possibility of an “input/output” exception. You do this by tagging

the main method with a throws clause, like this:

public static void main(String[] args) throws IOException
{
 Scanner in = new Scanner(Paths.get("myfile.txt"), "UTF-8");
 . . .
}

You have now seen how to read and write files that contain textual data. For more

advanced topics, such as dealing with different character encodings, processing

binary data, reading directories, and writing zip files, turn to Chapter 2 of

Volume II.

NOTE: When you launch a program from a command shell, you can use the
redirection syntax of your shell and attach any file to System.in and System.out:

java MyProg < myfile.txt > output.txt

Then, you need not worry about handling the IOException.

Chapter 3 Fundamental Programming Structures in Java88

ptg16518469

java.util.Scanner 5.0

• Scanner(Path p, String encoding)

constructs a Scanner that reads data from the given path, using the given character

encoding.

• Scanner(String data)

constructs a Scanner that reads data from the given string.

java.io.PrintWriter 1.1

• PrintWriter(String fileName)

constructs a PrintWriter that writes data to the file with the given file name.

java.nio.file.Paths 7

• static Path get(String pathname)

constructs a Path from the given path name.

3.8 Control Flow
Java, like any programming language, supports both conditional statements and

loops to determine control flow. We will start with the conditional statements,

then move on to loops, to end with the somewhat cumbersome switch statement

that you can use to test for many values of a single expression.

C++ NOTE: The Java control flow constructs are identical to those in C and
C++, with a few exceptions. There is no goto, but there is a “labeled” version of
break that you can use to break out of a nested loop (where, in C, you perhaps
would have used a goto). Finally, there is a variant of the for loop that has no
analog in C or C++. It is similar to the foreach loop in C#.

3.8.1 Block Scope
Before learning about control structures, you need to know more about blocks.

A block or compound statement consists of a number of Java statements,

surrounded by a pair of braces. Blocks define the scope of your variables. A block

893.8 Control Flow

ptg16518469

can be nested inside another block. Here is a block that is nested inside the block

of the main method:

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 . . .
 } // k is only defined up to here
}

You may not declare identically named variables in two nested blocks. For

example, the following is an error and will not compile:

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 int n; // Error--can't redefine n in inner block
 . . .
 }
}

C++ NOTE: In C++, it is possible to redefine a variable inside a nested block.
The inner definition then shadows the outer one. This can be a source of
programming errors; hence, Java does not allow it.

3.8.2 Conditional Statements
The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute mul-

tiple statements when a single condition is true. In this case, use a block statement

that takes the form

Chapter 3 Fundamental Programming Structures in Java90

ptg16518469

{
statement1
statement2

 . . .
}

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}

In this code all the statements surrounded by the braces will be executed when

yourSales is greater than or equal to target (see Figure 3.7).

Figure 3.7 Flowchart for the if statement

913.8 Control Flow

ptg16518469

NOTE: A block (sometimes called a compound statement) enables you to have
more than one (simple) statement in any Java programming structure that
otherwise allows for a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statement1 else statement2

Figure 3.8 Flowchart for the if/else statement

Chapter 3 Fundamental Programming Structures in Java92

ptg16518469

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100 + 0.01 * (yourSales - target);
}
else
{
 performance = "Unsatisfactory";
 bonus = 0;
}

The else part is always optional. An else groups with the closest if. Thus, in the

statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to clarify

this code:

if (x <= 0) { if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9). For example:

if (yourSales >= 2 * target)
{
 performance = "Excellent";
 bonus = 1000;
}
else if (yourSales >= 1.5 * target)
{
 performance = "Fine";
 bonus = 500;
}
else if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}
else
{
 System.out.println("You're fired");
}

933.8 Control Flow

ptg16518469

Figure 3.9 Flowchart for the if/else if (multiple branches)

3.8.3 Loops
The while loop executes a statement (which may be a block statement) while a

condition is true. The general form is

while (condition) statement

Chapter 3 Fundamental Programming Structures in Java94

ptg16518469

The while loop will never execute if the condition is false at the outset (see

Figure 3.10).

Figure 3.10 Flowchart for the while statement

The program in Listing 3.3 determines how long it will take to save a specific

amount of money for your well-earned retirement, assuming you deposit the

same amount of money per year and the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently

accumulated in the body of the loop until the total exceeds the targeted amount.

953.8 Control Flow

ptg16518469

while (balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
}
System.out.println(years + " years.");

(Don’t rely on this program to plan for your retirement. We left out a few niceties

such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never be exe-

cuted. If you want to make sure a block is executed at least once, you need to

move the test to the bottom, using the do/while loop. Its syntax looks like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then tests

the condition. If it’s true, it repeats the statement and retests the condition, and

so on. The code in Listing 3.4 computes the new balance in your retirement account

and then asks if you are ready to retire:

do
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 year++;
 // print current balance
 . . .
 // ask if ready to retire and get input
 . . .
}
while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3.11). This program

is a good example of a loop that needs to be entered at least once, because the

user needs to see the balance before deciding whether it is sufficient for retirement.

Chapter 3 Fundamental Programming Structures in Java96

ptg16518469

Listing 3.3 Retirement/Retirement.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates a <code>while</code> loop.
5 * @version 1.20 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class Retirement
9 {
10 public static void main(String[] args)
11 {
12 // read inputs
13 Scanner in = new Scanner(System.in);
14

15 System.out.print("How much money do you need to retire? ");
16 double goal = in.nextDouble();
17

18 System.out.print("How much money will you contribute every year? ");
19 double payment = in.nextDouble();
20

21 System.out.print("Interest rate in %: ");
22 double interestRate = in.nextDouble();
23

24 double balance = 0;
25 int years = 0;
26

27 // update account balance while goal isn't reached
28 while (balance < goal)
29 {
30 // add this year's payment and interest
31 balance += payment;
32 double interest = balance * interestRate / 100;
33 balance += interest;
34 years++;
35 }
36

37 System.out.println("You can retire in " + years + " years.");
38 }
39 }

973.8 Control Flow

ptg16518469

Listing 3.4 Retirement2/Retirement2.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates a <code>do/while</code> loop.
5 * @version 1.20 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class Retirement2
9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13

14 System.out.print("How much money will you contribute every year? ");
15 double payment = in.nextDouble();
16

17 System.out.print("Interest rate in %: ");
18 double interestRate = in.nextDouble();
19

20 double balance = 0;
21 int year = 0;
22

23 String input;
24

25 // update account balance while user isn't ready to retire
26 do
27 {
28 // add this year's payment and interest
29 balance += payment;
30 double interest = balance * interestRate / 100;
31 balance += interest;
32

33 year++;
34

35 // print current balance
36 System.out.printf("After year %d, your balance is %,.2f%n", year, balance);
37

38 // ask if ready to retire and get input
39 System.out.print("Ready to retire? (Y/N) ");
40 input = in.next();
41 }
42 while (input.equals("N"));
43 }
44 }

Chapter 3 Fundamental Programming Structures in Java98

ptg16518469

Figure 3.11 Flowchart for the do/while statement

3.8.4 Determinate Loops
The for loop is a general construct to support iteration controlled by a counter or

similar variable that is updated after every iteration. As Figure 3.12 shows, the

following loop prints the numbers from 1 to 10 on the screen.

for (int i = 1; i <= 10; i++)
 System.out.println(i);

The first slot of the for statement usually holds the counter initialization. The

second slot gives the condition that will be tested before each new pass through

the loop, and the third slot specifies how to update the counter.

993.8 Control Flow

ptg16518469

Figure 3.12 Flowchart for the for statement

Although Java, like C++, allows almost any expression in the various slots of a

for loop, it is an unwritten rule of good taste that the three slots should only ini-

tialize, test, and update the same counter variable. One can write very obscure

loops by disregarding this rule.

Even within the bounds of good taste, much is possible. For example, you can

have loops that count down:

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);
System.out.println("Blastoff!");

Chapter 3 Fundamental Programming Structures in Java100

ptg16518469

CAUTION: Be careful about testing for equality of floating-point numbers in
loops. A for loop like this one

for (double x = 0; x != 10; x += 0.1) . . .

might never end. Because of roundoff errors, the final value might not be reached
exactly. In this example, x jumps from 9.99999999999998 to 10.09999999999998 because
there is no exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that

variable extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++)
{
 . . .
}
// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use its

value outside the loop. Therefore, if you wish to use the final value of a loop

counter outside the for loop, be sure to declare it outside the loop header.

int i;
for (i = 1; i <= 10; i++)
{
 . . .
}
// i is still defined here

On the other hand, you can define variables with the same name in separate for
loops:

for (int i = 1; i <= 10; i++)
{
 . . .
}
. . .
for (int i = 11; i <= 20; i++) // OK to define another variable named i
{
 . . .
}

A for loop is merely a convenient shortcut for a while loop. For example,

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);

can be rewritten as

1013.8 Control Flow

ptg16518469

int i = 10;
while (i > 0)
{
 System.out.println("Counting down . . . " + i);
 i--;
}

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you must

pick six numbers from the numbers 1 to 50 to win, then there are (50 × 49 × 48 ×

47 × 46 × 45)/(1 × 2 × 3 × 4 × 5 × 6) possible outcomes, so your chance is 1 in

15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

n × (n – 1) × (n – 2) × · · · × (n – k + 1)

1 × 2 × 3 × 4 × · · · × k

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;
for (int i = 1; i <= k; i++)
 lotteryOdds = lotteryOdds * (n - i + 1) / i;

NOTE: See Section 3.10.1, “The ‘for each’ Loop,” on p. 113 for a description of
the “generalized for loop” (also called “for each” loop) that was added to the
Java language in Java SE 5.0.

Listing 3.5 LotteryOdds/LotteryOdds.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates a <code>for</code> loop.
5 * @version 1.20 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class LotteryOdds
9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13

14 System.out.print("How many numbers do you need to draw? ");
15 int k = in.nextInt();
16

Chapter 3 Fundamental Programming Structures in Java102

ptg16518469

17 System.out.print("What is the highest number you can draw? ");
18 int n = in.nextInt();
19

20 /*
21 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
22 */
23

24 int lotteryOdds = 1;
25 for (int i = 1; i <= k; i++)
26 lotteryOdds = lotteryOdds * (n - i + 1) / i;
27

28 System.out.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");
29 }
30 }

3.8.5 Multiple Selections—The switch Statement
The if/else construct can be cumbersome when you have to deal with multiple

selections with many alternatives. Java has a switch statement that is exactly like

the switch statement in C and C++, warts and all.

For example, if you set up a menu system with four alternatives like that in

Figure 3.13, you could use code that looks like this:

Scanner in = new Scanner(System.in);
System.out.print("Select an option (1, 2, 3, 4) ");
int choice = in.nextInt();
switch (choice)
{
 case 1:
 . . .
 break;
 case 2:
 . . .
 break;
 case 3:
 . . .
 break;
 case 4:
 . . .
 break;
 default:
 // bad input
 . . .
 break;
}

1033.8 Control Flow

ptg16518469

Figure 3.13 Flowchart for the switch statement

Execution starts at the case label that matches the value on which the selection is

performed and continues until the next break or the end of the switch. If none of

the case labels match, then the default clause is executed, if it is present.

Chapter 3 Fundamental Programming Structures in Java104

ptg16518469

CAUTION: It is possible for multiple alternatives to be triggered. If you forget to
add a break at the end of an alternative, execution falls through to the next alter-
native! This behavior is plainly dangerous and a common cause for errors. For
that reason, we never use the switch statement in our programs.

If you like the switch statement better than we do, consider compiling your code
with the -Xlint:fallthrough option, like this:

javac -Xlint:fallthrough Test.java

Then the compiler will issue a warning whenever an alternative does not end
with a break statement.

If you actually want to use the fallthrough behavior, tag the surrounding method
with the annotation @SuppressWarnings("fallthrough"). Then no warnings will be gen-
erated for that method. (An annotation is a mechanism for supplying information
to the compiler or a tool that processes Java source or class files. We discuss
annotations in detail in Chapter 8 of Volume II.)

A case label can be

• A constant expression of type char, byte, short, or int

• An enumerated constant

• Starting with Java SE 7, a string literal

For example,

String input = . . .;
switch (input.toLowerCase())
{
 case "yes": // OK since Java SE 7
 . . .
 break;
 . . .
}

When you use the switch statement with enumerated constants, you need not

supply the name of the enumeration in each label—it is deduced from the switch
value. For example:

Size sz = . . .;
switch (sz)
{
 case SMALL: // no need to use Size.SMALL
 . . .
 break;
 . . .
}

1053.8 Control Flow

ptg16518469

3.8.6 Statements That Break Control Flow
Although the designers of Java kept goto as a reserved word, they decided not to

include it in the language. In general, goto statements are considered poor style.

Some programmers feel the anti-goto forces have gone too far (see, for example,

the famous article of Donald Knuth called “Structured Programming with goto

statements”). They argue that unrestricted use of goto is error-prone but that an

occasional jump out of a loop is beneficial. The Java designers agreed and even

added a new statement, the labeled break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement that

you use to exit a switch can also be used to break out of a loop. For example:

while (years <= 100)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance >= goal) break;
 years++;
}

Now the loop is exited if either years > 100 occurs at the top of the loop or balance >=
goal occurs in the middle of the loop. Of course, you could have computed the

same value for years without a break, like this:

while (years <= 100 && balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance < goal)
 years++;
}

But note that the test balance < goal is repeated twice in this version. To avoid this

repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of

multiple nested loops. Occasionally something weird happens inside a deeply

nested loop. In that case, you may want to break completely out of all the nested

loops. It is inconvenient to program that simply by adding extra conditions to

the various loop tests.

Here’s an example that shows the break statement at work. Notice that the label

must precede the outermost loop out of which you want to break. It also must be

followed by a colon.

Chapter 3 Fundamental Programming Structures in Java106

ptg16518469

Scanner in = new Scanner(System.in);
int n;
read_data:
while (. . .) // this loop statement is tagged with the label
{
 . . .
 for (. . .) // this inner loop is not labeled
 {
 System.out.print("Enter a number >= 0: ");
 n = in.nextInt();
 if (n < 0) // should never happen—can't go on

break read_data;
// break out of read_data loop

 . . .
 }
}
// this statement is executed immediately after the labeled break
if (n < 0) // check for bad situation
{
 // deal with bad situation
}
else
{
 // carry out normal processing
}

If there is a bad input, the labeled break moves past the end of the labeled block.

As with any use of the break statement, you then need to test whether the loop

exited normally or as a result of a break.

NOTE: Curiously, you can apply a label to any statement, even an if statement
or a block statement, like this:

label:
{
 . . .
 if (condition) break label; // exits block
 . . .
}
// jumps here when the break statement executes

Thus, if you are lusting after a goto and if you can place a block that ends just
before the place to which you want to jump, you can use a break statement!
Naturally, we don’t recommend this approach. Note, however, that you can only
jump out of a block, never into a block.

1073.8 Control Flow

ptg16518469

Finally, there is a continue statement that, like the break statement, breaks the regular

flow of control. The continue statement transfers control to the header of the

innermost enclosing loop. Here is an example:

Scanner in = new Scanner(System.in);
while (sum < goal)
{
 System.out.print("Enter a number: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps immediately to the loop header, skipping

the remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the

for loop. For example:

for (count = 1; count <= 100; count++)
{
 System.out.print("Enter a number, -1 to quit: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the header of

the loop with the matching label.

TIP: Many programmers find the break and continue statements confusing.These
statements are entirely optional—you can always express the same logic without
them. In this book, we never use break or continue.

3.9 Big Numbers
If the precision of the basic integer and floating-point types is not sufficient, you

can turn to a couple of handy classes in the java.math package: BigInteger and BigDecimal.

These are classes for manipulating numbers with an arbitrarily long sequence of

digits. The BigInteger class implements arbitrary-precision integer arithmetic, and

BigDecimal does the same for floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big number:

BigInteger a = BigInteger.valueOf(100);

Chapter 3 Fundamental Programming Structures in Java108

ptg16518469

Unfortunately, you cannot use the familiar mathematical operators such as + and

* to combine big numbers. Instead, you must use methods such as add and multiply
in the big number classes.

BigInteger c = a.add(b); // c = a + b
BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); // d = c * (b + 2)

C++ NOTE: Unlike C++, Java has no programmable operator overloading.There
was no way for the programmers of the BigInteger class to redefine the + and *
operators to give the add and multiply operations of the BigInteger classes. The
language designers did overload the + operator to denote concatenation of
strings. They chose not to overload other operators, and they did not give Java
programmers the opportunity to overload operators in their own classes.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5,

updated to work with big numbers. For example, if you are invited to participate

in a lottery in which you need to pick 60 numbers out of a possible 490 numbers,

you can use this program to tell you your odds of winning. They are 1 in

716395843461995557415116222540092933411717612789263493493351013459481104668848. Good luck!

The program in Listing 3.5 computed the statement

lotteryOdds = lotteryOdds * (n - i + 1) / i;

When big numbers are used, the equivalent statement becomes

lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(BigInteger.valueOf(i));

Listing 3.6 BigIntegerTest/BigIntegerTest.java

1 import java.math.*;
2 import java.util.*;
 3

4 /**
5 * This program uses big numbers to compute the odds of winning the grand prize in a lottery.
6 * @version 1.20 2004-02-10
7 * @author Cay Horstmann
8 */
9 public class BigIntegerTest
10 {
11 public static void main(String[] args)
12 {
13 Scanner in = new Scanner(System.in);
14

(Continues)

1093.9 Big Numbers

ptg16518469

Listing 3.6 (Continued)

15 System.out.print("How many numbers do you need to draw? ");
16 int k = in.nextInt();
17

18 System.out.print("What is the highest number you can draw? ");
19 int n = in.nextInt();
20

21 /*
22 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
23 */
24

25 BigInteger lotteryOdds = BigInteger.valueOf(1);
26

27 for (int i = 1; i <= k; i++)
28 lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(
29 BigInteger.valueOf(i));
30

31 System.out.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");
32 }
33 }

java.math.BigInteger 1.1

• BigInteger add(BigInteger other)
• BigInteger subtract(BigInteger other)
• BigInteger multiply(BigInteger other)
• BigInteger divide(BigInteger other)
• BigInteger mod(BigInteger other)

returns the sum, difference, product, quotient, and remainder of this big integer

and other.

• int compareTo(BigInteger other)

returns 0 if this big integer equals other, a negative result if this big integer is less

than other, and a positive result otherwise.

• static BigInteger valueOf(long x)

returns a big integer whose value equals x.

Chapter 3 Fundamental Programming Structures in Java110

ptg16518469

java.math.BigDecimal 1.1

• BigDecimal add(BigDecimal other)
• BigDecimal subtract(BigDecimal other)
• BigDecimal multiply(BigDecimal other)
• BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

returns the sum, difference, product, or quotient of this big decimal and other. To

compute the quotient, you must supply a rounding mode.The mode RoundingMode.HALF_UP
is the rounding mode that you learned in school: round down the digits 0 to 4,

round up the digits 5 to 9. It is appropriate for routine calculations. See the API

documentation for other rounding modes.

• int compareTo(BigDecimal other)

returns 0 if this big decimal equals other, a negative result if this big decimal is less

than other, and a positive result otherwise.

• static BigDecimal valueOf(long x)
• static BigDecimal valueOf(long x, int scale)

returns a big decimal whose value equals x or x / 10
scale

.

3.10 Arrays
An array is a data structure that stores a collection of values of the same type.

You access each individual value through an integer index. For example, if a is

an array of integers, then a[i] is the ith integer in the array.

Declare an array variable by specifying the array type—which is the element type

followed by []—and the array variable name. For example, here is the declaration

of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a
with an actual array. Use the new operator to create the array.

int[] a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of length n.

1113.10 Arrays

ptg16518469

NOTE: You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly separates the
type int[] (integer array) from the variable name.

The array elements are numbered from 0 to 99 (and not 1 to 100). Once the array is

created, you can fill the elements in an array, for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
 a[i] = i; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero. Arrays

of boolean are initialized with false. Arrays of objects are initialized with the special

value null, which indicates that they do not (yet) hold any objects. This can be

surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to hold

empty strings, you must supply them:

for (int i = 0; i < 10; i++) names[i] = "";

CAUTION: If you construct an array with 100 elements and then try to access
the element a[100] (or any other index outside the range from 0 to 99), your
program will terminate with an “array index out of bounds” exception.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

Once you create an array, you cannot change its size (although you can, of course,

change an individual array element). If you frequently need to expand the size

of an array while your program is running, you should use a different data

structure called an array list. (See Chapter 5 for more on array lists.)

Chapter 3 Fundamental Programming Structures in Java112

ptg16518469

3.10.1 The “for each” Loop
Java has a powerful looping construct that allows you to loop through each ele-

ment in an array (or any other collection of elements) without having to fuss with

index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes the

statement (which, of course, may be a block). The collection expression must be an

array or an object of a class that implements the Iterable interface, such as ArrayList.

We discuss array lists in Chapter 5 and the Iterable interface in Chapter 9.

For example,

for (int element : a)
 System.out.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the Java

language considered using keywords, such as foreach and in. But this loop was a

late addition to the Java language, and in the end nobody wanted to break the

old code that already contained methods or variables with these names (such as

System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

However, the “for each” loop is more concise and less error-prone, as you don’t

have to worry about those pesky start and end index values.

NOTE: The loop variable of the “for each” loop traverses the elements of the
array, not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if you

need to process all elements in a collection. However, there are still plenty of

opportunities to use the traditional for loop. For example, you might not want to

traverse the entire collection, or you may need the index value inside the loop.

1133.10 Arrays

ptg16518469

TIP: There is an even easier way to print all values of an array, using the toString
method of the Arrays class. The call Arrays.toString(a) returns a string containing
the array elements, enclosed in brackets and separated by commas, such as
"[2, 3, 5, 7, 11, 13]". To print the array, simply call

System.out.println(Arrays.toString(a));

3.10.2 Array Initializers and Anonymous Arrays
Java has a shortcut for creating an array object and supplying initial values at the

same time. Here’s an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not call new when you use this syntax.

You can even initialize an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces.

It counts the number of initial values and sets the array size accordingly. You can

use this syntax to reinitialize an array without creating a new variable. For

example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE: It is legal to have arrays of length 0. Such an array can be useful if you
write a method that computes an array result and the result happens to be
empty. Construct an array of length 0 as

new elementType[0]

Note that an array of length 0 is not the same as null.

3.10.3 Array Copying
You can copy one array variable into another, but then both variables refer to the

same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Chapter 3 Fundamental Programming Structures in Java114

ptg16518469

Figure 3.14 shows the result. If you actually want to copy all values of one array

into a new array, you use the copyOf method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, luckyNumbers.length);

Figure 3.14 Copying an array variable

The second parameter is the length of the new array. A common use of this method

is to increase the size of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 * luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false if

the array contains boolean values. Conversely, if the length is less than the length

of the original array, only the initial values are copied.

C++ NOTE: A Java array is quite different from a C++ array on the stack. It is,
however, essentially the same as a pointer to an array allocated on the heap.
That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking. Furthermore,
there is no pointer arithmetic—you can’t increment a to point to the next element
in the array.

1153.10 Arrays

ptg16518469

3.10.4 Command-Line Parameters
You have already seen one example of a Java array repeated quite a few times.

Every Java program has a main method with a String[] args parameter. This param-

eter indicates that the main method receives an array of strings—namely, the

arguments specified on the command line.

For example, consider this program:

public class Message
{
 public static void main(String[] args)
 {
 if (args.length == 0 || args[0].equals("-h"))

System.out.print("Hello,");
 else if (args[0].equals("-g"))

System.out.print("Goodbye,");
 // print the other command-line arguments
 for (int i = 1; i < args.length; i++)

System.out.print(" " + args[i]);
 System.out.println("!");
 }
}

If the program is called as

java Message -g cruel world

then the args array has the following contents:

args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message

Goodbye, cruel world!

C++ NOTE: In the main method of a Java program, the name of the program is
not stored in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message" or "java".

Chapter 3 Fundamental Programming Structures in Java116

ptg16518469

3.10.5 Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays class:

int[] a = new int[10000];
 . . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to

be very efficient on most data sets. The Arrays class provides several other conve-

nience methods for arrays that are included in the API notes at the end of this

section.

The program in Listing 3.7 puts arrays to work. This program draws a random

combination of numbers for a lottery game. For example, if you play a “choose

6 numbers from 49” lottery, the program might print this:

Bet the following combination. It'll make you rich!
 4
 7
 8
 19
 30
 44

To select such a random set of numbers, we first fill an array numbers with the values

1, 2, . . ., n:

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
 numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now we draw k numbers. The Math.random method returns a random floating-point

number that is between 0 (inclusive) and 1 (exclusive). By multiplying the result

with n, we obtain a random number between 0 and n – 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r + 1, but

as you’ll see presently, the contents of the numbers array are changed after each

draw.

result[i] = numbers[r];

Now we must be sure never to draw that number again—all lottery numbers

must be distinct. Therefore, we overwrite numbers[r] with the last number in the

array and reduce n by 1.

1173.10 Arrays

ptg16518469

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index

points into an array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing

output:

Arrays.sort(result);
for (int r : result)
 System.out.println(r);

Listing 3.7 LotteryDrawing/LotteryDrawing.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates array manipulation.
5 * @version 1.20 2004-02-10
6 * @author Cay Horstmann
7 */
8 public class LotteryDrawing
9 {
10 public static void main(String[] args)
11 {
12 Scanner in = new Scanner(System.in);
13

14 System.out.print("How many numbers do you need to draw? ");
15 int k = in.nextInt();
16

17 System.out.print("What is the highest number you can draw? ");
18 int n = in.nextInt();
19

20 // fill an array with numbers 1 2 3 . . . n
21 int[] numbers = new int[n];
22 for (int i = 0; i < numbers.length; i++)
23 numbers[i] = i + 1;
24

25 // draw k numbers and put them into a second array
26 int[] result = new int[k];
27 for (int i = 0; i < result.length; i++)
28 {
29 // make a random index between 0 and n - 1
30 int r = (int) (Math.random() * n);
31

Chapter 3 Fundamental Programming Structures in Java118

ptg16518469

32 // pick the element at the random location
33 result[i] = numbers[r];
34

35 // move the last element into the random location
36 numbers[r] = numbers[n - 1];
37 n--;
38 }
39

40 // print the sorted array
41 Arrays.sort(result);
42 System.out.println("Bet the following combination. It'll make you rich!");
43 for (int r : result)
44 System.out.println(r);
45 }
46 }

java.util.Arrays 1.2

• static String toString(type[] a) 5.0

returns a string with the elements of a, enclosed in brackets and delimited by

commas.

An array of type int, long, short, char, byte, boolean, float,

or double.

aParameters:

• static type[] copyOf(type[] a, int length) 6
• static type[] copyOfRange(type[] a, int start, int end) 6

returns an array of the same type as a, of length either length or end - start, filled

with the values of a.

aParameters: An array of type int, long, short, char, byte, boolean, float,

or double.

The starting index (inclusive).start

The ending index (exclusive). May be larger than

a.length, in which case the result is padded with 0 or

false values.

end

The length of the copy. If length is larger than a.length,

the result is padded with 0 or false values. Otherwise,

only the initial length values are copied.

length

• static void sort(type[] a)

sorts the array, using a tuned QuickSort algorithm.

An array of type int, long, short, char, byte, float, or

double.

aParameters:

(Continues)

1193.10 Arrays

ptg16518469

java.util.Arrays 1.2 (Continued)

• static int binarySearch(type[] a, type v)
• static int binarySearch(type[] a, int start, int end, type v) 6

Uses the binary search algorithm to search for the value v. If it is found, its index is

returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

a sorted array of type int, long, short, char, byte, float, or

double.

aParameters:

The starting index (inclusive).start

The ending index (exclusive).end

A value of the same type as the elements of a.v

• static void fill(type[] a, type v)

Sets all elements of the array to v.

An array of type int, long, short, char, byte, boolean, float,

or double.

aParameters:

A value of the same type as the elements of a.v

• static boolean equals(type[] a, type[] b)

Returns true if the arrays have the same length and if the elements in corresponding

indexes match.

Arrays of type int, long, short, char, byte, boolean, float,

or double.

a, bParameters:

3.10.6 Multidimensional Arrays
Multidimensional arrays use more than one index to access array elements. They

are used for tables and other more complex arrangements. You can safely skip

this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an invest-

ment of $10,000 will grow under different interest rate scenarios in which interest

is paid annually and reinvested (Table 3.8).

You can store this information in a two-dimensional array (matrix), which we

call balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

Chapter 3 Fundamental Programming Structures in Java120

ptg16518469

Table 3.8 Growth of an Investment at Different Interest Rates

15%14%13%12%11%10%

10,000.0010,000.0010,000.0010,000.0010,000.0010,000.00

11,500.0011,400.0011,300.0011,200.0011,100.0011,000.00

13,225.0012,996.0012,769.0012,544.0012,321.0012,100.00

15,208.7514,815.4414,428.9714,049.2813,676.3113,310.00

17,490.0616,889.6016,304.7415,735.1915,180.7014,641.00

20,113.5719,254.1518,424.3517,623.4216,850.5816,105.10

23,130.6121,949.7320,819.5219,738.2318,704.1517,715.61

26,600.2025,022.6923,526.0522,106.8120,761.6019,487.17

30,590.2328,525.8626,584.4424,759.6323,045.3821,435.89

35,178.7632,519.4930,040.4227,730.7925,580.3723,579.48

You cannot use the array until you initialize it. In this case, you can do the

initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notation

for initializing a multidimensional array without a call to new. For example:

int[][] magicSquare =
 {
 {16, 3, 2, 13},
 {5, 10, 11, 8},
 {9, 6, 7, 12},
 {4, 15, 14, 1}
 };

Once the array is initialized, you can access individual elements by supplying

two pairs of brackets—for example, balances[i][j].

The example program stores a one-dimensional array interest of interest rates and

a two-dimensional array balances of account balances, one for each year and interest

rate. We initialize the first row of the array with the initial balance:

for (int j = 0; j < balances[0].length; j++)
 balances[0][j] = 10000;

Then we compute the other rows, as follows:

1213.10 Arrays

ptg16518469

for (int i = 1; i < balances.length; i++)
{
 for (int j = 0; j < balances[i].length; j++)
 {
 double oldBalance = balances[i - 1][j];
 double interest = . . .;
 balances[i][j] = oldBalance + interest;
 }
}

Listing 3.8 shows the full program.

NOTE: A “for each” loop does not automatically loop through all elements in a
two-dimensional array. Instead, it loops through the rows, which are themselves
one-dimensional arrays. To visit all elements of a two-dimensional array a, nest
two loops, like this:

for (double[] row : a)
 for (double value : row)

do something with value

TIP: To print out a quick-and-dirty list of the elements of a two-dimensional
array, call

System.out.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Listing 3.8 CompoundInterest/CompoundInterest.java

1 /**
2 * This program shows how to store tabular data in a 2D array.
3 * @version 1.40 2004-02-10
4 * @author Cay Horstmann
5 */
6 public class CompoundInterest
7 {
8 public static void main(String[] args)
9 {
10 final double STARTRATE = 10;
11 final int NRATES = 6;

Chapter 3 Fundamental Programming Structures in Java122

ptg16518469

12 final int NYEARS = 10;
13

14 // set interest rates to 10 . . . 15%
15 double[] interestRate = new double[NRATES];
16 for (int j = 0; j < interestRate.length; j++)
17 interestRate[j] = (STARTRATE + j) / 100.0;
18

19 double[][] balances = new double[NYEARS][NRATES];
20

21 // set initial balances to 10000
22 for (int j = 0; j < balances[0].length; j++)
23 balances[0][j] = 10000;
24

25 // compute interest for future years
26 for (int i = 1; i < balances.length; i++)
27 {
28 for (int j = 0; j < balances[i].length; j++)
29 {
30 // get last year's balances from previous row
31 double oldBalance = balances[i - 1][j];
32

33 // compute interest
34 double interest = oldBalance * interestRate[j];
35

36 // compute this year's balances
37 balances[i][j] = oldBalance + interest;
38 }
39 }
40

41 // print one row of interest rates
42 for (int j = 0; j < interestRate.length; j++)
43 System.out.printf("%9.0f%%", 100 * interestRate[j]);
44

45 System.out.println();
46

47 // print balance table
48 for (double[] row : balances)
49 {
50 // print table row
51 for (double b : row)
52 System.out.printf("%10.2f", b);
53

54 System.out.println();
55 }
56 }
57 }

1233.10 Arrays

www.allitebooks.com

http://www.allitebooks.org

ptg16518469

3.10.7 Ragged Arrays
So far, what you have seen is not too different from other programming languages.

But there is actually something subtle going on behind the scenes that you can

sometimes turn to your advantage: Java has no multidimensional arrays at all,

only one-dimensional arrays. Multidimensional arrays are faked as “arrays of

arrays.”

For example, the balances array in the preceding example is actually an array that

contains ten elements, each of which is an array of six floating-point numbers

(Figure 3.15).

Figure 3.15 A two-dimensional array

Chapter 3 Fundamental Programming Structures in Java124

ptg16518469

The expression balances[i] refers to the ith subarray—that is, the ith row of the

table. It is itself an array, and balances[i][j] refers to the jth element of that array.

Since rows of arrays are individually accessible, you can actually swap them!

double[] temp = balances[i];
balances[i] = balances[i + 1];
balances[i + 1] = temp;

It is also easy to make “ragged” arrays—that is, arrays in which different rows

have different lengths. Here is the standard example. Let us make an array in

which the element at row i and column j equals the number of possible outcomes

of a “choose j numbers from i numbers” lottery.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

As j can never be larger than i, the matrix is triangular. The ith row has i + 1 el-

ements. (We allow choosing 0 elements; there is one way to make such a choice.)

To build this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows.

for (int n = 0; n <= NMAX; n++)
 odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way,

provided we do not overstep the bounds.

for (int n = 0; n < odds.length; n++)
 for (int k = 0; k < odds[n].length; k++)
 {
 // compute lotteryOdds
 . . .
 odds[n][k] = lotteryOdds;
 }

Listing 3.9 gives the complete program.

1253.10 Arrays

ptg16518469

C++ NOTE: In C++, the Java declaration

double[][] balances = new double[10][6]; // Java

is not the same as

double balances[10][6]; // C++

or even

double (*balances)[6] = new double[10][6]; // C++

Instead, an array of ten pointers is allocated:

double** balances = new double*[10]; // C++

Then, each element in the pointer array is filled with an array of six numbers:

for (i = 0; i < 10; i++)
 balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10][6]. When you
want ragged arrays, you allocate the row arrays separately.

Listing 3.9 LotteryArray/LotteryArray.java

1 /**
2 * This program demonstrates a triangular array.
3 * @version 1.20 2004-02-10
4 * @author Cay Horstmann
5 */
6 public class LotteryArray
7 {
8 public static void main(String[] args)
9 {
10 final int NMAX = 10;
11

12 // allocate triangular array
13 int[][] odds = new int[NMAX + 1][];
14 for (int n = 0; n <= NMAX; n++)
15 odds[n] = new int[n + 1];
16

17 // fill triangular array
18 for (int n = 0; n < odds.length; n++)
19 for (int k = 0; k < odds[n].length; k++)
20 {
21 /*
22 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
23 */

Chapter 3 Fundamental Programming Structures in Java126

ptg16518469

24 int lotteryOdds = 1;
25 for (int i = 1; i <= k; i++)
26 lotteryOdds = lotteryOdds * (n - i + 1) / i;
27

28 odds[n][k] = lotteryOdds;
29 }
30

31 // print triangular array
32 for (int[] row : odds)
33 {
34 for (int odd : row)
35 System.out.printf("%4d", odd);
36 System.out.println();
37 }
38 }
39 }

You have now seen the fundamental programming structures of the Java language.

The next chapter covers object-oriented programming in Java.

1273.10 Arrays

ptg16518469

This page intentionally left blank

ptg16518469

4CHAPTER

Objects and Classes

In this chapter

• 4.1 Introduction to Object-Oriented Programming, page 130

• 4.2 Using Predefined Classes, page 135

• 4.3 Defining Your Own Classes, page 145

• 4.4 Static Fields and Methods, page 158

• 4.5 Method Parameters, page 164

• 4.6 Object Construction, page 171

• 4.7 Packages, page 182

• 4.8 The Class Path, page 190

• 4.9 Documentation Comments, page 194

• 4.10 Class Design Hints, page 200

In this chapter, we

• Introduce you to object-oriented programming;

• Show you how you can create objects that belong to classes from the standard

Java library; and

• Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want

to read this chapter carefully. Object-oriented programming requires a different

129

ptg16518469

way of thinking than procedural languages. The transition is not always easy,

but you do need some familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter,

presents familiar information; however, there are enough differences between

the two languages that you should read the later sections of this chapter carefully.

You’ll find the C++ notes helpful for making the transition.

4.1 Introduction to Object-Oriented Programming
Object-oriented programming, or OOP for short, is the dominant programming

paradigm these days, having replaced the “structured” or procedural program-

ming techniques that were developed in the 1970s. Since Java is object oriented,

you have to be familiar with OOP to become productive with Java.

An object-oriented program is made of objects. Each object has a specific function-

ality, exposed to its users, and a hidden implementation. Many objects in your

programs will be taken “off-the-shelf” from a library; others will be custom de-

signed. Whether you build an object or buy it might depend on your budget or

on time. But, basically, as long as an object satisfies your specifications, you don’t

care how the functionality is implemented.

Traditional structured programming consists of designing a set of procedures (or

algorithms) to solve a problem. Once the procedures are determined, the traditional

next step was to find appropriate ways to store the data. This is why the designer

of the Pascal language, Niklaus Wirth, called his famous book on programming

Algorithms + Data Structures = Programs (Prentice Hall, 1975). Notice that in Wirth’s

title, algorithms come first, and data structures come second. This reflects the

way programmers worked at that time. First, they decided on the procedures for

manipulating the data; then, they decided what structure to impose on the data

to make the manipulations easier. OOP reverses the order: puts the data first,

then looks at the algorithms to operate on the data.

For small problems, the breakdown into procedures works very well. But objects

are more appropriate for larger problems. Consider a simple web browser. It

might require 2,000 procedures for its implementation, all of which manipulate

a set of global data. In the object-oriented style, there might be 100 classes with

an average of 20 methods per class (see Figure 4.1). This structure is much easier

for a programmer to grasp. It is also much easier to find bugs in. Suppose the

data of a particular object is in an incorrect state. It is far easier to search for

the culprit among the 20 methods that had access to that data item than among

2,000 procedures.

Chapter 4 Objects and Classes130

ptg16518469

Figure 4.1 Procedural vs. OO programming

4.1.1 Classes
A class is the template or blueprint from which objects are made. Think about

classes as cookie cutters. Objects are the cookies themselves. When you construct

an object from a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard

Java library supplies several thousand classes for such diverse purposes as user

interface design, dates and calendars, and network programming. Nonetheless,

in Java you still have to create your own classes to describe the objects of your

application’s problem domain.

Encapsulation (sometimes called information hiding) is a key concept in working

with objects. Formally, encapsulation is simply combining data and behavior in

one package and hiding the implementation details from the users of the object.

The bits of data in an object are called its instance fields, and the procedures that

operate on the data are called its methods. A specific object that is an instance of

a class will have specific values of its instance fields. The set of those values is the

current state of the object. Whenever you invoke a method on an object, its state

may change.

The key to making encapsulation work is to have methods never directly access

instance fields in a class other than their own. Programs should interact with object

data only through the object’s methods. Encapsulation is the way to give an

1314.1 Introduction to Object-Oriented Programming

ptg16518469

object its “black box” behavior, which is the key to reuse and reliability. This

means a class may totally change how it stores its data, but as long as it continues

to use the same methods to manipulate the data, no other object will know or care.

When you start writing your own classes in Java, another tenet of OOP will make

this easier: Classes can be built by extending other classes. Java, in fact, comes with

a “cosmic superclass” called Object. All other classes extend this class. You will

learn more about the Object class in the next chapter.

When you extend an existing class, the new class has all the properties and

methods of the class that you extend. You then supply new methods and data

fields that apply to your new class only. The concept of extending a class to obtain

another class is called inheritance. See the next chapter for details on inheritance.

4.1.2 Objects
To work with OOP, you should be able to identify three key characteristics of

objects:

• The object’s behavior—what can you do with this object, or what methods can

you apply to it?

• The object’s state—how does the object react when you invoke those methods?

• The object’s identity—how is the object distinguished from others that may

have the same behavior and state?

All objects that are instances of the same class share a family resemblance by

supporting the same behavior. The behavior of an object is defined by the methods

that you can call.

Next, each object stores information about what it currently looks like. This is the

object’s state. An object’s state may change over time, but not spontaneously. A

change in the state of an object must be a consequence of method calls. (If an ob-

ject’s state changed without a method call on that object, someone broke

encapsulation.)

However, the state of an object does not completely describe it, because each object

has a distinct identity. For example, in an order processing system, two orders are

distinct even if they request identical items. Notice that the individual objects

that are instances of a class always differ in their identity and usually differ in their

state.

These key characteristics can influence each other. For example, the state of an

object can influence its behavior. (If an order is “shipped” or “paid,” it may reject

Chapter 4 Objects and Classes132

ptg16518469

a method call that asks it to add or remove items. Conversely, if an order is

“empty”—that is, no items have yet been ordered—it should not allow itself to

be shipped.)

4.1.3 Identifying Classes
In a traditional procedural program, you start the process at the top, with the main
function. When designing an object-oriented system, there is no “top,” and new-

comers to OOP often wonder where to begin. The answer is: Identify your classes

and then add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem

analysis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of the nouns are

• Item

• Order

• Shipping address

• Payment

• Account

These nouns may lead to the classes Item, Order, and so on.

Next, look for verbs. Items are added to orders. Orders are shipped or canceled.

Payments are applied to orders. With each verb, such as “add,” “ship,” “cancel,”

or “apply,” you identify the object that has the major responsibility for carrying

it out. For example, when a new item is added to an order, the order object should

be the one in charge because it knows how it stores and sorts items. That is, add
should be a method of the Order class that takes an Item object as a parameter.

Of course, the “noun and verb” is but a rule of thumb; only experience can help

you decide which nouns and verbs are the important ones when building your

classes.

4.1.4 Relationships between Classes
The most common relationships between classes are

• Dependence (“uses–a”)

• Aggregation (“has–a”)

• Inheritance (“is–a”)

1334.1 Introduction to Object-Oriented Programming

ptg16518469

The dependence, or “uses–a” relationship, is the most obvious and also the most

general. For example, the Order class uses the Account class because Order objects need

to access Account objects to check for credit status. But the Item class does not depend

on the Account class, because Item objects never need to worry about customer ac-

counts. Thus, a class depends on another class if its methods use or manipulate

objects of that class.

Try to minimize the number of classes that depend on each other. The point is,

if a class A is unaware of the existence of a class B, it is also unconcerned about

any changes to B. (And this means that changes to B do not introduce bugs into

A.) In software engineering terminology, you want to minimize the coupling

between classes.

The aggregation, or “has–a” relationship, is easy to understand because it is con-

crete; for example, an Order object contains Item objects. Containment means that

objects of class A contain objects of class B.

NOTE: Some methodologists view the concept of aggregation with disdain and
prefer to use a more general “association” relationship. From the point of view
of modeling, that is understandable. But for programmers, the “has–a” relationship
makes a lot of sense. We like to use aggregation for another reason as well:
The standard notation for associations is less clear. See Table 4.1.

The inheritance, or “is–a” relationship, expresses a relationship between a more

special and a more general class. For example, a RushOrder class inherits from an

Order class. The specialized RushOrder class has special methods for priority handling

and a different method for computing shipping charges, but its other methods,

such as adding items and billing, are inherited from the Order class. In general, if

class A extends class B, class A inherits methods from class B but has more capabil-

ities. (We describe inheritance more fully in the next chapter, in which we discuss

this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw

class diagrams that describe the relationships between classes. You can see an ex-

ample of such a diagram in Figure 4.2. You draw classes as rectangles, and rela-

tionships as arrows with various adornments. Table 4.1 shows the most common

UML arrow styles.

Chapter 4 Objects and Classes134

ptg16518469
Figure 4.2 A class diagram

Table 4.1 UML notation for class relationships

UML ConnectorRelationship

Inheritance

Interface implementation

Dependency

Aggregation

Association

Directed association

4.2 Using Predefined Classes
You can’t do anything in Java without classes, and you have already seen several

classes at work. However, not all of these show off the typical features of object

orientation. Take, for example, the Math class. You have seen that you can use

methods of the Math class, such as Math.random, without needing to know how they

are implemented—all you need to know is the name and parameters (if any).

1354.2 Using Predefined Classes

ptg16518469

That’s the point of encapsulation, and it will certainly be true of all classes. But the

Math class only encapsulates functionality; it neither needs nor hides data. Since

there is no data, you do not need to worry about making objects and initializing

their instance fields—there aren’t any!

In the next section, we will look at a more typical class, the Date class. You will see

how to construct objects and call methods of this class.

4.2.1 Objects and Object Variables
To work with objects, you first construct them and specify their initial state. Then

you apply methods to the objects.

In the Java programming language, you use constructors to construct new instances.

A constructor is a special method whose purpose is to construct and initialize

objects. Let us look at an example. The standard Java library contains a Date class.

Its objects describe points in time, such as “December 31, 1999, 23:59:59 GMT”.

NOTE: You may be wondering: Why use a class to represent dates rather than
(as in some languages) a built-in type? For example, Visual Basic has a built-in
date type, and programmers can specify dates in the format #6/1/1995#. On the
surface, this sounds convenient—programmers can simply use the built-in date
type without worrying about classes. But actually, how suitable is the Visual
Basic design? In some locales, dates are specified as month/day/year, in others
as day/month/year.Are the language designers really equipped to foresee these
kinds of issues? If they do a poor job, the language becomes an unpleasant
muddle, but unhappy programmers are powerless to do anything about it. With
classes, the design task is offloaded to a library designer. If the class is not
perfect, other programmers can easily write their own classes to enhance or
replace the system classes. (To prove the point: The Java date library started
out a bit muddled, and it has been redesigned twice.)

Constructors always have the same name as the class name. Thus, the constructor

for the Date class is called Date. To construct a Date object, combine the constructor

with the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current

date and time.

If you like, you can pass the object to a method:

System.out.println(new Date());

Chapter 4 Objects and Classes136

ptg16518469

Alternatively, you can apply a method to the object that you just constructed.

One of the methods of the Date class is the toString method. That method yields a

string representation of the date. Here is how you would apply the toString method

to a newly constructed Date object:

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you will

want to hang on to the objects that you construct so that you can keep using them.

Simply store the object in a variable:

Date birthday = new Date();

Figure 4.3 shows the object variable birthday that refers to the newly constructed

object.

Figure 4.3 Creating a new object

There is an important difference between objects and object variables. For example,

the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type Date. It is impor-

tant to realize that the variable deadline is not an object and, in fact, does not even

refer to an object yet. You cannot use any Date methods on this variable at this

time. The statement

s = deadline.toString(); // not yet

would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course,

you can initialize the variable with a newly constructed object:

deadline = new Date();

1374.2 Using Predefined Classes

ptg16518469

Or you can set the variable to refer to an existing object:

deadline = birthday;

Now both variables refer to the same object (see Figure 4.4).

Figure 4.4 Object variables that refer to the same object

It is important to realize that an object variable doesn’t actually contain an object. It

only refers to an object.

In Java, the value of any object variable is a reference to an object that is stored

elsewhere. The return value of the new operator is also a reference. A statement

such as

Date deadline = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value

is a reference to that newly created object. That reference is then stored in the

deadline variable.

You can explicitly set an object variable to null to indicate that it currently refers

to no object.

deadline = null;
. . .
if (deadline != null)
 System.out.println(deadline);

If you apply a method to a variable that holds null, a runtime error occurs.

birthday = null;
String s = birthday.toString(); // runtime error!

Local variables are not automatically initialized to null. You must initialize them,

either by calling new or by setting them to null.

Chapter 4 Objects and Classes138

ptg16518469

C++ NOTE: Many people mistakenly believe that Java object variables behave
like C++ references. But in C++ there are no null references, and references
cannot be assigned.You should think of Java object variables as analogous to
object pointers in C++. For example,

Date birthday; // Java

is really the same as

Date* birthday; // C++

Once you make this association, everything falls into place. Of course, a Date*
pointer isn’t initialized until you initialize it with a call to new. The syntax is almost
the same in C++ and Java.

Date* birthday = new Date(); // C++

If you copy one variable to another, then both variables refer to the same
date—they are pointers to the same object. The equivalent of the Java null
reference is the C++ NULL pointer.

All Java objects live on the heap. When an object contains another object
variable, it contains just a pointer to yet another heap object.

In C++, pointers make you nervous because they are so error-prone. It is easy
to create bad pointers or to mess up memory management. In Java, these
problems simply go away. If you use an uninitialized pointer, the runtime system
will reliably generate a runtime error instead of producing random results.You
don’t have to worry about memory management, because the garbage collector
takes care of it.

C++ makes quite an effort, with its support for copy constructors and assignment
operators, to allow the implementation of objects that copy themselves automat-
ically. For example, a copy of a linked list is a new linked list with the same
contents but with an independent set of links. This makes it possible to design
classes with the same copy behavior as the built-in types. In Java, you must use
the clone method to get a complete copy of an object.

4.2.2 The LocalDate Class of the Java Library
In the preceding examples, we used the Date class that is a part of the standard

Java library. An instance of the Date class has a state, namely a particular point

in time.

Although you don’t need to know this when you use the Date class, the time is

represented by the number of milliseconds (positive or negative) from a fixed

point, the so-called epoch, which is 00:00:00 UTC, January 1, 1970. UTC is the

1394.2 Using Predefined Classes

ptg16518469

Coordinated Universal Time, the scientific time standard which is, for practical

purposes, the same as the more familiar GMT, or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating the kind of

calendar information that humans use for dates, such as “December 31, 1999”.

This particular description of a day follows the Gregorian calendar, which is the

calendar used in most countries of the world. The same point in time would be

described quite differently in the Chinese or Hebrew lunar calendars, not to

mention the calendar used by your customers from Mars.

NOTE: Throughout human history, civilizations grappled with the design of cal-
endars to attach names to dates and bring order to the solar and lunar cycles.
For a fascinating explanation of calendars around the world, from the French
Revolutionary calendar to the Mayan long count, see Calendrical Calculations
by Nachum Dershowitz and Edward M. Reingold (Cambridge University Press,
3rd ed., 2007).

The library designers decided to separate the concerns of keeping time and attach-

ing names to points in time. Therefore, the standard Java library contains two

separate classes: the Date class, which represents a point in time, and the LocalDate
class, which expresses days in the familiar calendar notation. Java SE 8 introduced

quite a few other classes for manipulating various aspects of date and time—see

Chapter 6 of Volume II.

Separating time measurement from calendars is good object-oriented design. In

general, it is a good idea to use separate classes to express different concepts.

You do not use a constructor to construct objects of the LocalDate class. Instead, use

static factory methods that call constructors on your behalf. The expression

LocalDate.now()

constructs a new object that represents the date at which the object was

constructed.

You can construct an object for a specific date by supplying year, month, and day:

LocalDate.of(1999, 12, 31)

Of course, you will usually want to store the constructed object in an object

variable:

LocalDate newYearsEve = LocalDate.of(1999, 12, 31);

Once you have a LocalDate object, you can find out the year, month, and day with

the methods getYear, getMonthValue, and getDayOfMonth:

Chapter 4 Objects and Classes140

ptg16518469

int year = newYearsEve.getYear(); // 1999
int month = newYearsEve.getMonthValue(); // 12
int day = newYearsEve.getDayOfMonth(); // 31

This may seem pointless because they are the very same values that you just used

to construct the object. But sometimes, you have a date that has been computed,

and then you will want to invoke those methods to find out more about it. For

example, the plusDays method yields a new LocalDate that is a given number of days

away from the object to which you apply it:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);
year = aThousandDaysLater.getYear(); // 2002
month = aThousandDaysLater.getMonthValue(); // 09
day = aThousandDaysLater.getDayOfMonth(); // 26

The LocalDate class has encapsulated instance fields to maintain the date to which

it is set. Without looking at the source code, it is impossible to know the represen-

tation that the class uses internally. But, of course, the point of encapsulation is

that this doesn’t matter. What matters are the methods that a class exposes.

NOTE: Actually, the Date class also has methods to get the day, month, and
year, called getDay, getMonth, and getYear, but these methods are deprecated. A
method is deprecated when a library designer realizes that the method should
have never been introduced in the first place.

These methods were a part of the Date class before the library designers realized
that it makes more sense to supply separate classes to deal with calendars.
When an earlier set of calendar classes was introduced in Java 1.1, the Date
methods were tagged as deprecated.You can still use them in your programs,
but you will get unsightly compiler warnings if you do. It is a good idea to stay
away from using deprecated methods because they may be removed in a future
version of the library.

4.2.3 Mutator and Accessor Methods
Have another look at the plusDays method call that you saw in the preceding section:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

What happens to newYearsEve after the call? Has it been changed to be a thousand

days later? As it turns out, it has not. The plusDays method yields a new LocalDate
object, which is then assigned to the aThousandDaysLater variable. The original object

remains unchanged. We say that the plusDays method does not mutate the

object on which it is invoked. (This is similar to the toUpperCase method of the String

1414.2 Using Predefined Classes

ptg16518469

class that you saw in Chapter 3. When you call toUpperCase on a string, that string

stays the same, and a new string with uppercase characters is returned.)

An earlier version of the Java library had a different class for dealing with calen-

dars, called GregorianCalendar. Here is how you add a thousand days to a date

represented by that class:

GregorianCalendar someDay = new GregorianCalendar(1999, 11, 31);
 // Odd feature of that class: month numbers go from 0 to 11
someDay.add(Calendar.DAY_OF_MONTH, 1000);

Unlike the LocalDate.plusDays method, the GregorianCalendar.add method is a mutator method.

After invoking it, the state of the someDay object has changed. Here is how you can

find out the new state:

year = someDay.get(Calendar.YEAR); // 2002
month = someDay.get(Calendar.MONTH) + 1; // 09
day = someDay.get(Calendar.DAY_OF_MONTH); // 26

That’s why we called the variable someDay and not newYearsEve—it no longer is new

year’s eve after calling the mutator method.

In contrast, methods that only access objects without modifying them are some-

times called accessor methods. For example, LocalDate.getYear and GregorianCalendar.get
are accessor methods.

C++ NOTE: In C++, the const suffix denotes accessor methods. A method that
is not declared as const is assumed to be a mutator. However, in the Java pro-
gramming language, no special syntax distinguishes accessors from mutators.

We finish this section with a program that puts the LocalDate class to work. The

program displays a calendar for the current month, like this:

Mon Tue Wed Thu Fri Sat Sun
1

 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26* 27 28 29
 30

The current day is marked with an asterisk (*). As you can see, the program needs

to know how to compute the length of a month and the weekday of a given day.

Chapter 4 Objects and Classes142

ptg16518469

Let us go through the key steps of the program. First, we construct an object that

is initialized with the current date.

LocalDate date = LocalDate.now();

We capture the current month and day.

int month = date.getMonthValue();
int today = date.getDayOfMonth();

Then we set date to the first of the month and get the weekday of that date.

date = date.minusDays(today - 1); // Set to start of month
DayOfWeek weekday = date.getDayOfWeek();
int value = weekday.getValue(); // 1 = Monday, ... 7 = Sunday

The variable weekday is set to an object of type DayOfWeek. We call the getValue method

of that object to get a numerical value for the weekday. This yields an integer that

follows the international convention where the weekend comes at the end of the

week, returning 11 for Monday, 2 for Tuesday, and so on. Sunday has value 7.

Note that the first line of the calendar is indented, so that the first day of the month

falls on the appropriate weekday. Here is the code to print the header and the

indentation for the first line:

System.out.println("Mon Tue Wed Thu Fri Sat Sun");
for (int i = 1; i < value; i++)
 System.out.print(" ");

Now, we are ready to print the body of the calendar. We enter a loop in which

date traverses the days of the month.

In each iteration, we print the date value. If date is today, the date is marked with

an *. Then, we advance date to the next day. If we reach the beginning of each

new week, we print a new line:

while (date.getMonthValue() == month)
{
 System.out.printf("%3d", date.getDayOfMonth());
 if (date.getDayOfMonth() == today)
 System.out.print("*");
 else
 System.out.print(" ");
 date = date.plusDays(1);
 if (date.getDayOfWeek().getValue() == 1) System.out.println();
}

When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days.

Instead, we keep iterating while date is still in the current month.

1434.2 Using Predefined Classes

ptg16518469

Listing 4.1 shows the complete program.

As you can see, the LocalDate class makes it possible to write a calendar program

that takes care of complexities such as weekdays and the varying month lengths.

You don’t need to know how the LocalDate class computes months and weekdays.

You just use the interface of the class—the methods such as plusDays and getDayOfWeek.

The point of this example program is to show you how you can use the interface

of a class to carry out fairly sophisticated tasks without having to know the

implementation details.

Listing 4.1 CalendarTest/CalendarTest.java

1 import java.time.*;
 2

3 /**
4 * @version 1.5 2015-05-08
5 * @author Cay Horstmann
6 */
 7

8 public class CalendarTest
9 {
10 public static void main(String[] args)
11 {
12 LocalDate date = LocalDate.now();
13 int month = date.getMonthValue();
14 int today = date.getDayOfMonth();
15

16 date = date.minusDays(today - 1); // Set to start of month
17 DayOfWeek weekday = date.getDayOfWeek();
18 int value = weekday.getValue(); // 1 = Monday, ... 7 = Sunday
19

20 System.out.println("Mon Tue Wed Thu Fri Sat Sun");
21 for (int i = 1; i < value; i++)
22 System.out.print(" ");
23 while (date.getMonthValue() == month)
24 {
25 System.out.printf("%3d", date.getDayOfMonth());
26 if (date.getDayOfMonth() == today)
27 System.out.print("*");
28 else
29 System.out.print(" ");
30 date = date.plusDays(1);
31 if (date.getDayOfWeek().getValue() == 1) System.out.println();
32 }
33 if (date.getDayOfWeek().getValue() != 1) System.out.println();
34 }
35 }

Chapter 4 Objects and Classes144

ptg16518469

java.time.LocalDate 8

• static LocalTime now()

constructs an object that represents the current date.

• static LocalTime of(int year, int month, int day)

constructs an object that represents the given date.

• int getYear()
• int getMonthValue()
• int getDayOfMonth()

get the year, month, and day of this date.

• DayOfWeek getDayOfWeek

Gets the weekday of this date as an instance of the DayOfWeek class. Call getValue to

get a weekday between 1 (Monday) and 7 (Sunday).

• LocalDate plusDays(int n)
• LocalDate minusDays(int n)

Yields the date that is n days after or before this date.

4.3 Defining Your Own Classes
In Chapter 3, you started writing simple classes. However, all those classes had

just a single main method. Now the time has come to show you how to write the

kind of “workhorse classes” that are needed for more sophisticated applications.

These classes typically do not have a main method. Instead, they have their own

instance fields and methods. To build a complete program, you combine several

classes, one of which has a main method.

4.3.1 An Employee Class
The simplest form for a class definition in Java is

class ClassName

{
field1
field2

 . . .
constructor1
constructor2

 . . .

1454.3 Defining Your Own Classes

ptg16518469

method1
method2

 . . .
}

Consider the following, very simplified, version of an Employee class that might be

used by a business in writing a payroll system.

class Employee
{
 // instance fields
 private String name;
 private double salary;
 private LocalDate hireDay;

 // constructor
 public Employee(String n, double s, int year, int month, int day)
 {
 name = n;
 salary = s;
 hireDay = LocalDate.of(year, month, day);
 }

 // a method
 public String getName()
 {
 return name;
 }

 // more methods
 . . .
}

We break down the implementation of this class, in some detail, in the sections

that follow. First, though, Listing 4.2 is a program that shows the Employee class in

action.

In the program, we construct an Employee array and fill it with three employee

objects:

Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise each employee’s

salary by 5%:

for (Employee e : staff)
 e.raiseSalary(5);

Chapter 4 Objects and Classes146

ptg16518469

Finally, we print out information about each employee, by calling the getName,

getSalary, and getHireDay methods:

for (Employee e : staff)
 System.out.println("name=" + e.getName()

+ ",salary=" + e.getSalary()
+ ",hireDay=" + e.getHireDay());

Note that the example program consists of two classes: the Employee class and a class

EmployeeTest with the public access specifier. The main method with the instructions

that we just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java because the name of the file must

match the name of the public class. You can only have one public class in a source

file, but you can have any number of nonpublic classes.

Next, when you compile this source code, the compiler creates two class files in

the directory: EmployeeTest.class and Employee.class.

You then start the program by giving the bytecode interpreter the name of the

class that contains the main method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the EmployeeTest
class. This code in turn constructs three new Employee objects and shows you their

state.

Listing 4.2 EmployeeTest/EmployeeTest.java

1 import java.time.*;
 2

3 /**
4 * This program tests the Employee class.
5 * @version 1.12 2015-05-08
6 * @author Cay Horstmann
7 */
8 public class EmployeeTest
9 {
10 public static void main(String[] args)
11 {
12 // fill the staff array with three Employee objects
13 Employee[] staff = new Employee[3];
14

15 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
16 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
17 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
18

(Continues)

1474.3 Defining Your Own Classes

ptg16518469

Listing 4.2 (Continued)

19 // raise everyone's salary by 5%
20 for (Employee e : staff)
21 e.raiseSalary(5);
22

23 // print out information about all Employee objects
24 for (Employee e : staff)
25 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
26 + e.getHireDay());
27 }
28 }
29

30 class Employee
31 {
32 private String name;
33 private double salary;
34 private LocalDate hireDay;
35

36 public Employee(String n, double s, int year, int month, int day)
37 {
38 name = n;
39 salary = s;
40 hireDay = LocalDate.of(year, month, day);
41 }
42

43 public String getName()
44 {
45 return name;
46 }
47

48 public double getSalary()
49 {
50 return salary;
51 }
52

53 public LocalDate getHireDay()
54 {
55 return hireDay;
56 }
57

58 public void raiseSalary(double byPercent)
59 {
60 double raise = salary * byPercent / 100;
61 salary += raise;
62 }
63 }

Chapter 4 Objects and Classes148

ptg16518469

4.3.2 Use of Multiple Source Files
The program in Listing 4.2 has two classes in a single source file. Many program-

mers prefer to put each class into its own source file. For example, you can place

the Employee class into a file Employee.java and the EmployeeTest class into EmployeeTest.java.

If you like this arrangement, you have two choices for compiling the program.

You can invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files. Or,

you can simply type

javac EmployeeTest.java

You may find it surprising that the second choice works even though the

Employee.java file is never explicitly compiled. However, when the Java compiler

sees the Employee class being used inside EmployeeTest.java, it will look for a file named

Employee.class. If it does not find that file, it automatically searches for Employee.java
and compiles it. Moreover, if the timestamp of the version of Employee.java that it

finds is newer than that of the existing Employee.class file, the Java compiler will

automatically recompile the file.

NOTE: If you are familiar with the make facility of UNIX (or one of its Windows
cousins, such as nmake), then you can think of the Java compiler as having the
make functionality already built in.

4.3.3 Dissecting the Employee Class
In the sections that follow, we will dissect the Employee class. Let’s start with the

methods in this class. As you can see by examining the source code, this class has

one constructor and four methods:

public Employee(String n, double s, int year, int month, int day)
public String getName()
public double getSalary()
public LocalDate getHireDay()
public void raiseSalary(double byPercent)

All methods of this class are tagged as public. The keyword public means that any

method in any class can call the method. (The four possible access levels are

covered in this and the next chapter.)

Next, notice the three instance fields that will hold the data manipulated inside

an instance of the Employee class.

1494.3 Defining Your Own Classes

ptg16518469

private String name;
private double salary;
private LocalDate hireDay;

The private keyword makes sure that the only methods that can access these instance

fields are the methods of the Employee class itself. No outside method can read or

write to these fields.

NOTE: You could use the public keyword with your instance fields, but it would
be a very bad idea. Having public data fields would allow any part of the program
to read and modify the instance fields, completely ruining encapsulation. Any
method of any class can modify public fields—and, in our experience, some
code will take advantage of that access privilege when you least expect it. We
strongly recommend to make all your instance fields private.

Finally, notice that two of the instance fields are themselves objects: The name and

hireDay fields are references to String and LocalDate objects. This is quite usual:

Classes will often contain instance fields of class type.

4.3.4 First Steps with Constructors
Let’s look at the constructor listed in our Employee class.

public Employee(String n, double s, int year, int month, int day)
{
 name = n;
 salary = s;
 LocalDate hireDay = LocalDate.of(year, month, day);
}

As you can see, the name of the constructor is the same as the name of the class.

This constructor runs when you construct objects of the Employee class—giving the

instance fields the initial state you want them to have.

For example, when you create an instance of the Employee class with code like this:

new Employee("James Bond", 100000, 1950, 1, 1)

you have set the instance fields as follows:

name = "James Bond";
salary = 100000;
hireDay = LocalDate.of(1950, 1, 1); // January 1, 1950

There is an important difference between constructors and other methods. A

constructor can only be called in conjunction with the new operator. You can’t apply

a constructor to an existing object to reset the instance fields. For example,

Chapter 4 Objects and Classes150

ptg16518469

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep

the following in mind:

• A constructor has the same name as the class.

• A class can have more than one constructor.

• A constructor can take zero, one, or more parameters.

• A constructor has no return value.

• A constructor is always called with the new operator.

C++ NOTE: Constructors work the same way in Java as they do in C++. Keep
in mind, however, that all Java objects are constructed on the heap and that a
constructor must be combined with new. It is a common error of C++ programmers
to forget the new operator:

Employee number007("James Bond", 100000, 1950, 1, 1);
 // C++, not Java

That works in C++ but not in Java.

CAUTION: Be careful not to introduce local variables with the same names as
the instance fields. For example, the following constructor will not set the salary:

public Employee(String n, double s, . . .)
{

String name = n; // Error
double salary = s; // Error

 . . .
}

The constructor declares local variables name and salary. These variables are
only accessible inside the constructor. They shadow the instance fields with the
same name. Some programmers accidentally write this kind of code when they
type faster than they think, because their fingers are used to adding the data
type. This is a nasty error that can be hard to track down.You just have to be
careful in all of your methods to not use variable names that equal the names
of instance fields.

1514.3 Defining Your Own Classes

ptg16518469

4.3.5 Implicit and Explicit Parameters
Methods operate on objects and access their instance fields. For example, the

method

public void raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
}

sets a new value for the salary instance field in the object on which this method is

invoked. Consider the call

number007.raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More specifically,

the call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the implicit

parameter, is the object of type Employee that appears before the method name. The

second parameter, the number inside the parentheses after the method name, is

an explicit parameter. (Some people call the implicit parameter the target or receiver

of the method call.)

As you can see, the explicit parameters are explicitly listed in the method decla-

ration, for example, double byPercent. The implicit parameter does not appear in the

method declaration.

In every method, the keyword this refers to the implicit parameter. If you like,

you can write the raiseSalary method as follows:

public void raiseSalary(double byPercent)
{
 double raise = this.salary * byPercent / 100;

this.salary += raise;
}

Some programmers prefer that style because it clearly distinguishes between

instance fields and local variables.

Chapter 4 Objects and Classes152

ptg16518469

C++ NOTE: In C++, you generally define methods outside the class:

void Employee::raiseSalary(double byPercent) // C++, not Java
{
 . . .
}

If you define a method inside a class, then it is, automatically, an inline method.

class Employee
{
 . . .
 int getName() { return name; } // inline in C++
}

In Java, all methods are defined inside the class itself.This does not make them
inline. Finding opportunities for inline replacement is the job of the Java virtual
machine. The just-in-time compiler watches for calls to methods that are short,
commonly called, and not overridden, and optimizes them away.

4.3.6 Benefits of Encapsulation
Finally, let’s look more closely at the rather simple getName, getSalary, and getHireDay
methods.

public String getName()
{
 return name;
}

public double getSalary()
{
 return salary;
}

public LocalDate getHireDay()
{
 return hireDay;
}

These are obvious examples of accessor methods. As they simply return the values

of instance fields, they are sometimes called field accessors.

Wouldn’t it be easier to make the name, salary, and hireDay fields public, instead of

having separate accessor methods?

However, the name field is a read-only field. Once you set it in the constructor,

there is no method to change it. Thus, we have a guarantee that the name field will

never be corrupted.

1534.3 Defining Your Own Classes

ptg16518469

The salary field is not read-only, but it can only be changed by the raiseSalary method.

In particular, should the value ever turn out wrong, only that method needs to

be debugged. Had the salary field been public, the culprit for messing up the value

could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance field.

Then you need to supply three items:

• A private data field;

• A public field accessor method; and

• A public field mutator method.

This is a lot more tedious than supplying a single public data field, but there are

considerable benefits.

First, you can change the internal implementation without affecting any code

other than the methods of the class. For example, if the storage of the name is

changed to

String firstName;
String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Of course, the accessor and mutator methods may need to do a lot of work and

convert between the old and the new data representation. That leads us to our

second benefit: Mutator methods can perform error checking, whereas code that

simply assigns to a field may not go into the trouble. For example, a setSalary
method might check that the salary is never less than 0.

CAUTION: Be careful not to write accessor methods that return references to
mutable objects. In a previous edition of this book, we violated that rule in our
Employee class in which the getHireDay method returned an object of class Date:

class Employee
{
 private Date hireDay;
 . . .
 public Date getHireDay()
 {
 return hireDay; // Bad
 }
 . . .
}

Chapter 4 Objects and Classes154

ptg16518469

Unlike the LocalDate class, which has no mutator methods, the Date class has a
mutator method, setTime, where you can set the number of milliseconds.

The fact that Date objects are mutable breaks encapsulation! Consider the
following rogue code:

Employee harry = . . .;
Date d = harry.getHireDay();
double tenYearsInMilliSeconds = 10 * 365.25 * 24 * 60 * 60 * 1000;
d.setTime(d.getTime() - (long) tenYearsInMilliSeconds);
// let's give Harry ten years of added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see
Figure 4.5). Applying mutator methods to d automatically changes the private
state of the employee object!

Figure 4.5 Returning a reference to a mutable data field

If you need to return a reference to a mutable object, you should clone it first.
A clone is an exact copy of an object stored in a new location.We discuss cloning
in detail in Chapter 6. Here is the corrected code:

class Employee
{
 . . .
 public Date getHireDay()
 {
 return (Date) hireDay.clone(); // Ok
 }
 . . .
}

1554.3 Defining Your Own Classes

ptg16518469

As a rule of thumb, always use clone whenever you need to return a copy of a
mutable field.

4.3.7 Class-Based Access Privileges
You know that a method can access the private data of the object on which it is

invoked. What many people find surprising is that a method can access the private

data of all objects of its class. For example, consider a method equals that compares

two employees.

class Employee
{
 . . .
 public boolean equals(Employee other)
 {
 return name.equals(other.name);
 }
}

A typical call is

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also

accesses the private fields of boss. This is legal because boss is an object of type

Employee, and a method of the Employee class is permitted to access the private fields

of any object of type Employee.

C++ NOTE: C++ has the same rule. A method can access the private features
of any object of its class, not just of the implicit parameter.

4.3.8 Private Methods
When implementing a class, we make all data fields private because public data

are dangerous. But what about the methods? While most methods are public,

private methods are useful in certain circumstances. Sometimes, you may wish

to break up the code for a computation into separate helper methods. Typically,

these helper methods should not be part of the public interface—they may be too

close to the current implementation or require a special protocol or calling order.

Such methods are best implemented as private.

Chapter 4 Objects and Classes156

ptg16518469

To implement a private method in Java, simply change the public keyword to

private.

By making a method private, you are under no obligation to keep it available if

you change your implementation. The method may well be harder to implement

or unnecessary if the data representation changes; this is irrelevant. The point is

that as long as the method is private, the designers of the class can be assured

that it is never used outside the other class, so they can simply drop it. If a method

is public, you cannot simply drop it because other code might rely on it.

4.3.9 Final Instance Fields
You can define an instance field as final. Such a field must be initialized when the

object is constructed. That is, you must guarantee that the field value has been

set after the end of every constructor. Afterwards, the field may not be modified

again. For example, the name field of the Employee class may be declared as final be-

cause it never changes after the object is constructed—there is no setName method.

class Employee
{
 private final String name;
 . . .
}

The final modifier is particularly useful for fields whose type is primitive or an

immutable class. (A class is immutable if none of its methods ever mutate its objects.

For example, the String class is immutable.)

For mutable classes, the final modifier can be confusing. For example, consider a

field

private final StringBuilder evaluations;

that is initialized in the Employee constructor as

evaluations = new StringBuilder();

The final keyword merely means that the object reference stored in the evaluations
variable will never again refer to a different StringBuilder object. But the object can

be mutated:

public void giveGoldStar()
{
 evaluations.append(LocalDate.now() + ": Gold star!\n");
}

1574.3 Defining Your Own Classes

ptg16518469

4.4 Static Fields and Methods
In all sample programs that you have seen, the main method is tagged with the

static modifier. We are now ready to discuss the meaning of this modifier.

4.4.1 Static Fields
If you define a field as static, then there is only one such field per class. In contrast,

each object has its own copy of all instance fields. For example, let’s suppose we

want to assign a unique identification number to each employee. We add an

instance field id and a static field nextId to the Employee class:

class Employee
{
 private static int nextId = 1;

 private int id;
 . . .
}

Every employee object now has its own id field, but there is only one nextId field

that is shared among all instances of the class. Let’s put it another way. If there

are 1,000 objects of the Employee class, then there are 1,000 instance fields id, one for

each object. But there is a single static field nextId. Even if there are no employee

objects, the static field nextId is present. It belongs to the class, not to any individual

object.

NOTE: In some object-oriented programming languages, static fields are called
class fields. The term “static” is a meaningless holdover from C++.

Let’s implement a simple method:

public void setId()
{
 id = nextId;
 nextId++;
}

Suppose you set the employee identification number for harry:

harry.setId();

Then, the id field of harry is set to the current value of the static field nextId, and

the value of the static field is incremented:

Chapter 4 Objects and Classes158

ptg16518469

harry.id = Employee.nextId;
Employee.nextId++;

4.4.2 Static Constants
Static variables are quite rare. However, static constants are more common. For

example, the Math class defines a static constant:

public class Math
{
 . . .
 public static final double PI = 3.14159265358979323846;
 . . .
}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field

of the Math class. That is, you would need an object of this class to access PI,

and every Math object would have its own copy of PI.

Another static constant that you have used many times is System.out. It is declared

in the System class as follows:

public class System
{
 . . .
 public static final PrintStream out = . . .;
 . . .
}

As we mentioned several times, it is never a good idea to have public fields, be-

cause everyone can modify them. However, public constants (that is, final fields)

are fine. Since out has been declared as final, you cannot reassign another print

stream to it:

System.out = new PrintStream(. . .); // Error--out is final

NOTE: If you look at the System class, you will notice a method setOut that sets
System.out to a different stream.You may wonder how that method can change
the value of a final variable. However, the setOut method is a native method, not
implemented in the Java programming language. Native methods can bypass
the access control mechanisms of the Java language. This is a very unusual
workaround that you should not emulate in your programs.

1594.4 Static Fields and Methods

ptg16518469

4.4.3 Static Methods
Static methods are methods that do not operate on objects. For example, the pow
method of the Math class is a static method. The expression

Math.pow(x, a)

computes the power xa. It does not use any Math object to carry out its task. In

other words, it has no implicit parameter.

You can think of static methods as methods that don’t have a this parameter.

(In a nonstatic method, the this parameter refers to the implicit parameter of the

method—see Section 4.3.5, “Implicit and Explicit Parameters,” on p. 152.)

A static method of the Employee class cannot access the id instance field because it

does not operate on an object. However, a static method can access a static field.

Here is an example of such a static method:

public static int getNextId()
{
 return nextId; // returns static field
}

To call this method, you supply the name of the class:

int n = Employee.getNextId();

Could you have omitted the keyword static for this method? Yes, but then you

would need to have an object reference of type Employee to invoke the method.

NOTE: It is legal to use an object to call a static method. For example, if harry
is an Employee object, then you can call harry.getNextId() instead of
Employee.getNextId(). However, we find that notation confusing.The getNextId method
doesn’t look at harry at all to compute the result. We recommend that you use
class names, not objects, to invoke static methods.

Use static methods in two situations:

• When a method doesn’t need to access the object state because all needed

parameters are supplied as explicit parameters (example: Math.pow).

• When a method only needs to access static fields of the class (example:

Employee.getNextId).

Chapter 4 Objects and Classes160

ptg16518469

C++ NOTE: Static fields and methods have the same functionality in Java and
C++. However, the syntax is slightly different. In C++, you use the :: operator
to access a static field or method outside its scope, such as Math::PI.

The term “static” has a curious history.At first, the keyword static was introduced
in C to denote local variables that don’t go away when a block is exited. In that
context, the term “static” makes sense: The variable stays around and is still
there when the block is entered again. Then static got a second meaning in C,
to denote global variables and functions that cannot be accessed from other
files.The keyword static was simply reused, to avoid introducing a new keyword.
Finally, C++ reused the keyword for a third, unrelated, interpretation—to denote
variables and functions that belong to a class but not to any particular object of
the class. That is the same meaning the keyword has in Java.

4.4.4 Factory Methods
Here is another common use for static methods. Classes such as LocalDate and

NumberFormat use static factory methods that construct objects. You have already seen

the factory methods LocalDate.now and LocalDate.of. Here is how the NumberFormat class

yields formatter objects for various styles:

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x = 0.1;
System.out.println(currencyFormatter.format(x)); // prints $0.10
System.out.println(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are two reasons:

• You can’t give names to constructors. The constructor name is always the

same as the class name. But we want two different names to get the currency

instance and the percent instance.

• When you use a constructor, you can’t vary the type of the constructed object.

But the factory methods actually return objects of the class DecimalFormat, a sub-

class that inherits from NumberFormat. (See Chapter 5 for more on inheritance.)

4.4.5 The main Method
Note that you can call static methods without having any objects. For example,

you never construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.

1614.4 Static Fields and Methods

ptg16518469

public class Application
{
 public static void main(String[] args)
 {
 // construct objects here
 . . .
 }
}

The main method does not operate on any objects. In fact, when a program starts,

there aren’t any objects yet. The static main method executes, and constructs the

objects that the program needs.

TIP: Every class can have a main method. That is a handy trick for unit testing
of classes. For example, you can add a main method to the Employee class:

class Employee
{
 public Employee(String n, double s, int year, int month, int day)
 {
 name = n;
 salary = s;
 LocalDate hireDay = LocalDate.now(year, month, day);
 }
 . . .
 public static void main(String[] args) // unit test
 {
 Employee e = new Employee("Romeo", 50000, 2003, 3, 31);
 e.raiseSalary(10);
 System.out.println(e.getName() + " " + e.getSalary());
 }
 . . .
}

If you want to test the Employee class in isolation, simply execute

java Employee

If the Employee class is a part of a larger application, you start the application with

java Application

and the main method of the Employee class is never executed.

The program in Listing 4.3 contains a simple version of the Employee class with a

static field nextId and a static method getNextId. We fill an array with three Employee
objects and then print the employee information. Finally, we print the next

available identification number, to demonstrate the static method.

Chapter 4 Objects and Classes162

ptg16518469

Note that the Employee class also has a static main method for unit testing. Try

running both

java Employee

and

java StaticTest

to execute both main methods.

Listing 4.3 StaticTest/StaticTest.java

1 /**
2 * This program demonstrates static methods.
3 * @version 1.01 2004-02-19
4 * @author Cay Horstmann
5 */
6 public class StaticTest
7 {
8 public static void main(String[] args)
9 {
10 // fill the staff array with three Employee objects
11 Employee[] staff = new Employee[3];
12

13 staff[0] = new Employee("Tom", 40000);
14 staff[1] = new Employee("Dick", 60000);
15 staff[2] = new Employee("Harry", 65000);
16

17 // print out information about all Employee objects
18 for (Employee e : staff)
19 {
20 e.setId();
21 System.out.println("name=" + e.getName() + ",id=" + e.getId() + ",salary="
22 + e.getSalary());
23 }
24

25 int n = Employee.getNextId(); // calls static method
26 System.out.println("Next available id=" + n);
27 }
28 }
29

30 class Employee
31 {
32 private static int nextId = 1;
33

34 private String name;
35 private double salary;

(Continues)

1634.4 Static Fields and Methods

ptg16518469

Listing 4.3 (Continued)

36 private int id;
37

38 public Employee(String n, double s)
39 {
40 name = n;
41 salary = s;
42 id = 0;
43 }
44

45 public String getName()
46 {
47 return name;
48 }
49

50 public double getSalary()
51 {
52 return salary;
53 }
54

55 public int getId()
56 {
57 return id;
58 }
59

60 public void setId()
61 {
62 id = nextId; // set id to next available id
63 nextId++;
64 }
65

66 public static int getNextId()
67 {
68 return nextId; // returns static field
69 }
70

71 public static void main(String[] args) // unit test
72 {
73 Employee e = new Employee("Harry", 50000);
74 System.out.println(e.getName() + " " + e.getSalary());
75 }
76 }

4.5 Method Parameters
Let us review the computer science terms that describe how parameters can be

passed to a method (or a function) in a programming language. The term call by

Chapter 4 Objects and Classes164

ptg16518469

value means that the method gets just the value that the caller provides. In contrast,

call by reference means that the method gets the location of the variable that the

caller provides. Thus, a method can modify the value stored in a variable passed

by reference but not in one passed by value. These “call by . . .” terms are standard

computer science terminology describing the behavior of method parameters in

various programming languages, not just Java. (There is also a call by name that

is mainly of historical interest, being employed in the Algol programming

language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means that the

method gets a copy of all parameter values. In particular, the method cannot

modify the contents of any parameter variables passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call,

the value of percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple

the value of a method parameter:

public static void tripleValue(double x) // doesn't work
{
 x = 3 * x;
}

Let’s call this method:

double percent = 10;
tripleValue(percent);

However, this does not work. After the method call, the value of percent is still 10.

Here is what happens:

1. x is initialized with a copy of the value of percent (that is, 10).

2. x is tripled—it is now 30. But percent is still 10 (see Figure 4.6).

3. The method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

• Primitive types (numbers, boolean values)

• Object references

1654.5 Method Parameters

ptg16518469

Figure 4.6 Modifying a numeric parameter has no lasting effect.

You have seen that it is impossible for a method to change a primitive type pa-

rameter. The situation is different for object parameters. You can easily implement

a method that triples the salary of an employee:

public static void tripleSalary(Employee x) // works
{
 x.raiseSalary(200);
}

When you call

harry = new Employee(. . .);
tripleSalary(harry);

then the following happens:

1. x is initialized with a copy of the value of harry, that is, an object reference.

2. The raiseSalary method is applied to that object reference. The Employee object

to which both x and harry refer gets its salary raised by 200 percent.

Chapter 4 Objects and Classes166

ptg16518469

3. The method ends, and the parameter variable x is no longer in use. Of course,

the object variable harry continues to refer to the object whose salary was

tripled (see Figure 4.7).

Figure 4.7 Modifying an object parameter has a lasting effect.

As you have seen, it is easily possible—and in fact very common—to implement

methods that change the state of an object parameter. The reason is simple.

The method gets a copy of the object reference, and both the original and the copy

refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two mecha-

nisms for parameter passing: call by value and call by reference. Some program-

mers (and unfortunately even some book authors) claim that Java uses call by

reference for objects. That is false. As this is such a common misunderstanding,

it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two employee objects:

public static void swap(Employee x, Employee y) // doesn't work
{
 Employee temp = x;
 x = y;
 y = temp;
}

If Java used call by reference for objects, this method would work:

1674.5 Method Parameters

ptg16518469

Employee a = new Employee("Alice", . . .);
Employee b = new Employee("Bob", . . .);
swap(a, b);
// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are

stored in the variables a and b. The x and y parameters of the swap method

are initialized with copies of these references. The method then proceeds to swap

these copies.

// x refers to Alice, y to Bob
Employee temp = x;
x = y;
y = temp;
// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter

variables x and y are abandoned. The original variables a and b still refer to the

same objects as they did before the method call (see Figure 4.8).

Figure 4.8 Swapping object parameters has no lasting effect.

This demonstrates that the Java programming language does not use call by

reference for objects. Instead, object references are passed by value.

Chapter 4 Objects and Classes168

ptg16518469

Here is a summary of what you can and cannot do with method parameters

in Java:

• A method cannot modify a parameter of a primitive type (that is, numbers or

boolean values).

• A method can change the state of an object parameter.

• A method cannot make an object parameter refer to a new object.

The program in Listing 4.4 demonstrates these facts. The program first tries to

triple the value of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0
End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:
Before: salary=50000.0
End of method: salary=150000.0
After: salary=150000.0

After the method, the state of the object to which harry refers has changed. This is

possible because the method modified the state through a copy of the object

reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:
Before: a=Alice
Before: b=Bob
End of method: x=Bob
End of method: y=Alice
After: a=Alice
After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a
and b are not affected.

C++ NOTE: C++ has both call by value and call by reference.You tag reference
parameters with &. For example, you can easily implement methods void
tripleValue(double& x) or void swap(Employee& x, Employee& y) that modify their reference
parameters.

1694.5 Method Parameters

ptg16518469

Listing 4.4 ParamTest/ParamTest.java

1 /**
2 * This program demonstrates parameter passing in Java.
3 * @version 1.00 2000-01-27
4 * @author Cay Horstmann
5 */
6 public class ParamTest
7 {
8 public static void main(String[] args)
9 {
10 /*
11 * Test 1: Methods can't modify numeric parameters
12 */
13 System.out.println("Testing tripleValue:");
14 double percent = 10;
15 System.out.println("Before: percent=" + percent);
16 tripleValue(percent);
17 System.out.println("After: percent=" + percent);
18

19 /*
20 * Test 2: Methods can change the state of object parameters
21 */
22 System.out.println("\nTesting tripleSalary:");
23 Employee harry = new Employee("Harry", 50000);
24 System.out.println("Before: salary=" + harry.getSalary());
25 tripleSalary(harry);
26 System.out.println("After: salary=" + harry.getSalary());
27

28 /*
29 * Test 3: Methods can't attach new objects to object parameters
30 */
31 System.out.println("\nTesting swap:");
32 Employee a = new Employee("Alice", 70000);
33 Employee b = new Employee("Bob", 60000);
34 System.out.println("Before: a=" + a.getName());
35 System.out.println("Before: b=" + b.getName());
36 swap(a, b);
37 System.out.println("After: a=" + a.getName());
38 System.out.println("After: b=" + b.getName());
39 }
40

41 public static void tripleValue(double x) // doesn't work
42 {
43 x = 3 * x;
44 System.out.println("End of method: x=" + x);
45 }
46

Chapter 4 Objects and Classes170

ptg16518469

47 public static void tripleSalary(Employee x) // works
48 {
49 x.raiseSalary(200);
50 System.out.println("End of method: salary=" + x.getSalary());
51 }
52

53 public static void swap(Employee x, Employee y)
54 {
55 Employee temp = x;
56 x = y;
57 y = temp;
58 System.out.println("End of method: x=" + x.getName());
59 System.out.println("End of method: y=" + y.getName());
60 }
61 }
62

63 class Employee // simplified Employee class
64 {
65 private String name;
66 private double salary;
67

68 public Employee(String n, double s)
69 {
70 name = n;
71 salary = s;
72 }
73

74 public String getName()
75 {
76 return name;
77 }
78

79 public double getSalary()
80 {
81 return salary;
82 }
83

84 public void raiseSalary(double byPercent)
85 {
86 double raise = salary * byPercent / 100;
87 salary += raise;
88 }
89 }

4.6 Object Construction
You have seen how to write simple constructors that define the initial state of

your objects. However, since object construction is so important, Java offers quite

1714.6 Object Construction

ptg16518469

a variety of mechanisms for writing constructors. We go over these mechanisms

in the sections that follow.

4.6.1 Overloading
Some classes have more than one constructor. For example, you can construct an

empty StringBuilder object as

StringBuilder messages = new StringBuilder();

Alternatively, you can specify an initial string:

StringBuilder todoList = new StringBuilder("To do:\n");

This capability is called overloading. Overloading occurs if several methods have

the same name (in this case, the StringBuilder constructor method) but different

parameters. The compiler must sort out which method to call. It picks the correct

method by matching the parameter types in the headers of the various methods

with the types of the values used in the specific method call. A compile-time error

occurs if the compiler cannot match the parameters, either because there is no

match at all or because there there is not one that is better than all others. (The

process of finding a match is called overloading resolution.)

NOTE: Java allows you to overload any method—not just constructor methods.
Thus, to completely describe a method, you need to specify its name together
with its parameter types.This is called the signature of the method. For example,
the String class has four public methods called indexOf. They have signatures

indexOf(int)
indexOf(int, int)
indexOf(String)
indexOf(String, int)

The return type is not part of the method signature. That is, you cannot have
two methods with the same names and parameter types but different return
types.

4.6.2 Default Field Initialization
If you don’t set a field explicitly in a constructor, it is automatically set to a default

value: numbers to 0, boolean values to false, and object references to null. Some

people consider it poor programming practice to rely on the defaults. Certainly,

Chapter 4 Objects and Classes172

ptg16518469

it makes it harder for someone to understand your code if fields are being

initialized invisibly.

NOTE: This is an important difference between fields and local variables.You
must always explicitly initialize local variables in a method. But in a class, if you
don’t initialize a field, it is automatically initialized to a default (0, false, or null).

For example, consider the Employee class. Suppose you don’t specify how to initialize

some of the fields in a constructor. By default, the salary field would be initialized

with 0 and the name and hireDay fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, they would get a null reference that they probably don’t expect:

LocalDate h = harry.getHireDay();
int year = h.getYear(); // throws exception if h is null

4.6.3 The Constructor with No Arguments
Many classes contain a constructor with no arguments that creates an object whose

state is set to an appropriate default. For example, here is a constructor with no

arguments for the Employee class:

public Employee()
{
 name = "";
 salary = 0;
 hireDay = LocalDate.now();
}

If you write a class with no constructors whatsoever, then a no-argument con-

structor is provided for you. This constructor sets all the instance fields to their

default values. So, all numeric data contained in the instance fields would be 0,

all boolean values would be false, and all object variables would be set to null.

If a class supplies at least one constructor but does not supply a no-argument

constructor, it is illegal to construct objects without supplying arguments. For

example, our original Employee class in Listing 4.2 provided a single constructor:

Employee(String name, double salary, int y, int m, int d)

With that class, it was not legal to construct default employees. That is, the call

e = new Employee();

would have been an error.

1734.6 Object Construction

ptg16518469

CAUTION: Please keep in mind that you get a free no-argument constructor
only when your class has no other constructors. If you write your class with even
a single constructor of your own and you want the users of your class to have
the ability to create an instance by a call to

new ClassName()

then you must provide a no-argument constructor. Of course, if you are happy
with the default values for all fields, you can simply supply

public ClassName()
{
}

4.6.4 Explicit Field Initialization
By overloading the constructor methods in a class, you can build many ways to

set the initial state of the instance fields of your classes. It is always a good idea

to make sure that, regardless of the constructor call, every instance field is set to

something meaningful.

You can simply assign a value to any field in the class definition. For example:

class Employee
{
 private String name = "";
 . . .
}

This assignment is carried out before the constructor executes. This syntax is

particularly useful if all constructors of a class need to set a particular instance

field to the same value.

The initialization value doesn’t have to be a constant value. Here is an example

in which a field is initialized with a method call. Consider an Employee class where

each employee has an id field. You can initialize it as follows:

class Employee
{
 private static int nextId;
 private int id = assignId();
 . . .
 private static int assignId()
 {
 int r = nextId;
 nextId++;

Chapter 4 Objects and Classes174

ptg16518469

 return r;
 }
 . . .
}

C++ NOTE: In C++, you cannot directly initialize instance fields of a class. All
fields must be set in a constructor. However, C++ has a special initializer list
syntax, such as

Employee::Employee(String n, double s, int y, int m, int d) // C++
: name(n),
 salary(s),
 hireDay(y, m, d)
{
}

C++ uses this special syntax to call field constructors. In Java, there is no need
for that because objects have no subobjects, only pointers to other objects.

4.6.5 Parameter Names
When you write very trivial constructors (and you’ll write a lot of them), it can

be somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee(String n, double s)
{
 name = n;
 salary = s;
}

However, the drawback is that you need to read the code to tell what the n and

s parameters mean.

Some programmers prefix each parameter with an “a”:

public Employee(String aName, double aSalary)
{
 name = aName;
 salary = aSalary;
}

That is quite neat. Any reader can immediately figure out the meaning of the

parameters.

Another commonly used trick relies on the fact that parameter variables shadow

instance fields with the same name. For example, if you call a parameter salary,

1754.6 Object Construction

ptg16518469

then salary refers to the parameter, not the instance field. But you can still access

the instance field as this.salary. Recall that this denotes the implicit parameter, that

is, the object being constructed. Here is an example:

public Employee(String name, double salary)
{

this.name = name;
this.salary = salary;

}

C++ NOTE: In C++, it is common to prefix instance fields with an underscore or
a fixed letter. (The letters m and x are common choices.) For example, the salary
field might be called _salary, mSalary, or xSalary. Java programmers don’t usually
do that.

4.6.6 Calling Another Constructor
The keyword this refers to the implicit parameter of a method. However, this

keyword has a second meaning.

If the first statement of a constructor has the form this(. . .), then the constructor

calls another constructor of the same class. Here is a typical example:

public Employee(double s)
{
 // calls Employee(String, double)

this("Employee #" + nextId, s);
 nextId++;
}

When you call new Employee(60000), the Employee(double) constructor calls the Employee(String,
double) constructor.

Using the this keyword in this manner is useful—you only need to write common

construction code once.

C++ NOTE: The this reference in Java is identical to the this pointer in C++.
However, in C++ it is not possible for one constructor to call another. If you want
to factor out common initialization code in C++, you must write a separate
method.

Chapter 4 Objects and Classes176

ptg16518469

4.6.7 Initialization Blocks
You have already seen two ways to initialize a data field:

• By setting a value in a constructor

• By assigning a value in the declaration

There is a third mechanism in Java, called an initialization block. Class declarations

can contain arbitrary blocks of code. These blocks are executed whenever an object

of that class is constructed. For example:

class Employee
{
 private static int nextId;

 private int id;
 private String name;
 private double salary;

 // object initialization block
{

 id = nextId;
 nextId++;

}

 public Employee(String n, double s)
 {
 name = n;
 salary = s;
 }

 public Employee()
 {
 name = "";
 salary = 0;
 }

 . . .
}

In this example, the id field is initialized in the object initialization block, no

matter which constructor is used to construct an object. The initialization block

runs first, and then the body of the constructor is executed.

This mechanism is never necessary and is not common. It is usually more

straightforward to place the initialization code inside a constructor.

1774.6 Object Construction

ptg16518469

NOTE: It is legal to set fields in initialization blocks even if they are only defined
later in the class. However, to avoid circular definitions, it is not legal to read
from fields that are only initialized later.The exact rules are spelled out in section
8.3.2.3 of the Java Language Specification (http://docs.oracle.com/javase/specs).
The rules are complex enough to baffle the compiler implementors—early ver-
sions of Java implemented them with subtle errors. Therefore, we suggest that
you always place initialization blocks after the field definitions.

With so many ways of initializing data fields, it can be quite confusing to give all

possible pathways for the construction process. Here is what happens in detail

when a constructor is called:

1. All data fields are initialized to their default values (0, false, or null).

2. All field initializers and initialization blocks are executed, in the order in

which they occur in the class declaration.

3. If the first line of the constructor calls a second constructor, then the body of

the second constructor is executed.

4. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that

another programmer could easily understand it without having to be a language

lawyer. For example, it would be quite strange and somewhat error-prone to

have a class whose constructors depend on the order in which the data fields are

declared.

To initialize a static field, either supply an initial value or use a static initialization

block. You have already seen the first mechanism:

private static int nextId = 1;

If the static fields of your class require complex initialization code, use a static

initialization block.

Place the code inside a block and tag it with the keyword static. Here is an example.

We want the employee ID numbers to start at a random integer less than 10,000.

// static initialization block
static
{
 Random generator = new Random();
 nextId = generator.nextInt(10000);
}

Static initialization occurs when the class is first loaded. Like instance fields,

static fields are 0, false, or null unless you explicitly set them to another value.

Chapter 4 Objects and Classes178

http://docs.oracle.com/javase/specs

ptg16518469

All static field initializers and static initialization blocks are executed in the order

in which they occur in the class declaration.

NOTE: Amazingly enough, up to JDK 6, it was possible to write a “Hello, World”
program in Java without ever writing a main method.

public class Hello
{
 static
 {
 System.out.println("Hello, World");
 }
}

When you invoked the class with java Hello, the class was loaded, the static ini-
tialization block printed “Hello, World”, and only then was a message displayed
that main is not defined. Since Java SE 7, the java program first checks that there
is a main method.

The program in Listing 4.5 shows many of the features that we discussed in this

section:

• Overloaded constructors

• A call to another constructor with this(...)

• A no-argument constructor

• An object initialization block

• A static initialization block

• An instance field initialization

Listing 4.5 ConstructorTest/ConstructorTest.java

1 import java.util.*;
 2

3 /**
4 * This program demonstrates object construction.
5 * @version 1.01 2004-02-19
6 * @author Cay Horstmann
7 */
8 public class ConstructorTest
9 {
10 public static void main(String[] args)
11 {

(Continues)

1794.6 Object Construction

ptg16518469

Listing 4.5 (Continued)

12 // fill the staff array with three Employee objects
13 Employee[] staff = new Employee[3];
14

15 staff[0] = new Employee("Harry", 40000);
16 staff[1] = new Employee(60000);
17 staff[2] = new Employee();
18

19 // print out information about all Employee objects
20 for (Employee e : staff)
21 System.out.println("name=" + e.getName() + ",id=" + e.getId() + ",salary="
22 + e.getSalary());
23 }
24 }
25

26 class Employee
27 {
28 private static int nextId;
29

30 private int id;
31 private String name = ""; // instance field initialization
32 private double salary;
33

34 // static initialization block
35 static
36 {
37 Random generator = new Random();
38 // set nextId to a random number between 0 and 9999
39 nextId = generator.nextInt(10000);
40 }
41

42 // object initialization block
43 {
44 id = nextId;
45 nextId++;
46 }
47

48 // three overloaded constructors
49 public Employee(String n, double s)
50 {
51 name = n;
52 salary = s;
53 }
54

55 public Employee(double s)
56 {
57 // calls the Employee(String, double) constructor
58 this("Employee #" + nextId, s);
59 }

Chapter 4 Objects and Classes180

ptg16518469

60

61 // the default constructor
62 public Employee()
63 {
64 // name initialized to ""--see above
65 // salary not explicitly set--initialized to 0
66 // id initialized in initialization block
67 }
68

69 public String getName()
70 {
71 return name;
72 }
73

74 public double getSalary()
75 {
76 return salary;
77 }
78

79 public int getId()
80 {
81 return id;
82 }
83 }

java.util.Random 1.0

• Random()

constructs a new random number generator.

• int nextInt(int n) 1.2

returns a random number between 0 and n – 1.

4.6.8 Object Destruction and the finalize Method
Some object-oriented programming languages, notably C++, have explicit destruc-

tor methods for any cleanup code that may be needed when an object is no longer

used. The most common activity in a destructor is reclaiming the memory set

aside for objects. Since Java does automatic garbage collection, manual memory

reclamation is not needed, so Java does not support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a

handle to another object that uses system resources. In this case, it is important

that the resource be reclaimed and recycled when it is no longer needed.

1814.6 Object Construction

ptg16518469

You can add a finalize method to any class. The finalize method will be called before

the garbage collector sweeps away the object. In practice, do not rely on the finalize
method for recycling any resources that are in short supply—you simply cannot

know when this method will be called.

NOTE: The method call System.runFinalizersOnExit(true) guarantees that finalizer
methods are called before Java shuts down. However, this method is inherently
unsafe and has been deprecated. An alternative is to add “shutdown hooks”
with the method Runtime.addShutdownHook—see the API documentation for details.

If a resource needs to be closed as soon as you have finished using it, you need

to manage it manually. Supply a close method that does the necessary cleanup,

and call it when you are done with the object. In Section 7.2.5, “The Try-with-

Resources Statement,” on p. 376, you will see how you can ensure that this method

is called automatically.

4.7 Packages
Java allows you to group classes in a collection called a package. Packages are

convenient for organizing your work and for separating your work from code

libraries provided by others.

The standard Java library is distributed over a number of packages, including

java.lang, java.util, java.net, and so on. The standard Java packages are examples of

hierarchical packages. Just as you have nested subdirectories on your hard disk,

you can organize packages by using levels of nesting. All standard Java packages

are inside the java and javax package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names.

Suppose two programmers come up with the bright idea of supplying an Employee
class. As long as both of them place their class into different packages, there is

no conflict. In fact, to absolutely guarantee a unique package name, use an Internet

domain name (which is known to be unique) written in reverse. You then use

subpackages for different projects. For example, consider the domain horstmann.com.

When written in reverse order, it turns into the package com.horstmann. That package

can then be further subdivided into subpackages such as com.horstmann.corejava.

From the point of view of the compiler, there is absolutely no relationship between

nested packages. For example, the packages java.util and java.util.jar have nothing

to do with each other. Each is its own independent collection of classes.

Chapter 4 Objects and Classes182

ptg16518469

4.7.1 Class Importation
A class can use all classes from its own package and all public classes from other

packages.

You can access the public classes in another package in two ways. The first is

simply to add the full package name in front of every class name. For example:

java.time.LocalDate today = java.time.LocalDate.now();

That is obviously tedious. A simpler, and more common, approach is to use the

import statement. The point of the import statement is to give you a shorthand to

refer to the classes in the package. Once you use import, you no longer have to give

the classes their full names.

You can import a specific class or the whole package. You place import statements

at the top of your source files (but below any package statements). For example,

you can import all classes in the java.util package with the statement

import java.util.*;

Then you can use

LocalDate today = LocalDate.now();

without a package prefix. You can also import a specific class inside a package:

import java.time.LocalDate;

The java.time.* syntax is less tedious. It has no negative effect on code size. How-

ever, if you import classes explicitly, the reader of your code knows exactly which

classes you use.

TIP: In Eclipse, you can select the menu option Source → Organize Imports.
Package statements such as import java.util.*; are automatically expanded into
a list of specific imports such as

import java.util.ArrayList;
import java.util.Date;

This is an extremely convenient feature.

However, note that you can only use the * notation to import a single package.

You cannot use import java.* or import java.*.* to import all packages with the java
prefix.

Most of the time, you just import the packages that you need, without worrying

too much about them. The only time that you need to pay attention to packages

1834.7 Packages

ptg16518469

is when you have a name conflict. For example, both the java.util and java.sql
packages have a Date class. Suppose you write a program that imports

both packages.

import java.util.*;
import java.sql.*;

If you now use the Date class, you get a compile-time error:

Date today; // Error--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this

problem by adding a specific import statement:

import java.util.*;
import java.sql.*;
import java.util.Date;

What if you really need both Date classes? Then you need to use the full package

name with every class name.

java.util.Date deadline = new java.util.Date();
java.sql.Date today = new java.sql.Date(...);

Locating classes in packages is an activity of the compiler. The bytecodes in class

files always use full package names to refer to other classes.

C++ NOTE: C++ programmers sometimes confuse import with #include. The two
have nothing in common. In C++, you must use #include to include the declarations
of external features because the C++ compiler does not look inside any files
except the one that it is compiling and its explicitly included header files. The
Java compiler will happily look inside other files provided you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly naming all
classes, such as java.util.Date. In C++, you cannot avoid the #include directives.

The only benefit of the import statement is convenience.You can refer to a class
by a name shorter than the full package name. For example, after an import
java.util.* (or import java.util.Date) statement, you can refer to the java.util.Date
class simply as Date.

In C++, the construction analogous to the package mechanism is the namespace
feature. Think of the package and import statements in Java as the analogs of the
namespace and using directives in C++.

Chapter 4 Objects and Classes184

ptg16518469

4.7.2 Static Imports
A form of the import statement permits the importing of static methods and fields,

not just classes.

For example, if you add the directive

import static java.lang.System.*;

to the top of your source file, then you can use the static methods and fields of

the System class without the class name prefix:

out.println("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

You can also import a specific method or field:

import static java.lang.System.out;

In practice, it seems doubtful that many programmers will want to abbreviate

System.out or System.exit. The resulting code seems less clear. On the other hand,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

4.7.3 Addition of a Class into a Package
To place classes inside a package, you must put the name of the package at the

top of your source file, before the code that defines the classes in the package. For

example, the file Employee.java in Listing 4.7 starts out like this:

package com.horstmann.corejava;

public class Employee
{
 . . .
}

If you don’t put a package statement in the source file, then the classes in that source

file belong to the default package. The default package has no package name. Up

to now, all our example classes were located in the default package.

Place source files into a subdirectory that matches the full package name. For

example, all source files in the com.horstmann.corejava package should be in a subdirec-

tory com/horstmann/corejava (com\horstmann\corejava on Windows). The compiler places the

class files into the same directory structure.

1854.7 Packages

ptg16518469

The program in Listings 4.6 and 4.7 is distributed over two packages: The PackageTest
class belongs to the default package, and the Employee class belongs to the

com.horstmann.corejava package. Therefore, the Employee.java file must be in a subdirectory

com/horstmann/corejava. In other words, the directory structure is as follows:

To compile this program, simply change to the base directory and run the

command

javac PackageTest.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and

compiles it.

Let’s look at a more realistic example, in which we don’t use the default package

but have classes distributed over several packages (com.horstmann.corejava and

com.mycompany).

In this situation, you still must compile and run classes from the base

directory—that is, the directory containing the com directory:

javac com/mycompany/PayrollApp.java
java com.mycompany.PayrollApp

Note again that the compiler operates on files (with file separators and an extension

.java), whereas the Java interpreter loads a class (with dot separators).

Chapter 4 Objects and Classes186

ptg16518469

TIP: Starting with the next chapter, we will use packages for the source code.
That way, you can make an IDE project for each chapter instead of each section.

CAUTION: The compiler does not check the directory structure when it compiles
source files. For example, suppose you have a source file that starts with the
directive

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory com/mycompany.
The source file will compile without errors if it doesn’t depend on other packages.
However, the resulting program will not run unless you first move all class files
to the right place. The virtual machine won’t find the classes if the packages
don’t match the directories.

Listing 4.6 PackageTest/PackageTest.java

1 import com.horstmann.corejava.*;
2 // the Employee class is defined in that package
 3

4 import static java.lang.System.*;
 5

6 /**
7 * This program demonstrates the use of packages.
8 * @version 1.11 2004-02-19
9 * @author Cay Horstmann
10 */
11 public class PackageTest
12 {
13 public static void main(String[] args)
14 {
15 // because of the import statement, we don't have to use
16 // com.horstmann.corejava.Employee here
17 Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
18

19 harry.raiseSalary(5);
20

21 // because of the static import statement, we don't have to use System.out here
22 out.println("name=" + harry.getName() + ",salary=" + harry.getSalary());
23 }
24 }

1874.7 Packages

ptg16518469

Listing 4.7 PackageTest/com/horstmann/corejava/Employee.java

1 package com.horstmann.corejava;
 2

3 // the classes in this file are part of this package
 4

5 import java.time.*;
 6

7 // import statements come after the package statement
 8

9 /**
10 * @version 1.11 2015-05-08
11 * @author Cay Horstmann
12 */
13 public class Employee
14 {
15 private String name;
16 private double salary;
17 private LocalDate hireDay;
18

19 public Employee(String name, double salary, int year, int month, int day)
20 {
21 this.name = name;
22 this.salary = salary;
23 hireDay = LocalDate.of(year, month, day);
24 }
25

26 public String getName()
27 {
28 return name;
29 }
30

31 public double getSalary()
32 {
33 return salary;
34 }
35

36 public LocalDate getHireDay()
37 {
38 return hireDay;
39 }
40

41 public void raiseSalary(double byPercent)
42 {
43 double raise = salary * byPercent / 100;
44 salary += raise;
45 }
46 }

Chapter 4 Objects and Classes188

ptg16518469

4.7.4 Package Scope
You have already encountered the access modifiers public and private. Features

tagged as public can be used by any class. Private features can be used only by the

class that defines them. If you don’t specify either public or private, the feature (that

is, the class, method, or variable) can be accessed by all methods in the same

package.

Consider the program in Listing 4.2. The Employee class was not defined as a public

class. Therefore, only the other classes (such as EmployeeTest) in the same pack-

age—the default package in this case—can access it. For classes, this is a reasonable

default. However, for variables, this was an unfortunate choice. Variables must

explicitly be marked private, or they will default to being package visible. This, of

course, breaks encapsulation. The problem is that it is awfully easy to forget to

type the private keyword. Here is an example from the Window class in the java.awt
package, which is part of the source code supplied with the JDK:

public class Window extends Container
{
 String warningString;
 . . .
}

Note that the warningString variable is not private! That means the methods of all

classes in the java.awt package can access this variable and set it to whatever they

like (such as "Trust me!"). Actually, the only methods that access this variable are

in the Window class, so it would have been entirely appropriate to make the variable

private. We suspect that the programmer typed the code in a hurry and simply

forgot the private modifier. (We won’t mention the programmer’s name to protect

the guilty—you can look into the source file yourself.)

NOTE: Amazingly enough, this problem has never been fixed, even though we
have pointed it out in nine editions of this book—apparently the library implemen-
tors don’t read Core Java. Not only that—new fields have been added to the
class over time, and about half of them aren’t private either.

Is this really a problem? It depends. By default, packages are not closed entities.

That is, anyone can add more classes to a package. Of course, hostile or clueless

programmers can then add code that modifies variables with package visibility.

For example, in early versions of Java, it was an easy matter to smuggle another

class into the java.awt package. Simply start out the class with

package java.awt;

1894.7 Packages

ptg16518469

Then, place the resulting class file inside a subdirectory java/awt somewhere on

the class path, and you have gained access to the internals of the java.awt package.

Through this subterfuge, it was possible to set the warning string (see Figure 4.9).

Figure 4.9 Changing the warning string in an applet window

Starting with version 1.2, the JDK implementors rigged the class loader to explic-

itly disallow loading of user-defined classes whose package name starts with

"java.". Of course, your own classes won’t benefit from that protection. Instead,

you can use another mechanism, package sealing, to address the issue of promiscu-

ous package access. If you seal a package, no further classes can be added to it.

You will see in Chapter 9 how you can produce a JAR file that contains sealed

packages.

4.8 The Class Path
As you have seen, classes are stored in subdirectories of the file system. The path

to the class must match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains

multiple class files and subdirectories in a compressed format, saving space and

improving performance. When you use a third-party library in your programs,

you will usually be given one or more JAR files to include. The JDK also supplies

a number of JAR files, such as the file jre/lib/rt.jar that contains thousands of library

classes. You will see in Chapter 9 how to create your own JAR files.

Chapter 4 Objects and Classes190

ptg16518469

TIP: JAR files use the ZIP format to organize files and subdirectories.You can
use any ZIP utility to peek inside rt.jar and other JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory, for example, /home/user/classdir. Note

that this directory is the base directory for the package tree. If you add the

class com.horstmann.corejava.Employee, then the Employee.class file must be located in

the subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory, for example, /home/user/archives.

3. Set the class path. The class path is the collection of all locations that can

contain class files.

In UNIX, the elements on the class path are separated by colons:

/home/user/classdir:.:/home/user/archives/archive.jar

In Windows, they are separated by semicolons:

c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

• The base directory /home/user/classdir or c:\classdir;

• The current directory (.); and

• The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar.

Starting with Java SE 6, you can specify a wildcard for a JAR file directory, like this:

/home/user/classdir:.:/home/user/archives/'*'

or

c:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in this

class path.

The runtime library files (rt.jar and the other JAR files in the jre/lib and jre/lib/ext
directories) are always searched for classes; don’t include them explicitly in the

class path.

1914.8 The Class Path

ptg16518469

CAUTION: The javac compiler always looks for files in the current directory, but
the java virtual machine launcher only looks into the current directory if the “.”
directory is on the class path. If you have no class path set, this is not a prob-
lem—the default class path consists of the “.” directory. But if you have set the
class path and forgot to include the “.” directory, your programs will compile
without error, but they won’t run.

The class path lists all directories and archive files that are starting points for

locating classes. Let’s consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.
corejava.Employee class. It first looks in the system class files that are stored in archives

in the jre/lib and jre/lib/ext directories. It won’t find the class file there, so it turns

to the class path. It then looks for the following files:

• /home/user/classdir/com/horstmann/corejava/Employee.class

• com/horstmann/corejava/Employee.class starting from the current directory

• com/horstmann/corejava/Employee.class inside /home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine. If

you refer to a class without specifying its package, the compiler first needs to find

out the package that contains the class. It consults all import directives as possible

sources for the class. For example, suppose the source file contains directives

import java.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find

java.lang.Employee (because the java.lang package is always imported by default),

java.util.Employee, com.horstmann.corejava.Employee, and Employee in the current package. It

searches for each of these classes in all of the locations of the class path. It is a

compile-time error if more than one class is found. (Classes must be unique, so

the order of the import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the source

is newer than the class file. If so, the source file is recompiled automatically. Recall

that you can import only public classes from other packages. A source file can

only contain one public class, and the names of the file and the public class must

match. Therefore, the compiler can easily locate source files for public classes.

However, you can import nonpublic classes from the current package. These

classes may be defined in source files with different names. If you import a class

Chapter 4 Objects and Classes192

ptg16518469

from the current package, the compiler searches all source files of the current

package to see which one defines the class.

4.8.1 Setting the Class Path
It is best to specify the class path with the -classpath (or -cp) option:

java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg

or

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

The entire command must be typed onto a single line. It is a good idea to place

such a long command line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An

alternate approach is the CLASSPATH environment variable. The details depend

on your shell. With the Bourne Again shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar

With the Windows shell, use

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

CAUTION: Some people recommend to set the CLASSPATH environment variable
permanently. This is generally a bad idea. People forget the global setting, and
are surprised when their classes are not loaded properly. A particularly repre-
hensible example is Apple’s QuickTime installer in Windows. For several years,
it globally set CLASSPATH to point to a JAR file it needed, but did not include the
current directory in the classpath.As a result, countless Java programmers were
driven to distraction when their programs compiled but failed to run.

CAUTION: Some people recommend to bypass the class path altogether, by
dropping all JAR files into the jre/lib/ext directory. That is truly bad advice, for
two reasons. Archives that manually load other classes do not work correctly
when they are placed in the extension directory. (See Volume II, Chapter 9 for
more information on class loaders.) Moreover, programmers have a tendency
to forget about the files they placed there months ago. Then, they scratch their
heads when the class loader seems to ignore their carefully crafted class path
because it is actually loading long-forgotten classes from the extension directory.

1934.8 The Class Path

ptg16518469

4.9 Documentation Comments
The JDK contains a very useful tool, called javadoc, that generates HTML documen-

tation from your source files. In fact, the online API documentation that we de-

scribed in Chapter 3 is simply the result of running javadoc on the source code of

the standard Java library.

If you add comments that start with the special delimiter /** to your source code,

you too can easily produce professional-looking documentation. This is a very

nice approach because it lets you keep your code and documentation in one place.

If you put your documentation into a separate file, then, as you probably know,

the code and comments tend to diverge over time. When documentation comments

are in the same file as the source code, it is an easy matter to update both and run

javadoc again.

4.9.1 Comment Insertion
The javadoc utility extracts information for the following items:

• Packages

• Public classes and interfaces

• Public and protected fields

• Public and protected constructors and methods

Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment

is placed immediately above the feature it describes. A comment starts with a /**
and ends with a */.

Each /** . . . */ documentation comment contains free-form text followed by tags.

A tag starts with an @, such as @author or @param.

The first sentence of the free-form text should be a summary statement. The javadoc
utility automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as . . . for empha-

sis, . . . for strong emphasis, and even to include an image.

You should, however, stay away from headings <h1> or rules <hr> because they

can interfere with the formatting of the document. To type monospaced code,

use {@code ... } instead of <code>...</code>—then you don’t have to worry about

escaping < characters inside the code.

Chapter 4 Objects and Classes194

ptg16518469

NOTE: If your comments contain links to other files such as images (for example,
diagrams or images of user interface components), place those files into a sub-
directory of the directory containing the source file, named doc-files. The javadoc
utility will copy the doc-files directories and their contents from the source direc-
tory to the documentation directory.You need to use the doc-files directory in
your link, for example .

4.9.2 Class Comments
The class comment must be placed after any import statements, directly before the

class definition.

Here is an example of a class comment:

/**
* A {@code Card} object represents a playing card, such
* as "Queen of Hearts". A card has a suit (Diamond, Heart,
* Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
* 12 = Queen, 13 = King)
*/
public class Card
{
 . . .
}

NOTE: There is no need to add an * in front of every line. For example, the
following comment is equally valid:

/**
 A <code>Card</code> object represents a playing card, such
 as "Queen of Hearts". A card has a suit (Diamond, Heart,
 Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 12 = Queen, 13 = King).
*/

However, most IDEs supply the asterisks automatically and rearrange them
when the line breaks change.

4.9.3 Method Comments
Each method comment must immediately precede the method that it describes.

In addition to the general-purpose tags, you can use the following tags:

1954.9 Documentation Comments

ptg16518469

• @param variable description

This tag adds an entry to the “parameters” section of the current method. The

description can span multiple lines and can use HTML tags. All @param tags for

one method must be kept together.

• @return description

This tag adds a “returns” section to the current method. The description can

span multiple lines and can use HTML tags.

• @throws class description

This tag adds a note that this method may throw an exception. Exceptions

are the topic of Chapter 10.

Here is an example of a method comment:

/**
* Raises the salary of an employee.
* @param byPercent the percentage by which to raise the salary (e.g. 10 means 10%)
* @return the amount of the raise
*/
public double raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
 return raise;
}

4.9.4 Field Comments
You only need to document public fields—generally that means static constants.

For example:

/**
* The "Hearts" card suit
*/
public static final int HEARTS = 1;

4.9.5 General Comments
The following tags can be used in class documentation comments:

• @author name

This tag makes an “author” entry. You can have multiple @author tags, one for

each author.

Chapter 4 Objects and Classes196

ptg16518469

• @version text

This tag makes a “version” entry. The text can be any description of the current

version.

The following tags can be used in all documentation comments:

• @since text

This tag makes a “since” entry. The text can be any description of the version

that introduced this feature. For example, @since version 1.7.1.

• @deprecated text

This tag adds a comment that the class, method, or variable should no longer

be used. The text should suggest a replacement. For example:

@deprecated Use <code>setVisible(true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to

external documents, with the @see and @link tags.

• @see reference

This tag adds a hyperlink in the “see also” section. It can be used with both

classes and methods. Here, reference can be one of the following:

package.class#feature label

label
"text"

The first case is the most useful. You supply the name of a class, method, or

variable, and javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee
class. You can omit the name of the package, or both the package and class

names. Then, the feature will be located in the current package or class.

Note that you must use a #, not a period, to separate the class from the method

or variable name. The Java compiler itself is highly skilled in guessing the

various meanings of the period character as separator between packages,

subpackages, classes, inner classes, and methods and variables. But the javadoc
utility isn’t quite as clever, so you have to help it along.

If the @see tag is followed by a < character, then you need to specify a hyperlink.

You can link to any URL you like. For example:

@see The Core Java home page

1974.9 Documentation Comments

ptg16518469

In each of these cases, you can specify an optional label that will appear as the

link anchor. If you omit the label, the user will see the target code name or

URL as the anchor.

If the @see tag is followed by a " character, then the text is displayed in the “see

also” section. For example:

@see "Core Java 2 volume 2"

You can add multiple @see tags for one feature, but you must keep them all

together.

• If you like, you can place hyperlinks to other classes or methods anywhere

in any of your documentation comments. Insert a special tag of the form

{@link package.class#feature label}

anywhere in a comment. The feature description follows the same rules as

for the @see tag.

4.9.6 Package and Overview Comments
Place the class, method, and variable comments directly into the Java source files,

delimited by /** . . . */ documentation comments. However, to generate package

comments, you need to add a separate file in each package directory. You have

two choices:

1. Supply an HTML file named package.html. All text between the tags <body>...</body>
is extracted.

2. Supply a Java file named package-info.java. The file must contain an initial

Javadoc comment, delimited with /** and */, followed by a package statement.

It should contain no further code or comments.

You can also supply an overview comment for all source files. Place it in a file

called overview.html, located in the parent directory that contains all the source files.

All text between the tags <body>...</body> is extracted. This comment is displayed

when the user selects “Overview” from the navigation bar.

4.9.7 Comment Extraction
Here, docDirectory is the name of the directory where you want the HTML files to

go. Follow these steps:

Chapter 4 Objects and Classes198

ptg16518469

1. Change to the directory that contains the source files you want to document.

If you have nested packages to document, such as com.horstmann.corejava, you

must be working in the directory that contains the subdirectory com. (This is

the directory that contains the overview.html file, if you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or, run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages. If your files are in the default package, run

instead

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, the HTML files are extracted to the current

directory. That can get messy, and we don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options. For

example, you can use the -author and -version options to include the @author and

@version tags in the documentation. (By default, they are omitted.) Another useful

option is -link, to include hyperlinks to standard classes. For example, if you use

the command

javadoc -link http://docs.oracle.com/javase/8/docs/api *.java

all standard library classes are automatically linked to the documentation on the

Oracle web site.

If you use the -linksource option, each source file is converted to HTML (without

color coding, but with line numbers), and each class and method name turns into

a hyperlink to the source.

For additional options, we refer you to the online documentation of the javadoc
utility at http://docs.oracle.com/javase/8/ docs/technotes/guides/javadoc/.

NOTE: If you need further customization—for example, to produce documentation
in a format other than HTML—you can supply your own doclet to generate the
output in any form you desire. Clearly, this is a specialized need; for details on
doclets, we refer you to the online documentation at http://docs.oracle.com/javase/
8/docs/technotes/guides/javadoc/doclet/overview.html.

1994.9 Documentation Comments

http://docs.oracle.com/javase/8/ocs/technotes/guides/javadoc/
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/8/docs/api *.java

ptg16518469

4.10 Class Design Hints
Without trying to be comprehensive or tedious, we want to end this chapter with

some hints that will make your classes more acceptable in well-mannered OOP

circles.

1. Always keep data private.

This is first and foremost; doing anything else violates encapsulation. You

may need to write an accessor or mutator method occasionally, but you are

still better off keeping the instance fields private. Bitter experience shows

that the data representation may change, but how this data are used will

change much less frequently. When data are kept private, changes in their

representation will not affect the user of the class, and bugs are easier to

detect.

2. Always initialize data.

Java won’t initialize local variables for you, but it will initialize instance fields

of objects. Don’t rely on the defaults, but initialize all variables explicitly,

either by supplying a default or by setting defaults in all constructors.

3. Don’t use too many basic types in a class.

The idea is to replace multiple related uses of basic types with other classes.

This keeps your classes easier to understand and to change. For example,

replace the following instance fields in a Customer class:

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes

to addresses, such as the need to deal with international addresses.

4. Not all fields need individual field accessors and mutators.

You may need to get and set an employee’s salary. You certainly won’t need

to change the hiring date once the object is constructed. And, quite often,

objects have instance fields that you don’t want others to get or set, such as

an array of state abbreviations in an Address class.

5. Break up classes that have too many responsibilities.

This hint is, of course, vague: “too many” is obviously in the eye of the be-

holder. However, if there is an obvious way to break one complicated class

into two classes that are conceptually simpler, seize the opportunity. (On the

Chapter 4 Objects and Classes200

ptg16518469

other hand, don’t go overboard; ten classes, each with only one method, are

usually an overkill.)

Here is an example of a bad design:

public class CardDeck // bad design
{
 private int[] value;
 private int[] suit;

 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public int getTopValue() { . . . }
 public int getTopSuit() { . . . }
 public void draw() { . . . }
}

This class really implements two separate concepts: a deck of cards, with its

shuffle and draw methods, and a card, with the methods to inspect its value and

suit. It makes sense to introduce a Card class that represents an individual

card. Now you have two classes, each with its own responsibilities:

public class CardDeck
{
 private Card[] cards;

 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public Card getTop() { . . . }
 public void draw() { . . . }
}

public class Card
{
 private int value;
 private int suit;

 public Card(int aValue, int aSuit) { . . . }
 public int getValue() { . . . }
 public int getSuit() { . . . }
}

6. Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they repre-

sent, so should classes. (The standard library certainly contains some dubious

examples, such as the Date class that describes time.)

A good convention is that a class name should be a noun (Order), or a noun

preceded by an adjective (RushOrder) or a gerund (an “-ing” word, like

2014.10 Class Design Hints

ptg16518469

BillingAddress). As for methods, follow the standard convention that accessor

methods begin with a lowercase get (getSalary) and mutator methods use a

lowercase set (setSalary).

7. Prefer immutable classes

The LocalDate class, and other classes from the java.time package, are im-

mutable—no method can modify the state of an object. Instead of mutating

objects, methods such as plusDays return new objects with the modified state.

The problem with mutation is that it can happen concurrently when multiple

threads try to update an object at the same time. The results are unpredictable.

When classes are immutable, it is safe to share their objects among multiple

threads.

Therefore, it is a good idea to make classes immutable when you can. This

is particularly easy with classes that represent values, such as a string or a

point in time. Computations can simply yield new values instead of updating

existing ones.

Of course, not all classes should be immutable. It would be strange to have

the raiseSalary method return a new Employee object when an employee gets a

raise.

In this chapter, we covered the fundamentals of objects and classes that make

Java an “object-based” language. In order to be truly object oriented, a program-

ming language must also support inheritance and polymorphism. The Java support

for these features is the topic of the next chapter.

Chapter 4 Objects and Classes202

ptg16518469

5CHAPTER

Inheritance

In this chapter

• 5.1 Classes, Superclasses, and Subclasses, page 204

• 5.2 Object: The Cosmic Superclass, page 228

• 5.3 Generic Array Lists, page 244

• 5.4 Object Wrappers and Autoboxing, page 252

• 5.5 Methods with a Variable Number of Parameters, page 256

• 5.6 Enumeration Classes, page 258

• 5.7 Reflection, page 260

• 5.8 Design Hints for Inheritance, page 283

Chapter 4 introduced you to classes and objects. In this chapter, you will learn

about inheritance, another fundamental concept of object-oriented programming.

The idea behind inheritance is that you can create new classes that are built on

existing classes. When you inherit from an existing class, you reuse (or inherit)

its methods, and you can add new methods and fields to adapt your new class

to new situations. This technique is essential in Java programming.

This chapter also covers reflection, the ability to find out more about classes and

their properties in a running program. Reflection is a powerful feature, but it is

undeniably complex. Since reflection is of greater interest to tool builders than

to application programmers, you can probably glance over that part of the chapter

upon first reading and come back to it later.

203

ptg16518469

5.1 Classes, Superclasses, and Subclasses
Let’s return to the Employee class that we discussed in the previous chapter. Suppose

(alas) you work for a company where managers are treated differently from

other employees. Managers are, of course, just like employees in many respects.

Both employees and managers are paid a salary. However, while employees are

expected to complete their assigned tasks in return for receiving their salary,

managers get bonuses if they actually achieve what they are supposed to do. This

is the kind of situation that cries out for inheritance. Why? Well, you need to

define a new class, Manager, and add functionality. But you can retain some of

what you have already programmed in the Employee class, and all the fields of the

original class can be preserved. More abstractly, there is an obvious “is–a” rela-

tionship between Manager and Employee. Every manager is an employee: This “is–a”

relationship is the hallmark of inheritance.

NOTE: In this chapter, we use the classic example of employees and managers,
but we must ask you to take this example with a grain of salt. In the real world,
an employee can become a manager, so you would want to model being a
manager as a role of an employee, not a subclass. In our example, however,
we assume the corporate world is populated by two kinds of people: those who
are forever employees, and those who have always been managers.

5.1.1 Defining Subclasses
Here is how you define a Manager class that inherits from the Employee class. Use the

Java keyword extends to denote inheritance.

public class Manager extends Employee
{

added methods and fields

}

C++ NOTE: Inheritance is similar in Java and C++. Java uses the extends keyword
instead of the : token. All inheritance in Java is public inheritance; there is no
analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from

an existing class. The existing class is called the superclass, base class, or parent class.

The new class is called the subclass, derived class, or child class. The terms superclass

and subclass are those most commonly used by Java programmers, although

Chapter 5 Inheritance204

ptg16518469

some programmers prefer the parent/child analogy, which also ties in nicely

with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its subclass or

contains more functionality. In fact, the opposite is true: Subclasses have more

functionality than their superclasses. For example, as you will see when we go

over the rest of the Manager class code, the Manager class encapsulates more data and

has more functionality than its superclass Employee.

NOTE: The prefixes super and sub come from the language of sets used in
theoretical computer science and mathematics.The set of all employees contains
the set of all managers, and thus is said to be a superset of the set of managers.
Or, to put it another way, the set of all managers is a subset of the set of all
employees.

Our Manager class has a new field to store the bonus, and a new method to set it:

public class Manager extends Employee
{
 private double bonus;
 . . .
 public void setBonus(double bonus)
 {
 this.bonus = bonus;
 }
}

There is nothing special about these methods and fields. If you have a Manager object,

you can simply apply the setBonus method.

Manager boss = . . .;
boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus method—it

is not among the methods defined in the Employee class.

However, you can use methods such as getName and getHireDay with Manager objects.

Even though these methods are not explicitly defined in the Manager class, they are

automatically inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are taken from the superclass. Every

Manager object has four fields: name, salary, hireDay, and bonus.

When defining a subclass by extending its superclass, you only need to indicate

the differences between the subclass and the superclass. When designing classes,

you place the most general methods in the superclass and more specialized

2055.1 Classes, Superclasses, and Subclasses

ptg16518469

methods in its subclasses. Factoring out common functionality by moving it to a

superclass is common in object-oriented programming.

5.1.2 Overriding Methods
Some of the superclass methods are not appropriate for the Manager subclass. In

particular, the getSalary method should return the sum of the base salary and the

bonus. You need to supply a new method to override the superclass method:

public class Manager extends Employee
{
 . . .
 public double getSalary()
 {
 . . .
 }
 . . .
}

How can you implement this method? At first glance, it appears to be simple—just

return the sum of the salary and bonus fields:

public double getSalary()
{
 return salary + bonus; // won't work
}

However, that won’t work. Recall that only the Employee methods have direct access

to the private fields of the Employee class. This means that the getSalary method of

the Manager class cannot directly access the salary field. If the Manager methods want

to access those private fields, they have to do what every other method does—use

the public interface, in this case the public getSalary method of the Employee class.

So, let’s try again. You need to call getSalary instead of simply accessing the salary
field:

public double getSalary()
{
 double baseSalary = getSalary(); // still won't work
 return baseSalary + bonus;
}

The problem is that the call to getSalary simply calls itself, because the Manager class

has a getSalary method (namely, the method we are trying to implement). The

consequence is an infinite chain of calls to the same method, leading to a program

crash.

Chapter 5 Inheritance206

ptg16518469

We need to indicate that we want to call the getSalary method of the Employee super-

class, not the current class. You use the special keyword super for this purpose.

The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version of the

getSalary method for the Manager class:

public double getSalary()
{
 double baseSalary = super.getSalary();
 return baseSalary + bonus;
}

NOTE: Some people think of super as being analogous to the this reference.
However, that analogy is not quite accurate: super is not a reference to an object.
For example, you cannot assign the value super to another object variable. In-
stead, super is a special keyword that directs the compiler to invoke the superclass
method.

As you saw, a subclass can add fields, and it can add methods or override the

methods of the superclass. However, inheritance can never take away any fields

or methods.

C++ NOTE: Java uses the keyword super to call a superclass method. In C++,
you would use the name of the superclass with the :: operator instead. For ex-
ample, the getSalary method of the Manager class would call Employee::getSalary
instead of super.getSalary.

5.1.3 Subclass Constructors
To complete our example, let us supply a constructor.

public Manager(String name, double salary, int year, int month, int day)
{

super(name, salary, year, month, day);
 bonus = 0;
}

Here, the keyword super has a different meaning. The instruction

super(n, s, year, month, day);

2075.1 Classes, Superclasses, and Subclasses

ptg16518469

is shorthand for “call the constructor of the Employee superclass with n, s, year, month,

and day as parameters.”

Since the Manager constructor cannot access the private fields of the Employee class, it

must initialize them through a constructor. The constructor is invoked with the

special super syntax. The call using super must be the first statement in the

constructor for the subclass.

If the subclass constructor does not call a superclass constructor explicitly, the

no-argument constructor of the superclass is invoked. If the superclass does not

have a no-argument constructor and the subclass constructor does not call another

superclass constructor explicitly, the Java compiler reports an error.

NOTE: Recall that the this keyword has two meanings: to denote a reference
to the implicit parameter and to call another constructor of the same class.
Likewise, the super keyword has two meanings: to invoke a superclass method
and to invoke a superclass constructor. When used to invoke constructors, the
this and super keywords are closely related.The constructor calls can only occur
as the first statement in another constructor. The constructor parameters are
either passed to another constructor of the same class (this) or a constructor of
the superclass (super).

C++ NOTE: In a C++ constructor, you do not call super, but you use the initializer
list syntax to construct the superclass. The Manager constructor looks like this
in C++:

Manager::Manager(String name, double salary, int year, int month, int day) // C++
: Employee(name, salary, year, month, day)
{
 bonus = 0;
}

After you redefine the getSalary method for Manager objects, managers will

automatically have the bonus added to their salaries.

Here’s an example of this at work. We make a new manager and set the manager’s

bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss.setBonus(5000);

We make an array of three employees:

Employee[] staff = new Employee[3];

Chapter 5 Inheritance208

ptg16518469

We populate the array with a mix of managers and employees:

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:

for (Employee e : staff)
 System.out.println(e.getName() + " " + e.getSalary());

This loop prints the following data:

Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects.

However, staff[0] is a Manager object whose getSalary method adds the bonus to the

base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is Employee, but

the actual type of the object to which e refers can be either Employee or Manager.

When e refers to an Employee object, the call e.getSalary() calls the getSalary method of

the Employee class. However, when e refers to a Manager object, then the getSalary method

of the Manager class is called instead. The virtual machine knows about the actual

type of the object to which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple actual

types is called polymorphism. Automatically selecting the appropriate method at

runtime is called dynamic binding. We discuss both topics in more detail in this

chapter.

C++ NOTE: In C++, you need to declare a member function as virtual if you
want dynamic binding. In Java, dynamic binding is the default behavior; if you
do not want a method to be virtual, you tag it as final. (We discuss the final
keyword later in this chapter.)

Listing 5.1 contains a program that shows how the salary computation differs for

Employee (Listing 5.2) and Manager (Listing 5.3) objects.

2095.1 Classes, Superclasses, and Subclasses

ptg16518469

Listing 5.1 inheritance/ManagerTest.java

1 package inheritance;
 2

3 /**
4 * This program demonstrates inheritance.
5 * @version 1.21 2004-02-21
6 * @author Cay Horstmann
7 */
8 public class ManagerTest
9 {
10 public static void main(String[] args)
11 {
12 // construct a Manager object
13 Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
14 boss.setBonus(5000);
15

16 Employee[] staff = new Employee[3];
17

18 // fill the staff array with Manager and Employee objects
19

20 staff[0] = boss;
21 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
22 staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);
23

24 // print out information about all Employee objects
25 for (Employee e : staff)
26 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
27 }
28 }

Listing 5.2 inheritance/Employee.java

1 package inheritance;
 2

3 import java.time.*;
 4

5 public class Employee
6 {
 7 private String name;
 8 private double salary;
 9 private LocalDate hireDay;
10

11 public Employee(String name, double salary, int year, int month, int day)
12 {
13 this.name = name;
14 this.salary = salary;
15 hireDay = LocalDate.of(year, month, day);
16 }

Chapter 5 Inheritance210

ptg16518469

17

18 public String getName()
19 {
20 return name;
21 }
22

23 public double getSalary()
24 {
25 return salary;
26 }
27

28 public LocalDate getHireDay()
29 {
30 return hireDay;
31 }
32

33 public void raiseSalary(double byPercent)
34 {
35 double raise = salary * byPercent / 100;
36 salary += raise;
37 }
38 }

Listing 5.3 inheritance/Manager.java

1 package inheritance;
 2

3 public class Manager extends Employee
4 {
5 private double bonus;
 6

7 /**
8 * @param name the employee's name
9 * @param salary the salary
10 * @param year the hire year
11 * @param month the hire month
12 * @param day the hire day
13 */
14 public Manager(String name, double salary, int year, int month, int day)
15 {
16 super(name, salary, year, month, day);
17 bonus = 0;
18 }
19

(Continues)

2115.1 Classes, Superclasses, and Subclasses

ptg16518469

Listing 5.3 (Continued)

20 public double getSalary()
21 {
22 double baseSalary = super.getSalary();
23 return baseSalary + bonus;
24 }
25

26 public void setBonus(double b)
27 {
28 bonus = b;
29 }
30 }

5.1.4 Inheritance Hierarchies
Inheritance need not stop at deriving one layer of classes. We could have an

Executive class that extends Manager, for example. The collection of all classes extending

a common superclass is called an inheritance hierarchy, as shown in Figure 5.1. The

path from a particular class to its ancestors in the inheritance hierarchy is its

inheritance chain.

Figure 5.1 Employee inheritance hierarchy

Chapter 5 Inheritance212

ptg16518469

There is usually more than one chain of descent from a distant ancestor class.

You could form subclasses Programmer or Secretary that extend Employee, and they would

have nothing to do with the Manager class (or with each other). This process can

continue as long as is necessary.

C++ NOTE: In C++, a class can have multiple superclasses. Java does not
support multiple inheritance. For ways to recover much of the functionality of
multiple inheritance, see Section 6.1, “Interfaces,” on p. 288.

5.1.5 Polymorphism
A simple rule can help you decide whether or not inheritance is the right design

for your data. The “is–a” rule states that every object of the subclass is an object

of the superclass. For example, every manager is an employee. Thus, it makes

sense for the Manager class to be a subclass of the Employee class. Naturally, the opposite

is not true—not every employee is a manager.

Another way of formulating the “is–a” rule is the substitution principle. That

principle states that you can use a subclass object whenever the program expects

a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable

of type Employee can refer to an object of type Employee or to an object of any

subclass of the Employee class (such as Manager, Executive, Secretary, and so on).

We took advantage of this principle in Listing 5.1:

Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object. However, staff[0]
is considered to be only an Employee object by the compiler.

That means you can call

boss.setBonus(5000); // OK

but you can’t call

staff[0].setBonus(5000); // Error

2135.1 Classes, Superclasses, and Subclasses

ptg16518469

The declared type of staff[0] is Employee, and the setBonus method is not a method of

the Employee class.

However, you cannot assign a superclass reference to a subclass variable. For

example, it is not legal to make the assignment

Manager m = staff[i]; // Error

The reason is clear: Not all employees are managers. If this assignment were to

succeed and m were to refer to an Employee object that is not a manager, then it would

later be possible to call m.setBonus(. . .) and a runtime error would occur.

CAUTION: In Java, arrays of subclass references can be converted to arrays
of superclass references without a cast. For example, consider this array of
managers:

Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if managers[i] is a Manager, it is also an
Employee. But actually, something surprising is going on. Keep in mind that managers
and staff are references to the same array. Now consider the statement

staff[0] = new Employee("Harry Hacker", . . .);

The compiler will cheerfully allow this assignment. But staff[0] and managers[0]
are the same reference, so it looks as if we managed to smuggle a mere
employee into the management ranks. That would be very bad—calling
managers[0].setBonus(1000) would try to access a nonexistent instance field and
would corrupt neighboring memory.

To make sure no such corruption can occur, all arrays remember the element
type with which they were created, and they monitor that only compatible refer-
ences are stored into them. For example, the array created as new Manager[10]
remembers that it is an array of managers. Attempting to store an Employee
reference causes an ArrayStoreException.

5.1.6 Understanding Method Calls
It is important to understand exactly how a method call is applied to an object.

Let’s say we call x.f(args), and the implicit parameter x is declared to be an

object of class C. Here is what happens:

Chapter 5 Inheritance214

ptg16518469

1. The compiler looks at the declared type of the object and the method name.

Note that there may be multiple methods, all with the same name, f, but

with different parameter types. For example, there may be a method f(int)
and a method f(String). The compiler enumerates all methods called f in the

class C and all accessible methods called f in the superclasses of C. (Private

methods of the superclass are not accessible.)

Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the arguments that are supplied

in the method call. If among all the methods called f there is a unique method

whose parameter types are a best match for the supplied arguments, that

method is chosen to be called. This process is called overloading resolution.

For example, in a call x.f("Hello"), the compiler picks f(String) and not f(int).

The situation can get complex because of type conversions (int to double, Manager
to Employee, and so on). If the compiler cannot find any method with matching

parameter types or if multiple methods all match after applying conversions,

the compiler reports an error.

Now the compiler knows the name and parameter types of the method that

needs to be called.

NOTE: Recall that the name and parameter type list for a method is called the
method’s signature. For example, f(int) and f(String) are two methods with
the same name but different signatures. If you define a method in a subclass
that has the same signature as a superclass method, you override the superclass
method.

The return type is not part of the signature. However, when you override a
method, you need to keep the return type compatible. A subclass may change
the return type to a subtype of the original type. For example, suppose the Employee
class has a method

public Employee getBuddy() { . . . }

A manager would never want to have a lowly employee as a buddy. To reflect
that fact, the Manager subclass can override this method as

public Manager getBuddy() { . . . } // OK to change return type

We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the compiler knows

exactly which method to call. (The final modifier is explained in the next

section.) This is called static binding. Otherwise, the method to be called

2155.1 Classes, Superclasses, and Subclasses

ptg16518469

depends on the actual type of the implicit parameter, and dynamic binding

must be used at runtime. In our example, the compiler would generate an

instruction to call f(String) with dynamic binding.

4. When the program runs and uses dynamic binding to call a method, the

virtual machine must call the version of the method that is appropriate for

the actual type of the object to which x refers. Let’s say the actual type is D, a

subclass of C. If the class D defines a method f(String), that method is called.

If not, D’s superclass is searched for a method f(String), and so on.

It would be time consuming to carry out this search every time a method is

called. Therefore, the virtual machine precomputes for each class a method

table that lists all method signatures and the actual methods to be called.

When a method is actually called, the virtual machine simply makes a table

lookup. In our example, the virtual machine consults the method table for

the class D and looks up the method to call for f(String). That method may be

D.f(String) or X.f(String), where X is some superclass of D. There is one twist to

this scenario. If the call is super.f(param), then the compiler consults the method

table of the superclass of the implicit parameter.

Let’s look at this process in detail in the call e.getSalary() in Listing 5.1. The declared

type of e is Employee. The Employee class has a single method, called getSalary, with no

method parameters. Therefore, in this case, we don’t worry about overloading

resolution.

The getSalary method is not private, static, or final, so it is dynamically bound. The

virtual machine produces method tables for the Employee and Manager classes.

The Employee table shows that all methods are defined in the Employee class itself:

Employee:
 getName() -> Employee.getName()
 getSalary() -> Employee.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the Employee
class has a superclass Object from which it inherits a number of methods. We ignore

the Object methods for now.

The Manager method table is slightly different. Three methods are inherited, one

method is redefined, and one method is added.

Manager:
 getName() -> Employee.getName()
 getSalary() -> Manager.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)
 setBonus(double) -> Manager.setBonus(double)

Chapter 5 Inheritance216

ptg16518469

At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type of e.

That may be the table for Employee, Manager, or another subclass of Employee.

2. Then, the virtual machine looks up the defining class for the getSalary()
signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: It makes programs extensible

without the need for modifying existing code. Suppose a new class Executive is

added and there is the possibility that the variable e refers to an object of that

class. The code containing the call e.getSalary() need not be recompiled. The

Executive.getSalary() method is called automatically if e happens to refer to an object

of type Executive.

CAUTION: When you override a method, the subclass method must be at least
as visible as the superclass method. In particular, if the superclass method is
public, the subclass method must also be declared public. It is a common error
to accidentally omit the public specifier for the subclass method. The compiler
then complains that you try to supply a more restrictive access privilege.

5.1.7 Preventing Inheritance: Final Classes and Methods
Occasionally, you want to prevent someone from forming a subclass from one of

your classes. Classes that cannot be extended are called final classes, and you use

the final modifier in the definition of the class to indicate this. For example, suppose

we want to prevent others from subclassing the Executive class. Simply declare the

class using the final modifier, as follows:

public final class Executive extends Manager
{
 . . .
}

You can also make a specific method in a class final. If you do this, then no subclass

can override that method. (All methods in a final class are automatically final.)

For example:

public class Employee
{
 . . .
 public final String getName()
 {

2175.1 Classes, Superclasses, and Subclasses

ptg16518469

 return name;
 }
 . . .
}

NOTE: Recall that fields can also be declared as final. A final field cannot be
changed after the object has been constructed. However, if a class is declared
final, only the methods, not the fields, are automatically final.

There is only one good reason to make a method or class final: to make sure its

semantics cannot be changed in a subclass. For example, the getTime and setTime
methods of the Calendar class are final. This indicates that the designers of the Calendar
class have taken over responsibility for the conversion between the Date class and

the calendar state. No subclass should be allowed to mess up this arrangement.

Similarly, the String class is a final class. That means nobody can define a subclass

of String. In other words, if you have a String reference, you know it refers to a String
and nothing but a String.

Some programmers believe that you should declare all methods as final unless

you have a good reason to want polymorphism. In fact, in C++ and C#, methods

do not use polymorphism unless you specifically request it. That may be a bit

extreme, but we agree that it is a good idea to think carefully about final methods

and classes when you design a class hierarchy.

In the early days of Java, some programmers used the final keyword hoping to

avoid the overhead of dynamic binding. If a method is not overridden, and it is

short, then a compiler can optimize the method call away—a process called inlin-

ing. For example, inlining the call e.getName() replaces it with the field access e.name.

This is a worthwhile improvement—CPUs hate branching because it interferes

with their strategy of prefetching instructions while processing the current one.

However, if getName can be overridden in another class, then the compiler cannot

inline it because it has no way of knowing what the overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better job

than a traditional compiler. It knows exactly which classes extend a given class,

and it can check whether any class actually overrides a given method. If a method

is short, frequently called, and not actually overridden, the just-in-time compiler

can inline the method. What happens if the virtual machine loads another subclass

that overrides an inlined method? Then the optimizer must undo the inlining.

That takes time, but it happens rarely.

Chapter 5 Inheritance218

ptg16518469

5.1.8 Casting
Recall from Chapter 3 that the process of forcing a conversion from one type to

another is called casting. The Java programming language has a special notation

for casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer,

you may need to convert an object reference from one class to another. To actually

make a cast of an object reference, use a syntax similar to what you use for casting

a numeric expression. Surround the target class name with parentheses and place

it before the object reference you want to cast. For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an object

in its full capacity after its actual type has been temporarily forgotten. For example,

in the ManagerTest class, the staff array had to be an array of Employee objects because

some of its elements were regular employees. We would need to cast the manage-

rial elements of the array back to Manager to access any of its new variables. (Note

that in the sample code for the first section, we made a special effort to avoid the

cast. We initialized the boss variable with a Manager object before storing it in

the array. We needed the correct type to set the bonus of the manager.)

As you know, in Java every variable has a type. The type describes the kind of

object the variable refers to and what it can do. For example, staff[i] refers to an

Employee object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a value

in a variable. If you assign a subclass reference to a superclass variable, you are

promising less, and the compiler will simply let you do it. If you assign a super-

class reference to a subclass variable, you are promising more. Then you must

use a cast so that your promise can be checked at runtime.

What happens if you try to cast down an inheritance chain and are “lying” about

what an object contains?

Manager boss = (Manager) staff[1]; // Error

2195.1 Classes, Superclasses, and Subclasses

ptg16518469

When the program runs, the Java runtime system notices the broken promise and

generates a ClassCastException. If you do not catch the exception, your program ter-

minates. Thus, it is good programming practice to find out whether a cast will

succeed before attempting it. Simply use the instanceof operator. For example:

if (staff[1] instanceof Manager)
{
 boss = (Manager) staff[1];
 . . .
}

Finally, the compiler will not let you make a cast if there is no chance for the cast

to succeed. For example, the cast

String c = (String) staff[1];

is a compile-time error because String is not a subclass of Employee.

To sum up:

• You can cast only within an inheritance hierarchy.

• Use instanceof to check before casting from a superclass to a subclass.

NOTE: The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That makes
sense: null refers to no object, so it certainly doesn’t refer to an object of type C.

Actually, converting the type of an object by a cast is not usually a good idea. In

our example, you do not need to cast an Employee object to a Manager object for most

purposes. The getSalary method will work correctly on both objects of both classes.

The dynamic binding that makes polymorphism work locates the correct method

automatically.

The only reason to make the cast is to use a method that is unique to managers,

such as setBonus. If for some reason you find yourself wanting to call setBonus on

Employee objects, ask yourself whether this is an indication of a design flaw in the

superclass. It may make sense to redesign the superclass and add a setBonus method.

Remember, it takes only one uncaught ClassCastException to terminate your program.

In general, it is best to minimize the use of casts and the instanceof operator.

Chapter 5 Inheritance220

ptg16518469

C++ NOTE: Java uses the cast syntax from the “bad old days” of C, but it works
like the safe dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[1]; // Java

is the same as

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++

with one important difference. If the cast fails, it does not yield a null object but
throws an exception. In this sense, it is like a C++ cast of references. This is a
pain in the neck. In C++, you can take care of the type test and type conversion
in one operation.

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++
if (boss != NULL) . . .

In Java, you need to use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)
{
 Manager boss = (Manager) staff[1];
 . . .
}

5.1.9 Abstract Classes
As you move up the inheritance hierarchy, classes become more general and

probably more abstract. At some point, the ancestor class becomes so general that

you think of it more as a basis for other classes than as a class with specific in-

stances you want to use. Consider, for example, an extension of our Employee class

hierarchy. An employee is a person, and so is a student. Let us extend our

class hierarchy to include classes Person and Student. Figure 5.2 shows the inheritance

relationships between these classes.

Why bother with so high a level of abstraction? There are some attributes that

make sense for every person, such as name. Both students and employees have

names, and introducing a common superclass lets us factor out the getName method

to a higher level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a brief

description of the person, such as

an employee with a salary of $50,000.00
a student majoring in computer science

2215.1 Classes, Superclasses, and Subclasses

ptg16518469

Figure 5.2 Inheritance diagram for Person and its subclasses

It is easy to implement this method for the Employee and Student classes. But what

information can you provide in the Person class? The Person class knows nothing

about the person except the name. Of course, you could implement

Person.getDescription() to return an empty string. But there is a better way. If you use

the abstract keyword, you do not need to implement the method at all.

public abstract String getDescription();
 // no implementation required

For added clarity, a class with one or more abstract methods must itself be declared

abstract.

public abstract class Person
{
 . . .
 public abstract String getDescription();
}

In addition to abstract methods, abstract classes can have fields and concrete

methods. For example, the Person class stores the name of the person and has a

concrete method that returns it.

public abstract class Person
{
 private String name;

Chapter 5 Inheritance222

ptg16518469

 public Person(String name)
 {
 this.name = name;
 }

 public abstract String getDescription();

 public String getName()
 {
 return name;
 }
}

TIP: Some programmers don’t realize that abstract classes can have concrete
methods.You should always move common fields and methods (whether abstract
or not) to the superclass (whether abstract or not).

Abstract methods act as placeholders for methods that are implemented in the

subclasses. When you extend an abstract class, you have two choices. You can

leave some or all of the abstract methods undefined; then you must tag the subclass

as abstract as well. Or you can define all methods, and the subclass is no longer

abstract.

For example, we will define a Student class that extends the abstract Person class and

implements the getDescription method. None of the methods of the Student class are

abstract, so it does not need to be declared as an abstract class.

A class can even be declared as abstract though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no

objects of that class can be created. For example, the expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable

must refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of the

nonabstract subclass Student.

2235.1 Classes, Superclasses, and Subclasses

ptg16518469

C++ NOTE: In C++, an abstract method is called a pure virtual function and is
tagged with a trailing = 0, such as in

class Person // C++
{
public:
 virtual string getDescription() = 0;
 . . .
};

A C++ class is abstract if it has at least one pure virtual function. In C++, there
is no special keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract class Person:

public class Student extends Person
{
 private String major;

 public Student(String name, String major)
 {
 super(name);
 this.major = major;
 }

 public String getDescription()
 {
 return "a student majoring in " + major;
 }
}

The Student class defines the getDescription method. Therefore, all methods in the

Student class are concrete, and the class is no longer an abstract class.

The program shown in Listing 5.4 defines the abstract superclass Person (Listing 5.5)

and two concrete subclasses, Employee (Listing 5.6) and Student (Listing 5.7). We

fill an array of Person references with employee and student objects:

Person[] people = new Person[2];
people[0] = new Employee(. . .);
people[1] = new Student(. . .);

We then print the names and descriptions of these objects:

for (Person p : people)
 System.out.println(p.getName() + ", " + p.getDescription());

Chapter 5 Inheritance224

ptg16518469

Some people are baffled by the call

p.getDescription()

Isn’t this a call to an undefined method? Keep in mind that the variable p never

refers to a Person object because it is impossible to construct an object of the abstract

Person class. The variable p always refers to an object of a concrete subclass such

as Employee or Student. For these objects, the getDescription method is defined.

Could you have omitted the abstract method altogether from the Person superclass,

simply defining the getDescription methods in the Employee and Student subclasses? If

you did that, you wouldn’t have been able to invoke the getDescription method on

the variable p. The compiler ensures that you invoke only methods that are

declared in the class.

Abstract methods are an important concept in the Java programming language.

You will encounter them most commonly inside interfaces. For more information

about interfaces, turn to Chapter 6.

Listing 5.4 abstractClasses/PersonTest.java

1 package abstractClasses;
 2

3 /**
4 * This program demonstrates abstract classes.
5 * @version 1.01 2004-02-21
6 * @author Cay Horstmann
7 */
8 public class PersonTest
9 {
10 public static void main(String[] args)
11 {
12 Person[] people = new Person[2];
13

14 // fill the people array with Student and Employee objects
15 people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
16 people[1] = new Student("Maria Morris", "computer science");
17

18 // print out names and descriptions of all Person objects
19 for (Person p : people)
20 System.out.println(p.getName() + ", " + p.getDescription());
21 }
22 }

2255.1 Classes, Superclasses, and Subclasses

ptg16518469

Listing 5.5 abstractClasses/Person.java

1 package abstractClasses;
 2

3 public abstract class Person
4 {
 5 public abstract String getDescription();
 6 private String name;
 7

 8 public Person(String name)
 9 {
10 this.name = name;
11 }
12

13 public String getName()
14 {
15 return name;
16 }
17 }

Listing 5.6 abstractClasses/Employee.java

1 package abstractClasses;
 2

3 import java.time.*;
 4

5 public class Employee extends Person
6 {
 7 private double salary;
 8 private LocalDate hireDay;
 9

10 public Employee(String name, double salary, int year, int month, int day)
11 {
12 super(name);
13 this.salary = salary;
14 hireDay = LocalDate.of(year, month, day);
15 }
16

17 public double getSalary()
18 {
19 return salary;
20 }
21

22 public LocalDate getHireDay()
23 {
24 return hireDay;
25 }
26

Chapter 5 Inheritance226

ptg16518469

27 public String getDescription()
28 {
29 return String.format("an employee with a salary of $%.2f", salary);
30 }
31

32 public void raiseSalary(double byPercent)
33 {
34 double raise = salary * byPercent / 100;
35 salary += raise;
36 }
37 }

Listing 5.7 abstractClasses/Student.java

1 package abstractClasses;
 2

3 public class Student extends Person
4 {
5 private String major;
 6

7 /**
8 * @param nama the student's name
 9 * @param major the student's major
10 */
11 public Student(String name, String major)
12 {
13 // pass n to superclass constructor
14 super(name);
15 this.major = major;
16 }
17

18 public String getDescription()
19 {
20 return "a student majoring in " + major;
21 }
22 }

5.1.10 Protected Access
As you know, fields in a class are best tagged as private, and methods are usually

tagged as public. Any features declared private won’t be visible to other classes. As

we said at the beginning of this chapter, this is also true for subclasses: A subclass

cannot access the private fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only

or, less commonly, to allow subclass methods to access a superclass field. In that

case, you declare a class feature as protected. For example, if the superclass Employee

2275.1 Classes, Superclasses, and Subclasses

ptg16518469

declares the hireDay field as protected instead of private, then the Manager methods can

access it directly.

However, the Manager class methods can peek inside the hireDay field of Manager objects

only, not of other Employee objects. This restriction is made so that you can’t abuse

the protected mechanism by forming subclasses just to gain access to the protected

fields.

In practice, use protected fields with caution. Suppose your class is used by other

programmers and you designed it with protected fields. Unknown to you,

other programmers may inherit classes from your class and start accessing your

protected fields. In this case, you can no longer change the implementation of

your class without upsetting those programmers. That is against the spirit of

OOP, which encourages data encapsulation.

Protected methods make more sense. A class may declare a method as protected if

it is tricky to use. This indicates that the subclasses (which, presumably, know

their ancestor well) can be trusted to use the method correctly, but other classes

cannot.

A good example of this kind of method is the clone method of the Object class—see

Chapter 6 for more details.

C++ NOTE: As it happens, protected features in Java are visible to all subclasses
as well as to all other classes in the same package. This is slightly different from
the C++ meaning of protected, and it makes the notion of protected in Java even
less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

1. Visible to the class only (private).

2. Visible to the world (public).

3. Visible to the package and all subclasses (protected).

4. Visible to the package—the (unfortunate) default. No modifiers are needed.

5.2 Object: The Cosmic Superclass
The Object class is the ultimate ancestor—every class in Java extends Object.

However, you never have to write

public class Employee extends Object

Chapter 5 Inheritance228

ptg16518469

The ultimate superclass Object is taken for granted if no superclass is explicitly

mentioned. Since every class in Java extends Object, it is important to be familiar

with the services provided by the Object class. We go over the basic ones in this

chapter; consult the later chapters or view the online documentation for what

is not covered here. (Several methods of Object come up only when dealing with

concurrency—see Chapter 14 for more on threads.)

You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for arbitrary

values. To do anything specific with the value, you need to have some knowledge

about the original type and apply a cast:

Employee e = (Employee) obj;

In Java, only the values of primitive types (numbers, characters, and boolean values)

are not objects.

All array types, no matter whether they are arrays of objects or arrays of primitive

types, are class types that extend the Object class.

Employee[] staff = new Employee[10];
obj = staff; // OK
obj = new int[10]; // OK

C++ NOTE: In C++, there is no cosmic root class. However, every pointer can
be converted to a void* pointer.

5.2.1 The equals Method
The equals method in the Object class tests whether one object is considered equal

to another. The equals method, as implemented in the Object class, determines

whether two object references are identical. This is a pretty reasonable default—if

two objects are identical, they should certainly be equal. For quite a few classes,

nothing else is required. For example, it makes little sense to compare two PrintStream
objects for equality. However, you will often want to implement state-based

equality testing, in which two objects are considered equal when they have the

same state.

For example, let us consider two employees equal if they have the same name,

salary, and hire date. (In an actual employee database, it would be more sensible

to compare IDs instead. We use this example to demonstrate the mechanics of

implementing the equals method.)

2295.2 Object: The Cosmic Superclass

ptg16518469

public class Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 // a quick test to see if the objects are identical
 if (this == otherObject) return true;

 // must return false if the explicit parameter is null
 if (otherObject == null) return false;

 // if the classes don't match, they can't be equal
 if (getClass() != otherObject.getClass())

return false;

 // now we know otherObject is a non-null Employee
 Employee other = (Employee) otherObject;

 // test whether the fields have identical values
 return name.equals(other.name)

&& salary == other.salary
&& hireDay.equals(other.hireDay);

 }
}

The getClass method returns the class of an object—we discuss this method in detail

later in this chapter. In our test, two objects can only be equal when they belong

to the same class.

TIP: To guard against the possibility that name or hireDay are null, use the
Objects.equals method. The call Objects.equals(a, b) returns true if both arguments
are null, false if only one is null, and calls a.equals(b) otherwise.With that method,
the last statement of the Employee.equals method becomes

return Objects.equals(name, other.name)
 && salary == other.salary
 && Object.equals(hireDay, other.hireDay);

When you define the equals method for a subclass, first call equals on the superclass.

If that test doesn’t pass, then the objects can’t be equal. If the superclass fields are

equal, you are ready to compare the instance fields of the subclass.

public class Manager extends Employee
{
 . . .
 public boolean equals(Object otherObject)
 {

Chapter 5 Inheritance230

ptg16518469

 if (!super.equals(otherObject)) return false;
 // super.equals checked that this and otherObject belong to the same class
 Manager other = (Manager) otherObject;
 return bonus == other.bonus;
 }
}

5.2.2 Equality Testing and Inheritance
How should the equals method behave if the implicit and explicit parameters don’t

belong to the same class? This has been an area of some controversy. In the pre-

ceding example, the equals method returns false if the classes don’t match exactly.

But many programmers use an instanceof test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a subclass. How-

ever, this approach can get you into trouble. Here is why. The Java Language

Specification requires that the equals method has the following properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return true.

2. It is symmetric: For any references x and y, x.equals(y) should return true if and

only if y.equals(x) returns true.

3. It is transitive: For any references x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.

4. It is consistent: If the objects to which x and y refer haven’t changed, then

repeated calls to x.equals(y) return the same value.

5. For any non-null reference x, x.equals(null) should return false.

These rules are certainly reasonable. You wouldn’t want a library implementor

to ponder whether to call x.equals(y) or y.equals(x) when locating an element in a

data structure.

However, the symmetry rule has subtle consequences when the parameters belong

to different classes. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which happen to have

the same name, salary, and hire date. If Employee.equals uses an instanceof test, the call

returns true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return false or

to throw an exception.

2315.2 Object: The Cosmic Superclass

ptg16518469

That leaves the Manager class in a bind. Its equals method must be willing to compare

itself to any Employee, without taking manager-specific information into account!

All of a sudden, the instanceof test looks less attractive.

Some authors have gone on record that the getClass test is wrong because it violates

the substitution principle. A commonly cited example is the equals method in the

AbstractSet class that tests whether two sets have the same elements. The AbstractSet
class has two concrete subclasses, TreeSet and HashSet, that use different algorithms

for locating set elements. You really want to be able to compare any two sets, no

matter how they are implemented.

However, the set example is rather specialized. It would make sense to declare

AbstractSet.equals as final, because nobody should redefine the semantics of set

equality. (The method is not actually final. This allows a subclass to implement

a more efficient algorithm for the equality test.)

The way we see it, there are two distinct scenarios:

• If subclasses can have their own notion of equality, then the symmetry

requirement forces you to use the getClass test.

• If the notion of equality is fixed in the superclass, then you can use the instanceof
test and allow objects of different subclasses to be equal to one another.

In the example with employees and managers, we consider two objects to be

equal when they have matching fields. If we have two Manager objects with the

same name, salary, and hire date, but with different bonuses, we want them to

be different. Therefore, we used the getClass test.

But suppose we used an employee ID for equality testing. This notion of equality

makes sense for all subclasses. Then we could use the instanceof test, and we should

have declared Employee.equals as final.

NOTE: The standard Java library contains over 150 implementations of equals
methods, with a mishmash of using instanceof, calling getClass, catching a
ClassCastException, or doing nothing at all. Check out the API documentation of
the java.sql.Timestamp class, where the implementors note with some embarrass-
ment that they have painted themselves in a corner. The Timestamp class inherits
from java.util.Date, whose equals method uses an instanceof test, and it is
impossible to override equals to be both symmetric and accurate.

Chapter 5 Inheritance232

ptg16518469

Here is a recipe for writing the perfect equals method:

1. Name the explicit parameter otherObject—later, you will need to cast it to

another variable that you should call other.

2. Test whether this happens to be identical to otherObject:

if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case. It

is much cheaper to check for identity than to compare the fields.

3. Test whether otherObject is null and return false if it is. This test is required.

if (otherObject == null) return false;

4. Compare the classes of this and otherObject. If the semantics of equals can change

in subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;

If the same semantics holds for all subclasses, you can use an instanceof test:

if (!(otherObject instanceof ClassName)) return false;

5. Cast otherObject to a variable of your class type:

ClassName other = (ClassName) otherObject

6. Now compare the fields, as required by your notion of equality. Use == for

primitive type fields, Objects.equals for object fields. Return true if all fields

match, false otherwise.

return field1 == other.field1
 && Objects.equals(field2, other.field2)
 && . . .;

If you redefine equals in a subclass, include a call to super.equals(other).

TIP: If you have fields of array type, you can use the static Arrays.equals method
to check that the corresponding array elements are equal.

2335.2 Object: The Cosmic Superclass

ptg16518469

CAUTION: Here is a common mistake when implementing the equals method.
Can you spot the problem?

public class Employee
{
 public boolean equals(Employee other)
 {
 return other != null

&& getClass() == other.getClass()
&& Objects.equals(name, other.name)
&& salary == other.salary
&& Objects.equals(hireDay, other.hireDay);

 }
 . . .
}

This method declares the explicit parameter type as Employee. As a result, it does
not override the equals method of the Object class but defines a completely
unrelated method.

You can protect yourself against this type of error by tagging methods that are
intended to override superclass methods with @Override:

@Override public boolean equals(Object other)

If you made a mistake and are defining a new method, the compiler reports an
error. For example, suppose you add the following declaration to the Employee
class:

@Override public boolean equals(Employee other)

An error is reported because this method doesn’t override any method from the
Object superclass.

java.util.Arrays 1.2

• static boolean equals(type[] a, type[] b) 5.0

returns true if the arrays have equal lengths and equal elements in corresponding

positions. The arrays can have component types Object, int, long, short, char, byte,

boolean, float, or double.

Chapter 5 Inheritance234

ptg16518469

java.util.Objects 7

• static boolean equals(Object a, Object b)

returns true if a and b are both null, false if exactly one of them is null, and a.equals(b)
otherwise.

5.2.3 The hashCode Method
A hash code is an integer that is derived from an object. Hash codes should be

scrambled—if x and y are two distinct objects, there should be a high probability

that x.hashCode() and y.hashCode() are different. Table 5.1 lists a few examples of hash

codes that result from the hashCode method of the String class.

Table 5.1 Hash Codes Resulting from the hashCode Method

Hash CodeString

69609650Hello

69496448Harry

-2141031506Hacker

The String class uses the following algorithm to compute the hash code:

int hash = 0;
for (int i = 0; i < length(); i++)
 hash = 31 * hash + charAt(i);

The hashCode method is defined in the Object class. Therefore, every object has a de-

fault hash code. That hash code is derived from the object’s memory address.

Consider this example:

String s = "Ok";
StringBuilder sb = new StringBuilder(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
String t = new String("Ok");
StringBuilder tb = new StringBuilder(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 5.2 shows the result.

2355.2 Object: The Cosmic Superclass

ptg16518469

Table 5.2 Hash Codes of Strings and String Builders

Hash CodeObject

2556s

20526976sb

2556t

20527144tb

Note that the strings s and t have the same hash code because, for strings, the

hash codes are derived from their contents. The string builders sb and tb have

different hash codes because no hashCode method has been defined for the StringBuilder
class and the default hashCode method in the Object class derives the hash code from

the object’s memory address.

If you redefine the equals method, you will also need to redefine the hashCode method

for objects that users might insert into a hash table. (We discuss hash tables in

Chapter 9.)

The hashCode method should return an integer (which can be negative). Just combine

the hash codes of the instance fields so that the hash codes for different objects

are likely to be widely scattered.

For example, here is a hashCode method for the Employee class:

public class Employee
{
 public int hashCode()
 {
 return 7 * name.hashCode()

+ 11 * new Double(salary).hashCode()
+ 13 * hireDay.hashCode();

 }
 . . .
}

However, you can do better. First, use the null-safe method Objects.hashCode. It returns

0 if its argument is null and the result of calling hashCode on the argument otherwise.

Also, use the static Double.hashCode method to avoid creating a Double object:

public int hashCode()
{
 return 7 * Objects.hashCode(name)

+ 11 * Double.hashCode(salary)
+ 13 * Objects.hashCode(hireDay);

}

Chapter 5 Inheritance236

ptg16518469

Even better, when you need to combine multiple hash values, call Objects.hash with

all of them. It will call Objects.hashCode for each argument and combine the values.

Then the Employee.hashCode method is simply

public int hashCode()
{
 return Objects.hash(name, salary, hireDay);
}

Your definitions of equals and hashCode must be compatible: If x.equals(y) is true, then

x.hashCode() must return the same value as y.hashCode(). For example, if you define

Employee.equals to compare employee IDs, then the hashCode method needs to hash the

IDs, not employee names or memory addresses.

TIP: If you have fields of an array type, you can use the static Arrays.hashCode
method to compute a hash code composed of the hash codes of the array
elements.

java.lang.Object 1.0

• int hashCode()

returns a hash code for this object. A hash code can be any integer, positive or

negative. Equal objects need to return identical hash codes.

java.util.Objects 7

• static int hash(Object... objects)

returns a hash code that is combined from the hash codes of all supplied objects.

• static int hashCode(Object a)

returns 0 if a is null or a.hashCode() otherwise.

java.lang.(Integer|Long|Short|Byte|Double|Float|Character|Boolean) 1.0

• static int hashCode((int|long|short|byte|double|float|char|boolean) value) 8

returns the hash code of the given value.

2375.2 Object: The Cosmic Superclass

ptg16518469

java.util.Arrays 1.2

• static int hashCode(type[] a) 5.0

computes the hash code of the array a, which can have component type Object, int,

long, short, char, byte, boolean, float, or double.

5.2.4 The toString Method
Another important method in Object is the toString method that returns a string

representing the value of this object. Here is a typical example. The toString method

of the Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, then

the field values enclosed in square brackets. Here is an implementation of the

toString method for the Employee class:

public String toString()
{
 return "Employee[name=" + name

+ ",salary=" + salary
+ ",hireDay=" + hireDay
+ "]";

}

Actually, you can do a little better. Instead of hardwiring the class name into the

toString method, call getClass().getName() to obtain a string with the class name.

public String toString()
{
 return getClass().getName()

+ "[name=" + name
+ ",salary=" + salary
+ ",hireDay=" + hireDay
+ "]";

}

Such toString method will also work for subclasses.

Of course, the subclass programmer should define its own toString method and

add the subclass fields. If the superclass uses getClass().getName(), then the subclass

can simply call super.toString(). For example, here is a toString method for the Manager
class:

Chapter 5 Inheritance238

ptg16518469

public class Manager extends Employee
{
 . . .
 public String toString()
 {
 return super.toString()

+ "[bonus=" + bonus
+ "]";

 }
}

Now a Manager object is printed as

Manager[name=...,salary=...,hireDay=...][bonus=...]

The toString method is ubiquitous for an important reason: Whenever an object is

concatenated with a string by the “+” operator, the Java compiler automatically

invokes the toString method to obtain a string representation of the object. For

example:

Point p = new Point(10, 20);
String message = "The current position is " + p;
 // automatically invokes p.toString()

TIP: Instead of writing x.toString(), you can write "" + x. This statement concate-
nates the empty string with the string representation of x that is exactly
x.toString(). Unlike toString, this statement even works if x is of primitive type.

If x is any object and you call

System.out.println(x);

then the println method simply calls x.toString() and prints the resulting string.

The Object class defines the toString method to print the class name and the hash

code of the object. For example, the call

System.out.println(System.out)

produces an output that looks like this:

java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn’t bother to override

the toString method.

2395.2 Object: The Cosmic Superclass

ptg16518469

CAUTION: Annoyingly, arrays inherit the toString method from Object, with the
added twist that the array type is printed in an archaic format. For example,

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + luckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.) The
remedy is to call the static Arrays.toString method instead. The code

String s = Arrays.toString(luckyNumbers);

yields the string "[2, 3, 5, 7, 11, 13]".

To correctly print multidimensional arrays (that is, arrays of arrays), use
Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the standard class

library define the toString method so that you can get useful information about

the state of an object. This is particularly useful in logging messages like this:

System.out.println("Current position = " + position);

As we explain in Chapter 7, an even better solution is to use an object of the Logger
class and call

Logger.global.info("Current position = " + position);

TIP: We strongly recommend that you add a toString method to each class that
you write.You, as well as other programmers who use your classes, will be
grateful for the logging support.

The program in Listing 5.8 implements the equals, hashCode, and toString methods for

the classes Employee (Listing 5.9) and Manager (Listing 5.10).

Listing 5.8 equals/EqualsTest.java

1 package equals;
 2

3 /**
4 * This program demonstrates the equals method.
5 * @version 1.12 2012-01-26
6 * @author Cay Horstmann
7 */
8 public class EqualsTest
9 {

Chapter 5 Inheritance240

ptg16518469

10 public static void main(String[] args)
11 {
12 Employee alice1 = new Employee("Alice Adams", 75000, 1987, 12, 15);
13 Employee alice2 = alice1;
14 Employee alice3 = new Employee("Alice Adams", 75000, 1987, 12, 15);
15 Employee bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);
16

17 System.out.println("alice1 == alice2: " + (alice1 == alice2));
18

19 System.out.println("alice1 == alice3: " + (alice1 == alice3));
20

21 System.out.println("alice1.equals(alice3): " + alice1.equals(alice3));
22

23 System.out.println("alice1.equals(bob): " + alice1.equals(bob));
24

25 System.out.println("bob.toString(): " + bob);
26

27 Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
28 Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
29 boss.setBonus(5000);
30 System.out.println("boss.toString(): " + boss);
31 System.out.println("carl.equals(boss): " + carl.equals(boss));
32 System.out.println("alice1.hashCode(): " + alice1.hashCode());
33 System.out.println("alice3.hashCode(): " + alice3.hashCode());
34 System.out.println("bob.hashCode(): " + bob.hashCode());
35 System.out.println("carl.hashCode(): " + carl.hashCode());
36 }
37 }

Listing 5.9 equals/Employee.java

1 package equals;
 2

3 import java.time.*;
4 import java.util.Objects;
 5

6 public class Employee
7 {
 8 private String name;
 9 private double salary;
10 private LocalDate hireDay;
11

12 public Employee(String name, double salary, int year, int month, int day)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = LocalDate.of(year, month, day);
17 }

(Continues)

2415.2 Object: The Cosmic Superclass

ptg16518469

Listing 5.9 (Continued)

18

19 public String getName()
20 {
21 return name;
22 }
23

24 public double getSalary()
25 {
26 return salary;
27 }
28

29 public LocalDate getHireDay()
30 {
31 return hireDay;
32 }
33

34 public void raiseSalary(double byPercent)
35 {
36 double raise = salary * byPercent / 100;
37 salary += raise;
38 }
39

40 public boolean equals(Object otherObject)
41 {
42 // a quick test to see if the objects are identical
43 if (this == otherObject) return true;
44

45 // must return false if the explicit parameter is null
46 if (otherObject == null) return false;
47

48 // if the classes don't match, they can't be equal
49 if (getClass() != otherObject.getClass()) return false;
50

51 // now we know otherObject is a non-null Employee
52 Employee other = (Employee) otherObject;
53

54 // test whether the fields have identical values
55 return Objects.equals(name, other.name) && salary == other.salary
56 && Objects.equals(hireDay, other.hireDay);
57 }
58

59 public int hashCode()
60 {
61 return Objects.hash(name, salary, hireDay);
62 }
63

Chapter 5 Inheritance242

ptg16518469

64 public String toString()
65 {
66 return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay
67 + "]";
68 }
69 }

Listing 5.10 equals/Manager.java

1 package equals;
 2

3 public class Manager extends Employee
4 {
 5 private double bonus;
 6

 7 public Manager(String name, double salary, int year, int month, int day)
 8 {
 9 super(name, salary, year, month, day);
10 bonus = 0;
11 }
12

13 public double getSalary()
14 {
15 double baseSalary = super.getSalary();
16 return baseSalary + bonus;
17 }
18

19 public void setBonus(double bonus)
20 {
21 this.bonus = bonus;
22 }
23

24 public boolean equals(Object otherObject)
25 {
26 if (!super.equals(otherObject)) return false;
27 Manager other = (Manager) otherObject;
28 // super.equals checked that this and other belong to the same class
29 return bonus == other.bonus;
30 }
31

32 public int hashCode()
33 {
34 return super.hashCode() + 17 * new Double(bonus).hashCode();
35 }
36
37 public String toString()
38 {
39 return super.toString() + "[bonus=" + bonus + "]";
40 }
41 }

2435.2 Object: The Cosmic Superclass

ptg16518469

java.lang.Object 1.0

• Class getClass()

returns a class object that contains information about the object. As you will see

later in this chapter, Java has a runtime representation for classes that is encapsulated

in the Class class.

• boolean equals(Object otherObject)

compares two objects for equality; returns true if the objects point to the same area

of memory, and false otherwise. You should override this method in your own

classes.

• String toString()

returns a string that represents the value of this object. You should override this

method in your own classes.

java.lang.Class 1.0

• String getName()

returns the name of this class.

• Class getSuperclass()

returns the superclass of this class as a Class object.

5.3 Generic Array Lists
In many programming languages—in particular, in C++—you have to fix the

sizes of all arrays at compile time. Programmers hate this because it forces them

into uncomfortable trade-offs. How many employees will be in a department?

Surely no more than 100. What if there is a humongous department with 150

employees? Do we want to waste 90 entries for every department with just

10 employees?

In Java, the situation is much better. You can set the size of an array at runtime.

int actualSize = . . .;
Employee[] staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically

modifying arrays at runtime. Once you set the array size, you cannot change it

easily. Instead, in Java you can deal with this common situation by using another

Java class, called ArrayList. The ArrayList class is similar to an array, but it

Chapter 5 Inheritance244

ptg16518469

automatically adjusts its capacity as you add and remove elements, without any

additional code.

ArrayList is a generic class with a type parameter. To specify the type of the element

objects that the array list holds, you append a class name enclosed in angle

brackets, such as ArrayList<Employee>. You will see in Chapter 8 how to define your

own generic class, but you don’t need to know any of those technicalities to use

the ArrayList type.

Here we declare and construct an array list that holds Employee objects:

ArrayList<Employee> staff = new ArrayList<Employee>();

It is a bit tedious that the type parameter Employee is used on both sides. As of Java

SE 7, you can omit the type parameter on the right-hand side:

ArrayList<Employee> staff = new ArrayList<>();

This is called the “diamond” syntax because the empty brackets <> resemble a

diamond. Use the diamond syntax together with the new operator. The compiler

checks what happens to the new value. If it is assigned to a variable, passed into

a method, or returned from a method, then the compiler checks the generic type

of the variable, parameter, or method. It then places that type into the <>. In our

example, the new ArrayList<>() is assigned to a variable of type ArrayList<Employee>.

Therefore, the generic type is Employee.

NOTE: Before Java SE 5.0, there were no generic classes. Instead, there was
a single ArrayList class, a one-size-fits-all collection that holds elements of type
Object.You can still use ArrayList without a <. . .> suffix. It is considered a “raw”
type, with the type parameter erased.

NOTE: In even older versions of Java, programmers used the Vector class for
dynamic arrays. However, the ArrayList class is more efficient, and there is no
longer any good reason to use the Vector class.

Use the add method to add new elements to an array list. For example, here is how

you populate an array list with employee objects:

staff.add(new Employee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that array

will run out of space. This is where array lists work their magic: If you call add and

the internal array is full, the array list automatically creates a bigger array and

copies all the objects from the smaller to the bigger array.

2455.3 Generic Array Lists

ptg16518469

If you already know, or have a good guess, how many elements you want to

store, call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls to add
will not involve any costly reallocation.

You can also pass an initial capacity to the ArrayList constructor:

ArrayList<Employee> staff = new ArrayList<>(100);

CAUTION: Allocating an array list as

new ArrayList<>(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and the
size of an array. If you allocate an array with 100 entries, then the array has
100 slots, ready for use. An array list with a capacity of 100 elements has the
potential of holding 100 elements (and, in fact, more than 100, at the cost of
additional reallocations)—but at the beginning, even after its initial construction,
an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For

example,

staff.size()

returns the current number of elements in the staff array list. This is the

equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can

call the trimToSize method. This method adjusts the size of the memory block to

use exactly as much storage space as is required to hold the current number of

elements. The garbage collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the block

again, which takes time. You should only use trimToSize when you are sure you

won’t add any more elements to the array list.

Chapter 5 Inheritance246

ptg16518469

C++ NOTE: The ArrayList class is similar to the C++ vector template. Both ArrayList
and vector are generic types. But the C++ vector template overloads the [] oper-
ator for convenient element access. Java does not have operator overloading,
so it must use explicit method calls instead. Moreover, C++ vectors are copied
by value. If a and b are two vectors, then the assignment a = b makes a into a
new vector with the same length as b, and all elements are copied from b to a.
The same assignment in Java makes both a and b refer to the same array list.

java.util.ArrayList<E> 1.2

• ArrayList<E>()

constructs an empty array list.

• ArrayList<E>(int initialCapacity)

constructs an empty array list with the specified capacity.

the initial storage capacity of the array listinitialCapacityParameters:

• boolean add(E obj)

appends an element at the end of the array list. Always returns true.

the element to be addedobjParameters:

• int size()

returns the number of elements currently stored in the array list. (Of course, this is

never larger than the array list’s capacity.)

• void ensureCapacity(int capacity)

ensures that the array list has the capacity to store the given number of elements

without reallocating its internal storage array.

the desired storage capacitycapacityParameters:

• void trimToSize()

reduces the storage capacity of the array list to its current size.

5.3.1 Accessing Array List Elements
Unfortunately, nothing comes for free. The automatic growth convenience that

array lists give requires a more complicated syntax for accessing the elements.

The reason is that the ArrayList class is not a part of the Java programming language;

it is just a utility class programmed by someone and supplied in the standard

library.

Instead of the pleasant [] syntax to access or change the element of an array, you

use the get and set methods.

2475.3 Generic Array Lists

ptg16518469

For example, to set the ith element, you use

staff.set(i, harry);

This is equivalent to

a[i] = harry;

for an array a. (As with arrays, the index values are zero based.)

CAUTION: Do not call list.set(i, x) until the size of the array list is larger than
i. For example, the following code is wrong:

ArrayList<Employee> list = new ArrayList<>(100); // capacity 100, size 0
list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only to replace
a previously added element.

To get an array list element, use

Employee e = staff.get(i);

This is equivalent to

Employee e = a[i];

NOTE: When there were no generic classes, the get method of the raw ArrayList
class had no choice but to return an Object. Consequently, callers of get had to
cast the returned value to the desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods accept objects
of any type. A call

staff.set(i, "Harry Hacker");

compiles without so much as a warning, and you run into grief only when you
retrieve the object and try to cast it. If you use an ArrayList<Employee> instead, the
compiler will detect this error.

Chapter 5 Inheritance248

ptg16518469

You can sometimes get the best of both worlds—flexible growth and convenient

element access—with the following trick. First, make an array list and add all

the elements:

ArrayList<X> list = new ArrayList<>();
while (. . .)
{
 x = . . .;
 list.add(x);
}

When you are done, use the toArray method to copy the elements into an array:

X[] a = new X[list.size()];
list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the add
method with an index parameter:

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new

entry. If the new size of the array list after the insertion exceeds the capacity, the

array list reallocates its storage array.

Similarly, you can remove an element from the middle of an array list:

Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is reduced

by one.

Inserting and removing elements is not terribly efficient. It is probably not worth

worrying about for small array lists. But if you store many elements and frequently

insert and remove in the middle of a collection, consider using a linked list instead.

We explain how to program with linked lists in Chapter 9.

You can use the “for each” loop to traverse the contents of an array list:

for (Employee e : staff)
do something with e

This loop has the same effect as

for (int i = 0; i < staff.size(); i++)
{
 Employee e = staff.get(i);

do something with e
}

2495.3 Generic Array Lists

ptg16518469

Listing 5.11 is a modification of the EmployeeTest program of Chapter 4. The Employee[]
array is replaced by an ArrayList<Employee>. Note the following changes:

• You don’t have to specify the array size.

• You use add to add as many elements as you like.

• You use size() instead of length to count the number of elements.

• You use a.get(i) instead of a[i] to access an element.

Listing 5.11 arrayList/ArrayListTest.java

1 package arrayList;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates the ArrayList class.
7 * @version 1.11 2012-01-26
8 * @author Cay Horstmann
9 */
10 public class ArrayListTest
11 {
12 public static void main(String[] args)
13 {
14 // fill the staff array list with three Employee objects
15 ArrayList<Employee> staff = new ArrayList<>();
16

17 staff.add(new Employee("Carl Cracker", 75000, 1987, 12, 15));
18 staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));
19 staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));
20

21 // raise everyone's salary by 5%
22 for (Employee e : staff)
23 e.raiseSalary(5);
24

25 // print out information about all Employee objects
26 for (Employee e : staff)
27 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
28 + e.getHireDay());
29 }
30 }

Chapter 5 Inheritance250

ptg16518469

java.util.ArrayList<E> 1.2

• void set(int index, E obj)

puts a value in the array list at the specified index, overwriting the previous contents.

the position (must be between 0 and size() - 1)indexParameters:

the new valueobj

• E get(int index)

gets the value stored at a specified index.

the index of the element to get (must be between 0

and size() - 1)

indexParameters:

• void add(int index, E obj)

shifts up elements to insert an element.

the insertion position (must be between 0 and size())indexParameters:

the new elementobj

• E remove(int index)

removes an element and shifts down all elements above it. The removed element

is returned.

the position of the element to be removed (must be

between 0 and size() - 1)

indexParameters:

5.3.2 Compatibility between Typed and Raw Array Lists
In your own code, you will always want to use type parameters for added

safety. In this section, you will see how to interoperate with legacy code that does

not use type parameters.

Suppose you have the following legacy class:

public class EmployeeDB
{
 public void update(ArrayList list) { . . . }
 public ArrayList find(String query) { . . . }
}

You can pass a typed array list to the update method without any casts.

ArrayList<Employee> staff = . . .;
employeeDB.update(staff);

The staff object is simply passed to the update method.

2515.3 Generic Array Lists

ptg16518469

CAUTION: Even though you get no error or warning from the compiler, this call
is not completely safe. The update method might add elements into the array list
that are not of type Employee. When these elements are retrieved, an exception
occurs. This sounds scary, but if you think about it, the behavior is simply as it
was before generics were added to Java. The integrity of the virtual machine is
never jeopardized. In this situation, you do not lose security, but you also do not
benefit from the compile-time checks.

Conversely, when you assign a raw ArrayList to a typed one, you get a warning.

ArrayList<Employee> result = employeeDB.find(query); // yields warning

NOTE: To see the text of the warning, compile with the option -Xlint:unchecked.

Using a cast does not make the warning go away.

ArrayList<Employee> result = (ArrayList<Employee>) employeeDB.find(query);
 // yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic types in

Java. For compatibility, the compiler translates all typed array lists into raw

ArrayList objects after checking that the type rules were not violated. In a running

program, all array lists are the same—there are no type parameters in the virtual

machine. Thus, the casts (ArrayList) and (ArrayList<Employee>) carry out identical runtime

checks.

There isn’t much you can do about that situation. When you interact with legacy

code, study the compiler warnings and satisfy yourself that the warnings are not

serious.

Once you are satisfied, you can tag the variable that receives the cast with the

@SuppressWarnings("unchecked") annotation, like this:

@SuppressWarnings("unchecked") ArrayList<Employee> result =
 (ArrayList<Employee>) employeeDB.find(query); // yields another warning

5.4 Object Wrappers and Autoboxing
Occasionally, you need to convert a primitive type like int to an object. All prim-

itive types have class counterparts. For example, a class Integer corresponds to the

primitive type int. These kinds of classes are usually called wrappers. The wrapper

Chapter 5 Inheritance252

ptg16518469

classes have obvious names: Integer, Long, Float, Double, Short, Byte, Character, and Boolean.

(The first six inherit from the common superclass Number.) The wrapper classes are

immutable—you cannot change a wrapped value after the wrapper has been

constructed. They are also final, so you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type parameter inside

the angle brackets cannot be a primitive type. It is not possible to form an

ArrayList<int>. Here, the Integer wrapper class comes in. It is OK to declare an array

list of Integer objects.

ArrayList<Integer> list = new ArrayList<>();

CAUTION: An ArrayList<Integer> is far less efficient than an int[] array because
each value is separately wrapped inside an object.You would only want to use
this construct for small collections when programmer convenience is more
important than efficiency.

Fortunately, there is a useful feature that makes it easy to add an element of type

int to an ArrayList<Integer>. The call

list.add(3);

is automatically translated to

list.add(Integer.valueOf(3));

This conversion is called autoboxing.

NOTE: You might think that autowrapping would be more consistent, but the
“boxing” metaphor was taken from C#.

Conversely, when you assign an Integer object to an int value, it is automatically

unboxed. That is, the compiler translates

int n = list.get(i);

into

int n = list.get(i).intValue();

Automatic boxing and unboxing even works with arithmetic expressions. For

example, you can apply the increment operator to a wrapper reference:

Integer n = 3;
n++;

2535.4 Object Wrappers and Autoboxing

ptg16518469

The compiler automatically inserts instructions to unbox the object, increment

the resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers

are one and the same. There is just one point in which they differ considerably:

identity. As you know, the == operator, applied to wrapper objects, only tests

whether the objects have identical memory locations. The following comparison

would therefore probably fail:

Integer a = 1000;
Integer b = 1000;
if (a == b) . . .

However, a Java implementation may, if it chooses, wrap commonly occurring

values into identical objects, and thus the comparison might succeed. This ambi-

guity is not what you want. The remedy is to call the equals method when

comparing wrapper objects.

NOTE: The autoboxing specification requires that boolean, byte, char <= 127, short,
and int between -128 and 127 are wrapped into fixed objects. For example, if a
and b had been initialized with 100 in the preceding example, then the comparison
would have had to succeed.

There are a couple of other subtleties about autoboxing. First off, since

wrapper class references can be null, it is possible for autounboxing to throw a

NullPointerException:

Integer n = null;
System.out.println(2 * n); // Throws NullPointerException

Also, if you mix Integer and Double types in a conditional expression, then the Integer
value is unboxed, promoted to double, and boxed into a Double:

Integer n = 1;
Double x = 2.0;
System.out.println(true ? n : x); // Prints 1.0

Finally, let us emphasize that boxing and unboxing is a courtesy of the compiler,

not the virtual machine. The compiler inserts the necessary calls when it generates

the bytecodes of a class. The virtual machine simply executes those bytecodes.

You will often see the number wrappers for another reason. The designers of Java

found the wrappers a convenient place to put certain basic methods, such as

those for converting strings of digits to numbers.

To convert a string to an integer, use the following statement:

Chapter 5 Inheritance254

ptg16518469

int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method. But the

Integer class was a good place to put it.

The API notes show some of the more important methods of the Integer class. The

other number classes implement corresponding methods.

CAUTION: Some people think that the wrapper classes can be used to implement
methods that can modify numeric parameters. However, that is not correct. Recall
from Chapter 4 that it is impossible to write a Java method that increments an
integer parameter because parameters to Java methods are always passed by
value.

public static void triple(int x) // won't work
{
 x = 3 * x; // modifies local variable
}

Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) // won't work
{
 . . .
}

The problem is that Integer objects are immutable: The information contained
inside the wrapper can’t change.You cannot use these wrapper classes to create
a method that modifies numeric parameters.

If you do want to write a method to change numeric parameters, you can use
one of the holder types defined in the org.omg.CORBA package:IntHolder, BooleanHolder,
and so on. Each holder type has a public (!) field value through which you can
access the stored value.

public static void triple(IntHolder x)
{
 x.value = 3 * x.value;
}

java.lang.Integer 1.0

• int intValue()

returns the value of this Integer object as an int (overrides the intValue method in

the Number class).

(Continues)

2555.4 Object Wrappers and Autoboxing

ptg16518469

java.lang.Integer 1.0 (Continued)

• static String toString(int i)

returns a new String object representing the number i in base 10.

• static String toString(int i, int radix)

lets you return a representation of the number i in the base specified by the radix
parameter.

• static int parseInt(String s)
• static int parseInt(String s, int radix)

returns the integer whose digits are contained in the string s. The string must

represent an integer in base 10 (for the first method) or in the base given by the radix
parameter (for the second method).

• static Integer valueOf(String s)
• static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer whose digits are contained in

the string s. The string must represent an integer in base 10 (for the first method)

or in the base given by the radix parameter (for the second method).

java.text.NumberFormat 1.1

• Number parse(String s)

returns the numeric value, assuming the specified String represents a number.

5.5 Methods with a Variable Number of Parameters
It is possible to provide methods that can be called with a variable number of

parameters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls

System.out.printf("%d", n);

and

System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two parameters and the

other has three.

The printf method is defined like this:

Chapter 5 Inheritance256

ptg16518469

public class PrintStream
{
 public PrintStream printf(String fmt, Object... args) { return format(fmt, args); }
}

Here, the ellipsis ... is part of the Java code. It denotes that the method can receive

an arbitrary number of objects (in addition to the fmt parameter).

The printf method actually receives two parameters: the format string and an

Object[] array that holds all other parameters. (If the caller supplies integers or

other primitive type values, autoboxing turns them into objects.) It now faces the

unenviable task of scanning the fmt string and matching up the ith format specifier

with the value args[i].

In other words, for the implementor of printf, the Object... parameter type is exactly

the same as Object[].

The compiler needs to transform each call to printf, bundling the parameters into

an array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { new Integer(n), "widgets" });

You can define your own methods with variable parameters, and you can specify

any type for the parameters, even a primitive type. Here is a simple example: a

function that computes the maximum of a variable number of values.

public static double max(double... values)
{
 double largest = Double.NEGATIVE_INFINITY;
 for (double v : values) if (v > largest) largest = v;
 return largest;
}

Simply call the function like this:

double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function.

NOTE: It is legal to pass an array as the last parameter of a method with variable
parameters. For example:

System.out.printf("%d %s", new Object[] { new Integer(1), "widgets" });

Therefore, you can redefine an existing function whose last parameter is an array
to a method with variable parameters, without breaking any existing code. For
example, MessageFormat.format was enhanced in this way in Java SE 5.0. If you
like, you can even declare the main method as

public static void main(String... args)

2575.5 Methods with a Variable Number of Parameters

ptg16518469

5.6 Enumeration Classes
You saw in Chapter 3 how to define enumerated types. Here is a typical example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

The type defined by this declaration is actually a class. The class has exactly four

instances—it is not possible to construct new objects.

Therefore, you never need to use equals for values of enumerated types. Simply

use == to compare them.

You can, if you like, add constructors, methods, and fields to an enumerated type.

Of course, the constructors are only invoked when the enumerated constants are

constructed. Here is an example.

public enum Size
{
 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

 private String abbreviation;

 private Size(String abbreviation) { this.abbreviation = abbreviation; }
 public String getAbbreviation() { return abbreviation; }
}

All enumerated types are subclasses of the class Enum. They inherit a number of

methods from that class. The most useful one is toString, which returns the name

of the enumerated constant. For example, Size.SMALL.toString() returns the string

"SMALL".

The converse of toString is the static valueOf method. For example, the statement

Size s = Enum.valueOf(Size.class, "SMALL");

sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all values

of the enumeration. For example, the call

Size[] values = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM, Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the enum
declaration, counting from zero. For example, Size.MEDIUM.ordinal() returns 1.

Chapter 5 Inheritance258

ptg16518469

The short program in Listing 5.12 demonstrates how to work with enumerated

types.

NOTE: The Enum class has a type parameter that we have ignored for simplicity.
For example, the enumerated type Size actually extends Enum<Size>. The type
parameter is used in the compareTo method. (We discuss the compareTo method in
Chapter 6 and type parameters in Chapter 8.)

Listing 5.12 enums/EnumTest.java

1 package enums;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates enumerated types.
7 * @version 1.0 2004-05-24
8 * @author Cay Horstmann
9 */
10 public class EnumTest
11 {
12 public static void main(String[] args)
13 {
14 Scanner in = new Scanner(System.in);
15 System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");
16 String input = in.next().toUpperCase();
17 Size size = Enum.valueOf(Size.class, input);
18 System.out.println("size=" + size);
19 System.out.println("abbreviation=" + size.getAbbreviation());
20 if (size == Size.EXTRA_LARGE)
21 System.out.println("Good job--you paid attention to the _.");
22 }
23 }
24

25 enum Size
26 {
27 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
28

29 private Size(String abbreviation) { this.abbreviation = abbreviation; }
30 public String getAbbreviation() { return abbreviation; }
31

32 private String abbreviation;
33 }

2595.6 Enumeration Classes

ptg16518469

java.lang.Enum<E> 5.0

• static Enum valueOf(Class enumClass, String name)

returns the enumerated constant of the given class with the given name.

• String toString()

returns the name of this enumerated constant.

• int ordinal()

returns the zero-based position of this enumerated constant in the enum declaration.

• int compareTo(E other)

returns a negative integer if this enumerated constant comes before other, zero if

this == other, and a positive integer otherwise.The ordering of the constants is given

by the enum declaration.

5.7 Reflection
The reflection library gives you a very rich and elaborate toolset to write programs

that manipulate Java code dynamically. This feature is heavily used in JavaBeans,

the component architecture for Java (see Volume II for more on JavaBeans). Using

reflection, Java can support tools like those to which users of Visual Basic have

grown accustomed. In particular, when new classes are added at design time or

runtime, rapid application development tools can dynamically inquire about the

capabilities of these classes.

A program that can analyze the capabilities of classes is called reflective. The

reflection mechanism is extremely powerful. As the next sections show, you can

use it to

• Analyze the capabilities of classes at runtime;

• Inspect objects at runtime—for example, to write a single toString method that

works for all classes;

• Implement generic array manipulation code; and

• Take advantage of Method objects that work just like function pointers in

languages such as C++.

Reflection is a powerful and complex mechanism; however, it is of interest

mainly to tool builders, not application programmers. If you are interested in

programming applications rather than tools for other Java programmers, you can

safely skip the remainder of this chapter and return to it later.

Chapter 5 Inheritance260

ptg16518469

5.7.1 The Class Class
While your program is running, the Java runtime system always maintains what

is called runtime type identification on all objects. This information keeps track of

the class to which each object belongs. Runtime type information is used by the

virtual machine to select the correct methods to execute.

However, you can also access this information by working with a special Java

class. The class that holds this information is called, somewhat confusingly, Class.

The getClass() method in the Object class returns an instance of Class type.

Employee e;
. . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a Class
object describes the properties of a particular class. Probably the most commonly

used method of Class is getName. This returns the name of the class. For example,

the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

If the class is in a package, the package name is part of the class name:

Random generator = new Random();
Class cl = generator.getClass();
String name = cl.getName(); // name is set to "java.util.Random"

You can obtain a Class object corresponding to a class name by using the static

forName method.

String className = "java.util.Random";
Class cl = Class.forName(className);

Use this method if the class name is stored in a string that varies at runtime. This

works if className is the name of a class or interface. Otherwise, the forName method

throws a checked exception. See Section 5.7.2, “A Primer on Catching Exceptions,”

on p. 263 for how to supply an exception handler whenever you use this method.

2615.7 Reflection

ptg16518469

TIP: At startup, the class containing your main method is loaded. It loads all
classes that it needs. Each of those loaded classes loads the classes that it
needs, and so on. That can take a long time for a big application, frustrating the
user.You can give the users of your program an illusion of a faster start with
the following trick. Make sure the class containing the main method does not ex-
plicitly refer to other classes. In it, display a splash screen. Then manually force
the loading of other classes by calling Class.forName.

A third method for obtaining an object of type Class is a convenient shorthand. If

T is any Java type (or the void keyword), then T.class is the matching class object.

For example:

Class cl1 = Random.class; // if you import java.util.*;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a class.

For example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE: The Class class is actually a generic class. For example, Employee.class is
of type Class<Employee>. We are not dwelling on this issue because it would further
complicate an already abstract concept. For most practical purposes, you can
ignore the type parameter and work with the raw Class type. See Chapter 8 for
more information on this issue.

CAUTION: For historical reasons, the getName method returns somewhat strange
names for array types:

• Double[].class.getName() returns "[Ljava.lang.Double;".

• int[].class.getName() returns "[I".

The virtual machine manages a unique Class object for each type. Therefore, you

can use the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

Chapter 5 Inheritance262

ptg16518469

Another example of a useful method is one that lets you create an instance of a

class on the fly. This method is called, naturally enough, newInstance(). For example,

e.getClass().newInstance();

creates a new instance of the same class type as e. The newInstance method calls the

no-argument constructor to initialize the newly created object. An exception is

thrown if the class does not have a no-argument constructor.

A combination of forName and newInstance lets you create an object from a class name

stored in a string.

String s = "java.util.Random";
Object m = Class.forName(s).newInstance();

NOTE: If you need to provide parameters for the constructor of a class you want
to create by name in this manner, you can’t use the above statements. Instead,
you must use the newInstance method in the Constructor class.

C++ NOTE: The newInstance method corresponds to the idiom of a virtual con-
structor in C++. However, virtual constructors in C++ are not a language feature
but just an idiom that needs to be supported by a specialized library. The Class
class is similar to the type_info class in C++, and the getClass method is equivalent
to the typeid operator. The Java Class is quite a bit more versatile than type_info,
though.The C++ type_info can only reveal a string with the name of the type, not
create new objects of that type.

5.7.2 A Primer on Catching Exceptions
We cover exception handling fully in Chapter 7, but in the meantime you will

occasionally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.” Throwing

an exception is more flexible than terminating the program because you can

provide a handler that “catches” the exception and deals with it.

If you don’t provide a handler, the program still terminates and prints a message

to the console, giving the type of the exception. You may have already seen ex-

ception reports when you accidentally used a null reference or overstepped the

bounds of an array.

2635.7 Reflection

ptg16518469

There are two kinds of exceptions: unchecked exceptions and checked exceptions.

With checked exceptions, the compiler checks that you provide a handler. How-

ever, many common exceptions, such as accessing a null reference, are unchecked.

The compiler does not check whether you provided a handler for these errors—af-

ter all, you should spend your mental energy on avoiding these mistakes rather

than coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best efforts,

then the compiler insists that you provide a handler. The Class.forName method is

an example of a method that throws a checked exception. In Chapter 7, you will

see several exception handling strategies. For now, we just show you the simplest

handler implementation.

Place one or more statements that might throw checked exceptions inside a try
block. Then provide the handler code in the catch clause.

try
{

statements that might throw exceptions

}
catch (Exception e)
{

handler action

}

Here is an example:

try
{
 String name = . . .; // get class name
 Class cl = Class.forName(name); // might throw exception

do something with cl
}
catch (Exception e)
{
 e.printStackTrace();
}

If the class name doesn’t exist, the remainder of the code in the try block is skipped

and the program enters the catch clause. (Here, we print a stack trace by using the

printStackTrace method of the Throwable class. Throwable is the superclass of the Exception
class.) If none of the methods in the try block throws an exception, the handler

code in the catch clause is skipped.

You only need to supply an exception handler for checked exceptions. It is easy

to find out which methods throw checked exceptions—the compiler will complain

whenever you call a method that threatens to throw a checked exception and you

don’t supply a handler.

Chapter 5 Inheritance264

ptg16518469

java.lang.Class 1.0

• static Class forName(String className)

returns the Class object representing the class with name className.

• Object newInstance()

returns a new instance of this class.

java.lang.reflect.Constructor 1.1

• Object newInstance(Object[] args)

constructs a new instance of the constructor’s declaring class.

the parameters supplied to the constructor. See

Section 5.7.6 for more information on how to supply

parameters.

argsParameters:

java.lang.Throwable 1.0

• void printStackTrace()

prints the Throwable object and the stack trace to the standard error stream.

5.7.3 Using Reflection to Analyze the Capabilities of Classes
Here is a brief overview of the most important parts of the reflection mechanism

for letting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package describe

the fields, methods, and constructors of a class, respectively. All three classes

have a method called getName that returns the name of the item. The Field class has

a method getType that returns an object, again of type Class, that describes the field

type. The Method and Constructor classes have methods to report the types of the pa-

rameters, and the Method class also reports the return type. All three of these classes

also have a method called getModifiers that returns an integer, with various bits

turned on and off, that describes the modifiers used, such as public and static. You

can then use the static methods in the Modifier class in the java.lang.reflect package

to analyze the integer that getModifiers returns. Use methods like isPublic, isPrivate,

or isFinal in the Modifier class to tell whether a method or constructor was public,

private, or final. All you have to do is have the appropriate method in the Modifier

2655.7 Reflection

ptg16518469

class work on the integer that getModifiers returns. You can also use the Modifier.toString
method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return arrays

of the public fields, methods, and constructors that the class supports. This

includes public members of superclasses. The getDeclaredFields, getDeclaredMethods, and

getDeclaredConstructors methods of the Class class return arrays consisting of all fields,

methods, and constructors that are declared in the class. This includes private,

package, and protected members, but not members of superclasses.

Listing 5.13 shows you how to print out all information about a class. The program

prompts you for the name of a class and writes out the signatures of all methods

and constructors as well as the names of all instance fields of a class. For example,

if you enter

java.lang.Double

the program prints

public class java.lang.Double extends java.lang.Number
{
 public java.lang.Double(java.lang.String);
 public java.lang.Double(double);

 public int hashCode();
 public int compareTo(java.lang.Object);
 public int compareTo(java.lang.Double);
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public static java.lang.String toString(double);
 public static java.lang.Double valueOf(java.lang.String);
 public static boolean isNaN(double);
 public boolean isNaN();
 public static boolean isInfinite(double);
 public boolean isInfinite();
 public byte byteValue();
 public short shortValue();
 public int intValue();
 public long longValue();
 public float floatValue();
 public double doubleValue();
 public static double parseDouble(java.lang.String);
 public static native long doubleToLongBits(double);
 public static native long doubleToRawLongBits(double);
 public static native double longBitsToDouble(long);

 public static final double POSITIVE_INFINITY;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double MAX_VALUE;

Chapter 5 Inheritance266

ptg16518469

 public static final double MIN_VALUE;
 public static final java.lang.Class TYPE;
 private double value;
 private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that the

Java interpreter can load, not just the classes that were available when the program

was compiled. We will use this program in the next chapter to peek inside the

inner classes that the Java compiler generates automatically.

Listing 5.13 reflection/ReflectionTest.java

1 package reflection;
 2

3 import java.util.*;
4 import java.lang.reflect.*;
 5

6 /**
7 * This program uses reflection to print all features of a class.
8 * @version 1.1 2004-02-21
9 * @author Cay Horstmann
10 */
11 public class ReflectionTest
12 {
13 public static void main(String[] args)
14 {
15 // read class name from command line args or user input
16 String name;
17 if (args.length > 0) name = args[0];
18 else
19 {
20 Scanner in = new Scanner(System.in);
21 System.out.println("Enter class name (e.g. java.util.Date): ");
22 name = in.next();
23 }
24

25 try
26 {
27 // print class name and superclass name (if != Object)
28 Class cl = Class.forName(name);
29 Class supercl = cl.getSuperclass();
30 String modifiers = Modifier.toString(cl.getModifiers());
31 if (modifiers.length() > 0) System.out.print(modifiers + " ");
32 System.out.print("class " + name);
33 if (supercl != null && supercl != Object.class) System.out.print(" extends "
34 + supercl.getName());
35

(Continues)

2675.7 Reflection

ptg16518469

Listing 5.13 (Continued)

36 System.out.print("\n{\n");
37 printConstructors(cl);
38 System.out.println();
39 printMethods(cl);
40 System.out.println();
41 printFields(cl);
42 System.out.println("}");
43 }
44 catch (ClassNotFoundException e)
45 {
46 e.printStackTrace();
47 }
48 System.exit(0);
49 }
50

51 /**
52 * Prints all constructors of a class
53 * @param cl a class
54 */
55 public static void printConstructors(Class cl)
56 {
57 Constructor[] constructors = cl.getDeclaredConstructors();
58

59 for (Constructor c : constructors)
60 {
61 String name = c.getName();
62 System.out.print(" ");
63 String modifiers = Modifier.toString(c.getModifiers());
64 if (modifiers.length() > 0) System.out.print(modifiers + " ");
65 System.out.print(name + "(");
66

67 // print parameter types
68 Class[] paramTypes = c.getParameterTypes();
69 for (int j = 0; j < paramTypes.length; j++)
70 {
71 if (j > 0) System.out.print(", ");
72 System.out.print(paramTypes[j].getName());
73 }
74 System.out.println(");");
75 }
76 }
77

78 /**
79 * Prints all methods of a class
80 * @param cl a class
81 */

Chapter 5 Inheritance268

ptg16518469

82 public static void printMethods(Class cl)
83 {
84 Method[] methods = cl.getDeclaredMethods();
85

86 for (Method m : methods)
87 {
88 Class retType = m.getReturnType();
89 String name = m.getName();
90

91 System.out.print(" ");
92 // print modifiers, return type and method name
93 String modifiers = Modifier.toString(m.getModifiers());
94 if (modifiers.length() > 0) System.out.print(modifiers + " ");
95 System.out.print(retType.getName() + " " + name + "(");
96

97 // print parameter types
98 Class[] paramTypes = m.getParameterTypes();
99 for (int j = 0; j < paramTypes.length; j++)
100 {
101 if (j > 0) System.out.print(", ");
102 System.out.print(paramTypes[j].getName());
103 }
104 System.out.println(");");
105 }
106 }
107

108 /**
109 * Prints all fields of a class
110 * @param cl a class
111 */
112 public static void printFields(Class cl)
113 {
114 Field[] fields = cl.getDeclaredFields();
115

116 for (Field f : fields)
117 {
118 Class type = f.getType();
119 String name = f.getName();
120 System.out.print(" ");
121 String modifiers = Modifier.toString(f.getModifiers());
122 if (modifiers.length() > 0) System.out.print(modifiers + " ");
123 System.out.println(type.getName() + " " + name + ";");
124 }
125 }
126 }

2695.7 Reflection

ptg16518469

java.lang.Class 1.0

• Field[] getFields() 1.1
• Field[] getDeclaredFields() 1.1

getFields returns an array containing Field objects for the public fields of this class

or its superclasses; getDeclaredField returns an array of Field objects for all fields of

this class. The methods return an array of length 0 if there are no such fields or if

the Class object represents a primitive or array type.

• Method[] getMethods() 1.1
• Method[] getDeclaredMethods() 1.1

returns an array containing Method objects: getMethods returns public methods and

includes inherited methods; getDeclaredMethods returns all methods of this class or

interface but does not include inherited methods.

• Constructor[] getConstructors() 1.1
• Constructor[] getDeclaredConstructors() 1.1

returns an array containing Constructor objects that give you all the public constructors

(for getConstructors) or all constructors (for getDeclaredConstructors) of the class

represented by this Class object.

java.lang.reflect.Field 1.1
java.lang.reflect.Method 1.1
java.lang.reflect.Constructor 1.1

• Class getDeclaringClass()

returns the Class object for the class that defines this constructor, method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the exceptions thrown

by the method.

• int getModifiers()

returns an integer that describes the modifiers of this constructor, method, or field.

Use the methods in the Modifier class to analyze the return value.

• String getName()

returns a string that is the name of the constructor, method, or field.

• Class[] getParameterTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the parameters.

• Class getReturnType() (in Method classes)

returns a Class object that represents the return type.

Chapter 5 Inheritance270

ptg16518469

java.lang.reflect.Modifier 1.1

• static String toString(int modifiers)

returns a string with the modifiers that correspond to the bits set in modifiers.

• static boolean isAbstract(int modifiers)
• static boolean isFinal(int modifiers)
• static boolean isInterface(int modifiers)
• static boolean isNative(int modifiers)
• static boolean isPrivate(int modifiers)
• static boolean isProtected(int modifiers)
• static boolean isPublic(int modifiers)
• static boolean isStatic(int modifiers)
• static boolean isStrict(int modifiers)
• static boolean isSynchronized(int modifiers)
• static boolean isVolatile(int modifiers)

tests the bit in the modifiers value that corresponds to the modifier in the method

name.

5.7.4 Using Reflection to Analyze Objects at Runtime
In the preceding section, we saw how we can find out the names and types of the

data fields of any object:

• Get the corresponding Class object.

• Call getDeclaredFields on the Class object.

In this section, we will go one step further and actually look at the contents of the

fields. Of course, it is easy to look at the contents of a specific field of an object

whose name and type are known when you write a program. But reflection lets

you look at fields of objects that were not known at compile time.

The key method to achieve this is the get method in the Field class. If f is an object

of type Field (for example, one obtained from getDeclaredFields) and obj is an

object of the class of which f is a field, then f.get(obj) returns an object whose value

is the current value of the field of obj. This is all a bit abstract, so let’s run through

an example.

Employee harry = new Employee("Harry Hacker", 35000, 10, 1, 1989);
Class cl = harry.getClass();
 // the class object representing Employee
Field f = cl.getDeclaredField("name");
 // the name field of the Employee class

2715.7 Reflection

ptg16518469

Object v = f.get(harry);
 // the value of the name field of the harry object, i.e., the String object "Harry Hacker"

Actually, there is a problem with this code. Since the name field is a private field,

the get method will throw an IllegalAccessException. You can only use get to get the

values of accessible fields. The security mechanism of Java lets you find out what

fields an object has, but it won’t let you read the values of those fields unless you

have access permission.

The default behavior of the reflection mechanism is to respect Java access control.

However, if a Java program is not controlled by a security manager that disallows

it, you can override access control. To do this, invoke the setAccessible method on

a Field, Method, or Constructor object. For example:

f.setAccessible(true); // now OK to call f.get(harry);

The setAccessible method is a method of the AccessibleObject class, the common super-

class of the Field, Method, and Constructor classes. This feature is provided for debug-

gers, persistent storage, and similar mechanisms. We use it for a generic toString
method later in this section.

There is another issue with the get method that we need to deal with. The name
field is a String, and so it is not a problem to return the value as an Object. But

suppose we want to look at the salary field. That is a double, and in Java, number

types are not objects. To handle this, you can either use the getDouble method of

the Field class, or you can call get, whereby the reflection mechanism automatically

wraps the field value into the appropriate wrapper class—in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets

the field represented by f of the object obj to the new value.

Listing 5.14 shows how to write a generic toString method that works for any class.

It uses getDeclaredFields to obtain all data fields. It then uses the setAccessible conve-

nience method to make all fields accessible. For each field, it obtains the name

and the value. Each value is turned into a string by recursively invoking toString.

The generic toString method needs to address a couple of complexities. Cycles of

references could cause an infinite recursion. Therefore, the ObjectAnalyzer keeps track

of objects that were already visited. Also, to peek inside arrays, you need a

different approach. You’ll learn about the details in the next section.

You can use this toString method to peek inside any object. For example, the call

ArrayList<Integer> squares = new ArrayList<>();
for (int i = 1; i <= 5; i++) squares.add(i * i);
System.out.println(new ObjectAnalyzer().toString(squares));

yields the printout

Chapter 5 Inheritance272

ptg16518469

java.util.ArrayList[elementData=class java.lang.Object[]{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9][][],java.lang.Integer[value=16][][],
java.lang.Integer[value=25][][],null,null,null,null,null},size=5][modCount=5][][]

You can use this generic toString method to implement the toString methods of your

own classes, like this:

public String toString()
{
 return new ObjectAnalyzer().toString(this);
}

This is a hassle-free method for supplying a toString method that you may find

useful in your own programs.

Listing 5.14 objectAnalyzer/ObjectAnalyzerTest.java

1 package objectAnalyzer;
 2

3 import java.util.ArrayList;
 4

5 /**
6 * This program uses reflection to spy on objects.
7 * @version 1.12 2012-01-26
8 * @author Cay Horstmann
9 */
10 public class ObjectAnalyzerTest
11 {
12 public static void main(String[] args)
13 {
14 ArrayList<Integer> squares = new ArrayList<>();
15 for (int i = 1; i <= 5; i++)
16 squares.add(i * i);
17 System.out.println(new ObjectAnalyzer().toString(squares));
18 }
19 }

Listing 5.15 objectAnalyzer/ObjectAnalyzer.java

1 package objectAnalyzer;
 2

3 import java.lang.reflect.AccessibleObject;
4 import java.lang.reflect.Array;
5 import java.lang.reflect.Field;
6 import java.lang.reflect.Modifier;
7 import java.util.ArrayList;
 8

(Continues)

2735.7 Reflection

ptg16518469

Listing 5.15 (Continued)

9 public class ObjectAnalyzer
10 {
11 private ArrayList<Object> visited = new ArrayList<>();
12

13 /**
14 * Converts an object to a string representation that lists all fields.
15 * @param obj an object
16 * @return a string with the object's class name and all field names and
17 * values
18 */
19 public String toString(Object obj)
20 {
21 if (obj == null) return "null";
22 if (visited.contains(obj)) return "...";
23 visited.add(obj);
24 Class cl = obj.getClass();
25 if (cl == String.class) return (String) obj;
26 if (cl.isArray())
27 {
28 String r = cl.getComponentType() + "[]{";
29 for (int i = 0; i < Array.getLength(obj); i++)
30 {
31 if (i > 0) r += ",";
32 Object val = Array.get(obj, i);
33 if (cl.getComponentType().isPrimitive()) r += val;
34 else r += toString(val);
35 }
36 return r + "}";
37 }
38

39 String r = cl.getName();
40 // inspect the fields of this class and all superclasses
41 do
42 {
43 r += "[";
44 Field[] fields = cl.getDeclaredFields();
45 AccessibleObject.setAccessible(fields, true);
46 // get the names and values of all fields
47 for (Field f : fields)
48 {
49 if (!Modifier.isStatic(f.getModifiers()))
50 {
51 if (!r.endsWith("[")) r += ",";
52 r += f.getName() + "=";
53 try
54 {

Chapter 5 Inheritance274

ptg16518469

55 Class t = f.getType();
56 Object val = f.get(obj);
57 if (t.isPrimitive()) r += val;
58 else r += toString(val);
59 }
60 catch (Exception e)
61 {
62 e.printStackTrace();
63 }
64 }
65 }
66 r += "]";
67 cl = cl.getSuperclass();
68 }
69 while (cl != null);
70

71 return r;
72 }
73 }

java.lang.reflect.AccessibleObject 1.2

• void setAccessible(boolean flag)

sets the accessibility flag for this reflection object.A value of true indicates that Java

language access checking is suppressed and that the private properties of the object

can be queried and set.

• boolean isAccessible()

gets the value of the accessibility flag for this reflection object.

• static void setAccessible(AccessibleObject[] array, boolean flag)

is a convenience method to set the accessibility flag for an array of objects.

java.lang.Class 1.1

• Field getField(String name)
• Field[] getFields()

gets the public field with the given name, or an array of all fields.

• Field getDeclaredField(String name)
• Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an array of all

fields.

2755.7 Reflection

ptg16518469

java.lang.reflect.Field 1.1

• Object get(Object obj)

gets the value of the field described by this Field object in the object obj.

• void set(Object obj, Object newValue)

sets the field described by this Field object in the object obj to a new value.

5.7.5 Using Reflection to Write Generic Array Code
The Array class in the java.lang.reflect package allows you to create arrays dynami-

cally. This is used, for example, in the implementation of the copyOf method in the

Arrays class. Recall how this method can be used to grow an array that has

become full.

Employee[] a = new Employee[100];
. . .
// array is full
a = Arrays.copyOf(a, 2 * a.length);

How can one write such a generic method? It helps that an Employee[] array can be

converted to an Object[] array. That sounds promising. Here is a first attempt:

public static Object[] badCopyOf(Object[] a, int newLength) // not useful
{
 Object[] newArray = new Object[newLength];
 System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newLength));
 return newArray;
}

However, there is a problem with actually using the resulting array. The type of

array that this code returns is an array of objects (Object[]) because we created

the array using the line of code

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). The virtual

machine would generate a ClassCastException at runtime. The point is that, as we

mentioned earlier, a Java array remembers the type of its entries—that is, the

element type used in the new expression that created it. It is legal to cast an Employee[]
temporarily to an Object[] array and then cast it back, but an array that started its

life as an Object[] array can never be cast into an Employee[] array. To write this kind

of generic array code, we need to be able to make a new array of the same type as

the original array. For this, we need the methods of the Array class in the

Chapter 5 Inheritance276

ptg16518469

java.lang.reflect package. The key is the static newInstance method of the Array class

that constructs a new array. You must supply the type for the entries and the

desired length as parameters to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and the component type of

the new array.

We obtain the length by calling Array.getLength(a). The static getLength method of the

Array class returns the length of an array. To get the component type of the new

array:

1. First, get the class object of a.

2. Confirm that it is indeed an array.

3. Use the getComponentType method of the Class class (which is defined only for class

objects that represent arrays) to find the right type for the array.

Why is getLength a method of Array but getComponentType a method of Class? We don’t

know—the distribution of the reflection methods seems a bit ad hoc at times.

Here’s the code:

public static Object goodCopyOf(Object a, int newLength)
{
 Class cl = a.getClass();
 if (!cl.isArray()) return null;
 Class componentType = cl.getComponentType();
 int length = Array.getLength(a);
 Object newArray = Array.newInstance(componentType, newLength);
 System.arraycopy(a, 0, newArray, 0, Math.min(length, newLength));
 return newArray;
}

Note that this copyOf method can be used to grow arrays of any type, not just arrays

of objects.

int[] a = { 1, 2, 3, 4, 5 };
a = (int[]) goodCopyOf(a, 10);

To make this possible, the parameter of goodCopyOf is declared to be of type Object,

not an array of objects (Object[]). The integer array type int[] can be converted to an

Object, but not to an array of objects!

Listing 5.16 shows both methods in action. Note that the cast of the return value

of badcopyOf will throw an exception.

2775.7 Reflection

ptg16518469

Listing 5.16 arrays/CopyOfTest.java

1 package arrays;
 2

3 import java.lang.reflect.*;
4 import java.util.*;
 5

6 /**
7 * This program demonstrates the use of reflection for manipulating arrays.
8 * @version 1.2 2012-05-04
9 * @author Cay Horstmann
10 */
11 public class CopyOfTest
12 {
13 public static void main(String[] args)
14 {
15 int[] a = { 1, 2, 3 };
16 a = (int[]) goodCopyOf(a, 10);
17 System.out.println(Arrays.toString(a));
18

19 String[] b = { "Tom", "Dick", "Harry" };
20 b = (String[]) goodCopyOf(b, 10);
21 System.out.println(Arrays.toString(b));
22

23 System.out.println("The following call will generate an exception.");
24 b = (String[]) badCopyOf(b, 10);
25 }
26

27 /**
28 * This method attempts to grow an array by allocating a new array and copying all elements.
29 * @param a the array to grow
30 * @param newLength the new length
31 * @return a larger array that contains all elements of a. However, the returned array has
32 * type Object[], not the same type as a
33 */
34 public static Object[] badCopyOf(Object[] a, int newLength) // not useful
35 {
36 Object[] newArray = new Object[newLength];
37 System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newLength));
38 return newArray;
39 }
40

41 /**
42 * This method grows an array by allocating a new array of the same type and
43 * copying all elements.
44 * @param a the array to grow. This can be an object array or a primitive
45 * type array
46 * @return a larger array that contains all elements of a.
47 */

Chapter 5 Inheritance278

ptg16518469

48 public static Object goodCopyOf(Object a, int newLength)
49 {
50 Class cl = a.getClass();
51 if (!cl.isArray()) return null;
52 Class componentType = cl.getComponentType();
53 int length = Array.getLength(a);
54 Object newArray = Array.newInstance(componentType, newLength);
55 System.arraycopy(a, 0, newArray, 0, Math.min(length, newLength));
56 return newArray;
57 }
58 }

java.lang.reflect.Array 1.1

• static Object get(Object array, int index)
• static xxx getXxx(Object array, int index)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, or short.)

These methods return the value of the given array that is stored at the given index.

• static void set(Object array, int index, Object newValue)
• static setXxx(Object array, int index, xxx newValue)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, or short.)

These methods store a new value into the given array at the given index.

• static int getLength(Object array)

returns the length of the given array.

• static Object newInstance(Class componentType, int length)
• static Object newInstance(Class componentType, int[] lengths)

returns a new array of the given component type with the given dimensions.

5.7.6 Invoking Arbitrary Methods
In C and C++, you can execute an arbitrary function through a function pointer.

On the surface, Java does not have method pointers—that is, ways of giving the

location of a method to another method, so that the second method can invoke

it later. In fact, the designers of Java have said that method pointers are dangerous

and error-prone, and that Java interfaces (discussed in the next chapter) are a su-

perior solution. However, the reflection mechanism allows you to call arbitrary

methods.

2795.7 Reflection

ptg16518469

NOTE: Among the nonstandard language extensions that Microsoft added to
its Java derivatives, J++ and C#, is another method pointer type, called a dele-
gate, that is different from the Method class that we discuss in this section. How-
ever, inner classes (which we will introduce in the next chapter) are a more
useful construct than delegates.

Recall that you can inspect a field of an object with the get method of the Field
class. Similarly, the Method class has an invoke method that lets you call the method

that is wrapped in the current Method object. The signature for the invoke method is

Object invoke(Object obj, Object... args)

The first parameter is the implicit parameter, and the remaining objects provide

the explicit parameters.

For a static method, the first parameter is ignored—you can set it to null.

For example, if m1 represents the getName method of the Employee class, the following

code shows how you can call it:

String n = (String) m1.invoke(harry);

If the return type is a primitive type, the invoke method will return the wrapper

type instead. For example, suppose that m2 represents the getSalary method of the

Employee class. Then, the returned object is actually a Double, and you must cast it

accordingly. Use automatic unboxing to turn it into a double:

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and

search through the returned array of Method objects until you find the method you

want. Or, you can call the getMethod method of the Class class. This is similar to the

getField method that takes a string with the field name and returns a Field object.

However, there may be several methods with the same name, so you need to be

careful that you get the right one. For that reason, you must also supply the

parameter types of the desired method. The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getName and raiseSalary
methods of the Employee class:

Method m1 = Employee.class.getMethod("getName");
Method m2 = Employee.class.getMethod("raiseSalary", double.class);

Now that you have seen the rules for using Method objects, let’s put them to work.

Listing 5.17 is a program that prints a table of values for a mathematical function

such as Math.sqrt or Math.sin. The printout looks like this:

Chapter 5 Inheritance280

ptg16518469

public static native double java.lang.Math.sqrt(double)
 1.0000 | 1.0000
 2.0000 | 1.4142
 3.0000 | 1.7321
 4.0000 | 2.0000
 5.0000 | 2.2361
 6.0000 | 2.4495
 7.0000 | 2.6458
 8.0000 | 2.8284
 9.0000 | 3.0000
 10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function that

is being tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
 double y = (Double) f.invoke(null, x);
 System.out.printf("%10.4f | %10.4f%n", x, y);
}

Here, f is an object of type Method. The first parameter of invoke is null because we

are calling a static method.

To tabulate the Math.sqrt function, we set f to

Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single parameter

of type double.

Listing 5.17 shows the complete code of the generic tabulator and a couple of

test runs.

As this example clearly shows, you can do anything with Method objects that you

can do with function pointers in C (or delegates in C#). Just as in C, this style of

programming is usually quite inconvenient, and always error-prone. What hap-

pens if you invoke a method with the wrong parameters? The invoke method

throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That

means you must cast back and forth a lot. As a result, the compiler is deprived

of the chance to check your code, so errors surface only during testing, when they

are more tedious to find and fix. Moreover, code that uses reflection to get at

method pointers is significantly slower than code that simply calls methods

directly.

For that reason, we suggest that you use Method objects in your own programs

only when absolutely necessary. Using interfaces and, as of Java SE 8, lambda

2815.7 Reflection

ptg16518469

expressions (the subject of the next chapter) is almost always a better idea. In

particular, we echo the developers of Java and suggest not using Method objects for

callback functions. Using interfaces for the callbacks leads to code that runs faster

and is a lot more maintainable.

Listing 5.17 methods/MethodTableTest.java

1 package methods;
 2

3 import java.lang.reflect.*;
 4

5 /**
6 * This program shows how to invoke methods through reflection.
7 * @version 1.2 2012-05-04
8 * @author Cay Horstmann
9 */
10 public class MethodTableTest
11 {
12 public static void main(String[] args) throws Exception
13 {
14 // get method pointers to the square and sqrt methods
15 Method square = MethodTableTest.class.getMethod("square", double.class);
16 Method sqrt = Math.class.getMethod("sqrt", double.class);
17

18 // print tables of x- and y-values
19

20 printTable(1, 10, 10, square);
21 printTable(1, 10, 10, sqrt);
22 }
23

24 /**
25 * Returns the square of a number
26 * @param x a number
27 * @return x squared
28 */
29 public static double square(double x)
30 {
31 return x * x;
32 }
33

34 /**
35 * Prints a table with x- and y-values for a method
36 * @param from the lower bound for the x-values
37 * @param to the upper bound for the x-values
38 * @param n the number of rows in the table
39 * @param f a method with a double parameter and double return value
40 */

Chapter 5 Inheritance282

ptg16518469

41 public static void printTable(double from, double to, int n, Method f)
42 {
43 // print out the method as table header
44 System.out.println(f);
45

46 double dx = (to - from) / (n - 1);
47

48 for (double x = from; x <= to; x += dx)
49 {
50 try
51 {
52 double y = (Double) f.invoke(null, x);
53 System.out.printf("%10.4f | %10.4f%n", x, y);
54 }
55 catch (Exception e)
56 {
57 e.printStackTrace();
58 }
59 }
60 }
61 }

java.lang.reflect.Method 1.1

• public Object invoke(Object implicitParameter, Object[] explicitParameters)

invokes the method described by this object, passing the given parameters and

returning the value that the method returns. For static methods, pass null as the

implicit parameter. Pass primitive type values by using wrappers. Primitive type

return values must be unwrapped.

5.8 Design Hints for Inheritance
We want to end this chapter with some hints that we have found useful when

using inheritance.

1. Place common operations and fields in the superclass.

This is why we put the name field into the Person class instead of replicating

it in the Employee and Student classes.

2. Don’t use protected fields.

Some programmers think it is a good idea to define most instance fields as

protected, “just in case,” so that subclasses can access these fields if they need

to. However, the protected mechanism doesn’t give much protection, for two

reasons. First, the set of subclasses is unbounded—anyone can form a subclass

2835.8 Design Hints for Inheritance

ptg16518469

of your classes and then write code that directly accesses protected instance

fields, thereby breaking encapsulation. And second, in the Java programming

language, all classes in the same package have access to protected fields, whether

or not they are subclasses.

However, protected methods can be useful to indicate methods that are not

ready for general use and should be redefined in subclasses.

3. Use inheritance to model the “is–a” relationship.

Inheritance is a handy code-saver, but sometimes people overuse it. For ex-

ample, suppose we need a Contractor class. Contractors have names and hire

dates, but they do not have salaries. Instead, they are paid by the hour, and

they do not stay around long enough to get a raise. There is the temptation

to form a subclass Contractor from Employee and add an hourlyWage field.

public class Contractor extends Employee
{
 private double hourlyWage;
 . . .
}

This is not a good idea, however, because now each contractor object has

both a salary and hourly wage field. It will cause you no end of grief when

you implement methods for printing paychecks or tax forms. You will end

up writing more code than you would have written by not inheriting in the

first place.

The contractor-employee relationship fails the “is–a” test. A contractor is not

a special case of an employee.

4. Don’t use inheritance unless all inherited methods make sense.

Suppose we want to write a Holiday class. Surely every holiday is a day, and

days can be expressed as instances of the GregorianCalendar class, so we can use

inheritance.

class Holiday extends GregorianCalendar { . . . }

Unfortunately, the set of holidays is not closed under the inherited operations.

One of the public methods of GregorianCalendar is add. And add can turn holidays

into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.

Chapter 5 Inheritance284

ptg16518469

Note that this problem does not arise if you extend LocalDate. Because that

class is immutable, there is no method that could turn a holiday into a

nonholiday.

5. Don’t change the expected behavior when you override a method.

The substitution principle applies not just to syntax but, more importantly,

to behavior. When you override a method, you should not unreasonably

change its behavior. The compiler can’t help you—it cannot check whether

your redefinitions make sense. For example, you can “fix” the issue of the

add method in the Holiday class by redefining add, perhaps to do nothing, or to

throw an exception, or to move on to the next holiday.

However, such a fix violates the substitution principle. The sequence of

statements

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.println(d2 - d1);

should have the expected behavior, no matter whether x is of type GregorianCalendar
or Holiday.

Of course, therein lies the rub. Reasonable and unreasonable people can argue

at length about what the expected behavior is. For example, some authors

argue that the substitution principle requires Manager.equals to ignore the bonus
field because Employee.equals ignores it. These discussions are pointless if they

occur in a vacuum. Ultimately, what matters is that you do not circumvent

the intent of the original design when you override methods in subclasses.

6. Use polymorphism, not type information.

Whenever you find code of the form

if (x is of type 1)
action1(x);

else if (x is of type 2)
action2(x);

think polymorphism.

Do action1 and action2 represent a common concept? If so, make the concept a

method of a common superclass or interface of both types. Then, you can

simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism launch

the correct action.

2855.8 Design Hints for Inheritance

ptg16518469

Code that uses polymorphic methods or interface implementations is much

easier to maintain and extend than code using multiple type tests.

7. Don’t overuse reflection.

The reflection mechanism lets you write programs with amazing generality,

by detecting fields and methods at runtime. This capability can be extremely

useful for systems programming, but it is usually not appropriate in applica-

tions. Reflection is fragile—with it, the compiler cannot help you find pro-

gramming errors. Any errors are found at runtime and result in exceptions.

You have now seen how Java supports the fundamentals of object-oriented pro-

gramming: classes, inheritance, and polymorphism. In the next chapter, we will

tackle two advanced topics that are very important for using Java effectively:

interfaces and lambda expressions.

Chapter 5 Inheritance286

ptg16518469

6CHAPTER

Interfaces, Lambda
Expressions, and Inner Classes

In this chapter

• 6.1 Interfaces, page 288

• 6.2 Examples of Interfaces, page 302

• 6.3 Lambda Expressions, page 314

• 6.4 Inner Classes, page 329

• 6.5 Proxies, page 350

You have now seen all the basic tools for object-oriented programming in Java.

This chapter shows you several advanced techniques that are commonly used.

Despite their less obvious nature, you will need to master them to complete your

Java tool chest.

The first technique, called interfaces, is a way of describing what classes should

do, without specifying how they should do it. A class can implement one or more

interfaces. You can then use objects of these implementing classes whenever

conformance to the interface is required. After we cover interfaces, we move on

to lambda expressions, a concise way for expressing a block of code that can be

287

ptg16518469

executed at a later point in time. Using lambda expressions, you can express code

that uses callbacks or variable behavior in an elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are technically

somewhat complex—they are defined inside other classes, and their methods can

access the fields of the surrounding class. Inner classes are useful when you design

collections of cooperating classes.

This chapter concludes with a discussion of proxies, objects that implement arbi-

trary interfaces. A proxy is a very specialized construct that is useful for building

system-level tools. You can safely skip that section on first reading.

6.1 Interfaces
In the following sections, you will learn what Java interfaces are and how to use

them. You will also find out how interfaces have been made more powerful in

Java SE 8.

6.1.1 The Interface Concept
In the Java programming language, an interface is not a class but a set of

requirements for the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a partic-

ular interface, then I’ll perform the service.” Let’s look at a concrete example. The

sort method of the Arrays class promises to sort an array of objects, but under

one condition: The objects must belong to classes that implement the Comparable
interface.

Here is what the Comparable interface looks like:

public interface Comparable
{
 int compareTo(Object other);
}

This means that any class that implements the Comparable interface is required to

have a compareTo method, and the method must take an Object parameter and return

an integer.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes288

ptg16518469

NOTE: As of Java SE 5.0, the Comparable interface has been enhanced to be a
generic type.

public interface Comparable<T>
{
 int compareTo(T other); // parameter has type T
}

For example, a class that implements Comparable<Employee> must supply a method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then the
compareTo method has a parameter of type Object, and you have to manually cast
that parameter of the compareTo method to the desired type. We will do just that
for a little while so that you don’t have to worry about two new concepts at the
same time.

All methods of an interface are automatically public. For that reason, it is not

necessary to supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface cannot spell out:

When calling x.compareTo(y), the compareTo method must actually be able to compare

the two objects and return an indication whether x or y is larger. The method is

supposed to return a negative number if x is smaller than y, zero if they are equal,

and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple

methods. As you will see later, interfaces can also define constants. What is more

important, however, is what interfaces cannot supply. Interfaces never have in-

stance fields. Before Java SE 8, methods were never implemented in interfaces.

(As you will see in Section 6.1.4, “Static Methods,” on p. 298 and Section 6.1.5,

“Default Methods,” on p. 298, it is now possible to supply simple methods in in-

terfaces. Of course, those methods cannot refer to instance fields—interfaces don’t

have any.)

Supplying instance fields and methods that operate on them is the job of the

classes that implement the interface. You can think of an interface as being similar

to an abstract class with no instance fields. However, there are some differences

between these two concepts—we look at them later in some detail.

2896.1 Interfaces

ptg16518469

Now suppose we want to use the sort method of the Arrays class to sort an array

of Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.

2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let’s suppose

that we want to compare employees by their salary. Here is an implementation

of the compareTo method:

public int compareTo(Object otherObject)
{
 Employee other = (Employee) otherObject;
 return Double.compare(salary, other.salary);
}

Here, we use the static Double.compare method that returns a negative if the first ar-

gument is less than the second argument, 0 if they are equal, and a positive value

otherwise.

CAUTION: In the interface declaration, the compareTo method was not declared
public because all methods in an interface are automatically public. However,
when implementing the interface, you must declare the method as public. Other-
wise, the compiler assumes that the method has package visibility—the default
for a class. The compiler then complains that you’re trying to supply a more
restrictive access privilege.

We can do a little better by supplying a type parameter for the generic Comparable
interface:

class Employee implements Comparable<Employee>
{
 public int compareTo(Employee other)
 {
 return Double.compare(salary, other.salary);
 }
 . . .
}

Note that the unsightly cast of the Object parameter has gone away.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes290

ptg16518469

TIP: The compareTo method of the Comparable interface returns an integer. If the
objects are not equal, it does not matter what negative or positive value you re-
turn. This flexibility can be useful when you are comparing integer fields. For
example, suppose each employee has a unique integer id and you want to sort
by the employee ID number.Then you can simply return id - other.id. That value
will be some negative value if the first ID number is less than the other, 0 if they
are the same ID, and some positive value otherwise. However, there is one
caveat: The range of the integers must be small enough so that the subtraction
does not overflow. If you know that the IDs are not negative or that their absolute
value is at most (Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static
Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers. The
difference salary - other.salary can round to 0 if the salaries are close together
but not identical. The call Double.compare(x, y) simply returns -1 if x < y or 1 if x > y.

NOTE: The documentation of the Comparable interface suggests that the compareTo
method should be compatible with the equals method.That is, x.compareTo(y) should
be zero exactly when x.equals(y). Most classes in the Java API that implement
Comparable follow this advice. A notable exception is BigDecimal. Consider x = new
BigDecimal("1.0") and y = new BigDecimal("1.00"). Then x.equals(y) is false because
the numbers differ in precision. But x.compareTo(y) is zero. Ideally, it shouldn’t be,
but there was no obvious way of deciding which one should come first.

Now you saw what a class must do to avail itself of the sorting service—it must

implement a compareTo method. That’s eminently reasonable. There needs to be

some way for the sort method to compare objects. But why can’t the Employee class

simply provide a compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed.

When making a method call, the compiler needs to be able to check that the

method actually exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that a[i] actually has a compareTo method. If a is an array

of Comparable objects, then the existence of the method is assured because every class

that implements the Comparable interface must supply the method.

2916.1 Interfaces

ptg16518469

NOTE: You would expect that the sort method in the Arrays class is defined to
accept a Comparable[] array so that the compiler can complain if anyone ever calls
sort with an array whose element type doesn’t implement the Comparable interface.
Sadly, that is not the case. Instead, the sort method accepts an Object[] array
and uses a clumsy cast:

// Approach used in the standard library--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If a[i] does not belong to a class that implements the Comparable interface, the
virtual machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class

Employee (Listing 6.2) for sorting an employee array.

Listing 6.1 interfaces/EmployeeSortTest.java

1 package interfaces;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates the use of the Comparable interface.
7 * @version 1.30 2004-02-27
8 * @author Cay Horstmann
9 */
10 public class EmployeeSortTest
11 {
12 public static void main(String[] args)
13 {
14 Employee[] staff = new Employee[3];
15

16 staff[0] = new Employee("Harry Hacker", 35000);
17 staff[1] = new Employee("Carl Cracker", 75000);
18 staff[2] = new Employee("Tony Tester", 38000);
19

20 Arrays.sort(staff);
21

22 // print out information about all Employee objects
23 for (Employee e : staff)
24 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
25 }
26 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes292

ptg16518469

Listing 6.2 interfaces/Employee.java

1 package interfaces;
 2

3 public class Employee implements Comparable<Employee>
4 {
 5 private String name;
 6 private double salary;
 7

 8 public Employee(String name, double salary)
 9 {
10 this.name = name;
11 this.salary = salary;
12 }
13

14 public String getName()
15 {
16 return name;
17 }
18

19 public double getSalary()
20 {
21 return salary;
22 }
23

24 public void raiseSalary(double byPercent)
25 {
26 double raise = salary * byPercent / 100;
27 salary += raise;
28 }
29

30 /**
31 * Compares employees by salary
32 * @param other another Employee object
33 * @return a negative value if this employee has a lower salary than
34 * otherObject, 0 if the salaries are the same, a positive value otherwise
35 */
36 public int compareTo(Employee other)
37 {
38 return Double.compare(salary, other.salary);
39 }
40 }

java.lang.Comparable<T> 1.0

• int compareTo(T other)

compares this object with other and returns a negative integer if this object is less

than other, zero if they are equal, and a positive integer otherwise.

2936.1 Interfaces

ptg16518469

java.util.Arrays 1.2

• static void sort(Object[] a)

sorts the elements in the array a. All elements in the array must belong to classes

that implement the Comparable interface, and they must all be comparable to each

other.

java.lang.Integer 1.0

• static int compare(int x, int y) 7

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

java.lang.Double 1.0

• static int compare(double x, double y) 1.4

returns a negative integer if x < y, zero if x and y are equal, and a positive integer

otherwise.

NOTE: According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies that
x.compareTo(y) must throw an exception if y.compareTo(x) throws an exception.)”
Here, sgn is the sign of a number: sgn(n) is –1 if n is negative, 0 if n equals 0,
and 1 if n is positive. In plain English, if you flip the parameters of compareTo, the
sign (but not necessarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Since Manager extends Employee, it implements Comparable<Employee> and not
Comparable<Manager>. If Manager chooses to override compareTo, it must be prepared to
compare managers to employees. It can’t simply cast an employee to a manager:

class Manager extends Employee
{
 public int compareTo(Employee other)
 {
 Manager otherManager = (Manager) other; // NO
 . . .
 }
 . . .
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes294

ptg16518469

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then
the call x.compareTo(y) doesn’t throw an exception—it simply compares x and y
as employees. But the reverse, y.compareTo(x), throws a ClassCastException.

This is the same situation as with the equals method that we discussed in
Chapter 5, and the remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw
comparison of objects that belong to different classes. Each compareTo method
should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide
a single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular employees,
regardless of salary.What about other subclasses such as Executive and Secretary?
If you need to establish a pecking order, supply a method such as rank in the
Employee class. Have each subclass override rank, and implement a single compareTo
method that takes the rank values into account.

6.1.2 Properties of Interfaces
Interfaces are not classes. In particular, you can never use the new operator to

instantiate an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare

interface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the

interface:

x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you

can use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows

for multiple chains of interfaces that go from a greater degree of generality to a

greater degree of specialization. For example, suppose you had an interface called

Moveable.

2956.1 Interfaces

ptg16518469

public interface Moveable
{
 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable
{
 double milesPerGallon();
}

Although you cannot put instance fields or static methods in an interface, you

can supply constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always public
static final.

NOTE: It is legal to tag interface methods as public, and fields as public static
final. Some programmers do that, either out of habit or for greater clarity. How-
ever, the Java Language Specification recommends that the redundant keywords
not be supplied, and we follow that recommendation.

Some interfaces define just constants and no methods. For example, the standard

library contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,

and so on. Any class that chooses to implement the SwingConstants interface automat-

ically inherits these constants. Its methods can simply refer to NORTH rather than

the more cumbersome SwingConstants.NORTH. However, this use of interfaces seems

rather degenerate, and we do not recommend it.

While each class can have only one superclass, classes can implement multiple

interfaces. This gives you the maximum amount of flexibility in defining a class’s

behavior. For example, the Java programming language has an important interface

built into it, called Cloneable. (We will discuss this interface in detail in Section 6.2.3,

“Object Cloning,” on p. 306.) If your class implements Cloneable, the clone method

in the Object class will make an exact copy of your class’s objects. If you want both

cloneability and comparability, simply implement both interfaces. Use commas

to separate the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes296

ptg16518469

6.1.3 Interfaces and Abstract Classes
If you read the section about abstract classes in Chapter 5, you may wonder why

the designers of the Java programming language bothered with introducing the

concept of interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?
{
 public abstract int compareTo(Object other);
}

The Employee class would then simply extend this abstract class and supply the

compareTo method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to ex-

press a generic property. A class can only extend a single class. Suppose the

Employee class already extends a different class, say, Person. Then it can’t extend a

second class.

class Employee extends Person, Comparable // Error

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more

than one superclass. This feature is called multiple inheritance. The designers of

Java chose not to support multiple inheritance, because it makes the language

either very complex (as in C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while

avoiding the complexities and inefficiencies.

C++ NOTE: C++ has multiple inheritance and all the complications that come
with it, such as virtual base classes, dominance rules, and transverse pointer
casts. Few C++ programmers use multiple inheritance, and some say it should
never be used. Other programmers recommend using multiple inheritance only
for the “mix-in” style of inheritance. In the mix-in style, a primary base class de-
scribes the parent object, and additional base classes (the so-called mix-ins)
may supply auxiliary characteristics. That style is similar to a Java class with a
single superclass and additional interfaces.

2976.1 Interfaces

ptg16518469

6.1.4 Static Methods
As of Java SE 8, you are allowed to add static methods to interfaces. There was

never a technical reason why this should be outlawed. It simply seemed to be

against the spirit of interfaces as abstract specifications.

Up to now, it has been common to place static methods in companion classes. In

the standard library, you find pairs of interfaces and utility classes such as

Collection/Collections or Path/Paths.

Have a look at the Paths class. It only has a couple of factory methods. You can

construct a path to a file or directory from a sequence of strings, such as

Paths.get("jdk1.8.0", "jre", "bin"). In Java SE 8, one could have added this method to

the Path interface:

public interface Path
{
 public static Path get(String first, String... more) {
 return FileSystems.getDefault().getPath(first, more);
 }
 . . .
}

Then the Paths class is no longer necessary.

It is unlikely that the Java library will be refactored in this way, but when you

implement your own interfaces, there is no longer a reason to provide a separate

companion class for utility methods.

6.1.5 Default Methods
You can supply a default implementation for any interface method. You must tag

such a method with the default modifier.

public interface Comparable<T>
{

default int compareTo(T other) { return 0; }
 // By default, all elements are the same
}

Of course, that is not very useful since every realistic implementation of Comparable
would override this method. But there are other situations where default methods

can be useful. For example, as you will see in Chapter 11, if you want to be notified

when a mouse click happens, you are supposed to implement an interface that

has five methods:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes298

ptg16518469

public interface MouseListener
{
 void mouseClicked(MouseEvent event);
 void mousePressed(MouseEvent event);
 void mouseReleased(MouseEvent event);
 void mouseEntered(MouseEvent event);
 void mouseExited(MouseEvent event);
}

Most of the time, you only care about one or two of these event types. As of Java

SE 8, you can declare all of the methods as default methods that do nothing.

public interface MouseListener
{
 default void mouseClicked(MouseEvent event) {}
 default void mousePressed(MouseEvent event) {}
 default void mouseReleased(MouseEvent event) {}
 default void mouseEntered(MouseEvent event) {}
 default void mouseExited(MouseEvent event) {}
}

Then programmers who implement this interface only need to override the

listeners for the events they actually care about.

A default method can call other methods. For example, a Collection interface can

define a convenience method

public interface Collection
{
 int size(); // An abstract method
 default boolean isEmpty()
 {
 return size() == 0;
 }
 . . .
}

Then a programmer implementing Collection doesn’t have to worry about

implementing an isEmpty method.

NOTE: In the Java API, you will find a number of interfaces with companion
classes that implement some or all of its methods, such as Collection/
AbstractCollection or MouseListener/MouseAdapter. With Java SE 8, this technique is
obsolete. Just implement the methods in the interface.

An important use for default methods is interface evolution. Consider for example

the Collection interface that has been a part of Java for many years. Suppose that a

long time ago, you provided a class

2996.1 Interfaces

ptg16518469

public class Bag implements Collection

Later, in Java SE 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class no longer

compiles since it doesn’t implement the new method. Adding a nondefault method

to an interface is not source compatible.

But suppose you don’t recompile the class and simply use an old JAR file contain-

ing it. The class will still load, even with the missing method. Programs can still

construct Bag instances, and nothing bad will happen. (Adding a method to an

interface is binary compatible.) However, if a program calls the stream method on a

Bag instance, an AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will again

compile. And if the class is loaded without being recompiled and the stream method

is invoked on a Bag instance, the Collection.stream method is called.

6.1.6 Resolving Default Method Conflicts
What happens if the exact same method is defined as a default method in one

interface and then again as a method of a superclass or another interface? Lan-

guages such as Scala and C++ have complex rules for resolving such ambiguities.

Fortunately, the rules in Java are much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods

with the same name and parameter types are simply ignored.

2. Interfaces clash. If a superinterface provides a default method, and another

interface supplies a method with the same name and parameter types (default

or not), then you must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider another interface with a getName method:

interface Named
{
 default String getName() { return getClass().getName() + "_" + hashCode(); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named
{
 . . .
}

The class inherits two inconsistent getName methods provided by the Person and Named
interfaces. Instead of choosing one over the other, the Java compiler reports an

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes300

ptg16518469

error and leaves it up to the programmer to resolve the ambiguity. Simply provide

a getName method in the Student class. In that method, you can choose one of the two

conflicting methods, like this:

class Student implements Person, Named
{
 public String getName() { return Person.super.getName(); }
 . . .
}

Now assume that the Named interface does not provide a default implementation

for getName:

interface Named
{
 String getName();
}

Can the Student class inherit the default method from the Person interface? This

might be reasonable, but the Java designers decided in favor of uniformity. It

doesn’t matter how two interfaces conflict. If at least one interface provides an

implementation, the compiler reports an error, and the programmer must resolve

the ambiguity.

NOTE: Of course, if neither interface provides a default for a shared method,
then we are in the situation before Java SE 8, and there is no conflict. An imple-
menting class has two choices: implement the method, or leave it unimplemented.
In the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class

that extends a superclass and implements an interface, inheriting the same method

from both. For example, suppose that Person is a class and Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method from

the interface is simply ignored. In our example, Student inherits the getName method

from Person, and it doesn’t make any difference whether the Named interface provides

a default for getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with Java SE 7. If you add default

methods to an interface, it has no effect on code that worked before there were

default methods.

3016.1 Interfaces

ptg16518469

CAUTION: You can never make a default method that redefines one of the
methods in the Object class. For example, you can’t define a default method for
toString or equals, even though that might be attractive for interfaces such as List.
As a consequence of the “classes win” rule, such a method could never win
against Object.toString or Objects.equals.

6.2 Examples of Interfaces
In the next three sections, we give additional examples of interfaces so you can

see how they are used in practice.

6.2.1 Interfaces and Callbacks
A common pattern in programming is the callback pattern. In this pattern, you

specify the action that should occur whenever a particular event happens. For

example, you may want a particular action to occur when a button is clicked or

a menu item is selected. However, as you have not yet seen how to implement

user interfaces, we will consider a similar but simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified

whenever a time interval has elapsed. For example, if a part of your program

contains a clock, you can ask to be notified every second so that you can update

the clock face.

When you construct a timer, you set the time interval and you tell it what it should

do whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages,

you supply the name of a function that the timer should call periodically. How-

ever, the classes in the Java standard library take an object-oriented approach.

You pass an object of some class. The timer then calls one of the methods on that

object. Passing an object is more flexible than passing a function because the object

can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that

you specify an object of a class that implements the ActionListener interface of the

java.awt.event package. Here is that interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes302

ptg16518469

Suppose you want to print a message “At the tone, the time is . . .”, followed by

a beep, once every 10 seconds. You would define a class that implements the

ActionListener interface. You would then place whatever statements you want to

have executed inside the actionPerformed method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives

information about the event, such as the source object that generated it—see

Chapter 11 for more information. However, detailed information about the event

is not important in this program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.

ActionListener listener = new TimePrinter();
Timer t = new Timer(10000, listener);

The first parameter of the Timer constructor is the time interval that must elapse

between notifications, measured in milliseconds. We want to be notified every

10 seconds. The second parameter is the listener object.

Finally, you start the timer.

t.start();

Every 10 seconds, a message like

At the tone, the time is Wed Apr 13 23:29:08 PDT 2016

is displayed, followed by a beep.

Listing 6.3 puts the timer and its action listener to work. After the timer is started,

the program puts up a message dialog and waits for the user to click the OK

button to stop. While the program waits for the user, the current time is displayed

at 10-second intervals.

Be patient when running the program. The “Quit program?” dialog box appears

right away, but the first timer message is displayed after 10 seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to

importing javax.swing.* and java.util.*. This breaks the ambiguity between

javax.swing.Timer and java.util.Timer, an unrelated class for scheduling background

tasks.

3036.2 Examples of Interfaces

ptg16518469

Listing 6.3 timer/TimerTest.java

1 package timer;
 2

3 /**
4 @version 1.01 2015-05-12
5 @author Cay Horstmann
6 */
 7

8 import java.awt.*;
9 import java.awt.event.*;
10 import java.util.*;
11 import javax.swing.*;
12 import javax.swing.Timer;
13 // to resolve conflict with java.util.Timer
14

15 public class TimerTest
16 {
17 public static void main(String[] args)
18 {
19 ActionListener listener = new TimePrinter();
20

21 // construct a timer that calls the listener
22 // once every 10 seconds
23 Timer t = new Timer(10000, listener);
24 t.start();
25

26 JOptionPane.showMessageDialog(null, "Quit program?");
27 System.exit(0);
28 }
29 }
30

31 class TimePrinter implements ActionListener
32 {
33 public void actionPerformed(ActionEvent event)
34 {
35 System.out.println("At the tone, the time is " + new Date());
36 Toolkit.getDefaultToolkit().beep();
37 }
38 }

javax.swing.JOptionPane 1.2

• static void showMessageDialog(Component parent, Object message)

displays a dialog box with a message prompt and an OK button. The dialog is

centered over the parent component. If parent is null, the dialog is centered on the

screen.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes304

ptg16518469

javax.swing.Timer 1.2

• Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval milliseconds have elapsed.

• void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.

• void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on its listeners.

java.awt.Toolkit 1.0

• static Toolkit getDefaultToolkit()

gets the default toolkit. A toolkit contains information about the GUI environment.

• void beep()

emits a beep sound.

6.2.2 The Comparator Interface
In Section 6.1.1, “The Interface Concept,” on p. 288, you have seen how you can

sort an array of objects, provided they are instances of classes that implement the

Comparable interface. For example, you can sort an array of strings since the String
class implements Comparable<String>, and the String.compareTo method compares strings

in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary order.

We can’t have the String class implement the compareTo method in two ways—and

at any rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method

whose parameters are an array and a comparator—an instance of a class that

implements the Comparator interface.

public interface Comparator<T>
{
 int compare(T first, T second);
}

To compare strings by length, define a class that implements Comparator<String>:

3056.2 Examples of Interfaces

ptg16518469

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second) {
 return first.length() - second.length();
 }
}

To actually do the comparison, you need to make an instance:

Comparator<String> comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method is called on

the comparator object, not the string itself.

NOTE: Even though the LengthComparator object has no state, you still need to
make an instance of it.You need the instance to call the compare method—it is
not a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 6.3, “Lambda Expressions,” on p. 314 how to use a Comparator
much more easily with a lambda expression.

6.2.3 Object Cloning
In this section, we discuss the Cloneable interface that indicates that a class has

provided a safe clone method. Since cloning is not all that common, and the details

are quite technical, you may just want to glance at this material until you need it.

To understand what cloning means, recall what happens when you make a copy

of a variable holding an object reference. The original and the copy are references

to the same object (see Figure 6.1). This means a change to either variable also

affects the other.

Employee original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original
but whose state can diverge over time, use the clone method.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes306

ptg16518469

Figure 6.1 Copying and cloning

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which

means that your code cannot simply call it. Only the Employee class can clone Employee
objects. There is a reason for this restriction. Think about the way in which the

Object class can implement clone. It knows nothing about the object at all, so it can

make only a field-by-field copy. If all data fields in the object are numbers or

other basic types, copying the fields is just fine. But if the object contains references

to subobjects, then copying the field gives you another reference to the same

subobject, so the original and the cloned objects still share some information.

3076.2 Examples of Interfaces

ptg16518469

To visualize that, consider the Employee class that was introduced in Chapter 4.

Figure 6.2 shows what happens when you use the clone method of the Object class

to clone such an Employee object. As you can see, the default cloning operation is

“shallow”—it doesn’t clone objects that are referenced inside other objects. (The

figure shows a shared Date object. For reasons that will become clear shortly, this

example uses a version of the Employee class in which the hire day is represented

as a Date.)

Figure 6.2 A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject shared between

the original and the shallow clone is immutable, then the sharing is safe. This cer-

tainly happens if the subobject belongs to an immutable class, such as String. Al-

ternatively, the subobject may simply remain constant throughout the lifetime of

the object, with no mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the

clone method to make a deep copy that clones the subobjects as well. In our example,

the hireDay field is a Date, which is mutable, so it too must be cloned. (For that reason,

this example uses a field of type Date, not LocalDate, to demonstrate the cloning

process. Had hireDay been an instance of the immutable LocalDate class, no further

action would have been required.)

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes308

ptg16518469

For every class, you need to decide whether

1. The default clone method is good enough;

2. The default clone method can be patched up by calling clone on the mutable

subobjects; and

3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second

option, a class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access modifier.

NOTE: The clone method is declared protected in the Object class, so that your
code can’t simply call anObject.clone(). But aren’t protected methods accessible
from any subclass, and isn’t every class a subclass of Object? Fortunately, the
rules for protected access are more subtle (see Chapter 5). A subclass can call
a protected clone method only to clone its own objects.You must redefine clone
to be public to allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the

normal use of interfaces. In particular, it does not specify the clone method—that

method is inherited from the Object class. The interface merely serves as a tag, in-

dicating that the class designer understands the cloning process. Objects are so

paranoid about cloning that they generate a checked exception if an object requests

cloning but does not implement that interface.

NOTE: The Cloneable interface is one of a handful of tagging interfaces that Java
provides. (Some programmers call them marker interfaces.) Recall that the
usual purpose of an interface such as Comparable is to ensure that a class imple-
ments a particular method or set of methods.A tagging interface has no methods;
its only purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

We recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you

still need to implement the Cloneable interface, redefine clone to be public, and call

super.clone(). Here is an example:

3096.2 Examples of Interfaces

ptg16518469

class Employee implements Cloneable
{
 // raise visibility level to public, change return type

public Employee clone() throws CloneNotSupportedException
 {
 return (Employee) super.clone();
 }
 . . .
}

NOTE: Up to Java SE 1.4, the clone method always had return type Object.
Nowadays, you can specify the correct return type for your clone methods. This
is an example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow copy

provided by Object.clone. It merely makes the method public. To make a deep

copy, you have to work harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable
{
 . . .
 public Employee clone() throws CloneNotSupportedException
 {
 // call Object.clone()
 Employee cloned = (Employee) super.clone();

 // clone mutable fields
 cloned.hireDay = (Date) hireDay.clone();

 return cloned;
 }
}

The clone method of the Object class threatens to throw a CloneNotSupportedException—it

does that whenever clone is invoked on an object whose class does not implement

the Cloneable interface. Of course, the Employee and Date classes implement the Cloneable
interface, so the exception won’t be thrown. However, the compiler does not

know that. Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

Would it be better to catch the exception instead?

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes310

ptg16518469

public Employee clone()
{
 try
 {
 Employee cloned = (Employee) super.clone();
 . . .
 }
 catch (CloneNotSupportedException e) { return null; }
 // this won't happen, since we are Cloneable
}

This is appropriate for final classes. Otherwise, it is a good idea to leave the

throws specifier in place. That gives subclasses the option of throwing a

CloneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have

defined the clone method for the Employee class, anyone can use it to clone Manager
objects. Can the Employee clone method do the job? It depends on the fields of the

Manager class. In our case, there is no problem because the bonus field has primitive

type. But Manager might have acquired fields that require a deep copy or are not

cloneable. There is no guarantee that the implementor of the subclass has fixed

clone to do the right thing. For that reason, the clone method is declared as protected
in the Object class. But you don’t have that luxury if you want users of your classes

to invoke clone.

Should you implement clone in your own classes? If your clients need to make

deep copies, then you probably should. Some authors feel that you should avoid

clone altogether and instead implement another method for the same purpose.

We agree that clone is rather awkward, but you’ll run into the same issues if you

shift the responsibility to another method. At any rate, cloning is less common

than you may think. Less than 5 percent of the classes in the standard library

implement clone.

The program in Listing 6.4 clones an instance of the class Employee (Listing 6.5),

then invokes two mutators. The raiseSalary method changes the value of the salary
field, whereas the setHireDay method changes the state of the hireDay field. Neither

mutation affects the original object because clone has been defined to make a

deep copy.

NOTE: All array types have a clone method that is public, not protected.You can
use it to make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = luckyNumbers.clone();
cloned[5] = 12; // doesn't change luckyNumbers[5]

3116.2 Examples of Interfaces

ptg16518469

NOTE: Chapter 2 of Volume II shows an alternate mechanism for cloning objects,
using the object serialization feature of Java. That mechanism is easy to
implement and safe, but not very efficient.

Listing 6.4 clone/CloneTest.java

1 package clone;
 2

3 /**
4 * This program demonstrates cloning.
5 * @version 1.10 2002-07-01
6 * @author Cay Horstmann
7 */
8 public class CloneTest
9 {
10 public static void main(String[] args)
11 {
12 try
13 {
14 Employee original = new Employee("John Q. Public", 50000);
15 original.setHireDay(2000, 1, 1);
16 Employee copy = original.clone();
17 copy.raiseSalary(10);
18 copy.setHireDay(2002, 12, 31);
19 System.out.println("original=" + original);
20 System.out.println("copy=" + copy);
21 }
22 catch (CloneNotSupportedException e)
23 {
24 e.printStackTrace();
25 }
26 }
27 }

Listing 6.5 clone/Employee.java

1 package clone;
 2

3 import java.util.Date;
4 import java.util.GregorianCalendar;
 5

6 public class Employee implements Cloneable
7 {

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes312

ptg16518469

 8 private String name;
 9 private double salary;
10 private Date hireDay;
11

12 public Employee(String name, double salary)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = new Date();
17 }
18

19 public Employee clone() throws CloneNotSupportedException
20 {
21 // call Object.clone()
22 Employee cloned = (Employee) super.clone();
23

24 // clone mutable fields
25 cloned.hireDay = (Date) hireDay.clone();
26

27 return cloned;
28 }
29

30 /**
31 * Set the hire day to a given date.
32 * @param year the year of the hire day
33 * @param month the month of the hire day
34 * @param day the day of the hire day
35 */
36 public void setHireDay(int year, int month, int day)
37 {
38 Date newHireDay = new GregorianCalendar(year, month - 1, day).getTime();
39

40 // Example of instance field mutation
41 hireDay.setTime(newHireDay.getTime());
42 }
43

44 public void raiseSalary(double byPercent)
45 {
46 double raise = salary * byPercent / 100;
47 salary += raise;
48 }
49

50 public String toString()
51 {
52 return "Employee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";
53 }
54 }

3136.2 Examples of Interfaces

ptg16518469

6.3 Lambda Expressions
Now you are ready to learn about lambda expressions, the most exciting change

to the Java language in many years. You will see how to use lambda expressions

for defining blocks of code with a concise syntax, and how to write code that

consumes lambda expressions.

6.3.1 Why Lambdas?
A lambda expression is a block of code that you can pass around so it can be exe-

cuted later, once or multiple times. Before getting into the syntax (or even the

curious name), let’s step back and observe where we have used such code blocks

in Java.

In Section 6.2.1, “Interfaces and Callbacks,” on p. 302, you saw how to do work

in timed intervals. Put the work into the actionPerformed method of an ActionListener:

class Worker implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 // do some work
 }
}

Then, when you want to repeatedly execute this code, you construct an instance

of the Worker class. You then submit the instance to a Timer object.

The key point is that the actionPerformed method contains code that you want to

execute later.

Or consider sorting with a custom comparator. If you want to sort strings by

length instead of the default dictionary order, you can pass a Comparator object to

the sort method:

class LengthComparator implements Comparator<String>
{
 public int compare(String first, String second)
 {
 return first.length() - second.length();
 }
}
. . .
Arrays.sort(strings, new LengthComparator());

The compare method isn’t called right away. Instead, the sort method keeps calling the

compare method, rearranging the elements if they are out of order, until the array

is sorted. You give the sort method a snippet of code needed to compare elements,

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes314

ptg16518469

and that code is integrated into the rest of the sorting logic, which you’d probably

not care to reimplement.

Both examples have something in common. A block of code was passed to

someone—a timer, or a sort method. That code block was called at some later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You couldn’t

just pass code blocks around. Java is an object-oriented language, so you had to

construct an object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java

designers have resisted adding this feature for a long time. After all, a great

strength of Java is its simplicity and consistency. A language can become an un-

maintainable mess if it includes every feature that yields marginally more concise

code. However, in those other languages it isn’t just easier to spawn a thread or

to register a button click handler; large swaths of their APIs are simpler, more

consistent, and more powerful. In Java, one could have written similar APIs that

take objects of classes implementing a particular function, but such APIs would

be unpleasant to use.

For some time now, the question was not whether to augment Java for functional

programming, but how to do it. It took several years of experimentation before

a design emerged that is a good fit for Java. In the next section, you will see how

you can work with blocks of code in Java SE 8.

6.3.2 The Syntax of Lambda Expressions
Consider again the sorting example from the preceding section. We pass code

that checks whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language,

and we must specify that as well:

(String first, String second)
 -> first.length() - second.length()

You have just seen your first lambda expression. Such an expression is simply a

block of code, together with the specification of any variables that must be passed

to the code.

Why the name? Many years ago, before there were any computers, the logician

Alonzo Church wanted to formalize what it means for a mathematical function

to be effectively computable. (Curiously, there are functions that are known to

exist, but nobody knows how to compute their values.) He used the Greek letter

3156.3 Lambda Expressions

ptg16518469

lambda (λ) to mark parameters. Had he known about the Java API, he would

have written

λfirst.λsecond.first.length() - second.length()

NOTE: Why the letter λ? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ^ accent to denote free
variables, which inspired Church to use an uppercase lambda Λ for parameters.
But in the end, he switched to the lowercase version. Ever since, an expression
with parameter variables has been called a lambda expression.

You have just seen one form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn’t fit

in a single expression, write it exactly like you would have written a method:

enclosed in {} and with explicit return statements. For example,

(String first, String second) ->
 {
 if (first.length() < second.length()) return -1;
 else if (first.length() > second.length()) return 1;
 else return 0;
 }

If a lambda expression has no parameters, you still supply empty parentheses,

just as with a parameterless method:

() -> { for (int i = 100; i >= 0; i--) System.out.println(i); }

If the parameter types of a lambda expression can be inferred, you can omit them.

For example,

Comparator<String> comp
 = (first, second) // Same as (String first, String second)
 -> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because the

lambda expression is assigned to a string comparator. (We will have a closer look

at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the

parentheses:

ActionListener listener = event ->
 System.out.println("The time is " + new Date()");
 // Instead of (event) -> . . . or (ActionEvent event) -> . . .

You never specify the result type of a lambda expression. It is always inferred

from context. For example, the expression

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes316

ptg16518469

(String first, String second) -> first.length() - second.length()

can be used in a context where a result of type int is expected.

NOTE: It is illegal for a lambda expression to return a value in some branches
but not in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

The program in Listing 6.6 shows how to use lambda expressions for a comparator

and an action listener.

Listing 6.6 lambda/LambdaTest.java

1 package lambda;
 2

3 import java.util.*;
 4

5 import javax.swing.*;
6 import javax.swing.Timer;
 7

8 /**
9 * This program demonstrates the use of lambda expressions.
10 * @version 1.0 2015-05-12
11 * @author Cay Horstmann
12 */
13 public class LambdaTest
14 {
15 public static void main(String[] args)
16 {
17 String[] planets = new String[] { "Mercury", "Venus", "Earth", "Mars",
18 "Jupiter", "Saturn", "Uranus", "Neptune" };
19 System.out.println(Arrays.toString(planets));
20 System.out.println("Sorted in dictionary order:");
21 Arrays.sort(planets);
22 System.out.println(Arrays.toString(planets));
23 System.out.println("Sorted by length:");
24 Arrays.sort(planets, (first, second) -> first.length() - second.length());
25 System.out.println(Arrays.toString(planets));
26

27 Timer t = new Timer(1000, event ->
28 System.out.println("The time is " + new Date()));
29 t.start();
30

31 // keep program running until user selects "Ok"
32 JOptionPane.showMessageDialog(null, "Quit program?");
33 System.exit(0);
34 }
35 }

3176.3 Lambda Expressions

ptg16518469

6.3.3 Functional Interfaces
As we discussed, there are many existing interfaces in Java that encapsulate blocks

of code, such as ActionListener or Comparator. Lambdas are compatible with these

interfaces.

You can supply a lambda expression whenever an object of an interface with a

single abstract method is expected. Such an interface is called a functional interface.

NOTE: You may wonder why a functional interface must have a single abstract
method. Aren’t all methods in an interface abstract? Actually, it has always been
possible for an interface to redeclare methods from the Object class such as
toString or clone, and these declarations do not make the methods abstract.
(Some interfaces in the Java API redeclare Object methods in order to attach
javadoc comments. Check out the ComparatorAPI for an example.) More impor-
tantly, as you saw in Section 6.1.5, “Default Methods,” on p. 298, in Java SE 8,
interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface with

a single method. Simply supply a lambda:

Arrays.sort(words,
 (first, second) -> first.length() - second.length());

Behind the scenes, the Arrays.sort method receives an object of some class that im-

plements Comparator<String>. Invoking the compare method on that object executes the

body of the lambda expression. The management of these objects and classes is

completely implementation dependent, and it can be much more efficient than

using traditional inner classes. It is best to think of a lambda expression as a

function, not an object, and to accept that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling.

The syntax is short and simple. Here is another example:

Timer t = new Timer(1000, event ->
 {
 System.out.println("At the tone, the time is " + new Date());
 Toolkit.getDefaultToolkit().beep();
 });

That’s a lot easier to read than the alternative with a class that implements the

ActionListener interface.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes318

ptg16518469

In fact, conversion to a functional interface is the only thing that you can do with

a lambda expression in Java. In other programming languages that support

function literals, you can declare function types such as (String, String) -> int, declare

variables of those types, and use the variables to save function expressions.

However, the Java designers decided to stick with the familiar concept of interfaces

instead of adding function types to the language.

NOTE: You can’t even assign a lambda expression to a variable of type
Object—Object is not a functional interface.

The Java API defines a number of very generic functional interfaces in the

java.util.function package. One of the interfaces, BiFunction<T, U, R>, describes functions

with parameter types T and U and return type R. You can save our string

comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp
 = (first, second) -> first.length() - second.length();

However, that does not help you with sorting. There is no Arrays.sort method that

wants a BiFunction. If you have used a functional programming language before,

you may find this curious. But for Java programmers, it’s pretty natural. An inter-

face such as Comparator has a specific purpose, not just a method with given param-

eter and return types. Java SE 8 retains this flavor. When you want to do something

with lambda expressions, you still want to keep the purpose of the expression in

mind, and have a specific functional interface for it.

A particularly useful interface in the java.util.function package is Predicate:

public interface Predicate<T>
{
 boolean test(T t);
 // Additional default and static methods
}

The ArrayList class has a removeIf method whose parameter is a Predicate. It is specifi-

cally designed to pass a lambda expression. For example, the following statement

removes all null values from an array list:

list.removeIf(e -> e == null);

6.3.4 Method References
Sometimes, there is already a method that carries out exactly the action that you’d

like to pass on to some other code. For example, suppose you simply want to

print the event object whenever a timer event occurs. Of course, you could call

3196.3 Lambda Expressions

ptg16518469

Timer t = new Timer(1000, event -> System.out.println(event));

It would be nicer if you could just pass the println method to the Timer constructor.

Here is how you do that:

Timer t = new Timer(1000, System.out::println);

The expression System.out::println is a method reference that is equivalent to the

lambda expression x -> System.out.println(x).

As another example, suppose you want to sort strings regardless of letter case.

You can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method name

from the name of an object or class. There are three principal cases:

• object::instanceMethod

• Class::staticMethod

• Class::instanceMethod

In the first two cases, the method reference is equivalent to a lambda expression

that supplies the parameters of the method. As already mentioned, System.out::println
is equivalent to x -> System.out.println(x). Similarly, Math::pow is equivalent to (x, y) ->
Math.pow(x, y).

In the third case, the first parameter becomes the target of the method. For

example, String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).

NOTE: When there are multiple overloaded methods with the same name, the
compiler will try to find from the context which one you mean. For example, there
are two versions of the Math.max method, one for integers and one for double values.
Which one gets picked depends on the method parameters of the functional in-
terface to which Math::max is converted. Just like lambda expressions, method
references don’t live in isolation. They are always turned into instances of
functional interfaces.

You can capture the this parameter in a method reference. For example, this::equals
is the same as x -> this.equals(x). It is also valid to use super. The method expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given method.

Here is an artificial example that shows the mechanics:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes320

ptg16518469

class Greeter
{
 public void greet()
 {
 System.out.println("Hello, world!");
 }
}

class TimedGreeter extends Greeter
{
 public void greet()
 {
 Timer t = new Timer(1000, super::greet);
 t.start();
 }
}

When the TimedGreeter.greet method starts, a Timer is constructed that executes the

super::greet method on every timer tick. That method calls the greet method of

the superclass.

6.3.5 Constructor References
Constructor references are just like method references, except that the name of

the method is new. For example, Person::new is a reference to a Person constructor.

Which constructor? It depends on the context. Suppose you have a list of strings.

Then you can turn it into an array of Person objects, by calling the constructor on

each of the strings, with the following invocation:

ArrayList<String> names = . . .;
Stream<Person> stream = names.stream().map(Person::new);
List<Person> people = stream.collect(Collectors.toList());

We will discuss the details of the stream, map, and collect methods in Chapter 1 of

Volume II. For now, what’s important is that the map method calls the Person(String)
constructor for each list element. If there are multiple Person constructors, the

compiler picks the one with a String parameter because it infers from the context

that the constructor is called with a string.

You can form constructor references with array types. For example, int[]::new
is a constructor reference with one parameter: the length of the array. It is

equivalent to the lambda expression x -> new int[x].

Array constructor references are useful to overcome a limitation of Java. It is not

possible to construct an array of a generic type T. The expression new T[n] is an error

since it would be erased to new Object[n]. That is a problem for library authors. For

example, suppose we want to have an array of Person objects. The Stream interface

has a toArray method that returns an Object array:

3216.3 Lambda Expressions

ptg16518469

Object[] people = stream.toArray();

But that is unsatisfactory. The user wants an array of references to Person, not ref-

erences to Object. The stream library solves that problem with constructor

references. Pass Person[]::new to the toArray method:

Person[] people = stream.toArray(Person[]::new);

The toArray method invokes this constructor to obtain an array of the correct

type. Then it fills and returns the array.

6.3.6 Variable Scope
Often, you want to be able to access variables from an enclosing method or class

in a lambda expression. Consider this example:

public static void repeatMessage(String text, int delay)
{
 ActionListener listener = event ->
 {

System.out.println(text);
Toolkit.getDefaultToolkit().beep();

 };
 new Timer(delay, listener).start();
}

Consider a call

repeatMessage("Hello", 1000); // Prints Hello every 1,000 milliseconds

Now look at the variable text inside the lambda expression. Note that this variable

is not defined in the lambda expression. Instead, it is a parameter variable of the

repeatMessage method.

If you think about it, something nonobvious is going on here. The code of the

lambda expression may run long after the call to repeatMessage has returned and

the parameter variables are gone. How does the text variable stay around?

To understand what is happening, we need to refine our understanding of a

lambda expression. A lambda expression has three ingredients:

1. A block of code

2. Parameters

3. Values for the free variables, that is, the variables that are not parameters and

not defined inside the code

In our example, the lambda expression has one free variable, text. The data

structure representing the lambda expression must store the values for the free

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes322

ptg16518469

variables, in our case, the string "Hello". We say that such values have been captured

by the lambda expression. (It’s an implementation detail how that is done. For

example, one can translate a lambda expression into an object with a single

method, so that the values of the free variables are copied into instance variables

of that object.)

NOTE: The technical term for a block of code together with the values of the
free variables is a closure. If someone gloats that their language has closures,
rest assured that Java has them as well. In Java, lambda expressions are
closures.

As you have seen, a lambda expression can capture the value of a variable

in the enclosing scope. In Java, to ensure that the captured value is well-defined,

there is an important restriction. In a lambda expression, you can only reference

variables whose value doesn’t change. For example, the following is illegal:

public static void countDown(int start, int delay)
{
 ActionListener listener = event ->
 {

start--; // Error: Can't mutate captured variable
System.out.println(start);

 };
 new Timer(delay, listener).start();
}

There is a reason for this restriction. Mutating variables in a lambda expression

is not safe when multiple actions are executed concurrently. This won’t happen

for the kinds of actions that we have seen so far, but in general, it is a serious

problem. See Chapter 14 for more information on this important issue.

It is also illegal to refer to variable in a lambda expression that is mutated outside.

For example, the following is illegal:

public static void repeat(String text, int count)
{
 for (int i = 1; i <= count; i++)
 {
 ActionListener listener = event ->

{
System.out.println(i + ": " + text);

// Error: Cannot refer to changing i
};

 new Timer(1000, listener).start();
 }
}

3236.3 Lambda Expressions

ptg16518469

The rule is that any captured variable in a lambda expression must be effectively

final. An effectively final variable is a variable that is never assigned a new value

after it has been initialized. In our case, text always refers to the same String object,

and it is OK to capture it. However, the value of i is mutated, and therefore i
cannot be captured.

The body of a lambda expression has the same scope as a nested block. The same

rules for name conflicts and shadowing apply. It is illegal to declare a parameter

or a local variable in the lambda that has the same name as a local variable.

Path first = Paths.get("/usr/bin");
Comparator<String> comp =
 (first, second) -> first.length() - second.length();
 // Error: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and

therefore, you can’t introduce such variables in a lambda expression either.

When you use the this keyword in a lambda expression, you refer to the this
parameter of the method that creates the lambda. For example, consider

public class Application()
{
 public void init()
 {
 ActionListener listener = event ->

{
System.out.println(this.toString());
. . .

}
 . . .
 }
}

The expression this.toString() calls the toString method of the Application object, not

the ActionListener instance. There is nothing special about the use of this in a lambda

expression. The scope of the lambda expression is nested inside the init method,

and this has the same meaning anywhere in that method.

6.3.7 Processing Lambda Expressions
Up to now, you have seen how to produce lambda expressions and pass them to

a method that expects a functional interface. Now let us see how to write methods

that can consume lambda expressions.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes324

ptg16518469

The point of using lambdas is deferred execution. After all, if you wanted to execute

some code right now, you’d do that, without wrapping it inside a lambda. There

are many reasons for executing code later, such as:

• Running the code in a separate thread

• Running the code multiple times

• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)

• Running the code when something happens (a button was clicked, data has

arrived, and so on)

• Running the code only when necessary

Let’s look at a simple example. Suppose you want to repeat an action n times.

The action and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a functional

interface. Table 6.1 lists the most important functional interfaces that are provided

in the Java API. In this case, we can use the Runnable interface:

public static void repeat(int n, Runnable action)
{
 for (int i = 0; i < n; i++) action.run();
}

Note that the body of the lambda expression is executed when action.run() is called.

Now let’s make this example a bit more sophisticated. We want to tell the action

in which iteration it occurs. For that, we need to pick a functional interface that

has a method with an int parameter and a void return. The standard interface for

processing int values is

public interface IntConsumer
{
 void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action)
{
 for (int i = 0; i < n; i++) action.accept(i);
}

3256.3 Lambda Expressions

ptg16518469

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Table 6.1 Common Functional Interfaces

Other
Methods

DescriptionAbstract
Method
Name

Return
Type

Parameter
Types

Functional Interface

Runs an action

without

arguments or

return value

runvoidnoneRunnable

Supplies a value of

type T
getTnoneSupplier<T>

andThenConsumes a value

of type T
acceptvoidTConsumer<T>

andThenConsumes values

of types T and U
acceptvoidT, UBiConsumer<T, U>

compose,

andThen,

identity

A function with

argument of type T
applyRTFunction<T, R>

andThenA function with

arguments of

types T and U

applyRT, UBiFunction<T, U, R>

compose,

andThen,

identity

A unary operator

on the type T
applyTTUnaryOperator<T>

andThen,

maxBy,

minBy

A binary operator

on the type T
applyTT, TBinaryOperator<T>

and, or,

negate,

isEqual

A boolean-valued

function

testbooleanTPredicate<T>

and, or,

negate
A boolean-valued

function with two

arguments

testbooleanT, UBiPredicate<T, U>

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes326

ptg16518469

Table 6.2 lists the 34 available specializations for primitive types int, long, and

double. It is a good idea to use these specializations to reduce autoboxing. For

that reason, I used an IntConsumer instead of a Consumer<Integer> in the example of the

preceding section.

Table 6.2 Functional Interfaces for Primitive Types
p, q is int, long, double; P, Q is Int, Long, Double

Abstract Method NameReturn TypeParameter TypesFunctional Interface

getAsBooleanbooleannoneBooleanSupplier

getAsPpnonePSupplier

acceptvoidpPConsumer

acceptvoidT, pObjPConsumer<T>

applyTpPFunction<T>

applyAsQqpPToQFunction

applyAsPpTToPFunction<T>

applyAsPpT, UToPBiFunction<T, U>

applyAsPppPUnaryOperator

applyAsPpp, pPBinaryOperator

testbooleanpPPredicate

TIP: It is a good idea to use an interface from Tables 6.1 or 6.2 whenever you
can. For example, suppose you write a method to process files that match a
certain criterion. There is a legacy interface java.io.FileFilter, but it is better to
use the standard Predicate<File>. The only reason not to do so would be if you
already have many useful methods producing FileFilter instances.

NOTE: Most of the standard functional interfaces have nonabstract methods for
producing or combining functions. For example, Predicate.isEqual(a) is the same
as a::equals, but it also works if a is null.There are default methods and, or, negate
for combining predicates. For example, Predicate.isEqual(a).or(Predicate.isEqual(b))
is the same as x -> a.equals(x) || b.equals(x).

3276.3 Lambda Expressions

ptg16518469

NOTE: If you design your own interface with a single abstract method, you can
tag it with the @FunctionalInterface annotation. This has two advantages. The
compiler gives an error message if you accidentally add another nonabstract
method. And the javadoc page includes a statement that your interface is a
functional interface.

It is not required to use the annotation. Any interface with a single
abstract method is, by definition, a functional interface. But using the
@FunctionalInterface annotation is a good idea.

6.3.8 More about Comparators
The Comparator interface has a number of convenient static methods for creating

comparators. These methods are intended to be used with lambda expressions

or method references.

The static comparing method takes a “key extractor” function that maps a type T to

a comparable type (such as String). The function is applied to the objects to be

compared, and the comparison is then made on the returned keys. For example,

suppose you have an array of Person objects. Here is how you can sort them

by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

This is certainly much easier than implementing a Comparator by hand. Moreover,

the code is clearer since it is obvious that we want to compare people by name.

You can chain comparators with the thenComparing method for breaking ties. For

example,

Arrays.sort(people,
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator to

be used for the keys that the comparing and thenComparing methods extract. For example,

here we sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
 (s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that avoid

boxing of int, long, or double values. An easier way of producing the preceding

operation would be

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes328

ptg16518469

If your key function can return null, you will like the nullsFirst and nullsLast
adapters. These static methods take an existing comparator and modify it so that

it doesn’t throw an exception when encountering null values but ranks them as

smaller or larger than regular values. For example, suppose getMiddleName returns a

null when a person has no middle name. Then you can use Comparator.comparing(
Person::getMiddleName(), Comparator.nullsFirst(...)).

The nullsFirst method needs a comparator—in this case, one that compares two

strings. The naturalOrder method makes a comparator for any class implementing

Comparable. A Comparator.<String>naturalOrder() is what we need. Here is the complete

call for sorting by potentially null middle names. I use a static import of

java.util.Comparator.*, to make the expression more legible. Note that the type for

naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName, nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To reverse any

comparator, use the reversed instance method. For example, naturalOrder().reversed()
is the same as reverseOrder().

6.4 Inner Classes
An inner class is a class that is defined inside another class. Why would you want

to do that? There are three reasons:

• Inner class methods can access the data from the scope in which they are

defined—including the data that would otherwise be private.

• Inner classes can be hidden from other classes in the same package.

• Anonymous inner classes are handy when you want to define callbacks without

writing a lot of code.

We will break up this rather complex topic into several steps.

1. Starting on page 331, you will see a simple inner class that accesses an instance

field of its outer class.

2. On page 334, we cover the special syntax rules for inner classes.

3. Starting on page 335, we peek inside inner classes to see how they are trans-

lated into regular classes. Squeamish readers may want to skip that section.

4. Starting on page 339, we discuss local inner classes that can access local

variables of the enclosing scope.

5. Starting on page 342, we introduce anonymous inner classes and show how

they were commonly used to implement callbacks before Java had lambda

expressions.

3296.4 Inner Classes

ptg16518469

6. Finally, starting on page 346, you will see how static inner classes can be used

for nested helper classes.

C++ NOTE: C++ has nested classes. A nested class is contained inside the
scope of the enclosing class. Here is a typical example:A linked list class defines
a class to hold the links, and a class to define an iterator position.

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 };
 . . .
private:
 class Link // a nested class
 {
 public:
 Link* next;
 int data;
 };
 . . .
};

The nesting is a relationship between classes, not objects. A LinkedList object
does not have subobjects of type Iterator or Link.

There are two benefits: name control and access control. The name Iterator is
nested inside the LinkedList class, so it is known externally as LinkedList::Iterator
and cannot conflict with another class called Iterator. In Java, this benefit is not
as important because Java packages give the same kind of name control. Note
that the Link class is in the private part of the LinkedList class. It is completely
hidden from all other code. For that reason, it is safe to make its data fields
public. They can be accessed by the methods of the LinkedList class (which has
a legitimate need to access them) but they are not visible elsewhere. In Java,
this kind of control was not possible until inner classes were introduced.

However, the Java inner classes have an additional feature that makes them
richer and more useful than nested classes in C++. An object that comes from
an inner class has an implicit reference to the outer class object that instantiated
it. Through this pointer, it gains access to the total state of the outer object.You
will see the details of the Java mechanism later in this chapter.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes330

ptg16518469

In Java, static inner classes do not have this added pointer. They are the Java
analog to nested classes in C++.

6.4.1 Use of an Inner Class to Access Object State
The syntax for inner classes is rather complex. For that reason, we present a simple

but somewhat artificial example to demonstrate the use of inner classes. We

refactor the TimerTest example and extract a TalkingClock class. A talking clock is

constructed with two parameters: the interval between announcements and a

flag to turn beeps on or off.

public class TalkingClock
{
 private int interval;
 private boolean beep;

 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }

 public class TimePrinter implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note that the TimePrinter class is now located inside the TalkingClock class. This does

not mean that every TalkingClock has a TimePrinter instance field. As you will see, the

TimePrinter objects are constructed by methods of the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the actionPerformed method

checks the beep flag before emitting a beep.

public class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 System.out.println("At the tone, the time is " + new Date());
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
}

Something surprising is going on. The TimePrinter class has no instance field or

variable named beep. Instead, beep refers to the field of the TalkingClock object that

created this TimePrinter. This is quite innovative. Traditionally, a method could refer

to the data fields of the object invoking the method. An inner class method

gets to access both its own data fields and those of the outer object creating it.

3316.4 Inner Classes

ptg16518469

For this to work, an object of an inner class always gets an implicit reference to

the object that created it (see Figure 6.3).

Figure 6.3 An inner class object has a reference to an outer class object

This reference is invisible in the definition of the inner class. However, to illumi-

nate the concept, let us call the reference to the outer object outer. Then the

actionPerformed method is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 System.out.println("At the tone, the time is " + new Date());
 if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

The outer class reference is set in the constructor. The compiler modifies all inner

class constructors, adding a parameter for the outer class reference. The TimePrinter
class defines no constructors; therefore, the compiler synthesizes a no-argument

constructor, generating code like this:

public TimePrinter(TalkingClock clock) // automatically generated code
{

outer = clock;
}

Again, please note that outer is not a Java keyword. We just use it to illustrate the

mechanism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler passes

the this reference to the current talking clock into the constructor:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes332

ptg16518469

ActionListener listener = new TimePrinter(this); // parameter automatically added

Listing 6.7 shows the complete program that tests the inner class. Have another

look at the access control. Had the TimePrinter class been a regular class, it would

have needed to access the beep flag through a public method of the TalkingClock class.

Using an inner class is an improvement. There is no need to provide accessors

that are of interest only to one other class.

NOTE: We could have declared the TimePrinter class as private. Then only
TalkingClock methods would be able to construct TimePrinter objects. Only inner
classes can be private. Regular classes always have either package or public
visibility.

Listing 6.7 innerClass/InnerClassTest.java

1 package innerClass;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import java.util.*;
6 import javax.swing.*;
7 import javax.swing.Timer;
 8

9 /**
10 * This program demonstrates the use of inner classes.
11 * @version 1.11 2015-05-12
12 * @author Cay Horstmann
13 */
14 public class InnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 TalkingClock clock = new TalkingClock(1000, true);
19 clock.start();
20

21 // keep program running until user selects "Ok"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26

27 /**
28 * A clock that prints the time in regular intervals.
29 */

(Continues)

3336.4 Inner Classes

ptg16518469

Listing 6.7 (Continued)

30 class TalkingClock
31 {
32 private int interval;
33 private boolean beep;
34

35 /**
36 * Constructs a talking clock
37 * @param interval the interval between messages (in milliseconds)
38 * @param beep true if the clock should beep
39 */
40 public TalkingClock(int interval, boolean beep)
41 {
42 this.interval = interval;
43 this.beep = beep;
44 }
45

46 /**
47 * Starts the clock.
48 */
49 public void start()
50 {
51 ActionListener listener = new TimePrinter();
52 Timer t = new Timer(interval, listener);
53 t.start();
54 }
55

56 public class TimePrinter implements ActionListener
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.out.println("At the tone, the time is " + new Date());
61 if (beep) Toolkit.getDefaultToolkit().beep();
62 }
63 }
64 }

6.4.2 Special Syntax Rules for Inner Classes
In the preceding section, we explained the outer class reference of an inner class

by calling it outer. Actually, the proper syntax for the outer reference is a bit more

complex. The expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed
method of the TimePrinter inner class as

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes334

ptg16518469

public void actionPerformed(ActionEvent event)
{
 . . .
 if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();
}

Conversely, you can write the inner object constructor more explicitly, using the

syntax

outerObject.new InnerClass(construction parameters)

For example:

ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object is set to

the this reference of the method that creates the inner class object. This is the most

common case. As always, the this. qualifier is redundant. However, it is also

possible to set the outer class reference to another object by explicitly naming it.

For example, since TimePrinter is a public inner class, you can construct a TimePrinter
for any talking clock:

TalkingClock jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class.

NOTE: Any static fields declared in an inner class must be final. There is a
simple reason. One expects a unique instance of a static field, but there is
a separate instance of the inner class for each outer object. If the field was not
final, it might not be unique.

An inner class cannot have static methods. The Java Language Specification
gives no reason for this limitation. It would have been possible to allow static
methods that only access static fields and methods from the enclosing class.
Apparently, the language designers decided that the complexities outweighed
the benefits.

6.4.3 Are Inner Classes Useful? Actually Necessary? Secure?
When inner classes were added to the Java language in Java 1.1, many program-

mers considered them a major new feature that was out of character with the Java

philosophy of being simpler than C++. The inner class syntax is undeniably

3356.4 Inner Classes

ptg16518469

complex. (It gets more complex as we study anonymous inner classes later in this

chapter.) It is not obvious how inner classes interact with other features of the

language, such as access control and security.

By adding a feature that was elegant and interesting rather than needed, has Java

started down the road to ruin which has afflicted so many other languages?

While we won’t try to answer this question completely, it is worth noting that

inner classes are a phenomenon of the compiler, not the virtual machine. Inner

classes are translated into regular class files with $ (dollar signs) delimiting outer

and inner class names, and the virtual machine does not have any special

knowledge about them.

For example, the TimePrinter class inside the TalkingClock class is translated to a class

file TalkingClock$TimePrinter.class. To see this at work, try the following experiment:

run the ReflectionTest program of Chapter 5, and give it the class TalkingClock$TimePrinter
to reflect upon. Alternatively, simply use the javap utility:

javap -private ClassName

NOTE: If you use UNIX, remember to escape the $ character when you supply
the class name on the command line. That is, run the ReflectionTest or javap
program as

java reflection.ReflectionTest innerClass.TalkingClock\$TimePrinter

or

javap -private innerClass.TalkingClock\$TimePrinter

You will get the following printout:

public class TalkingClock$TimePrinter
{
 public TalkingClock$TimePrinter(TalkingClock);

 public void actionPerformed(java.awt.event.ActionEvent);

 final TalkingClock this$0;
}

You can plainly see that the compiler has generated an additional instance field,

this$0, for the reference to the outer class. (The name this$0 is synthesized by the

compiler—you cannot refer to it in your code.) You can also see the TalkingClock
parameter for the constructor.

If the compiler can automatically do this transformation, couldn’t you simply

program the same mechanism by hand? Let’s try it. We would make TimePrinter a

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes336

ptg16518469

regular class, outside the TalkingClock class. When constructing a TimePrinter object,

we pass it the this reference of the object that is creating it.

class TalkingClock
{
 . . .
 public void start()
 {
 ActionListener listener = new TimePrinter(this);
 Timer t = new Timer(interval, listener);
 t.start();
 }
}

class TimePrinter implements ActionListener
{
 private TalkingClock outer;
 . . .
 public TimePrinter(TalkingClock clock)
 {
 outer = clock;
 }
}

Now let us look at the actionPerformed method. It needs to access outer.beep.

if (outer.beep) . . . // Error

Here we run into a problem. The inner class can access the private data of the

outer class, but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes because

they have more access privileges.

You may well wonder how inner classes manage to acquire those added access

privileges, if they are translated to regular classes with funny names—the virtual

machine knows nothing at all about them. To solve this mystery, let’s again use

the ReflectionTest program to spy on the TalkingClock class:

class TalkingClock
{
 private int interval;
 private boolean beep;

 public TalkingClock(int, boolean);

 static boolean access$0(TalkingClock);
 public void start();
}

3376.4 Inner Classes

ptg16518469

Notice the static access$0 method that the compiler added to the outer class. It re-

turns the beep field of the object that is passed as a parameter. (The method name

might be slightly different, such as access$000, depending on your compiler.)

The inner class methods call that method. The statement

if (beep)

in the actionPerformed method of the TimePrinter class effectively makes the

following call:

if (TalkingClock.access$0(outer))

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke

the access$0 method to read the private beep field. Of course, access$0 is not a legal

name for a Java method. However, hackers who are familiar with the structure

of class files can easily produce a class file with virtual machine instructions to

call that method, for example, by using a hex editor. Since the secret access

methods have package visibility, the attack code would need to be placed inside

the same package as the class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to

access that data field through other classes added to the package of the outer

class, but to do so requires skill and determination. A programmer cannot acci-

dentally obtain access but must intentionally build or modify a class file for that

purpose.

NOTE: The synthesized constructors and methods can get quite convoluted.
(Skip this note if you are squeamish.) Suppose we turn TimePrinter into a private
inner class. There are no private classes in the virtual machine, so the compiler
produces the next best thing: a package-visible class with a private constructor

private TalkingClock$TimePrinter(TalkingClock);

Of course, nobody can call that constructor, so there is a second package-visible
constructor

TalkingClock$TimePrinter(TalkingClock, TalkingClock$1);

that calls the first one.The TalkingClock$1 class is synthesized solely to distinguish
this constructor from others.

The compiler translates the constructor call in the start method of the TalkingClock
class to

new TalkingClock$TimePrinter(this, null)

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes338

ptg16518469

6.4.4 Local Inner Classes
If you look carefully at the code of the TalkingClock example, you will find that you

need the name of the type TimePrinter only once: when you create an object of that

type in the start method.

In a situation like this, you can define the class locally in a single method.

public void start()
{

class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {

System.out.println("At the tone, the time is " + new Date());
if (beep) Toolkit.getDefaultToolkit().beep();

 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Local classes are never declared with an access specifier (that is, public or private).

Their scope is always restricted to the block in which they are declared.

Local classes have one great advantage: They are completely hidden from the

outside world—not even other code in the TalkingClock class can access them. No

method except start has any knowledge of the TimePrinter class.

6.4.5 Accessing Variables from Outer Methods
Local classes have another advantage over other inner classes. Not only can they

access the fields of their outer classes; they can even access local variables! How-

ever, those local variables must be effectively final. That means, they may never

change once they have been assigned.

Here is a typical example. Let’s move the interval and beep parameters from the

TalkingClock constructor to the start method.

public void start(int interval, boolean beep)
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {

3396.4 Inner Classes

ptg16518469

System.out.println("At the tone, the time is " + new Date());
if (beep) Toolkit.getDefaultToolkit().beep();

 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Note that the TalkingClock class no longer needs to store a beep instance field. It simply

refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have access to

the value of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control more

closely.

1. The start method is called.

2. The object variable listener is initialized by a call to the constructor of the inner

class TimePrinter.

3. The listener reference is passed to the Timer constructor, the timer is started,

and the start method exits. At this point, the beep parameter variable of the

start method no longer exists.

4. A second later, the actionPerformed method executes if (beep) . . .

For the code in the actionPerformed method to work, the TimePrinter class must have

copied the beep field as a local variable of the start method, before the beep param-

eter value went away. That is indeed exactly what happens. In our example, the

compiler synthesizes the name TalkingClock$1TimePrinter for the local inner class.

If you use the ReflectionTest program again to spy on the TalkingClock$1TimePrinter
class, you will get the following output:

class TalkingClock$1TimePrinter
{
 TalkingClock$1TimePrinter(TalkingClock, boolean);

 public void actionPerformed(java.awt.event.ActionEvent);

 final boolean val$beep;
 final TalkingClock this$0;
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes340

ptg16518469

Note the boolean parameter to the constructor and the val$beep instance variable.

When an object is created, the value beep is passed into the constructor and stored

in the val$beep field. The compiler detects access of local variables, makes matching

instance fields for each one, and copies the local variables into the constructor so

that the instance fields can be initialized.

From the programmer’s point of view, local variable access is quite pleasant. It

makes your inner classes simpler by reducing the instance fields that you need

to program explicitly.

As we already mentioned, the methods of a local class can refer only to local

variables that are declared final. For that reason, the beep parameter was declared

final in our example. A local variable that is declared final cannot be modified after

it has been initialized. Thus, it is guaranteed that the local variable and the copy

made inside the local class will always have the same value.

NOTE: Before Java SE 8, it was necessary to declare any local variables that
are accessed from local classes as final. For example, this is how the start
method would have been declared so that the inner class can access the beep
parameter:

public void start(int interval, final boolean beep)

The “effectively final” restriction is sometimes inconvenient. Suppose, for example,

that you want to update a counter in the enclosing scope. Here, we want to count

how often the compareTo method is called during sorting:

int counter = 0;
Date[] dates = new Date[100];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {

public int compareTo(Date other)
{

counter++; // Error
return super.compareTo(other);

}
 };
Arrays.sort(dates);
System.out.println(counter + " comparisons.");

You can’t declare counter as final because you clearly need to update it. You can’t

replace it with an Integer because Integer objects are immutable. A remedy is to use

an array of length 1:

3416.4 Inner Classes

ptg16518469

int[] counter = new int[1];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {

public int compareTo(Date other)
{

counter[0]++;
return super.compareTo(other);

}
 };

When inner classes were first invented, a prototype version of the compiler auto-

matically made this transformation for all local variables that were modified in

the inner class. However, this was later abandoned. After all, there is a danger.

When the code in the inner class is executed at the same time in multiple threads,

the concurrent updates can lead to race conditions—see Chapter 14.

6.4.6 Anonymous Inner Classes
When using local inner classes, you can often go a step further. If you want to

make only a single object of this class, you don’t even need to give the class a

name. Such a class is called an anonymous inner class.

public void start(int interval, boolean beep)
{
 ActionListener listener = new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {

System.out.println("At the tone, the time is " + new Date());
if (beep) Toolkit.getDefaultToolkit().beep();

 }
};

 Timer t = new Timer(interval, listener);
 t.start();
}

This syntax is very cryptic indeed. What it means is this: Create a new object of

a class that implements the ActionListener interface, where the required method

actionPerformed is the one defined inside the braces { }.

In general, the syntax is

new SuperType(construction parameters)
 {

inner class methods and data

 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes342

ptg16518469

Here, SuperType can be an interface, such as ActionListener; then, the inner class im-

plements that interface. SuperType can also be a class; then, the inner class extends

that class.

An anonymous inner class cannot have constructors because the name of a con-

structor must be the same as the name of a class, and the class has no name.

Instead, the construction parameters are given to the superclass constructor. In

particular, whenever an inner class implements an interface, it cannot have any

construction parameters. Nevertheless, you must supply a set of parentheses as in

new InterfaceType()
 {

methods and data

 }

You have to look carefully to see the difference between the construction of a new

object of a class and the construction of an object of an anonymous inner class

extending that class.

Person queen = new Person("Mary");
 // a Person object
Person count = new Person("Dracula") { . . . };
 // an object of an inner class extending Person

If the closing parenthesis of the construction parameter list is followed by an

opening brace, then an anonymous inner class is being defined.

Listing 6.8 contains the complete source code for the talking clock program with

an anonymous inner class. If you compare this program with Listing 6.7, you will

see that in this case, the solution with the anonymous inner class is quite a bit

shorter and, hopefully, with some practice, as easy to comprehend.

For many years, Java programmers routinely used anonymous inner classes for

event listeners and other callbacks. Nowadays, you are better off using a lambda

expression. For example, the start method from the beginning of this section can

be written much more concisely with a lambda expression like this:

public void start(int interval, boolean beep)
{
 Timer t = new Timer(interval, event ->
 {

System.out.println("At the tone, the time is " + new Date());
if (beep) Toolkit.getDefaultToolkit().beep();

 });
 t.start();
}

3436.4 Inner Classes

ptg16518469

NOTE: The following trick, called double brace initialization, takes advantage
of the inner class syntax. Suppose you want to construct an array list and pass
it to a method:

ArrayList<String> friends = new ArrayList<>();
friends.add("Harry");
friends.add("Tony");
invite(friends);

If you don’t need the array list again, it would be nice to make it anonymous. But
then how can you add the elements? Here is how:

invite(new ArrayList<String>() {{ add("Harry"); add("Tony"); }});

Note the double braces. The outer braces make an anonymous subclass of
ArrayList. The inner braces are an object construction block (see Chapter 4).

CAUTION: It is often convenient to make an anonymous subclass that is almost,
but not quite, like its superclass. But you need to be careful with the equals
method. In Chapter 5, we recommended that your equals methods use a test

if (getClass() != other.getClass()) return false;

An anonymous subclass will fail this test.

TIP: When you produce logging or debugging messages, you often want to
include the name of the current class, such as

System.err.println("Something awful happened in " + getClass());

But that fails in a static method. After all, the call to getClass calls this.getClass(),
and a static method has no this. Use the following expression instead:

new Object(){}.getClass().getEnclosingClass() // gets class of static method

Here, new Object(){} makes an anonymous object of an anonymous subclass of
Object, and getEnclosingClass gets its enclosing class—that is, the class containing
the static method.

Listing 6.8 anonymousInnerClass/AnonymousInnerClassTest.java

1 package anonymousInnerClass;
 2

3 import java.awt.*;
4 import java.awt.event.*;

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes344

ptg16518469

5 import java.util.*;
6 import javax.swing.*;
7 import javax.swing.Timer;
 8

9 /**
10 * This program demonstrates anonymous inner classes.
11 * @version 1.11 2015-05-12
12 * @author Cay Horstmann
13 */
14 public class AnonymousInnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 TalkingClock clock = new TalkingClock();
19 clock.start(1000, true);
20

21 // keep program running until user selects "Ok"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26

27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 /**
33 * Starts the clock.
34 * @param interval the interval between messages (in milliseconds)
35 * @param beep true if the clock should beep
36 */
37 public void start(int interval, boolean beep)
38 {
39 ActionListener listener = new ActionListener()
40 {
41 public void actionPerformed(ActionEvent event)
42 {
43 System.out.println("At the tone, the time is " + new Date());
44 if (beep) Toolkit.getDefaultToolkit().beep();
45 }
46 };
47 Timer t = new Timer(interval, listener);
48 t.start();
49 }
50 }

3456.4 Inner Classes

ptg16518469

6.4.7 Static Inner Classes
Occasionally, you may want to use an inner class simply to hide one class inside

another—but you don’t need the inner class to have a reference to the outer class

object. You can suppress the generation of that reference by declaring the inner

class static.

Here is a typical example of where you would want to do this. Consider the task

of computing the minimum and maximum value in an array. Of course, you write

one method to compute the minimum and another method to compute the max-

imum. When you call both methods, the array is traversed twice. It would be

more efficient to traverse the array only once, computing both the minimum and

the maximum simultaneously.

double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
for (double v : values)
{
 if (min > v) min = v;
 if (max < v) max = v;
}

However, the method must return two numbers. We can achieve that by defining

a class Pair that holds two values:

class Pair
{
 private double first;
 private double second;

 public Pair(double f, double s)
 {
 first = f;
 second = s;
 }
 public double getFirst() { return first; }
 public double getSecond() { return second; }
}

The minmax method can then return an object of type Pair.

class ArrayAlg
{
 public static Pair minmax(double[] values)
 {
 . . .
 return new Pair(min, max);
 }
}

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes346

ptg16518469

The caller of the method uses the getFirst and getSecond methods to retrieve the

answers:

Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large project,

it is quite possible that some other programmer had the same bright idea—but

made a Pair class that contains a pair of strings. We can solve this potential name

clash by making Pair a public inner class inside ArrayAlg. Then the class will be

known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

However, unlike the inner classes that we used in previous examples, we do not

want to have a reference to any other object inside a Pair object. That reference

can be suppressed by declaring the inner class static:

class ArrayAlg
{
 public static class Pair
 {
 . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is exactly

like any other inner class, except that an object of a static inner class does not have

a reference to the outer class object that generated it. In our example, we must

use a static inner class because the inner class object is constructed inside a static

method:

public static Pair minmax(double[] d)
{
 . . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have complained

that there was no implicit object of type ArrayAlg available to initialize the inner

class object.

NOTE: Use a static inner class whenever the inner class does not need to access
an outer class object. Some programmers use the term nested class to describe
static inner classes.

3476.4 Inner Classes

ptg16518469

NOTE: Unlike regular inner classes, static inner classes can have static fields
and methods.

NOTE: Inner classes that are declared inside an interface are automatically
static and public.

Listing 6.9 contains the complete source code of the ArrayAlg class and the nested

Pair class.

Listing 6.9 staticInnerClass/StaticInnerClassTest.java

1 package staticInnerClass;
 2

3 /**
4 * This program demonstrates the use of static inner classes.
5 * @version 1.02 2015-05-12
6 * @author Cay Horstmann
7 */
8 public class StaticInnerClassTest
9 {
10 public static void main(String[] args)
11 {
12 double[] d = new double[20];
13 for (int i = 0; i < d.length; i++)
14 d[i] = 100 * Math.random();
15 ArrayAlg.Pair p = ArrayAlg.minmax(d);
16 System.out.println("min = " + p.getFirst());
17 System.out.println("max = " + p.getSecond());
18 }
19 }
20

21 class ArrayAlg
22 {
23 /**
24 * A pair of floating-point numbers
25 */
26 public static class Pair
27 {
28 private double first;
29 private double second;
30

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes348

ptg16518469

31 /**
32 * Constructs a pair from two floating-point numbers
33 * @param f the first number
34 * @param s the second number
35 */
36 public Pair(double f, double s)
37 {
38 first = f;
39 second = s;
40 }
41

42 /**
43 * Returns the first number of the pair
44 * @return the first number
45 */
46 public double getFirst()
47 {
48 return first;
49 }
50

51 /**
52 * Returns the second number of the pair
53 * @return the second number
54 */
55 public double getSecond()
56 {
57 return second;
58 }
59 }
60

61 /**
62 * Computes both the minimum and the maximum of an array
63 * @param values an array of floating-point numbers
64 * @return a pair whose first element is the minimum and whose second element
65 * is the maximum
66 */
67 public static Pair minmax(double[] values)
68 {
69 double min = Double.POSITIVE_INFINITY;
70 double max = Double.NEGATIVE_INFINITY;
71 for (double v : values)
72 {
73 if (min > v) min = v;
74 if (max < v) max = v;
75 }
76 return new Pair(min, max);
77 }
78 }

3496.4 Inner Classes

ptg16518469

6.5 Proxies
In the final section of this chapter, we discuss proxies. You can use a proxy to

create, at runtime, new classes that implement a given set of interfaces. Proxies

are only necessary when you don’t yet know at compile time which interfaces

you need to implement. This is not a common situation for application program-

mers, and you should feel free to skip this section if you are not interested in ad-

vanced wizardry. However, for certain systems programming applications, the

flexibility that proxies offer can be very important.

6.5.1 When to Use Proxies
Suppose you want to construct an object of a class that implements one or more

interfaces whose exact nature you may not know at compile time. This is a difficult

problem. To construct an actual class, you can simply use the newInstance method

or use reflection to find a constructor. But you can’t instantiate an interface. You

need to define a new class in a running program.

To overcome this problem, some programs generate code, place it into a file, invoke

the compiler, and then load the resulting class file. Naturally, this is slow, and it

also requires deployment of the compiler together with the program. The proxy

mechanism is a better solution. The proxy class can create brand-new classes

at runtime. Such a proxy class implements the interfaces that you specify. In

particular, the proxy class has the following methods:

• All methods required by the specified interfaces; and

• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead,

you must supply an invocation handler. An invocation handler is an object of

any class that implements the InvocationHandler interface. That interface has a single

method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invoca-

tion handler gets called, with the Method object and parameters of the original call.

The invocation handler must then figure out how to handle the call.

6.5.2 Creating Proxy Objects
To create a proxy object, use the newProxyInstance method of the Proxy class. The method

has three parameters:

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes350

ptg16518469

• A class loader. As part of the Java security model, different class loaders can

be used for system classes, classes that are downloaded from the Internet,

and so on. We will discuss class loaders in Chapter 9 of Volume II. For now,

we specify null to use the default class loader.

• An array of Class objects, one for each interface to be implemented.

• An invocation handler.

There are two remaining questions. How do we define the handler? And what

can we do with the resulting proxy object? The answers depend, of course, on

the problem that we want to solve with the proxy mechanism. Proxies can be

used for many purposes, such as

• Routing method calls to remote servers

• Associating user interface events with actions in a running program

• Tracing method calls for debugging purposes

In our example program, we use proxies and invocation handlers to trace method

calls. We define a TraceHandler wrapper class that stores a wrapped object. Its invoke
method simply prints the name and parameters of the method to be called and

then calls the method with the wrapped object as the implicit parameter.

class TraceHandler implements InvocationHandler
{
 private Object target;

 public TraceHandler(Object t)
 {
 target = t;
 }

 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {
 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }
}

Here is how you construct a proxy object that causes the tracing behavior

whenever one of its methods is called:

Object value = . . .;
// construct wrapper
InvocationHandler handler = new TraceHandler(value);
// construct proxy for one or more interfaces

3516.5 Proxies

ptg16518469

Class[] interfaces = new Class[] { Comparable.class};
Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

Now, whenever a method from one of the interfaces is called on proxy, the method

name and parameters are printed out and the method is then invoked on value.

In the program shown in Listing 6.10, we use proxy objects to trace a binary

search. We fill an array with proxies to the integers 1 . . . 1000. Then we invoke

the binarySearch method of the Arrays class to search for a random integer in the array.

Finally, we print the matching element.

Object[] elements = new Object[1000];
// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = i + 1;
 elements[i] = Proxy.newProxyInstance(. . .); // proxy for value;
}

// construct a random integer
Integer key = new Random().nextInt(elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0) System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a

class that is defined at runtime. (It has a name such as $Proxy0.) That class also

implements the Comparable interface. However, its compareTo method calls the invoke
method of the proxy object’s handler.

NOTE: As you saw earlier in this chapter, the Integer class actually implements
Comparable<Integer>. However, at runtime, all generic types are erased and the
proxy is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Since we filled the array with proxy objects, the compareTo calls call the invoke method

of the TraceHandler class. That method prints the method name and parameters and

then invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call

System.out.println(elements[result]);

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes352

ptg16518469

The println method calls toString on the proxy object, and that call is also redirected

to the invocation handler.

Here is the complete trace of a program run:

500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key by cutting the

search interval in half in every step. Note that the toString method is proxied even

though it does not belong to the Comparable interface—as you will see in the next

section, certain Object methods are always proxied.

Listing 6.10 proxy/ProxyTest.java

1 package proxy;
 2

3 import java.lang.reflect.*;
4 import java.util.*;
 5

6 /**
7 * This program demonstrates the use of proxies.
8 * @version 1.00 2000-04-13
9 * @author Cay Horstmann
10 */
11 public class ProxyTest
12 {
13 public static void main(String[] args)
14 {
15 Object[] elements = new Object[1000];
16

17 // fill elements with proxies for the integers 1 ... 1000
18 for (int i = 0; i < elements.length; i++)
19 {
20 Integer value = i + 1;
21 InvocationHandler handler = new TraceHandler(value);
22 Object proxy = Proxy.newProxyInstance(null, new Class[] { Comparable.class } , handler);
23 elements[i] = proxy;
24 }
25

26 // construct a random integer
27 Integer key = new Random().nextInt(elements.length) + 1;

(Continues)

3536.5 Proxies

ptg16518469

Listing 6.10 (Continued)

28

29 // search for the key
30 int result = Arrays.binarySearch(elements, key);
31

32 // print match if found
33 if (result >= 0) System.out.println(elements[result]);
34 }
35 }
36

37 /**
38 * An invocation handler that prints out the method name and parameters, then
39 * invokes the original method
40 */
41 class TraceHandler implements InvocationHandler
42 {
43 private Object target;
44

45 /**
46 * Constructs a TraceHandler
47 * @param t the implicit parameter of the method call
48 */
49 public TraceHandler(Object t)
50 {
51 target = t;
52 }
53

54 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable
55 {
56 // print implicit argument
57 System.out.print(target);
58 // print method name
59 System.out.print("." + m.getName() + "(");
60 // print explicit arguments
61 if (args != null)
62 {
63 for (int i = 0; i < args.length; i++)
64 {
65 System.out.print(args[i]);
66 if (i < args.length - 1) System.out.print(", ");
67 }
68 }
69 System.out.println(")");
70

71 // invoke actual method
72 return m.invoke(target, args);
73 }
74 }

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes354

ptg16518469

6.5.3 Properties of Proxy Classes
Now that you have seen proxy classes in action, let’s go over some of their

properties. Remember that proxy classes are created on the fly in a running pro-

gram. However, once they are created, they are regular classes, just like any other

classes in the virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance

field—the invocation handler, which is defined in the Proxy superclass. Any addi-

tional data required to carry out the proxy objects’ tasks must be stored in the

invocation handler. For example, when we proxied Comparable objects in the program

shown in Listing 6.10, the TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.

Like all proxy methods, these methods simply call invoke on the invocation handler.

The other methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in Oracle’s virtual

machine generates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of inter-

faces. That is, if you call the newProxyInstance method twice with the same class

loader and interface array, you get two objects of the same class. You can also

obtain that class with the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class imple-

ments are public, the proxy class does not belong to any particular package.

Otherwise, all non-public interfaces must belong to the same package, and the

proxy class will also belong to that package.

You can test whether a particular Class object represents a proxy class by calling

the isProxyClass method of the Proxy class.

java.lang.reflect.InvocationHandler 1.3

• Object invoke(Object proxy, Method method, Object[] args)

define this method to contain the action that you want carried out whenever a

method was invoked on the proxy object.

3556.5 Proxies

ptg16518469

java.lang.reflect.Proxy 1.3

• static Class<?> getProxyClass(ClassLoader loader, Class<?>... interfaces)

returns the proxy class that implements the given interfaces.

• static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler
handler)

constructs a new instance of the proxy class that implements the given interfaces.

All methods call the invoke method of the given handler object.

• static boolean isProxyClass(Class<?> cl)

returns true if cl is a proxy class.

This ends our final chapter on the fundamentals of the Java programming lan-

guage. Interfaces, lambda expressions, and inner classes are concepts that you

will encounter frequently. However, as we already mentioned, cloning and

proxies are advanced techniques that are of interest mainly to library designers

and tool builders, not application programmers. You are now ready to learn how

to deal with exceptional situations in your programs in Chapter 7.

Chapter 6 Interfaces, Lambda Expressions, and Inner Classes356

ptg16518469

7CHAPTER

Exceptions, Assertions, and
Logging

In this chapter

• 7.1 Dealing with Errors, page 358

• 7.2 Catching Exceptions, page 367

• 7.3 Tips for Using Exceptions, page 381

• 7.4 Using Assertions, page 384

• 7.5 Logging, page 389

• 7.6 Debugging Tips, page 409

In a perfect world, users would never enter data in the wrong form, files they

choose to open would always exist, and code would never have bugs. So far, we

have mostly presented code as if we lived in this kind of perfect world. It is now

time to turn to the mechanisms the Java programming language has for dealing

with the real world of bad data and buggy code.

Encountering errors is unpleasant. If a user loses all the work he or she did during

a program session because of a programming mistake or some external circum-

stance, that user may forever turn away from your program. At the very least,

you must:

357

ptg16518469

• Notify the user of an error;

• Save all work; and

• Allow users to gracefully exit the program.

For exceptional situations, such as bad input data with the potential to bomb the

program, Java uses a form of error trapping called, naturally enough, exception

handling. Exception handling in Java is similar to that in C++ or Delphi. The first

part of this chapter covers Java’s exceptions.

During testing, you need to run lots of checks to make sure your program does

the right thing. But those checks can be time consuming and unnecessary after

testing has completed. You could just remove the checks and stick them back in

when additional testing is required—but that is tedious. The second part of this

chapter shows you how to use the assertion facility for selectively activating

checks.

When your program does the wrong thing, you can’t always communicate with

the user or terminate. Instead, you may want to record the problem for later

analysis. The third part of this chapter discusses the standard Java logging

framework.

7.1 Dealing with Errors
Suppose an error occurs while a Java program is running. The error might be

caused by a file containing wrong information, a flaky network connection, or

(we hate to mention it) use of an invalid array index or an attempt to use an object

reference that hasn’t yet been assigned to an object. Users expect that programs

will act sensibly when errors happen. If an operation cannot be completed because

of an error, the program ought to either

• Return to a safe state and enable the user to execute other commands; or

• Allow the user to save all work and terminate the program gracefully.

This may not be easy to do, because the code that detects (or even causes) the error

condition is usually far removed from the code that can roll back the data to a

safe state or the code that can save the user’s work and exit cheerfully. The mission

of exception handling is to transfer control from where the error occurred to an

error handler that can deal with the situation. To handle exceptional situations

in your program, you must take into account the errors and problems that may

occur. What sorts of problems do you need to consider?

• User input errors. In addition to the inevitable typos, some users like to blaze

their own trail instead of following directions. Suppose, for example, that a

user asks to connect to a URL that is syntactically wrong. Your code should

Chapter 7 Exceptions, Assertions, and Logging358

ptg16518469

check the syntax, but suppose it does not. Then the network layer will

complain.

• Device errors. Hardware does not always do what you want it to. The printer

may be turned off. A web page may be temporarily unavailable. Devices will

often fail in the middle of a task. For example, a printer may run out of paper

during printing.

• Physical limitations. Disks can fill up; you can run out of available memory.

• Code errors. A method may not perform correctly. For example, it could deliver

wrong answers or use other methods incorrectly. Computing an invalid array

index, trying to find a nonexistent entry in a hash table, or trying to pop an

empty stack are all examples of a code error.

The traditional reaction to an error in a method is to return a special error code

that the calling method analyzes. For example, methods that read information

back from files often return a -1 end-of-file value marker rather than a standard

character. This can be an efficient method for dealing with many exceptional

conditions. Another common return value to denote an error condition is the null
reference.

Unfortunately, it is not always possible to return an error code. There may be no

obvious way of distinguishing valid and invalid data. A method returning an

integer cannot simply return -1 to denote the error; the value -1 might be a perfectly

valid result.

Instead, as we mentioned back in Chapter 5, Java allows every method an alter-

native exit path if it is unable to complete its task in the normal way. In this

situation, the method does not return a value. Instead, it throws an object that

encapsulates the error information. Note that the method exits immediately; it

does not return its normal (or any) value. Moreover, execution does not resume

at the code that called the method; instead, the exception-handling mechanism

begins its search for an exception handler that can deal with this particular error

condition.

Exceptions have their own syntax and are part of a special inheritance hierarchy.

We’ll take up the syntax first and then give a few hints on how to use this language

feature effectively.

7.1.1 The Classification of Exceptions
In the Java programming language, an exception object is always an instance of

a class derived from Throwable. As you will soon see, you can create your own

exception classes if the ones built into Java do not suit your needs.

Figure 7.1 is a simplified diagram of the exception hierarchy in Java.

3597.1 Dealing with Errors

ptg16518469

Figure 7.1 Exception hierarchy in Java

Notice that all exceptions descend from Throwable, but the hierarchy immediately

splits into two branches: Error and Exception.

The Error hierarchy describes internal errors and resource exhaustion situations

inside the Java runtime system. You should not throw an object of this type. There

is little you can do if such an internal error occurs, beyond notifying the user and

trying to terminate the program gracefully. These situations are quite rare.

When doing Java programming, focus on the Exception hierarchy. The Exception hier-

archy also splits into two branches: exceptions that derive from RuntimeException and

those that do not. The general rule is this: A RuntimeException happens because you

made a programming error. Any other exception occurs because a bad thing,

such as an I/O error, happened to your otherwise good program.

Exceptions that inherit from RuntimeException include such problems as

• A bad cast

• An out-of-bounds array access

• A null pointer access

Exceptions that do not inherit from RuntimeException include

Chapter 7 Exceptions, Assertions, and Logging360

ptg16518469

• Trying to read past the end of a file

• Trying to open a file that doesn’t exist

• Trying to find a Class object for a string that does not denote an existing class

The rule “If it is a RuntimeException, it was your fault” works pretty well. You could

have avoided that ArrayIndexOutOfBoundsException by testing the array index against the

array bounds. The NullPointerException would not have happened had you checked

whether the variable was null before using it.

How about a file that doesn’t exist? Can’t you first check whether the file exists,

and then open it? Well, the file might be deleted right after you checked for its

existence. Thus, the notion of “existence” depends on the environment, not just

on your code.

The Java Language Specification calls any exception that derives from the class

Error or the class RuntimeException an unchecked exception. All other exceptions are

called checked exceptions. This is useful terminology that we also adopt. The

compiler checks that you provide exception handlers for all checked exceptions.

NOTE: The name RuntimeException is somewhat confusing. Of course, all of the
errors we are discussing occur at runtime.

C++ NOTE: If you are familiar with the (much more limited) exception hierarchy
of the standard C++ library, you may be really confused at this point. C++ has
two fundamental exception classes, runtime_error and logic_error. The logic_error
class is the equivalent of Java’s RuntimeException and also denotes logical errors
in the program. The runtime_error class is the base class for exceptions caused
by unpredictable problems. It is equivalent to those exceptions in Java that are
not of type RuntimeException.

7.1.2 Declaring Checked Exceptions
A Java method can throw an exception if it encounters a situation it cannot handle.

The idea is simple: A method will not only tell the Java compiler what values it

can return, it is also going to tell the compiler what can go wrong. For example, code

that attempts to read from a file knows that the file might not exist or that it might

be empty. The code that tries to process the information in a file therefore will

need to notify the compiler that it can throw some sort of IOException.

The place in which you advertise that your method can throw an exception is the

header of the method; the header changes to reflect the checked exceptions the

method can throw. For example, here is the declaration of one of the constructors

3617.1 Dealing with Errors

ptg16518469

of the FileInputStream class from the standard library. (See Chapter 2 of Volume II

for more on input and output.)

public FileInputStream(String name) throws FileNotFoundException

The declaration says that this constructor produces a FileInputStream object from a

String parameter but that it also can go wrong in a special way—by throwing

a FileNotFoundException. If this sad state should come to pass, the constructor call will

not initialize a new FileInputStream object but instead will throw an object of the

FileNotFoundException class. If it does, the runtime system will begin to search for an

exception handler that knows how to deal with FileNotFoundException objects.

When you write your own methods, you don’t have to advertise every possible

throwable object that your method might actually throw. To understand when

(and what) you have to advertise in the throws clause of the methods you write,

keep in mind that an exception is thrown in any of the following four situations:

• You call a method that throws a checked exception—for example, the

FileInputStream constructor.

• You detect an error and throw a checked exception with the throw statement

(we cover the throw statement in the next section).

• You make a programming error, such as a[-1] = 0 that gives rise to an unchecked

exception (in this case, an ArrayIndexOutOfBoundsException).

• An internal error occurs in the virtual machine or runtime library.

If either of the first two scenarios occurs, you must tell the programmers who

will use your method about the possibility of an exception. Why? Any method

that throws an exception is a potential death trap. If no handler catches the

exception, the current thread of execution terminates.

As with Java methods that are part of the supplied classes, you declare that your

method may throw an exception with an exception specification in the method

header.

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws IOException
 {
 . . .
 }
}

Chapter 7 Exceptions, Assertions, and Logging362

ptg16518469

If a method might throw more than one checked exception type, you must list

all exception classes in the header. Separate them by commas, as in the following

example:

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws FileNotFoundException, EOFException
 {
 . . .
 }
}

However, you do not need to advertise internal Java errors—that is, exceptions

inheriting from Error. Any code could potentially throw those exceptions, and

they are entirely beyond your control.

Similarly, you should not advertise unchecked exceptions inheriting from

RuntimeException.

class MyAnimation
{
 . . .
 void drawImage(int i) throws ArrayIndexOutOfBoundsException // bad style
 {
 . . .
 }
}

These runtime errors are completely under your control. If you are so concerned

about array index errors, you should spend your time fixing them instead of

advertising the possibility that they can happen.

In summary, a method must declare all the checked exceptions that it might throw.

Unchecked exceptions are either beyond your control (Error) or result from condi-

tions that you should not have allowed in the first place (RuntimeException). If your

method fails to faithfully declare all checked exceptions, the compiler will issue

an error message.

Of course, as you have already seen in quite a few examples, instead of declaring

the exception, you can also catch it. Then the exception won’t be thrown out

of the method, and no throws specification is necessary. You will see later in this

chapter how to decide whether to catch an exception or to enable someone else

to catch it.

3637.1 Dealing with Errors

ptg16518469

CAUTION: If you override a method from a superclass, the checked exceptions
that the subclass method declares cannot be more general than those of the
superclass method. (It is OK to throw more specific exceptions, or not to throw
any exceptions in the subclass method.) In particular, if the superclass method
throws no checked exception at all, neither can the subclass. For example, if
you override JComponent.paintComponent, your paintComponent method must not throw
any checked exceptions, because the superclass method doesn’t throw any.

When a method in a class declares that it throws an exception that is an instance

of a particular class, it may throw an exception of that class or of any of its sub-

classes. For example, the FileInputStream constructor could have declared that it

throws an IOException. In that case, you would not have known what kind of

IOException it is; it could be a plain IOException or an object of one of the various

subclasses, such as FileNotFoundException.

C++ NOTE: The throws specifier is the same as the throw specifier in C++, with
one important difference. In C++, throw specifiers are enforced at runtime, not
at compile time. That is, the C++ compiler pays no attention to exception
specifications. But if an exception is thrown in a function that is not part of the
throw list, the unexpected function is called, and, by default, the program terminates.

Also, in C++, a function may throw any exception if no throw specification is given.
In Java, a method without a throws specifier may not throw any checked
exceptions at all.

7.1.3 How to Throw an Exception
Now, suppose something terrible has happened in your code. You have a method,

readData, that is reading in a file whose header promised

Content-length: 1024

but you got an end of file after 733 characters. You may decide this situation is

so abnormal that you want to throw an exception.

You need to decide what exception type to throw. Some kind of IOException would

be a good choice. Perusing the Java API documentation, you find an EOFException
with the description “Signals that an EOF has been reached unexpectedly during

input.” Perfect. Here is how you throw it:

throw new EOFException();

Chapter 7 Exceptions, Assertions, and Logging364

ptg16518469

or, if you prefer,

EOFException e = new EOFException();
throw e;

Here is how it all fits together:

String readData(Scanner in) throws EOFException
{
 . . .
 while (. . .)
 {
 if (!in.hasNext()) // EOF encountered
 {

if (n < len)
throw new EOFException();

 }
 . . .
 }
 return s;
}

The EOFException has a second constructor that takes a string argument. You can put

this to good use by describing the exceptional condition more carefully.

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);

As you can see, throwing an exception is easy if one of the existing exception

classes works for you. In this case:

1. Find an appropriate exception class.

2. Make an object of that class.

3. Throw it.

Once a method throws an exception, it does not return to its caller. This means

you do not have to worry about cooking up a default return value or an error code.

C++ NOTE: Throwing an exception is the same in C++ and in Java, with one
small difference. In Java, you can throw only objects of subclasses of Throwable.
In C++, you can throw values of any type.

7.1.4 Creating Exception Classes
Your code may run into a problem which is not adequately described by any of

the standard exception classes. In this case, it is easy enough to create your own

3657.1 Dealing with Errors

ptg16518469

exception class. Just derive it from Exception, or from a child class of Exception such

as IOException. It is customary to give both a default constructor and a constructor

that contains a detailed message. (The toString method of the Throwable superclass

returns a string containing that detailed message, which is handy for debugging.)

class FileFormatException extends IOException
{
 public FileFormatException() {}
 public FileFormatException(String gripe)
 {
 super(gripe);
 }
}

Now you are ready to throw your very own exception type.

String readData(BufferedReader in) throws FileFormatException
{
 . . .
 while (. . .)
 {
 if (ch == -1) // EOF encountered

 {
if (n < len)

throw new FileFormatException();
 }
 . . .
 }
 return s;
}

java.lang.Throwable 1.0

• Throwable()

constructs a new Throwable object with no detailed message.

• Throwable(String message)

constructs a new Throwable object with the specified detailed message. By convention,

all derived exception classes support both a default constructor and a constructor

with a detailed message.

• String getMessage()

gets the detailed message of the Throwable object.

Chapter 7 Exceptions, Assertions, and Logging366

ptg16518469

7.2 Catching Exceptions
You now know how to throw an exception. It is pretty easy: You throw it and you

forget it. Of course, some code has to catch the exception. Catching exceptions

requires more planning. That’s what the next sections will cover.

7.2.1 Catching an Exception
If an exception occurs that is not caught anywhere, the program will terminate

and print a message to the console, giving the type of the exception and a stack

trace. GUI programs (both applets and applications) catch exceptions, print

stack trace messages, and then go back to the user interface processing loop.

(When you are debugging a GUI program, it is a good idea to keep the console

on the screen and not minimized.)

To catch an exception, set up a try/catch block. The simplest form of the try block

is as follows:

try
{

code

more code

more code

}
catch (ExceptionType e)
{

handler for this type

}

If any code inside the try block throws an exception of the class specified in the

catch clause, then

1. The program skips the remainder of the code in the try block.

2. The program executes the handler code inside the catch clause.

If none of the code inside the try block throws an exception, then the program

skips the catch clause.

If any of the code in a method throws an exception of a type other than the one

named in the catch clause, this method exits immediately. (Hopefully, one of its

callers has already provided a catch clause for that type.)

To show this at work, here’s some fairly typical code for reading in data:

public void read(String filename)
{
 try
 {

3677.2 Catching Exceptions

ptg16518469

 InputStream in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {

process input

 }
 }

catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

Notice that most of the code in the try clause is straightforward: It reads and

processes bytes until we encounter the end of the file. As you can see by looking

at the Java API, there is the possibility that the read method will throw an IOException.

In that case, we skip out of the entire while loop, enter the catch clause, and generate

a stack trace. For a toy program, that seems like a reasonable way to deal with

this exception. What other choice do you have?

Often, the best choice is to do nothing at all and simply pass the exception on to

the caller. If an error occurs in the read method, let the caller of the read method

worry about it! If we take that approach, then we have to advertise the fact that

the method may throw an IOException.

public void read(String filename) throws IOException
{
 InputStream in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {

process input

 }
}

Remember, the compiler strictly enforces the throws specifiers. If you call a method

that throws a checked exception, you must either handle it or pass it on.

Which of the two is better? As a general rule, you should catch those exceptions

that you know how to handle and propagate those that you do not know how to

handle.

When you propagate an exception, you must add a throws specifier to alert the

caller that an exception may be thrown.

Look at the Java API documentation to see what methods throw which exceptions.

Then decide whether you should handle them or add them to the throws list. There

is nothing embarrassing about the latter choice. It is better to direct an exception

to a competent handler than to squelch it.

Chapter 7 Exceptions, Assertions, and Logging368

ptg16518469

Please keep in mind that there is, as we mentioned earlier, one exception to this

rule. If you are writing a method that overrides a superclass method which throws

no exceptions (such as paintComponent in JComponent), then you must catch each checked

exception in the method’s code. You are not allowed to add more throws specifiers

to a subclass method than are present in the superclass method.

C++ NOTE: Catching exceptions is almost the same in Java and in C++. Strictly
speaking, the analog of

catch (Exception e) // Java

is

catch (Exception& e) // C++

There is no analog to the C++ catch (. . .). This is not needed in Java because
all exceptions derive from a common superclass.

7.2.2 Catching Multiple Exceptions
You can catch multiple exception types in a try block and handle each type

differently. Use a separate catch clause for each type as in the following example:

try
{

code that might throw exceptions

}
catch (FileNotFoundException e)
{

emergency action for missing files

}
catch (UnknownHostException e)
{

emergency action for unknown hosts

}
catch (IOException e)
{

emergency action for all other I/O problems

}

The exception object may contain information about the nature of the exception.

To find out more about the object, try

e.getMessage()

to get the detailed error message (if there is one), or

e.getClass().getName()

3697.2 Catching Exceptions

ptg16518469

to get the actual type of the exception object.

As of Java SE7, you can catch multiple exception types in the same catch clause.

For example, suppose that the action for missing files and unknown hosts is the

same. Then you can combine the catch clauses:

try
{

code that might throw exceptions

}
catch (FileNotFoundException | UnknownHostException e)
{

emergency action for missing files and unknown hosts

}
catch (IOException e)
{

emergency action for all other I/O problems

}

This feature is only needed when catching exception types that are not subclasses

of one another.

NOTE: When you catch multiple exceptions, the exception variable is implicitly
final. For example, you cannot assign a different value to e in the body of the
clause

catch (FileNotFoundException | UnknownHostException e) { . . . }

NOTE: Catching multiple exceptions doesn’t just make your code look simpler
but also more efficient. The generated bytecodes contain a single block for the
shared catch clause.

7.2.3 Rethrowing and Chaining Exceptions
You can throw an exception in a catch clause. Typically, you do this when you

want to change the exception type. If you build a subsystem that other program-

mers use, it makes a lot of sense to use an exception type that indicates a failure

of the subsystem. An example of such an exception type is the ServletException. The

code that executes a servlet may not want to know in minute detail what went

wrong, but it definitely wants to know that the servlet was at fault.

Here is how you can catch an exception and rethrow it:

try
{

access the database

Chapter 7 Exceptions, Assertions, and Logging370

ptg16518469

}
catch (SQLException e)
{
 throw new ServletException("database error: " + e.getMessage());
}

Here, the ServletException is constructed with the message text of the exception.

However, it is a better idea to set the original exception as the “cause” of the new

exception:

try
{

access the database

}
catch (SQLException e)
{
 Throwable se = new ServletException("database error");
 se.initCause(e);
 throw se;
}

When the exception is caught, the original exception can be retrieved:

Throwable e = se.getCause();

This wrapping technique is highly recommended. It allows you to throw high-

level exceptions in subsystems without losing the details of the original failure.

TIP: The wrapping technique is also useful if a checked exception occurs in a
method that is not allowed to throw a checked exception.You can catch the
checked exception and wrap it into a runtime exception.

Sometimes, you just want to log an exception and rethrow it without any change:

try
{

access the database

}
catch (Exception e)
{
 logger.log(level, message, e);
 throw e;
}

Before Java SE 7, there was a problem with this approach. Suppose the code is

inside a method

public void updateRecord() throws SQLException

3717.2 Catching Exceptions

ptg16518469

The Java compiler looked at the throw statement inside the catch block, then at the

type of e, and complained that this method might throw any Exception, not just a

SQLException. This has now been improved. The compiler now tracks the fact that

e originates from the try block. Provided that the only checked exceptions in

that block are SQLException instances, and provided that e is not changed in the catch
block, it is valid to declare the enclosing method as throws SQLException.

7.2.4 The finally Clause
When your code throws an exception, it stops processing the remaining code in

your method and exits the method. This is a problem if the method has acquired

some local resource, which only this method knows about, and that resource

must be cleaned up. One solution is to catch and rethrow all exceptions. But this

solution is tedious because you need to clean up the resource allocation in two

places—in the normal code and in the exception code.

Java has a better solution: the finally clause. Here we show you how to properly

close a file in Java. If you do any database programming, you will need to use

the same technique to close connections to the database. As you will see in

Chapter 4 of Volume II, it is very important to close all database connections

properly, even when exceptions occur.

The code in the finally clause executes whether or not an exception was caught.

In the following example, the program will dispose of the graphics context under

all circumstances:

InputStream in = new FileInputStream(. . .);
try
{
 // 1

code that might throw exceptions

 // 2
}
catch (IOException e)
{
 // 3

show error message

 // 4
}
finally
{
 // 5
 in.close();
}
// 6

Chapter 7 Exceptions, Assertions, and Logging372

ptg16518469

Let us look at the three possible situations in which the program will execute the

finally clause.

1. The code throws no exceptions. In this case, the program first executes all

the code in the try block. Then, it executes the code in the finally clause. After-

wards, execution continues with the first statement after the finally clause.

In other words, execution passes through points 1, 2, 5, and 6.

2. The code throws an exception that is caught in a catch clause—in our case, an

IOException. For this, the program executes all code in the try block, up to the

point at which the exception was thrown. The remaining code in the try block

is skipped. The program then executes the code in the matching catch clause,

and then the code in the finally clause.

If the catch clause does not throw an exception, the program executes the first

line after the finally clause. In this scenario, execution passes through points

1, 3, 4, 5, and 6.

If the catch clause throws an exception, then the exception is thrown back to

the caller of this method, and execution passes through points 1, 3, and 5 only.

3. The code throws an exception that is not caught in any catch clause. Here, the

program executes all code in the try block until the exception is thrown.

The remaining code in the try block is skipped. Then, the code in the finally
clause is executed, and the exception is thrown back to the caller of this

method. Execution passes through points 1 and 5 only.

You can use the finally clause without a catch clause. For example, consider the

following try statement:

InputStream in = . . .;
try
{

code that might throw exceptions

}
finally
{
 in.close();
}

The in.close() statement in the finally clause is executed whether or not an exception

is encountered in the try block. Of course, if an exception is encountered, it is

rethrown and must be caught in another catch clause.

In fact, as explained in the following tip, we think it is a very good idea to use

the finally clause in this way whenever you need to close a resource.

3737.2 Catching Exceptions

ptg16518469

TIP: We strongly suggest that you decouple try/catch and try/finally blocks.This
makes your code far less confusing. For example:

InputStream in = . . .;
try
{
 try
 {

code that might throw exceptions

 }
 finally
 {
 in.close();
 }
}
catch (IOException e)
{

show error message

}

The inner try block has a single responsibility: to make sure that the input stream
is closed. The outer try block has a single responsibility: to ensure that errors
are reported. Not only is this solution clearer, it is also more functional: Errors
in the finally clause are reported.

CAUTION: A finally clause can yield unexpected results when it contains return
statements. Suppose you exit the middle of a try block with a return statement.
Before the method returns, the finally block is executed. If the finally block also
contains a return statement, then it masks the original return value. Consider
this contrived example:

public static int f(int n)
{
 try
 {
 int r = n * n;
 return r;
 }
 finally
 {
 if (n == 2) return 0;
 }
}

If you call f(2), then the try block computes r = 4 and executes the return state-
ment. However, the finally clause is executed before the method actually returns
and causes the method to return 0, ignoring the original return value of 4.

Chapter 7 Exceptions, Assertions, and Logging374

ptg16518469

Sometimes the finally clause gives you grief—namely, if the cleanup method can

also throw an exception. Suppose you want to make sure that you close a stream

when an exception hits in the stream processing code.

InputStream in = . . .;
try
{

code that might throw exceptions

}
finally
{
 in.close();
}

Now suppose that the code in the try block throws some exception other than an

IOException which is of interest to the caller of the code. The finally block executes,

and the close method is called. That method can itself throw an IOException! When

it does, the original exception is lost and the exception of the close method is

thrown instead.

This is a problem because the first exception is likely to be more interesting. If

you want to do the right thing and rethrow the original exception, the code

becomes incredibly tedious. Here is one way of setting it up:

InputStream in = . . .;
Exception ex = null;
try
{
 try
 {

code that might throw exceptions

 }
 catch (Exception e)
 {
 ex = e;
 throw e;
 }
}
finally
{
 try
 {
 in.close();
 }
 catch (Exception e)
 {
 if (ex == null) throw e;
 }
}

3757.2 Catching Exceptions

ptg16518469

Fortunately, Java SE 7 has made it much easier to deal with closing resources, as

you will see in the next section.

7.2.5 The Try-with-Resources Statement
Java SE 7 provides a useful shortcut to the code pattern

open a resource

try
{

work with the resource

}
finally
{

close the resource

}

provided the resource belongs to a class that implements the AutoCloseable interface.

That interface has a single method

void close() throws Exception

NOTE: There is also a Closeable interface. It is a subinterface of AutoCloseable, also
with a single close method. However, that method is declared to throw an
IOException.

In its simplest variant, the try-with-resources statement has the form

try (Resource res = . . .)
{

work with res
}

When the try block exits, then res.close() is called automatically. Here is a typical

example—reading all words of a file:

try (Scanner in = new Scanner(new FileInputStream("/usr/share/dict/words")), "UTF-8")
{
 while (in.hasNext())
 System.out.println(in.next());
}

When the block exits normally, or when there was an exception, the in.close()
method is called, exactly as if you had used a finally block.

You can specify multiple resources. For example,

Chapter 7 Exceptions, Assertions, and Logging376

ptg16518469

try (Scanner in = new Scanner(new FileInputStream("/usr/share/dict/words"), "UTF-8");
 PrintWriter out = new PrintWriter("out.txt"))
{
 while (in.hasNext())
 out.println(in.next().toUpperCase());
}

No matter how the block exits, both in and out are closed. If you programmed

this by hand, you would need two nested try/finally statements.

As you have seen in the preceding section, a difficulty arises when the try block

throws an exception and the close method also throws an exception. The try-with-

resources statement handles this situation quite elegantly. The original exception

is rethrown, and any exceptions thrown by close methods are considered “sup-

pressed.” They are automatically caught and added to the original exception with

the addSuppressed method. If you are interested in them, call the getSuppressed method

which yields an array of the suppressed expressions from close methods.

You don’t want to program this by hand. Use the try-with-resources statement

whenever you need to close a resource.

NOTE: A try-with-resources statement can itself have catch clauses and a finally
clause. These are executed after closing the resources. In practice, it’s probably
not a good idea to pile so much onto a single try statement.

7.2.6 Analyzing Stack Trace Elements
A stack trace is a listing of all pending method calls at a particular point in the

execution of a program. You have almost certainly seen stack trace listings—they

are displayed whenever a Java program terminates with an uncaught exception.

You can access the text description of a stack trace by calling the printStackTrace
method of the Throwable class.

Throwable t = new Throwable();
StringWriter out = new StringWriter();
t.printStackTrace(new PrintWriter(out));
String description = out.toString();

A more flexible approach is the getStackTrace method that yields an array of

StackTraceElement objects, which you can analyze in your program. For example:

Throwable t = new Throwable();
StackTraceElement[] frames = t.getStackTrace();
for (StackTraceElement frame : frames)

analyze frame

3777.2 Catching Exceptions

ptg16518469

The StackTraceElement class has methods to obtain the file name and line number, as

well as the class and method name, of the executing line of code. The toString
method yields a formatted string containing all of this information.

The static Thread.getAllStackTraces method yields the stack traces of all threads. Here

is how you use that method:

Map<Thread, StackTraceElement[]> map = Thread.getAllStackTraces();
for (Thread t : map.keySet())
{
 StackTraceElement[] frames = map.get(t);

analyze frames

}

See Chapters 9 and 14 for more information on the Map interface and threads.

Listing 7.1 prints the stack trace of a recursive factorial function. For example, if

you compute factorial(3), the printout is

factorial(3):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.main(StackTraceTest.java:34)
factorial(2):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.main(StackTraceTest.java:34)
factorial(1):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.main(StackTraceTest.java:34)
return 1
return 2
return 6

Listing 7.1 stackTrace/StackTraceTest.java

1 package stackTrace;
 2

3 import java.util.*;
 4

5 /**
6 * A program that displays a trace feature of a recursive method call.
7 * @version 1.01 2004-05-10
8 * @author Cay Horstmann
9 */
10 public class StackTraceTest
11 {

Chapter 7 Exceptions, Assertions, and Logging378

ptg16518469

12 /**
13 * Computes the factorial of a number
14 * @param n a non-negative integer
15 * @return n! = 1 * 2 * . . . * n
16 */
17 public static int factorial(int n)
18 {
19 System.out.println("factorial(" + n + "):");
20 Throwable t = new Throwable();
21 StackTraceElement[] frames = t.getStackTrace();
22 for (StackTraceElement f : frames)
23 System.out.println(f);
24 int r;
25 if (n <= 1) r = 1;
26 else r = n * factorial(n - 1);
27 System.out.println("return " + r);
28 return r;
29 }
30

31 public static void main(String[] args)
32 {
33 Scanner in = new Scanner(System.in);
34 System.out.print("Enter n: ");
35 int n = in.nextInt();
36 factorial(n);
37 }
38 }

java.lang.Throwable 1.0

• Throwable(Throwable cause) 1.4
• Throwable(String message, Throwable cause) 1.4

constructs a Throwable with a given cause.

• Throwable initCause(Throwable cause) 1.4

sets the cause for this object or throws an exception if this object already has a cause.

Returns this.

• Throwable getCause() 1.4

gets the exception object that was set as the cause for this object, or null if no cause

was set.

• StackTraceElement[] getStackTrace() 1.4

gets the trace of the call stack at the time this object was constructed.

(Continues)

3797.2 Catching Exceptions

ptg16518469

java.lang.Throwable 1.0 (Continued)

• void addSuppressed(Throwable t) 7
adds a “suppressed” exception to this exception.This happens in a try-with-resources

statement where t is an exception thrown by a close method.

• Throwable[] getSuppressed() 7
gets all “suppressed” exceptions of this exception. Typically, these are exceptions

thrown by a close method in a try-with-resources statement.

java.lang.Exception 1.0

• Exception(Throwable cause) 1.4
• Exception(String message, Throwable cause)

constructs an Exception with a given cause.

java.lang.RuntimeException 1.0

• RuntimeException(Throwable cause) 1.4
• RuntimeException(String message, Throwable cause) 1.4

constructs a RuntimeException with a given cause.

java.lang.StackTraceElement 1.4

• String getFileName()

gets the name of the source file containing the execution point of this element, or

null if the information is not available.

• int getLineNumber()

gets the line number of the source file containing the execution point of this element,

or -1 if the information is not available.

• String getClassName()

gets the fully qualified name of the class containing the execution point of this

element.

• String getMethodName()

gets the name of the method containing the execution point of this element. The

name of a constructor is <init>. The name of a static initializer is <clinit>. You can’t

distinguish between overloaded methods with the same name.

(Continues)

Chapter 7 Exceptions, Assertions, and Logging380

ptg16518469

java.lang.StackTraceElement 1.4 (Continued)

• boolean isNativeMethod()

returns true if the execution point of this element is inside a native method.

• String toString()

returns a formatted string containing the class and method name and the file name

and line number, if available.

7.3 Tips for Using Exceptions
There is a certain amount of controversy about the proper use of exceptions. Some

programmers believe that all checked exceptions are a nuisance, others can’t seem

to throw enough of them. We think that exceptions (even checked exceptions)

have their place, and offer you these tips for their proper use.

1. Exception handling is not supposed to replace a simple test.

As an example of this, we wrote some code that tries 10,000,000 times to pop

an empty stack. It first does this by finding out whether the stack is empty.

if (!s.empty()) s.pop();

Next, we force it to pop the stack no matter what and then catch the

EmptyStackException that tells us we should not have done that.

try
{
 s.pop();
}
catch (EmptyStackException e)
{
}

On our test machine, the version that calls isEmpty ran in 646 milliseconds. The

version that catches the EmptyStackException ran in 21,739 milliseconds.

As you can see, it took far longer to catch an exception than to perform a

simple test. The moral is: Use exceptions for exceptional circumstances only.

2. Do not micromanage exceptions.

Many programmers wrap every statement in a separate try block.

PrintStream out;
Stack s;

3817.3 Tips for Using Exceptions

ptg16518469

for (i = 0; i < 100; i++)
{
 try
 {
 n = s.pop();
 }
 catch (EmptyStackException e)
 {
 // stack was empty
 }
 try
 {
 out.writeInt(n);
 }
 catch (IOException e)
 {
 // problem writing to file
 }
}

This approach blows up your code dramatically. Think about the task that

you want the code to accomplish. Here, we want to pop 100 numbers off a

stack and save them to a file. (Never mind why—it is just a toy example.)

There is nothing we can do if a problem rears its ugly head. If the stack is

empty, it will not become occupied. If the file contains an error, the error will

not magically go away. It therefore makes sense to wrap the entire task in a

try block. If any one operation fails, you can then abandon the task.

try
{
 for (i = 0; i < 100; i++)
 {
 n = s.pop();
 out.writeInt(n);
 }
}
catch (IOException e)
{
 // problem writing to file
}
catch (EmptyStackException e)
{
 // stack was empty
}

This code looks much cleaner. It fulfills one of the promises of exception

handling: to separate normal processing from error handling.

Chapter 7 Exceptions, Assertions, and Logging382

ptg16518469

3. Make good use of the exception hierarchy.

Don’t just throw a RuntimeException. Find an appropriate subclass or create

your own.

Don’t just catch Throwable. It makes your code hard to read and maintain.

Respect the difference between checked and unchecked exceptions. Checked

exceptions are inherently burdensome—don’t throw them for logic errors.

(For example, the reflection library gets this wrong. Callers often need to

catch exceptions that they know can never happen.)

Do not hesitate to turn an exception into another exception that is more

appropriate. For example, when you parse an integer in a file, catch the

NumberFormatException and turn it into a subclass of IOException or MySubsystemException.

4. Do not squelch exceptions.

In Java, there is a tremendous temptation to shut up exceptions. If you’re

writing a method that calls a method that might throw an exception once a

century, the compiler whines because you have not declared the exception

in the throws list of your method. You do not want to put it in the throws list

because then the compiler will whine about all the methods that call your

method. So you just shut it up:

public Image loadImage(String s)
{
 try
 {
 // code that threatens to throw checked exceptions
 }
 catch (Exception e)
 {} // so there
}

Now your code will compile without a hitch. It will run fine, except when

an exception occurs. Then, the exception will be silently ignored. If you believe

that exceptions are at all important, you should make some effort to handle

them right.

5. When you detect an error, “tough love” works better than indulgence.

Some programmers worry about throwing exceptions when they detect errors.

Maybe it would be better to return a dummy value rather than throw an ex-

ception when a method is called with invalid parameters? For example,

should Stack.pop return null, or throw an exception when a stack is empty? We

think it is better to throw a EmptyStackException at the point of failure than to have

a NullPointerException occur at later time.

3837.3 Tips for Using Exceptions

ptg16518469

6. Propagating exceptions is not a sign of shame.

Many programmers feel compelled to catch all exceptions that are thrown.

If they call a method that throws an exception, such as the FileInputStream con-

structor or the readLine method, they instinctively catch the exception that may

be generated. Often, it is actually better to propagate the exception instead of

catching it:

public void readStuff(String filename) throws IOException // not a sign of shame!
{
 InputStream in = new FileInputStream(filename);
 . . .
}

Higher-level methods are often better equipped to inform the user of errors

or to abandon unsuccessful commands.

NOTE: Rules 5 and 6 can be summarized as “throw early, catch late.”

7.4 Using Assertions
Assertions are a commonly used idiom of defensive programming. In the following

sections, you will learn how to use them effectively.

7.4.1 The Assertion Concept
Suppose you are convinced that a particular property is fulfilled, and you rely

on that property in your code. For example, you may be computing

double y = Math.sqrt(x);

You are certain that x is not negative. Perhaps it is the result of another computa-

tion that can’t have a negative result, or it is a parameter of a method that requires

its callers to supply only positive inputs. Still, you want to double-check rather

than allow confusing “not a number” floating-point values creep into your

computation. You could, of course, throw an exception:

if (x < 0) throw new IllegalArgumentException("x < 0");

But this code stays in the program, even after testing is complete. If you have lots

of checks of this kind, the program may run quite a bit slower than it should.

The assertion mechanism allows you to put in checks during testing and to have

them automatically removed in the production code.

Chapter 7 Exceptions, Assertions, and Logging384

ptg16518469

The Java language has a keyword assert. There are two forms:

assert condition;

and

assert condition : expression;

Both statements evaluate the condition and throw an AssertionError if it is false. In

the second statement, the expression is passed to the constructor of the AssertionError
object and turned into a message string.

NOTE: The sole purpose of the expression part is to produce a message string.
The AssertionError object does not store the actual expression value, so you can’t
query it later. As the JDK documentation states with paternalistic charm, doing
so “would encourage programmers to attempt to recover from assertion failure,
which defeats the purpose of the facility.”

To assert that x is non-negative, you can simply use the statement

assert x >= 0;

Or you can pass the actual value of x into the AssertionError object, so that it gets

displayed later.

assert x >= 0 : x;

C++ NOTE: The assert macro of the C language turns the assertion condition
into a string that is printed if the assertion fails. For example, if assert(x >= 0) fails,
it prints that "x >= 0" is the failing condition. In Java, the condition is not automat-
ically part of the error report. If you want to see it, you have to pass it as a string
into the AssertionError object: assert x >= 0 : "x >= 0".

7.4.2 Assertion Enabling and Disabling
By default, assertions are disabled. Enable them by running the program with

the -enableassertions or -ea option:

java -enableassertions MyApp

Note that you do not have to recompile your program to enable or disable asser-

tions. Enabling or disabling assertions is a function of the class loader. When

assertions are disabled, the class loader strips out the assertion code so that it

won’t slow execution.

3857.4 Using Assertions

ptg16518469

You can even turn on assertions in specific classes or in entire packages. For

example:

java -ea:MyClass -ea:com.mycompany.mylib... MyApp

This command turns on assertions for the class MyClass and all classes in the

com.mycompany.mylib package and its subpackages. The option -ea... turns on assertions

in all classes of the default package.

You can also disable assertions in certain classes and packages with the

-disableassertions or -da option:

java -ea:... -da:MyClass MyApp

Some classes are not loaded by a class loader but directly by the virtual machine.

You can use these switches to selectively enable or disable assertions in those

classes.

However, the -ea and -da switches that enable or disable all assertions do not apply

to the “system classes” without class loaders. Use the -enablesystemassertions/-esa
switch to enable assertions in system classes.

It is also possible to programmatically control the assertion status of class loaders.

See the API notes at the end of this section.

7.4.3 Using Assertions for Parameter Checking
The Java language gives you three mechanisms to deal with system failures:

• Throwing an exception

• Logging

• Using assertions

When should you choose assertions? Keep these points in mind:

• Assertion failures are intended to be fatal, unrecoverable errors.

• Assertion checks are turned on only during development and testing. (This

is sometimes jokingly described as “wearing a life jacket when you are close

to shore, and throwing it overboard once you are in the middle of the ocean.”)

Therefore, you would not use assertions for signaling recoverable conditions to

another part of the program or for communicating problems to the program user.

Assertions should only be used to locate internal program errors during testing.

Let’s look at a common scenario—the checking of method parameters. Should

you use assertions to check for illegal index values or null references? To answer

Chapter 7 Exceptions, Assertions, and Logging386

ptg16518469

that question, you have to look at the documentation of the method. Suppose you

implement a sorting method.

/**
 Sorts the specified range of the specified array in ascending numerical order.
 The range to be sorted extends from fromIndex, inclusive, to toIndex, exclusive.
 @param a the array to be sorted.
 @param fromIndex the index of the first element (inclusive) to be sorted.
 @param toIndex the index of the last element (exclusive) to be sorted.
 @throws IllegalArgumentException if fromIndex > toIndex
 @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or toIndex > a.length
*/
static void sort(int[] a, int fromIndex, int toIndex)

The documentation states that the method throws an exception if the index values

are incorrect. That behavior is part of the contract that the method makes with

its callers. If you implement the method, you have to respect that contract and

throw the indicated exceptions. It would not be appropriate to use assertions

instead.

Should you assert that a is not null? That is not appropriate either. The method

documentation is silent on the behavior of the method when a is null. The callers

have the right to assume that the method will return successfully in that case and

not throw an assertion error.

However, suppose the method contract had been slightly different:

@param a the array to be sorted (must not be null).

Now the callers of the method have been put on notice that it is illegal to call the

method with a null array. Then the method may start with the assertion

assert a != null;

Computer scientists call this kind of contract a precondition. The original method

had no preconditions on its parameters—it promised a well-defined behavior in

all cases. The revised method has a single precondition: that a is not null. If the

caller fails to fulfill the precondition, then all bets are off and the method can do

anything it wants. In fact, with the assertion in place, the method has a rather

unpredictable behavior when it is called illegally. It sometimes throws an assertion

error, and sometimes a null pointer exception, depending on how its class loader

is configured.

7.4.4 Using Assertions for Documenting Assumptions
Many programmers use comments to document their underlying assumptions.

Consider this example from http://docs.oracle.com/javase/6/docs/technotes/guides/language/
assert.html:

3877.4 Using Assertions

http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.html
http://docs.oracle.com/javase/6/docs/technotes/guides/language/assert.html

ptg16518469

if (i % 3 == 0)
 . . .
else if (i % 3 == 1)
 . . .
else // (i % 3 == 2)
 . . .

In this case, it makes a lot of sense to use an assertion instead.

if (i % 3 == 0)
 . . .
else if (i % 3 == 1)
 . . .
else
{
 assert i % 3 == 2;
 . . .
}

Of course, it would make even more sense to think through the issue thoroughly.

What are the possible values of i % 3? If i is positive, the remainders must be 0,

1, or 2. If i is negative, then the remainders can be -1 or -2. Thus, the real

assumption is that i is not negative. A better assertion would be

assert i >= 0;

before the if statement.

At any rate, this example shows a good use of assertions as a self-check for the

programmer. As you can see, assertions are a tactical tool for testing and debug-

ging. In contrast, logging is a strategic tool for the entire lifecycle of a program.

We will examine logging in the next section.

java.lang.ClassLoader 1.0

• void setDefaultAssertionStatus(boolean b) 1.4

enables or disables assertions for all classes loaded by this class loader that don’t

have an explicit class or package assertion status.

• void setClassAssertionStatus(String className, boolean b) 1.4

enables or disables assertions for the given class and its inner classes.

• void setPackageAssertionStatus(String packageName, boolean b) 1.4

enables or disables assertions for all classes in the given package and its subpackages.

• void clearAssertionStatus() 1.4

removes all explicit class and package assertion status settings and disables assertions

for all classes loaded by this class loader.

Chapter 7 Exceptions, Assertions, and Logging388

ptg16518469

7.5 Logging
Every Java programmer is familiar with the process of inserting calls to

System.out.println into troublesome code to gain insight into program behavior. Of

course, once you have figured out the cause of trouble, you remove the print

statements, only to put them back in when the next problem surfaces. The logging

API is designed to overcome this problem. Here are the principal advantages of

the API:

• It is easy to suppress all log records or just those below a certain level, and

just as easy to turn them back on.

• Suppressed logs are very cheap, so that there is only a minimal penalty for

leaving the logging code in your application.

• Log records can be directed to different handlers—for displaying in the

console, writing to a file, and so on.

• Both loggers and handlers can filter records. Filters can discard boring log

entries, using any criteria supplied by the filter implementor.

• Log records can be formatted in different ways—for example, in plain text

or XML.

• Applications can use multiple loggers, with hierarchical names such as

com.mycompany.myapp, similar to package names.

• By default, the logging configuration is controlled by a configuration file.

Applications can replace this mechanism if desired.

7.5.1 Basic Logging
For simple logging, use the global logger and call its info method:

Logger.getGlobal().info("File->Open menu item selected");

By default, the record is printed like this:

May 10, 2013 10:12:15 PM LoggingImageViewer fileOpen
INFO: File->Open menu item selected

But if you call

Logger.getGlobal().setLevel(Level.OFF);

at an appropriate place (such as the beginning of main), all logging is suppressed.

3897.5 Logging

ptg16518469

7.5.2 Advanced Logging
Now that you have seen “logging for dummies,” let’s go on to industrial-strength

logging. In a professional application, you wouldn’t want to log all records to a

single global logger. Instead, you can define your own loggers.

Call the getLogger method to create or retrieve a logger:

private static final Logger myLogger = Logger.getLogger("com.mycompany.myapp");

TIP: A logger that is not referenced by any variable can be garbage collected.
To prevent this, save a reference to the logger with a static variable, as in the
example above.

Similar to package names, logger names are hierarchical. In fact, they are more

hierarchical than packages. There is no semantic relationship between a package

and its parent, but logger parents and children share certain properties. For ex-

ample, if you set the log level on the logger "com.mycompany", then the child loggers

inherit that level.

There are seven logging levels:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

By default, the top three levels are actually logged. You can set a different

level—for example,

logger.setLevel(Level.FINE);

Now FINE and all levels above it are logged.

You can also use Level.ALL to turn on logging for all levels or Level.OFF to turn all

logging off.

There are logging methods for all levels, such as

logger.warning(message);
logger.fine(message);

and so on. Alternatively, you can use the log method and supply the level, such as

Chapter 7 Exceptions, Assertions, and Logging390

ptg16518469

logger.log(Level.FINE, message);

TIP: The default logging configuration logs all records with the level of INFO or
higher. Therefore, you should use the levels CONFIG, FINE, FINER, and FINEST for
debugging messages that are useful for diagnostics but meaningless to the user.

CAUTION: If you set the logging level to a value finer than INFO, you also need
to change the log handler configuration. The default log handler suppresses
messages below INFO. See the next section for details.

The default log record shows the name of the class and method that contain the

logging call, as inferred from the call stack. However, if the virtual machine opti-

mizes execution, accurate call information may not be available. You can use

the logp method to give the precise location of the calling class and method. The

method signature is

void logp(Level l, String className, String methodName, String message)

There are convenience methods for tracing execution flow:

void entering(String className, String methodName)
void entering(String className, String methodName, Object param)
void entering(String className, String methodName, Object[] params)
void exiting(String className, String methodName)
void exiting(String className, String methodName, Object result)

For example:

int read(String file, String pattern)
{
 logger.entering("com.mycompany.mylib.Reader", "read",
 new Object[] { file, pattern });
 . . .
 logger.exiting("com.mycompany.mylib.Reader", "read", count);
 return count;
}

These calls generate log records of level FINER that start with the strings ENTRY and

RETURN.

NOTE: At some point in the future, the logging methods with an Object[] param-
eter will be rewritten to support variable parameter lists (“varargs”). Then, you
will be able to make calls such as logger.entering("com.mycompany.mylib.Reader", "read",
file, pattern).

3917.5 Logging

ptg16518469

A common use for logging is to log unexpected exceptions. Two convenience

methods include a description of the exception in the log record.

void throwing(String className, String methodName, Throwable t)
void log(Level l, String message, Throwable t)

Typical uses are

 if (. . .)
 {
 IOException exception = new IOException(". . .");
 logger.throwing("com.mycompany.mylib.Reader", "read", exception);
 throw exception;
 }

and

 try
 {
 . . .
 }
 catch (IOException e)
 {
 Logger.getLogger("com.mycompany.myapp").log(Level.WARNING, "Reading image", e);
 }

The throwing call logs a record with level FINER and a message that starts with THROW.

7.5.3 Changing the Log Manager Configuration
You can change various properties of the logging system by editing a configuration

file. The default configuration file is located at

jre/lib/logging.properties

To use another file, set the java.util.logging.config.file property to the file location by

starting your application with

java -Djava.util.logging.config.file=configFile MainClass

CAUTION: The log manager is initialized during VM startup, before main executes.
If you call System.setProperty("java.util.logging.config.file", file) in main, also call
LogManager.readConfiguration() to reinitialize the log manager.

To change the default logging level, edit the configuration file and modify the line

.level=INFO

You can specify the logging levels for your own loggers by adding lines such as

Chapter 7 Exceptions, Assertions, and Logging392

ptg16518469

com.mycompany.myapp.level=FINE

That is, append the .level suffix to the logger name.

As you will see later in this section, the loggers don’t actually send the messages

to the console—that is the job of the handlers. Handlers also have levels. To see

FINE messages on the console, you also need to set

java.util.logging.ConsoleHandler.level=FINE

CAUTION: The settings in the log manager configuration are not system prop-
erties. Starting a program with -Dcom.mycompany.myapp.level=FINE does not have any
effect on the logger.

CAUTION: At least up to Java SE 7, the API documentation of the LogManager
class claims that you can set the java.util.logging.config.class and
java.util.logging.config.file properties via the Preferences API.This is false—see
bug 4691587 in the Java bug database (http://bugs.sun.com/bugdatabase).

NOTE: The logging properties file is processed by the java.util.logging.LogManager
class. It is possible to specify a different log manager by setting the
java.util.logging.manager system property to the name of a subclass. Alternatively,
you can keep the standard log manager and still bypass the initialization from
the logging properties file. Set the java.util.logging.config.class system property
to the name of a class that sets log manager properties in some other way. See
the API documentation for the LogManager class for more information.

It is also possible to change logging levels in a running program by

using the jconsole program. See www.oracle.com/technetwork/articles/java/jconsole-1564139.html
#LoggingControl for information.

7.5.4 Localization
You may want to localize logging messages so that they are readable for interna-

tional users. Internationalization of applications is the topic of Chapter 5 of

Volume II. Briefly, here are the points to keep in mind when localizing logging

messages.

Localized applications contain locale-specific information in resource bundles. A

resource bundle consists of a set of mappings for various locales (such as United

3937.5 Logging

http://bugs.sun.com/bugdatabase
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html

ptg16518469

States or Germany). For example, a resource bundle may map the string "readingFile"
into strings "Reading file" in English or "Achtung! Datei wird eingelesen" in German.

A program may contain multiple resource bundles—for example, one for menus

and another for log messages. Each resource bundle has a name (such as

"com.mycompany.logmessages"). To add mappings to a resource bundle, supply a file for

each locale. English message mappings are in a file com/mycompany/logmessages_en.properties,

and German message mappings are in a file com/mycompany/logmessages_de.properties. (The

en and de are the language codes.) You place the files together with the class files

of your application, so that the ResourceBundle class will automatically locate them.

These files are plain text files, consisting of entries such as

readingFile=Achtung! Datei wird eingelesen
renamingFile=Datei wird umbenannt
. . .

When requesting a logger, you can specify a resource bundle:

Logger logger = Logger.getLogger(loggerName, "com.mycompany.logmessages");

Then you specify the resource bundle key, not the actual message string, for the

log message.

logger.info("readingFile");

You often need to include arguments into localized messages. A message may

contain placeholders: {0}, {1}, and so on. For example, to include the file name

with a log message, use the placeholder like this:

Reading file {0}.
Achtung! Datei {0} wird eingelesen.

Then, to pass values into the placeholders, call one of the following methods:

logger.log(Level.INFO, "readingFile", fileName);
logger.log(Level.INFO, "renamingFile", new Object[] { oldName, newName });

7.5.5 Handlers
By default, loggers send records to a ConsoleHandler that prints them to the System.err
stream. Specifically, the logger sends the record to the parent handler, and the

ultimate ancestor (with name "") has a ConsoleHandler.

Like loggers, handlers have a logging level. For a record to be logged, its logging

level must be above the threshold of both the logger and the handler. The log

manager configuration file sets the logging level of the default console handler as

java.util.logging.ConsoleHandler.level=INFO

Chapter 7 Exceptions, Assertions, and Logging394

ptg16518469

To log records with level FINE, change both the default logger level and the handler

level in the configuration. Alternatively, you can bypass the configuration file

altogether and install your own handler.

Logger logger = Logger.getLogger("com.mycompany.myapp");
logger.setLevel(Level.FINE);
logger.setUseParentHandlers(false);
Handler handler = new ConsoleHandler();
handler.setLevel(Level.FINE);
logger.addHandler(handler);

By default, a logger sends records both to its own handlers and the handlers of

the parent. Our logger is a child of the primordial logger (with name "") that sends

all records with level INFO and above to the console. We don’t want to see those

records twice, however, so we set the useParentHandlers property to false.

To send log records elsewhere, add another handler. The logging API provides

two useful handlers for this purpose: a FileHandler and a SocketHandler. The SocketHandler
sends records to a specified host and port. Of greater interest is the FileHandler that

collects records in a file.

You can simply send records to a default file handler, like this:

FileHandler handler = new FileHandler();
logger.addHandler(handler);

The records are sent to a file javan.log in the user’s home directory, where n is a

number to make the file unique. If a user’s system has no concept of the user’s

home directory (for example, in Windows 95/98/Me), then the file is stored in a

default location such as C:\Windows. By default, the records are formatted in XML.

A typical log record has the form

<record>
 <date>2002-02-04T07:45:15</date>
 <millis>1012837515710</millis>
 <sequence>1</sequence>
 <logger>com.mycompany.myapp</logger>
 <level>INFO</level>
 <class>com.mycompany.mylib.Reader</class>
 <method>read</method>
 <thread>10</thread>
 <message>Reading file corejava.gif</message>
</record>

You can modify the default behavior of the file handler by setting various

parameters in the log manager configuration (see Table 7.1) or by using another

constructor (see the API notes at the end of this section).

3957.5 Logging

ptg16518469

You probably don’t want to use the default log file name. Therefore, you should

use another pattern, such as %h/myapp.log. (See Table 7.2 for an explanation of the

pattern variables.)

Table 7.1 File Handler Configuration Parameters

DefaultDescriptionConfiguration Property

Level.ALLThe handler leveljava.util.logging.FileHandler.level

falseControls whether the

handler should

append to an existing

file, or open a new file

for each program run

java.util.logging.FileHandler.append

0 (no limit) in the

FileHandler class, 50000 in the

default log manager

configuration

The approximate

maximum number of

bytes to write in a file

before opening

another (0 = no limit)

java.util.logging.FileHandler.limit

%h/java%u.logThe pattern for the log

file name. See

Table 7.2 for pattern

variables.

java.util.logging.FileHandler.pattern

1 (no rotation)The number of logs in

a rotation sequence

java.util.logging.FileHandler.count

No filteringThe filter class to usejava.util.logging.FileHandler.filter

The platform encodingThe character

encoding to use

java.util.logging.FileHandler.encoding

java.util.logging.XMLFormatterThe record formatterjava.util.logging.FileHandler.formatter

Table 7.2 Log File Pattern Variables

DescriptionVariable

The value of the user.home system property%h

The system temporary directory%t

A unique number to resolve conflicts%u

The generation number for rotated logs. (A .%g suffix is used if rotation

is specified and the pattern doesn’t contain %g.)

%g

The % character%%

Chapter 7 Exceptions, Assertions, and Logging396

ptg16518469

If multiple applications (or multiple copies of the same application) use the same

log file, you should turn the append flag on. Alternatively, use %u in the file name

pattern so that each application creates a unique copy of the log.

It is also a good idea to turn file rotation on. Log files are kept in a rotation se-

quence, such as myapp.log.0, myapp.log.1, myapp.log.2, and so on. Whenever a file exceeds

the size limit, the oldest log is deleted, the other files are renamed, and a new file

with generation number 0 is created.

TIP: Many programmers use logging as an aid for the technical support staff.
If a program misbehaves in the field, the user can send back the log files for
inspection. In that case, you should turn the append flag on, use rotating logs,
or both.

You can also define your own handlers by extending the Handler or the StreamHandler
class. We define such a handler in the example program at the end of this section.

That handler displays the records in a window (see Figure 7.2).

Figure 7.2 A log handler that displays records in a window

The handler extends the StreamHandler class and installs a stream whose write methods

display the stream output in a text area.

class WindowHandler extends StreamHandler
{
 public WindowHandler()
 {
 . . .
 final JTextArea output = new JTextArea();

3977.5 Logging

ptg16518469

 setOutputStream(new
OutputStream()
{

public void write(int b) {} // not called
public void write(byte[] b, int off, int len)
{

output.append(new String(b, off, len));
}

});
 }
 . . .
}

There is just one problem with this approach—the handler buffers the records

and only writes them to the stream when the buffer is full. Therefore, we override

the publish method to flush the buffer after each record:

class WindowHandler extends StreamHandler
{
 . . .
 public void publish(LogRecord record)
 {
 super.publish(record);
 flush();
 }
}

If you want to write more exotic stream handlers, extend the Handler class and

define the publish, flush, and close methods.

7.5.6 Filters
By default, records are filtered according to their logging levels. Each logger and

handler can have an optional filter to perform additional filtering. To define a

filter, implement the Filter interface and define the method

boolean isLoggable(LogRecord record)

Analyze the log record, using any criteria that you desire, and return true for those

records that should be included in the log. For example, a particular filter may

only be interested in the messages generated by the entering and exiting methods.

The filter should then call record.getMessage() and check whether it starts with ENTRY
or RETURN.

To install a filter into a logger or handler, simply call the setFilter method. Note

that you can have at most one filter at a time.

Chapter 7 Exceptions, Assertions, and Logging398

ptg16518469

7.5.7 Formatters
The ConsoleHandler and FileHandler classes emit the log records in text and XML formats.

However, you can define your own formats as well. You need to extend the

Formatter class and override the method

String format(LogRecord record)

Format the information in the record in any way you like and return the resulting

string. In your format method, you may want to call the method

String formatMessage(LogRecord record)

That method formats the message part of the record, substituting parameters and

applying localization.

Many file formats (such as XML) require a head and tail parts that surround the

formatted records. To achieve this, override the methods

String getHead(Handler h)
String getTail(Handler h)

Finally, call the setFormatter method to install the formatter into the handler.

7.5.8 A Logging Recipe
With so many options for logging, it is easy to lose track of the fundamentals.

The following recipe summarizes the most common operations.

1. For a simple application, choose a single logger. It is a good idea to give

the logger the same name as your main application package, such as

com.mycompany.myprog. You can always get the logger by calling

Logger logger = Logger.getLogger("com.mycompany.myprog");

For convenience, you may want to add static fields

private static final Logger logger = Logger.getLogger("com.mycompany.myprog");

to classes with a lot of logging activity.

2. The default logging configuration logs all messages of level INFO or higher to

the console. Users can override the default configuration, but as you have

seen, the process is a bit involved. Therefore, it is a good idea to install a

more reasonable default in your application.

The following code ensures that all messages are logged to an application-

specific file. Place the code into the main method of your application.

3997.5 Logging

ptg16518469

if (System.getProperty("java.util.logging.config.class") == null
 && System.getProperty("java.util.logging.config.file") == null)
{
 try
 {
 Logger.getLogger("").setLevel(Level.ALL);
 final int LOG_ROTATION_COUNT = 10;
 Handler handler = new FileHandler("%h/myapp.log", 0, LOG_ROTATION_COUNT);
 Logger.getLogger("").addHandler(handler);
 }
 catch (IOException e)
 {
 logger.log(Level.SEVERE, "Can't create log file handler", e);
 }
}

3. Now you are ready to log to your heart’s content. Keep in mind that all

messages with level INFO, WARNING, and SEVERE show up on the console. Therefore,

reserve these levels for messages that are meaningful to the users of your

program. The level FINE is a good choice for logging messages that are intended

for programmers.

Whenever you are tempted to call System.out.println, emit a log message instead:

logger.fine("File open dialog canceled");

It is also a good idea to log unexpected exceptions. For example:

try
{
 . . .
}
catch (SomeException e)
{
 logger.log(Level.FINE, "explanation", e);
}

Listing 7.2 puts this recipe to use with an added twist: Logging messages are

also displayed in a log window.

Listing 7.2 logging/LoggingImageViewer.java

1 package logging;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import java.io.*;
6 import java.util.logging.*;
7 import javax.swing.*;
 8

Chapter 7 Exceptions, Assertions, and Logging400

ptg16518469

9 /**
10 * A modification of the image viewer program that logs various events.
11 * @version 1.03 2015-08-20
12 * @author Cay Horstmann
13 */
14 public class LoggingImageViewer
15 {
16 public static void main(String[] args)
17 {
18 if (System.getProperty("java.util.logging.config.class") == null
19 && System.getProperty("java.util.logging.config.file") == null)
20 {
21 try
22 {
23 Logger.getLogger("com.horstmann.corejava").setLevel(Level.ALL);
24 final int LOG_ROTATION_COUNT = 10;
25 Handler handler = new FileHandler("%h/LoggingImageViewer.log", 0, LOG_ROTATION_COUNT);
26 Logger.getLogger("com.horstmann.corejava").addHandler(handler);
27 }
28 catch (IOException e)
29 {
30 Logger.getLogger("com.horstmann.corejava").log(Level.SEVERE,
31 "Can't create log file handler", e);
32 }
33 }
34

35 EventQueue.invokeLater(() ->
36 {
37 Handler windowHandler = new WindowHandler();
38 windowHandler.setLevel(Level.ALL);
39 Logger.getLogger("com.horstmann.corejava").addHandler(windowHandler);
40

41 JFrame frame = new ImageViewerFrame();
42 frame.setTitle("LoggingImageViewer");
43 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
44

45 Logger.getLogger("com.horstmann.corejava").fine("Showing frame");
46 frame.setVisible(true);
47 });
48 }
49 }
50

51 /**
52 * The frame that shows the image.
53 */
54 class ImageViewerFrame extends JFrame
55 {
56 private static final int DEFAULT_WIDTH = 300;
57 private static final int DEFAULT_HEIGHT = 400;

(Continues)

4017.5 Logging

ptg16518469

Listing 7.2 (Continued)

58

59 private JLabel label;
60 private static Logger logger = Logger.getLogger("com.horstmann.corejava");
61

62 public ImageViewerFrame()
63 {
64 logger.entering("ImageViewerFrame", "<init>");
65 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
66

67 // set up menu bar
68 JMenuBar menuBar = new JMenuBar();
69 setJMenuBar(menuBar);
70

71 JMenu menu = new JMenu("File");
72 menuBar.add(menu);
73

74 JMenuItem openItem = new JMenuItem("Open");
75 menu.add(openItem);
76 openItem.addActionListener(new FileOpenListener());
77

78 JMenuItem exitItem = new JMenuItem("Exit");
79 menu.add(exitItem);
80 exitItem.addActionListener(new ActionListener()
81 {
82 public void actionPerformed(ActionEvent event)
83 {
84 logger.fine("Exiting.");
85 System.exit(0);
86 }
87 });
88

89 // use a label to display the images
90 label = new JLabel();
91 add(label);
92 logger.exiting("ImageViewerFrame", "<init>");
93 }
94

95 private class FileOpenListener implements ActionListener
96 {
97 public void actionPerformed(ActionEvent event)
98 {
99 logger.entering("ImageViewerFrame.FileOpenListener", "actionPerformed", event);
100

101 // set up file chooser
102 JFileChooser chooser = new JFileChooser();
103 chooser.setCurrentDirectory(new File("."));

Chapter 7 Exceptions, Assertions, and Logging402

ptg16518469

104

105 // accept all files ending with .gif
106 chooser.setFileFilter(new javax.swing.filechooser.FileFilter()
107 {
108 public boolean accept(File f)
109 {
110 return f.getName().toLowerCase().endsWith(".gif") || f.isDirectory();
111 }
112

113 public String getDescription()
114 {
115 return "GIF Images";
116 }
117 });
118

119 // show file chooser dialog
120 int r = chooser.showOpenDialog(ImageViewerFrame.this);
121

122 // if image file accepted, set it as icon of the label
123 if (r == JFileChooser.APPROVE_OPTION)
124 {
125 String name = chooser.getSelectedFile().getPath();
126 logger.log(Level.FINE, "Reading file {0}", name);
127 label.setIcon(new ImageIcon(name));
128 }
129 else logger.fine("File open dialog canceled.");
130 logger.exiting("ImageViewerFrame.FileOpenListener", "actionPerformed");
131 }
132 }
133 }
134

135 /**
136 * A handler for displaying log records in a window.
137 */
138 class WindowHandler extends StreamHandler
139 {
140 private JFrame frame;
141

142 public WindowHandler()
143 {
144 frame = new JFrame();
145 final JTextArea output = new JTextArea();
146 output.setEditable(false);
147 frame.setSize(200, 200);
148 frame.add(new JScrollPane(output));
149 frame.setFocusableWindowState(false);
150 frame.setVisible(true);

(Continues)

4037.5 Logging

ptg16518469

Listing 7.2 (Continued)

151 setOutputStream(new OutputStream()
152 {
153 public void write(int b)
154 {
155 } // not called
156

157 public void write(byte[] b, int off, int len)
158 {
159 output.append(new String(b, off, len));
160 }
161 });
162 }
163

164 public void publish(LogRecord record)
165 {
166 if (!frame.isVisible()) return;
167 super.publish(record);
168 flush();
169 }
170 }

java.util.logging.Logger 1.4

• Logger getLogger(String loggerName)
• Logger getLogger(String loggerName, String bundleName)

gets the logger with the given name. If the logger doesn’t exist, it is created.

The hierarchical logger name, such as

com.mycompany.myapp

loggerNameParameters:

The name of the resource bundle for looking up

localized messages

bundleName

• void severe(String message)
• void warning(String message)
• void info(String message)
• void config(String message)
• void fine(String message)
• void finer(String message)
• void finest(String message)

logs a record with the level indicated by the method name and the given message.

(Continues)

Chapter 7 Exceptions, Assertions, and Logging404

ptg16518469

java.util.logging.Logger 1.4 (Continued)

• void entering(String className, String methodName)
• void entering(String className, String methodName, Object param)
• void entering(String className, String methodName, Object[] param)
• void exiting(String className, String methodName)
• void exiting(String className, String methodName, Object result)

logs a record that describes entering or exiting a method with the given parameter(s)

or return value.

• void throwing(String className, String methodName, Throwable t)

logs a record that describes throwing of the given exception object.

• void log(Level level, String message)
• void log(Level level, String message, Object obj)
• void log(Level level, String message, Object[] objs)
• void log(Level level, String message, Throwable t)

logs a record with the given level and message, optionally including objects or a

throwable. To include objects, the message must contain formatting placeholders

({0}, {1}, and so on).

• void logp(Level level, String className, String methodName, String message)
• void logp(Level level, String className, String methodName, String message, Object obj)
• void logp(Level level, String className, String methodName, String message, Object[] objs)
• void logp(Level level, String className, String methodName, String message, Throwable t)

logs a record with the given level, precise caller information, and message, optionally

including objects or a throwable.

• void logrb(Level level, String className, String methodName, String bundleName, String message)
• void logrb(Level level, String className, String methodName, String bundleName, String message,

Object obj)
• void logrb(Level level, String className, String methodName, String bundleName, String message,

Object[] objs)
• void logrb(Level level, String className, String methodName, String bundleName, String message,

Throwable t)

logs a record with the given level, precise caller information, resource bundle name,

and message, optionally including objects or a throwable.

• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this logger.

(Continues)

4057.5 Logging

ptg16518469

java.util.logging.Logger 1.4 (Continued)

• Logger getParent()
• void setParent(Logger l)

gets and sets the parent logger of this logger.

• Handler[] getHandlers()

gets all handlers of this logger.

• void addHandler(Handler h)
• void removeHandler(Handler h)

adds or removes a handler for this logger.

• boolean getUseParentHandlers()
• void setUseParentHandlers(boolean b)

gets and sets the “use parent handler” property. If this property is true, the logger

forwards all logged records to the handlers of its parent.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this logger.

java.util.logging.Handler 1.4

• abstract void publish(LogRecord record)

sends the record to the intended destination.

• abstract void flush()

flushes any buffered data.

• abstract void close()

flushes any buffered data and releases all associated resources.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this handler.

• Formatter getFormatter()
• void setFormatter(Formatter f)

gets and sets the formatter of this handler.

• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this handler.

Chapter 7 Exceptions, Assertions, and Logging406

ptg16518469

java.util.logging.ConsoleHandler 1.4

• ConsoleHandler()

constructs a new console handler.

java.util.logging.FileHandler 1.4

• FileHandler(String pattern)
• FileHandler(String pattern, boolean append)
• FileHandler(String pattern, int limit, int count)
• FileHandler(String pattern, int limit, int count, boolean append)

constructs a file handler.

The pattern for constructing the log file name. See

Table 7.2 for pattern variables.

patternParameters:

The approximate maximum number of bytes before

a new log file is opened.

limit

The number of files in a rotation sequence.count

true if a newly constructed file handler object should

append to an existing log file.

append

java.util.logging.LogRecord 1.4

• Level getLevel()

gets the logging level of this record.

• String getLoggerName()

gets the name of the logger that is logging this record.

• ResourceBundle getResourceBundle()
• String getResourceBundleName()

gets the resource bundle, or its name, to be used for localizing the message, or null
if none is provided.

• String getMessage()

gets the “raw” message before localization or formatting.

• Object[] getParameters()

gets the parameter objects, or null if none is provided.

(Continues)

4077.5 Logging

ptg16518469

java.util.logging.LogRecord 1.4 (Continued)

• Throwable getThrown()

gets the thrown object, or null if none is provided.

• String getSourceClassName()
• String getSourceMethodName()

gets the location of the code that logged this record. This information may be sup-

plied by the logging code or automatically inferred from the runtime stack. It might

be inaccurate if the logging code supplied the wrong value or if the running code

was optimized so that the exact location cannot be inferred.

• long getMillis()

gets the creation time, in milliseconds, since 1970.

• long getSequenceNumber()

gets the unique sequence number of this record.

• int getThreadID()

gets the unique ID for the thread in which this record was created. These IDs are

assigned by the LogRecord class and have no relationship to other thread IDs.

java.util.logging.Filter 1.4

• boolean isLoggable(LogRecord record)

returns true if the given log record should be logged.

java.util.logging.Formatter 1.4

• abstract String format(LogRecord record)

returns the string that results from formatting the given log record.

• String getHead(Handler h)
• String getTail(Handler h)

returns the strings that should appear at the head and tail of the document

containing the log records.The Formatter superclass defines these methods to return

the empty string; override them if necessary.

• String formatMessage(LogRecord record)

returns the localized and formatted message part of the log record.

Chapter 7 Exceptions, Assertions, and Logging408

ptg16518469

7.6 Debugging Tips
Suppose you wrote your program and made it bulletproof by catching and

properly handling all exceptions. Then you run it, and it does not work right.

Now what? (If you never have this problem, you can skip the remainder of this

chapter.)

Of course, it is best if you have a convenient and powerful debugger. Debuggers

are available as a part of professional development environments such as Eclipse

and NetBeans. In this section, we offer you a number of tips that may be worth

trying before you launch the debugger.

1. You can print or log the value of any variable with code like this:

System.out.println("x=" + x);

or

Logger.getGlobal().info("x=" + x);

If x is a number, it is converted to its string equivalent. If x is an object, Java

calls its toString method. To get the state of the implicit parameter object, print

the state of the this object.

Logger.getGlobal().info("this=" + this);

Most of the classes in the Java library are very conscientious about overriding

the toString method to give you useful information about the class. This is a

real boon for debugging. You should make the same effort in your classes.

2. One seemingly little-known but very useful trick is putting a separate main
method in each class. Inside it, you can put a unit test stub that lets you test

the class in isolation.

public class MyClass
{

methods and fields

 . . .
 public static void main(String[] args)
 {

test code

 }
}

Make a few objects, call all methods, and check that each of them does the

right thing. You can leave all these main methods in place and launch the Java

virtual machine separately on each of the files to run the tests. When you run

4097.6 Debugging Tips

ptg16518469

an applet, none of these main methods are ever called. When you run an ap-

plication, the Java virtual machine calls only the main method of the startup

class.

3. If you liked the preceding tip, you should check out JUnit from http://junit.org.

JUnit is a very popular unit testing framework that makes it easy to organize

suites of test cases. Run the tests whenever you make changes to a class, and

add another test case whenever you find a bug.

4. A logging proxy is an object of a subclass that intercepts method calls, logs

them, and then calls the superclass. For example, if you have trouble with

the nextDouble method of the Random class, you can create a proxy object as an

instance of an anonymous subclass:

Random generator = new
 Random()
 {
 public double nextDouble()
 {

double result = super.nextDouble();
Logger.getGlobal().info("nextDouble: " + result);
return result;

 }
 };

Whenever the nextDouble method is called, a log message is generated.

To find out who called the method, generate a stack trace.

5. You can get a stack trace from any exception object with the printStackTrace
method in the Throwable class. The following code catches any exception, prints

the exception object and the stack trace, and rethrows the exception so it can

find its intended handler.

try
{
 . . .
}
catch (Throwable t)
{
 t.printStackTrace();
 throw t;
}

You don’t even need to catch an exception to generate a stack trace. Simply

insert the statement

Thread.dumpStack();

anywhere into your code to get a stack trace.

Chapter 7 Exceptions, Assertions, and Logging410

http://junit.org

ptg16518469

6. Normally, the stack trace is displayed on System.err. If you want to log or

display the stack trace, here is how you can capture it into a string:

StringWriter out = new StringWriter();
new Throwable().printStackTrace(new PrintWriter(out));
String description = out.toString();

7. It is often handy to trap program errors in a file. However, errors are sent to

System.err, not System.out. Therefore, you cannot simply trap them by running

java MyProgram > errors.txt

Instead, capture the error stream as

java MyProgram 2> errors.txt

To capture both System.err and System.out in the same file, use

java MyProgram 1> errors.txt 2>&1

This works in bash and the Windows shell.

8. Having the stack traces of uncaught exceptions show up in System.err is not

ideal. These messages are confusing to end users if they happen to see them,

and they are not available for diagnostic purposes when you need them. A

better approach is to log them to a file. You can change the handler for un-

caught exceptions with the static Thread.setDefaultUncaughtExceptionHandler method:

Thread.setDefaultUncaughtExceptionHandler(
 new Thread.UncaughtExceptionHandler()
 {

public void uncaughtException(Thread t, Throwable e)
{

save information in log file

};
 });

9. To watch class loading, launch the Java virtual machine with the -verbose flag.

You will get a printout such as the following:

[Opened /usr/local/jdk5.0/jre/lib/rt.jar]
[Opened /usr/local/jdk5.0/jre/lib/jsse.jar]
[Opened /usr/local/jdk5.0/jre/lib/jce.jar]
[Opened /usr/local/jdk5.0/jre/lib/charsets.jar]
[Loaded java.lang.Object from shared objects file]
[Loaded java.io.Serializable from shared objects file]
[Loaded java.lang.Comparable from shared objects file]
[Loaded java.lang.CharSequence from shared objects file]
[Loaded java.lang.String from shared objects file]
[Loaded java.lang.reflect.GenericDeclaration from shared objects file]
[Loaded java.lang.reflect.Type from shared objects file]

4117.6 Debugging Tips

ptg16518469

[Loaded java.lang.reflect.AnnotatedElement from shared objects file]
[Loaded java.lang.Class from shared objects file]
[Loaded java.lang.Cloneable from shared objects file]
. . .

This can occasionally be helpful to diagnose class path problems.

10. The -Xlint option tells the compiler to spot common code problems. For

example, if you compile with the command

javac -Xlint:fallthrough

the compiler will report missing break statements in switch statements. (The

term “lint” originally described a tool for locating potential problems in C

programs, but is now generically applied to any tools that flag constructs

that are questionable but not illegal.)

The following options are available:

Carries out all checks-Xlint or -Xlint:all

Same as -deprecation, checks for deprecated methods-Xlint:deprecation

Checks for missing break statements in switch statements-Xlint:fallthrough

Warns about finally clauses that cannot complete

normally

-Xlint:finally

Carries out none of the checks-Xlint:none

Checks that all directories on the class path and source

path exist

-Xlint:path

Warns about serializable classes without serialVersionUID

(see Chapter 1 of Volume II)

-Xlint:serial

Warns of unsafe conversions between generic and raw

types (see Chapter 8)

-Xlint:unchecked

11. The Java VM has support for monitoring and management of Java applications,

allowing the installation of agents in the virtual machine that track memory

consumption, thread usage, class loading, and so on. This feature is particu-

larly important for large and long-running Java programs, such as application

servers. As a demonstration of these capabilities, the JDK ships with a

graphical tool called jconsole that displays statistics about the performance of

a virtual machine (see Figure 7.3). Find out the ID of the operating system

process that runs the virtual machine. In UNIX/Linux, run the ps utility; in

Windows, use the task manager. Then launch the jconsole program:

jconsole processID

Chapter 7 Exceptions, Assertions, and Logging412

ptg16518469

Figure 7.3 The jconsole program

The console gives you a wealth of information about your running program.

See www.oracle.com/technetwork/articles/java/jconsole-1564139.html for more information.

12. You can use the jmap utility to get a heap dump that shows you every object

on the heap. Use these commands:

jmap -dump:format=b,file=dumpFileName processID

jhat dumpFileName

Then, point your browser to localhost:7000. You will get a web application that

lets you drill down into the contents of the heap at the time of the dump.

13. If you launch the Java virtual machine with the -Xprof flag, it runs a rudimen-

tary profiler that keeps track of the methods in your code that were executed

most often. The profiling information is sent to System.out. The output also tells

you which methods were compiled by the just-in-time compiler.

4137.6 Debugging Tips

http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html

ptg16518469

CAUTION: The -X options of the compiler are not officially supported and may
not be present in all versions of the JDK. Run java -X to get a listing of all
nonstandard options.

This chapter introduced you to exception handling and logging. You also saw

useful hints for testing and debugging. The next two chapters cover generic pro-

gramming and its most important application: the Java collections framework.

Chapter 7 Exceptions, Assertions, and Logging414

ptg16518469

8CHAPTER

Generic Programming

In this chapter

• 8.1 Why Generic Programming?, page 416

• 8.2 Defining a Simple Generic Class, page 418

• 8.3 Generic Methods, page 421

• 8.4 Bounds for Type Variables, page 422

• 8.5 Generic Code and the Virtual Machine, page 425

• 8.6 Restrictions and Limitations, page 430

• 8.7 Inheritance Rules for Generic Types, page 440

• 8.8 Wildcard Types, page 442

• 8.9 Reflection and Generics, page 450

Generic classes constitute the most significant change in the Java programming

language since the 1.0 release. The addition of generics to Java SE 5.0 was the result

of one of the first Java Specification Requests, JSR 14, that was formulated in 1999.

The expert group spent about five years on specifications and test implementations.

Generic classes are desirable because they let you write code that is safer and

easier to read than code littered with Object variables and casts. Generics are

particularly useful for collection classes, such as the ubiquitous ArrayList.

Generic classes are—at least on the surface—similar to templates in C++. In C++,

as in Java, templates were first added to the language to support strongly typed

415

ptg16518469

collections. However, over the years, many other uses were discovered. After

reading this chapter, you may find novel uses for Java generics in your programs.

8.1 Why Generic Programming?
Generic programming means writing code that can be reused for objects of many

different types. For example, you don’t want to program separate classes to collect

String and File objects. And you don’t have to—the single class ArrayList collects

objects of any class. This is one example of generic programming.

Actually, Java had an ArrayList class before it had generic classes. Let us investigate

how the mechanism for generic programming has evolved, and what that means

for users and implementors.

8.1.1 The Advantage of Type Parameters
Before generic classes were added to Java, generic programming was achieved

with inheritance. The ArrayList class simply maintained an array of Object references:

public class ArrayList // before generic classes
{
 private Object[] elementData;
 . . .
 public Object get(int i) { . . . }
 public void add(Object o) { . . . }
}

This approach has two problems. A cast is necessary whenever you retrieve a

value:

ArrayList files = new ArrayList();
. . .
String filename = (String) files.get(0);

Moreover, there is no error checking. You can add values of any class:

files.add(new File(". . ."));

This call compiles and runs without error. Elsewhere, casting the result of get to

a String will cause an error.

Generics offer a better solution: type parameters. The ArrayList class now has a type

parameter that indicates the element type:

ArrayList<String> files = new ArrayList<String>();

This makes your code easier to read. You can tell right away that this particular

array list contains String objects.

Chapter 8 Generic Programming416

ptg16518469

NOTE: As we already mentioned, in Java SE 7 and beyond, you can omit the
generic type in the constructor:

ArrayList<String> files = new ArrayList<>();

The omitted type is inferred from the type of the variable.

The compiler can make good use of the type information too. No cast is required

for calling get. The compiler knows that the return type is String, not Object:

String filename = files.get(0);

The compiler also knows that the add method of an ArrayList<String> has a parameter

of type String. That is a lot safer than having an Object parameter. Now the compiler

can check that you don’t insert objects of the wrong type. For example, the

statement

files.add(new File(". . .")); // can only add String objects to an ArrayList<String>

will not compile. A compiler error is much better than a class cast exception at

runtime.

This is the appeal of type parameters: They make your programs easier to read

and safer.

8.1.2 Who Wants to Be a Generic Programmer?
It is easy to use a generic class such as ArrayList. Most Java programmers will

simply use types such as ArrayList<String> as if they had been built into the language,

just like String[] arrays. (Of course, array lists are better than arrays because they

can expand automatically.)

However, it is not so easy to implement a generic class. The programmers who

use your code will want to plug in all sorts of classes for your type parameters.

They will expect everything to work without onerous restrictions and confusing

error messages. Your job as a generic programmer, therefore, is to anticipate all

the potential future uses of your class.

How hard can this get? Here is a typical issue that the designers of the standard

class library had to grapple with. The ArrayList class has a method addAll to add all

elements of another collection. A programmer may want to add all elements from

an ArrayList<Manager> to an ArrayList<Employee>. But, of course, doing it the other way

round should not be legal. How do you allow one call and disallow the other?

The Java language designers invented an ingenious new concept, the wildcard

type, to solve this problem. Wildcard types are rather abstract, but they allow a

library builder to make methods as flexible as possible.

4178.1 Why Generic Programming?

ptg16518469

Generic programming falls into three skill levels. At a basic level, you just use

generic classes—typically, collections such as ArrayList—without thinking how

and why they work. Most application programmers will want to stay at that

level until something goes wrong. You may encounter a confusing error message

when mixing different generic classes, or when interfacing with legacy code that

knows nothing about type parameters; at that point, you need to learn enough

about Java generics to solve problems systematically rather than through random

tinkering. Finally, of course, you may want to implement your own generic

classes and methods.

Application programmers probably won’t write lots of generic code. The JDK

developers have already done the heavy lifting and supplied type parameters

for all the collection classes. As a rule of thumb, only code that traditionally in-

volved lots of casts from very general types (such as Object or the Comparable interface)

will benefit from using type parameters.

In this chapter, we will show you everything you need to know to implement

your own generic code. However, we expect that most readers will use this

knowledge primarily for help with troubleshooting and to satisfy their curiosity

about the inner workings of the parameterized collection classes.

8.2 Defining a Simple Generic Class
A generic class is a class with one or more type variables. In this chapter, we will

use a simple Pair class as an example. This class allows us to focus on generics

without being distracted by data storage details. Here is the code for the generic

Pair class:

public class Pair<T>
{
 private T first;
 private T second;

 public Pair() { first = null; second = null; }
 public Pair(T first, T second) { this.first = first; this.second = second; }

 public T getFirst() { return first; }
 public T getSecond() { return second; }

 public void setFirst(T newValue) { first = newValue; }
 public void setSecond(T newValue) { second = newValue; }
}

Chapter 8 Generic Programming418

ptg16518469

The Pair class introduces a type variable T, enclosed in angle brackets < >, after the

class name. A generic class can have more than one type variable. For example,

we could have defined the Pair class with separate types for the first and second

field:

public class Pair<T, U> { . . . }

The type variables are used throughout the class definition to specify method

return types and the types of fields and local variables. For example:

private T first; // uses the type variable

NOTE: It is common practice to use uppercase letters for type variables, and to
keep them short. The Java library uses the variable E for the element type of a
collection, K and V for key and value types of a table, and T (and the neighboring
letters U and S, if necessary) for “any type at all”.

You instantiate the generic type by substituting types for the type variables, such as

Pair<String>

You can think of the result as an ordinary class with constructors

Pair<String>()
Pair<String>(String, String)

and methods

String getFirst()
String getSecond()
void setFirst(String)
void setSecond(String)

In other words, the generic class acts as a factory for ordinary classes.

The program in Listing 8.1 puts the Pair class to work. The static minmax method

traverses an array and simultaneously computes the minimum and maximum

value. It uses a Pair object to return both results. Recall that the compareTo method

compares two strings, returning 0 if the strings are identical, a negative integer

if the first string comes before the second in dictionary order, and a positive

integer otherwise.

4198.2 Defining a Simple Generic Class

ptg16518469

C++ NOTE: Superficially, generic classes in Java are similar to template classes
in C++.The only obvious difference is that Java has no special template keyword.
However, as you will see throughout this chapter, there are substantial differences
between these two mechanisms.

Listing 8.1 pair1/PairTest1.java

1 package pair1;
 2

3 /**
4 * @version 1.01 2012-01-26
5 * @author Cay Horstmann
6 */
7 public class PairTest1
8 {
 9 public static void main(String[] args)
10 {
11 String[] words = { "Mary", "had", "a", "little", "lamb" };
12 Pair<String> mm = ArrayAlg.minmax(words);
13 System.out.println("min = " + mm.getFirst());
14 System.out.println("max = " + mm.getSecond());
15 }
16 }
17

18 class ArrayAlg
19 {
20 /**
21 * Gets the minimum and maximum of an array of strings.
22 * @param a an array of strings
23 * @return a pair with the min and max value, or null if a is null or empty
24 */
25 public static Pair<String> minmax(String[] a)
26 {
27 if (a == null || a.length == 0) return null;
28 String min = a[0];
29 String max = a[0];
30 for (int i = 1; i < a.length; i++)
31 {
32 if (min.compareTo(a[i]) > 0) min = a[i];
33 if (max.compareTo(a[i]) < 0) max = a[i];
34 }
35 return new Pair<>(min, max);
36 }
37 }

Chapter 8 Generic Programming420

ptg16518469

8.3 Generic Methods
In the preceding section, you have seen how to define a generic class. You can

also define a single method with type parameters.

class ArrayAlg
{
 public static <T> T getMiddle(T... a)
 {
 return a[a.length / 2];
 }
}

This method is defined inside an ordinary class, not inside a generic class. How-

ever, it is a generic method, as you can see from the angle brackets and the type

variable. Note that the type variables are inserted after the modifiers (public static,

in our case) and before the return type.

You can define generic methods both inside ordinary classes and inside generic

classes.

When you call a generic method, you can place the actual types, enclosed in angle

brackets, before the method name:

String middle = ArrayAlg.<String>getMiddle("John", "Q.", "Public");

In this case (and indeed in most cases), you can omit the <String> type parameter

from the method call. The compiler has enough information to infer the method

that you want. It matches the type of names (that is, String[]) against the generic type

T[] and deduces that T must be String. That is, you can simply call

String middle = ArrayAlg.getMiddle("John", "Q.", "Public");

In almost all cases, type inference for generic methods works smoothly. Occasion-

ally, the compiler gets it wrong, and you’ll need to decipher an error report.

Consider this example:

double middle = ArrayAlg.getMiddle(3.14, 1729, 0);

The error message complains, in cryptic terms that vary from one compiler version

to another, that there are two ways of interpreting this code, both equally valid.

In a nutshell, the compiler autoboxed the parameters into a Double and two Integer
objects, and then it tried to find a common supertype of these classes. It actually

found two: Number and the Comparable interface, which is itself a generic type. In this

case, the remedy is to write all parameters as double values.

4218.3 Generic Methods

ptg16518469

TIP: Peter von der Ahé recommends this trick if you want to see which type the
compiler infers for a generic method call: Purposefully introduce an error and
study the resulting error message. For example, consider the call
ArrayAlg.getMiddle("Hello", 0, null).Assign the result to a JButton, which can’t possibly
be right.You will get an error report:

found:
java.lang.Object&java.io.Serializable&java.lang.Comparable<? extends
java.lang.Object&java.io.Serializable&java.lang.Comparable<?>>

In plain English, you can assign the result to Object, Serializable, or Comparable.

C++ NOTE: In C++, you place the type parameters after the method name.That
can lead to nasty parsing ambiguities. For example, g(f<a,b>(c)) can mean “call
g with the result of f<a,b>(c)”, or “call g with the two boolean values f<a and b>(c)”.

8.4 Bounds for Type Variables
Sometimes, a class or a method needs to place restrictions on type variables. Here

is a typical example. We want to compute the smallest element of an array:

class ArrayAlg
{
 public static <T> T min(T[] a) // almost correct
 {
 if (a == null || a.length == 0) return null;
 T smallest = a[0];
 for (int i = 1; i < a.length; i++)

if (smallest.compareTo(a[i]) > 0) smallest = a[i];
 return smallest;
 }
}

But there is a problem. Look inside the code of the min method. The variable smallest
has type T, which means that it could be an object of an arbitrary class. How do

we know that the class to which T belongs has a compareTo method?

The solution is to restrict T to a class that implements the Comparable interface—a

standard interface with a single method, compareTo. You can achieve this by giving

a bound for the type variable T:

public static <T extends Comparable> T min(T[] a) . . .

Actually, the Comparable interface is itself a generic type. For now, we will ignore

that complexity and the warnings that the compiler generates. Section 8.8,

Chapter 8 Generic Programming422

ptg16518469

“Wildcard Types,” on p. 442 discusses how to properly use type parameters with

the Comparable interface.

Now, the generic min method can only be called with arrays of classes that imple-

ment the Comparable interface, such as String, LocalDate, and so on. Calling min with a

Rectangle array is a compile-time error because the Rectangle class does not implement

Comparable.

C++ NOTE: In C++, you cannot restrict the types of template parameters. If a
programmer instantiates a template with an inappropriate type, an (often obscure)
error message is reported inside the template code.

You may wonder why we use the extends keyword rather than the implements keyword

in this situation—after all, Comparable is an interface. The notation

<T extends BoundingType>

expresses that T should be a subtype of the bounding type. Both T and the

bounding type can be either a class or an interface. The extends keyword was chosen

because it is a reasonable approximation of the subtype concept, and the Java

designers did not want to add a new keyword (such as sub) to the language.

A type variable or wildcard can have multiple bounds. For example:

T extends Comparable & Serializable

The bounding types are separated by ampersands (&) because commas are used

to separate type variables.

As with Java inheritance, you can have as many interface supertypes as you like,

but at most one of the bounds can be a class. If you have a class as a bound, it

must be the first one in the bounds list.

In the next sample program (Listing 8.2), we rewrite the minmax method to be

generic. The method computes the minimum and maximum of a generic array,

returning a Pair<T>.

Listing 8.2 pair2/PairTest2.java

1 package pair2;
 2

3 import java.time.*;
 4

(Continues)

4238.4 Bounds for Type Variables

ptg16518469

Listing 8.2 (Continued)

5 /**
6 * @version 1.02 2015-06-21
7 * @author Cay Horstmann
8 */
9 public class PairTest2
10 {
11 public static void main(String[] args)
12 {
13 LocalDate[] birthdays =
14 {
15 LocalDate.of(1906, 12, 9), // G. Hopper
16 LocalDate.of(1815, 12, 10), // A. Lovelace
17 LocalDate.of(1903, 12, 3), // J. von Neumann
18 LocalDate.of(1910, 6, 22), // K. Zuse
19 };
20 Pair<LocalDate> mm = ArrayAlg.minmax(birthdays);
21 System.out.println("min = " + mm.getFirst());
22 System.out.println("max = " + mm.getSecond());
23 }
24 }
25

26 class ArrayAlg
27 {
28 /**
29 Gets the minimum and maximum of an array of objects of type T.
30 @param a an array of objects of type T
31 @return a pair with the min and max value, or null if a is
32 null or empty
33 */
34 public static <T extends Comparable> Pair<T> minmax(T[] a)
35 {
36 if (a == null || a.length == 0) return null;
37 T min = a[0];
38 T max = a[0];
39 for (int i = 1; i < a.length; i++)
40 {
41 if (min.compareTo(a[i]) > 0) min = a[i];
42 if (max.compareTo(a[i]) < 0) max = a[i];
43 }
44 return new Pair<>(min, max);
45 }
46 }

Chapter 8 Generic Programming424

ptg16518469

8.5 Generic Code and the Virtual Machine
The virtual machine does not have objects of generic types—all objects belong to

ordinary classes. An earlier version of the generics implementation was even able

to compile a program that used generics into class files that executed on 1.0 virtual

machines! In the following sections, you will see how the compiler “erases” type

parameters, and what implication that process has for Java programmers.

8.5.1 Type Erasure
Whenever you define a generic type, a corresponding raw type is automatically

provided. The name of the raw type is simply the name of the generic type, with

the type parameters removed. The type variables are erased and replaced by their

bounding types (or Object for variables without bounds).

For example, the raw type for Pair<T> looks like this:

public class Pair
{
 private Object first;
 private Object second;

 public Pair(Object first, Object second)
 {
 this.first = first;
 this.second = second;
 }

 public Object getFirst() { return first; }
 public Object getSecond() { return second; }

 public void setFirst(Object newValue) { first = newValue; }
 public void setSecond(Object newValue) { second = newValue; }
}

Since T is an unbounded type variable, it is simply replaced by Object.

The result is an ordinary class, just as you might have implemented it before

generics were added to Java.

Your programs may contain different kinds of Pair, such as Pair<String> or

Pair<LocalDate>, but erasure turns them all into raw Pair types.

4258.5 Generic Code and the Virtual Machine

ptg16518469

C++ NOTE: In this regard, Java generics are very different from C++ templates.
C++ produces different types for each template instantiation—a phenomenon
called “template code bloat.” Java does not suffer from this problem.

The raw type replaces type variables with the first bound, or Object if no bounds

are given. For example, the type variable in the class Pair<T> has no explicit

bounds, hence the raw type replaces T with Object. Suppose we declare a slightly

different type:

public class Interval<T extends Comparable & Serializable> implements Serializable
{
 private T lower;
 private T upper;
 . . .
 public Interval(T first, T second)
 {
 if (first.compareTo(second) <= 0) { lower = first; upper = second; }
 else { lower = second; upper = first; }
 }
}

The raw type Interval looks like this:

public class Interval implements Serializable
{
 private Comparable lower;
 private Comparable upper;
 . . .
 public Interval(Comparable first, Comparable second) { . . . }
}

NOTE: You may wonder what happens if you switch the bounds: class Interval<T
extends Serializable & Comparable>. In that case, the raw type replaces T with
Serializable, and the compiler inserts casts to Comparable when necessary. For
efficiency, you should therefore put tagging interfaces (that is, interfaces without
methods) at the end of the bounds list.

8.5.2 Translating Generic Expressions
When you program a call to a generic method, the compiler inserts casts when

the return type has been erased. For example, consider the sequence of statements

Pair<Employee> buddies = . . .;
Employee buddy = buddies.getFirst();

Chapter 8 Generic Programming426

ptg16518469

The erasure of getFirst has return type Object. The compiler automatically inserts

the cast to Employee. That is, the compiler translates the method call into two virtual

machine instructions:

• A call to the raw method Pair.getFirst

• A cast of the returned Object to the type Employee

Casts are also inserted when you access a generic field. Suppose the first and

second fields of the Pair class were public. (Not a good programming style, perhaps,

but it is legal Java.) Then the expression

Employee buddy = buddies.first;

also has a cast inserted in the resulting byte codes.

8.5.3 Translating Generic Methods
Type erasure also happens for generic methods. Programmers usually think of a

generic method such as

public static <T extends Comparable> T min(T[] a)

as a whole family of methods, but after erasure, only a single method is left:

public static Comparable min(Comparable[] a)

Note that the type parameter T has been erased, leaving only its bounding type

Comparable.

Erasure of methods brings up a couple of complexities. Consider this example:

class DateInterval extends Pair<LocalDate>
{
 public void setSecond(LocalDate second)
 {
 if (second.compareTo(getFirst()) >= 0)

super.setSecond(second);
 }
 . . .
}

A date interval is a pair of LocalDate objects, and we’ll want to override the methods

to ensure that the second value is never smaller than the first. This class is erased to

class DateInterval extends Pair // after erasure
{
 public void setSecond(LocalDate second) { . . . }
 . . .
}

4278.5 Generic Code and the Virtual Machine

ptg16518469

Perhaps surprisingly, there is another setSecond method, inherited from Pair,

namely

public void setSecond(Object second)

This is clearly a different method because it has a parameter of a different

type—Object instead of LocalDate. But it shouldn’t be different. Consider this sequence

of statements:

DateInterval interval = new DateInterval(. . .);
Pair<LocalDate> pair = interval; // OK--assignment to superclass
pair.setSecond(aDate);

Our expectation is that the call to setSecond is polymorphic and that the appropriate

method is called. Since pair refers to a DateInterval object, that should be

DateInterval.setSecond. The problem is that the type erasure interferes with polymor-

phism. To fix this problem, the compiler generates a bridge method in the DateInterval
class:

public void setSecond(Object second) { setSecond((Date) second); }

To see why this works, let us carefully follow the execution of the statement

pair.setSecond(aDate)

The variable pair has declared type Pair<LocalDate>, and that type only has a

single method called setSecond, namely setSecond(Object). The virtual machine calls

that method on the object to which pair refers. That object is of type DateInterval.

Therefore, the method DateInterval.setSecond(Object) is called. That method is the

synthesized bridge method. It calls DateInterval.setSecond(Date), which is what we want.

Bridge methods can get even stranger. Suppose the DateInterval method also

overrides the getSecond method:

class DateInterval extends Pair<LocalDate>
{
 public LocalDate getSecond() { return (Date) super.getSecond().clone(); }
 . . .
}

In the DateInterval class, there are two getSecond methods:

LocalDate getSecond() // defined in DateInterval
Object getSecond() // overrides the method defined in Pair to call the first method

You could not write Java code like that; it would be illegal to have two methods

with the same parameter types—here, with no parameters. However, in the vir-

tual machine, the parameter types and the return type specify a method. Therefore,

the compiler can produce bytecodes for two methods that differ only in their return

type, and the virtual machine will handle this situation correctly.

Chapter 8 Generic Programming428

ptg16518469

NOTE: Bridge methods are not limited to generic types. We already noted in
Chapter 5 that it is legal for a method to specify a more restrictive return type
when overriding another method. For example:

public class Employee implements Cloneable
{
 public Employee clone() throws CloneNotSupportedException { . . . }
}

The Object.clone and Employee.clone methods are said to have covariant return
types.

Actually, the Employee class has two clone methods:

Employee clone() // defined above
Object clone() // synthesized bridge method, overrides Object.clone

The synthesized bridge method calls the newly defined method.

In summary, you need to remember these facts about translation of Java generics:

• There are no generics in the virtual machine, only ordinary classes and

methods.

• All type parameters are replaced by their bounds.

• Bridge methods are synthesized to preserve polymorphism.

• Casts are inserted as necessary to preserve type safety.

8.5.4 Calling Legacy Code
When Java generics were designed, a major goal was to allow interoperability

between generics and legacy code. Let us look at a concrete example. To set the

labels of a JSlider, you use the method

void setLabelTable(Dictionary table)

Here, Dictionary is the raw type, since the JSlider class was implemented before

generics existed in Java. However, when you populate the dictionary, you should

use the generic type.

Dictionary<Integer, Component> labelTable = new Hashtable<>();
labelTable.put(0, new JLabel(new ImageIcon("nine.gif")));
labelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
. . .

When you pass the Dictionary<Integer, Component> object to setLabelTable, the compiler

issues a warning.

slider.setLabelTable(labelTable); // Warning

4298.5 Generic Code and the Virtual Machine

ptg16518469

After all, the compiler has no assurance about what the setLabelTable might do to

the Dictionary object. That method might replace all the keys with strings. That

breaks the guarantee that the keys have type Integer, and future operations may

cause bad cast exceptions.

There isn’t much you can do with this warning, except ponder it and ask what

the JSlider is likely going to do with this Dictionary object. In our case, it is pretty

clear that the JSlider only reads the information, so we can ignore the warning.

Now consider the opposite case, in which you get an object of a raw type from a

legacy class. You can assign it to a variable whose type uses generics, but of course

you will get a warning. For example:

Dictionary<Integer, Components> labelTable = slider.getLabelTable(); // Warning

That’s OK—review the warning and make sure that the label table really contains

Integer and Component objects. Of course, there never is an absolute guarantee. A

malicious coder might have installed a different Dictionary in the slider. But again,

the situation is no worse than it was before generics. In the worst case, your

program will throw an exception.

After you are done pondering the warning, you can use an annotation to make it

disappear. You can annotate a local variable:

@SuppressWarnings("unchecked")
Dictionary<Integer, Components> labelTable = slider.getLabelTable(); // No warning

Or you can annotate an entire method, like this:

@SuppressWarnings("unchecked")
public void configureSlider() { . . . }

This annotation turns off checking for all code inside the method.

8.6 Restrictions and Limitations
In the following sections, we discuss a number of restrictions that you need

to consider when working with Java generics. Most of these restrictions are a

consequence of type erasure.

8.6.1 Type Parameters Cannot Be Instantiated with Primitive Types
You cannot substitute a primitive type for a type parameter. Thus, there is no

Pair<double>, only Pair<Double>. The reason is, of course, type erasure. After erasure,

the Pair class has fields of type Object, and you can’t use them to store double values.

Chapter 8 Generic Programming430

ptg16518469

This is an annoyance, to be sure, but it is consistent with the separate status

of primitive types in the Java language. It is not a fatal flaw—there are only eight

primitive types, and you can always handle them with separate classes and

methods when wrapper types are not an acceptable substitute.

8.6.2 Runtime Type Inquiry Only Works with Raw Types
Objects in the virtual machine always have a specific nongeneric type. Therefore,

all type inquiries yield only the raw type. For example,

if (a instanceof Pair<String>) // Error

could only test whether a is a Pair of any type. The same is true for the test

if (a instanceof Pair<T>) // Error

or the cast

Pair<String> p = (Pair<String>) a; // Warning--can only test that a is a Pair

To remind you of the risk, you will get a compiler error (with instanceof) or warning

(with casts) when you try to inquire whether an object belongs to a generic type.

In the same spirit, the getClass method always returns the raw type. For example:

Pair<String> stringPair = . . .;
Pair<Employee> employeePair = . . .;
if (stringPair.getClass() == employeePair.getClass()) // they are equal

The comparison yields true because both calls to getClass return Pair.class.

8.6.3 You Cannot Create Arrays of Parameterized Types
You cannot instantiate arrays of parameterized types, such as

Pair<String>[] table = new Pair<String>[10]; // Error

What’s wrong with that? After erasure, the type of table is Pair[]. You can convert

it to Object[]:

Object[] objarray = table;

An array remembers its component type and throws an ArrayStoreException if you

try to store an element of the wrong type:

objarray[0] = "Hello"; // Error--component type is Pair

But erasure renders this mechanism ineffective for generic types. The assignment

objarray[0] = new Pair<Employee>();

4318.6 Restrictions and Limitations

ptg16518469

would pass the array store check but still result in a type error. For this reason,

arrays of parameterized types are outlawed.

Note that only the creation of these arrays is outlawed. You can declare a variable

of type Pair<String>[]. But you can’t initialize it with a new Pair<String>[10].

NOTE: You can declare arrays of wildcard types and then cast them:

Pair<String>[] table = (Pair<String>[]) new Pair<?>[10];

The result is not safe. If you store a Pair<Employee> in table[0] and then call a String
method on table[0].getFirst(), you get a ClassCastException.

TIP: If you need to collect parameterized type objects, simply use an ArrayList:
ArrayList<Pair<String>> is safe and effective.

8.6.4 Varargs Warnings
In the preceding section, you saw that Java doesn’t support arrays of generic

types. In this section, we discuss a related issue: passing instances of a generic type

to a method with a variable number of arguments.

Consider this simple method with variable arguments:

public static <T> void addAll(Collection<T> coll, T... ts)
{
 for (t : ts) coll.add(t);
}

Recall that the parameter ts is actually an array that holds all supplied arguments.

Now consider this call:

Collection<Pair<String>> table = . . .;
Pair<String> pair1 = . . .;
Pair<String> pair2 = . . .;
addAll(table, pair1, pair2);

In order to call this method, the Java virtual machine must make an array of

Pair<String>, which is against the rules. However, the rules have been relaxed for

this situation, and you only get a warning, not an error.

You can suppress the warning in one of two ways. You can add the annotation

@SuppressWarnings("unchecked") to the method containing the call to addAll. Or, as of Java

SE 7, you can annotate the addAll method itself with @SafeVarargs:

Chapter 8 Generic Programming432

ptg16518469

@SafeVarargs
public static <T> void addAll(Collection<T> coll, T... ts)

This method can now be called with generic types. You can use this annotation

for any methods that merely read the elements of the parameter array, which is

bound to be the most common use case.

NOTE: You can use the @SafeVarargs annotation to defeat the restriction against
generic array creation, using this method:

@SafeVarargs static <E> E[] array(E... array) { return array; }

Now you can call

Pair<String>[] table = array(pair1, pair2);

This seems convenient, but there is a hidden danger. The code

Object[] objarray = table;
objarray[0] = new Pair<Employee>();

will run without an ArrayStoreException (because the array store only checks the
erased type), and you’ll get an exception elsewhere when you work with table[0].

8.6.5 You Cannot Instantiate Type Variables
You cannot use type variables in an expression such as new T(...). For example,

the following Pair<T> constructor is illegal:

public Pair() { first = new T(); second = new T(); } // Error

Type erasure would change T to Object, and surely you don’t want to call new Object().

The best workaround, available since Java SE 8, is to make the caller provide a

constructor expression. For example:

Pair<String> p = Pair.makePair(String::new);

The makePair method receives a Supplier<T>, the functional interface for a function

with no arguments and a result of type T:

public static <T> Pair<T> makePair(Supplier<T> constr)
{
 return new Pair<>(constr.get(), constr.get());
}

A more traditional workaround is to construct generic objects through reflection,

by calling the Class.newInstance method.

Unfortunately, the details are a bit complex. You cannot call

4338.6 Restrictions and Limitations

ptg16518469

first = T.class.newInstance(); // Error

The expression T.class is not legal because it would erase to Object.class. Instead,

you must design the API so that you are handed a Class object, like this:

public static <T> Pair<T> makePair(Class<T> cl)
{
 try { return new Pair<>(cl.newInstance(), cl.newInstance()); }
 catch (Exception ex) { return null; }
}

This method could be called as follows:

Pair<String> p = Pair.makePair(String.class);

Note that the Class class is itself generic. For example, String.class is an instance

(indeed, the sole instance) of Class<String>. Therefore, the makePair method can infer

the type of the pair that it is making.

8.6.6 You Cannot Construct a Generic Array
Just as you cannot instantiate a single generic instance, you cannot instantiate an

array. The reasons are different—an array is, after all, filled with null values, which

would seem safe to construct. But an array also carries a type, which is used to

monitor array stores in the virtual machine. That type is erased. For example,

consider

public static <T extends Comparable> T[] minmax(T[] a) { T[] mm = new T[2]; . . . } // Error

Type erasure would cause this method to always construct an array Comparable[2].

If the array is only used as a private instance field of a class, you can declare the

array as Object[] and use casts when retrieving elements. For example, the ArrayList
class could be implemented as follows:

public class ArrayList<E>
{
 private Object[] elements;
 . . .
 @SuppressWarnings("unchecked") public E get(int n) { return (E) elements[n]; }
 public void set(int n, E e) { elements[n] = e; } // no cast needed
}

The actual implementation is not quite as clean:

public class ArrayList<E>
{
 private E[] elements;
 . . .

Chapter 8 Generic Programming434

ptg16518469

 public ArrayList() { elements = (E[]) new Object[10]; }
}

Here, the cast E[] is an outright lie, but type erasure makes it undetectable.

This technique does not work for our minmax method since we are returning a T[]
array, and a runtime error results if we lie about its type. Suppose we implement

public static <T extends Comparable> T[] minmax(T... a)
{
 Object[] mm = new Object[2];
 . . .
 return (T[]) mm; // compiles with warning
}

The call

String[] ss = ArrayAlg.minmax("Tom", "Dick", "Harry");

compiles without any warning. AClassCastException occurs when the Object[] reference

is cast to Comparable[] as the method returns.

In this situation, it is best to ask the user to provide an array constructor

expression:

String[] ss = ArrayAlg.minmax(String[]::new, "Tom", "Dick", "Harry");

The constructor expression String::new denotes a function that, given the desired

length, constructs a String array of that length.

The method uses that parameter to produce an array of the correct type:

public static <T extends Comparable> T[] minmax(IntFunction<T[]> constr, T... a)
{
 T[] mm = constr.apply(2);
 . . .
}

A more old-fashioned approach is to use reflection and call Array.newInstance:

public static <T extends Comparable> T[] minmax(T... a)
{
 T[] mm = (T[]) Array.newInstance(a.getClass().getComponentType(), 2);
 . . .
}

The toArray method of the ArrayList class is not so lucky. It needs to produce a T[]
array, but it doesn’t have the component type. Therefore, there are two variants:

Object[] toArray()
T[] toArray(T[] result)

4358.6 Restrictions and Limitations

ptg16518469

The second method receives an array parameter. If the array is large enough, it

is used. Otherwise, a new array of sufficient size is created, using the component

type of result.

8.6.7 Type Variables Are Not Valid in Static Contexts of Generic Classes
You cannot reference type variables in static fields or methods. For example, the

following clever idea won’t work:

public class Singleton<T>
{
 private static T singleInstance; // Error

 public static T getSingleInstance() // Error
 {
 if (singleInstance == null) construct new instance of T
 return singleInstance;
 }
}

If this could be done, then a program could declare a Singleton<Random> to share a

random number generator and a Singleton<JFileChooser> to share a file chooser dialog.

But it can’t work. After type erasure there is only one Singleton class, and only one

singleInstance field. For that reason, static fields and methods with type variables

are simply outlawed.

8.6.8 You Cannot Throw or Catch Instances of a Generic Class
You can neither throw nor catch objects of a generic class. In fact, it is not even

legal for a generic class to extend Throwable. For example, the following definition

will not compile:

public class Problem<T> extends Exception { /* . . . */ } // Error--can't extend Throwable

You cannot use a type variable in a catch clause. For example, the following method

will not compile:

public static <T extends Throwable> void doWork(Class<T> t)
{
 try
 {

do work

 }
 catch (T e) // Error--can't catch type variable
 {
 Logger.global.info(...)
 }
}

Chapter 8 Generic Programming436

ptg16518469

However, it is OK to use type variables in exception specifications. The following

method is legal:

public static <T extends Throwable> void doWork(T t) throws T // OK
{
 try
 {

do work

 }
 catch (Throwable realCause)

{
 t.initCause(realCause);

 throw t;
 }
}

8.6.9 You Can Defeat Checked Exception Checking
A bedrock principle of Java exception handling is that you must provide a handler

for all checked exceptions. You can use generics to defeat this scheme. The key

ingredient is this method:

@SuppressWarnings("unchecked")
public static <T extends Throwable> void throwAs(Throwable e) throws T
{
 throw (T) e;
}

Suppose this method is contained in a class Block. When you call

Block.<RuntimeException>throwAs(t);

then the compiler will believe that t becomes an unchecked exception. The fol-

lowing turns all exceptions into those that the compiler believes to be unchecked:

try
{

do work

}
catch (Throwable t)
{
 Block.<RuntimeException>throwAs(t);
}

Let’s package this in an abstract class. The user will override the body method to

supply a particular action. When calling toThread, you get an object of the Thread
class whose run method doesn’t mind checked exceptions.

4378.6 Restrictions and Limitations

ptg16518469

public abstract class Block
{
 public abstract void body() throws Exception;

 public Thread toThread()
 {
 return new Thread()

{
public void run()
{

try
{

body();
}
catch (Throwable t)
{

Block.<RuntimeException>throwAs(t);
}

}
};

 }

 @SuppressWarnings("unchecked")
 public static <T extends Throwable> void throwAs(Throwable e) throws T
 {
 throw (T) e;
 }
}

For example, this program runs a thread that will throw a checked exception:

public class Test
{
 public static void main(String[] args)
 {
 new Block()

{
public void body() throws Exception
{

Scanner in = new Scanner(new File("ququx"), "UTF-8");
while (in.hasNext())

System.out.println(in.next());
}

}
 .toThread().start();
 }
}

When you run the program, you will get a stack trace with a FileNotFoundException
(assuming that you didn’t provide a file named ququx, of course).

Chapter 8 Generic Programming438

ptg16518469

What’s so remarkable about that? Normally, you have to catch all checked excep-

tions inside the run method of a thread and wrap them into unchecked

exceptions—the run method is declared to throw no checked exceptions.

But here, we don’t wrap. We simply throw the exception, tricking the compiler

into believing that it is not a checked exception.

Using generic classes, erasure, and the @SuppressWarnings annotation, we were able

to defeat an essential part of the Java type system.

8.6.10 Beware of Clashes after Erasure
It is illegal to create conditions that cause clashes when generic types are erased.

Here is an example. Suppose we add an equals method to the Pair class, like this:

public class Pair<T>
{
 public boolean equals(T value) { return first.equals(value) && second.equals(value); }
 . . .
}

Consider a Pair<String>. Conceptually, it has two equals methods:

boolean equals(String) // defined in Pair<T>
boolean equals(Object) // inherited from Object

But the intuition leads us astray. The erasure of the method

boolean equals(T)

is

boolean equals(Object)

which clashes with the Object.equals method.

The remedy is, of course, to rename the offending method.

The generics specification cites another rule: “To support translation by erasure,

we impose the restriction that a class or type variable may not at the same time

be a subtype of two interface types which are different parameterizations of

the same interface.” For example, the following is illegal:

class Employee implements Comparable<Employee> { . . . }
class Manager extends Employee implements Comparable<Manager>
 { . . . } // Error

Manager would then implement both Comparable<Employee> and Comparable<Manager>, which

are different parameterizations of the same interface.

4398.6 Restrictions and Limitations

ptg16518469

It is not obvious what this restriction has to do with type erasure. After all, the

nongeneric version

class Employee implements Comparable { . . . }
class Manager extends Employee implements Comparable { . . . }

is legal. The reason is far more subtle. There would be a conflict with the synthe-

sized bridge methods. A class that implements Comparable<X> gets a bridge method

public int compareTo(Object other) { return compareTo((X) other); }

You cannot have two such methods for different types X.

8.7 Inheritance Rules for Generic Types
When you work with generic classes, you need to learn a few rules about inheri-

tance and subtypes. Let’s start with a situation which many programmers find

unintuitive. Consider a class and a subclass, such as Employee and Manager. Is Pair<Manager>
a subclass of Pair<Employee>? Perhaps surprisingly, the answer is “no.” For example,

the following code will not compile:

Manager[] topHonchos = . . .;
Pair<Employee> result = ArrayAlg.minmax(topHonchos); // Error

The minmax method returns a Pair<Manager>, not a Pair<Employee>, and it is illegal to assign

one to the other.

In general, there is no relationship between Pair<S> and Pair<T>, no matter how S
and T are related (see Figure 8.1).

Figure 8.1 No inheritance relationship between pair classes

Chapter 8 Generic Programming440

ptg16518469

This seems like a cruel restriction, but it is necessary for type safety. Suppose we

were allowed to convert a Pair<Manager> to a Pair<Employee>. Consider this code:

Pair<Manager> managerBuddies = new Pair<>(ceo, cfo);
Pair<Employee> employeeBuddies = managerBuddies; // illegal, but suppose it wasn't
employeeBuddies.setFirst(lowlyEmployee);

Clearly, the last statement is legal. But employeeBuddies and managerBuddies refer to the

same object. We now managed to pair up the CFO with a lowly employee, which

should not be possible for a Pair<Manager>.

NOTE: You just saw an important difference between generic types and Java
arrays.You can assign a Manager[] array to a variable of type Employee[]:

Manager[] managerBuddies = { ceo, cfo };
Employee[] employeeBuddies = managerBuddies; // OK

However, arrays come with special protection. If you try to store a lowly employee
into employeeBuddies[0], the virtual machine throws an ArrayStoreException.

You can always convert a parameterized type to a raw type. For example,

Pair<Employee> is a subtype of the raw type Pair. This conversion is necessary for

interfacing with legacy code.

Can you convert to the raw type and then cause a type error? Unfortunately,

you can. Consider this example:

Pair<Manager> managerBuddies = new Pair<>(ceo, cfo);
Pair rawBuddies = managerBuddies; // OK
rawBuddies.setFirst(new File(". . .")); // only a compile-time warning

This sounds scary. However, keep in mind that you are no worse off than you

were with older versions of Java. The security of the virtual machine is not at

stake. When the foreign object is retrieved with getFirst and assigned to a Manager
variable, a ClassCastException is thrown, just as in the good old days. You merely lose

the added safety that generic programming normally provides.

Finally, generic classes can extend or implement other generic classes. In this re-

gard, they are no different from ordinary classes. For example, the class ArrayList<T>
implements the interface List<T>. That means an ArrayList<Manager> can be converted to a

List<Manager>. However, as you just saw, an ArrayList<Manager> is not an ArrayList<Employee>
or List<Employee>. Figure 8.2 shows these relationships.

4418.7 Inheritance Rules for Generic Types

ptg16518469

Figure 8.2 Subtype relationships among generic list types

8.8 Wildcard Types
It was known for some time among researchers of type systems that a rigid system

of generic types is quite unpleasant to use. The Java designers invented an inge-

nious (but nevertheless safe) “escape hatch”: the wildcard type. The following

sections show you how to work with wildcards.

8.8.1 The Wildcard Concept
In a wildcard type, a type parameter is allowed to vary. For example, the

wildcard type

Pair<? extends Employee>

Chapter 8 Generic Programming442

ptg16518469

denotes any generic Pair type whose type parameter is a subclass of Employee, such

as Pair<Manager>, but not Pair<String>.

Let’s say you want to write a method that prints out pairs of employees, like this:

public static void printBuddies(Pair<Employee> p)
{
 Employee first = p.getFirst();
 Employee second = p.getSecond();
 System.out.println(first.getName() + " and " + second.getName() + " are buddies.");
}

As you saw in the preceding section, you cannot pass a Pair<Manager> to that method,

which is rather limiting. But the solution is simple—use a wildcard type:

public static void printBuddies(Pair<? extends Employee> p)

The type Pair<Manager> is a subtype of Pair<? extends Employee> (see Figure 8.3).

Figure 8.3 Subtype relationships with wildcards

Can we use wildcards to corrupt a Pair<Manager> through a Pair<? extends Employee>
reference?

Pair<Manager> managerBuddies = new Pair<>(ceo, cfo);
Pair<? extends Employee> wildcardBuddies = managerBuddies; // OK
wildcardBuddies.setFirst(lowlyEmployee); // compile-time error

4438.8 Wildcard Types

ptg16518469

No corruption is possible. The call to setFirst is a type error. To see why, let us

have a closer look at the type Pair<? extends Employee>. Its methods look like this:

? extends Employee getFirst()
void setFirst(? extends Employee)

This makes it impossible to call the setFirst method. The compiler only knows that

it needs some subtype of Employee, but it doesn’t know which type. It refuses to

pass any specific type—after all, ? might not match it.

We don’t have this problem with getFirst: It is perfectly legal to assign the return

value of getFirst to an Employee reference.

This is the key idea behind bounded wildcards. We now have a way of distin-

guishing between the safe accessor methods and the unsafe mutator methods.

8.8.2 Supertype Bounds for Wildcards
Wildcard bounds are similar to type variable bounds, but they have an added

capability—you can specify a supertype bound, like this:

? super Manager

This wildcard is restricted to all supertypes of Manager. (It was a stroke of good luck

that the existing super keyword describes the relationship so accurately.)

Why would you want to do this? A wildcard with a supertype bound gives you

a behavior that is opposite to that of the wildcards described in Section 8.8,

“Wildcard Types,” on p. 442. You can supply parameters to methods, but you

can’t use the return values. For example, Pair<? super Manager> has methods that can

be described as follows:

void setFirst(? super Manager)
? super Manager getFirst()

This is not actual Java syntax, but it shows what the compiler knows. The compiler

cannot know the exact type of the setFirst method and therefore cannot accept a

call with an argument of type Employee or Object. It is only possible to pass an object

of type Manager or a subtype such as Executive. Moreover, if you call getFirst, there is

no guarantee about the type of the returned object. You can only assign it to an

Object.

Here is a typical example. We have an array of managers and want to put the

manager with the lowest and highest bonus into a Pair object. What kind of Pair?

A Pair<Employee> should be fair game or, for that matter, a Pair<Object> (see Figure 8.4).

The following method will accept any appropriate Pair:

Chapter 8 Generic Programming444

ptg16518469

public static void minmaxBonus(Manager[] a, Pair<? super Manager> result)
{
 if (a.length == 0) return;
 Manager min = a[0];
 Manager max = a[0];
 for (int i = 1; i < a.length; i++)
 {
 if (min.getBonus() > a[i].getBonus()) min = a[i];
 if (max.getBonus() < a[i].getBonus()) max = a[i];
 }
 result.setFirst(min);
 result.setSecond(max);
}

Figure 8.4 A wildcard with a supertype bound

Intuitively speaking, wildcards with supertype bounds let you write to a generic

object, while wildcards with subtype bounds let you read from a generic object.

4458.8 Wildcard Types

ptg16518469

Here is another use for supertype bounds. The Comparable interface is itself a

generic type. It is declared as follows:

public interface Comparable<T>
{
 public int compareTo(T other);
}

Here, the type variable indicates the type of the other parameter. For example, the

String class implements Comparable<String>, and its compareTo method is declared as

public int compareTo(String other)

This is nice—the explicit parameter has the correct type. Before the interface was

generic, other was an Object, and a cast was necessary in the implementation of the

method.

Now that Comparable is a generic type, perhaps we should have done a better job

with the min method of the ArrayAlg class? We could have declared it as

public static <T extends Comparable<T>> T min(T[] a)

This looks more thorough than just using T extends Comparable, and it would work

fine for many classes. For example, if you compute the minimum of a String array,

then T is the type String, and String is a subtype of Comparable<String>. But we run into

a problem when processing an array of LocalDate objects. As it happens, LocalDate
implements ChronoLocalDate, and ChronoLocalDate extends Comparable<ChronoLocalDate>. Thus,

LocalDate implements Comparable<ChronoLocalDate> but not Comparable<LocalDate>.

In a situation such as this one, supertypes come to the rescue:

public static <T extends Comparable<? super T>> T min(T[] a) . . .

Now the compareTo method has the form

int compareTo(? super T)

Maybe it is declared to take an object of type T, or—for example, when T is

LocalDate—a supertype of T. At any rate, it is safe to pass an object of type T to the

compareTo method.

To the uninitiated, a declaration such as <T extends Comparable<? super T>> is bound to

look intimidating. This is unfortunate, because the intent of this declaration is to

help application programmers by removing unnecessary restrictions on the call

parameters. Application programmers with no interest in generics will probably

learn quickly to gloss over these declarations and just take for granted that library

programmers will do the right thing. If you are a library programmer, you’ll need

to get used to wildcards, or your users will curse you and throw random casts at

their code until it compiles.

Chapter 8 Generic Programming446

ptg16518469

NOTE: Another common use for supertype bounds is an argument type of a
functional interface. For example, the Collection interface has a method

default boolean removeIf(Predicate<? super E> filter)

The method removes all elements that fulfill the given predicate. For example,
if you hate employees with odd hash codes, you can remove them like this:

ArrayList<Employee> staff = . . .;
Predicate<Object> oddHashCode = obj -> obj.hashCode() %2 != 0;
staff.removeIf(oddHashCode);

You want to be able to pass a Predicate<Object>, not just a Predicate<Employee>. The
super wildcard makes that possible.

8.8.3 Unbounded Wildcards
You can even use wildcards with no bounds at all—for example, Pair<?>. At first

glance, this looks identical to the raw Pair type. Actually, the types are very

different. The type Pair<?> has methods such as

? getFirst()
void setFirst(?)

The return value of getFirst can only be assigned to an Object. The setFirst method

can never be called, not even with an Object. That’s the essential difference between

Pair<?> and Pair: you can call the setFirst method of the raw Pair class with any Object.

NOTE: You can call setFirst(null).

Why would you ever want such a wimpy type? It is useful for very simple oper-

ations. For example, the following method tests whether a pair contains a null
reference. It never needs the actual type.

public static boolean hasNulls(Pair<?> p)
{
 return p.getFirst() == null || p.getSecond() == null;
}

You could have avoided the wildcard type by turning hasNulls into a generic

method:

public static <T> boolean hasNulls(Pair<T> p)

However, the version with the wildcard type seems easier to read.

4478.8 Wildcard Types

ptg16518469

8.8.4 Wildcard Capture
Let us write a method that swaps the elements of a pair:

public static void swap(Pair<?> p)

A wildcard is not a type variable, so we can’t write code that uses ? as a type. In

other words, the following would be illegal:

? t = p.getFirst(); // Error
p.setFirst(p.getSecond());
p.setSecond(t);

That’s a problem because we need to temporarily hold the first element when we

do the swapping. Fortunately, there is an interesting solution to this problem.

We can write a helper method, swapHelper, like this:

public static <T> void swapHelper(Pair<T> p)
{
 T t = p.getFirst();
 p.setFirst(p.getSecond());
 p.setSecond(t);
}

Note that swapHelper is a generic method, whereas swap is not—it has a fixed parameter

of type Pair<?>.

Now we can call swapHelper from swap:

public static void swap(Pair<?> p) { swapHelper(p); }

In this case, the parameter T of the swapHelper method captures the wildcard. It isn’t

known what type the wildcard denotes, but it is a definite type, and the definition

of <T>swapHelper makes perfect sense when T denotes that type.

Of course, in this case, we were not compelled to use a wildcard. We could have

directly implemented <T> void swap(Pair<T> p) as a generic method without wildcards.

However, consider this example in which a wildcard type occurs naturally in the

middle of a computation:

public static void maxminBonus(Manager[] a, Pair<? super Manager> result)
{
 minmaxBonus(a, result);
 PairAlg.swap(result); // OK--swapHelper captures wildcard type
}

Here, the wildcard capture mechanism cannot be avoided.

Wildcard capture is only legal in very limited circumstances. The compiler must

be able to guarantee that the wildcard represents a single, definite type. For

Chapter 8 Generic Programming448

ptg16518469

example, the T in ArrayList<Pair<T>> can never capture the wildcard in ArrayList<Pair<?>>.

The array list might hold two Pair<?>, each of which has a different type for ?.

The test program in Listing 8.3 gathers up the various methods that we discussed

in the preceding sections, so that you can see them in context.

Listing 8.3 pair3/PairTest3.java

1 package pair3;
 2

3 /**
4 * @version 1.01 2012-01-26
5 * @author Cay Horstmann
6 */
7 public class PairTest3
8 {
 9 public static void main(String[] args)
10 {
11 Manager ceo = new Manager("Gus Greedy", 800000, 2003, 12, 15);
12 Manager cfo = new Manager("Sid Sneaky", 600000, 2003, 12, 15);
13 Pair<Manager> buddies = new Pair<>(ceo, cfo);
14 printBuddies(buddies);
15

16 ceo.setBonus(1000000);
17 cfo.setBonus(500000);
18 Manager[] managers = { ceo, cfo };
19

20 Pair<Employee> result = new Pair<>();
21 minmaxBonus(managers, result);
22 System.out.println("first: " + result.getFirst().getName()
23 + ", second: " + result.getSecond().getName());
24 maxminBonus(managers, result);
25 System.out.println("first: " + result.getFirst().getName()
26 + ", second: " + result.getSecond().getName());
27 }
28

29 public static void printBuddies(Pair<? extends Employee> p)
30 {
31 Employee first = p.getFirst();
32 Employee second = p.getSecond();
33 System.out.println(first.getName() + " and " + second.getName() + " are buddies.");
34 }
35

36 public static void minmaxBonus(Manager[] a, Pair<? super Manager> result)
37 {
38 if (a.length == 0) return;
39 Manager min = a[0];
40 Manager max = a[0];

(Continues)

4498.8 Wildcard Types

ptg16518469

Listing 8.3 (Continued)

41 for (int i = 1; i < a.length; i++)
42 {
43 if (min.getBonus() > a[i].getBonus()) min = a[i];
44 if (max.getBonus() < a[i].getBonus()) max = a[i];
45 }
46 result.setFirst(min);
47 result.setSecond(max);
48 }
49

50 public static void maxminBonus(Manager[] a, Pair<? super Manager> result)
51 {
52 minmaxBonus(a, result);
53 PairAlg.swapHelper(result); // OK--swapHelper captures wildcard type
54 }
55 }
56

57 class PairAlg
58 {
59 public static boolean hasNulls(Pair<?> p)
60 {
61 return p.getFirst() == null || p.getSecond() == null;
62 }
63

64 public static void swap(Pair<?> p) { swapHelper(p); }
65

66 public static <T> void swapHelper(Pair<T> p)
67 {
68 T t = p.getFirst();
69 p.setFirst(p.getSecond());
70 p.setSecond(t);
71 }
72 }

8.9 Reflection and Generics
Reflection lets you analyze arbitrary objects at runtime. If the objects are instances

of generic classes, you don’t get much information about the generic type param-

eters because they have been erased. In the following sections, you will learn

what you can nevertheless find out about generic classes with reflection.

8.9.1 The Generic Class Class
The Class class is now generic. For example, String.class is actually an object (in

fact, the sole object) of the class Class<String>.

Chapter 8 Generic Programming450

ptg16518469

The type parameter is useful because it allows the methods of Class<T> to be more

specific about their return types. The following methods of Class<T> take advantage

of the type parameter:

T newInstance()
T cast(Object obj)
T[] getEnumConstants()
Class<? super T> getSuperclass()
Constructor<T> getConstructor(Class... parameterTypes)
Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The newInstance method returns an instance of the class, obtained from the

no-argument constructor. Its return type can now be declared to be T, the same

type as the class that is being described by Class<T>. That saves a cast.

The cast method returns the given object, now declared as type T if its type is

indeed a subtype of T. Otherwise, it throws a BadCastException.

The getEnumConstants method returns null if this class is not an enum class or an array

of the enumeration values which are known to be of type T.

Finally, the getConstructor and getDeclaredConstructor methods return a Constructor<T> object.

The Constructor class has also been made generic so that its newInstance method

has the correct return type.

java.lang.Class<T> 1.0

• T newInstance()

returns a new instance constructed with the no-argument constructor.

• T cast(Object obj)

returns obj if it is null or can be converted to the type T, or throws a BadCastException
otherwise.

• T[] getEnumConstants() 5.0

returns an array of all values if T is an enumerated type, null otherwise.

• Class<? super T> getSuperclass()

returns the superclass of this class, or null if T is not a class or the class Object.

• Constructor<T> getConstructor(Class... parameterTypes) 1.1
• Constructor<T> getDeclaredConstructor(Class... parameterTypes) 1.1

gets the public constructor, or the constructor with the given parameter types.

4518.9 Reflection and Generics

ptg16518469

java.lang.reflect.Constructor<T> 1.1

• T newInstance(Object... parameters)

returns a new instance constructed with the given parameters.

8.9.2 Using Class<T> Parameters for Type Matching
It is sometimes useful to match the type variable of a Class<T> parameter in a

generic method. Here is the canonical example:

public static <T> Pair<T> makePair(Class<T> c) throws InstantiationException,
 IllegalAccessException
{
 return new Pair<>(c.newInstance(), c.newInstance());
}

If you call

makePair(Employee.class)

then Employee.class is an object of type Class<Employee>. The type parameter T of the

makePair method matches Employee, and the compiler can infer that the method returns

a Pair<Employee>.

8.9.3 Generic Type Information in the Virtual Machine
One of the notable features of Java generics is the erasure of generic types in the

virtual machine. Perhaps surprisingly, the erased classes still retain some faint

memory of their generic origin. For example, the raw Pair class knows that it

originated from the generic class Pair<T>, even though an object of type Pair can’t

tell whether it was constructed as a Pair<String> or Pair<Employee>.

Similarly, consider a method

public static Comparable min(Comparable[] a)

that is the erasure of a generic method

public static <T extends Comparable<? super T>> T min(T[] a)

You can use the reflection API to determine that

• The generic method has a type parameter called T;

• The type parameter has a subtype bound that is itself a generic type;

Chapter 8 Generic Programming452

ptg16518469

• The bounding type has a wildcard parameter;

• The wildcard parameter has a supertype bound; and

• The generic method has a generic array parameter.

In other words, you can reconstruct everything about generic classes and methods

that their implementors declared. However, you won’t know how the type

parameters were resolved for specific objects or method calls.

In order to express generic type declarations, use the interface Type in the

java.lang.reflect package. The interface has the following subtypes:

• The Class class, describing concrete types

• The TypeVariable interface, describing type variables (such as T extends Comparable<?
super T>)

• The WildcardType interface, describing wildcards (such as ? super T)

• The ParameterizedType interface, describing generic class or interface types (such

as Comparable<? super T>)

• The GenericArrayType interface, describing generic arrays (such as T[])

Figure 8.5 shows the inheritance hierarchy. Note that the last four subtypes are

interfaces—the virtual machine instantiates suitable classes that implement

these interfaces.

Figure 8.5 The Type interface and its descendants

Listing 8.4 uses the generic reflection API to print out what it discovers about a

given class. If you run it with the Pair class, you get this report:

4538.9 Reflection and Generics

ptg16518469

class Pair<T> extends java.lang.Object
public T getFirst()
public T getSecond()
public void setFirst(T)
public void setSecond(T)

If you run it with ArrayAlg in the PairTest2 directory, the report displays the following

method:

public static <T extends java.lang.Comparable> Pair<T> minmax(T[])

The API notes at the end of this section describe the methods used in the example

program.

Listing 8.4 genericReflection/GenericReflectionTest.java

1 package genericReflection;
 2

3 import java.lang.reflect.*;
4 import java.util.*;
 5

6 /**
7 * @version 1.10 2007-05-15
8 * @author Cay Horstmann
9 */
10 public class GenericReflectionTest
11 {
12 public static void main(String[] args)
13 {
14 // read class name from command line args or user input
15 String name;
16 if (args.length > 0) name = args[0];
17 else
18 {
19 try (Scanner in = new Scanner(System.in))
20 {
21 System.out.println("Enter class name (e.g. java.util.Collections): ");
22 name = in.next();
23 }
24 }
25

26 try
27 {
28 // print generic info for class and public methods
29 Class<?> cl = Class.forName(name);
30 printClass(cl);
31 for (Method m : cl.getDeclaredMethods())
32 printMethod(m);
33 }

Chapter 8 Generic Programming454

ptg16518469

34 catch (ClassNotFoundException e)
35 {
36 e.printStackTrace();
37 }
38 }
39

40 public static void printClass(Class<?> cl)
41 {
42 System.out.print(cl);
43 printTypes(cl.getTypeParameters(), "<", ", ", ">", true);
44 Type sc = cl.getGenericSuperclass();
45 if (sc != null)
46 {
47 System.out.print(" extends ");
48 printType(sc, false);
49 }
50 printTypes(cl.getGenericInterfaces(), " implements ", ", ", "", false);
51 System.out.println();
52 }
53

54 public static void printMethod(Method m)
55 {
56 String name = m.getName();
57 System.out.print(Modifier.toString(m.getModifiers()));
58 System.out.print(" ");
59 printTypes(m.getTypeParameters(), "<", ", ", "> ", true);
60

61 printType(m.getGenericReturnType(), false);
62 System.out.print(" ");
63 System.out.print(name);
64 System.out.print("(");
65 printTypes(m.getGenericParameterTypes(), "", ", ", "", false);
66 System.out.println(")");
67 }
68

69 public static void printTypes(Type[] types, String pre, String sep, String suf,
70 boolean isDefinition)
71 {
72 if (pre.equals(" extends ") && Arrays.equals(types, new Type[] { Object.class })) return;
73 if (types.length > 0) System.out.print(pre);
74 for (int i = 0; i < types.length; i++)
75 {
76 if (i > 0) System.out.print(sep);
77 printType(types[i], isDefinition);
78 }
79 if (types.length > 0) System.out.print(suf);
80 }
81

(Continues)

4558.9 Reflection and Generics

ptg16518469

Listing 8.4 (Continued)

82 public static void printType(Type type, boolean isDefinition)
83 {
84 if (type instanceof Class)
85 {
86 Class<?> t = (Class<?>) type;
87 System.out.print(t.getName());
88 }
89 else if (type instanceof TypeVariable)
90 {
91 TypeVariable<?> t = (TypeVariable<?>) type;
92 System.out.print(t.getName());
93 if (isDefinition)
94 printTypes(t.getBounds(), " extends ", " & ", "", false);
95 }
96 else if (type instanceof WildcardType)
97 {
98 WildcardType t = (WildcardType) type;
99 System.out.print("?");
100 printTypes(t.getUpperBounds(), " extends ", " & ", "", false);
101 printTypes(t.getLowerBounds(), " super ", " & ", "", false);
102 }
103 else if (type instanceof ParameterizedType)
104 {
105 ParameterizedType t = (ParameterizedType) type;
106 Type owner = t.getOwnerType();
107 if (owner != null)
108 {
109 printType(owner, false);
110 System.out.print(".");
111 }
112 printType(t.getRawType(), false);
113 printTypes(t.getActualTypeArguments(), "<", ", ", ">", false);
114 }
115 else if (type instanceof GenericArrayType)
116 {
117 GenericArrayType t = (GenericArrayType) type;
118 System.out.print("");
119 printType(t.getGenericComponentType(), isDefinition);
120 System.out.print("[]");
121 }
122 }
123 }

Chapter 8 Generic Programming456

ptg16518469

java.lang.Class<T> 1.0

• TypeVariable[] getTypeParameters() 5.0

gets the generic type variables if this type was declared as a generic type, or an

array of length 0 otherwise.

• Type getGenericSuperclass() 5.0

gets the generic type of the superclass that was declared for this type, or null if this

type is Object or not a class type.

• Type[] getGenericInterfaces() 5.0

gets the generic types of the interfaces that were declared for this type, in declaration

order, or an array of length 0 if this type doesn’t implement interfaces.

java.lang.reflect.Method 1.1

• TypeVariable[] getTypeParameters() 5.0

gets the generic type variables if this method was declared as a generic method, or

an array of length 0 otherwise.

• Type getGenericReturnType() 5.0

gets the generic return type with which this method was declared.

• Type[] getGenericParameterTypes() 5.0

gets the generic parameter types with which this method was declared. If the method

has no parameters, an array of length 0 is returned.

java.lang.reflect.TypeVariable 5.0

• String getName()

gets the name of this type variable.

• Type[] getBounds()

gets the subclass bounds of this type variable, or an array of length 0 if the variable

is unbounded.

4578.9 Reflection and Generics

ptg16518469

java.lang.reflect.WildcardType 5.0

• Type[] getUpperBounds()

gets the subclass (extends) bounds of this type variable, or an array of length 0 if the

variable has no subclass bounds.

• Type[] getLowerBounds()

gets the superclass (super) bounds of this type variable, or an array of length 0 if

the variable has no superclass bounds.

java.lang.reflect.ParameterizedType 5.0

• Type getRawType()

gets the raw type of this parameterized type.

• Type[] getActualTypeArguments()

gets the type parameters with which this parameterized type was declared.

• Type getOwnerType()

gets the outer class type if this is an inner type, or null if this is a top-level type.

java.lang.reflect.GenericArrayType 5.0

• Type getGenericComponentType()

gets the generic component type with which this array type was declared.

You now know how to use generic classes and how to program your own

generic classes and methods if the need arises. Just as importantly, you know

how to decipher the generic type declarations that you may encounter in the API

documentation and in error messages. For an exhaustive discussion of everything

there is to know about Java generics, turn to Angelika Langer’s excellent list

of frequently (and not so frequently) asked questions at http://angelikalanger.com/
GenericsFAQ/JavaGenericsFAQ.html.

In the next chapter, you will see how the Java collections framework puts generics

to work.

Chapter 8 Generic Programming458

http://angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html

ptg16518469

9CHAPTER

Collections

In this chapter

• 9.1 The Java Collections Framework, page 460

• 9.2 Concrete Collections, page 472

• 9.3 Maps, page 497

• 9.4 Views and Wrappers, page 509

• 9.5 Algorithms, page 517

• 9.6 Legacy Collections, page 528

The data structures that you choose can make a big difference when you try to

implement methods in a natural style or are concerned with performance. Do

you need to search quickly through thousands (or even millions) of sorted items?

Do you need to rapidly insert and remove elements in the middle of an ordered

sequence? Do you need to establish associations between keys and values?

This chapter shows how the Java library can help you accomplish the traditional

data structuring needed for serious programming. In college computer science

programs, a course called Data Structures usually takes a semester to complete,

and there are many, many books devoted to this important topic. Our coverage

differs from that of a college course; we will skip the theory and just show you

how to use the collection classes in the standard library.

459

ptg16518469

9.1 The Java Collections Framework
The initial release of Java supplied only a small set of classes for the most useful

data structures: Vector, Stack, Hashtable, BitSet, and the Enumeration interface that provides

an abstract mechanism for visiting elements in an arbitrary container. That was

certainly a wise choice—it takes time and skill to come up with a comprehensive

collection class library.

With the advent of Java SE 1.2, the designers felt that the time had come to roll

out a full-fledged set of data structures. They faced a number of conflicting design

challenges. They wanted the library to be small and easy to learn. They did not

want the complexity of the Standard Template Library (or STL) of C++, but they

wanted the benefit of “generic algorithms” that STL pioneered. They wanted the

legacy classes to fit into the new framework. As all designers of collections libraries

do, they had to make some hard choices, and they came up with a number of id-

iosyncratic design decisions along the way. In this section, we will explore the

basic design of the Java collections framework, show you how to put it to work,

and explain the reasoning behind some of the more controversial features.

9.1.1 Separating Collection Interfaces and Implementation
As is common with modern data structure libraries, the Java collection library

separates interfaces and implementations. Let us look at that separation with a

familiar data structure, the queue.

A queue interface specifies that you can add elements at the tail end of the queue,

remove them at the head, and find out how many elements are in the queue. You

use a queue when you need to collect objects and retrieve them in a “first in, first

out” fashion (see Figure 9.1).

A minimal form of a queue interface might look like this:

public interface Queue<E> // a simplified form of the interface in the standard library
{
 void add(E element);
 E remove();
 int size();
}

The interface tells you nothing about how the queue is implemented. Of the two

common implementations of a queue, one uses a “circular array” and one uses a

linked list (see Figure 9.2).

Each implementation can be expressed by a class that implements the Queue
interface.

Chapter 9 Collections460

ptg16518469

Figure 9.1 A queue

Figure 9.2 Queue implementations

4619.1 The Java Collections Framework

ptg16518469

public class CircularArrayQueue<E> implements Queue<E> // not an actual library class
{
 private int head;
 private int tail;

 CircularArrayQueue(int capacity) { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
 private E[] elements;
}

public class LinkedListQueue<E> implements Queue<E> // not an actual library class
{
 private Link head;
 private Link tail;

 LinkedListQueue() { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }
}

NOTE: The Java library doesn’t actually have classes named CircularArrayQueue
and LinkedListQueue.We use these classes as examples to explain the conceptual
distinction between collection interfaces and implementations. If you need a
circular array queue, use the ArrayDeque class. For a linked list queue, simply use
the LinkedList class—it implements the Queue interface.

When you use a queue in your program, you don’t need to know which imple-

mentation is actually used once the collection has been constructed. Therefore, it

makes sense to use the concrete class only when you construct the collection object.

Use the interface type to hold the collection reference.

Queue<Customer> expressLane = new CircularArrayQueue<>(100);
expressLane.add(new Customer("Harry"));

With this approach, if you change your mind, you can easily use a different im-

plementation. You only need to change your program in one place—in the con-

structor call. If you decide that a LinkedListQueue is a better choice after all, your code

becomes

Queue<Customer> expressLane = new LinkedListQueue<>();
expressLane.add(new Customer("Harry"));

Why would you choose one implementation over another? The interface says

nothing about the efficiency of an implementation. A circular array is somewhat

Chapter 9 Collections462

ptg16518469

more efficient than a linked list, so it is generally preferable. However, as usual,

there is a price to pay.

The circular array is a bounded collection—it has a finite capacity. If you don’t

have an upper limit on the number of objects that your program will collect, you

may be better off with a linked list implementation after all.

When you study the API documentation, you will find another set of classes

whose name begins with Abstract, such as AbstractQueue. These classes are intended

for library implementors. In the (perhaps unlikely) event that you want to imple-

ment your own queue class, you will find it easier to extend AbstractQueue than to

implement all the methods of the Queue interface.

9.1.2 The Collection Interface
The fundamental interface for collection classes in the Java library is the Collection
interface. The interface has two fundamental methods:

public interface Collection<E>
{
 boolean add(E element);
 Iterator<E> iterator();
 . . .
}

There are several methods in addition to these two; we will discuss them later.

The add method adds an element to the collection. The add method returns true if

adding the element actually changes the collection, and false if the collection is

unchanged. For example, if you try to add an object to a set and the object is

already present, the add request has no effect because sets reject duplicates.

The iterator method returns an object that implements the Iterator interface. You

can use the iterator object to visit the elements in the collection one by one. We

discuss iterators in the next section.

9.1.3 Iterators
The Iterator interface has four methods:

public interface Iterator<E>
{
 E next();
 boolean hasNext();
 void remove();
 default void forEachRemaining(Consumer<? super E> action);
}

4639.1 The Java Collections Framework

ptg16518469

By repeatedly calling the next method, you can visit the elements from the collection

one by one. However, if you reach the end of the collection, the next method throws

a NoSuchElementException. Therefore, you need to call the hasNext method before calling

next. That method returns true if the iterator object still has more elements to visit.

If you want to inspect all elements in a collection, request an iterator and then

keep calling the next method while hasNext returns true. For example:

Collection<String> c = . . .;
Iterator<String> iter = c.iterator();
while (iter.hasNext())
{
 String element = iter.next();

do something with element
}

You can write such a loop more concisely as the “for each” loop:

for (String element : c)
{

do something with element
}

The compiler simply translates the “for each” loop into a loop with an iterator.

The “for each” loop works with any object that implements the Iterable interface,

an interface with a single abstract method:

public interface Iterable<E>
{
 Iterator<E> iterator();
 . . .
}

The Collection interface extends the Iterable interface. Therefore, you can use the

“for each” loop with any collection in the standard library.

As of Java SE 8, you don’t even have to write a loop. You can call the forEachRemaining
method with a lambda expression that consumes an element. The lambda

expression is invoked with each element of the iterator, until there are none left.

iterator.forEachRemaining(element -> do something with element);

The order in which the elements are visited depends on the collection type. If you

iterate over an ArrayList, the iterator starts at index 0 and increments the index in

each step. However, if you visit the elements in a HashSet, you will get them in an

essentially random order. You can be assured that you will encounter all elements

of the collection during the course of the iteration, but you cannot make any as-

sumptions about their ordering. This is usually not a problem because the ordering

does not matter for computations such as computing totals or counting matches.

Chapter 9 Collections464

ptg16518469

NOTE: Old-timers will notice that the next and hasNext methods of the Iterator
interface serve the same purpose as the nextElement and hasMoreElements methods
of an Enumeration.The designers of the Java collections library could have chosen
to make use of the Enumeration interface. But they disliked the cumbersome method
names and instead introduced a new interface with shorter method names.

There is an important conceptual difference between iterators in the Java collec-

tions library and iterators in other libraries. In traditional collections libraries,

such as the Standard Template Library of C++, iterators are modeled after array

indexes. Given such an iterator, you can look up the element that is stored at that

position, much like you can look up an array element a[i] if you have an array

index i. Independently of the lookup, you can advance the iterator to the next

position. This is the same operation as advancing an array index by calling i++,

without performing a lookup. However, the Java iterators do not work like that.

The lookup and position change are tightly coupled. The only way to look up an

element is to call next, and that lookup advances the position.

Instead, think of Java iterators as being between elements. When you call next, the

iterator jumps over the next element, and it returns a reference to the element that

it just passed (see Figure 9.3).

NOTE: Here is another useful analogy.You can think of Iterator.next as the
equivalent of InputStream.read. Reading a byte from a stream automatically “con-
sumes” the byte. The next call to read consumes and returns the next byte from
the input. Similarly, repeated calls to next let you read all elements in a collection.

The remove method of the Iterator interface removes the element that was returned

by the last call to next. In many situations, that makes sense—you need to see the

element before you can decide that it is the one that should be removed. But if

you want to remove an element in a particular position, you still need to skip

past the element. For example, here is how you remove the first element in a

collection of strings:

Iterator<String> it = c.iterator();
it.next(); // skip over the first element
it.remove(); // now remove it

More importantly, there is a dependency between the calls to the next and remove
methods. It is illegal to call remove if it wasn’t preceded by a call to next. If you try,

an IllegalStateException is thrown.

If you want to remove two adjacent elements, you cannot simply call

4659.1 The Java Collections Framework

ptg16518469

Figure 9.3 Advancing an iterator

it.remove();
it.remove(); // Error!

Instead, you must first call next to jump over the element to be removed.

it.remove();
it.next();
it.remove(); // OK

9.1.4 Generic Utility Methods
The Collection and Iterator interfaces are generic, which means you can write utility

methods that operate on any kind of collection. For example, here is a generic

method that tests whether an arbitrary collection contains a given element:

public static <E> boolean contains(Collection<E> c, Object obj)
{
 for (E element : c)
 if (element.equals(obj))

return true;
 return false;
}

Chapter 9 Collections466

ptg16518469

The designers of the Java library decided that some of these utility methods are

so useful that the library should make them available. That way, library users

don’t have to keep reinventing the wheel. The contains method is one such method.

In fact, the Collection interface declares quite a few useful methods that all

implementing classes must supply. Among them are

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object other)
boolean addAll(Collection<? extends E> from)
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
void clear()
boolean retainAll(Collection<?> c)
Object[] toArray()
<T> T[] toArray(T[] arrayToFill)

Many of these methods are self-explanatory; you will find full documentation in

the API notes at the end of this section.

Of course, it is a bother if every class that implements the Collection interface has

to supply so many routine methods. To make life easier for implementors, the

library supplies a class AbstractCollection that leaves the fundamental methods size
and iterator abstract but implements the routine methods in terms of them. For

example:

public abstract class AbstractCollection<E>
 implements Collection<E>
{
 . . .
 public abstract Iterator<E> iterator();

 public boolean contains(Object obj)
 {
 for (E element : this) // calls iterator()

if (element.equals(obj))
return = true;

 return false;
 }
 . . .
}

A concrete collection class can now extend the AbstractCollection class. It is up to the

concrete collection class to supply an iterator method, but the contains method has

been taken care of by the AbstractCollection superclass. However, if the subclass

has a more efficient way of implementing contains, it is free to do so.

4679.1 The Java Collections Framework

ptg16518469

With Java SE 8, this approach is a bit outdated. It would be nicer if the methods

were default methods of the Collection interface. This has not happened. However,

several default methods have been added. Most of them deal with streams (which

we will discuss in Volume II). In addition, there is a useful method

default boolean removeIf(Predicate<? super E> filter)

for removing elements that fulfill a condition.

java.util.Collection<E> 1.2

• Iterator<E> iterator()

returns an iterator that can be used to visit the elements in the collection.

• int size()

returns the number of elements currently stored in the collection.

• boolean isEmpty()

returns true if this collection contains no elements.

• boolean contains(Object obj)

returns true if this collection contains an object equal to obj.

• boolean containsAll(Collection<?> other)

returns true if this collection contains all elements in the other collection.

• boolean add(Object element)

adds an element to the collection. Returns true if the collection changed as a result

of this call.

• boolean addAll(Collection<? extends E> other)

adds all elements from the other collection to this collection. Returns true if the

collection changed as a result of this call.

• boolean remove(Object obj)

removes an object equal to obj from this collection. Returns true if a matching object

was removed.

• boolean removeAll(Collection<?> other)

removes from this collection all elements from the other collection. Returns true if

the collection changed as a result of this call.

• default boolean removeIf(Predicate<? super E> filter) 8

removes all elements for which filter returns true. Returns true if the collection

changed as a result of this call.

(Continues)

Chapter 9 Collections468

ptg16518469

java.util.Collection<E> 1.2 (Continued)

• void clear()

removes all elements from this collection.

• boolean retainAll(Collection<?> other)

removes all elements from this collection that do not equal one of the elements in

the other collection. Returns true if the collection changed as a result of this call.

• Object[] toArray()

returns an array of the objects in the collection.

• <T> T[] toArray(T[] arrayToFill)

returns an array of the objects in the collection. If arrayToFill has sufficient length,

it is filled with the elements of this collection. If there is space, a null element is ap-

pended. Otherwise, a new array with the same component type as arrayToFill and

the same length as the size of this collection is allocated and filled.

java.util.Iterator<E> 1.2

• boolean hasNext()

returns true if there is another element to visit.

• E next()

returns the next object to visit. Throws a NoSuchElementException if the end of the

collection has been reached.

• void remove()

removes the last visited object. This method must immediately follow an element

visit. If the collection has been modified since the last element visit, this method

throws an IllegalStateException.

9.1.5 Interfaces in the Collections Framework
The Java collections framework defines a number of interfaces for different types

of collections, shown in Figure 9.4.

There are two fundamental interfaces for collections: Collection and Map. As you

already saw, you insert elements into a collection with a method

boolean add(E element)

However, maps hold key/value pairs, and you use the put method to insert them:

V put(K key, V value)

4699.1 The Java Collections Framework

ptg16518469

Figure 9.4 The interfaces of the collections framework

To read elements from a collection, visit them with an iterator. However, you can

read values from a map with the get method:

V get(K key)

A List is an ordered collection. Elements are added into a particular position in the

container. An element can be accessed in two ways: by an iterator or by an integer

index. The latter is called random access because elements can be visited in any

order. In contrast, when using an iterator, one must visit them sequentially.

The List interface defines several methods for random access:

void add(int index, E element)
void remove(int index)
E get(int index)
E set(int index, E element)

The ListIterator interface is a subinterface of Iterator. It defines a method for adding

an element before the iterator position:

Chapter 9 Collections470

ptg16518469

void add(E element)

Frankly, this aspect of the collections framework is poorly designed. In practice,

there are two kinds of ordered collections, with very different performance

tradeoffs. An ordered collection that is backed by an array has fast random access,

and it makes sense to use the List methods with an integer index. In contrast, a

linked list, while also ordered, has slow random access, and it is best traversed

with an iterator. It would have been an easy matter to provide two interfaces.

NOTE: To avoid carrying out random access operations for linked lists, Java
SE 1.4 introduced a tagging interface, RandomAccess.That interface has no methods,
but you can use it to test whether a particular collection supports efficient random
access:

if (c instanceof RandomAccess)
{

use random access algorithm

}
else
{

use sequential access algorithm

}

The Set interface is identical to the Collection interface, but the behavior of the

methods is more tightly defined. The add method of a set should reject duplicates.

The equals method of a set should be defined so that two sets are identical if they

have the same elements, but not necessarily in the same order. The hashCode method

should be defined so that two sets with the same elements yield the same

hash code.

Why make a separate interface if the method signatures are the same? Conceptu-

ally, not all collections are sets. Making a Set interface enables programmers to

write methods that accept only sets.

The SortedSet and SortedMap interfaces expose the comparator object used for sorting,

and they define methods to obtain views of subsets of the collections. We discuss

these in Section 9.4, “Views and Wrappers,” on p. 509.

Finally, Java SE 6 introduced interfaces NavigableSet and NavigableMap that contain ad-

ditional methods for searching and traversal in sorted sets and maps. (Ideally,

these methods should have simply been included in the SortedSet and SortedMap
interface.) The TreeSet and TreeMap classes implement these interfaces.

4719.1 The Java Collections Framework

ptg16518469

9.2 Concrete Collections
Table 9.1 shows the collections in the Java library and briefly describes the purpose

of each collection class. (For simplicity, we omit the thread-safe collections that

will be discussed in Chapter 14.) All classes in Table 9.1 implement the Collection
interface, with the exception of the classes with names ending in Map. Those

classes implement the Map interface instead. We will discuss maps in Section 9.3,

“Maps,” on p. 497.

Figure 9.5 shows the relationships between these classes.

Table 9.1 Concrete Collections in the Java Library

See PageDescriptionCollection Type

484An indexed sequence that grows and shrinks

dynamically

ArrayList

474An ordered sequence that allows efficient insertion and

removal at any location

LinkedList

494A double-ended queue that is implemented as a circular

array

ArrayDeque

485An unordered collection that rejects duplicatesHashSet

489A sorted setTreeSet

506A set of enumerated type valuesEnumSet

504A set that remembers the order in which elements were

inserted

LinkedHashSet

495A collection that allows efficient removal of the smallest

element

PriorityQueue

504A data structure that stores key/value associationsHashMap

497A map in which the keys are sortedTreeMap

506A map in which the keys belong to an enumerated typeEnumMap

504A map that remembers the order in which entries were

added

LinkedHashMap

504A map with values that can be reclaimed by the garbage

collector if they are not used elsewhere

WeakHashMap

507A map with keys that are compared by ==, not equalsIdentityHashMap

Chapter 9 Collections472

ptg16518469

Figure 9.5 Classes in the collections framework

4739.2 Concrete Collections

ptg16518469

9.2.1 Linked Lists
We already used arrays and their dynamic cousin, the ArrayList class, for many

examples in this book. However, arrays and array lists suffer from a major

drawback. Removing an element from the middle of an array is expensive since

all array elements beyond the removed one must be moved toward the beginning

of the array (see Figure 9.6). The same is true for inserting elements in the middle.

Figure 9.6 Removing an element from an array

Another well-known data structure, the linked list, solves this problem. Where an

array stores object references in consecutive memory locations, a linked list stores

each object in a separate link. Each link also stores a reference to the next link in

the sequence. In the Java programming language, all linked lists are actually

doubly linked; that is, each link also stores a reference to its predecessor (see

Figure 9.7).

Chapter 9 Collections474

ptg16518469

Figure 9.7 A doubly linked list

Removing an element from the middle of a linked list is an inexpensive opera-

tion—only the links around the element to be removed need to be updated (see

Figure 9.8).

Figure 9.8 Removing an element from a linked list

4759.2 Concrete Collections

ptg16518469

Perhaps you once took a data structures course in which you learned how to

implement linked lists. You may have bad memories of tangling up the links

when removing or adding elements in the linked list. If so, you will be

pleased to learn that the Java collections library supplies a class LinkedList ready

for you to use.

The following code example adds three elements and then removes the second one:

List<String> staff = new LinkedList<>(); // LinkedList implements List
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
Iterator iter = staff.iterator();
String first = iter.next(); // visit first element
String second = iter.next(); // visit second element
iter.remove(); // remove last visited element

There is, however, an important difference between linked lists and generic col-

lections. A linked list is an ordered collection in which the position of the objects

matters. The LinkedList.add method adds the object to the end of the list. But you

will often want to add objects somewhere in the middle of a list. This position-

dependent add method is the responsibility of an iterator, since iterators describe

positions in collections. Using iterators to add elements makes sense only for

collections that have a natural ordering. For example, the set data type that we

discuss in the next section does not impose any ordering on its elements. Therefore,

there is no add method in the Iterator interface. Instead, the collections library

supplies a subinterface ListIterator that contains an add method:

interface ListIterator<E> extends Iterator<E>
{
 void add(E element);
 . . .
}

Unlike Collection.add, this method does not return a boolean—it is assumed that the

add operation always modifies the list.

In addition, the ListIterator interface has two methods that you can use for

traversing a list backwards.

E previous()
boolean hasPrevious()

Like the next method, the previous method returns the object that it skipped over.

The listIterator method of the LinkedList class returns an iterator object that

implements the ListIterator interface.

ListIterator<String> iter = staff.listIterator();

Chapter 9 Collections476

ptg16518469

The add method adds the new element before the iterator position. For example,

the following code skips past the first element in the linked list and adds "Juliet"
before the second element (see Figure 9.9):

List<String> staff = new LinkedList<>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
ListIterator<String> iter = staff.listIterator();
iter.next(); // skip past first element
iter.add("Juliet");

Figure 9.9 Adding an element to a linked list

If you call the add method multiple times, the elements are simply added in the

order in which you supplied them. They are all added in turn before the current

iterator position.

4779.2 Concrete Collections

ptg16518469

When you use the add operation with an iterator that was freshly returned from

the listIterator method and that points to the beginning of the linked list, the

newly added element becomes the new head of the list. When the iterator has

passed the last element of the list (that is, when hasNext returns false), the added

element becomes the new tail of the list. If the linked list has n elements, there

are n + 1 spots for adding a new element. These spots correspond to the n + 1

possible positions of the iterator. For example, if a linked list contains three ele-

ments, A, B, and C, there are four possible positions (marked as |) for inserting

a new element:

|ABC
A|BC
AB|C
ABC|

NOTE: Be careful with the “cursor” analogy. The remove operation does not work
exactly like the Backspace key. Immediately after a call to next, the remove method
indeed removes the element to the left of the iterator, just like the Backspace
key would. However, if you have just called previous, the element to the right will
be removed. And you can’t call remove twice in a row.

Unlike the add method, which depends only on the iterator position, the remove
method depends on the iterator state.

Finally, a set method replaces the last element, returned by a call to next or previous,

with a new element. For example, the following code replaces the first element

of a list with a new value:

ListIterator<String> iter = list.listIterator();
String oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another iterator

is modifying it, confusing situations can occur. For example, suppose an

iterator points before an element that another iterator has just removed. The iter-

ator is now invalid and should no longer be used. The linked list iterators have

been designed to detect such modifications. If an iterator finds that its collection

has been modified by another iterator or by a method of the collection itself, it

throws a ConcurrentModificationException. For example, consider the following code:

List<String> list = . . .;
ListIterator<String> iter1 = list.listIterator();
ListIterator<String> iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

Chapter 9 Collections478

ptg16518469

The call to iter2.next throws a ConcurrentModificationException since iter2 detects that the

list was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You can

attach as many iterators to a collection as you like, provided that all of them are

only readers. Alternatively, you can attach a single iterator that can both read

and write.

Concurrent modification detection is done in a simple way. The collection keeps

track of the number of mutating operations (such as adding and removing ele-

ments). Each iterator keeps a separate count of the number of mutating operations

that it was responsible for. At the beginning of each iterator method, the iterator

simply checks whether its own mutation count equals that of the collection. If

not, it throws a ConcurrentModificationException.

NOTE: There is, however, a curious exception to the detection of concurrent
modifications. The linked list only keeps track of structural modifications to the
list, such as adding and removing links. The set method does not count as a
structural modification.You can attach multiple iterators to a linked list, all of
which call set to change the contents of existing links. This capability is required
for a number of algorithms in the Collections class that we discuss later in this
chapter.

Now you have seen the fundamental methods of the LinkedList class. Use a ListIterator
to traverse the elements of the linked list in either direction and to add and remove

elements.

As you saw in the preceding section, many other useful methods for operating

on linked lists are declared in the Collection interface. These are, for the most part,

implemented in the AbstractCollection superclass of the LinkedList class. For example,

the toString method invokes toString on all elements and produces one long string

of the format [A, B, C]. This is handy for debugging. Use the contains method to

check whether an element is present in a linked list. For example, the call

staff.contains("Harry") returns true if the linked list already contains a string equal to

the string "Harry".

The library also supplies a number of methods that are, from a theoretical per-

spective, somewhat dubious. Linked lists do not support fast random access. If

you want to see the nth element of a linked list, you have to start at the beginning

and skip past the first n – 1 elements. There is no shortcut. For that reason, pro-

grammers don’t usually use linked lists in situations where elements need to be

accessed by an integer index.

4799.2 Concrete Collections

ptg16518469

Nevertheless, the LinkedList class supplies a get method that lets you access a

particular element:

LinkedList<String> list = . . .;
String obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it, you are

probably using a wrong data structure for your problem.

You should never use this illusory random access method to step through a linked

list. The code

for (int i = 0; i < list.size(); i++)
do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the search

starts again from the beginning of the list. The LinkedList object makes no effort to

cache the position information.

NOTE: The get method has one slight optimization: If the index is at least
size() / 2, the search for the element starts at the end of the list.

The list iterator interface also has a method to tell you the index of the current

position. In fact, since Java iterators conceptually point between elements, it has

two of them: The nextIndex method returns the integer index of the element that

would be returned by the next call to next; the previousIndex method returns the index

of the element that would be returned by the next call to previous. Of course, that

is simply one less than nextIndex. These methods are efficient—an iterator keeps

a count of its current position. Finally, if you have an integer index n, then

list.listIterator(n) returns an iterator that points just before the element with index

n. That is, calling next yields the same element as list.get(n); obtaining that iterator

is inefficient.

If you have a linked list with only a handful of elements, you don’t have to be

overly paranoid about the cost of the get and set methods. But then, why use a

linked list in the first place? The only reason to use a linked list is to minimize

the cost of insertion and removal in the middle of the list. If you have only a few

elements, you can just use an ArrayList.

We recommend that you simply stay away from all methods that use an integer

index to denote a position in a linked list. If you want random access into a

collection, use an array or ArrayList, not a linked list.

The program in Listing 9.1 puts linked lists to work. It simply creates two lists,

merges them, then removes every second element from the second list, and

finally tests the removeAll method. We recommend that you trace the program flow

Chapter 9 Collections480

ptg16518469

and pay special attention to the iterators. You may find it helpful to draw diagrams

of the iterator positions, like this:

|ACE |BDFG
A|CE |BDFG
AB|CE B|DFG
. . .

Note that the call

System.out.println(a);

prints all elements in the linked list a by invoking the toString method in

AbstractCollection.

Listing 9.1 linkedList/LinkedListTest.java

1 package linkedList;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates operations on linked lists.
7 * @version 1.11 2012-01-26
8 * @author Cay Horstmann
9 */
10 public class LinkedListTest
11 {
12 public static void main(String[] args)
13 {
14 List<String> a = new LinkedList<>();
15 a.add("Amy");
16 a.add("Carl");
17 a.add("Erica");
18

19 List<String> b = new LinkedList<>();
20 b.add("Bob");
21 b.add("Doug");
22 b.add("Frances");
23 b.add("Gloria");
24

25 // merge the words from b into a
26

27 ListIterator<String> aIter = a.listIterator();
28 Iterator<String> bIter = b.iterator();
29

30 while (bIter.hasNext())
31 {

(Continues)

4819.2 Concrete Collections

ptg16518469

Listing 9.1 (Continued)

32 if (aIter.hasNext()) aIter.next();
33 aIter.add(bIter.next());
34 }
35

36 System.out.println(a);
37

38 // remove every second word from b
39

40 bIter = b.iterator();
41 while (bIter.hasNext())
42 {
43 bIter.next(); // skip one element
44 if (bIter.hasNext())
45 {
46 bIter.next(); // skip next element
47 bIter.remove(); // remove that element
48 }
49 }
50

51 System.out.println(b);
52

53 // bulk operation: remove all words in b from a
54

55 a.removeAll(b);
56

57 System.out.println(a);
58 }
59 }

java.util.List<E> 1.2

• ListIterator<E> listIterator()

returns a list iterator for visiting the elements of the list.

• ListIterator<E> listIterator(int index)

returns a list iterator for visiting the elements of the list whose first call to next
will return the element with the given index.

• void add(int i, E element)

adds an element at the specified position.

• void addAll(int i, Collection<? extends E> elements)

adds all elements from a collection to the specified position.

(Continues)

Chapter 9 Collections482

ptg16518469

java.util.List<E> 1.2 (Continued)

• E remove(int i)

removes and returns the element at the specified position.

• E get(int i)

gets the element at the specified position.

• E set(int i, E element)

replaces the element at the specified position with a new element and returns the

old element.

• int indexOf(Object element)

returns the position of the first occurrence of an element equal to the specified

element, or -1 if no matching element is found.

• int lastIndexOf(Object element)

returns the position of the last occurrence of an element equal to the specified

element, or -1 if no matching element is found.

java.util.ListIterator<E> 1.2

• void add(E newElement)

adds an element before the current position.

• void set(E newElement)

replaces the last element visited by next or previous with a new element. Throws an

IllegalStateException if the list structure was modified since the last call to next or

previous.

• boolean hasPrevious()

returns true if there is another element to visit when iterating backwards through

the list.

• E previous()

returns the previous object. Throws a NoSuchElementException if the beginning of the

list has been reached.

• int nextIndex()

returns the index of the element that would be returned by the next call to next.

• int previousIndex()

returns the index of the element that would be returned by the next call to previous.

4839.2 Concrete Collections

ptg16518469

java.util.LinkedList<E> 1.2

• LinkedList()

constructs an empty linked list.

• LinkedList(Collection<? extends E> elements)

constructs a linked list and adds all elements from a collection.

• void addFirst(E element)
• void addLast(E element)

adds an element to the beginning or the end of the list.

• E getFirst()
• E getLast()

returns the element at the beginning or the end of the list.

• E removeFirst()
• E removeLast()

removes and returns the element at the beginning or the end of the list.

9.2.2 Array Lists
In the preceding section, you saw the List interface and the LinkedList class that

implements it. The List interface describes an ordered collection in which the po-

sition of elements matters. There are two protocols for visiting the elements:

through an iterator and by random access with methods get and set. The latter is

not appropriate for linked lists, but of course get and set make a lot of sense for

arrays. The collections library supplies the familiar ArrayList class that also imple-

ments the List interface. An ArrayList encapsulates a dynamically reallocated array

of objects.

NOTE: If you are a veteran Java programmer, you may have used the Vector
class whenever you need a dynamic array. Why use an ArrayList instead of a
Vector? For one simple reason: All methods of the Vector class are synchronized.
It is safe to access a Vector object from two threads. But if you access a vector
from only a single thread—by far the more common case—your code wastes
quite a bit of time with synchronization. In contrast, the ArrayList methods are
not synchronized. We recommend that you use an ArrayList instead of a Vector
whenever you don’t need synchronization.

Chapter 9 Collections484

ptg16518469

9.2.3 Hash Sets
Linked lists and arrays let you specify the order in which you want to arrange

the elements. However, if you are looking for a particular element and don’t re-

member its position, you need to visit all elements until you find a match. That

can be time consuming if the collection contains many elements. If you don’t care

about the ordering of the elements, there are data structures that let you find ele-

ments much faster. The drawback is that those data structures give you no control

over the order in which the elements appear. These data structures organize the

elements in an order that is convenient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A hash

table computes an integer, called the hash code, for each object. A hash code is

somehow derived from the instance fields of an object, preferably in such a way

that objects with different data yield different codes. Table 9.2 lists a few examples

of hash codes that result from the hashCode method of the String class.

Table 9.2 Hash Codes Resulting from the hashCode Method

Hash CodeString

76268"Lee"

107020"lee"

100300"eel"

If you define your own classes, you are responsible for implementing your own

hashCode method—see Chapter 5 for more information. Your implementation needs

to be compatible with the equals method: If a.equals(b), then a and b must have the

same hash code.

What’s important for now is that hash codes can be computed quickly and that

the computation depends only on the state of the object that needs to be hashed,

not on the other objects in the hash table.

In Java, hash tables are implemented as arrays of linked lists. Each list is called a

bucket (see Figure 9.10). To find the place of an object in the table, compute its

hash code and reduce it modulo the total number of buckets. The resulting

number is the index of the bucket that holds the element. For example, if an object

has hash code 76268 and there are 128 buckets, then the object is placed in bucket

108 (because the remainder 76268 % 128 is 108). Perhaps you are lucky and there

is no other element in that bucket. Then, you simply insert the element into that

bucket. Of course, sometimes you will hit a bucket that is already filled. This is

called a hash collision. Then, compare the new object with all objects in that bucket

to see if it is already present. If the hash codes are reasonably randomly distributed

4859.2 Concrete Collections

ptg16518469

Figure 9.10 A hash table

and the number of buckets is large enough, only a few comparisons should be

necessary.

NOTE: As of Java SE 8, the buckets change from linked lists into balanced bi-
nary trees when they get full. This improves performance if a hash function was
poorly chosen and yields many collisions, or if malicious code tries to flood a
hash table with many values that have identical hash codes.

If you want more control over the performance of the hash table, you can specify

the initial bucket count. The bucket count gives the number of buckets used to

collect objects with identical hash values. If too many elements are inserted into

a hash table, the number of collisions increases and retrieval performance suffers.

If you know how many elements, approximately, will eventually be in the table,

you can set the bucket count. Typically, you should set it to somewhere between

75% and 150% of the expected element count. Some researchers believe that it is

a good idea to make the bucket count a prime number to prevent a clustering of

keys. The evidence for this isn’t conclusive, however. The standard library uses

bucket counts that are powers of 2, with a default of 16. (Any value you supply

for the table size is automatically rounded to the next power of 2.)

Of course, you do not always know how many elements you need to store, or

your initial guess may be too low. If the hash table gets too full, it needs to be re-

hashed. To rehash the table, a table with more buckets is created, all elements are

inserted into the new table, and the original table is discarded. The load factor

determines when a hash table is rehashed. For example, if the load factor is 0.75

Chapter 9 Collections486

ptg16518469

(which is the default) and the table is more than 75% full, it is automatically re-

hashed with twice as many buckets. For most applications, it is reasonable to

leave the load factor at 0.75.

Hash tables can be used to implement several important data structures. The

simplest among them is the set type. A set is a collection of elements without

duplicates. The add method of a set first tries to find the object to be added, and

adds it only if it is not yet present.

The Java collections library supplies a HashSet class that implements a set based on

a hash table. You add elements with the add method. The contains method is re-

defined to make a fast lookup to see if an element is already present in the set. It

checks only the elements in one bucket and not all elements in the collection.

The hash set iterator visits all buckets in turn. Since hashing scatters the elements

around in the table, they are visited in a seemingly random order. You would

only use a HashSet if you don’t care about the ordering of the elements in the

collection.

The sample program at the end of this section (Listing 9.2) reads words from

System.in, adds them to a set, and finally prints out the first twenty words in the

set. For example, you can feed the program the text from Alice in Wonderland

(which you can obtain from www.gutenberg.org) by launching it from a command

shell as

java SetTest < alice30.txt

The program reads all words from the input and adds them to the hash set. It

then iterates through the unique words in the set and finally prints out a count.

(Alice in Wonderland has 5,909 unique words, including the copyright notice at

the beginning.) The words appear in random order.

CAUTION: Be careful when you mutate set elements. If the hash code of an
element were to change, the element would no longer be in the correct position
in the data structure.

Listing 9.2 set/SetTest.java

1 package set;
 2

3 import java.util.*;
 4

5 /**
6 * This program uses a set to print all unique words in System.in.

(Continues)

4879.2 Concrete Collections

http://www.gutenberg.org

ptg16518469

Listing 9.2 (Continued)

7 * @version 1.12 2015-06-21
8 * @author Cay Horstmann
9 */
10 public class SetTest
11 {
12 public static void main(String[] args)
13 {
14 Set<String> words = new HashSet<>(); // HashSet implements Set
15 long totalTime = 0;
16

17 try (Scanner in = new Scanner(System.in))
18 {
19 while (in.hasNext())
20 {
21 String word = in.next();
22 long callTime = System.currentTimeMillis();
23 words.add(word);
24 callTime = System.currentTimeMillis() - callTime;
25 totalTime += callTime;
26 }
27 }
28

29 Iterator<String> iter = words.iterator();
30 for (int i = 1; i <= 20 && iter.hasNext(); i++)
31 System.out.println(iter.next());
32 System.out.println(". . .");
33 System.out.println(words.size() + " distinct words. " + totalTime + " milliseconds.");
34 }
35 }

java.util.HashSet<E> 1.2

• HashSet()

constructs an empty hash set.

• HashSet(Collection<? extends E> elements)

constructs a hash set and adds all elements from a collection.

• HashSet(int initialCapacity)

constructs an empty hash set with the specified capacity (number of buckets).

• HashSet(int initialCapacity, float loadFactor)

constructs an empty hash set with the specified capacity and load factor (a number

between 0.0 and 1.0 that determines at what percentage of fullness the hash table

will be rehashed into a larger one).

Chapter 9 Collections488

ptg16518469

java.lang.Object 1.0

• int hashCode()

returns a hash code for this object. A hash code can be any integer, positive or

negative. The definitions of equals and hashCode must be compatible: If x.equals(y) is

true, then x.hashCode() must be the same value as y.hashCode().

9.2.4 Tree Sets
The TreeSet class is similar to the hash set, with one added improvement. A tree

set is a sorted collection. You insert elements into the collection in any order. When

you iterate through the collection, the values are automatically presented in

sorted order. For example, suppose you insert three strings and then visit all

elements that you added.

SortedSet<String> sorter = new TreeSet<>(); // TreeSet implements SortedSet
sorter.add("Bob");
sorter.add("Amy");
sorter.add("Carl");
for (String s : sorter) System.println(s);

Then, the values are printed in sorted order: Amy Bob Carl. As the name of the class

suggests, the sorting is accomplished by a tree data structure. (The current imple-

mentation uses a red-black tree. For a detailed description of red-black trees see,

for example, Introduction to Algorithms by Thomas Cormen, Charles Leiserson,

Ronald Rivest, and Clifford Stein, The MIT Press, 2009.) Every time an element

is added to a tree, it is placed into its proper sorting position. Therefore, the iterator

always visits the elements in sorted order.

Adding an element to a tree is slower than adding it to a hash table—see Table 9.3

for a comparison. But it is still much faster than checking for duplicates in an array

or linked list. If the tree contains n elements, then an average of log
2

n comparisons

are required to find the correct position for the new element. For example, if the

tree already contains 1,000 elements, adding a new element requires about 10

comparisons.

NOTE: In order to use a tree set, you must be able to compare the elements.
The elements must implement the Comparable interface (see Section 6.1.1, “The
Interface Concept,” on p. 288), or you must supply a Comparator when constructing
the set (see Section 6.2.2, “The Comparator Interface,” on p. 305 and Section 6.3.8,
“More about Comparators,” on p. 328).

4899.2 Concrete Collections

ptg16518469

Table 9.3 Adding Elements into Hash and Tree Sets

TreeSetHashSetNumber of
Distinct Words

Total Number of
Words

Document

7 sec5 sec590928195Alice in Wonderland

98 sec75 sec37545466300The Count of Monte Cristo

If you look back at Table 9.3, you may well wonder if you should always use a

tree set instead of a hash set. After all, adding elements does not seem to take

much longer, and the elements are automatically sorted. The answer depends on

the data that you are collecting. If you don’t need the data sorted, there is no

reason to pay for the sorting overhead. More important, with some data it is much

more difficult to come up with a sort order than a hash function. A hash function

only needs to do a reasonably good job of scrambling the objects, whereas a

comparison function must tell objects apart with complete precision.

To make this distinction more concrete, consider the task of collecting a set of

rectangles. If you use a TreeSet, you need to supply a Comparator<Rectangle>. How do

you compare two rectangles? By area? That doesn’t work. You can have two dif-

ferent rectangles with different coordinates but the same area. The sort order for

a tree must be a total ordering. Any two elements must be comparable, and the

comparison can only be zero if the elements are equal. There is such a sort order

for rectangles (the lexicographic ordering on its coordinates), but it is unnatural

and cumbersome to compute. In contrast, a hash function is already defined for

the Rectangle class. It simply hashes the coordinates.

NOTE: As of Java SE 6, the TreeSet class implements the NavigableSet interface.
That interface adds several convenient methods for locating elements and for
backward traversal. See the API notes for details.

The program in Listing 9.3 builds two tree sets of Item objects. The first one is

sorted by part number, the default sort order of Item objects. The second set

is sorted by description, using a custom comparator.

Listing 9.3 treeSet/TreeSetTest.java

1 package treeSet;
 2

3 import java.util.*;
 4

Chapter 9 Collections490

ptg16518469

5 /**
6 * This program sorts a set of item by comparing their descriptions.
7 * @version 1.12 2015-06-21
8 * @author Cay Horstmann
9 */
10 public class TreeSetTest
11 {
12 public static void main(String[] args)
13 {
14 SortedSet<Item> parts = new TreeSet<>();
15 parts.add(new Item("Toaster", 1234));
16 parts.add(new Item("Widget", 4562));
17 parts.add(new Item("Modem", 9912));
18 System.out.println(parts);
19

20 NavigableSet<Item> sortByDescription = new TreeSet<>(
21 Comparator.comparing(Item::getDescription));
22

23 sortByDescription.addAll(parts);
24 System.out.println(sortByDescription);
25 }
26 }

Listing 9.4 treeSet/Item.java

1 package treeSet;
 2

3 import java.util.*;
 4

5 /**
6 * An item with a description and a part number.
7 */
8 public class Item implements Comparable<Item>
9 {
10 private String description;
11 private int partNumber;
12

13 /**
14 * Constructs an item.
15 *
16 * @param aDescription
17 * the item's description
18 * @param aPartNumber
19 * the item's part number
20 */

(Continues)

4919.2 Concrete Collections

ptg16518469

Listing 9.4 (Continued)

21 public Item(String aDescription, int aPartNumber)
22 {
23 description = aDescription;
24 partNumber = aPartNumber;
25 }
26

27 /**
28 * Gets the description of this item.
29 *
30 * @return the description
31 */
32 public String getDescription()
33 {
34 return description;
35 }
36

37 public String toString()
38 {
39 return "[descripion=" + description + ", partNumber=" + partNumber + "]";
40 }
41

42 public boolean equals(Object otherObject)
43 {
44 if (this == otherObject) return true;
45 if (otherObject == null) return false;
46 if (getClass() != otherObject.getClass()) return false;
47 Item other = (Item) otherObject;
48 return Objects.equals(description, other.description) && partNumber == other.partNumber;
49 }
50

51 public int hashCode()
52 {
53 return Objects.hash(description, partNumber);
54 }
55

56 public int compareTo(Item other)
57 {
58 int diff = Integer.compare(partNumber, other.partNumber);
59 return diff != 0 ? diff : description.compareTo(other.description);
60 }
61 }

Chapter 9 Collections492

ptg16518469

java.util.TreeSet<E> 1.2

• TreeSet()
• TreeSet(Comparator<? super E> comparator)

constructs an empty tree set.

• TreeSet(Collection<? extends E> elements)
• TreeSet(SortedSet<E> s)

constructs a tree set and adds all elements from a collection or sorted set (in the

latter case, using the same ordering).

java.util.SortedSet<E> 1.2

• Comparator<? super E> comparator()

returns the comparator used for sorting the elements, or null if the elements are

compared with the compareTo method of the Comparable interface.

• E first()
• E last()

returns the smallest or largest element in the sorted set.

java.util.NavigableSet<E> 6

• E higher(E value)
• E lower(E value)

returns the least element > value or the largest element < value, or null if there is no

such element.

• E ceiling(E value)
• E floor(E value)

returns the least element >= value or the largest element <= value, or null if there is

no such element.

• E pollFirst()
• E pollLast

removes and returns the smallest or largest element in this set, or null if the set is

empty.

• Iterator<E> descendingIterator()

returns an iterator that traverses this set in descending direction.

4939.2 Concrete Collections

ptg16518469

9.2.5 Queues and Deques
As we already discussed, a queue lets you efficiently add elements at the tail and

remove elements from the head. A double-ended queue, or deque, lets you effi-

ciently add or remove elements at the head and tail. Adding elements in the

middle is not supported. Java SE 6 introduced a Deque interface. It is implemented

by the ArrayDeque and LinkedList classes, both of which provide deques whose size

grows as needed. In Chapter 14, you will see bounded queues and deques.

java.util.Queue<E> 5.0

• boolean add(E element)
• boolean offer(E element)

adds the given element to the tail of this deque and returns true, provided the queue

is not full. If the queue is full, the first method throws an IllegalStateException, whereas

the second method returns false.

• E remove()
• E poll()

removes and returns the element at the head of this queue, provided the queue is

not empty. If the queue is empty, the first method throws a NoSuchElementException,

whereas the second method returns null.

• E element()
• E peek()

returns the element at the head of this queue without removing it, provided

the queue is not empty. If the queue is empty, the first method throws a

NoSuchElementException, whereas the second method returns null.

java.util.Deque<E> 6

• void addFirst(E element)
• void addLast(E element)
• boolean offerFirst(E element)
• boolean offerLast(E element)

adds the given element to the head or tail of this deque. If the queue is full, the first

two methods throw an IllegalStateException, whereas the last two methods return

false.

(Continues)

Chapter 9 Collections494

ptg16518469

java.util.Deque<E> 6 (Continued)

• E removeFirst()
• E removeLast()
• E pollFirst()
• E pollLast()

removes and returns the element at the head of this queue, provided the queue is

not empty. If the queue is empty, the first two methods throw a NoSuchElementException,

whereas the last two methods return null.

• E getFirst()
• E getLast()
• E peekFirst()
• E peekLast()

returns the element at the head of this queue without removing it, provided

the queue is not empty. If the queue is empty, the first two methods throw a

NoSuchElementException, whereas the last two methods return null.

java.util.ArrayDeque<E> 6

• ArrayDeque()
• ArrayDeque(int initialCapacity)

constructs an unbounded deque with an initial capacity of 16 or the given initial

capacity.

9.2.6 Priority Queues
A priority queue retrieves elements in sorted order after they were inserted in

arbitrary order. That is, whenever you call the remove method, you get the smallest

element currently in the priority queue. However, the priority queue does not sort

all its elements. If you iterate over the elements, they are not necessarily sorted.

The priority queue makes use of an elegant and efficient data structure called a

heap. A heap is a self-organizing binary tree in which the add and remove operations

cause the smallest element to gravitate to the root, without wasting time on sorting

all elements.

Just like a TreeSet, a priority queue can either hold elements of a class that imple-

ments the Comparable interface or a Comparator object you supply in the constructor.

A typical use for a priority queue is job scheduling. Each job has a priority. Jobs

are added in random order. Whenever a new job can be started, the highest priority

4959.2 Concrete Collections

ptg16518469

job is removed from the queue. (Since it is traditional for priority 1 to be the

“highest” priority, the remove operation yields the minimum element.)

Listing 9.5 shows a priority queue in action. Unlike iteration in a TreeSet, the itera-

tion here does not visit the elements in sorted order. However, removal always

yields the smallest remaining element.

Listing 9.5 priorityQueue/PriorityQueueTest.java

1 package priorityQueue;
 2

3 import java.util.*;
4 import java.time.*;
 5

6 /**
7 * This program demonstrates the use of a priority queue.
8 * @version 1.01 2012-01-26
9 * @author Cay Horstmann
10 */
11 public class PriorityQueueTest
12 {
13 public static void main(String[] args)
14 {
15 PriorityQueue<LocalDate> pq = new PriorityQueue<>();
16 pq.add(LocalDate.of(1906, 12, 9)); // G. Hopper
17 pq.add(LocalDate.of(1815, 12, 10)); // A. Lovelace
18 pq.add(LocalDate.of(1903, 12, 3)); // J. von Neumann
19 pq.add(LocalDate.of(1910, 6, 22)); // K. Zuse
20

21 System.out.println("Iterating over elements...");
22 for (LocalDate date : pq)
23 System.out.println(date);
24 System.out.println("Removing elements...");
25 while (!pq.isEmpty())
26 System.out.println(pq.remove());
27 }
28 }

java.util.PriorityQueue 5.0

• PriorityQueue()
• PriorityQueue(int initialCapacity)

constructs a priority queue for storing Comparable objects.

• PriorityQueue(int initialCapacity, Comparator<? super E> c)

constructs a priority queue and uses the specified comparator for sorting its

elements.

Chapter 9 Collections496

ptg16518469

9.3 Maps
A set is a collection that lets you quickly find an existing element. However, to

look up an element, you need to have an exact copy of the element to find. That

isn’t a very common lookup—usually, you have some key information, and you

want to look up the associated element. The map data structure serves that purpose.

A map stores key/value pairs. You can find a value if you provide the key. For

example, you may store a table of employee records, where the keys are the em-

ployee IDs and the values are Employee objects. In the following sections, you will

learn how to work with maps.

9.3.1 Basic Map Operations
The Java library supplies two general-purpose implementations for maps: HashMap
and TreeMap. Both classes implement the Map interface.

A hash map hashes the keys, and a tree map uses an ordering on the keys to or-

ganize them in a search tree. The hash or comparison function is applied only to

the keys. The values associated with the keys are not hashed or compared.

Should you choose a hash map or a tree map? As with sets, hashing is usually a

bit faster, and it is the preferred choice if you don’t need to visit the keys in sorted

order.

Here is how you set up a hash map for storing employees:

Map<String, Employee> staff = new HashMap<>(); // HashMap implements Map
Employee harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);
. . .

Whenever you add an object to a map, you must supply a key as well. In our case,

the key is a string, and the corresponding value is an Employee object.

To retrieve an object, you must use (and, therefore, remember) the key.

String id = "987-98-9996";
e = staff.get(id); // gets harry

If no information is stored in the map with the particular key specified, get
returns null.

The null return value can be inconvenient. Sometimes, you have a good default

that can be used for keys that are not present in the map. Then use the getOrDefault
method.

Map<String, Integer> scores = . . .;
int score = scores.get(id, 0); // Gets 0 if the id is not present

4979.3 Maps

ptg16518469

Keys must be unique. You cannot store two values with the same key. If you call

the put method twice with the same key, the second value replaces the first one.

In fact, put returns the previous value associated with its key parameter.

The remove method removes an element with a given key from the map. The size
method returns the number of entries in the map.

The easiest way of iterating over the keys and values of a map is the forEach method.

Provide a lambda expression that receives a key and a value. That expression is

invoked for each map entry in turn.

scores.forEach((k, v) ->
 System.out.println("key=" + k + ", value=" + v));

Listing 9.6 illustrates a map at work. We first add key/value pairs to a map. Then,

we remove one key from the map, which removes its associated value as well.

Next, we change the value that is associated with a key and call the get method

to look up a value. Finally, we iterate through the entry set.

Listing 9.6 map/MapTest.java

1 package map;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates the use of a map with key type String and value type Employee.
7 * @version 1.11 2012-01-26
8 * @author Cay Horstmann
9 */
10 public class MapTest
11 {
12 public static void main(String[] args)
13 {
14 Map<String, Employee> staff = new HashMap<>();
15 staff.put("144-25-5464", new Employee("Amy Lee"));
16 staff.put("567-24-2546", new Employee("Harry Hacker"));
17 staff.put("157-62-7935", new Employee("Gary Cooper"));
18 staff.put("456-62-5527", new Employee("Francesca Cruz"));
19

20 // print all entries
21

22 System.out.println(staff);
23

24 // remove an entry
25

Chapter 9 Collections498

ptg16518469

26 staff.remove("567-24-2546");
27

28 // replace an entry
29

30 staff.put("456-62-5527", new Employee("Francesca Miller"));
31

32 // look up a value
33

34 System.out.println(staff.get("157-62-7935"));
35

36 // iterate through all entries
37

38 staff.forEach((k, v) ->
39 System.out.println("key=" + k + ", value=" + v));
40 }
41 }

java.util.Map<K, V> 1.2

• V get(Object key)

gets the value associated with the key; returns the object associated with the key, or

null if the key is not found in the map. Implementing classes may forbid null keys.

• default V getOrDefault(Object key, V defaultValue)

gets the value associated with the key; returns the object associated with the key,

or defaultValue if the key is not found in the map.

• V put(K key, V value)

puts the association of a key and a value into the map. If the key is already present,

the new object replaces the old one previously associated with the key.This method

returns the old value of the key, or null if the key was not previously present.

Implementing classes may forbid null keys or values.

• void putAll(Map<? extends K, ? extends V> entries)

adds all entries from the specified map to this map.

• boolean containsKey(Object key)

returns true if the key is present in the map.

• boolean containsValue(Object value)

returns true if the value is present in the map.

• default void forEach(BiConsumer<? super K,? super V> action) 8

Applies the action to all key/value pairs of this map.

4999.3 Maps

ptg16518469

java.util.HashMap<K, V> 1.2

• HashMap()
• HashMap(int initialCapacity)
• HashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load factor (a number

between 0.0 and 1.0 that determines at what percentage of fullness the hash table

will be rehashed into a larger one). The default load factor is 0.75.

java.util.TreeMap<K,V> 1.2

• TreeMap()

constructs an empty tree map for keys that implement the Comparable interface.

• TreeMap(Comparator<? super K> c)

constructs a tree map and uses the specified comparator for sorting its keys.

• TreeMap(Map<? extends K, ? extends V> entries)

constructs a tree map and adds all entries from a map.

• TreeMap(SortedMap<? extends K, ? extends V> entries)

constructs a tree map, adds all entries from a sorted map, and uses the same element

comparator as the given sorted map.

java.util.SortedMap<K, V> 1.2

• Comparator<? super K> comparator()

returns the comparator used for sorting the keys, or null if the keys are compared

with the compareTo method of the Comparable interface.

• K firstKey()
• K lastKey()

returns the smallest or largest key in the map.

9.3.2 Updating Map Entries
A tricky part of dealing with maps is updating an entry. Normally, you get the

old value associated with a key, update it, and put back the updated value. But

you have to worry about the special case of the first occurrence of a key. Consider

using a map for counting how often a word occurs in a file. When we see a word,

we’d like to increment a counter like this:

Chapter 9 Collections500

ptg16518469

counts.put(word, counts.get(word) + 1);

That works, except in the case when word is encountered for the first time. Then

get returns null, and a NullPointerException occurs.

A simple remedy is to use the getOrDefault method:

counts.put(word, counts.getOrDefault(word, 0) + 1);

Another approach is to first call the putIfAbsent method. It only puts a value if the

key was previously absent.

counts.putIfAbsent(word, 0);
counts.put(word, counts.get(word) + 1); // Now we know that get will succeed

But you can do better than that. The merge method simplifies this common

operation. The call

counts.merge(word, 1, Integer::sum);

associates word with 1 if the key wasn’t previously present, and otherwise combines

the previous value and 1, using the Integer::sum function.

The API notes describe other methods for updating map entries that are less

commonly used.

java.util.Map<K, V> 1.2

• default V merge(K key, V value, BiFunction<? super V,? super V,? extends V> remappingFunction)
8

If key is associated with a non-null value v, applies the function to v and value and

either associates key with the result or, if the result is null, removes the key. Otherwise,

associates key with value. Returns get(key).

• default V compute(K key, BiFunction<? super K,? super V,? extends V> remappingFunction) 8

Applies the function to key and get(key). Either associates key with the result or, if

the result is null, removes the key. Returns get(key).

• default V computeIfPresent(K key, BiFunction<? super K,? super V,? extends V> remappingFunction)
8

If key is associated with a non-null value v, applies the function to key and v and

either associates key with the result or, if the result is null, removes the key. Returns

get(key).

• default V computeIfAbsent(K key, Function<? super K,? extends V> mappingFunction) 8

Applies the function to key unless key is associated with a non-null value. Either as-

sociates key with the result or, if the result is null, removes the key. Returns get(key).

(Continues)

5019.3 Maps

ptg16518469

java.util.Map<K, V> 1.2 (Continued)

• default void replaceAll(BiFunction<? super K,? super V,? extends V> function) 8

Calls the function on all entries.Associates keys with non-null results and removes

keys with null results.

9.3.3 Map Views
The collections framework does not consider a map itself as a collection. (Other

frameworks for data structures consider a map as a collection of key/value pairs,

or as a collection of values indexed by the keys.) However, you can obtain

views of the map—objects that implement the Collection interface or one of its

subinterfaces.

There are three views: the set of keys, the collection of values (which is not a set),

and the set of key/value pairs. The keys and key/value pairs form a set because

there can be only one copy of a key in a map. The methods

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K, V>> entrySet()

return these three views. (The elements of the entry set are objects of a class

implementing the Map.Entry interface.)

Note that the keySet is not a HashSet or TreeSet, but an object of some other class that

implements the Set interface. The Set interface extends the Collection interface.

Therefore, you can use a keySet as you would use any collection.

For example, you can enumerate all keys of a map:

Set<String> keys = map.keySet();
for (String key : keys)
{

do something with key
}

If you want to look at both keys and values, you can avoid value lookups by

enumerating the entries. Use the following code skeleton:

for (Map.Entry<String, Employee> entry : staff.entrySet())
{
 String k = entry.getKey();
 Employee v = entry.getValue();

do something with k, v
}

Chapter 9 Collections502

ptg16518469

TIP: This used to be the most efficient way of visiting all map entries. Nowadays,
simply use the forEach method:

counts.forEach((k, v) -> {
do something with k, v

});

If you invoke the remove method of the iterator on the key set view, you actually

remove the key and its associated value from the map. However, you cannot add

an element to the key set view. It makes no sense to add a key without also adding

a value. If you try to invoke the add method, it throws an UnsupportedOperationException.

The entry set view has the same restriction, even though it would make conceptual

sense to add a new key/value pair.

java.util.Map<K, V> 1.2

• Set<Map.Entry<K, V>> entrySet()

returns a set view of Map.Entry objects, the key/value pairs in the map.You can remove

elements from this set and they are removed from the map, but you cannot add

any elements.

• Set<K> keySet()

returns a set view of all keys in the map.You can remove elements from this set and

the keys and associated values are removed from the map, but you cannot add any

elements.

• Collection<V> values()

returns a collection view of all values in the map. You can remove elements from

this set and the removed value and its key are removed from the map, but you

cannot add any elements.

java.util.Map.Entry<K, V> 1.2

• K getKey()
• V getValue()

returns the key or value of this entry.

• V setValue(V newValue)

changes the value in the associated map to the new value and returns the old value.

5039.3 Maps

ptg16518469

9.3.4 Weak Hash Maps
The collection class library has several map classes for specialized needs that we

briefly discuss in this and the following sections.

The WeakHashMap class was designed to solve an interesting problem. What happens

with a value whose key is no longer used anywhere in your program? Suppose

the last reference to a key has gone away. Then, there is no longer any way to

refer to the value object. But, as no part of the program has the key any more, the

key/value pair cannot be removed from the map. Why can’t the garbage collector

remove it? Isn’t it the job of the garbage collector to remove unused objects?

Unfortunately, it isn’t quite so simple. The garbage collector traces live objects.

As long as the map object is live, all buckets in it are live and won’t be reclaimed.

Thus, your program should take care to remove unused values from long-lived

maps. Or, you can use a WeakHashMap instead. This data structure cooperates with

the garbage collector to remove key/value pairs when the only reference to the

key is the one from the hash table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses weak references

to hold keys. A WeakReference object holds a reference to another object—in our case,

a hash table key. Objects of this type are treated in a special way by the garbage

collector. Normally, if the garbage collector finds that a particular object has no

references to it, it simply reclaims the object. However, if the object is reachable

only by a WeakReference, the garbage collector still reclaims the object, but places the

weak reference that led to it into a queue. The operations of the WeakHashMap period-

ically check that queue for newly arrived weak references. The arrival of a weak

reference in the queue signifies that the key was no longer used by anyone and

has been collected. The WeakHashMap then removes the associated entry.

9.3.5 Linked Hash Sets and Maps
The LinkedHashSet and LinkedHashMap classes remember in which order you inserted

items. That way, you can avoid the seemingly random order of items in a hash

table. As entries are inserted into the table, they are joined in a doubly linked list

(see Figure 9.11).

For example, consider the following map insertions from Listing 9.6:

Map<String, Employee> staff = new LinkedHashMap<>();
staff.put("144-25-5464", new Employee("Amy Lee"));
staff.put("567-24-2546", new Employee("Harry Hacker"));
staff.put("157-62-7935", new Employee("Gary Cooper"));
staff.put("456-62-5527", new Employee("Francesca Cruz"));

Then, staff.keySet().iterator() enumerates the keys in this order:

Chapter 9 Collections504

ptg16518469

Figure 9.11 A linked hash table

144-25-5464
567-24-2546
157-62-7935
456-62-5527

and staff.values().iterator() enumerates the values in this order:

Amy Lee
Harry Hacker
Gary Cooper
Francesca Cruz

A linked hash map can alternatively use access order, not insertion order, to iterate

through the map entries. Every time you call get or put, the affected entry is re-

moved from its current position and placed at the end of the linked list of entries.

(Only the position in the linked list of entries is affected, not the hash table

bucket. An entry always stays in the bucket that corresponds to the hash code of

the key.) To construct such a hash map, call

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

Access order is useful for implementing a “least recently used” discipline for a

cache. For example, you may want to keep frequently accessed entries in memory

and read less frequently accessed objects from a database. When you don’t find

an entry in the table, and the table is already pretty full, you can get an iterator

into the table and remove the first few elements that it enumerates. Those entries

were the least recently used ones.

5059.3 Maps

ptg16518469

You can even automate that process. Form a subclass of LinkedHashMap and override

the method

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

Adding a new entry then causes the eldest entry to be removed whenever your

method returns true. For example, the following cache is kept at a size of at most

100 elements:

Map<K, V> cache = new
 LinkedHashMap<>(128, 0.75F, true)
 {
 protected boolean removeEldestEntry(Map.Entry<K, V> eldest)
 {

return size() > 100;
 }
 }();

Alternatively, you can consider the eldest entry to decide whether to remove it.

For example, you may want to check a time stamp stored with the entry.

9.3.6 Enumeration Sets and Maps
The EnumSet is an efficient set implementation with elements that belong to an

enumerated type. Since an enumerated type has a finite number of instances, the

EnumSet is internally implemented simply as a sequence of bits. A bit is turned on

if the corresponding value is present in the set.

The EnumSet class has no public constructors. Use a static factory method to construct

the set:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY };
EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);
EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);
EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY, Weekday.FRIDAY);
EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY, Weekday.WEDNESDAY, Weekday.FRIDAY);

You can use the usual methods of the Set interface to modify an EnumSet.

An EnumMap is a map with keys that belong to an enumerated type. It is simply and

efficiently implemented as an array of values. You need to specify the key type

in the constructor:

EnumMap<Weekday, Employee> personInCharge = new EnumMap<>(Weekday.class);

Chapter 9 Collections506

ptg16518469

NOTE: In the API documentation for EnumSet, you will see odd-looking type pa-
rameters of the form E extends Enum<E>. This simply means “E is an enumerated
type.” All enumerated types extend the generic Enum class. For example, Weekday
extends Enum<Weekday>.

9.3.7 Identity Hash Maps
The IdentityHashMap has a quite specialized purpose. Here, the hash values for the

keys should not be computed by the hashCode method but by the System.identityHashCode
method. That’s the method that Object.hashCode uses to compute a hash code from

the object’s memory address. Also, for comparison of objects, the IdentityHashMap
uses ==, not equals.

In other words, different key objects are considered distinct even if they have

equal contents. This class is useful for implementing object traversal algorithms,

such as object serialization, in which you want to keep track of which objects have

already been traversed.

java.util.WeakHashMap<K, V> 1.2

• WeakHashMap()
• WeakHashMap(int initialCapacity)
• WeakHashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load factor.

java.util.LinkedHashSet<E> 1.4

• LinkedHashSet()
• LinkedHashSet(int initialCapacity)
• LinkedHashSet(int initialCapacity, float loadFactor)

constructs an empty linked hash set with the specified capacity and load factor.

5079.3 Maps

ptg16518469

java.util.LinkedHashMap<K, V> 1.4

• LinkedHashMap()
• LinkedHashMap(int initialCapacity)
• LinkedHashMap(int initialCapacity, float loadFactor)
• LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)

constructs an empty linked hash map with the specified capacity, load factor, and

ordering.The accessOrder parameter is true for access order, false for insertion order.

• protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

should be overridden to return true if you want the eldest entry to be removed.The

eldest parameter is the entry whose removal is being contemplated. This method is

called after an entry has been added to the map.The default implementation returns

false—old elements are not removed by default. However, you can redefine this

method to selectively return true—for example, if the eldest entry fits a certain

condition or if the map exceeds a certain size.

java.util.EnumSet<E extends Enum<E>> 5.0

• static <E extends Enum<E>> EnumSet<E> allOf(Class<E> enumType)

returns a set that contains all values of the given enumerated type.

• static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> enumType)

returns an empty set, capable of holding values of the given enumerated type.

• static <E extends Enum<E>> EnumSet<E> range(E from, E to)

returns a set that contains all values between from and to (inclusive).

• static <E extends Enum<E>> EnumSet<E> of(E value)
• static <E extends Enum<E>> EnumSet<E> of(E value, E... values)

returns a set that contains the given values.

java.util.EnumMap<K extends Enum<K>, V> 5.0

• EnumMap(Class<K> keyType)

constructs an empty map whose keys have the given type.

Chapter 9 Collections508

ptg16518469

java.util.IdentityHashMap<K, V> 1.4

• IdentityHashMap()
• IdentityHashMap(int expectedMaxSize)

constructs an empty identity hash map whose capacity is the smallest power of 2

exceeding 1.5 × expectedMaxSize. (The default for expectedMaxSize is 21.)

java.lang.System 1.0

• static int identityHashCode(Object obj) 1.1

returns the same hash code (derived from the object’s memory address) that

Object.hashCode computes, even if the class to which obj belongs has redefined the

hashCode method.

9.4 Views and Wrappers
If you look at Figures 9.4 and 9.5, you might think it is overkill to have lots of in-

terfaces and abstract classes to implement a modest number of concrete collection

classes. However, these figures don’t tell the whole story. By using views, you can

obtain other objects that implement the Collection or Map interfaces. You saw one

example of this with the keySet method of the map classes. At first glance, it appears

as if the method creates a new set, fills it with all the keys of the map, and returns

it. However, that is not the case. Instead, the keySet method returns an object of a

class that implements the Set interface and whose methods manipulate the original

map. Such a collection is called a view.

The technique of views has a number of useful applications in the collections

framework. We will discuss these applications in the following sections.

9.4.1 Lightweight Collection Wrappers
The static asList method of the Arrays class returns a List wrapper around a plain

Java array. This method lets you pass the array to a method that expects a list or

collection argument. For example:

Card[] cardDeck = new Card[52];
. . .
List<Card> cardList = Arrays.asList(cardDeck);

The returned object is not an ArrayList. It is a view object with get and set methods

that access the underlying array. All methods that would change the size of the

5099.4 Views and Wrappers

ptg16518469

array (such as the add and remove methods of the associated iterator) throw an

UnsupportedOperationException.

The asList method can receive a variable number of arguments. For example:

List<String> names = Arrays.asList("Amy", "Bob", "Carl");

The method call

Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the

illusion of having n elements, each of which appears as anObject.

For example, the following call creates a List containing 100 strings, all set to

"DEFAULT":

List<String> settings = Collections.nCopies(100, "DEFAULT");

There is very little storage cost—the object is stored only once. This is a cute

application of the view technique.

NOTE: The Collections class contains a number of utility methods with parameters
or return values that are collections. Do not confuse it with the Collection interface.

The method call

Collections.singleton(anObject)

returns a view object that implements the Set interface (unlike nCopies, which pro-

duces a List). The returned object implements an immutable single-element set

without the overhead of data structure. The methods singletonList and singletonMap
behave similarly.

Similarly, there are methods that produce an empty set, list, map, and so on, for

every interface in the collections framework. Impressively, the type of the set is

inferred:

Set<String> deepThoughts = Collections.emptySet();

9.4.2 Subranges
You can form subrange views for a number of collections. For example,

suppose you have a list staff and want to extract elements 10 to 19. Use the subList
method to obtain a view into the subrange of the list:

List group2 = staff.subList(10, 20);

Chapter 9 Collections510

ptg16518469

The first index is inclusive, the second exclusive—just like the parameters for the

substring operation of the String class.

You can apply any operations to the subrange, and they automatically reflect the

entire list. For example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements get automatically cleared from the staff list, and group2 becomes

empty.

For sorted sets and maps, you use the sort order, not the element position, to form

subranges. The SortedSet interface declares three methods:

SortedSet<E> subSet(E from, E to)
SortedSet<E> headSet(E to)
SortedSet<E> tailSet(E from)

These return the subsets of all elements that are larger than or equal to from and

strictly smaller than to. For sorted maps, the similar methods

SortedMap<K, V> subMap(K from, K to)
SortedMap<K, V> headMap(K to)
SortedMap<K, V> tailMap(K from)

return views into the maps consisting of all entries in which the keys fall into the

specified ranges.

The NavigableSet interface introduced in Java SE 6 gives more control over these

subrange operations. You can specify whether the bounds are included:

NavigableSet<E> subSet(E from, boolean fromInclusive, E to, boolean toInclusive)
NavigableSet<E> headSet(E to, boolean toInclusive)
NavigableSet<E> tailSet(E from, boolean fromInclusive)

9.4.3 Unmodifiable Views
The Collections class has methods that produce unmodifiable views of collections.

These views add a runtime check to an existing collection. If an attempt to modify

the collection is detected, an exception is thrown and the collection remains

untouched.

You obtain unmodifiable views by eight methods:

Collections.unmodifiableCollection
Collections.unmodifiableList
Collections.unmodifiableSet
Collections.unmodifiableSortedSet
Collections.unmodifiableNavigableSet
Collections.unmodifiableMap

5119.4 Views and Wrappers

ptg16518469

Collections.unmodifiableSortedMap
Collections.unmodifiableNavigableMap

Each method is defined to work on an interface. For example,

Collections.unmodifiableList works with an ArrayList, a LinkedList, or any other class that

implements the List interface.

For example, suppose you want to let some part of your code look at, but not

touch, the contents of a collection. Here is what you could do:

List<String> staff = new LinkedList<>();
. . .
lookAt(Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class implementing the

List interface. Its accessor methods retrieve values from the staff collection. Of

course, the lookAt method can call all methods of the List interface, not just the ac-

cessors. But all mutator methods (such as add) have been redefined to throw an

UnsupportedOperationException instead of forwarding the call to the underlying collection.

The unmodifiable view does not make the collection itself immutable. You can

still modify the collection through its original reference (staff, in our case). And

you can still call mutator methods on the elements of the collection.

The views wrap the interface and not the actual collection object, so you only have

access to those methods that are defined in the interface. For example, the LinkedList
class has convenience methods, addFirst and addLast, that are not part of the List
interface. These methods are not accessible through the unmodifiable view.

CAUTION: The unmodifiableCollection method (as well as the synchronizedCollection
and checkedCollection methods discussed later in this section) returns a collection
whose equals method does not invoke the equals method of the underlying collec-
tion. Instead, it inherits the equals method of the Object class, which just tests
whether the objects are identical. If you turn a set or list into just a collection,
you can no longer test for equal contents. The view acts in this way because
equality testing is not well defined at this level of the hierarchy. The views treat
the hashCode method in the same way.

However, the unmodifiableSet and unmodifiableList methods use the equals and
hashCode methods of the underlying collections.

9.4.4 Synchronized Views
If you access a collection from multiple threads, you need to ensure that the col-

lection is not accidentally damaged. For example, it would be disastrous if one

Chapter 9 Collections512

ptg16518469

thread tried to add to a hash table while another thread was rehashing the

elements.

Instead of implementing thread-safe collection classes, the library designers used

the view mechanism to make regular collections thread safe. For example, the

static synchronizedMap method in the Collections class can turn any map into a Map with

synchronized access methods:

Map<String, Employee> map = Collections.synchronizedMap(new HashMap<String, Employee>());

You can now access the map object from multiple threads. The methods such as

get and put are serialized—each method call must be finished completely before

another thread can call another method. We discuss the issue of synchronized

access to data structures in greater detail in Chapter 14.

9.4.5 Checked Views
Checked views are intended as debugging support for a problem that can occur

with generic types. As explained in Chapter 8, it is actually possible to smuggle

elements of the wrong type into a generic collection. For example:

ArrayList<String> strings = new ArrayList<>();
ArrayList rawList = strings; // warning only, not an error, for compatibility with legacy code
rawList.add(new Date()); // now strings contains a Date object!

The erroneous add command is not detected at runtime. Instead, a class cast excep-

tion will happen later when another part of the code calls get and casts the result

to a String.

A checked view can detect this problem. Define a safe list as follows:

List<String> safeStrings = Collections.checkedList(strings, String.class);

The view’s add method checks that the inserted object belongs to the given class

and immediately throws a ClassCastException if it does not. The advantage is that the

error is reported at the correct location:

ArrayList rawList = safeStrings;
rawList.add(new Date()); // checked list throws a ClassCastException

CAUTION: The checked views are limited by the runtime checks that the virtual
machine can carry out. For example, if you have an ArrayList<Pair<String>>, you
cannot protect it from inserting a Pair<Date> since the virtual machine has a single
“raw” Pair class.

5139.4 Views and Wrappers

ptg16518469

9.4.6 A Note on Optional Operations
A view usually has some restriction—it may be read-only, it may not be able to

change the size, or it may support removal but not insertion (as is the case for the

key view of a map). A restricted view throws an UnsupportedOperationException if you

attempt an inappropriate operation.

In the API documentation for the collection and iterator interfaces, many methods

are described as “optional operations.” This seems to be in conflict with the notion

of an interface. After all, isn’t the purpose of an interface to lay out the methods

that a class must implement? Indeed, this arrangement is unsatisfactory from a

theoretical perspective. A better solution might have been to design separate in-

terfaces for read-only views and views that can’t change the size of a collection.

However, that would have tripled the number of interfaces, which the designers

of the library found unacceptable.

Should you extend the technique of “optional” methods to your own designs?

We think not. Even though collections are used frequently, the coding style for

implementing them is not typical for other problem domains. The designers of a

collection class library have to resolve a particularly brutal set of conflicting

requirements. Users want the library to be easy to learn, convenient to use, com-

pletely generic, idiot-proof, and at the same time as efficient as hand-coded algo-

rithms. It is plainly impossible to achieve all these goals simultaneously, or even

to come close. But in your own programming problems, you will rarely encounter

such an extreme set of constraints. You should be able to find solutions that do

not rely on the extreme measure of “optional” interface operations.

java.util.Collections 1.2

• static <E> Collection unmodifiableCollection(Collection<E> c)
• static <E> List unmodifiableList(List<E> c)
• static <E> Set unmodifiableSet(Set<E> c)
• static <E> SortedSet unmodifiableSortedSet(SortedSet<E> c)
• static <E> SortedSet unmodifiableNavigableSet(NavigableSet<E> c) 8
• static <K, V> Map unmodifiableMap(Map<K, V> c)
• static <K, V> SortedMap unmodifiableSortedMap(SortedMap<K, V> c)
• static <K, V> SortedMap unmodifiableNavigableMap(NavigableMap<K, V> c) 8

constructs a view of the collection; the view’s mutator methods throw an

UnsupportedOperationException.

(Continues)

Chapter 9 Collections514

ptg16518469

java.util.Collections 1.2 (Continued)

• static <E> Collection<E> synchronizedCollection(Collection<E> c)
• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <E> NavigableSet synchronizedNavigableSet(NavigableSet<E> c) 8
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> c)
• static <K, V> NavigableMap<K, V> synchronizedNavigableMap(NavigableMap<K, V> c) 8

constructs a view of the collection; the view’s methods are synchronized.

• static <E> Collection checkedCollection(Collection<E> c, Class<E> elementType)
• static <E> List checkedList(List<E> c, Class<E> elementType)
• static <E> Set checkedSet(Set<E> c, Class<E> elementType)
• static <E> SortedSet checkedSortedSet(SortedSet<E> c, Class<E> elementType)
• static <E> NavigableSet checkedNavigableSet(NavigableSet<E> c, Class<E> elementType) 8
• static <K, V> Map checkedMap(Map<K, V> c, Class<K> keyType, Class<V> valueType)
• static <K, V> SortedMap checkedSortedMap(SortedMap<K, V> c, Class<K> keyType, Class<V> valueType)
• static <K, V> NavigableMap checkedNavigableMap(NavigableMap<K, V> c, Class<K> keyType, Class<V>

valueType) 8
• static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> elementType) 8

constructs a view of the collection; the view’s methods throw a ClassCastException if

an element of the wrong type is inserted.

• static <E> List<E> nCopies(int n, E value)
• static <E> Set<E> singleton(E value)
• static <E> List<E> singletonList(E value)
• static <K, V> Map<K, V> singletonMap(K key, V value)

constructs a view of the object as either an unmodifiable list with n identical elements

or a singleton set, list, or map.

• static <E> List<E> emptyList()
• static <T> Set<T> emptySet()
• static <E> SortedSet<E> emptySortedSet()
• static NavigableSet<E> emptyNavigableSet()
• static <K,V> Map<K,V> emptyMap()
• static <K,V> SortedMap<K,V> emptySortedMap()
• static <K,V> NavigableMap<K,V> emptyNavigableMap()
• static <T> Enumeration<T> emptyEnumeration()
• static <T> Iterator<T> emptyIterator()
• static <T> ListIterator<T> emptyListIterator()

Yields an empty collection, map, or iterator.

5159.4 Views and Wrappers

ptg16518469

java.util.Arrays 1.2

• static <E> List<E> asList(E... array)

returns a list view of the elements in an array that is modifiable but not resizable.

java.util.List<E> 1.2

• List<E> subList(int firstIncluded, int firstExcluded)

returns a list view of the elements within a range of positions.

java.util.SortedSet<E> 1.2

• SortedSet<E> subSet(E firstIncluded, E firstExcluded)
• SortedSet<E> headSet(E firstExcluded)
• SortedSet<E> tailSet(E firstIncluded)

returns a view of the elements within a range.

java.util.NavigableSet<E> 6

• NavigableSet<E> subSet(E from, boolean fromIncluded, E to, boolean toIncluded)
• NavigableSet<E> headSet(E to, boolean toIncluded)
• NavigableSet<E> tailSet(E from, boolean fromIncluded)

returns a view of the elements within a range. The boolean flags determine whether

the bounds are included in the view.

java.util.SortedMap<K, V> 1.2

• SortedMap<K, V> subMap(K firstIncluded, K firstExcluded)
• SortedMap<K, V> headMap(K firstExcluded)
• SortedMap<K, V> tailMap(K firstIncluded)

returns a map view of the entries whose keys are within a range.

Chapter 9 Collections516

ptg16518469

java.util.NavigableMap<K, V> 6

• NavigableMap<K, V> subMap(K from, boolean fromIncluded, K to, boolean toIncluded)
• NavigableMap<K, V> headMap(K from, boolean fromIncluded)
• NavigableMap<K, V> tailMap(K to, boolean toIncluded)

returns a map view of the entries whose keys are within a range. The boolean flags

determine whether the bounds are included in the view.

9.5 Algorithms
Generic collection interfaces have a great advantage—you only need to implement

your algorithms once. For example, consider a simple algorithm to compute the

maximum element in a collection. Traditionally, programmers would implement

such an algorithm as a loop. Here is how you can find the largest element of an

array.

if (a.length == 0) throw new NoSuchElementException();
T largest = a[0];
for (int i = 1; i < a.length; i++)
 if (largest.compareTo(a[i]) < 0)
 largest = a[i];

Of course, to find the maximum of an array list, you would write the code

slightly differently.

if (v.size() == 0) throw new NoSuchElementException();
T largest = v.get(0);
for (int i = 1; i < v.size(); i++)
 if (largest.compareTo(v.get(i)) < 0)
 largest = v.get(i);

What about a linked list? You don’t have efficient random access in a linked list,

but you can use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();
Iterator<T> iter = l.iterator();
T largest = iter.next();
while (iter.hasNext())
{
 T next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
}

5179.5 Algorithms

ptg16518469

These loops are tedious to write, and just a bit error-prone. Is there an off-by-one

error? Do the loops work correctly for empty containers? For containers with

only one element? You don’t want to test and debug this code every time, but

you also don’t want to implement a whole slew of methods, such as these:

static <T extends Comparable> T max(T[] a)
static <T extends Comparable> T max(ArrayList<T> v)
static <T extends Comparable> T max(LinkedList<T> l)

That’s where the collection interfaces come in. Think of the minimal collection

interface that you need to efficiently carry out the algorithm. Random access with

get and set comes higher in the food chain than simple iteration. As you have seen

in the computation of the maximum element in a linked list, random access is not

required for this task. Computing the maximum can be done simply by iterating

through the elements. Therefore, you can implement the max method to take any

object that implements the Collection interface.

public static <T extends Comparable> T max(Collection<T> c)
{
 if (c.isEmpty()) throw new NoSuchElementException();
 Iterator<T> iter = c.iterator();
 T largest = iter.next();
 while (iter.hasNext())
 {
 T next = iter.next();
 if (largest.compareTo(next) < 0)

largest = next;
 }
 return largest;
}

Now you can compute the maximum of a linked list, an array list, or an array,

with a single method.

That’s a powerful concept. In fact, the standard C++ library has dozens of useful

algorithms, each operating on a generic collection. The Java library is not quite

so rich, but it does contain the basics: sorting, binary search, and some utility

algorithms.

9.5.1 Sorting and Shuffling
Computer old-timers will sometimes reminisce about how they had to use

punched cards and to actually program, by hand, algorithms for sorting. Nowa-

days, of course, sorting algorithms are part of the standard library for most

programming languages, and the Java programming language is no exception.

Chapter 9 Collections518

ptg16518469

The sort method in the Collections class sorts a collection that implements the List
interface.

List<String> staff = new LinkedList<>();
fill collection

Collections.sort(staff);

This method assumes that the list elements implement the Comparable interface. If

you want to sort the list in some other way, you can use the sort method of the

List interface and pass a Comparator object. Here is how you can sort a list of

employees by salary:

staff.sort(Comparator.comparingDouble(Employee::getSalary));

If you want to sort a list in descending order, use the static convenience method

Comparator.reverseOrder(). It returns a comparator that returns b.compareTo(a). For example,

staff.sort(Comparator.reverseOrder())

sorts the elements in the list staff in reverse order, according to the ordering given

by the compareTo method of the element type. Similarly,

staff.sort(Comparator.comparingDouble(Employee::getSalary).reversed())

sorts by descending salary.

You may wonder how the sort method sorts a list. Typically, when you look at a

sorting algorithm in a book on algorithms, it is presented for arrays and uses

random element access. However, random access in a linked list is inefficient.

You can actually sort linked lists efficiently by using a form of merge sort. How-

ever, the implementation in the Java programming language does not do that. It

simply dumps all elements into an array, sorts the array, and then copies the

sorted sequence back into the list.

The sort algorithm used in the collections library is a bit slower than QuickSort,

the traditional choice for a general-purpose sorting algorithm. However, it has

one major advantage: It is stable, that is, it doesn’t switch equal elements. Why

do you care about the order of equal elements? Here is a common scenario. Sup-

pose you have an employee list that you already sorted by name. Now you sort

by salary. What happens to employees with equal salary? With a stable sort, the

ordering by name is preserved. In other words, the outcome is a list that is sorted

first by salary, then by name.

Collections need not implement all of their “optional” methods, so all methods

that receive collection parameters must describe when it is safe to pass a collection

5199.5 Algorithms

ptg16518469

to an algorithm. For example, you clearly cannot pass an unmodifiableList list to the

sort algorithm. What kind of list can you pass? According to the documentation,

the list must be modifiable but need not be resizable.

The terms are defined as follows:

• A list is modifiable if it supports the set method.

• A list is resizable if it supports the add and remove operations.

The Collections class has an algorithm shuffle that does the opposite of sorting—it

randomly permutes the order of the elements in a list. For example:

ArrayList<Card> cards = . . .;
Collections.shuffle(cards);

If you supply a list that does not implement the RandomAccess interface, the shuffle
method copies the elements into an array, shuffles the array, and copies the

shuffled elements back into the list.

The program in Listing 9.7 fills an array list with 49 Integer objects containing the

numbers 1 through 49. It then randomly shuffles the list and selects the first six

values from the shuffled list. Finally, it sorts the selected values and prints them.

Listing 9.7 shuffle/ShuffleTest.java

1 package shuffle;
 2

3 import java.util.*;
 4

5 /**
6 * This program demonstrates the random shuffle and sort algorithms.
7 * @version 1.11 2012-01-26
8 * @author Cay Horstmann
9 */
10 public class ShuffleTest
11 {
12 public static void main(String[] args)
13 {
14 List<Integer> numbers = new ArrayList<>();
15 for (int i = 1; i <= 49; i++)
16 numbers.add(i);
17 Collections.shuffle(numbers);
18 List<Integer> winningCombination = numbers.subList(0, 6);
19 Collections.sort(winningCombination);
20 System.out.println(winningCombination);
21 }
22 }

Chapter 9 Collections520

ptg16518469

java.util.Collections 1.2

• static <T extends Comparable<? super T>> void sort(List<T> elements)

sorts the elements in the list, using a stable sort algorithm. The algorithm is

guaranteed to run in O(n log n) time, where n is the length of the list.

• static void shuffle(List<?> elements)
• static void shuffle(List<?> elements, Random r)

randomly shuffles the elements in the list. This algorithm runs in O(n a(n)) time,

where n is the length of the list and a(n) is the average time to access an element.

java.util.List<E> 1.2

• default void sort(Comparator<? super T> comparator) 8

Sorts this list, using the given comparator.

java.util.Comparator<T> 1.2

• static <T extends Comparable<? super T>> Comparator<T> reverseOrder() 8

Yields a comparator that reverses the ordering provided by the Comparable interface.

• default Comparator<T> reversed() 8

Yields a comparator that reverses the ordering provided by this comparator.

9.5.2 Binary Search
To find an object in an array, you normally visit all elements until you find a

match. However, if the array is sorted, you can look at the middle element and

check whether it is larger than the element that you are trying to find. If so, keep

looking in the first half of the array; otherwise, look in the second half. That cuts

the problem in half, and you keep going in the same way. For example, if the array

has 1024 elements, you will locate the match (or confirm that there is none) after

10 steps, whereas a linear search would have taken you an average of 512 steps

if the element is present, and 1024 steps to confirm that it is not.

The binarySearch of the Collections class implements this algorithm. Note that the

collection must already be sorted, or the algorithm will return the wrong answer.

To find an element, supply the collection (which must implement the List inter-

face—more on that in the note below) and the element to be located. If the collec-

tion is not sorted by the compareTo element of the Comparable interface, supply a

comparator object as well.

5219.5 Algorithms

ptg16518469

i = Collections.binarySearch(c, element);
i = Collections.binarySearch(c, element, comparator);

A non-negative return value from the binarySearch method denotes the index of the

matching object. That is, c.get(i) is equal to element under the comparison order. If

the value is negative, then there is no matching element. However, you can use the

return value to compute the location where you should insert element into the col-

lection to keep it sorted. The insertion location is

insertionPoint = -i - 1;

It isn’t simply -i because then the value of 0 would be ambiguous. In other words,

the operation

if (i < 0)
 c.add(-i - 1, element);

adds the element in the correct place.

To be worthwhile, binary search requires random access. If you have to iterate

one by one through half of a linked list to find the middle element, you have lost

all advantage of the binary search. Therefore, the binarySearch algorithm reverts

to a linear search if you give it a linked list.

java.util.Collections 1.2

• static <T extends Comparable<? super T>> int binarySearch(List<T> elements, T key)
• static <T> int binarySearch(List<T> elements, T key, Comparator<? super T> c)

searches for a key in a sorted list, using a linear search if the element type imple-

ments the RandomAccess interface, and a binary search in all other cases. The methods

are guaranteed to run in O(a(n) log n) time, where n is the length of the list and a(n)

is the average time to access an element.The methods return either the index of the

key in the list, or a negative value i if the key is not present in the list. In that case,

the key should be inserted at index -i - 1 for the list to stay sorted.

9.5.3 Simple Algorithms
The Collections class contains several simple but useful algorithms. Among them

is the example from the beginning of this section—finding the maximum value

of a collection. Others include copying elements from one list to another, filling

a container with a constant value, and reversing a list.

Why supply such simple algorithms in the standard library? Surely most program-

mers could easily implement them with simple loops. We like the algorithms

because they make life easier for the programmer reading the code. When you

Chapter 9 Collections522

ptg16518469

read a loop that was implemented by someone else, you have to decipher the

original programmer’s intentions. For example, look at this loop:

 for (int i = 0; i < words.size(); i++)
 if (words.get(i).equals("C++")) words.set(i, "Java");

Now compare the loop with the call

Collections.replaceAll("C++", "Java");

When you see the method call, you know right away what the code does.

The API notes at the end of this section describe the simple algorithms in the

Collections class.

Java SE 8 adds default methods Collection.removeIf and List.replaceAllthat are just a bit

more complex. You provide a lambda expression to test or transform elements.

For example, here we remove all short words and change the remaining ones to

lowercase:

words.removeIf(w -> w.length() <= 3);
words.replaceAll(String::toLowerCase);

java.util.Collections 1.2

• static <T extends Comparable<? super T>> T min(Collection<T> elements)
• static <T extends Comparable<? super T>> T max(Collection<T> elements)
• static <T> min(Collection<T> elements, Comparator<? super T> c)
• static <T> max(Collection<T> elements, Comparator<? super T> c)

returns the smallest or largest element in the collection. (The parameter bounds are

simplified for clarity.)

• static <T> void copy(List<? super T> to, List<T> from)

copies all elements from a source list to the same positions in the target list. The

target list must be at least as long as the source list.

• static <T> void fill(List<? super T> l, T value)

sets all positions of a list to the same value.

• static <T> boolean addAll(Collection<? super T> c, T... values) 5.0

adds all values to the given collection and returns true if the collection changed as

a result.

• static <T> boolean replaceAll(List<T> l, T oldValue, T newValue) 1.4

replaces all elements equal to oldValue with newValue.

(Continues)

5239.5 Algorithms

ptg16518469

java.util.Collections 1.2 (Continued)

• static int indexOfSubList(List<?> l, List<?> s) 1.4
• static int lastIndexOfSubList(List<?> l, List<?> s) 1.4

returns the index of the first or last sublist of l equaling s, or -1 if no sublist of l
equals s. For example, if l is [s, t, a, r] and s is [t, a, r], then both methods return

the index 1.

• static void swap(List<?> l, int i, int j) 1.4

swaps the elements at the given offsets.

• static void reverse(List<?> l)

reverses the order of the elements in a list. For example, reversing the list [t, a, r]
yields the list [r, a, t]. This method runs in O(n) time, where n is the length of

the list.

• static void rotate(List<?> l, int d) 1.4

rotates the elements in the list, moving the entry with index i to position (i + d) %
l.size(). For example, rotating the list [t, a, r] by 2 yields the list [a, r, t]. This

method runs in O(n) time, where n is the length of the list.

• static int frequency(Collection<?> c, Object o) 5.0

returns the count of elements in c that equal the object o.

• boolean disjoint(Collection<?> c1, Collection<?> c2) 5.0

returns true if the collections have no elements in common.

java.util.Collection<T> 1.2

• default boolean removeIf(Predicate<? super E> filter) 8

Removes all matching elements.

java.util.List<E> 1.2

• default void replaceAll(UnaryOperator<E> op) 8

Applies the operation to all elements of this list.

9.5.4 Bulk Operations
There are several operations that copy or remove elements “in bulk.” The call

coll1.removeAll(coll2);

Chapter 9 Collections524

ptg16518469

removes all elements from coll1 that are present in coll2. Conversely,

coll1.retainAll(coll2);

removes all elements from coll1 that are not present in coll2. Here is a typical

application.

Suppose you want to find the intersection of two sets—the elements that two sets

have in common. First, make a new set to hold the result.

Set<String> result = new HashSet<>(a);

Here, we use the fact that every collection has a constructor whose parameter is

another collection that holds the initialization values.

Now, use the retainAll method:

result.retainAll(b);

It retains all elements that also happen to be in b. You have formed the intersection

without programming a loop.

You can carry this idea further and apply a bulk operation to a view. For example,

suppose you have a map that maps employee IDs to employee objects and you

have a set of the IDs of all employees that are to be terminated.

Map<String, Employee> staffMap = . . .;
Set<String> terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.

staffMap.keySet().removeAll(terminatedIDs);

Since the key set is a view into the map, the keys and associated employee names

are automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and subsets.

For example, suppose you want to add the first ten elements of a list to another

container. Form a sublist to pick out the first ten:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.

staff.subList(0, 10).clear();

9.5.5 Converting between Collections and Arrays
Large portions of the Java platform API were designed before the collections

framework was created. As a result, you will occasionally need to translate

between traditional arrays and the more modern collections.

5259.5 Algorithms

ptg16518469

If you have an array that you need to turn into a collection, the Arrays.asList wrapper

serves this purpose. For example:

String[] values = . . .;
HashSet<String> staff = new HashSet<>(Arrays.asList(values));

Obtaining an array from a collection is a bit trickier. Of course, you can use the

toArray method:

Object[] values = staff.toArray();

But the result is an array of objects. Even if you know that your collection contained

objects of a specific type, you cannot use a cast:

String[] values = (String[]) staff.toArray(); // Error!

The array returned by the toArray method was created as an Object[] array, and you

cannot change its type. Instead, use a variant of the toArray method and give it an

array of length 0 of the type that you’d like. The returned array is then created as

the same array type:

String[] values = staff.toArray(new String[0]);

If you like, you can construct the array to have the correct size:

staff.toArray(new String[staff.size()]);

In this case, no new array is created.

NOTE: You may wonder why you can’t simply pass a Class object (such as
String.class) to the toArray method. However, this method does “double duty”—both
to fill an existing array (provided it is long enough) and to create a new array.

9.5.6 Writing Your Own Algorithms
If you write your own algorithm (or, in fact, any method that has a collection as

a parameter), you should work with interfaces, not concrete implementations,

whenever possible. For example, suppose you want to fill a JMenu with a set of

menu items. Traditionally, such a method might have been implemented like this:

void fillMenu(JMenu menu, ArrayList<JMenuItem> items)
{
 for (JMenuItem item : items)
 menu.add(item);
}

Chapter 9 Collections526

ptg16518469

However, you now constrained the caller of your method—the caller must supply

the choices in an ArrayList. If the choices happen to be in another container, they

first need to be repackaged. It is much better to accept a more general collection.

You should ask yourself this: What is the most general collection interface that

can do the job? In this case, you just need to visit all elements, a capability of the

basic Collection interface. Here is how you can rewrite the fillMenu method to accept

collections of any kind:

void fillMenu(JMenu menu, Collection<JMenuItem> items)
{
 for (JMenuItem item : items)
 menu.add(item);
}

Now, anyone can call this method with an ArrayList or a LinkedList, or even with an

array wrapped with the Arrays.asList wrapper.

NOTE: If it is such a good idea to use collection interfaces as method parameters,
why doesn’t the Java library follow this rule more often? For example, the JComboBox
class has two constructors:

JComboBox(Object[] items)
JComboBox(Vector<?> items)

The reason is simply timing.The Swing library was created before the collections
library.

If you write a method that returns a collection, you may also want to return

an interface instead of a class because you can then change your mind and

reimplement the method later with a different collection.

For example, let’s write a method getAllItems that returns all items of a menu.

List<JMenuItem> getAllItems(JMenu menu)
{
 List<JMenuItem> items = new ArrayList<>()
 for (int i = 0; i < menu.getItemCount(); i++)
 items.add(menu.getItem(i));
 return items;
}

Later, you may decide that you don’t want to copy the items but simply provide

a view into them. You can achieve this by returning an anonymous subclass of

AbstractList.

5279.5 Algorithms

ptg16518469

List<JMenuItem> getAllItems(final JMenu menu)
{
 return new
 AbstractList<>()
 {

public JMenuItem get(int i)
{

return menu.getItem(i);
}
public int size()
{

return menu.getItemCount();
}

 };
}

Of course, this is an advanced technique. If you employ it, be careful to document

exactly which “optional” operations are supported. In this case, you must advise

the caller that the returned object is an unmodifiable list.

9.6 Legacy Collections
A number of “legacy” container classes have been present since the first release

of Java, before there was a collections framework.

They have been integrated into the collections framework—see Figure 9.12. We

briefly introduce them in the following sections.

9.6.1 The Hashtable Class
The classic Hashtable class serves the same purpose as the HashMap class and has essen-

tially the same interface. Just like methods of the Vector class, the Hashtable methods

are synchronized. If you do not require compatibility with legacy code, you should

use a HashMap instead. If you need concurrent access, use a ConcurrentHashMap—see

Chapter 14.

9.6.2 Enumerations
The legacy collections use the Enumeration interface for traversing sequences of ele-

ments. The Enumeration interface has two methods, hasMoreElements and nextElement. These

are entirely analogous to the hasNext and next methods of the Iterator interface.

Chapter 9 Collections528

ptg16518469

Figure 9.12 Legacy classes in the collections framework

For example, the elements method of the Hashtable class yields an object for

enumerating the values in the table:

Enumeration<Employee> e = staff.elements();
while (e.hasMoreElements())
{
 Employee e = e.nextElement();
 . . .
}

You will occasionally encounter a legacy method that expects an enumeration

parameter. The static method Collections.enumeration yields an enumeration object

that enumerates the elements in the collection. For example:

List<InputStream> streams = . . .;
SequenceInputStream in = new SequenceInputStream(Collections.enumeration(streams));
 // the SequenceInputStream constructor expects an enumeration

5299.6 Legacy Collections

ptg16518469

NOTE: In C++, it is quite common to use iterators as parameters. Fortunately,
on the Java platform, very few programmers use this idiom. It is much smarter
to pass around the collection than to pass an iterator. The collection object is
more useful. The recipients can always obtain the iterator from the collection
when they need to do so, plus they have all the collection methods at their dis-
posal. However, you will find enumerations in some legacy code because they
were the only available mechanism for generic collections until the collections
framework appeared in Java SE 1.2.

java.util.Enumeration<E> 1.0

• boolean hasMoreElements()

returns true if there are more elements yet to be inspected.

• E nextElement()

returns the next element to be inspected. Do not call this method if hasMoreElements()
returned false.

java.util.Hashtable<K, V> 1.0

• Enumeration<K> keys()

returns an enumeration object that traverses the keys of the hash table.

• Enumeration<V> elements()

returns an enumeration object that traverses the elements of the hash table.

java.util.Vector<E> 1.0

• Enumeration<E> elements()

returns an enumeration object that traverses the elements of the vector.

9.6.3 Property Maps
A property map is a map structure of a very special type. It has three particular

characteristics:

Chapter 9 Collections530

ptg16518469

• The keys and values are strings.

• The table can be saved to a file and loaded from a file.

• A secondary table for defaults is used.

The Java platform class that implements a property map is called Properties.

Property maps are commonly used in specifying configuration options for

programs—see Chapter 13.

java.util.Properties 1.0

• Properties()

creates an empty property map.

• Properties(Properties defaults)

creates an empty property map with a set of defaults.

• String getProperty(String key)

gets a property association: returns the string associated with the key, or the string

associated with the key in the default table if it wasn’t present in the map.

• String getProperty(String key, String defaultValue)

gets a property with a default value if the key is not found; returns the string

associated with the key, or the default string if it wasn’t present in the map.

• void load(InputStream in)

loads a property map from an InputStream.

• void store(OutputStream out, String commentString)

stores a property map to an OutputStream.

9.6.4 Stacks
Since version 1.0, the standard library had a Stack class with the familiar push and

pop methods. However, the Stack class extends the Vector class, which is not satisfac-

tory from a theoretical perspective—you can apply such un-stack-like operations

as insert and remove to insert and remove values anywhere, not just at the top of

the stack.

5319.6 Legacy Collections

ptg16518469

java.util.Stack<E> 1.0

• E push(E item)

pushes item onto the stack and returns item.

• E pop()

pops and returns the top item of the stack. Don’t call this method if the stack is

empty.

• E peek()

returns the top of the stack without popping it. Don’t call this method if the stack

is empty.

9.6.5 Bit Sets
The Java platform’s BitSet class stores a sequence of bits. (It is not a set in the

mathematical sense—bit vector or bit array would have been more appropriate

terms.) Use a bit set if you need to store a sequence of bits (for example, flags)

efficiently. A bit set packs the bits into bytes, so it is far more efficient to use a bit

set than an ArrayList of Boolean objects.

The BitSet class gives you a convenient interface for reading, setting, and resetting

individual bits. Using this interface avoids the masking and other bit-fiddling

operations that are necessary if you store bits in int or long variables.

For example, for a BitSet named bucketOfBits,

bucketOfBits.get(i)

returns true if the ith bit is on, and false otherwise. Similarly,

bucketOfBits.set(i)

turns the ith bit on. Finally,

bucketOfBits.clear(i)

turns the ith bit off.

C++ NOTE: The C++ bitset template has the same functionality as the Java
platform BitSet.

Chapter 9 Collections532

ptg16518469

java.util.BitSet 1.0

• BitSet(int initialCapacity)

constructs a bit set.

• int length()

returns the “logical length” of the bit set: 1 plus the index of the highest set bit.

• boolean get(int bit)

gets a bit.

• void set(int bit)

sets a bit.

• void clear(int bit)

clears a bit.

• void and(BitSet set)

logically ANDs this bit set with another.

• void or(BitSet set)

logically ORs this bit set with another.

• void xor(BitSet set)

logically XORs this bit set with another.

• void andNot(BitSet set)

clears all bits in this bit set that are set in the other bit set.

As an example of using bit sets, we want to show you an implementation of the

“sieve of Eratosthenes” algorithm for finding prime numbers. (A prime number

is a number like 2, 3, or 5 that is divisible only by itself and 1, and the sieve of

Eratosthenes was one of the first methods discovered to enumerate these funda-

mental building blocks.) This isn’t a terribly good algorithm for finding the primes,

but for some reason it has become a popular benchmark for compiler performance.

(It isn’t a good benchmark either, because it mainly tests bit operations.)

Oh well, we bow to tradition and present an implementation. This program counts

all prime numbers between 2 and 2,000,000. (There are 148,933 primes in this

interval, so you probably don’t want to print them all out.)

Without going into too many details of this program, the idea is to march through

a bit set with 2 million bits. First, we turn on all the bits. After that, we turn off

the bits that are multiples of numbers known to be prime. The positions of the

5339.6 Legacy Collections

ptg16518469

bits that remain after this process are themselves prime numbers. Listing 9.8 lists

this program in the Java programming language, and Listing 9.9 is the C++ code.

NOTE: Even though the sieve isn’t a good benchmark, we couldn’t resist timing
the two implementations of the algorithm. Here are the timing results on a
2.9-GHz dual core ThinkPad with 8 GB of RAM, running Ubuntu 14.04.

• C++ (g++ 4.6.3): 390 milliseconds

• Java (Java SE 8): 119 milliseconds

We have run this test for nine editions of Core Java, and in the last five editions,
Java easily beat C++. In all fairness, if one cranks up the optimization level in
the C++ compiler, it beats Java with a time of 33 milliseconds. Java could only
match that if the program ran long enough to trigger the Hotspot just-in-time
compiler.

Listing 9.8 sieve/Sieve.java

1 package sieve;
 2

3 import java.util.*;
 4

5 /**
6 * This program runs the Sieve of Erathostenes benchmark. It computes all primes up to 2,000,000.
7 * @version 1.21 2004-08-03
8 * @author Cay Horstmann
9 */
10 public class Sieve
11 {
12 public static void main(String[] s)
13 {
14 int n = 2000000;
15 long start = System.currentTimeMillis();
16 BitSet b = new BitSet(n + 1);
17 int count = 0;
18 int i;
19 for (i = 2; i <= n; i++)
20 b.set(i);
21 i = 2;
22 while (i * i <= n)
23 {
24 if (b.get(i))
25 {
26 count++;
27 int k = 2 * i;

Chapter 9 Collections534

ptg16518469

28 while (k <= n)
29 {
30 b.clear(k);
31 k += i;
32 }
33 }
34 i++;
35 }
36 while (i <= n)
37 {
38 if (b.get(i)) count++;
39 i++;
40 }
41 long end = System.currentTimeMillis();
42 System.out.println(count + " primes");
43 System.out.println((end - start) + " milliseconds");
44 }
45 }

Listing 9.9 sieve/sieve.cpp

1 /**
 2 @version 1.21 2004-08-03
 3 @author Cay Horstmann
4 */
 5

6 #include <bitset>
7 #include <iostream>
8 #include <ctime>
 9

10 using namespace std;
11

12 int main()
13 {
14 const int N = 2000000;
15 clock_t cstart = clock();
16

17 bitset<N + 1> b;
18 int count = 0;
19 int i;
20 for (i = 2; i <= N; i++)
21 b.set(i);
22 i = 2;
23 while (i * i <= N)
24 {
25 if (b.test(i))
26 {

(Continues)

5359.6 Legacy Collections

ptg16518469

Listing 9.9 (Continued)

27 count++;
28 int k = 2 * i;
29 while (k <= N)
30 {
31 b.reset(k);
32 k += i;
33 }
34 }
35 i++;
36 }
37 while (i <= N)
38 {
39 if (b.test(i))
40 count++;
41 i++;
42 }
43

44 clock_t cend = clock();
45 double millis = 1000.0 * (cend - cstart) / CLOCKS_PER_SEC;
46

47 cout << count << " primes\n" << millis << " milliseconds\n";
48

49 return 0;
50 }

This completes our tour through the Java collections framework. As you have

seen, the Java library offers a wide variety of collection classes for your program-

ming needs. In the next chapter, you will learn how to write graphical user

interfaces.

Chapter 9 Collections536

ptg16518469

10CHAPTER

Graphics Programming

In this chapter

• 10.1 Introducing Swing, page 538

• 10.2 Creating a Frame, page 543

• 10.3 Positioning a Frame, page 546

• 10.4 Displaying Information in a Component, page 554

• 10.5 Working with 2D Shapes, page 560

• 10.6 Using Color, page 569

• 10.7 Using Special Fonts for Text, page 573

• 10.8 Displaying Images, page 582

To this point, you have seen only how to write programs that take input from

the keyboard, fuss with it, and display the results on a console screen. This is not

what most users want now. Modern programs don’t work this way and neither

do web pages. This chapter starts you on the road to writing Java programs that

use a graphical user interface (GUI). In particular, you will learn how to write

programs that size and locate windows on the screen, display text with multiple

fonts in a window, display images, and so on. This gives you a useful, valuable

repertoire of skills that you will put to good use in subsequent chapters as you

write interesting programs.

The next two chapters show you how to process events, such as keystrokes and

mouse clicks, and how to add interface elements, such as menus and buttons, to

537

ptg16518469

your applications. When you finish these three chapters, you will know the

essentials of writing graphical applications. For more sophisticated graphics

programming techniques, we refer you to Volume II.

If, on the other hand, you intend to use Java for server-side programming only

and are not interested in writing GUI programming, you can safely skip these

chapters.

10.1 Introducing Swing
When Java 1.0 was introduced, it contained a class library, which Sun called the

Abstract Window Toolkit (AWT), for basic GUI programming. The basic AWT

library deals with user interface elements by delegating their creation and behavior

to the native GUI toolkit on each target platform (Windows, Solaris, Macintosh,

and so on). For example, if you used the original AWT to put a text box on a Java

window, an underlying “peer” text box actually handled the text input. The re-

sulting program could then, in theory, run on any of these platforms, with the

“look-and-feel” of the target platform—hence Sun’s trademarked slogan:

“Write Once, Run Anywhere.”

The peer-based approach worked well for simple applications, but it soon became

apparent that it was fiendishly difficult to write a high-quality portable graphics

library depending on native user interface elements. User interface elements such

as menus, scrollbars, and text fields can have subtle differences in behavior on

different platforms. It was hard, therefore, to give users a consistent and pre-

dictable experience with this approach. Moreover, some graphical environments

(such as X11/Motif) do not have as rich a collection of user interface components

as does Windows or the Macintosh. This, in turn, further limits a portable library

based on a “lowest common denominator” approach. As a result, GUI applications

built with the AWT simply did not look as nice as native Windows or Macintosh

applications, nor did they have the kind of functionality that users of those plat-

forms had come to expect. More depressingly, there were different bugs in the

AWT user interface library on the different platforms. Developers complained

that they had to test their applications on each platform—a practice derisively

called “write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet Foundation

Classes) that used an entirely different approach. User interface elements, such

as buttons, menus, and so on, were painted onto blank windows. The only

Chapter 10 Graphics Programming538

ptg16518469

functionality required from the underlying windowing system was a way to put

up windows and to paint on the window. Thus, Netscape’s IFC widgets looked

and behaved the same no matter which platform the program ran on. Sun worked

with Netscape to perfect this approach, creating a user interface library with the

code name “Swing.” Swing was available as an extension to Java 1.1 and became

a part of the standard library in Java SE 1.2.

Since, as Duke Ellington said, “It Don’t Mean a Thing If It Ain’t Got That Swing,”

Swing is now the official name for the non-peer-based GUI toolkit. Swing is part

of the Java Foundation Classes (JFC). The full JFC is vast and contains far more

than the Swing GUI toolkit; besides the Swing components, it also has an

accessibility API, a 2D API, and a drag-and-drop API.

NOTE: Swing is not a complete replacement for the AWT—it is built on top of
the AWT architecture. Swing simply gives you more capable user interface
components. Whenever you write a Swing program, you use the foundations of
the AWT—in particular, event handling. From now on, we say “Swing” when we
mean the “painted” user interface classes, and we say “AWT” when we mean
the underlying mechanisms of the windowing toolkit, such as event handling.

Of course, Swing-based user interface elements will be somewhat slower to appear

on the user’s screen than the peer-based components used by the AWT. In our

experience, on any reasonably modern machine the speed difference shouldn’t

be a problem. On the other hand, the reasons to choose Swing are overwhelming:

• Swing has a rich and convenient set of user interface elements.

• Swing has few dependencies on the underlying platform; it is therefore less

prone to platform-specific bugs.

• Swing gives a consistent user experience across platforms.

Still, the third plus is also a potential drawback: If the user interface elements

look the same on all platforms, they look different from the native controls, so

users will be less familiar with them.

Swing solves this problem in a very elegant way. Programmers writing Swing

programs can give the program a specific “look-and-feel.” For example,

Figures 10.1 and 10.2 show the same program running with the Windows and

the GTK look-and-feel.

53910.1 Introducing Swing

ptg16518469
Figure 10.1 The Windows look-and-feel of Swing

Figure 10.2 The GTK look-and-feel of Swing

Chapter 10 Graphics Programming540

ptg16518469

Furthermore, Sun developed a platform-independent look-and-feel that was

called “Metal” until the marketing folks renamed it into “Java look-and-feel.”

However, most programmers continue to use the term “Metal,” and we will do

the same in this book.

Some people criticized Metal for being stodgy, and the look was freshened up

for the Java SE 5.0 release (see Figure 10.3). Now the Metal look supports multiple

themes—minor variations in colors and fonts. The default theme is called “Ocean.”

Figure 10.3 The Ocean theme of the Metal look-and-feel

In Java SE 6, Sun improved the support for the native look-and-feel for Windows

and GTK. A Swing application will now pick up the color scheme customizations

and faithfully render the throbbing buttons and scrollbars that have become

fashionable.

A new look-and-feel, called Nimbus (Figure 10.4), is offered since Java SE 7, but

it is not available by default. Nimbus uses vector drawings, not bitmaps, and is

therefore independent of the screen resolution.

54110.1 Introducing Swing

ptg16518469Figure 10.4 The Nimbus look-and-feel

Some users prefer their Java applications to use the native look-and-feel of their

platforms, others like Metal or a third-party look-and-feel. As you will see in

Chapter 11, it is very easy to let your users choose their favorite look-and-feel.

NOTE: Although we won’t have space in this book to tell you how to do it, Java
programmers can extend an existing look-and-feel or even design a totally new
one. This is a tedious process that involves specifying how each Swing compo-
nent is painted. Some developers have done just that, especially when porting
Java to nontraditional platforms such as kiosk terminals or handheld devices.
See www.javootoo.com for a collection of interesting look-and-feel implementations.

Java SE 5.0 introduced a look-and-feel, called Synth, that makes this process
easier. In Synth, you can define a new look-and-feel by providing image files
and XML descriptors, without doing any programming.

TIP:The Napkin look-and-feel (http://napkinlaf.sourceforge.net) gives a hand-drawn
appearance to all user interface elements. This is very useful when you show
prototypes to your customers, sending a clear message that you’re not giving
them a finished product.

Chapter 10 Graphics Programming542

http://www.javootoo.com
http://napkinlaf.sourceforge.net

ptg16518469

NOTE: Most Java user interface programming is nowadays done in Swing, with
one notable exception. The Eclipse integrated development environment uses
a graphics toolkit called SWT that is similar to the AWT, mapping to the native
components on various platforms.You can find articles describing SWT at
www.eclipse.org/articles.

Oracle is developing an alternate technology, called JavaFX, as a replacement
for Swing. We do not discuss JavaFX in this book. See http://docs.oracle.com/
javase/8/javafx/get-started-tutorial/jfx-overview.htm for more information.

If you have programmed Microsoft Windows applications with Visual Basic or

C#, you know about the ease of use that comes with the graphical layout tools

and resource editors these products provide. These tools let you design the visual

appearance of your application, and then they generate much (often all) of the

GUI code for you. GUI builders are available for Java programming too, but we

feel that in order to use these tools effectively, you should know how to build a

user interface manually. The remainder of this chapter shows you the basics of

displaying windows and painting their contents.

10.2 Creating a Frame
A top-level window (that is, a window that is not contained inside another win-

dow) is called a frame in Java. The AWT library has a class, called Frame, for this

top level. The Swing version of this class is called JFrame and extends the Frame class.

The JFrame is one of the few Swing components that is not painted on a canvas.

Thus, the decorations (buttons, title bar, icons, and so on) are drawn by the user’s

windowing system, not by Swing.

CAUTION: Most Swing component classes start with a “J”: JButton, JFrame, and
so on.There are classes such as Button and Frame, but they are AWT components.
If you accidentally omit a “J”, your program may still compile and run, but the
mixture of Swing and AWT components can lead to visual and behavioral
inconsistencies.

In this section, we will go over the most common methods for working with a

Swing JFrame. Listing 10.1 lists a simple program that displays an empty frame on

the screen, as illustrated in Figure 10.5.

54310.2 Creating a Frame

http://www.eclipse.org/articles
http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm
http://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm

ptg16518469

Figure 10.5 The simplest visible frame

Listing 10.1 simpleframe/SimpleFrameTest.java

1 package simpleFrame;
 2

3 import java.awt.*;
4 import javax.swing.*;
 5

6 /**
7 * @version 1.33 2015-05-12
8 * @author Cay Horstmann
9 */
10 public class SimpleFrameTest
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 SimpleFrame frame = new SimpleFrame();
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);
19 });
20 }
21 }
22

23 class SimpleFrame extends JFrame
24 {
25 private static final int DEFAULT_WIDTH = 300;
26 private static final int DEFAULT_HEIGHT = 200;
27

28 public SimpleFrame()
29 {
30 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
31 }
32 }

Chapter 10 Graphics Programming544

ptg16518469

Let’s work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package name javax

indicates a Java extension package, not a core package. For historical reasons,

Swing is considered an extension. However, it is present in every Java SE

implementation since version 1.2.

By default, a frame has a rather useless size of 0 × 0 pixels. We define a subclass

SimpleFrame whose constructor sets the size to 300 × 200 pixels. This is the only

difference between a SimpleFrame and a JFrame.

In the main method of the SimpleFrameTest class, we construct a SimpleFrame object and

make it visible.

There are two technical issues that we need to address in every Swing program.

First, all Swing components must be configured from the event dispatch thread, the

thread of control that passes events such as mouse clicks and keystrokes to

the user interface components. The following code fragment is used to execute

statements in the event dispatch thread:

EventQueue.invokeLater(() ->
 {

statements

 });

We discuss the details in Chapter 14. For now, you should simply consider it a

magic incantation that is used to start a Swing program.

NOTE: You will see many Swing programs that do not initialize the user interface
in the event dispatch thread. It used to be perfectly acceptable to carry out the
initialization in the main thread. Sadly, as Swing components got more complex,
the developers of the JDK were no longer able to guarantee the safety of that
approach. The probability of an error is extremely low, but you would not want
to be one of the unlucky few who encounter an intermittent problem. It is
better to do the right thing, even if the code looks rather mysterious.

Next, we define what should happen when the user closes the application’s frame.

For this particular program, we want the program to exit. To select this behavior,

we use the statement

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to

exit just because the user closes one of the frames. By default, a frame is hidden

when the user closes it, but the program does not terminate. (It might have been

54510.2 Creating a Frame

ptg16518469

nice if the program terminated once the last frame becomes invisible, but that is

not how Swing works.)

Simply constructing a frame does not automatically display it. Frames start their

life invisible. That gives the programmer the chance to add components into the

frame before showing it for the first time. To show the frame, the main method

calls the setVisible method of the frame.

NOTE: Before Java SE 5.0, it was possible to use the show method that the JFrame
class inherits from the superclass Window. The Window class has a superclass
Component that also has a show method. The Component.show method was deprecated
in Java SE 1.2.You are supposed to call setVisible(true) instead if you want to
show a component. However, until Java SE 1.4, the Window.show method was not
deprecated. In fact, it was quite useful, making the window visible and bringing
it to the front. Sadly, that benefit was lost on the deprecation police, and Java
SE 5.0 deprecated the show method for windows as well.

After scheduling the initialization statements, the main method exits. Note that

exiting main does not terminate the program—just the main thread. The event

dispatch thread keeps the program alive until it is terminated, either by closing

the frame or by calling the System.exit method.

The running program is shown in Figure 10.5—it is a truly boring top-level win-

dow. As you can see in the figure, the title bar and the surrounding decorations,

such as resize corners, are drawn by the operating system and not the Swing li-

brary. If you run the same program in Windows, GTK, and the Mac, the frame

decorations will be different. The Swing library draws everything inside the

frame. In this program, it just fills the frame with a default background color.

NOTE: You can turn off all frame decorations by calling frame.setUndecorated(true).

10.3 Positioning a Frame
The JFrame class itself has only a few methods for changing how frames look. Of

course, through the magic of inheritance, most of the methods for working with

the size and position of a frame come from the various superclasses of JFrame. Here

are some of the most important methods:

• The setLocation and setBounds methods for setting the position of the frame

Chapter 10 Graphics Programming546

ptg16518469

• The setIconImage method, which tells the windowing system which icon to display

in the title bar, task switcher window, and so on

• The setTitle method for changing the text in the title bar

• The setResizable method, which takes a boolean to determine if a frame will be

resizeable by the user

Figure 10.6 illustrates the inheritance hierarchy for the JFrame class.

Figure 10.6 Inheritance hierarchy for the frame and component classes in AWT and Swing

54710.3 Positioning a Frame

ptg16518469

TIP: The API notes for this section list what we think are the most important
methods for giving frames the proper look-and-feel. Some of these methods are
defined in the JFrame class. Others come from the various superclasses of JFrame.
At some point, you may need to search the API docs to see if there are methods
for some special purpose. Unfortunately, that is a bit tedious to do with inherited
methods. For example, the toFront method is applicable to objects of type JFrame,
but since it’s simply inherited from the Window class, the JFrame documentation
doesn’t explain it. If you feel that there should be a method to do something and
it isn’t mentioned in the documentation for the class you are working with, try
looking at the API documentation for the methods of the superclasses of that
class. The top of each API page has hyperlinks to the superclasses, and inher-
ited methods are listed below the method summary for the new and overridden
methods.

As the API notes indicate, the Component class (which is the ancestor of all GUI objects)

and the Window class (which is the superclass of the Frame class) are where you need

to look for the methods to resize and reshape frames. For example, the setLocation
method in the Component class is one way to reposition a component. If you make

the call

setLocation(x, y)

the top left corner is located x pixels across and y pixels down, where (0, 0) is the

top left corner of the screen. Similarly, the setBounds method in Component lets you resize

and relocate a component (in particular, a JFrame) in one step, as

setBounds(x, y, width, height)

Alternatively, you can give the windowing system control over window

placement. If you call

setLocationByPlatform(true);

before displaying the window, the windowing system picks the location (but not

the size), typically with a slight offset from the last window.

NOTE: For a frame, the coordinates of the setLocation and setBounds are taken
relative to the whole screen.As you will see in Chapter 12, for other components
inside a container, the measurements are taken relative to the container.

Chapter 10 Graphics Programming548

ptg16518469

10.3.1 Frame Properties
Many methods of component classes come in getter/setter pairs, such as the

following methods of the Frame class:

public String getTitle()
public void setTitle(String title)

Such a getter/setter pair is called a property. A property has a name and a type.

The name is obtained by changing the first letter after the get or set to lowercase.

For example, the Frame class has a property with name title and type String.

Conceptually, title is a property of the frame. When we set the property, we expect

the title to change on the user’s screen. When we get the property, we expect to

get back the value that we have set.

We do not know (or care) how the Frame class implements this property. Perhaps

it simply uses its peer frame to store the title. Perhaps it has an instance field

private String title; // not required for property

If the class does have a matching instance field, we don’t know (or care) how the

getter and setter methods are implemented. Perhaps they just read and write

the instance field. Perhaps they do more, such as notifying the windowing system

whenever the title changes.

There is one exception to the get/set convention: For properties of type boolean,

the getter starts with is. For example, the following two methods define the

locationByPlatform property:

public boolean isLocationByPlatform()
public void setLocationByPlatform(boolean b)

10.3.2 Determining a Good Frame Size
Remember: If you don’t explicitly size a frame, all frames will default to 0 by 0

pixels. To keep our example programs simple, we resize the frames to a size that

we hope works acceptably on most displays. However, in a professional applica-

tion, you should check the resolution of the user’s screen and write code that re-

sizes the frames accordingly: A window that looks nice on the screen of a low-end

laptop will look like a postage stamp on a high-resolution screen.

To find out the screen size, use the following steps. Call the static getDefaultToolkit
method of the Toolkit class to get the Toolkit object. (The Toolkit class is a dumping

ground for a variety of methods interfacing with the native windowing system.)

54910.3 Positioning a Frame

ptg16518469

Then call the getScreenSize method, which returns the screen size as a Dimension object.

A Dimension object simultaneously stores a width and a height, in public (!) instance

variables width and height. Here is the code:

Toolkit kit = Toolkit.getDefaultToolkit();
Dimension screenSize = kit.getScreenSize();
int screenWidth = screenSize.width;
int screenHeight = screenSize.height;

We use 50% of these values for the frame size, and tell the windowing system to

position the frame:

setSize(screenWidth / 2, screenHeight / 2);
setLocationByPlatform(true);

We also supply an icon. The ImageIcon class is convenient for loading images. Here

is how you use it:

Image img = new ImageIcon("icon.gif").getImage();
setIconImage(img);

Depending on your operating system, you can see the icon in various places. For

example, in Windows, the icon is displayed in the top left corner of the window,

and you can see it in the list of active tasks when you press Alt+Tab.

Listing 10.2 is the complete program. When you run the program, pay attention

to the “Core Java” icon.

Here are a few additional tips for dealing with frames:

• If your frame contains only standard components such as buttons and text

fields, you can simply call the pack method to set the frame size. The frame

will be set to the smallest size that contains all components. You can maximize

a frame by calling

frame.setExtendedState(Frame.MAXIMIZED_BOTH);

• It is also a good idea to remember how the user positions and sizes the frame

of your application, and restore those bounds when you start the application

again. You will see in Chapter 13 how to use the Preferences API for this

purpose.

• If you write an application that takes advantage of multiple display screens,

use the GraphicsEnvironment and GraphicsDevice classes to find the dimensions of the

display screens.

• The GraphicsDevice class also lets you execute your application in full-screen

mode.

Chapter 10 Graphics Programming550

ptg16518469

Listing 10.2 sizedFrame/SizedFrameTest.java

1 package sizedFrame;
 2

3 import java.awt.*;
4 import javax.swing.*;
 5

6 /**
7 * @version 1.33 2007-05-12
8 * @author Cay Horstmann
9 */
10 public class SizedFrameTest
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 JFrame frame = new SizedFrame();
17 frame.setTitle("SizedFrame");
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.setVisible(true);
20 });
21 }
22 }
23

24 class SizedFrame extends JFrame
25 {
26 public SizedFrame()
27 {
28 // get screen dimensions
29

30 Toolkit kit = Toolkit.getDefaultToolkit();
31 Dimension screenSize = kit.getScreenSize();
32 int screenHeight = screenSize.height;
33 int screenWidth = screenSize.width;
34

35 // set frame width, height and let platform pick screen location
36

37 setSize(screenWidth / 2, screenHeight / 2);
38 setLocationByPlatform(true);
39

40 // set frame icon
41

42 Image img = new ImageIcon("icon.gif").getImage();
43 setIconImage(img);
44 }
45 }

55110.3 Positioning a Frame

ptg16518469

java.awt.Component 1.0

• boolean isVisible()
• void setVisible(boolean b)

gets or sets the visible property. Components are initially visible, with the exception

of top-level components such as JFrame.

• void setSize(int width, int height) 1.1

resizes the component to the specified width and height.

• void setLocation(int x, int y) 1.1

moves the component to a new location.The x and y coordinates use the coordinates

of the container if the component is not a top-level component, or the coordinates

of the screen if the component is top level (for example, a JFrame).

• void setBounds(int x, int y, int width, int height) 1.1

moves and resizes this component.

• Dimension getSize() 1.1
• void setSize(Dimension d) 1.1

gets or sets the size property of this component.

java.awt.Window 1.0

• void toFront()

shows this window on top of any other windows.

• void toBack()

moves this window to the back of the stack of windows on the desktop and

rearranges all other visible windows accordingly.

• boolean isLocationByPlatform() 5.0
• void setLocationByPlatform(boolean b) 5.0

gets or sets the locationByPlatform property. When the property is set before this

window is displayed, the platform picks a suitable location.

Chapter 10 Graphics Programming552

ptg16518469

java.awt.Frame 1.0

• boolean isResizable()
• void setResizable(boolean b)

gets or sets the resizable property. When the property is set, the user can resize the

frame.

• String getTitle()
• void setTitle(String s)

gets or sets the title property that determines the text in the title bar for the frame.

• Image getIconImage()
• void setIconImage(Image image)

gets or sets the iconImage property that determines the icon for the frame. The win-

dowing system may display the icon as part of the frame decoration or in other

locations.

• boolean isUndecorated() 1.4
• void setUndecorated(boolean b) 1.4

gets or sets the undecorated property.When the property is set, the frame is displayed

without decorations such as a title bar or close button. This method must be called

before the frame is displayed.

• int getExtendedState() 1.4
• void setExtendedState(int state) 1.4

gets or sets the extended window state. The state is one of

Frame.NORMAL
Frame.ICONIFIED
Frame.MAXIMIZED_HORIZ
Frame.MAXIMIZED_VERT
Frame.MAXIMIZED_BOTH

java.awt.Toolkit 1.0

• static Toolkit getDefaultToolkit()

returns the default toolkit.

• Dimension getScreenSize()

gets the size of the user’s screen.

55310.3 Positioning a Frame

ptg16518469

javax.swing.ImageIcon 1.2

• ImageIcon(String filename)
constructs an icon whose image is stored in a file.

• Image getImage()
gets the image of this icon.

10.4 Displaying Information in a Component
In this section, we will show you how to display information inside a frame. For

example, instead of displaying “Not a Hello World program” in text mode in a

console window as we did in Chapter 3, we display the message in a frame, as

shown in Figure 10.7.

Figure 10.7 A frame that displays information

You could draw the message string directly onto a frame, but that is not considered

good programming practice. In Java, frames are really designed to be containers

for components, such as a menu bar and other user interface elements. You

normally draw on another component which you add to the frame.

The structure of a JFrame is surprisingly complex. Look at Figure 10.8 which shows

the makeup of a JFrame. As you can see, four panes are layered in a JFrame. The root

pane, layered pane, and glass pane are of no interest to us; they are required to

organize the menu bar and content pane and to implement the look-and-feel. The

part that most concerns Swing programmers is the content pane. When designing

a frame, you add components into the content pane, using code such as the

following:

Chapter 10 Graphics Programming554

ptg16518469

Container contentPane = frame.getContentPane();
Component c = . . .;
contentPane.add(c);

Figure 10.8 Internal structure of a JFrame

Up to Java SE 1.4, the add method of the JFrame class was defined to throw an excep-

tion with the message “Do not use JFrame.add(). Use JFrame.getContentPane().add() instead.”

Nowadays, the JFrame.add method has given up trying to reeducate programmers,

and simply calls add on the content pane.

Thus, you can simply use the call

frame.add(c);

In our case, we want to add a single component to the frame onto which we will

draw our message. To draw on a component, you define a class that extends

JComponent and override the paintComponent method in that class.

The paintComponent method takes one parameter of type Graphics. A Graphics object re-

members a collection of settings for drawing images and text, such as the font

55510.4 Displaying Information in a Component

ptg16518469

you set or the current color. All drawing in Java must go through a Graphics object.

It has methods that draw patterns, images, and text.

NOTE: The Graphics parameter is similar to a device context in Windows or a
graphics context in X11 programming.

Here’s how to make a component onto which you can draw:

class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {

code for drawing

 }
}

Each time a window needs to be redrawn, no matter what the reason, the event

handler notifies the component. This causes the paintComponent methods of all

components to be executed.

Never call the paintComponent method yourself. It is called automatically whenever

a part of your application needs to be redrawn, and you should not interfere with

this automatic process.

What sorts of actions trigger this automatic response? For example, painting occurs

when the user increases the size of the window, or minimizes and then restores

the window. If the user popped up another window that covered an existing

window and then made the overlaid window disappear, the window that was

covered is now corrupted and will need to be repainted. (The graphics system

does not save the pixels underneath.) And, of course, when the window is dis-

played for the first time, it needs to process the code that specifies how and where

it should draw the initial elements.

TIP: If you need to force repainting of the screen, call the repaint method instead
of paintComponent. The repaint method will cause paintComponent to be called for all
components, with a properly configured Graphics object.

As you saw in the code fragment above, the paintComponent method takes a single

parameter of type Graphics. Measurement on a Graphics object for screen display is

done in pixels. The (0, 0) coordinate denotes the top left corner of the component

on whose surface you are drawing.

Chapter 10 Graphics Programming556

ptg16518469

Displaying text is considered a special kind of drawing. The Graphics class has a

drawString method that has the following syntax:

g.drawString(text, x, y)

In our case, we want to draw the string "Not a Hello World Program" in our original

window, roughly one-quarter of the way across and halfway down. Although

we don’t yet know how to measure the size of the string, we’ll start the string at

coordinates (75, 100). This means the first character in the string will start at a

position 75 pixels to the right and 100 pixels down. (Actually, it is the baseline

for the text that is 100 pixels down—see p. 576 for more on how text is measured.)

Thus, our paintComponent method looks like this:

public class NotHelloWorldComponent extends JComponent
{
 public static final int MESSAGE_X = 75;
 public static final int MESSAGE_Y = 100;

 public void paintComponent(Graphics g)
{
 g.drawString("Not a Hello World program", MESSAGE_X, MESSAGE_Y);

 }
 . . .
}

Finally, a component should tell its users how big it would like to be. Override

the getPreferredSize method and return an object of the Dimension class with the

preferred width and height:

public class NotHelloWorldComponent extends JComponent
{
 private static final int DEFAULT_WIDTH = 300;
 private static final int DEFAULT_HEIGHT = 200;
 . . .
 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
}

When you fill a frame with one or more components, and you simply want to

use their preferred size, call the pack method instead of the setSize method:

class NotHelloWorldFrame extends JFrame
{
 public NotHelloWorldFrame()
 {
 add(new NotHelloWorldComponent());
 pack();
 }
}

Listing 10.3 shows the complete code.

55710.4 Displaying Information in a Component

ptg16518469

NOTE: Instead of extending JComponent, some programmers prefer to extend the
JPanel class.A JPanel is intended to be a container that can contain other compo-
nents, but it is also possible to paint on it. There is just one difference. A panel
is opaque, which means it is responsible for painting all pixels within its bounds.
The easiest way to achieve that is to paint the panel with the background color,
by calling super.paintComponent in the paintComponent method of each panel subclass:

class NotHelloWorldPanel extends JPanel
{
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);

code for drawing

 }
}

Listing 10.3 notHelloWorld/NotHelloWorld.java

1 package notHelloWorld;
 2

3 import javax.swing.*;
4 import java.awt.*;
 5

6 /**
7 * @version 1.33 2015-05-12
8 * @author Cay Horstmann
9 */
10 public class NotHelloWorld
11 {
12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 JFrame frame = new NotHelloWorldFrame();
17 frame.setTitle("NotHelloWorld");
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.setVisible(true);
20 });
21 }
22 }
23

24 /**
25 * A frame that contains a message panel
26 */

Chapter 10 Graphics Programming558

ptg16518469

27 class NotHelloWorldFrame extends JFrame
28 {
29 public NotHelloWorldFrame()
30 {
31 add(new NotHelloWorldComponent());
32 pack();
33 }
34 }
35

36 /**
37 * A component that displays a message.
38 */
39 class NotHelloWorldComponent extends JComponent
40 {
41 public static final int MESSAGE_X = 75;
42 public static final int MESSAGE_Y = 100;
43

44 private static final int DEFAULT_WIDTH = 300;
45 private static final int DEFAULT_HEIGHT = 200;
46

47 public void paintComponent(Graphics g)
48 {
49 g.drawString("Not a Hello, World program", MESSAGE_X, MESSAGE_Y);
50 }
51

52 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
53 }

javax.swing.JFrame 1.2

• Container getContentPane()

returns the content pane object for this JFrame.

• Component add(Component c)

adds and returns the given component to the content pane of this frame. (Before

Java SE 5.0, this method threw an exception.)

java.awt.Component 1.0

• void repaint()

causes a repaint of the component “as soon as possible.”

• Dimension getPreferredSize()
is the method to override to return the preferred size of this component.

55910.4 Displaying Information in a Component

ptg16518469

javax.swing.JComponent 1.2

• void paintComponent(Graphics g)

is the method to override to describe how your component needs to be painted.

java.awt.Window 1.0

• void pack()
resizes this window, taking into account the preferred sizes of its components.

10.5 Working with 2D Shapes
Starting with Java 1.0, the Graphics class has methods to draw lines, rectangles, el-

lipses, and so on. But those drawing operations are very limited. For example,

you cannot vary the line thickness and cannot rotate the shapes.

Java SE 1.2 introduced the Java 2D library, which implements a powerful set of

graphical operations. In this chapter, we only look at the basics of the Java 2D li-

brary—see Chapter 7 in Volume II for more information on the advanced features.

To draw shapes in the Java 2D library, you need to obtain an object of the Graphics2D
class. This class is a subclass of the Graphics class. Ever since Java SE 2, methods

such as paintComponent automatically receive an object of the Graphics2D class. Simply

use a cast, as follows:

public void paintComponent(Graphics g)
{
 Graphics2D g2 = (Graphics2D) g;
 . . .
}

The Java 2D library organizes geometric shapes in an object-oriented fashion. In

particular, there are classes to represent lines, rectangles, and ellipses:

Line2D
Rectangle2D
Ellipse2D

These classes all implement the Shape interface.

NOTE: The Java 2D library supports more complex shapes—in particular, arcs,
quadratic and cubic curves, and general paths. See Chapter 7 of Volume II for
more information.

Chapter 10 Graphics Programming560

ptg16518469

To draw a shape, you first create an object of a class that implements the Shape
interface and then call the draw method of the Graphics2D class. For example:

Rectangle2D rect = . . .;
g2.draw(rect);

NOTE: Before the Java 2D library appeared, programmers used methods of the
Graphics class, such as drawRectangle, to draw shapes. Superficially, the old-style
method calls look a bit simpler. However, by using the Java 2D library, you keep
your options open—you can later enhance your drawings with some of the many
tools that the Java 2D library supplies.

Using the Java 2D shape classes introduces some complexity. Unlike the 1.0 draw

methods, which used integer pixel coordinates, Java 2D shapes use floating-point

coordinates. In many cases, that is a great convenience because it allows you to

specify your shapes in coordinates that are meaningful to you (such as millimeters

or inches) and then translate them to pixels. The Java 2D library uses single-

precision float quantities for many of its internal floating-point calculations. Single

precision is sufficient—after all, the ultimate purpose of the geometric computa-

tions is to set pixels on the screen or printer. As long as any roundoff errors stay

within one pixel, the visual outcome is not affected.

However, manipulating float values is sometimes inconvenient for the programmer

because Java is adamant about requiring casts when converting double values into

float values. For example, consider the following statement:

float f = 1.2; // Error

This statement does not compile because the constant 1.2 has type double, and the

compiler is nervous about loss of precision. The remedy is to add an F suffix to

the floating-point constant:

float f = 1.2F; // Ok

Now consider this statement:

Rectangle2D r = . . .
float f = r.getWidth(); // Error

This statement does not compile either, for the same reason. The getWidth method

returns a double. This time, the remedy is to provide a cast:

float f = (float) r.getWidth(); // OK

These suffixes and casts are a bit of a pain, so the designers of the 2D library de-

cided to supply two versions of each shape class: one with float coordinates for

56110.5 Working with 2D Shapes

ptg16518469

frugal programmers, and one with double coordinates for the lazy ones. (In this

book, we fall into the second camp and use double coordinates whenever we can.)

The library designers chose a curious, and initially confusing, method for pack-

aging these choices. Consider the Rectangle2D class. This is an abstract class with

two concrete subclasses, which are also static inner classes:

Rectangle2D.Float
Rectangle2D.Double

Figure 10.9 shows the inheritance diagram.

Figure 10.9 2D rectangle classes

It is best to ignore the fact that the two concrete classes are static inner classes—that

is just a gimmick to avoid names such as FloatRectangle2D and DoubleRectangle2D. (For

more information on static inner classes, see Chapter 6.)

When you construct a Rectangle2D.Float object, you supply the coordinates as float
numbers. For a Rectangle2D.Double object, you supply them as double numbers.

Rectangle2D.Float floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);
Rectangle2D.Double doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);

Actually, since both Rectangle2D.Float and Rectangle2D.Double extend the common Rectangle2D
class and the methods in the subclasses simply override those in the Rectangle2D
superclass, there is no benefit in remembering the exact shape type. You can

simply use Rectangle2D variables to hold the rectangle references.

Rectangle2D floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);
Rectangle2D doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);

Chapter 10 Graphics Programming562

ptg16518469

That is, you only need to use the pesky inner classes when you construct the

shape objects.

The construction parameters denote the top left corner, width, and height of the

rectangle.

NOTE: Actually, the Rectangle2D.Float class has one additional method that is not
inherited from Rectangle2D—namely, setRect(float x, float y, float h, float w).You
lose that method if you store the Rectangle2D.Float reference in a Rectangle2D variable.
But it is not a big loss—the Rectangle2D class has a setRect method with double
parameters.

The Rectangle2D methods use double parameters and return values. For example, the

getWidth method returns a double value, even if the width is stored as a float in a

Rectangle2D.Float object.

TIP: Simply use the Double shape classes to avoid dealing with float values alto-
gether. However, if you are constructing thousands of shape objects, consider
using the Float classes to conserve memory.

What we just discussed for the Rectangle2D classes holds for the other shape classes

as well. Furthermore, there is a Point2D class with subclasses Point2D.Float and

Point2D.Double. Here is how to make a point object:

Point2D p = new Point2D.Double(10, 20);

TIP: The Point2D class is very useful—it is more object oriented to work with
Point2D objects than with separate x and y values. Many constructors and methods
accept Point2D parameters. We suggest that you use Point2D objects when you
can—they usually make geometric computations easier to understand.

The classes Rectangle2D and Ellipse2D both inherit from the common superclass

RectangularShape. Admittedly, ellipses are not rectangular, but they have a bounding

rectangle (see Figure 10.10).

The RectangularShape class defines over 20 methods that are common to these shapes,

among them such useful methods as getWidth, getHeight, getCenterX, and getCenterY (but,

sadly, at the time of this writing, not a getCenter method that would return the

center as a Point2D object).

56310.5 Working with 2D Shapes

ptg16518469

Figure 10.10 The bounding rectangle of an ellipse

Finally, a couple of legacy classes from Java 1.0 have been fitted into the shape

class hierarchy. The Rectangle and Point classes, which store a rectangle and a point

with integer coordinates, extend the Rectangle2D and Point2D classes.

Figure 10.11 shows the relationships between the shape classes. However, the

Double and Float subclasses are omitted. Legacy classes are marked with a gray fill.

Rectangle2D and Ellipse2D objects are simple to construct. You need to specify

• The x and y coordinates of the top left corner; and

• The width and height.

For ellipses, these refer to the bounding rectangle. For example,

Ellipse2D e = new Ellipse2D.Double(150, 200, 100, 50);

constructs an ellipse that is bounded by a rectangle with the top left corner at

(150, 200), width of 100, and height of 50.

However, sometimes you don’t have the top left corner readily available. It is

quite common to have two diagonal corner points of a rectangle, but perhaps

they aren’t the top left and bottom right corners. You can’t simply construct a

rectangle as

Rectangle2D rect = new Rectangle2D.Double(px, py, qx - px, qy - py); // Error

If p isn’t the top left corner, one or both of the coordinate differences will be neg-

ative and the rectangle will come out empty. In that case, first create a blank

rectangle and use the setFrameFromDiagonal method, as follows:

Rectangle2D rect = new Rectangle2D.Double();
rect.setFrameFromDiagonal(px, py, qx, qy);

Or, even better, if you have the corner points as Point2D objects p and q, use

Chapter 10 Graphics Programming564

ptg16518469

Figure 10.11 Relationships between the shape classes

rect.setFrameFromDiagonal(p, q);

When constructing an ellipse, you usually know the center, width, and height,

but not the corner points of the bounding rectangle (which don’t even lie on the

ellipse). The setFrameFromCenter method uses the center point, but it still requires one

of the four corner points. Thus, you will usually end up constructing an ellipse

as follows:

Ellipse2D ellipse = new Ellipse2D.Double(centerX - width / 2, centerY - height / 2, width, height);

To construct a line, you supply the start and end points, either as Point2D objects

or as pairs of numbers:

Line2D line = new Line2D.Double(start, end);

or

Line2D line = new Line2D.Double(startX, startY, endX, endY);

56510.5 Working with 2D Shapes

ptg16518469

The program in Listing 10.4 draws a rectangle, the ellipse that is enclosed in the

rectangle, a diagonal of the rectangle, and a circle that has the same center as

the rectangle. Figure 10.12 shows the result.

Figure 10.12 Drawing geometric shapes

Listing 10.4 draw/DrawTest.java

1 package draw;
 2

3 import java.awt.*;
4 import java.awt.geom.*;
5 import javax.swing.*;
 6

7 /**
8 * @version 1.33 2007-05-12
9 * @author Cay Horstmann
10 */
11 public class DrawTest
12 {
13 public static void main(String[] args)
14 {
15 EventQueue.invokeLater(() ->
16 {
17 JFrame frame = new DrawFrame();
18 frame.setTitle("DrawTest");

Chapter 10 Graphics Programming566

ptg16518469

19 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20 frame.setVisible(true);
21 });
22 }
23 }
24

25 /**
26 * A frame that contains a panel with drawings
27 */
28 class DrawFrame extends JFrame
29 {
30 public DrawFrame()
31 {
32 add(new DrawComponent());
33 pack();
34 }
35 }
36

37 /**
38 * A component that displays rectangles and ellipses.
39 */
40 class DrawComponent extends JComponent
41 {
42 private static final int DEFAULT_WIDTH = 400;
43 private static final int DEFAULT_HEIGHT = 400;
44

45 public void paintComponent(Graphics g)
46 {
47 Graphics2D g2 = (Graphics2D) g;
48

49 // draw a rectangle
50

51 double leftX = 100;
52 double topY = 100;
53 double width = 200;
54 double height = 150;
55

56 Rectangle2D rect = new Rectangle2D.Double(leftX, topY, width, height);
57 g2.draw(rect);
58

59 // draw the enclosed ellipse
60

61 Ellipse2D ellipse = new Ellipse2D.Double();
62 ellipse.setFrame(rect);
63 g2.draw(ellipse);
64

65 // draw a diagonal line
66

(Continues)

56710.5 Working with 2D Shapes

ptg16518469

Listing 10.4 (Continued)

67 g2.draw(new Line2D.Double(leftX, topY, leftX + width, topY + height));
68

69 // draw a circle with the same center
70

71 double centerX = rect.getCenterX();
72 double centerY = rect.getCenterY();
73 double radius = 150;
74

75 Ellipse2D circle = new Ellipse2D.Double();
76 circle.setFrameFromCenter(centerX, centerY, centerX + radius, centerY + radius);
77 g2.draw(circle);
78 }
79

80 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
81 }

java.awt.geom.RectangularShape 1.2

• double getCenterX()
• double getCenterY()
• double getMinX()
• double getMinY()
• double getMaxX()
• double getMaxY()

returns the center, minimum, or maximum x or y value of the enclosing rectangle.

• double getWidth()
• double getHeight()

returns the width or height of the enclosing rectangle.

• double getX()
• double getY()

returns the x or y coordinate of the top left corner of the enclosing rectangle.

java.awt.geom.Rectangle2D.Double 1.2

• Rectangle2D.Double(double x, double y, double w, double h)

constructs a rectangle with the given top left corner, width, and height.

Chapter 10 Graphics Programming568

ptg16518469

java.awt.geom.Rectangle2D.Float 1.2

• Rectangle2D.Float(float x, float y, float w, float h)

constructs a rectangle with the given top left corner, width, and height.

java.awt.geom.Ellipse2D.Double 1.2

• Ellipse2D.Double(double x, double y, double w, double h)

constructs an ellipse whose bounding rectangle has the given top left corner, width,

and height.

java.awt.geom.Point2D.Double 1.2

• Point2D.Double(double x, double y)

constructs a point with the given coordinates.

java.awt.geom.Line2D.Double 1.2

• Line2D.Double(Point2D start, Point2D end)
• Line2D.Double(double startX, double startY, double endX, double endY)

constructs a line with the given start and end points.

10.6 Using Color
The setPaint method of the Graphics2D class lets you select a color that is used for all

subsequent drawing operations on the graphics context. For example:

g2.setPaint(Color.RED);
g2.drawString("Warning!", 100, 100);

You can fill the interiors of closed shapes (such as rectangles or ellipses) with a

color. Simply call fill instead of draw:

Rectangle2D rect = . . .;
g2.setPaint(Color.RED);
g2.fill(rect); // fills rect with red

56910.6 Using Color

ptg16518469

To draw in multiple colors, select a color, draw or fill, then select another color,

and draw or fill again.

NOTE: The fill method paints one fewer pixel to the right and the bottom. For
example, if you draw a new Rectangle2D.Double(0, 0, 10, 20), then the drawing includes
the pixels with x = 10 and y = 20. If you fill the same rectangle, those pixels are
not painted.

Define colors with the Color class. The java.awt.Color class offers predefined constants

for the following 13 standard colors:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

NOTE: Before Java SE 1.4, color constant names were lowercase, such as
Color.red.This is odd because the standard coding convention is to write constants
in uppercase.You can now write the standard color names in uppercase or, for
backward compatibility, lowercase.

You can specify a custom color by creating a Color object by its red, green, and blue

components. Using a scale of 0–255 (that is, one byte) for the redness, blueness,

and greenness, call the Color constructor like this:

Color(int redness, int greenness, int blueness)

Here is an example of setting a custom color:

g2.setPaint(new Color(0, 128, 128)); // a dull blue-green
g2.drawString("Welcome!", 75, 125);

NOTE: In addition to solid colors, you can select more complex “paint” settings,
such as varying hues or images. See the Advanced AWT chapter in Volume II
for more details. If you use a Graphics object instead of a Graphics2D object, you
need to use the setColor method to set colors.

To set the background color, use the setBackground method of the Component class, an

ancestor of JComponent.

MyComponent p = new MyComponent();
p.setBackground(Color.PINK);

There is also a setForeground method. It specifies the default color that is used for

drawing on the component.

Chapter 10 Graphics Programming570

ptg16518469

TIP: The brighter() and darker() methods of the Color class produce, as their
names suggest, either brighter or darker versions of the current color. Using the
brighter method is also a good way to highlight an item.Actually, brighter() is just
a little bit brighter. To make a color really stand out, apply it three times:
c.brighter().brighter().brighter().

Java gives you predefined names for many more colors in its SystemColor class. The

constants in this class encapsulate the colors used for various elements of the user’s

system. For example,

p.setBackground(SystemColor.window)

sets the background color of the component to the default used by all windows

on the user’s desktop. (The background is filled in whenever the window is re-

painted.) Using the colors in the SystemColor class is particularly useful when you

want to draw user interface elements so that the colors match those already found

on the user’s desktop. Table 10.1 lists the system color names and their meanings.

Table 10.1 System Colors

PurposeName

Background color of desktopdesktop

Background color for captionsactiveCaption

Text color for captionsactiveCaptionText

Border color for caption textactiveCaptionBorder

Background color for inactive captionsinactiveCaption

Text color for inactive captionsinactiveCaptionText

Border color for inactive captionsinactiveCaptionBorder

Background for windowswindow

Color of window border framewindowBorder

Text color inside windowswindowText

Background for menusmenu

Text color for menusmenuText

Background color for texttext

Text color for texttextText

(Continues)

57110.6 Using Color

ptg16518469

Table 10.1 (Continued)

PurposeName

Text color for inactive controlstextInactiveText

Background color for highlighted texttextHighlight

Text color for highlighted texttextHighlightText

Background color for controlscontrol

Text color for controlscontrolText

Light highlight color for controlscontrolLtHighlight

Highlight color for controlscontrolHighlight

Shadow color for controlscontrolShadow

Dark shadow color for controlscontrolDkShadow

Background color for scrollbarsscrollbar

Background color for spot-help textinfo

Text color for spot-help textinfoText

java.awt.Color 1.0

• Color(int r, int g, int b)

creates a color object.

The red value (0–255)rParameters:

The green value (0–255)g

The blue value (0–255)b

java.awt.Graphics 1.0

• Color getColor()
• void setColor(Color c)

gets or sets the current color. All subsequent graphics operations will use the new

color.

The new colorcParameters:

Chapter 10 Graphics Programming572

ptg16518469

java.awt.Graphics2D 1.2

• Paint getPaint()
• void setPaint(Paint p)

gets or sets the paint property of this graphics context. The Color class implements

the Paint interface. Therefore, you can use this method to set the paint attribute to a

solid color.

• void fill(Shape s)

fills the shape with the current paint.

java.awt.Component 1.0

• Color getBackground()
• void setBackground(Color c)

gets or sets the background color.

The new background colorcParameters:

• Color getForeground()
• void setForeground(Color c)

gets or sets the foreground color.

The new foreground colorcParameters:

10.7 Using Special Fonts for Text
The “Not a Hello World” program at the beginning of this chapter displayed a

string in the default font. Sometimes, you will want to show your text in a different

font. You can specify a font by its font face name. A font face name is composed of

a font family name, such as “Helvetica,” and an optional suffix such as “Bold.” For

example, the font faces “Helvetica” and “Helvetica Bold” are both considered to

be part of the family named “Helvetica.”

To find out which fonts are available on a particular computer, call the

getAvailableFontFamilyNames method of the GraphicsEnvironment class. The method returns

an array of strings containing the names of all available fonts. To obtain an instance

of the GraphicsEnvironment class that describes the graphics environment of the user’s

system, use the static getLocalGraphicsEnvironment method. The following program prints

the names of all fonts on your system:

57310.7 Using Special Fonts for Text

ptg16518469

import java.awt.*;

public class ListFonts
{
 public static void main(String[] args)
 {
 String[] fontNames = GraphicsEnvironment

.getLocalGraphicsEnvironment()

.getAvailableFontFamilyNames();
 for (String fontName : fontNames)

System.out.println(fontName);
 }
}

On one system, the list starts out like this:

Abadi MT Condensed Light
Arial
Arial Black
Arial Narrow
Arioso
Baskerville
Binner Gothic
. . .

and goes on for another seventy or so fonts.

Font face names can be trademarked, and font designs can be copyrighted in

some jurisdictions. Thus, the distribution of fonts often involves royalty payments

to a font foundry. Of course, just as there are inexpensive imitations of famous

perfumes, there are lookalikes for name-brand fonts. For example, the Helvetica

imitation that is shipped with Windows is called Arial.

To establish a common baseline, the AWT defines five logical font names:

SansSerif
Serif
Monospaced
Dialog
DialogInput

These names are always mapped to some fonts that actually exist on the client

machine. For example, on a Windows system, SansSerif is mapped to Arial.

In addition, the Oracle JDK always includes three font families named “Lucida

Sans,” “Lucida Bright,” and “Lucida Sans Typewriter.”

To draw characters in a font, you must first create an object of the class Font.

Specify the font face name, the font style, and the point size. Here is an example

of how you construct a Font object:

Chapter 10 Graphics Programming574

ptg16518469

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14);

The third argument is the point size. Points are commonly used in typography

to indicate the size of a font. There are 72 points per inch.

You can use a logical font name in place of the font face name in the Font construc-

tor. Specify the style (plain, bold, italic, or bold italic) by setting the second Font
constructor argument to one of the following values:

Font.PLAIN
Font.BOLD
Font.ITALIC
Font.BOLD + Font.ITALIC

NOTE: The mapping from logical to physical font names is defined in the
fontconfig.properties file in the jre/lib subdirectory of the Java installation. See
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/fontconfig.html for information
on this file.

You can read font files in TrueType, OpenType, or PostScript Type 1 formats.

You need an input stream for the font—typically from a file or URL. (See Chapter 1

of Volume II for more information on streams.) Then, call the static Font.createFont
method:

URL url = new URL("http://www.fonts.com/Wingbats.ttf");
InputStream in = url.openStream();
Font f1 = Font.createFont(Font.TRUETYPE_FONT, in);

The font is plain with a font size of 1 point. Use the deriveFont method to get a font

of the desired size:

Font f = f1.deriveFont(14.0F);

CAUTION: There are two overloaded versions of the deriveFont method. One of
them (with a float parameter) sets the font size, the other (with an int parameter)
sets the font style. Thus, f1.deriveFont(14) sets the style and not the size! (The
result is an italic font because it happens that the binary representation of 14
has the ITALIC bit but not the BOLD bit set.)

The Java fonts contain the usual ASCII characters as well as symbols. For example,

if you print the character '\u2297' in the Dialog font, you get a character. Only

the symbols defined in the Unicode character set are available.

Here’s the code that displays the string “Hello, World!” in the standard sans serif

font on your system, using 14-point bold type:

57510.7 Using Special Fonts for Text

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/fontconfig.html

ptg16518469

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14);
g2.setFont(sansbold14);
String message = "Hello, World!";
g2.drawString(message, 75, 100);

Next, let’s center the string in its component instead of drawing it at an arbitrary

position. We need to know the width and height of the string in pixels. These

dimensions depend on three factors:

• The font used (in our case, sans serif, bold, 14 point);

• The string (in our case, “Hello, World!”); and

• The device on which the font is drawn (in our case, the user’s screen).

To obtain an object that represents the font characteristics of the screen device,

call the getFontRenderContext method of the Graphics2D class. It returns an object of the

FontRenderContext class. Simply pass that object to the getStringBounds method of the Font
class:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = sansbold14..getStringBounds(message, context);

The getStringBounds method returns a rectangle that encloses the string.

To interpret the dimensions of that rectangle, you should know some basic

typesetting terms (see Figure 10.13). The baseline is the imaginary line where, for

example, the bottom of a character like “e” rests. The ascent is the distance from

the baseline to the top of an ascender, which is the upper part of a letter like “b”

or “k,” or an uppercase character. The descent is the distance from the baseline to

a descender, which is the lower portion of a letter like ‘p’ or ‘g’.

Figure 10.13 Typesetting terms illustrated

Leading is the space between the descent of one line and the ascent of the next

line. (The term has its origin from the strips of lead that typesetters used to separate

Chapter 10 Graphics Programming576

ptg16518469

lines.) The height of a font is the distance between successive baselines, which is

the same as descent + leading + ascent.

The width of the rectangle that the getStringBounds method returns is the horizontal

extent of the string. The height of the rectangle is the sum of ascent, descent, and

leading. The rectangle has its origin at the baseline of the string. The top y coordi-

nate of the rectangle is negative. Thus, you can obtain string width, height, and

ascent as follows:

double stringWidth = bounds.getWidth();
double stringHeight = bounds.getHeight();
double ascent = -bounds.getY();

If you need to know the descent or leading, use the getLineMetrics method of the

Font class. That method returns an object of the LineMetrics class, which has methods

to obtain the descent and leading:

LineMetrics metrics = f.getLineMetrics(message, context);
float descent = metrics.getDescent();
float leading = metrics.getLeading();

The following code uses all this information to center a string in its surrounding

component:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

// (x,y) = top left corner of text
double x = (getWidth() - bounds.getWidth()) / 2;
double y = (getHeight() - bounds.getHeight()) / 2;

// add ascent to y to reach the baseline
double ascent = -bounds.getY();
double baseY = y + ascent;
g2.drawString(message, (int) x, (int) baseY);

To understand the centering, consider that getWidth() returns the width of the

component. A portion of that width, namely bounds.getWidth(), is occupied by

the message string. The remainder should be equally distributed on both sides.

Therefore, the blank space on each side is half the difference. The same reasoning

applies to the height.

NOTE: When you need to compute layout dimensions outside the paintComponent
method, you can’t obtain the font render context from the Graphics2D object.
Instead, call the getFontMetrics method of the JComponent class and then call
getFontRenderContext.

FontRenderContext context = getFontMetrics(f).getFontRenderContext();

57710.7 Using Special Fonts for Text

ptg16518469

To show that the positioning is accurate, the sample program also draws the

baseline and the bounding rectangle. Figure 10.14 shows the screen display;

Listing 10.5 is the program listing.

Figure 10.14 Drawing the baseline and string bounds

Listing 10.5 font/FontTest.java

1 package font;
 2

3 import java.awt.*;
4 import java.awt.font.*;
5 import java.awt.geom.*;
6 import javax.swing.*;
 7

8 /**
9 * @version 1.34 2015-05-12
10 * @author Cay Horstmann
11 */
12 public class FontTest
13 {
14 public static void main(String[] args)
15 {
16 EventQueue.invokeLater(() ->
17 {
18 JFrame frame = new FontFrame();
19 frame.setTitle("FontTest");
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 frame.setVisible(true);
22 });
23 }
24 }
25

26 /**
27 * A frame with a text message component
28 */

Chapter 10 Graphics Programming578

ptg16518469

29 class FontFrame extends JFrame
30 {
31 public FontFrame()
32 {
33 add(new FontComponent());
34 pack();
35 }
36 }
37

38 /**
39 * A component that shows a centered message in a box.
40 */
41 class FontComponent extends JComponent
42 {
43 private static final int DEFAULT_WIDTH = 300;
44 private static final int DEFAULT_HEIGHT = 200;
45

46 public void paintComponent(Graphics g)
47 {
48 Graphics2D g2 = (Graphics2D) g;
49

50 String message = "Hello, World!";
51

52 Font f = new Font("Serif", Font.BOLD, 36);
53 g2.setFont(f);
54

55 // measure the size of the message
56

57 FontRenderContext context = g2.getFontRenderContext();
58 Rectangle2D bounds = f.getStringBounds(message, context);
59

60 // set (x,y) = top left corner of text
61

62 double x = (getWidth() - bounds.getWidth()) / 2;
63 double y = (getHeight() - bounds.getHeight()) / 2;
64

65 // add ascent to y to reach the baseline
66

67 double ascent = -bounds.getY();
68 double baseY = y + ascent;
69

70 // draw the message
71

72 g2.drawString(message, (int) x, (int) baseY);
73

74 g2.setPaint(Color.LIGHT_GRAY);
75

76 // draw the baseline
77

(Continues)

57910.7 Using Special Fonts for Text

ptg16518469

Listing 10.5 (Continued)

78 g2.draw(new Line2D.Double(x, baseY, x + bounds.getWidth(), baseY));
79

80 // draw the enclosing rectangle
81

82 Rectangle2D rect = new Rectangle2D.Double(x, y, bounds.getWidth(), bounds.getHeight());
83 g2.draw(rect);
84 }
85

86 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
87 }

java.awt.Font 1.0

• Font(String name, int style, int size)

creates a new font object.

The font name. This is either a font face name (such as

"Helvetica Bold") or a logical font name (such as "Serif",

"SansSerif")

nameParameters:

The style (Font.PLAIN, Font.BOLD, Font.ITALIC, or Font.BOLD +

Font.ITALIC)

style

The point size (for example, 12)size

• String getFontName()

gets the font face name (such as "Helvetica Bold").

• String getFamily()

gets the font family name (such as "Helvetica").

• String getName()

gets the logical name (such as "SansSerif") if the font was created with a logical font

name; otherwise, gets the font face name.

• Rectangle2D getStringBounds(String s, FontRenderContext context) 1.2

returns a rectangle that encloses the string. The origin of the rectangle falls on the

baseline. The top y coordinate of the rectangle equals the negative of the ascent.

The height of the rectangle equals the sum of ascent, descent, and leading. The

width equals the string width.

• LineMetrics getLineMetrics(String s, FontRenderContext context) 1.2

returns a line metrics object to determine the extent of the string.

(Continues)

Chapter 10 Graphics Programming580

ptg16518469

java.awt.Font 1.0 (Continued)

• Font deriveFont(int style) 1.2
• Font deriveFont(float size) 1.2
• Font deriveFont(int style, float size) 1.2

returns a new font that is equal to this font, except that it has the given size and

style.

java.awt.font.LineMetrics 1.2

• float getAscent()

gets the font ascent—the distance from the baseline to the tops of uppercase

characters.

• float getDescent()

gets the font descent—the distance from the baseline to the bottoms of descenders.

• float getLeading()

gets the font leading—the space between the bottom of one line of text and the top

of the next line.

• float getHeight()

gets the total height of the font—the distance between the two baselines of text

(descent + leading + ascent).

java.awt.Graphics 1.0

• Font getFont()
• void setFont(Font font)

gets or sets the current font. That font will be used for subsequent text-drawing

operations.

A fontfontParameters:

• void drawString(String str, int x, int y)

draws a string in the current font and color.

The string to be drawnstrParameters:

The x coordinate of the start of the stringx

The y coordinate of the baseline of the stringy

58110.7 Using Special Fonts for Text

ptg16518469

java.awt.Graphics2D 1.2

• FontRenderContext getFontRenderContext()

gets a font render context that specifies font characteristics in this graphics context.

• void drawString(String str, float x, float y)

draws a string in the current font and color.

The string to be drawnstrParameters:

The x coordinate of the start of the stringx

The y coordinate of the baseline of the stringy

javax.swing.JComponent 1.2

• FontMetrics getFontMetrics(Font f) 5.0

gets the font metrics for the given font. The FontMetrics class is a precursor to the

LineMetrics class.

java.awt.FontMetrics 1.0

• FontRenderContext getFontRenderContext() 1.2

gets a font render context for the font.

10.8 Displaying Images
You have already seen how to build up simple drawings by painting lines

and shapes. Complex images, such as photographs, are usually generated

externally—for example, with a scanner or special image-manipulation software.

As you will see in Volume II, it is also possible to produce an image, pixel by

pixel.

Once images are stored in local files or someplace on the Internet, you can read

them into a Java application and display them on Graphics objects. There are many

ways of reading images. Here, we use the ImageIcon class that you already saw:

Image image = new ImageIcon(filename).getImage();

Now the variable image contains a reference to an object that encapsulates the image

data. You can display the image with the drawImage method of the Graphics class.

Chapter 10 Graphics Programming582

ptg16518469

public void paintComponent(Graphics g)
{
 . . .
 g.drawImage(image, x, y, null);
}

Listing 10.6 takes this a little bit further and tiles the window with the graphics

image. The result looks like the screen shown in Figure 10.15. We do the tiling in

the paintComponent method. We first draw one copy of the image in the top left corner

and then use the copyArea call to copy it into the entire window:

for (int i = 0; i * imageWidth <= getWidth(); i++)
 for (int j = 0; j * imageHeight <= getHeight(); j++)
 if (i + j > 0)

g.copyArea(0, 0, imageWidth, imageHeight, i * imageWidth, j * imageHeight);

Figure 10.15 Window with tiled graphics image

Listing 10.6 shows the full source code of the image display program.

Listing 10.6 image/ImageTest.java

1 package image;
 2

3 import java.awt.*;
4 import javax.swing.*;
 5

6 /**
7 * @version 1.34 2015-05-12
8 * @author Cay Horstmann
9 */
10 public class ImageTest
11 {

(Continues)

58310.8 Displaying Images

ptg16518469

Listing 10.6 (Continued)

12 public static void main(String[] args)
13 {
14 EventQueue.invokeLater(() ->
15 {
16 JFrame frame = new ImageFrame();
17 frame.setTitle("ImageTest");
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 frame.setVisible(true);
20 });
21 }
22 }
23

24 /**
25 * A frame with an image component
26 */
27 class ImageFrame extends JFrame
28 {
29 public ImageFrame()
30 {
31 add(new ImageComponent());
32 pack();
33 }
34 }
35

36 /**
37 * A component that displays a tiled image
38 */
39 class ImageComponent extends JComponent
40 {
41 private static final int DEFAULT_WIDTH = 300;
42 private static final int DEFAULT_HEIGHT = 200;
43

44 private Image image;
45

46 public ImageComponent()
47 {
48 image = new ImageIcon("blue-ball.gif").getImage();
49 }
50

51 public void paintComponent(Graphics g)
52 {
53 if (image == null) return;
54

Chapter 10 Graphics Programming584

ptg16518469

55 int imageWidth = image.getWidth(this);
56 int imageHeight = image.getHeight(this);
57

58 // draw the image in the upper-left corner
59

60 g.drawImage(image, 0, 0, null);
61

62 // tile the image across the component
63

64 for (int i = 0; i * imageWidth <= getWidth(); i++)
65 for (int j = 0; j * imageHeight <= getHeight(); j++)
66 if (i + j > 0)
67 g.copyArea(0, 0, imageWidth, imageHeight, i * imageWidth, j * imageHeight);
68 }
69

70 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
71 }

java.awt.Graphics 1.0

• boolean drawImage(Image img, int x, int y, ImageObserver observer)

draws an unscaled image. Note: This call may return before the image is drawn.

The image to be drawnimgParameters:

The x coordinate of the top left cornerx

The y coordinate of the top left cornery

The object to notify of the progress of the rendering process

(may be null)

observer

• boolean drawImage(Image img, int x, int y, int width, int height, ImageObserver observer)

draws a scaled image.The system scales the image to fit into a region with the given

width and height. Note: This call may return before the image is drawn.

The image to be drawnimgParameters:

The x coordinate of the top left cornerx

The y coordinate of the top left cornery

The desired width of imagewidth

The desired height of imageheight

The object to notify of the progress of the rendering process

(may be null)

observer

(Continues)

58510.8 Displaying Images

ptg16518469

java.awt.Graphics 1.0 (Continued)

• void copyArea(int x, int y, int width, int height, int dx, int dy)

copies an area of the screen.

The x coordinate of the top left corner of the source areaxParameters:

The y coordinate of the top left corner of the source areay

The width of the source areawidth

The height of the source areaheight

The horizontal distance from the source area to the target

area

dx

The vertical distance from the source area to the target aready

This concludes our introduction to Java graphics programming. For more ad-

vanced techniques, refer to the discussion of 2D graphics and image manipulation

in Volume II. In the next chapter, you will learn how your programs can react to

user input.

Chapter 10 Graphics Programming586

ptg16518469

11CHAPTER

Event Handling

In this chapter

• 11.1 Basics of Event Handling, page 587

• 11.2 Actions, page 607

• 11.3 Mouse Events, page 616

• 11.4 The AWT Event Hierarchy, page 624

Event handling is of fundamental importance to programs with a graphical user

interface. To implement user interfaces, you have to master the way in which Java

handles events. This chapter explains how the Java AWT event model works.

You will see how to capture events from user interface components and input

devices. We will also show you how to work with actions, which represent a more

structured approach for processing action events.

11.1 Basics of Event Handling
Any operating environment that supports GUIs constantly monitors events such

as keystrokes or mouse clicks. The operating environment reports these events

to the programs that are running. Each program then decides what, if anything,

to do in response to these events. In languages like Visual Basic, the correspon-

dence between events and code is obvious. One writes code for each specific event

of interest and places the code in what is usually called an event procedure. For

example, a Visual Basic button named “HelpButton” would have a HelpButton_Click
event procedure associated with it. The code in this procedure executes whenever

587

ptg16518469

that button is clicked. Each Visual Basic GUI component responds to a fixed set

of events, and it is impossible to change the events to which it responds.

On the other hand, if you use a language like raw C to do event-driven program-

ming, you need to write the code that constantly checks the event queue for what

the operating environment is reporting. This is usually done by encasing your

code in a loop with a massive switch statement. This technique is obviously ugly

and, in any case, much more difficult to code. Its advantage is that the events you

can respond to are not as limited as in the languages which, like Visual Basic, go

to great lengths to hide the event queue from the programmer.

The Java programming environment takes an approach somewhere in between

the Visual Basic and the raw C in terms of power and the resulting complexity.

Within the limits of the events that the AWT knows about, you completely control

how events are transmitted from the event sources (such as buttons or scrollbars)

to event listeners. You can designate any object to be an event listener—in practice,

you pick an object that can conveniently carry out the desired response to the

event. This event delegation model gives you much more flexibility than is possible

with Visual Basic, in which the listener is predetermined.

Event sources have methods that allow you to register event listeners with them.

When an event happens to the source, the source sends a notification of that event

to all the listener objects that were registered for that event.

As one would expect in an object-oriented language like Java, the information

about the event is encapsulated in an event object. In Java, all event objects ulti-

mately derive from the class java.util.EventObject. Of course, there are subclasses for

each event type, such as ActionEvent and WindowEvent.

Different event sources can produce different kinds of events. For example, a

button can send ActionEvent objects, whereas a window can send WindowEvent objects.

To sum up, here’s an overview of how event handling in the AWT works:

• A listener object is an instance of a class that implements a special interface

called (naturally enough) a listener interface.

• An event source is an object that can register listener objects and send them

event objects.

• The event source sends out event objects to all registered listeners when that

event occurs.

• The listener objects will then use the information in the event object to

determine their reaction to the event.

Chapter 11 Event Handling588

ptg16518469

Figure 11.1 shows the relationship between the event handling classes and

interfaces.

Figure 11.1 Relationship between event sources and listeners

Here is an example for specifying a listener:

ActionListener listener = . . .;
JButton button = new JButton("OK");
button.addActionListener(listener);

Now the listener object is notified whenever an “action event” occurs in the button.

For buttons, as you might expect, an action event is a button click.

To implement the ActionListener interface, the listener class must have a method

called actionPerformed that receives an ActionEvent object as a parameter.

class MyListener implements ActionListener
{
 . . .

public void actionPerformed(ActionEvent event)
 {
 // reaction to button click goes here
 . . .
 }
}

58911.1 Basics of Event Handling

ptg16518469

Whenever the user clicks the button, the JButton object creates an ActionEvent object

and calls listener.actionPerformed(event), passing that event object. An event source

such as a button can have multiple listeners. In that case, the button calls the

actionPerformed methods of all listeners whenever the user clicks the button.

Figure 11.2 shows the interaction between the event source, event listener, and

event object.

Figure 11.2 Event notification

Chapter 11 Event Handling590

ptg16518469

11.1.1 Example: Handling a Button Click
As a way of getting comfortable with the event delegation model, let’s work

through all the details needed for the simple example of responding to a button

click. For this example, we will show a panel populated with three buttons. Three

listener objects are added as action listeners to the buttons.

With this scenario, each time a user clicks on any of the buttons on the panel, the

associated listener object receives an ActionEvent that indicates a button click. In our

sample program, the listener object will then change the background color of the

panel.

Before we can show you the program that listens to button clicks, we first need

to explain how to create buttons and how to add them to a panel. (For more on

GUI elements, see Chapter 12.)

To create a button, specify a label string, an icon, or both in the button constructor.

Here are two examples:

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton(new ImageIcon("blue-ball.gif"));

Call the add method to add the buttons to a panel:

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton("Blue");
JButton redButton = new JButton("Red");

buttonPanel.add(yellowButton);
buttonPanel.add(blueButton);
buttonPanel.add(redButton);

Figure 11.3 shows the result.

Figure 11.3 A panel filled with buttons

59111.1 Basics of Event Handling

ptg16518469

Next, we need to add code that listens to these buttons. This requires classes that

implement the ActionListener interface, which, as we just mentioned, has one method:

actionPerformed, whose signature looks like this:

public void actionPerformed(ActionEvent event)

NOTE: The ActionListener interface we used in the button example is not restricted
to button clicks. It is used in many separate situations:

• When an item is selected from a list box with a double click

• When a menu item is selected

• When the Enter key is pressed in a text field

• When a certain amount of time has elapsed for a Timer component

You will see more details in this chapter and the next.

The way to use the ActionListener interface is the same in all situations: The
actionPerformed method (which is the only method in ActionListener) takes an object
of type ActionEvent as a parameter. This event object gives you information about
the event that happened.

When a button is clicked, we want the background color of the panel to change

to a particular color. We store the desired color in our listener class.

class ColorAction implements ActionListener
{
 private Color backgroundColor;

 public ColorAction(Color c)
 {
 backgroundColor = c;
 }

 public void actionPerformed(ActionEvent event)
 {
 // set panel background color
 . . .
 }
}

We then construct one object for each color and set the objects as the button

listeners.

Chapter 11 Event Handling592

ptg16518469

ColorAction yellowAction = new ColorAction(Color.YELLOW);
ColorAction blueAction = new ColorAction(Color.BLUE);
ColorAction redAction = new ColorAction(Color.RED);

yellowButton.addActionListener(yellowAction);
blueButton.addActionListener(blueAction);
redButton.addActionListener(redAction);

For example, if a user clicks on the button marked “Yellow,” the actionPerformed
method of the yellowAction object is called. Its backgroundColor instance field is set to

Color.YELLOW, and it can now proceed to set the panel’s background color.

Just one issue remains. The ColorAction object doesn’t have access to the buttonPanel
variable. You can solve this problem in two ways. You can store the panel in the

ColorAction object and set it in the ColorAction constructor. Or, more conveniently, you

can make ColorAction into an inner class of the ButtonFrame class. Its methods can then

access the outer panel automatically. (For more information on inner classes, see

Chapter 6.)

We follow the latter approach. Here is how you place the ColorAction class inside

the ButtonFrame class:

class ButtonFrame extends JFrame
{
 private JPanel buttonPanel;
 . . .
 private class ColorAction implements ActionListener
 {
 private Color backgroundColor;
 . . .
 public void actionPerformed(ActionEvent event)
 {

buttonPanel.setBackground(backgroundColor);
 }
 }
}

Look closely at the actionPerformed method. The ColorAction class doesn’t have a

buttonPanel field. But the outer ButtonFrame class does.

This situation is very common. Event listener objects usually need to carry out

some action that affects other objects. You can often strategically place the listener

class inside the class whose state the listener should modify.

59311.1 Basics of Event Handling

ptg16518469

Listing 11.1 contains the complete frame class. Whenever you click one of the

buttons, the appropriate action listener changes the background color of the panel.

Listing 11.1 button/ButtonFrame.java

1 package button;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a button panel
9 */
10 public class ButtonFrame extends JFrame
11 {
12 private JPanel buttonPanel;
13 private static final int DEFAULT_WIDTH = 300;
14 private static final int DEFAULT_HEIGHT = 200;
15

16 public ButtonFrame()
17 {
18 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
19

20 // create buttons
21 JButton yellowButton = new JButton("Yellow");
22 JButton blueButton = new JButton("Blue");
23 JButton redButton = new JButton("Red");
24

25 buttonPanel = new JPanel();
26

27 // add buttons to panel
28 buttonPanel.add(yellowButton);
29 buttonPanel.add(blueButton);
30 buttonPanel.add(redButton);
31

32 // add panel to frame
33 add(buttonPanel);
34

35 // create button actions
36 ColorAction yellowAction = new ColorAction(Color.YELLOW);
37 ColorAction blueAction = new ColorAction(Color.BLUE);
38 ColorAction redAction = new ColorAction(Color.RED);
39

40 // associate actions with buttons

Chapter 11 Event Handling594

ptg16518469

41 yellowButton.addActionListener(yellowAction);
42 blueButton.addActionListener(blueAction);
43 redButton.addActionListener(redAction);
44 }
45

46 /**
47 * An action listener that sets the panel's background color.
48 */
49 private class ColorAction implements ActionListener
50 {
51 private Color backgroundColor;
52

53 public ColorAction(Color c)
54 {
55 backgroundColor = c;
56 }
57

58 public void actionPerformed(ActionEvent event)
59 {
60 buttonPanel.setBackground(backgroundColor);
61 }
62 }
63 }

javax.swing.JButton 1.2

• JButton(String label)
• JButton(Icon icon)
• JButton(String label, Icon icon)

constructs a button. The label string can be plain text or, starting with Java SE 1.3,

HTML; for example, "<html>Ok</html>".

java.awt.Container 1.0

• Component add(Component c)

adds the component c to this container.

11.1.2 Specifying Listeners Concisely
In the preceding section, we defined a class for the event listener and constructed

three objects of that class. It is not all that common to have multiple instances of

59511.1 Basics of Event Handling

ptg16518469

a listener class. Most commonly, each listener carries out a separate action. In that

case, there is no need to make a separate class. Simply use a lambda expression:

exitButton.addActionListener(event -> System.exit(0));

Now consider the case in which we have multiple related actions, such as the

color buttons of the preceding section. In such a case, implement a helper method:

public void makeButton(String name, Color backgroundColor)
{
 JButton button = new JButton(name);
 buttonPanel.add(button);
 button.addActionListener(event ->
 buttonPanel.setBackground(backgroundColor));
}

Note that the lambda expression refers to the parameter variable backgroundColor.

Then we simply call

makeButton("yellow", Color.YELLOW);
makeButton("blue", Color.BLUE);
makeButton("red", Color.RED);

Here, we construct three listener objects, one for each color, without explicitly

defining a class. Each time the helper method is called, it makes an instance of a

class that implements the ActionListener interface. Its actionPerformed action references

the backGroundColor value that is, in fact, stored with the listener object. However, all

this happens without having to explicitly define listener classes, instance variables,

or constructors that set them.

NOTE: In older code, you will often see the use of anonymous classes:

exitButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(new ActionEvent)
 {

System.exit(0);
 }
 });

Of course, this rather verbose code is no longer necessary. Using a lambda
expression is simpler and clearer.

Chapter 11 Event Handling596

ptg16518469

NOTE: Some programmers are not comfortable with inner classes or lambda
expressions and instead make the container of the event sources implement
the ActionListener interface.Then, the container sets itself as the listener, like this:

yellowButton.addActionListener(this);
blueButton.addActionListener(this);
redButton.addActionListener(this);

Now the three buttons no longer have individual listeners. They share a single
listener object—namely, the frame. Therefore, the actionPerformed method must
figure out which button was clicked.

class ButtonFrame extends JFrame implements ActionListener
{
 . . .

public void actionPerformed(ActionEvent event)
 {
 Object source = event.getSource();
 if (source == yellowButton) . . .
 else if (source == blueButton) . . .
 else if (source == redButton) . . .
 else . . .
 }
}

We do not recommend this strategy.

NOTE: Before lambda expressions were available, there was another mechanism
for specifying event listeners whose event handler contains a single method call.
Suppose, for example, that a button listener needs to execute the call

frame.loadData();

The EventHandler class can create such a listener with the call

EventHandler.create(ActionListener.class, frame, "loadData")

This is now only of historical interest.With lambda expressions, it is much easier
to use

event -> frame.loadData();

The EventHandler mechanism is also inefficient and somewhat error-prone. It uses
reflection to invoke the method. For that reason, the second argument in the call
to EventHandler.create must belong to a public class. Otherwise, the reflection
mechanism will not be able to locate and invoke the target method.

59711.1 Basics of Event Handling

ptg16518469

java.awt.event.ActionEvent 1.1

• String getActionCommand()

returns the command string associated with this action event. If the action event

originated from a button, the command string equals the button label, unless it has

been changed with the setActionCommand method.

java.beans.EventHandler 1.4

• static <T> T create(Class<T> listenerInterface, Object target, String action)
• static <T> T create(Class<T> listenerInterface, Object target, String action, String

eventProperty)
• static <T> T create(Class<T> listenerInterface, Object target, String action, String

eventProperty, String listenerMethod)

constructs an object of a proxy class that implements the given interface. Either the

named method or all methods of the interface carry out the given action on the target

object.

The action can be a method name or a property of the target. If it is a property, its

setter method is executed. For example, an action "text" is turned into a call of the

setText method.

The event property consists of one or more dot-separated property names.The first

property is read from the parameter of the listener method, the second property is

read from the resulting object, and so on. The final result becomes the parameter of

the action. For example, the property "source.text" is turned into calls to the getSource
and getText methods.

java.util.EventObject 1.1

• Object getSource()

returns a reference to the object where the event occurred.

11.1.3 Example: Changing the Look-and-Feel
By default, Swing programs use the Metal look-and-feel. There are two ways to

change to a different look-and-feel. The first is to supply a file swing.properties in the

Chapter 11 Event Handling598

ptg16518469

jre/lib subdirectory of your Java installation. In that file, set the property

swing.defaultlaf to the class name of the look-and-feel that you want. For example:

swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

Note that the Metal and Nimbus look-and-feels are located in the javax.swing
package. The other look-and-feel packages are located in the com.sun.java package

and need not be present in every Java implementation. For example, for copyright

reasons, the Windows and Macintosh look-and-feel packages are only shipped

with the Windows and Macintosh versions of the Java runtime environment.

TIP: Lines starting with a # character are ignored in property files, so you can
supply several look-and-feel selections in the swing.properties file and move around
the # to select one of them:

#swing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel
#swing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

You must restart your program to switch the look-and-feel in this way. A Swing
program reads the swing.properties file only once, at startup.

The second way is to change the look-and-feel dynamically. Call the static

UIManager.setLookAndFeel method and give it the name of the look-and-feel class that

you want. Then call the static method SwingUtilities.updateComponentTreeUI to refresh the

entire set of components. You need to supply one component to that method; it

will find all others.

Here is an example showing how you can switch to the Motif look-and-feel in

your program:

String className = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";
try
{
 UIManager.setLookAndFeel(className);
 SwingUtilities.updateComponentTreeUI(frame);
 pack();
}
catch(Exception e) { e.printStackTrace(); }

To enumerate all installed look-and-feel implementations, call

UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();

59911.1 Basics of Event Handling

ptg16518469

Then you can get the name and class name for each look-and-feel as

String name = infos[i].getName();
String className = infos[i].getClassName();

Listing 11.2 is a complete program that demonstrates how to switch the look-and-

feel (see Figure 11.4). The program is similar to Listing 11.1. Following the advice

of the preceding section, we use a helper method makeButton and a lambda expression

to specify the button action—namely, to switch the look-and-feel.

public class PlafFrame extends JFrame
{
 . . .
 private void makeButton(String name, String className)
 {
 JButton button = new JButton(name);
 buttonPanel.add(button);
 button.addActionListener(event -> {

. . .
UIManager.setLookAndFeel(className);
SwingUtilities.updateComponentTreeUI(this);
. . .

 });
 }
}

Figure 11.4 Switching the look-and-feel

Chapter 11 Event Handling600

ptg16518469

NOTE: In previous editions of this book, we used an anonymous inner class to
define this listener. At that time, we had to be careful to pass PlafFrame.this (and
not the this reference of the inner class) to SwingUtilities.updateComponentTreeUI:

public class PlafFrame extends JFrame
{
 . . .
 private void makeButton(String name, final String className)
 {
 . . .
 button.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent event)
{

. . .
SwingUtilities.updateComponentTreeUI(PlafFrame.this);
. . .

}
});

 }
}

This problem goes away with lambda expressions. Inside a lambda expression,
this refers to the enclosing object.

Listing 11.2 plaf/PlafFrame.java

1 package plaf;
 2

3 import javax.swing.JButton;
4 import javax.swing.JFrame;
5 import javax.swing.JPanel;
6 import javax.swing.SwingUtilities;
7 import javax.swing.UIManager;
 8

9 /**
10 * A frame with a button panel for changing look-and-feel
11 */
12 public class PlafFrame extends JFrame
13 {
14 private JPanel buttonPanel;
15

16 public PlafFrame()
17 {
18 buttonPanel = new JPanel();
19

20 UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();

(Continues)

60111.1 Basics of Event Handling

ptg16518469

Listing 11.2 (Continued)

21 for (UIManager.LookAndFeelInfo info : infos)
22 makeButton(info.getName(), info.getClassName());
23

24 add(buttonPanel);
25 pack();
26 }
27

28 /**
29 * Makes a button to change the pluggable look-and-feel.
30 * @param name the button name
31 * @param className the name of the look-and-feel class
32 */
33 private void makeButton(String name, String className)
34 {
35 // add button to panel
36

37 JButton button = new JButton(name);
38 buttonPanel.add(button);
39

40 // set button action
41

42 button.addActionListener(event -> {
43 // button action: switch to the new look-and-feel
44 try
45 {
46 UIManager.setLookAndFeel(className);
47 SwingUtilities.updateComponentTreeUI(this);
48 pack();
49 }
50 catch (Exception e)
51 {
52 e.printStackTrace();
53 }
54 });
55 }
56 }

javax.swing.UIManager 1.2

• static UIManager.LookAndFeelInfo[] getInstalledLookAndFeels()

gets an array of objects that describe the installed look-and-feel implementations.

• static setLookAndFeel(String className)

sets the current look-and-feel, using the given class name (such as “javax.swing.
plaf.metal.MetalLookAndFeel”).

Chapter 11 Event Handling602

ptg16518469

javax.swing.UIManager.LookAndFeelInfo 1.2

• String getName()

returns the display name for the look-and-feel.

• String getClassName()

returns the name of the implementation class for the look-and-feel.

11.1.4 Adapter Classes
Not all events are as simple to handle as button clicks. In a non-toy program, you

will want to monitor when the user tries to close the main frame because

you don’t want your users to lose unsaved work. When the user closes the frame,

you want to put up a dialog and exit the program only when the user agrees.

When the user tries to close a window, the JFrame object is the source of a WindowEvent.

If you want to catch that event, you must have an appropriate listener object and

add it to the frame’s list of window listeners.

WindowListener listener = . . .;
frame.addWindowListener(listener);

The window listener must be an object of a class that implements the WindowListener
interface. There are actually seven methods in the WindowListener interface. The frame

calls them as the responses to seven distinct events that could happen to a

window. The names are self-explanatory, except that “iconified” is usually called

“minimized” under Windows. Here is the complete WindowListener interface:

public interface WindowListener
{
 void windowOpened(WindowEvent e);
 void windowClosing(WindowEvent e);
 void windowClosed(WindowEvent e);
 void windowIconified(WindowEvent e);
 void windowDeiconified(WindowEvent e);
 void windowActivated(WindowEvent e);
 void windowDeactivated(WindowEvent e);
}

NOTE: To find out whether a window has been maximized, install a
WindowStateListener and override the windowStateChanged method.

As is always the case in Java, any class that implements an interface must imple-

ment all its methods; in this case, that means implementing seven methods. Recall

60311.1 Basics of Event Handling

ptg16518469

that we are only interested in one of these seven methods, namely the windowClosing
method.

Of course, we can define a class that implements the interface, add a call to

System.exit(0) in the windowClosing method, and write do-nothing functions for the

other six methods:

class Terminator implements WindowListener
{
 public void windowClosing(WindowEvent e)
 {
 if (user agrees)

System.exit(0);
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}
}

Typing code for six methods that don’t do anything is the kind of tedious busy-

work that nobody likes. To simplify this task, each of the AWT listener interfaces

that have more than one method comes with a companion adapter class that im-

plements all the methods in the interface but does nothing with them. For example,

the WindowAdapter class has seven do-nothing methods. This means the adapter class

automatically satisfies the technical requirements that Java imposes for imple-

menting the associated listener interface. You can extend the adapter class to

specify the desired reactions to some, but not all, of the event types in the interface.

(An interface such as ActionListener that has only a single method does not need an

adapter class.)

Let us make use of the window adapter. We can extend the WindowAdapter class, inherit

six of the do-nothing methods, and override the windowClosing method:

class Terminator extends WindowAdapter
{
 public void windowClosing(WindowEvent e)
 {
 if (user agrees)

System.exit(0);
 }
}

Now you can register an object of type Terminator as the event listener:

WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Chapter 11 Event Handling604

ptg16518469

Whenever the frame generates a window event, it passes it to the listener object

by calling one of its seven methods (see Figure 11.5). Six of those methods do

nothing; the windowClosing method calls System.exit(0), terminating the application.

Figure 11.5 A window listener

CAUTION: If you misspell the name of a method when extending an adapter
class, the compiler won’t catch your error. For example, if you define a method
windowIsClosing in a WindowAdapter class, you will get a class with eight methods,
and the windowClosing method will do nothing. Use the @Override annotation (which
was described in Chapter 5) to protect against this error.

60511.1 Basics of Event Handling

ptg16518469

Creating a listener class that extends the WindowAdapter is an improvement, but we

can go even further. There is no need to give a name to the listener object. Simply

write

frame.addWindowListener(new Terminator());

But why stop there? We can make the listener class into an anonymous inner class

of the frame.

frame.addWindowListener(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {

if (user agrees)
System.exit(0);

 }
 });

This code does the following:

• Defines a class without a name that extends the WindowAdapter class

• Adds a windowClosing method to that anonymous class (as before, this method

exits the program)

• Inherits the remaining six do-nothing methods from WindowAdapter

• Creates an object of this class; that object does not have a name, either

• Passes that object to the addWindowListener method

Again, the syntax for using anonymous inner classes takes some getting used to.

The payoff is that the resulting code is as short as possible.

NOTE: Nowadays, one would implement do-nothing methods of the WindowListener
interface as default methods. However, Swing was invented many years before
there were default methods.

java.awt.event.WindowListener 1.1

• void windowOpened(WindowEvent e)

is called after the window has been opened.

• void windowClosing(WindowEvent e)

is called when the user has issued a window manager command to close the window.

Note that the window will close only if its hide or dispose method is called.

(Continues)

Chapter 11 Event Handling606

ptg16518469

java.awt.event.WindowListener 1.1 (Continued)

• void windowClosed(WindowEvent e)

is called after the window has closed.

• void windowIconified(WindowEvent e)

is called after the window has been iconified.

• void windowDeiconified(WindowEvent e)

is called after the window has been deiconified.

• void windowActivated(WindowEvent e)

is called after the window has become active. Only a frame or dialog can be active.

Typically, the window manager decorates the active window—for example, by

highlighting the title bar.

• void windowDeactivated(WindowEvent e)

is called after the window has become deactivated.

java.awt.event.WindowStateListener 1.4

• void windowStateChanged(WindowEvent event)

is called after the window has been maximized, iconified, or restored to normal

size.

java.awt.event.WindowEvent 1.1

• int getNewState() 1.4
• int getOldState() 1.4

return the new and old state of a window in a window state change event. The

returned integer is one of the following values:

Frame.NORMAL
Frame.ICONIFIED
Frame.MAXIMIZED_HORIZ
Frame.MAXIMIZED_VERT
Frame.MAXIMIZED_BOTH

11.2 Actions
It is common to have multiple ways to activate the same command. The user can

choose a certain function through a menu, a keystroke, or a button on a toolbar.

60711.2 Actions

ptg16518469

This is easy to achieve in the AWT event model: link all events to the same listener.

For example, suppose blueAction is an action listener whose actionPerformed method

changes the background color to blue. You can attach the same object as a listener

to several event sources:

• A toolbar button labeled “Blue”

• A menu item labeled “Blue”

• A keystroke Ctrl+B

The color change command will now be handled in a uniform way, no matter

whether it was caused by a button click, a menu selection, or a key press.

The Swing package provides a very useful mechanism to encapsulate commands

and to attach them to multiple event sources: the Action interface. An action is an

object that encapsulates

• A description of the command (as a text string and an optional icon); and

• Parameters that are necessary to carry out the command (such as the requested

color in our example).

The Action interface has the following methods:

void actionPerformed(ActionEvent event)
void setEnabled(boolean b)
boolean isEnabled()
void putValue(String key, Object value)
Object getValue(String key)
void addPropertyChangeListener(PropertyChangeListener listener)
void removePropertyChangeListener(PropertyChangeListener listener)

The first method is the familiar method in the ActionListener interface; in fact, the

Action interface extends the ActionListener interface. Therefore, you can use an Action
object whenever an ActionListener object is expected.

The next two methods let you enable or disable the action and check whether the

action is currently enabled. When an action is attached to a menu or toolbar and

the action is disabled, the option is grayed out.

The putValue and getValue methods let you store and retrieve arbitrary name/value

pairs in the action object. A couple of important predefined strings, namely

Action.NAME and Action.SMALL_ICON, store action names and icons into an action object:

action.putValue(Action.NAME, "Blue");
action.putValue(Action.SMALL_ICON, new ImageIcon("blue-ball.gif"));

Table 11.1 shows all predefined action table names.

Chapter 11 Event Handling608

ptg16518469

Table 11.1 Predefined Action Table Names

ValueName

The name of the action; displayed on buttons and menu items.NAME

A place to store a small icon for display in a button, menu item,

or toolbar.

SMALL_ICON

A short description of the icon for display in a tooltip.SHORT_DESCRIPTION

A long description of the icon for potential use in online help. No

Swing component uses this value.

LONG_DESCRIPTION

A mnemonic abbreviation for display in menu items (see

Chapter 12).

MNEMONIC_KEY

A place to store an accelerator keystroke. No Swing component

uses this value.

ACCELERATOR_KEY

Historically, used in the now-obsolete registerKeyboardAction method.ACTION_COMMAND_KEY

Potentially useful catch-all property. No Swing component uses

this value.

DEFAULT

If the action object is added to a menu or toolbar, the name and icon are

automatically retrieved and displayed in the menu item or toolbar button. The

SHORT_DESCRIPTION value turns into a tooltip.

The final two methods of the Action interface allow other objects, in particular

menus or toolbars that trigger the action, to be notified when the properties of

the action object change. For example, if a menu is added as a property change

listener of an action object and the action object is subsequently disabled, the

menu is called and can gray out the action name. Property change listeners are

a general construct that is a part of the “JavaBeans” component model. You can

find out more about beans and their properties in Volume II.

Note that Action is an interface, not a class. Any class implementing this interface

must implement the seven methods we just discussed. Fortunately, a friendly

soul has provided a class AbstractAction that implements all methods except for

actionPerformed. That class takes care of storing all name/value pairs and managing

the property change listeners. You simply extend AbstractAction and supply an

actionPerformed method.

Let’s build an action object that can execute color change commands. We store

the name of the command, an icon, and the desired color. We store the color

in the table of name/value pairs that the AbstractAction class provides. Here is the

code for the ColorAction class. The constructor sets the name/value pairs, and

the actionPerformed method carries out the color change action.

60911.2 Actions

ptg16518469

public class ColorAction extends AbstractAction
{
 public ColorAction(String name, Icon icon, Color c)
 {
 putValue(Action.NAME, name);
 putValue(Action.SMALL_ICON, icon);
 putValue("color", c);
 putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.toLowerCase());
 }

 public void actionPerformed(ActionEvent event)
 {
 Color c = (Color) getValue("color");
 buttonPanel.setBackground(c);
 }
}

Our test program creates three objects of this class, such as

Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);

Next, let’s associate this action with a button. That is easy because we can use a

JButton constructor that takes an Action object.

JButton blueButton = new JButton(blueAction);

That constructor reads the name and icon from the action, sets the short description

as the tooltip, and sets the action as the listener. You can see the icons and a tooltip

in Figure 11.6.

As we demonstrate in the next chapter, it is just as easy to add the same action

to a menu.

Figure 11.6 Buttons display the icons from the action objects.

Finally, we want to add the action objects to keystrokes so that an action is carried

out when the user types a keyboard command. To associate actions with

keystrokes, you first need to generate objects of the KeyStroke class. This is a

Chapter 11 Event Handling610

ptg16518469

convenience class that encapsulates the description of a key. To generate a KeyStroke
object, you don’t call a constructor but instead use the static getKeyStroke method

of the KeyStroke class.

KeyStroke ctrlBKey = KeyStroke.getKeyStroke("ctrl B");

To understand the next step, you need to understand the concept of keyboard focus.

A user interface can have many buttons, menus, scrollbars, and other components.

When you hit a key, it is sent to the component that has focus. That component

is usually (but not always) visually distinguished. For example, in the Java look-

and-feel, a button with focus has a thin rectangular border around the button

text. You can use the Tab key to move the focus between components. When you

press the space bar, the button with focus is clicked. Other keys carry out different

actions; for example, the arrow keys can move a scrollbar.

However, in our case, we do not want to send the keystroke to the component

that has focus. Otherwise, each of the buttons would need to know how to handle

the Ctrl+Y, Ctrl+B, and Ctrl+R keys.

This is a common problem, and the Swing designers came up with a convenient

solution. Every JComponent has three input maps, each mapping KeyStroke objects to

associated actions. The three input maps correspond to three different conditions

(see Table 11.2).

Table 11.2 Input Map Conditions

Invoke ActionFlag

When this component has keyboard focusWHEN_FOCUSED

When this component contains the component that

has keyboard focus

WHEN_ANCESTOR_OF_FOCUSED_COMPONENT

When this component is contained in the same

window as the component that has keyboard focus

WHEN_IN_FOCUSED_WINDOW

Keystroke processing checks these maps in the following order:

1. Check the WHEN_FOCUSED map of the component with input focus. If the keystroke

exists, execute the corresponding action. If the action is enabled, stop

processing.

2. Starting from the component with input focus, check the

WHEN_ANCESTOR_OF_FOCUSED_COMPONENT maps of its parent components. As soon as a map

with the keystroke is found, execute the corresponding action. If the action

is enabled, stop processing.

61111.2 Actions

ptg16518469

3. Look at all visible and enabled components, in the window with input focus,

that have this keystroke registered in a WHEN_IN_FOCUSED_WINDOW map. Give these

components (in the order of their keystroke registration) a chance to execute

the corresponding action. As soon as the first enabled action is executed, stop

processing. This part of the process is somewhat fragile if a keystroke appears

in more than one WHEN_IN_FOCUSED_WINDOW map.

To obtain an input map from the component, use the getInputMap method. Here is

an example:

InputMap imap = panel.getInputMap(JComponent.WHEN_FOCUSED);

The WHEN_FOCUSED condition means that this map is consulted when the current

component has the keyboard focus. In our situation, that isn’t the map we want.

One of the buttons, not the panel, has the input focus. Either of the other two

map choices works fine for inserting the color change keystrokes. We use

WHEN_ANCESTOR_OF_FOCUSED_COMPONENT in our example program.

The InputMap doesn’t directly map KeyStroke objects to Action objects. Instead, it maps

to arbitrary objects, and a second map, implemented by the ActionMap class,

maps objects to actions. That makes it easier to share the same actions among

keystrokes that come from different input maps.

Thus, each component has three input maps and one action map. To tie them to-

gether, you need to come up with names for the actions. Here is how you can tie

a key to an action:

imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
ActionMap amap = panel.getActionMap();
amap.put("panel.yellow", yellowAction);

It is customary to use the string "none" for a do-nothing action. That makes it easy

to deactivate a key:

imap.put(KeyStroke.getKeyStroke("ctrl C"), "none");

CAUTION: The JDK documentation suggests using the action name as the ac-
tion’s key. We don’t think that is a good idea. The action name is displayed on
buttons and menu items; thus, it can change at the whim of the UI designer and
may be translated into multiple languages. Such unstable strings are poor
choices for lookup keys, so we recommend that you come up with action names
that are independent of the displayed names.

To summarize, here is what you do to carry out the same action in response to a

button, a menu item, or a keystroke:

Chapter 11 Event Handling612

ptg16518469

1. Implement a class that extends the AbstractAction class. You may be able to use

the same class for multiple related actions.

2. Construct an object of the action class.

3. Construct a button or menu item from the action object. The constructor will

read the label text and icon from the action object.

4. For actions that can be triggered by keystrokes, you have to carry out addi-

tional steps. First, locate the top-level component of the window, such as a

panel that contains all other components.

5. Then, get the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT input map of the top-level compo-

nent. Make a KeyStroke object for the desired keystroke. Make an action key

object, such as a string that describes your action. Add the pair (keystroke,

action key) into the input map.

6. Finally, get the action map of the top-level component. Add the pair (action

key, action object) into the map.

Listing 11.3 shows the complete code of the program that maps both buttons and

keystrokes to action objects. Try it out—both clicking the buttons and pressing

Ctrl+Y, Ctrl+B, or Ctrl+R changes the panel color.

Listing 11.3 action/ActionFrame.java

1 package action;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a panel that demonstrates color change actions.
9 */
10 public class ActionFrame extends JFrame
11 {
12 private JPanel buttonPanel;
13 private static final int DEFAULT_WIDTH = 300;
14 private static final int DEFAULT_HEIGHT = 200;
15

16 public ActionFrame()
17 {
18 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
19 buttonPanel = new JPanel();
20

21 // define actions
22 Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
23 Color.YELLOW);

(Continues)

61311.2 Actions

ptg16518469

Listing 11.3 (Continued)

24 Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);
25 Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED);
26

27 // add buttons for these actions
28 buttonPanel.add(new JButton(yellowAction));
29 buttonPanel.add(new JButton(blueAction));
30 buttonPanel.add(new JButton(redAction));
31

32 // add panel to frame
33 add(buttonPanel);
34

35 // associate the Y, B, and R keys with names
36 InputMap imap = buttonPanel.getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
37 imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
38 imap.put(KeyStroke.getKeyStroke("ctrl B"), "panel.blue");
39 imap.put(KeyStroke.getKeyStroke("ctrl R"), "panel.red");
40

41 // associate the names with actions
42 ActionMap amap = buttonPanel.getActionMap();
43 amap.put("panel.yellow", yellowAction);
44 amap.put("panel.blue", blueAction);
45 amap.put("panel.red", redAction);
46 }
47

48 public class ColorAction extends AbstractAction
49 {
50 /**
51 * Constructs a color action.
52 * @param name the name to show on the button
53 * @param icon the icon to display on the button
54 * @param c the background color
55 */
56 public ColorAction(String name, Icon icon, Color c)
57 {
58 putValue(Action.NAME, name);
59 putValue(Action.SMALL_ICON, icon);
60 putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.toLowerCase());
61 putValue("color", c);
62 }
63

64 public void actionPerformed(ActionEvent event)
65 {
66 Color c = (Color) getValue("color");
67 buttonPanel.setBackground(c);
68 }
69 }
70 }

Chapter 11 Event Handling614

ptg16518469

javax.swing.Action 1.2

• boolean isEnabled()
• void setEnabled(boolean b)

gets or sets the enabled property of this action.

• void putValue(String key, Object value)

places a name/value pair inside the action object.

The name of the feature to store with the action object.

This can be any string, but several names have

predefined meanings—see Table 11.1.

keyParameters:

The object associated with the name.value

• Object getValue(String key)

returns the value of a stored name/value pair.

javax.swing.KeyStroke 1.2

• static KeyStroke getKeyStroke(String description)

constructs a keystroke from a human-readable description (a sequence of whitespace-

delimited strings). The description starts with zero or more modifiers shift control
ctrl meta alt altGraph and ends with either the string typed, followed by a one-character

string (for example, "typed a"), or an optional event specifier (pressed or released, with

pressed being the default), followed by a key code. The key code, when prefixed

with VK_, should correspond to a KeyEvent constant; for example, "INSERT" corresponds

to KeyEvent.VK_INSERT.

javax.swing.JComponent 1.2

• ActionMap getActionMap() 1.3

returns the map that associates action map keys (which can be arbitrary objects)

with Action objects.

• InputMap getInputMap(int flag) 1.3

gets the input map that maps key strokes to action map keys.

A condition on the keyboard focus to trigger the

action, one of the values in Table 11.2.

flagParameters:

61511.2 Actions

ptg16518469

11.3 Mouse Events
You do not need to handle mouse events explicitly if you just want the user to

be able to click on a button or menu. These mouse operations are handled inter-

nally by the various components in the user interface. However, if you want to

enable the user to draw with the mouse, you will need to trap the mouse move,

click, and drag events.

In this section, we will show you a simple graphics editor application that allows

the user to place, move, and erase squares on a canvas (see Figure 11.7).

Figure 11.7 A mouse test program

When the user clicks a mouse button, three listener methods are called: mousePressed
when the mouse is first pressed, mouseReleased when the mouse is released, and,

finally, mouseClicked. If you are only interested in complete clicks, you can ignore

the first two methods. By using the getX and getY methods on the MouseEvent argument,

you can obtain the x and y coordinates of the mouse pointer when the mouse was

clicked. To distinguish between single, double, and triple (!) clicks, use the

getClickCount method.

Some user interface designers inflict mouse click and keyboard modifier combi-

nations, such as Ctrl+Shift+click, on their users. We find this practice reprehensible,

but if you disagree, you will find that checking for mouse buttons and keyboard

modifiers is a mess.

Use bit masks to test which modifiers have been set. In the original API, two of

the button masks equal two keyboard modifier masks, namely

BUTTON2_MASK == ALT_MASK
BUTTON3_MASK == META_MASK

This was done so that users with a one-button mouse could simulate the other

mouse buttons by holding down modifier keys instead. However, as of Java SE 1.4,

a different approach is recommended. There are now masks

Chapter 11 Event Handling616

ptg16518469

BUTTON1_DOWN_MASK
BUTTON2_DOWN_MASK
BUTTON3_DOWN_MASK
SHIFT_DOWN_MASK
CTRL_DOWN_MASK
ALT_DOWN_MASK
ALT_GRAPH_DOWN_MASK
META_DOWN_MASK

The getModifiersEx method accurately reports the mouse buttons and keyboard

modifiers of a mouse event.

Note that BUTTON3_DOWN_MASK tests for the right (nonprimary) mouse button under

Windows. For example, you can use code like this to detect whether the right

mouse button is down:

if ((event.getModifiersEx() & InputEvent.BUTTON3_DOWN_MASK) != 0)
 . . . // code for right click

In our sample program, we supply both a mousePressed and a mouseClicked methods.

When you click on a pixel that is not inside any of the squares that have been

drawn, a new square is added. We implemented this in the mousePressed method so

that the user receives immediate feedback and does not have to wait until the

mouse button is released. When a user double-clicks inside an existing square, it

is erased. We implemented this in the mouseClicked method because we need the

click count.

public void mousePressed(MouseEvent event)
{
 current = find(event.getPoint());
 if (current == null) // not inside a square
 add(event.getPoint());
}

public void mouseClicked(MouseEvent event)
{
 current = find(event.getPoint());
 if (current != null && event.getClickCount() >= 2)
 remove(current);
}

As the mouse moves over a window, the window receives a steady stream

of mouse movement events. Note that there are separate MouseListener and

MouseMotionListener interfaces. This is done for efficiency—there are a lot of mouse

events as the user moves the mouse around, and a listener that just cares about

mouse clicks will not be bothered with unwanted mouse moves.

Our test application traps mouse motion events to change the cursor to a different

shape (a cross hair) when it is over a square. This is done with the getPredefinedCursor

61711.3 Mouse Events

ptg16518469

method of the Cursor class. Table 11.3 lists the constants to use with this method

along with what the cursors look like under Windows.

Table 11.3 Sample Cursor Shapes

ConstantIconConstantIcon

NE_RESIZE_CURSORDEFAULT_CURSOR

E_RESIZE_CURSORCROSSHAIR_CURSOR

SE_RESIZE_CURSORHAND_CURSOR

S_RESIZE_CURSORMOVE_CURSOR

SW_RESIZE_CURSORTEXT_CURSOR

W_RESIZE_CURSORWAIT_CURSOR

NW_RESIZE_CURSORN_RESIZE_CURSOR

Here is the mouseMoved method of the MouseMotionListener in our example program:

public void mouseMoved(MouseEvent event)
{
 if (find(event.getPoint()) == null)
 setCursor(Cursor.getDefaultCursor());
 else
 setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
}

NOTE: You can also define your own cursor types through the use of the
createCustomCursor method in the Toolkit class:

Toolkit tk = Toolkit.getDefaultToolkit();
Image img = tk.getImage("dynamite.gif");
Cursor dynamiteCursor = tk.createCustomCursor(img, new Point(10, 10), "dynamite stick");

The first parameter of the createCustomCursor points to the cursor image.The second
parameter gives the offset of the “hot spot” of the cursor. The third parameter is
a string that describes the cursor.This string can be used for accessibility support.
For example, a screen reader program can read the cursor shape description
to a user who is visually impaired or who simply is not facing the screen.

Chapter 11 Event Handling618

ptg16518469

If the user presses a mouse button while the mouse is in motion, mouseDragged calls

are generated instead of mouseMoved calls. Our test application lets a user drag the

square under the cursor. We simply update the currently dragged rectangle to

be centered under the mouse position. Then, we repaint the canvas to show the

new mouse position.

public void mouseDragged(MouseEvent event)
{
 if (current != null)
 {
 int x = event.getX();
 int y = event.getY();

 current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
 repaint();
 }
}

NOTE: The mouseMoved method is only called as long as the mouse stays inside
the component. However, the mouseDragged method keeps getting called even
when the mouse is being dragged outside the component.

There are two other mouse event methods: mouseEntered and mouseExited. These methods

are called when the mouse enters or exits a component.

Finally, we explain how to listen to mouse events. Mouse clicks are reported

through the mouseClicked procedure, which is part of the MouseListener interface. Many

applications are only interested in mouse clicks and not in mouse moves; with

the mouse move events occurring so frequently, the mouse move and drag events

are defined in a separate interface called MouseMotionListener.

In our program we are interested in both types of mouse events. We define two

inner classes: MouseHandler and MouseMotionHandler. The MouseHandler class extends the

MouseAdapter class because it defines only two of the five MouseListener methods. The

MouseMotionHandler implements the MouseMotionListener and defines both methods of that

interface. Listing 11.4 is the program listing.

Listing 11.4 mouse/MouseFrame.java

1 package mouse;
 2

3 import javax.swing.*;
 4

(Continues)

61911.3 Mouse Events

ptg16518469

Listing 11.4 (Continued)

5 /**
6 * A frame containing a panel for testing mouse operations
7 */
8 public class MouseFrame extends JFrame
9 {
10 public MouseFrame()
11 {
12 add(new MouseComponent());
13 pack();
14 }
15 }

Listing 11.5 mouse/MouseComponent.java

1 package mouse;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.geom.*;
6 import java.util.*;
7 import javax.swing.*;
 8

9 /**
10 * A component with mouse operations for adding and removing squares.
11 */
12 public class MouseComponent extends JComponent
13 {
14 private static final int DEFAULT_WIDTH = 300;
15 private static final int DEFAULT_HEIGHT = 200;
16

17 private static final int SIDELENGTH = 10;
18 private ArrayList<Rectangle2D> squares;
19 private Rectangle2D current; // the square containing the mouse cursor
20

21 public MouseComponent()
22 {
23 squares = new ArrayList<>();
24 current = null;
25

26 addMouseListener(new MouseHandler());
27 addMouseMotionListener(new MouseMotionHandler());
28 }
29

30 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
31

Chapter 11 Event Handling620

ptg16518469

32 public void paintComponent(Graphics g)
33 {
34 Graphics2D g2 = (Graphics2D) g;
35

36 // draw all squares
37 for (Rectangle2D r : squares)
38 g2.draw(r);
39 }
40

41 /**
42 * Finds the first square containing a point.
43 * @param p a point
44 * @return the first square that contains p
45 */
46 public Rectangle2D find(Point2D p)
47 {
48 for (Rectangle2D r : squares)
49 {
50 if (r.contains(p)) return r;
51 }
52 return null;
53 }
54

55 /**
56 * Adds a square to the collection.
57 * @param p the center of the square
58 */
59 public void add(Point2D p)
60 {
61 double x = p.getX();
62 double y = p.getY();
63

64 current = new Rectangle2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
65 SIDELENGTH);
66 squares.add(current);
67 repaint();
68 }
69

70 /**
71 * Removes a square from the collection.
72 * @param s the square to remove
73 */
74 public void remove(Rectangle2D s)
75 {
76 if (s == null) return;
77 if (s == current) current = null;
78 squares.remove(s);
79 repaint();
80 }

(Continues)

62111.3 Mouse Events

ptg16518469

Listing 11.5 (Continued)

81

82 private class MouseHandler extends MouseAdapter
83 {
84 public void mousePressed(MouseEvent event)
85 {
86 // add a new square if the cursor isn't inside a square
87 current = find(event.getPoint());
88 if (current == null) add(event.getPoint());
89 }
90

91 public void mouseClicked(MouseEvent event)
92 {
93 // remove the current square if double clicked
94 current = find(event.getPoint());
95 if (current != null && event.getClickCount() >= 2) remove(current);
96 }
97 }
98

99 private class MouseMotionHandler implements MouseMotionListener
100 {
101 public void mouseMoved(MouseEvent event)
102 {
103 // set the mouse cursor to cross hairs if it is inside
104 // a rectangle
105

106 if (find(event.getPoint()) == null) setCursor(Cursor.getDefaultCursor());
107 else setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
108 }
109

110 public void mouseDragged(MouseEvent event)
111 {
112 if (current != null)
113 {
114 int x = event.getX();
115 int y = event.getY();
116

117 // drag the current rectangle to center it at (x, y)
118 current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
119 repaint();
120 }
121 }
122 }
123 }

Chapter 11 Event Handling622

ptg16518469

java.awt.event.MouseEvent 1.1

• int getX()
• int getY()
• Point getPoint()

returns the x (horizontal) and y (vertical) coordinates of the point where the event

happened, measured from the top left corner of the component that is the

event source.

• int getClickCount()

returns the number of consecutive mouse clicks associated with this event. (The

time interval for what constitutes “consecutive” is system dependent.)

java.awt.event.InputEvent 1.1

• int getModifiersEx() 1.4

returns the extended or “down” modifiers for this event. Use the following mask

values to test the returned value:

BUTTON1_DOWN_MASK
BUTTON2_DOWN_MASK
BUTTON3_DOWN_MASK
SHIFT_DOWN_MASK
CTRL_DOWN_MASK
ALT_DOWN_MASK
ALT_GRAPH_DOWN_MASK
META_DOWN_MASK

• static String getModifiersExText(int modifiers) 1.4

returns a string such as "Shift+Button1" describing the extended or “down” modifiers

in the given flag set.

java.awt.Toolkit 1.0

• public Cursor createCustomCursor(Image image, Point hotSpot, String name) 1.2

creates a new custom cursor object.

The image to display when the cursor is activeimageParameters:

The cursor’s hot spot (such as the tip of an arrow or

the center of crosshairs)

hotSpot

A description of the cursor, to support special

accessibility environments

name

62311.3 Mouse Events

ptg16518469

java.awt.Component 1.0

• public void setCursor(Cursor cursor) 1.1

sets the cursor image to the specified cursor.

11.4 The AWT Event Hierarchy
Having given you a taste of how event handling works, we finish this chapter

with an overview of the AWT event-handling architecture.

As we briefly mentioned earlier, event handling in Java is object oriented, with

all events descending from the EventObject class in the java.util package. (The common

superclass is not called Event because that is the name of the event class in the old

event model. Although the old model is now deprecated, its classes are still a part

of the Java library.)

The EventObject class has a subclass AWTEvent, which is the parent of all AWT event

classes. Figure 11.8 shows the inheritance diagram of the AWT events.

Some of the Swing components generate event objects of yet more event types;

these directly extend EventObject, not AWTEvent.

The event objects encapsulate information about the event that the event source

communicates to its listeners. When necessary, you can then analyze the event

objects that were passed to the listener object, as we did in the button example

with the getSource and getActionCommand methods.

Some of the AWT event classes are of no practical use for the Java programmer.

For example, the AWT inserts PaintEvent objects into the event queue, but these

objects are not delivered to listeners. Java programmers don’t listen to paint

events; instead, they override the paintComponent method to control repainting. The

AWT also generates a number of events that are needed only by systems program-

mers, to provide input systems for ideographic languages, automated testing

robots, and so on. We do not discuss these specialized event types.

Chapter 11 Event Handling624

ptg16518469

Figure 11.8 Inheritance diagram of AWT event classes

62511.4 The AWT Event Hierarchy

ptg16518469

11.4.1 Semantic and Low-Level Events
The AWT makes a useful distinction between low-level and semantic events. A

semantic event is one that expresses what the user is doing, such as “clicking that

button”; an ActionEvent is a semantic event. Low-level events are those events that

make this possible. In the case of a button click, this is a mouse down, a series of

mouse moves, and a mouse up (but only if the mouse up is inside the button

area). Or it might be a keystroke, which happens if the user selects the

button with the Tab key and then activates it with the space bar. Similarly,

adjusting a scrollbar is a semantic event, but dragging the mouse is a low-level

event.

Here are the most commonly used semantic event classes in the java.awt.event
package:

• ActionEvent (for a button click, a menu selection, selecting a list item, or Enter

typed in a text field)

• AdjustmentEvent (the user adjusted a scrollbar)

• ItemEvent (the user made a selection from a set of checkbox or list items)

Five low-level event classes are commonly used:

• KeyEvent (a key was pressed or released)

• MouseEvent (the mouse button was pressed, released, moved, or dragged)

• MouseWheelEvent (the mouse wheel was rotated)

• FocusEvent (a component got focus or lost focus)

• WindowEvent (the window state changed)

The following interfaces listen to these events:

ActionListener MouseMotionListener
AdjustmentListener MouseWheelListener
FocusListener WindowListener
ItemListener WindowFocusListener
KeyListener WindowStateListener
MouseListener

Several of the AWT listener interfaces, namely those that have more than one

method, come with a companion adapter class that implements all the methods

in the interface to do nothing. (The other interfaces have only a single method

each, so there is no benefit in having adapter classes for these interfaces.) Here

are the commonly used adapter classes:

FocusAdapter MouseMotionAdapter
KeyAdapter WindowAdapter
MouseAdapter

Chapter 11 Event Handling626

ptg16518469

Table 11.4 shows the most important AWT listener interfaces, events, and event

sources.

The javax.swing.event package contains additional events that are specific to Swing

components. We cover some of them in the next chapter.

Table 11.4 Event Handling Summary

Events Generated ByParameter/AccessorsMethodsInterface

AbstractButton
JComboBox
JTextField
Timer

ActionEvent

• getActionCommand

• getModifiers

actionPerformedActionListener

JScrollbarAdjustmentEvent

• getAdjustable

• getAdjustmentType

• getValue

adjustmentValueChangedAdjustmentListener

AbstractButton
JComboBox

ItemEvent

• getItem

• getItemSelectable

• getStateChange

itemStateChangedItemListener

ComponentFocusEvent

• isTemporary

focusGained
focusLost

FocusListener

ComponentKeyEvent

• getKeyChar

• getKeyCode

• getKeyModifiersText

• getKeyText

• isActionKey

keyPressed
keyReleased
keyTyped

KeyListener

ComponentMouseEvent

• getClickCount

• getX

• getY

• getPoint

• translatePoint

mousePressed
mouseReleased
mouseEntered
mouseExited
mouseClicked

MouseListener

(Continues)

62711.4 The AWT Event Hierarchy

ptg16518469

Table 11.4 (Continued)

Events Generated ByParameter/AccessorsMethodsInterface

ComponentMouseEventmouseDragged
mouseMoved

MouseMotionListener

ComponentMouseWheelEvent

• getWheelRotation

• getScrollAmount

mouseWheelMovedMouseWheelListener

WindowWindowEvent

• getWindow

windowClosing
windowOpened
windowIconified
windowDeiconified
windowClosed
windowActivated
windowDeactivated

WindowListener

WindowWindowEvent

• getOppositeWindow

windowGainedFocus
windowLostFocus

WindowFocusListener

WindowWindowEvent

• getOldState

• getNewState

windowStateChangedWindowStateListener

This concludes our discussion of AWT event handling. The next chapter shows

you how to put together the most common Swing components, along with a

detailed coverage of the events they generate.

Chapter 11 Event Handling628

ptg16518469

12CHAPTER

User Interface Components
with Swing

In this chapter

• 12.1 Swing and the Model-View-Controller Design Pattern, page 630

• 12.2 Introduction to Layout Management, page 638

• 12.3 Text Input, page 648

• 12.4 Choice Components, page 657

• 12.5 Menus, page 678

• 12.6 Sophisticated Layout Management, page 699

• 12.7 Dialog Boxes, page 730

• 12.8 Troubleshooting GUI Programs, page 770

The previous chapter was written primarily to show you how to use the event

model in Java. In the process, you took the first steps toward learning how to

build a graphical user interface. This chapter shows you the most important tools

you’ll need to build more full-featured GUIs.

We start out with a tour of the architectural underpinnings of Swing. Knowing

what goes on “under the hood” is important in understanding how to use some

of the more advanced components effectively. We then show you how to use the

629

ptg16518469

most common user interface components in Swing, such as text fields, radio

buttons, and menus. Next, you will learn how to use the nifty layout manager

features of Java to arrange these components in a window, regardless of the look-

and-feel of a particular user interface. Finally, you’ll see how to implement dialog

boxes in Swing.

This chapter covers the basic Swing components such as text components, buttons,

and sliders. These are the essential user interface components that you will need

most frequently. We will cover advanced Swing components in Volume II.

12.1 Swing and the Model-View-Controller Design Pattern
As promised, we start this chapter with a description of the architecture of Swing

components. We first discuss the concept of design patterns and then look at

the “model-view-controller” pattern that has greatly influenced the design of the

Swing framework.

12.1.1 Design Patterns
When solving a problem, you don’t usually figure out a solution from first prin-

ciples. Instead, you are likely to be guided by your past experience, or you may

ask other experts for advice on what has worked for them. Design patterns are a

method for presenting this expertise in a structured way.

In recent years, software engineers have begun to assemble catalogs of such pat-

terns. The pioneers in this area were inspired by the architectural design patterns

of the architect Christopher Alexander. In his book, The Timeless Way of Building

(Oxford University Press, 1979), Alexander gives a catalog of patterns for

designing public and private living spaces. Here is a typical example:

Window Place

Everybody loves window seats, bay windows, and big windows with low

sills and comfortable chairs drawn up to them. . . A room which does not

have a place like this seldom allows you to feel comfortable or perfectly at

ease. . .

If the room contains no window which is a “place,” a person in the room

will be torn between two forces: (1) He wants to sit down and be comfortable,

and (2) he is drawn toward the light.

Obviously, if the comfortable places—those places in the room where you

most want to sit—are away from the windows, there is no way of overcoming

this conflict. . .

Chapter 12 User Interface Components with Swing630

ptg16518469

Therefore: In every room where you spend any length of time during the

day, make at least one window into a “window place.” (Figure 12.1.)

Figure 12.1 A window place

Each pattern in Alexander’s catalog, as well as those in the catalogs of software

patterns, follows a particular format. The pattern first describes a context, a situ-

ation that gives rise to a design problem. Then, the problem is explained, usually

as a set of conflicting forces. Finally, the solution shows a configuration that

balances these forces.

In the “window place” pattern, the context is a room in which you spend any

length of time during the day. The conflicting forces are that you want to sit down

and be comfortable and that you are drawn to the light. The solution is to make

a “window place.”

In the “model-view-controller” pattern, which we will describe in the next section,

the context is a user interface system that presents information and receives user

input. There are several forces. There may be multiple visual representations of

the same data that need to be updated together. The visual representations may

change—for example, to accommodate various look-and-feel standards. The in-

teraction mechanisms may change—for example, to support voice commands.

The solution is to distribute responsibilities into three separate interacting

components: the model, the view, and the controller.

The model-view-controller pattern is not the only pattern used in the design of

AWT and Swing. Here are several additonal examples:

• Containers and components are examples of the “composite” pattern.

• The scroll pane is a “decorator.”

• Layout managers follow the “strategy” pattern.

One important aspect of design patterns is that they become part of the culture.

Programmers all over the world know what you mean when you talk about the

63112.1 Swing and the Model-View-Controller Design Pattern

ptg16518469

model-view-controller pattern or the decorator pattern. Thus, patterns become

an efficient way of talking about design problems.

You will find a formal description of numerous useful software patterns in the

seminal book of the pattern movement, Design Patterns—Elements of Reusable

Object-Oriented Software, by Erich Gamma et al. (Addison-Wesley, 1995). We also

highly recommend the excellent book A System of Patterns by Frank Buschmann

et al. (John Wiley & Sons, 1996), which we find less seminal and more

approachable.

12.1.2 The Model-View-Controller Pattern
Let’s step back for a minute and think about the pieces that make up a user inter-

face component such as a button, a checkbox, a text field, or a sophisticated tree

control. Every component has three characteristics:

• Its content, such as the state of a button (pushed in or not), or the text in a text

field

• Its visual appearance (color, size, and so on)

• Its behavior (reaction to events)

Even a seemingly simple component such as a button exhibits some moderately

complex interaction among these characteristics. Obviously, the visual appearance

of a button depends on the look-and-feel. A Metal button looks different from a

Windows button or a Motif button. In addition, the appearance depends on the

button state; when a button is pushed in, it needs to be redrawn to look different.

The state depends on the events that the button receives. When the user depresses

the mouse inside the button, the button is pushed in.

Of course, when you use a button in your programs, you simply consider it as a

button; you don’t think too much about the inner workings and characteristics.

That, after all, is the job of the programmer who implemented the button. How-

ever, programmers who implement buttons and all other user interface compo-

nents are motivated to think a little harder about them, so that they work well

no matter what look-and-feel is in effect.

To do this, the Swing designers turned to a well-known design pattern: the model-

view-controller pattern. This pattern, like many other design patterns, goes back

to one of the principles of object-oriented design that we mentioned way back in

Chapter 5: Don’t make one object responsible for too much. Don’t have a single

button class do everything. Instead, have the look-and-feel of the component as-

sociated with one object and store the content in another object. The model-view-

controller (MVC) design pattern teaches how to accomplish this. Implement three

separate classes:

Chapter 12 User Interface Components with Swing632

ptg16518469

• The model, which stores the content

• The view, which displays the content

• The controller, which handles user input

The pattern specifies precisely how these three objects interact. The model stores

the content and has no user interface. For a button, the content is pretty trivial—just

a small set of flags that tells whether the button is currently pushed in or out,

whether it is active or inactive, and so on. For a text field, the content is a bit more

interesting. It is a string object that holds the current text. This is not the same as

the view of the content—if the content is larger than the text field, the user sees

only a portion of the text displayed (see Figure 12.2).

Figure 12.2 Model and view of a text field

The model must implement methods to change the content and to discover what

the content is. For example, a text model has methods to add or remove characters

in the current text and to return the current text as a string. Again, keep in mind

that the model is completely nonvisual. It is the job of a view to draw the data

stored in the model.

NOTE: The term “model” is perhaps unfortunate because we often think of a
model as a representation of an abstract concept. Car and airplane designers
build models to simulate real cars and planes. But that analogy really leads you
astray when thinking about the model-view-controller pattern. In this design
pattern, the model stores the complete content, and the view gives a (complete
or incomplete) visual representation of the content. A better analogy might be
the model who poses for an artist. It is up to the artist to look at the model and
create a view. Depending on the artist, that view might be a formal portrait, an
impressionist painting, or a cubist drawing that shows the limbs in strange
contortions.

One of the advantages of the model-view-controller pattern is that a model can

have multiple views, each showing a different part or aspect of the full content.

For example, an HTML editor can offer two simultaneous views of the same

63312.1 Swing and the Model-View-Controller Design Pattern

ptg16518469

content: a WYSIWYG view and a “raw tag” view (see Figure 12.3). When the

model is updated through the controller of one of the views, it tells both attached

views about the change. When the views are notified, they refresh themselves

automatically. Of course, for a simple user interface component such as a button,

you won’t have multiple views of the same model.

Figure 12.3 Two separate views of the same model

The controller handles the user-input events, such as mouse clicks and keystrokes.

It then decides whether to translate these events into changes in the model or the

view. For example, if the user presses a character key in a text box, the controller

calls the “insert character” command of the model. The model then tells the view

to update itself. The view never knows why the text changed. But if the user

presses a cursor key, the controller may tell the view to scroll. Scrolling the

view has no effect on the underlying text, so the model never knows that this

event happened.

Figure 12.4 shows the interactions among model, view, and controller objects.

Chapter 12 User Interface Components with Swing634

ptg16518469

Figure 12.4 Interactions among model, view, and controller objects

As a programmer using Swing components, you generally don’t need to think

about the model-view-controller architecture. Each user interface component has

a wrapper class (such as JButton or JTextField) that stores the model and the view.

When you want to inquire about the content (for example, the text in a text field),

the wrapper class asks the model and returns the answer to you. When you

want to change the view (for example, move the caret position in a text field),

the wrapper class forwards that request to the view. However, occasionally the

wrapper class doesn’t work hard enough on forwarding commands. Then, you

have to ask it to retrieve the model and work directly with it. (You don’t have to

work directly with the view—that is the job of the look-and-feel code.)

63512.1 Swing and the Model-View-Controller Design Pattern

ptg16518469

Besides being the right thing to do, the model-view-controller pattern was attrac-

tive for the Swing designers because it allowed them to implement pluggable

look-and-feel implementations. The model of a button or text field is independent

of the look-and-feel—but, of course, the visual representation is completely de-

pendent on the user interface design of a particular look-and-feel. The controller

can vary as well. For example, in a voice-controlled device, the controller must

cope with an entirely different set of events than on a standard computer with a

keyboard and a mouse. By separating out the underlying model from the user

interface, the Swing designers can reuse the code for the models and can even

switch the look-and-feel in a running program.

Of course, patterns are only intended as guidance, not as religion. No pattern is

applicable in all situations. For example, you may find it difficult to follow the

“window places” pattern to rearrange your cubicle. Similarly, the Swing designers

found that the harsh reality of pluggable look-and-feel implementations does not

always allow for a neat realization of the model-view-controller pattern. Models

are easy to separate, and each user interface component has a model class. But

the responsibilities of the view and the controller are not always clearly separated

and are distributed over a number of different classes. Of course, as a user of

these classes, you need not be concerned about this. In fact, as we pointed out

before, you often don’t have to worry about the models either—you just use the

component wrapper classes.

12.1.3 A Model-View-Controller Analysis of Swing Buttons
In the previous chapter, you already learned how to use buttons without having

to worry about their controllers, models, or views. Still, buttons are about the

simplest user interface elements, so they are a good place to get comfortable with

the model-view-controller pattern. You will encounter similar kinds of classes

and interfaces for the more sophisticated Swing components.

For most components, the model class implements an interface whose name ends

in Model; in this case, the interface is called ButtonModel. Classes implementing that

interface can define the state of the various kinds of buttons. Actually, buttons

aren’t all that complicated, and the Swing library contains a single class, called

DefaultButtonModel, that implements this interface.

You can get a sense of the sort of data maintained by a button model by looking

at the properties of the ButtonModel interface—see Table 12.1.

Chapter 12 User Interface Components with Swing636

ptg16518469

Table 12.1 Properties of the ButtonModel Interface

ValueProperty Name

The action command string associated with this buttonactionCommand

The keyboard mnemonic for this buttonmnemonic

true if the button was pressed and the mouse is still over the

button

armed

true if the button is selectableenabled

true if the button was pressed but the mouse button hasn’t yet

been released

pressed

true if the mouse is over the buttonrollover

true if the button has been toggled on (used for checkboxes and

radio buttons)

selected

Each JButton object stores a button model object which you can retrieve.

JButton button = new JButton("Blue");
ButtonModel model = button.getModel();

In practice, you won’t care—the minutiae of the button state are only of interest

to the view that draws it. All the important information—such as whether a button

is enabled—is available from the JButton class. (Of course, the JButton then asks its

model to retrieve that information.)

Have another look at the ButtonModel interface to see what isn’t there. The model

does not store the button label or icon. There is no way to find out what’s on the

face of a button just by looking at its model. (Actually, as you will see in Sec-

tion 12.4.2, “Radio Buttons,” on p. 660, purity of design is the source of some grief

for the programmer.)

It is also worth noting that the same model (namely, DefaultButtonModel) is used for

push buttons, radio buttons, checkboxes, and even menu items. Of course, each

of these button types has different views and controllers. When using the Metal

look-and-feel, the JButton uses a class called BasicButtonUI for the view and a class

called ButtonUIListener as controller. In general, each Swing component has an asso-

ciated view object that ends in UI. But not all Swing components have dedicated

controller objects.

63712.1 Swing and the Model-View-Controller Design Pattern

ptg16518469

So, having read this short introduction to what is going on under the hood in a

JButton, you may be wondering: Just what is a JButton really? It is simply a wrapper

class inheriting from JComponent that holds the DefaultButtonModel object, some view

data (such as the button label and icons), and a BasicButtonUI object that is responsible

for the button view.

12.2 Introduction to Layout Management
Before we go on to discussing individual Swing components, such as text fields

and radio buttons, we briefly cover how to arrange these components inside a

frame. Unlike Visual Basic, the JDK has no form designer. You need to write code

to position (lay out) the user interface components where you want them to be.

Of course, if you have a Java-enabled development environment, it will probably

have a layout tool that automates some or all of these tasks. Nevertheless, it is

important to know exactly what goes on “under the hood” because even the best

of these tools will usually require hand-tweaking.

Let’s start by reviewing the program from Chapter 11 that used buttons to change

the background color of a frame (see Figure 12.5).

Figure 12.5 A panel with three buttons

The buttons are contained in a JPanel object and are managed by the flow layout

manager, the default layout manager for a panel. Figure 12.6 shows what

happens when you add more buttons to the panel. As you can see, a new row is

started when there is no more room.

Chapter 12 User Interface Components with Swing638

ptg16518469

Figure 12.6 A panel with six buttons managed by a flow layout

Moreover, the buttons stay centered in the panel, even when the user resizes the

frame (see Figure 12.7).

Figure 12.7 Changing the panel size rearranges the buttons automatically.

In general, components are placed inside containers, and a layout manager determines

the positions and sizes of components in a container.

Buttons, text fields, and other user interface elements extend the class Component.

Components can be placed inside containers, such as panels. Containers can

themselves be put inside other containers, so the class Container extends Component.

Figure 12.8 shows the inheritance hierarchy for Component.

63912.2 Introduction to Layout Management

ptg16518469

Figure 12.8 Inheritance hierarchy for the Component class

NOTE: Unfortunately, the inheritance hierarchy is somewhat unclean in two re-
spects. First, top-level windows, such as JFrame, are subclasses of Container and
hence Component, but they cannot be placed inside other containers. Moreover,
JComponent is a subclass of Container, not Component. Therefore one can add other
components into a JButton. (However, those components would not be displayed.)

Each container has a default layout manager, but you can always set your own.

For example, the statement

panel.setLayout(new GridLayout(4, 4));

Chapter 12 User Interface Components with Swing640

ptg16518469

uses the GridLayout class to lay out the components in four rows and four columns.

When you add components to the container, the add method of the container

passes the component and any placement directions to the layout manager.

java.awt.Container 1.0

• void setLayout(LayoutManager m)

sets the layout manager for this container.

• Component add(Component c)
• Component add(Component c, Object constraints) 1.1

adds a component to this container and returns the component reference.

The component to addcParameters:

An identifier understood by the layout managerconstraints

java.awt.FlowLayout 1.0

• FlowLayout()
• FlowLayout(int align)
• FlowLayout(int align, int hgap, int vgap)

constructs a new FlowLayout.

One of LEFT, CENTER, or RIGHTalignParameters:

The horizontal gap to use in pixels (negative values force

an overlap)

hgap

The vertical gap to use in pixels (negative values force

an overlap)

vgap

12.2.1 Border Layout
The border layout manager is the default layout manager of the content pane of

every JFrame. Unlike the flow layout manager, which completely controls the posi-

tion of each component, the border layout manager lets you choose where you

want to place each component. You can choose to place the component in the

center, north, south, east, or west of the content pane (see Figure 12.9).

64112.2 Introduction to Layout Management

ptg16518469

Figure 12.9 Border layout

For example:

frame.add(component, BorderLayout.SOUTH);

The edge components are laid out first, and the remaining available space is oc-

cupied by the center. When the container is resized, the dimensions of the edge

components are unchanged, but the center component changes its size. Add

components by specifying a constant CENTER, NORTH, SOUTH, EAST, or WEST of the BorderLayout
class. Not all of the positions need to be occupied. If you don’t supply any value,

CENTER is assumed.

NOTE: The BorderLayout constants are defined as strings. For example,
BorderLayout.SOUTH is defined as the string "South". This is safer than using strings.
If you accidentally misspell a string, for example, frame.add(component, "south"), the
compiler won’t catch that error.

Unlike the flow layout, the border layout grows all components to fill the available

space. (The flow layout leaves each component at its preferred size.) This is a

problem when you add a button:

frame.add(yellowButton, BorderLayout.SOUTH); // don't

Figure 12.10 shows what happens when you use the preceding code fragment.

The button has grown to fill the entire southern region of the frame. And, if you

were to add another button to the southern region, it would just displace the first

button.

Chapter 12 User Interface Components with Swing642

ptg16518469

Figure 12.10 A single button managed by a border layout

To solve this problem, use additional panels. For example, look at Figure 12.11.

The three buttons at the bottom of the screen are all contained in a panel. The

panel is put into the southern region of the content pane.

Figure 12.11 Panel placed at the southern region of the frame

To achieve this configuration, first create a new JPanel object, then add the individ-

ual buttons to the panel. The default layout manager for a panel is a FlowLayout,

which is a good choice for this situation. Add the individual buttons to the panel,

using the add method you have seen before. The position and size of the buttons

is under the control of the FlowLayout manager. This means the buttons stay centered

within the panel and do not expand to fill the entire panel area. Finally, add the

panel to the content pane of the frame.

JPanel panel = new JPanel();
panel.add(yellowButton);
panel.add(blueButton);
panel.add(redButton);
frame.add(panel, BorderLayout.SOUTH);

64312.2 Introduction to Layout Management

ptg16518469

The border layout expands the size of the panel to fill the entire southern region.

java.awt.BorderLayout 1.0

• BorderLayout()
• BorderLayout(int hgap, int vgap)

constructs a new BorderLayout.

The horizontal gap to use in pixels (negative values force

an overlap)

hgapParameters:

The vertical gap to use in pixels (negative values force an

overlap)

vgap

12.2.2 Grid Layout
The grid layout arranges all components in rows and columns like a spreadsheet.

All components are given the same size. The calculator program in Figure 12.12

uses a grid layout to arrange the calculator buttons. When you resize the window,

the buttons grow and shrink, but all buttons have identical sizes.

Figure 12.12 A calculator

In the constructor of the grid layout object, you specify how many rows and

columns you need.

panel.setLayout(new GridLayout(4, 4));

Add the components, starting with the first entry in the first row, then the second

entry in the first row, and so on.

panel.add(new JButton("1"));
panel.add(new JButton("2"));

Chapter 12 User Interface Components with Swing644

ptg16518469

Listing 12.1 shows the panel class of the calculator program. This is a regular

calculator, not the “reverse Polish” variety that is so oddly popular in Java tuto-

rials. In this program, we call the pack method after adding the component to the

frame. This method uses the preferred sizes of all components to compute

the width and height of the frame.

Of course, few applications have as rigid a layout as the face of a calculator. In

practice, small grids (usually with just one row or one column) can be useful to

organize partial areas of a window. For example, if you want to have a row of

buttons of identical sizes, you can put the buttons inside a panel that is governed

by a grid layout with a single row.

Listing 12.1 calculator/CalculatorPanel.java

1 package calculator;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A panel with calculator buttons and a result display.
9 */
10 public class CalculatorPanel extends JPanel
11 {
12 private JButton display;
13 private JPanel panel;
14 private double result;
15 private String lastCommand;
16 private boolean start;
17

18 public CalculatorPanel()
19 {
20 setLayout(new BorderLayout());
21

22 result = 0;
23 lastCommand = "=";
24 start = true;
25

26 // add the display
27

28 display = new JButton("0");
29 display.setEnabled(false);
30 add(display, BorderLayout.NORTH);
31

32 ActionListener insert = new InsertAction();
33 ActionListener command = new CommandAction();

(Continues)

64512.2 Introduction to Layout Management

ptg16518469

Listing 12.1 (Continued)

34 // add the buttons in a 4 x 4 grid
35

36 panel = new JPanel();
37 panel.setLayout(new GridLayout(4, 4));
38

39 addButton("7", insert);
40 addButton("8", insert);
41 addButton("9", insert);
42 addButton("/", command);
43

44 addButton("4", insert);
45 addButton("5", insert);
46 addButton("6", insert);
47 addButton("*", command);
48

49 addButton("1", insert);
50 addButton("2", insert);
51 addButton("3", insert);
52 addButton("-", command);
53

54 addButton("0", insert);
55 addButton(".", insert);
56 addButton("=", command);
57 addButton("+", command);
58

59 add(panel, BorderLayout.CENTER);
60 }
61

62 /**
63 * Adds a button to the center panel.
64 * @param label the button label
65 * @param listener the button listener
66 */
67 private void addButton(String label, ActionListener listener)
68 {
69 JButton button = new JButton(label);
70 button.addActionListener(listener);
71 panel.add(button);
72 }
73

74 /**
75 * This action inserts the button action string to the end of the display text.
76 */
77 private class InsertAction implements ActionListener
78 {
79 public void actionPerformed(ActionEvent event)
80 {
81 String input = event.getActionCommand();

Chapter 12 User Interface Components with Swing646

ptg16518469

82 if (start)
83 {
84 display.setText("");
85 start = false;
86 }
87 display.setText(display.getText() + input);
88 }
89 }
90

91 /**
92 * This action executes the command that the button action string denotes.
93 */
94 private class CommandAction implements ActionListener
95 {
96 public void actionPerformed(ActionEvent event)
97 {
98 String command = event.getActionCommand();
99

100 if (start)
101 {
102 if (command.equals("-"))
103 {
104 display.setText(command);
105 start = false;
106 }
107 else lastCommand = command;
108 }
109 else
110 {
111 calculate(Double.parseDouble(display.getText()));
112 lastCommand = command;
113 start = true;
114 }
115 }
116 }
117

118 /**
119 * Carries out the pending calculation.
120 * @param x the value to be accumulated with the prior result.
121 */
122 public void calculate(double x)
123 {
124 if (lastCommand.equals("+")) result += x;
125 else if (lastCommand.equals("-")) result -= x;
126 else if (lastCommand.equals("*")) result *= x;
127 else if (lastCommand.equals("/")) result /= x;
128 else if (lastCommand.equals("=")) result = x;
129 display.setText("" + result);
130 }
131 }

64712.2 Introduction to Layout Management

ptg16518469

java.awt.GridLayout 1.0

• GridLayout(int rows, int columns)
• GridLayout(int rows, int columns, int hgap, int vgap)

constructs a new GridLayout. One of rows and columns (but not both) may be zero,

denoting an arbitrary number of components per row or column.

The number of rows in the gridrowsParameters:

The number of columns in the gridcolumns

The horizontal gap to use in pixels (negative values force

an overlap)

hgap

The vertical gap to use in pixels (negative values force an

overlap)

vgap

12.3 Text Input
We are finally ready to start introducing the Swing user interface components.

We begin with the components that let a user input and edit text. You can use

the JTextField and JTextArea components for text input. A text field can accept only

one line of text; a text area can accept multiple lines of text. A JPasswordField accepts

one line of text without showing the contents.

All three of these classes inherit from a class called JTextComponent. You will not be

able to construct a JTextComponent yourself because it is an abstract class. On the

other hand, as is so often the case in Java, when you go searching through the

API documentation, you may find that the methods you are looking for are actu-

ally in the parent class JTextComponent rather than the derived class. For example, the

methods that get or set the text in a text field or text area are actually in JTextComponent.

javax.swing.text.JTextComponent 1.2

• String getText()
• void setText(String text)

gets or sets the text of this text component.

• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property that determines whether the user can edit the

content of this text component.

Chapter 12 User Interface Components with Swing648

ptg16518469

12.3.1 Text Fields
The usual way to add a text field to a window is to add it to a panel or other

container—just as you would add a button:

JPanel panel = new JPanel();
JTextField textField = new JTextField("Default input", 20);
panel.add(textField);

This code adds a text field and initializes it by placing the string "Default input" inside

it. The second parameter of this constructor sets the width. In this case, the width

is 20 “columns.” Unfortunately, a column is a rather imprecise measurement.

One column is the expected width of one character in the font you are using for

the text. The idea is that if you expect the inputs to be n characters or less, you

are supposed to specify n as the column width. In practice, this measurement

doesn’t work out too well, and you should add 1 or 2 to the maximum input

length to be on the safe side. Also, keep in mind that the number of columns is

only a hint to the AWT that gives the preferred size. If the layout manager needs

to grow or shrink the text field, it can adjust its size. The column width that you

set in the JTextField constructor is not an upper limit on the number of characters

the user can enter. The user can still type in longer strings, but the input scrolls

when the text exceeds the length of the field. Users tend to find scrolling text

fields irritating, so you should size the fields generously. If you need to reset the

number of columns at runtime, you can do that with the setColumns method.

TIP: After changing the size of a text box with the setColumns method, call the
revalidate method of the surrounding container.

textField.setColumns(10);
panel.revalidate();

The revalidate method recomputes the size and layout of all components in a
container. After you use the revalidate method, the layout manager resizes
the container, and the changed size of the text field will be visible.

The revalidate method belongs to the JComponent class. It doesn’t immediately resize
the component but merely marks it for resizing. This approach avoids repetitive
calculations if multiple components request to be resized. However, if you
want to recompute all components inside a JFrame, you have to call the validate
method—JFrame doesn’t extend JComponent.

64912.3 Text Input

ptg16518469

In general, users add text (or edit an existing text) in a text field. Quite often these

text fields start out blank. To make a blank text field, just leave out the string as

a parameter for the JTextField constructor:

JTextField textField = new JTextField(20);

You can change the content of the text field at any time by using the setText method

from the JTextComponent parent class mentioned in the previous section. For example:

textField.setText("Hello!");

And, as was mentioned in the previous section, you can find out what the user

typed by calling the getText method. This method returns the exact text that the

user has typed. To trim any extraneous leading and trailing spaces from the data

in a text field, apply the trim method to the return value of getText:

String text = textField.getText().trim();

To change the font in which the user text appears, use the setFont method.

javax.swing.JTextField 1.2

• JTextField(int cols)

constructs an empty JTextField with the specified number of columns.

• JTextField(String text, int cols)

constructs a new JTextField with an initial string and the specified number of

columns.

• int getColumns()
• void setColumns(int cols)

gets or sets the number of columns that this text field should use.

javax.swing.JComponent 1.2

• void revalidate()

causes the position and size of a component to be recomputed.

• void setFont(Font f)

sets the font of this component.

Chapter 12 User Interface Components with Swing650

ptg16518469

java.awt.Component 1.0

• void validate()

recomputes the position and size of a component. If the component is a container,

the positions and sizes of its components are recomputed.

• Font getFont()

gets the font of this component.

12.3.2 Labels and Labeling Components
Labels are components that hold text. They have no decorations (for example, no

boundaries). They also do not react to user input. You can use a label to identify

components. For example, unlike buttons, text fields have no label to identify them.

To label a component that does not itself come with an identifier:

1. Construct a JLabel component with the correct text.

2. Place it close enough to the component you want to identify so that the user

can see that the label identifies the correct component.

The constructor for a JLabel lets you specify the initial text or icon and, optionally,

the alignment of the content. You use constants from the SwingConstants interface to

specify alignment. That interface defines a number of useful constants such as

LEFT, RIGHT, CENTER, NORTH, EAST, and so on. The JLabel class is one of several Swing

classes that implement this interface. Therefore, you can specify a right-aligned

label either as

JLabel label = new JLabel("User name: ", SwingConstants.RIGHT);

or

JLabel label = new JLabel("User name: ", JLabel.RIGHT);

The setText and setIcon methods let you set the text and icon of the label at runtime.

TIP: You can use both plain and HTML text in buttons, labels, and menu items.
We don’t recommend HTML in buttons—it interferes with the look-and-feel.
But HTML in labels can be very effective. Simply surround the label string with
<html>. . .</html>, like this:

label = new JLabel("<html>Required entry:</html>");

Note that the first component with an HTML label may take some time to be
displayed because the rather complex HTML rendering code must be loaded.

65112.3 Text Input

ptg16518469

Labels can be positioned inside a container like any other component. This means

you can use the techniques you have seen before to place your labels where you

need them.

javax.swing.JLabel 1.2

• JLabel(String text)
• JLabel(Icon icon)
• JLabel(String text, int align)
• JLabel(String text, Icon icon, int align)

constructs a label.

The text in the labeltextParameters:

The icon in the labelicon

One of the SwingConstants constants LEFT (default), CENTER, or

RIGHT

align

• String getText()
• void setText(String text)

gets or sets the text of this label.

• Icon getIcon()
• void setIcon(Icon icon)

gets or sets the icon of this label.

12.3.3 Password Fields
Password fields are a special kind of text field. To prevent nosy bystanders from

seeing your password, the characters that the user enters are not actually dis-

played. Instead, each typed character is represented by an echo character, typically

an asterisk (*). Swing supplies a JPasswordField class that implements such a text

field.

The password field is another example of the power of the model-view-controller

architecture pattern. The password field uses the same model to store the data

as a regular text field, but its view has been changed to display all characters as

echo characters.

Chapter 12 User Interface Components with Swing652

ptg16518469

javax.swing.JPasswordField 1.2

• JPasswordField(String text, int columns)

constructs a new password field.

• void setEchoChar(char echo)

sets the echo character for this password field. This is advisory; a particular look-

and-feel may insist on its own choice of echo character.A value of 0 resets the echo

character to the default.

• char[] getPassword()

returns the text contained in this password field. For stronger security, you should

overwrite the content of the returned array after use. (The password is not

returned as a String because a string would stay in the virtual machine until it is

garbage-collected.)

12.3.4 Text Areas
Sometimes, you need to collect user input that is more than one line long. As

mentioned earlier, you can use the JTextArea component for this. When you place

a text area component in your program, a user can enter any number of lines of

text, using the Enter key to separate them. Each line ends with a '\n'. Figure 12.13

shows a text area at work.

Figure 12.13 Text components

65312.3 Text Input

ptg16518469

In the constructor for the JTextArea component, specify the number of rows and

columns for the text area. For example,

textArea = new JTextArea(8, 40); // 8 lines of 40 columns each

where the columns parameter works as before—and you still need to add a few

more columns for safety’s sake. Also, as before, the user is not restricted to the

number of rows and columns; the text simply scrolls when the user inputs too

much. You can also use the setColumns method to change the number of columns

and the setRows method to change the number of rows. These numbers only indicate

the preferred size—the layout manager can still grow or shrink the text area.

If there is more text than the text area can display, the remaining text is simply

clipped. You can avoid clipping long lines by turning on line wrapping:

textArea.setLineWrap(true); // long lines are wrapped

This wrapping is a visual effect only; the text in the document is not changed—no

automatic '\n' characters are inserted into the text.

12.3.5 Scroll Panes
In Swing, a text area does not have scrollbars. If you want scrollbars, you have

to place the text area inside a scroll pane.

textArea = new JTextArea(8, 40);
JScrollPane scrollPane = new JScrollPane(textArea);

The scroll pane now manages the view of the text area. Scrollbars automatically

appear if there is more text than the text area can display, and they vanish again

if text is deleted and the remaining text fits inside the area. The scrolling is handled

internally by the scroll pane—your program does not need to process scroll events.

This is a general mechanism that works for any component, not just text areas.

To add scrollbars to a component, put them inside a scroll pane.

Listing 12.2 demonstrates the various text components. This program shows a

text field, a password field, and a text area with scrollbars. The text field and

password field are labeled. Click on “Insert” to insert the field contents into the

text area.

NOTE: The JTextArea component displays plain text only, without special fonts
or formatting. To display formatted text (such as HTML), you can use the
JEditorPane class that is discussed in Volume II.

Chapter 12 User Interface Components with Swing654

ptg16518469

Listing 12.2 text/TextComponentFrame.java

1 package text;
 2

3 import java.awt.BorderLayout;
4 import java.awt.GridLayout;
 5

6 import javax.swing.JButton;
7 import javax.swing.JFrame;
8 import javax.swing.JLabel;
9 import javax.swing.JPanel;
10 import javax.swing.JPasswordField;
11 import javax.swing.JScrollPane;
12 import javax.swing.JTextArea;
13 import javax.swing.JTextField;
14 import javax.swing.SwingConstants;
15

16 /**
17 * A frame with sample text components.
18 */
19 public class TextComponentFrame extends JFrame
20 {
21 public static final int TEXTAREA_ROWS = 8;
22 public static final int TEXTAREA_COLUMNS = 20;
23

24 public TextComponentFrame()
25 {
26 JTextField textField = new JTextField();
27 JPasswordField passwordField = new JPasswordField();
28

29 JPanel northPanel = new JPanel();
30 northPanel.setLayout(new GridLayout(2, 2));
31 northPanel.add(new JLabel("User name: ", SwingConstants.RIGHT));
32 northPanel.add(textField);
33 northPanel.add(new JLabel("Password: ", SwingConstants.RIGHT));
34 northPanel.add(passwordField);
35

36 add(northPanel, BorderLayout.NORTH);
37

38 JTextArea textArea = new JTextArea(TEXTAREA_ROWS, TEXTAREA_COLUMNS);
39 JScrollPane scrollPane = new JScrollPane(textArea);
40

41 add(scrollPane, BorderLayout.CENTER);
42

43 // add button to append text into the text area
44

45 JPanel southPanel = new JPanel();
46

47 JButton insertButton = new JButton("Insert");

(Continues)

65512.3 Text Input

ptg16518469

Listing 12.2 (Continued)

48 southPanel.add(insertButton);
49 insertButton.addActionListener(event ->
50 textArea.append("User name: " + textField.getText() + " Password: "
51 + new String(passwordField.getPassword()) + "\n"));
52

53 add(southPanel, BorderLayout.SOUTH);
54 pack();
55 }
56 }

javax.swing.JTextArea 1.2

• JTextArea()
• JTextArea(int rows, int cols)
• JTextArea(String text, int rows, int cols)

constructs a new text area.

• void setColumns(int cols)

tells the text area the preferred number of columns it should use.

• void setRows(int rows)

tells the text area the preferred number of rows it should use.

• void append(String newText)

appends the given text to the end of the text already in the text area.

• void setLineWrap(boolean wrap)

turns line wrapping on or off.

• void setWrapStyleWord(boolean word)

If word is true, long lines are wrapped at word boundaries. If it is false, long lines

are broken without taking word boundaries into account.

• void setTabSize(int c)

sets tab stops every c columns. Note that the tabs aren’t converted to spaces but

cause alignment with the next tab stop.

javax.swing.JScrollPane 1.2

• JScrollPane(Component c)

creates a scroll pane that displays the content of the specified component. Scrollbars

are supplied when the component is larger than the view.

Chapter 12 User Interface Components with Swing656

ptg16518469

12.4 Choice Components
You now know how to collect text input from users, but there are many occasions

where you would rather give users a finite set of choices than have them enter

the data in a text component. Using a set of buttons or a list of items tells your

users what choices they have. (It also saves you the trouble of error checking.) In

this section, you will learn how to program checkboxes, radio buttons, lists of

choices, and sliders.

12.4.1 Checkboxes
If you want to collect just a “yes” or “no” input, use a checkbox component.

Checkboxes automatically come with labels that identify them. The user can check

the box by clicking inside it and turn off the checkmark by clicking inside the box

again. Pressing the space bar when the focus is in the checkbox also toggles the

checkmark.

Figure 12.14 shows a simple program with two checkboxes, one for turning the

italic attribute of a font on or off, and the other for boldface. Note that the second

checkbox has focus, as indicated by the rectangle around the label. Each time the

user clicks one of the checkboxes, the screen is refreshed, using the new font

attributes.

Figure 12.14 Checkboxes

Checkboxes need a label next to them to identify their purpose. Give the label

text in the constructor:

bold = new JCheckBox("Bold");

Use the setSelected method to turn a checkbox on or off. For example:

bold.setSelected(true);

65712.4 Choice Components

ptg16518469

The isSelected method then retrieves the current state of each checkbox. It is false
if unchecked, true if checked.

When the user clicks on a checkbox, this triggers an action event. As always, you

attach an action listener to the checkbox. In our program, the two checkboxes

share the same action listener.

ActionListener listener = . . .
bold.addActionListener(listener);
italic.addActionListener(listener);

The listener queries the state of the bold and italic checkboxes and sets the font of

the panel to plain, bold, italic, or both bold and italic.

ActionListener listener = event -> {
 int mode = 0;
 if (bold.isSelected()) mode += Font.BOLD;
 if (italic.isSelected()) mode += Font.ITALIC;
 label.setFont(new Font(Font.SERIF, mode, FONTSIZE));
};

Listing 12.3 is the program listing for the checkbox example.

Listing 12.3 checkBox/CheckBoxFrame.java

1 package checkBox;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a sample text label and check boxes for selecting font
9 * attributes.
10 */
11 public class CheckBoxFrame extends JFrame
12 {
13 private JLabel label;
14 private JCheckBox bold;
15 private JCheckBox italic;
16 private static final int FONTSIZE = 24;
17

18 public CheckBoxFrame()
19 {
20 // add the sample text label
21

Chapter 12 User Interface Components with Swing658

ptg16518469

22 label = new JLabel("The quick brown fox jumps over the lazy dog.");
23 label.setFont(new Font("Serif", Font.BOLD, FONTSIZE));
24 add(label, BorderLayout.CENTER);
25

26 // this listener sets the font attribute of
27 // the label to the check box state
28

29 ActionListener listener = event -> {
30 int mode = 0;
31 if (bold.isSelected()) mode += Font.BOLD;
32 if (italic.isSelected()) mode += Font.ITALIC;
33 label.setFont(new Font("Serif", mode, FONTSIZE));
34 };
35

36 // add the check boxes
37

38 JPanel buttonPanel = new JPanel();
39

40 bold = new JCheckBox("Bold");
41 bold.addActionListener(listener);
42 bold.setSelected(true);
43 buttonPanel.add(bold);
44

45 italic = new JCheckBox("Italic");
46 italic.addActionListener(listener);
47 buttonPanel.add(italic);
48

49 add(buttonPanel, BorderLayout.SOUTH);
50 pack();
51 }
52 }

javax.swing.JCheckBox 1.2

• JCheckBox(String label)
• JCheckBox(String label, Icon icon)

constructs a checkbox that is initially unselected.

• JCheckBox(String label, boolean state)

constructs a checkbox with the given label and initial state.

• boolean isSelected()
• void setSelected(boolean state)

gets or sets the selection state of the checkbox.

65912.4 Choice Components

ptg16518469

12.4.2 Radio Buttons
In the previous example, the user could check either, both, or neither of the two

checkboxes. In many cases, we want the user to check only one of several boxes.

When another box is checked, the previous box is automatically unchecked. Such

a group of boxes is often called a radio button group because the buttons work like

the station selector buttons on a radio. When you push in one button, the previ-

ously depressed button pops out. Figure 12.15 shows a typical example. We allow

the user to select a font size from among the choices—Small, Medium, Large, or

Extra large—but, of course, we will allow selecting only one size at a time.

Figure 12.15 A radio button group

Implementing radio button groups is easy in Swing. You construct one object of

type ButtonGroup for every group of buttons. Then, you add objects of type JRadioButton
to the button group. The button group object is responsible for turning off the

previously set button when a new button is clicked.

ButtonGroup group = new ButtonGroup();

JRadioButton smallButton = new JRadioButton("Small", false);
group.add(smallButton);

JRadioButton mediumButton = new JRadioButton("Medium", true);
group.add(mediumButton);
. . .

The second argument of the constructor is true for the button that should be

checked initially and false for all others. Note that the button group controls only

the behavior of the buttons; if you want to group the buttons for layout purposes,

you also need to add them to a container such as a JPanel.

If you look again at Figures 12.14 and 12.15, you will note that the appearance of

the radio buttons is different from that of checkboxes. Checkboxes are square and

contain a checkmark when selected. Radio buttons are round and contain a dot

when selected.

Chapter 12 User Interface Components with Swing660

ptg16518469

The event notification mechanism for radio buttons is the same as for any other

buttons. When the user checks a radio button, the button generates an action

event. In our example program, we define an action listener that sets the font size

to a particular value:

ActionListener listener = event ->
 label.setFont(new Font("Serif", Font.PLAIN, size));

Compare this listener setup to that of the checkbox example. Each radio button

gets a different listener object. Each listener object knows exactly what it needs

to do—set the font size to a particular value. With checkboxes, we used a different

approach: Both checkboxes have the same action listener that calls a method

looking at the current state of both checkboxes.

Could we follow the same approach here? We could have a single listener that

computes the size as follows:

if (smallButton.isSelected()) size = 8;
else if (mediumButton.isSelected()) size = 12;
. . .

However, we prefer to use separate action listener objects because they tie the

size values more closely to the buttons.

NOTE: If you have a group of radio buttons, you know that only one of them is
selected. It would be nice to be able to quickly find out which, without having to
query all the buttons in the group. The ButtonGroup object controls all buttons, so
it would be convenient if this object could give us a reference to the selected
button. Indeed, the ButtonGroup class has a getSelection method, but that method
doesn’t return the radio button that is selected. Instead, it returns a ButtonModel
reference to the model attached to the button. Unfortunately, none of the
ButtonModel methods are very helpful. The ButtonModel interface inherits a method
getSelectedObjects from the ItemSelectable interface that, rather uselessly, returns
null.The getActionCommand method looks promising because the “action command”
of a radio button is its text label. But the action command of its model is null.
Only if you explicitly set the action commands of all radio buttons with the
setActionCommand method do the action command values of the models also get
set. Then you can retrieve the action command of the currently selected button
with buttonGroup.getSelection().getActionCommand().

Listing 12.4 is the complete program for font size selection that puts a set of radio

buttons to work.

66112.4 Choice Components

ptg16518469

Listing 12.4 radioButton/RadioButtonFrame.java

1 package radioButton;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a sample text label and radio buttons for selecting font sizes.
9 */
10 public class RadioButtonFrame extends JFrame
11 {
12 private JPanel buttonPanel;
13 private ButtonGroup group;
14 private JLabel label;
15 private static final int DEFAULT_SIZE = 36;
16

17 public RadioButtonFrame()
18 {
19 // add the sample text label
20

21 label = new JLabel("The quick brown fox jumps over the lazy dog.");
22 label.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
23 add(label, BorderLayout.CENTER);
24

25 // add the radio buttons
26

27 buttonPanel = new JPanel();
28 group = new ButtonGroup();
29

30 addRadioButton("Small", 8);
31 addRadioButton("Medium", 12);
32 addRadioButton("Large", 18);
33 addRadioButton("Extra large", 36);
34

35 add(buttonPanel, BorderLayout.SOUTH);
36 pack();
37 }
38

39 /**
40 * Adds a radio button that sets the font size of the sample text.
41 * @param name the string to appear on the button
42 * @param size the font size that this button sets
43 */
44 public void addRadioButton(String name, int size)
45 {

Chapter 12 User Interface Components with Swing662

ptg16518469

46 boolean selected = size == DEFAULT_SIZE;
47 JRadioButton button = new JRadioButton(name, selected);
48 group.add(button);
49 buttonPanel.add(button);
50

51 // this listener sets the label font size
52

53 ActionListener listener = event -> label.setFont(new Font("Serif", Font.PLAIN, size));
54

55 button.addActionListener(listener);
56 }
57 }

javax.swing.JRadioButton 1.2

• JRadioButton(String label, Icon icon)

constructs a radio button that is initially unselected.

• JRadioButton(String label, boolean state)

constructs a radio button with the given label and initial state.

javax.swing.ButtonGroup 1.2

• void add(AbstractButton b)

adds the button to the group.

• ButtonModel getSelection()

returns the button model of the selected button.

javax.swing.ButtonModel 1.2

• String getActionCommand()

returns the action command for this button model.

javax.swing.AbstractButton 1.2

• void setActionCommand(String s)

sets the action command for this button and its model.

66312.4 Choice Components

ptg16518469

12.4.3 Borders
If you have multiple groups of radio buttons in a window, you will want to visu-

ally indicate which buttons are grouped. Swing provides a set of useful borders

for this purpose. You can apply a border to any component that extends JComponent.

The most common usage is to place a border around a panel and fill that panel

with other user interface elements, such as radio buttons.

You can choose from quite a few borders, but you need to follow the same steps

for all of them.

1. Call a static method of the BorderFactory to create a border. You can choose

among the following styles (see Figure 12.16):

• Lowered bevel

• Raised bevel

• Etched

• Line

• Matte

• Empty (just to create some blank space around the component)

Figure 12.16 Testing border types

2. If you like, add a title to your border by passing your border to

BorderFactory.createTitledBorder.

3. If you really want to go all out, combine several borders with a call to

BorderFactory.createCompoundBorder.

4. Add the resulting border to your component by calling the setBorder method

of the JComponent class.

Chapter 12 User Interface Components with Swing664

ptg16518469

For example, here is how you add an etched border with a title to a panel:

Border etched = BorderFactory.createEtchedBorder();
Border titled = BorderFactory.createTitledBorder(etched, "A Title");
panel.setBorder(titled);

Run the program in Listing 12.5 to get an idea what the various borders look like.

Different borders have different options for setting border widths and colors; see

the API notes for details. True border enthusiasts will appreciate that there is also

a SoftBevelBorder class for beveled borders with softened corners and that a LineBorder
can have rounded corners as well. You can construct these borders only by using

one of the class constructors—there is no BorderFactory method for them.

Listing 12.5 border/BorderFrame.java

1 package border;
 2

3 import java.awt.*;
4 import javax.swing.*;
5 import javax.swing.border.*;
 6

7 /**
8 * A frame with radio buttons to pick a border style.
9 */
10 public class BorderFrame extends JFrame
11 {
12 private JPanel demoPanel;
13 private JPanel buttonPanel;
14 private ButtonGroup group;
15

16 public BorderFrame()
17 {
18 demoPanel = new JPanel();
19 buttonPanel = new JPanel();
20 group = new ButtonGroup();
21

22 addRadioButton("Lowered bevel", BorderFactory.createLoweredBevelBorder());
23 addRadioButton("Raised bevel", BorderFactory.createRaisedBevelBorder());
24 addRadioButton("Etched", BorderFactory.createEtchedBorder());
25 addRadioButton("Line", BorderFactory.createLineBorder(Color.BLUE));
26 addRadioButton("Matte", BorderFactory.createMatteBorder(10, 10, 10, 10, Color.BLUE));
27 addRadioButton("Empty", BorderFactory.createEmptyBorder());
28

29 Border etched = BorderFactory.createEtchedBorder();

(Continues)

66512.4 Choice Components

ptg16518469

Listing 12.5 (Continued)

30 Border titled = BorderFactory.createTitledBorder(etched, "Border types");
31 buttonPanel.setBorder(titled);
32

33 setLayout(new GridLayout(2, 1));
34 add(buttonPanel);
35 add(demoPanel);
36 pack();
37 }
38

39 public void addRadioButton(String buttonName, Border b)
40 {
41 JRadioButton button = new JRadioButton(buttonName);
42 button.addActionListener(event -> demoPanel.setBorder(b));
43 group.add(button);
44 buttonPanel.add(button);
45 }
46 }

javax.swing.BorderFactory 1.2

• static Border createLineBorder(Color color)
• static Border createLineBorder(Color color, int thickness)

creates a simple line border.

• static MatteBorder createMatteBorder(int top, int left, int bottom, int right, Color color)
• static MatteBorder createMatteBorder(int top, int left, int bottom, int right, Icon tileIcon)

creates a thick border that is filled with a color or a repeating icon.

• static Border createEmptyBorder()
• static Border createEmptyBorder(int top, int left, int bottom, int right)

creates an empty border.

• static Border createEtchedBorder()
• static Border createEtchedBorder(Color highlight, Color shadow)
• static Border createEtchedBorder(int type)
• static Border createEtchedBorder(int type, Color highlight, Color shadow)

creates a line border with a 3D effect.

Colors for 3D effecthighlight, shadowParameters:

One of EtchedBorder.RAISED, EtchedBorder.LOWEREDtype

(Continues)

Chapter 12 User Interface Components with Swing666

ptg16518469

javax.swing.BorderFactory 1.2 (Continued)

• static Border createBevelBorder(int type)
• static Border createBevelBorder(int type, Color highlight, Color shadow)
• static Border createLoweredBevelBorder()
• static Border createRaisedBevelBorder()

creates a border that gives the effect of a lowered or raised surface.

Colors for 3D effecthighlight, shadowParameters:

One of BevelBorder.RAISED, BevelBorder.LOWEREDtype

• static TitledBorder createTitledBorder(String title)
• static TitledBorder createTitledBorder(Border border)
• static TitledBorder createTitledBorder(Border border, String title)
• static TitledBorder createTitledBorder(Border border, String title, int justification, int

position)
• static TitledBorder createTitledBorder(Border border, String title, int justification, int

position, Font font)
• static TitledBorder createTitledBorder(Border border, String title, int justification, int

position, Font font, Color color)

creates a titled border with the specified properties.

titleParameters: The title string

The border to decorate with the titleborder

One of the TitledBorder constants LEFT, CENTER, RIGHT, LEADING,

TRAILING, or DEFAULT_JUSTIFICATION (left)

justification

One of the TitledBorder constants ABOVE_TOP, TOP, BELOW_TOP,

ABOVE_BOTTOM, BOTTOM, BELOW_BOTTOM, or DEFAULT_POSITION (top)

position

The font for the titlefont

The color of the titlecolor

• static CompoundBorder createCompoundBorder(Border outsideBorder, Border insideBorder)

combines two borders to a new border.

javax.swing.border.SoftBevelBorder 1.2

• SoftBevelBorder(int type)
• SoftBevelBorder(int type, Color highlight, Color shadow)

creates a bevel border with softened corners.

Colors for 3D effecthighlight, shadowParameters:

One of EtchedBorder.RAISED, EtchedBorder.LOWEREDtype

66712.4 Choice Components

ptg16518469

javax.swing.border.LineBorder 1.2

• public LineBorder(Color color, int thickness, boolean roundedCorners)

creates a line border with the given color and thickness. If roundedCorners is true, the

border has rounded corners.

javax.swing.JComponent 1.2

• void setBorder(Border border)

sets the border of this component.

12.4.4 Combo Boxes
If you have more than a handful of alternatives, radio buttons are not a good

choice because they take up too much screen space. Instead, you can use a combo

box. When the user clicks on this component, a list of choices drops down, and

the user can then select one of them (see Figure 12.17).

Figure 12.17 A combo box

If the drop-down list box is set to be editable, you can edit the current selection as

if it were a text field. For that reason, this component is called a combo box—it

combines the flexibility of a text field with a set of predefined choices. The JComboBox
class provides a combo box component.

Chapter 12 User Interface Components with Swing668

ptg16518469

As of Java SE 7, the JComboBox class is a generic class. For example, a JComboBox<String>
holds objects of type String, and a JComboBox<Integer> holds integers.

Call the setEditable method to make the combo box editable. Note that editing affects

only the selected item. It does not change the list of choices in any way.

You can obtain the current selection, which may have been edited if the combo

box is editable, by calling the getSelectedItem method. However, for an editable

combo box, that item may have any type, depending on the editor that takes the

user edits and turns the result into an object. (See Volume II, Chapter 6 for a dis-

cussion of editors.) If your combo box isn’t editable, you are better off calling

combo.getItemAt(combo.getSelectedIndex())

which gives you the selected item with the correct type.

In the example program, the user can choose a font style from a list of styles (Serif,

SansSerif, Monospaced, etc.). The user can also type in another font.

Add the choice items with the addItem method. In our program, addItem is called

only in the constructor, but you can call it any time.

JComboBox<String> faceCombo = new JComboBox<>();
faceCombo.addItem("Serif");
faceCombo.addItem("SansSerif");
. . .

This method adds the string to the end of the list. You can add new items

anywhere in the list with the insertItemAt method:

faceCombo.insertItemAt("Monospaced", 0); // add at the beginning

You can add items of any type—the combo box invokes each item’s toString
method to display it.

If you need to remove items at runtime, use the removeItem or removeItemAt method,

depending on whether you supply the item to be removed or its position.

faceCombo.removeItem("Monospaced");
faceCombo.removeItemAt(0); // remove first item

The removeAllItems method removes all items at once.

TIP: If you need to add a large number of items to a combo box, the addItem
method will perform poorly. Instead, construct a DefaultComboBoxModel, populate it
by calling addElement, and then call the setModel method of the JComboBox class.

66912.4 Choice Components

ptg16518469

When the user selects an item from a combo box, the combo box generates an

action event. To find out which item was selected, call getSource on the event pa-

rameter to get a reference to the combo box that sent the event. Then call the

getSelectedItem method to retrieve the currently selected item. You will need to cast

the returned value to the appropriate type, usually String.

ActionListener listener = event ->
 label.setFont(new Font(

faceCombo.getItemAt(faceCombo.setSelectedIndex()),
 Font.PLAIN,
 DEFAULT_SIZE));

Listing 12.6 shows the complete program.

NOTE: If you want to show a permanently displayed list instead of a drop-down
list, use the JList component. We cover JList in Chapter 6 of Volume II.

Listing 12.6 comboBox/ComboBoxFrame.java

1 package comboBox;
 2

3 import java.awt.BorderLayout;
4 import java.awt.Font;
 5

6 import javax.swing.JComboBox;
7 import javax.swing.JFrame;
8 import javax.swing.JLabel;
9 import javax.swing.JPanel;
10

11 /**
12 * A frame with a sample text label and a combo box for selecting font faces.
13 */
14 public class ComboBoxFrame extends JFrame
15 {
16 private JComboBox<String> faceCombo;
17 private JLabel label;
18 private static final int DEFAULT_SIZE = 24;
19

20 public ComboBoxFrame()
21 {
22 // add the sample text label
23

24 label = new JLabel("The quick brown fox jumps over the lazy dog.");
25 label.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
26 add(label, BorderLayout.CENTER);
27

Chapter 12 User Interface Components with Swing670

ptg16518469

28 // make a combo box and add face names
29

30 faceCombo = new JComboBox<>();
31 faceCombo.addItem("Serif");
32 faceCombo.addItem("SansSerif");
33 faceCombo.addItem("Monospaced");
34 faceCombo.addItem("Dialog");
35 faceCombo.addItem("DialogInput");
36

37 // the combo box listener changes the label font to the selected face name
38

39 faceCombo.addActionListener(event ->
40 label.setFont(
41 new Font(faceCombo.getItemAt(faceCombo.getSelectedIndex()),
42 Font.PLAIN, DEFAULT_SIZE)));
43

44 // add combo box to a panel at the frame's southern border
45

46 JPanel comboPanel = new JPanel();
47 comboPanel.add(faceCombo);
48 add(comboPanel, BorderLayout.SOUTH);
49 pack();
50 }
51 }

javax.swing.JComboBox 1.2

• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property of this combo box.

• void addItem(Object item)

adds an item to the item list.

• void insertItemAt(Object item, int index)

inserts an item into the item list at a given index.

• void removeItem(Object item)

removes an item from the item list.

• void removeItemAt(int index)

removes the item at an index.

• void removeAllItems()

removes all items from the item list.

• Object getSelectedItem()

returns the currently selected item.

67112.4 Choice Components

ptg16518469

12.4.5 Sliders
Combo boxes let users choose from a discrete set of values. Sliders offer a choice

from a continuum of values—for example, any number between 1 and 100.

The most common way of constructing a slider is as follows:

JSlider slider = new JSlider(min, max, initialValue);

If you omit the minimum, maximum, and initial values, they are initialized with

0, 100, and 50, respectively.

Or if you want the slider to be vertical, use the following constructor call:

JSlider slider = new JSlider(SwingConstants.VERTICAL, min, max, initialValue);

These constructors create a plain slider, such as the top slider in Figure 12.18. You

will see presently how to add decorations to a slider.

Figure 12.18 Sliders

As the user slides the slider bar, the value of the slider moves between the mini-

mum and the maximum values. When the value changes, a ChangeEvent is sent to

all change listeners. To be notified of the change, call the addChangeListener method

Chapter 12 User Interface Components with Swing672

ptg16518469

and install an object that implements the functional ChangeListener interface. In the

callback, retrieve the slider value:

ChangeListener listener = event -> {
 JSlider slider = (JSlider) event.getSource();
 int value = slider.getValue();
 . . .
};

You can embellish the slider by showing ticks. For example, in the sample program,

the second slider uses the following settings:

slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(5);

The slider is decorated with large tick marks every 20 units and small tick marks

every 5 units. The units refer to slider values, not pixels.

These instructions only set the units for the tick marks. To actually have the tick

marks appear, call

slider.setPaintTicks(true);

The major and minor tick marks are independent. For example, you can set major

tick marks every 20 units and minor tick marks every 7 units, but that will give

you a very messy scale.

You can force the slider to snap to ticks. Whenever the user has finished dragging

a slider in snap mode, it is immediately moved to the closest tick. You activate

this mode with the call

slider.setSnapToTicks(true);

CAUTION: The “snap to ticks” behavior doesn’t work as well as you might
imagine. Until the slider has actually snapped, the change listener still reports
slider values that don’t correspond to ticks.And if you click next to the slider—an
action that normally advances the slider a bit in the direction of the click—a
slider with “snap to ticks” does not move to the next tick.

You can display tick mark labels for the major tick marks by calling

slider.setPaintLabels(true);

For example, with a slider ranging from 0 to 100 and major tick spacing of 20, the

ticks are labeled 0, 20, 40, 60, 80, and 100.

You can also supply other tick mark labels, such as strings or icons (see

Figure 12.18). The process is a bit convoluted. You need to fill a hash table with

67312.4 Choice Components

ptg16518469

keys of type Integer and values of type Component. You then call the setLabelTable method.

The components are placed under the tick marks. Usually, JLabel objects are used.

Here is how you can label ticks as A, B, C, D, E, and F:

Hashtable<Integer, Component> labelTable = new Hashtable<Integer, Component>();
labelTable.put(0, new JLabel("A"));
labelTable.put(20, new JLabel("B"));
. . .
labelTable.put(100, new JLabel("F"));
slider.setLabelTable(labelTable);

See Chapter 9 for more information about hash tables.

Listing 12.7 also shows a slider with icons as tick labels.

TIP: If your tick marks or labels don’t show, double-check that you called
setPaintTicks(true) and setPaintLabels(true).

The fourth slider in Figure 12.18 has no track. To suppress the “track” in which

the slider moves, call

slider.setPaintTrack(false);

The fifth slider has its direction reversed by a call to

slider.setInverted(true);

The example program shows all these visual effects with a collection of sliders.

Each slider has a change event listener installed that places the current slider

value into the text field at the bottom of the frame.

Listing 12.7 slider/SliderFrame.java

1 package slider;
 2

3 import java.awt.*;
4 import java.util.*;
5 import javax.swing.*;
6 import javax.swing.event.*;
 7

8 /**
9 * A frame with many sliders and a text field to show slider values.
10 */

Chapter 12 User Interface Components with Swing674

ptg16518469

11 public class SliderFrame extends JFrame
12 {
13 private JPanel sliderPanel;
14 private JTextField textField;
15 private ChangeListener listener;
16

17 public SliderFrame()
18 {
19 sliderPanel = new JPanel();
20 sliderPanel.setLayout(new GridBagLayout());
21

22 // common listener for all sliders
23 listener = event -> {
24 // update text field when the slider value changes
25 JSlider source = (JSlider) event.getSource();
26 textField.setText("" + source.getValue());
27 };
28

29 // add a plain slider
30

31 JSlider slider = new JSlider();
32 addSlider(slider, "Plain");
33

34 // add a slider with major and minor ticks
35

36 slider = new JSlider();
37 slider.setPaintTicks(true);
38 slider.setMajorTickSpacing(20);
39 slider.setMinorTickSpacing(5);
40 addSlider(slider, "Ticks");
41

42 // add a slider that snaps to ticks
43

44 slider = new JSlider();
45 slider.setPaintTicks(true);
46 slider.setSnapToTicks(true);
47 slider.setMajorTickSpacing(20);
48 slider.setMinorTickSpacing(5);
49 addSlider(slider, "Snap to ticks");
50

51 // add a slider with no track
52

53 slider = new JSlider();
54 slider.setPaintTicks(true);
55 slider.setMajorTickSpacing(20);
56 slider.setMinorTickSpacing(5);
57 slider.setPaintTrack(false);

(Continues)

67512.4 Choice Components

ptg16518469

Listing 12.7 (Continued)

58 addSlider(slider, "No track");
59

60 // add an inverted slider
61

62 slider = new JSlider();
63 slider.setPaintTicks(true);
64 slider.setMajorTickSpacing(20);
65 slider.setMinorTickSpacing(5);
66 slider.setInverted(true);
67 addSlider(slider, "Inverted");
68

69 // add a slider with numeric labels
70

71 slider = new JSlider();
72 slider.setPaintTicks(true);
73 slider.setPaintLabels(true);
74 slider.setMajorTickSpacing(20);
75 slider.setMinorTickSpacing(5);
76 addSlider(slider, "Labels");
77

78 // add a slider with alphabetic labels
79

80 slider = new JSlider();
81 slider.setPaintLabels(true);
82 slider.setPaintTicks(true);
83 slider.setMajorTickSpacing(20);
84 slider.setMinorTickSpacing(5);
85

86 Dictionary<Integer, Component> labelTable = new Hashtable<>();
87 labelTable.put(0, new JLabel("A"));
88 labelTable.put(20, new JLabel("B"));
89 labelTable.put(40, new JLabel("C"));
90 labelTable.put(60, new JLabel("D"));
91 labelTable.put(80, new JLabel("E"));
92 labelTable.put(100, new JLabel("F"));
93

94 slider.setLabelTable(labelTable);
95 addSlider(slider, "Custom labels");
96

97 // add a slider with icon labels
98

99 slider = new JSlider();
100 slider.setPaintTicks(true);

Chapter 12 User Interface Components with Swing676

ptg16518469

101 slider.setPaintLabels(true);
102 slider.setSnapToTicks(true);
103 slider.setMajorTickSpacing(20);
104 slider.setMinorTickSpacing(20);
105

106 labelTable = new Hashtable<Integer, Component>();
107

108 // add card images
109

110 labelTable.put(0, new JLabel(new ImageIcon("nine.gif")));
111 labelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
112 labelTable.put(40, new JLabel(new ImageIcon("jack.gif")));
113 labelTable.put(60, new JLabel(new ImageIcon("queen.gif")));
114 labelTable.put(80, new JLabel(new ImageIcon("king.gif")));
115 labelTable.put(100, new JLabel(new ImageIcon("ace.gif")));
116

117 slider.setLabelTable(labelTable);
118 addSlider(slider, "Icon labels");
119

120 // add the text field that displays the slider value
121

122 textField = new JTextField();
123 add(sliderPanel, BorderLayout.CENTER);
124 add(textField, BorderLayout.SOUTH);
125 pack();
126 }
127

128 /**
129 * Adds a slider to the slider panel and hooks up the listener
130 * @param s the slider
131 * @param description the slider description
132 */
133 public void addSlider(JSlider s, String description)
134 {
135 s.addChangeListener(listener);
136 JPanel panel = new JPanel();
137 panel.add(s);
138 panel.add(new JLabel(description));
139 panel.setAlignmentX(Component.LEFT_ALIGNMENT);
140 GridBagConstraints gbc = new GridBagConstraints();
141 gbc.gridy = sliderPanel.getComponentCount();
142 gbc.anchor = GridBagConstraints.WEST;
143 sliderPanel.add(panel, gbc);
144 }
145 }

67712.4 Choice Components

ptg16518469

javax.swing.JSlider 1.2

• JSlider()
• JSlider(int direction)
• JSlider(int min, int max)
• JSlider(int min, int max, int initialValue)
• JSlider(int direction, int min, int max, int initialValue)

constructs a horizontal slider with the given direction and minimum, maximum,

and initial values.

One of SwingConstants.HORIZONTAL or SwingConstants.VERTICAL.The

default is horizontal.

directionParameters:

The minimum and maximum for the slider values.

Defaults are 0 and 100.

min, max

The initial value for the slider. The default is 50.initialValue

• void setPaintTicks(boolean b)

displays ticks if b is true.

• void setMajorTickSpacing(int units)
• void setMinorTickSpacing(int units)

sets major or minor ticks at multiples of the given slider units.

• void setPaintLabels(boolean b)

displays tick labels if b is true.

• void setLabelTable(Dictionary table)

sets the components to use for the tick labels. Each key/value pair in the table has

the form new Integer(value)/component.

• void setSnapToTicks(boolean b)

if b is true, then the slider snaps to the closest tick after each adjustment.

• void setPaintTrack(boolean b)

if b is true, a track is displayed in which the slider runs.

12.5 Menus
We started this chapter by introducing the most common components that you

might want to place into a window, such as various kinds of buttons, text

fields, and combo boxes. Swing also supports another type of user interface

element—pull-down menus that are familiar from GUI applications.

Chapter 12 User Interface Components with Swing678

ptg16518469

A menu bar at the top of a window contains the names of the pull-down menus.

Clicking on a name opens the menu containing menu items and submenus. When

the user clicks on a menu item, all menus are closed and a message is sent to the

program. Figure 12.19 shows a typical menu with a submenu.

Figure 12.19 A menu with a submenu

12.5.1 Menu Building
Building menus is straightforward. First, create a menu bar:

JMenuBar menuBar = new JMenuBar();

A menu bar is just a component that you can add anywhere you like. Normally,

you want it to appear at the top of a frame. You can add it there with the setJMenuBar
method:

frame.setJMenuBar(menuBar);

For each menu, you create a menu object:

JMenu editMenu = new JMenu("Edit");

Add the top-level menus to the menu bar:

menuBar.add(editMenu);

Add menu items, separators, and submenus to the menu object:

JMenuItem pasteItem = new JMenuItem("Paste");
editMenu.add(pasteItem);
editMenu.addSeparator();
JMenu optionsMenu = . . .; // a submenu
editMenu.add(optionsMenu);

67912.5 Menus

ptg16518469

You can see separators in Figure 12.19 below the Paste and Read-only menu items.

When the user selects a menu, an action event is triggered. You need to install an

action listener for each menu item:

ActionListener listener = . . .;
pasteItem.addActionListener(listener);

The method JMenu.add(String s) conveniently adds a menu item to the end of a menu.

For example:

editMenu.add("Paste");

The add method returns the created menu item, so you can capture it and add the

listener, as follows:

JMenuItem pasteItem = editMenu.add("Paste");
pasteItem.addActionListener(listener);

It often happens that menu items trigger commands that can also be activated

through other user interface elements such as toolbar buttons. In Chapter 11, you

saw how to specify commands through Action objects. You define a class that im-

plements the Action interface, usually by extending the AbstractAction convenience

class, specify the menu item label in the constructor of the AbstractAction object, and

override the actionPerformed method to hold the menu action handler. For example:

Action exitAction = new AbstractAction("Exit") // menu item text goes here
 {
 public void actionPerformed(ActionEvent event)
 {

// action code goes here
System.exit(0);

 }
 };

You can then add the action to the menu:

JMenuItem exitItem = fileMenu.add(exitAction);

This command adds a menu item to the menu, using the action name. The action

object becomes its listener. This is just a convenient shortcut for

JMenuItem exitItem = new JMenuItem(exitAction);
fileMenu.add(exitItem);

Chapter 12 User Interface Components with Swing680

ptg16518469

javax.swing.JMenu 1.2

• JMenu(String label)

constructs a menu with the given label.

• JMenuItem add(JMenuItem item)

adds a menu item (or a menu).

• JMenuItem add(String label)

adds a menu item with the given label to this menu and returns the item.

• JMenuItem add(Action a)

adds a menu item with the given action to this menu and returns the item.

• void addSeparator()

adds a separator line to the menu.

• JMenuItem insert(JMenuItem menu, int index)

adds a new menu item (or submenu) to the menu at a specific index.

• JMenuItem insert(Action a, int index)

adds a new menu item with the given action at a specific index.

• void insertSeparator(int index)

adds a separator to the menu.

Where to add the separatorindexParameters:

• void remove(int index)
• void remove(JMenuItem item)

removes a specific item from the menu.

javax.swing.JMenuItem 1.2

• JMenuItem(String label)

constructs a menu item with a given label.

• JMenuItem(Action a) 1.3

constructs a menu item for the given action.

javax.swing.AbstractButton 1.2

• void setAction(Action a) 1.3

sets the action for this button or menu item.

68112.5 Menus

ptg16518469

javax.swing.JFrame 1.2

• void setJMenuBar(JMenuBar menubar)

sets the menu bar for this frame.

12.5.2 Icons in Menu Items
Menu items are very similar to buttons. In fact, the JMenuItem class extends the

AbstractButton class. Just like buttons, menus can have just a text label, just an icon,

or both. You can specify the icon with the JMenuItem(String, Icon) or JMenuItem(Icon)
constructor, or you can set it with the setIcon method that the JMenuItem class inherits

from the AbstractButton class. Here is an example:

JMenuItem cutItem = new JMenuItem("Cut", new ImageIcon("cut.gif"));

In Figure 12.19, you can see icons next to several menu items. By default, the

menu item text is placed to the right of the icon. If you prefer the text to be placed

on the left, call the setHorizontalTextPosition method that the JMenuItem class inherits

from the AbstractButton class. For example, the call

cutItem.setHorizontalTextPosition(SwingConstants.LEFT);

moves the menu item text to the left of the icon.

You can also add an icon to an action:

cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));

Whenever you construct a menu item out of an action, the Action.NAME value becomes

the text of the menu item and the Action.SMALL_ICON value becomes the icon.

Alternatively, you can set the icon in the AbstractAction constructor:

cutAction = new
 AbstractAction("Cut", new ImageIcon("cut.gif"))
 {
 public void actionPerformed(ActionEvent event)
 {

. . .
 }
 };

javax.swing.JMenuItem 1.2

• JMenuItem(String label, Icon icon)

constructs a menu item with the given label and icon.

Chapter 12 User Interface Components with Swing682

ptg16518469

javax.swing.AbstractButton 1.2

• void setHorizontalTextPosition(int pos)

sets the horizontal position of the text relative to the icon.

SwingConstants.RIGHT (text is to the right of icon) or

SwingConstants.LEFT

posParameters:

javax.swing.AbstractAction 1.2

• AbstractAction(String name, Icon smallIcon)

constructs an abstract action with the given name and icon.

12.5.3 Checkbox and Radio Button Menu Items
Checkbox and radio button menu items display a checkbox or radio button next to

the name (see Figure 12.19). When the user selects the menu item, the item

automatically toggles between checked and unchecked.

Apart from the button decoration, treat these menu items just as you would any

others. For example, here is how you create a checkbox menu item:

JCheckBoxMenuItem readonlyItem = new JCheckBoxMenuItem("Read-only");
optionsMenu.add(readonlyItem);

The radio button menu items work just like regular radio buttons. You must add

them to a button group. When one of the buttons in a group is selected, all others

are automatically deselected.

ButtonGroup group = new ButtonGroup();
JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");
insertItem.setSelected(true);
JRadioButtonMenuItem overtypeItem = new JRadioButtonMenuItem("Overtype");
group.add(insertItem);
group.add(overtypeItem);
optionsMenu.add(insertItem);
optionsMenu.add(overtypeItem);

With these menu items, you don’t necessarily want to be notified when the user

selects the item. Instead, you can simply use the isSelected method to test the current

state of the menu item. (Of course, that means you should keep a reference to the

menu item stored in an instance field.) Use the setSelected method to set the state.

68312.5 Menus

ptg16518469

javax.swing.JCheckBoxMenuItem 1.2

• JCheckBoxMenuItem(String label)

constructs the checkbox menu item with the given label.

• JCheckBoxMenuItem(String label, boolean state)

constructs the checkbox menu item with the given label and the given initial state

(true is checked).

javax.swing.JRadioButtonMenuItem 1.2

• JRadioButtonMenuItem(String label)

constructs the radio button menu item with the given label.

• JRadioButtonMenuItem(String label, boolean state)

constructs the radio button menu item with the given label and the given initial

state (true is checked).

javax.swing.AbstractButton 1.2

• boolean isSelected()
• void setSelected(boolean state)

gets or sets the selection state of this item (true is checked).

12.5.4 Pop-Up Menus
A pop-up menu is a menu that is not attached to a menu bar but floats somewhere

(see Figure 12.20).

Create a pop-up menu just as you create a regular menu, except that a pop-up

menu has no title.

JPopupMenu popup = new JPopupMenu();

Then, add your menu items as usual:

JMenuItem item = new JMenuItem("Cut");
item.addActionListener(listener);
popup.add(item);

Unlike the regular menu bar that is always shown at the top of the frame, you

must explicitly display a pop-up menu by using the show method. Specify the

Chapter 12 User Interface Components with Swing684

ptg16518469

Figure 12.20 A pop-up menu

parent component and the location of the pop-up, using the coordinate system

of the parent. For example:

popup.show(panel, x, y);

Usually, you want to pop up a menu when the user clicks a particular mouse

button—the so-called pop-up trigger. In Windows and Linux, the pop-up trigger

is the nonprimary (usually, the right) mouse button. To pop up a menu when the

user clicks on a component, using the pop-up trigger, simply call the method

component.setComponentPopupMenu(popup);

Very occasionally, you may place a component inside another component that

has a pop-up menu. The child component can inherit the parent component’s

pop-up menu by calling

child.setInheritsPopupMenu(true);

javax.swing.JPopupMenu 1.2

• void show(Component c, int x, int y)

shows the pop-up menu.

The component over which the pop-up menu is to appearcParameters:

The coordinates (in the coordinate space of c) of the top left

corner of the pop-up menu

x, y

• boolean isPopupTrigger(MouseEvent event) 1.3

returns true if the mouse event is the pop-up menu trigger.

68512.5 Menus

ptg16518469

java.awt.event.MouseEvent 1.1

• boolean isPopupTrigger()

returns true if this mouse event is the pop-up menu trigger.

javax.swing.JComponent 1.2

• JPopupMenu getComponentPopupMenu() 5.0
• void setComponentPopupMenu(JPopupMenu popup) 5.0

gets or sets the pop-up menu for this component.

• boolean getInheritsPopupMenu() 5.0
• void setInheritsPopupMenu(boolean b) 5.0

gets or sets the inheritsPopupMenu property. If the property is set and this component’s

pop-up menu is null, it uses its parent’s pop-up menu.

12.5.5 Keyboard Mnemonics and Accelerators
It is a real convenience for the experienced user to select menu items by keyboard

mnemonics. You can create a keyboard mnemonic for a menu item by specifying

a mnemonic letter in the menu item constructor:

JMenuItem aboutItem = new JMenuItem("About", 'A');

The keyboard mnemonic is displayed automatically in the menu, with the

mnemonic letter underlined (see Figure 12.21). For example, in the item defined

in the last example, the label will be displayed as “About” with an underlined

letter “A”. When the menu is displayed, the user just needs to press the A key,

and the menu item is selected. (If the mnemonic letter is not part of the menu

string, then typing it still selects the item, but the mnemonic is not displayed in

the menu. Naturally, such invisible mnemonics are of dubious utility.)

Sometimes, you don’t want to underline the first letter of the menu item that

matches the mnemonic. For example, if you have a mnemonic “A” for the menu

item “Save As,” then it makes more sense to underline the second “A” (Save As).

You can specify which character you want to have underlined by calling the

setDisplayedMnemonicIndex method.

If you have an Action object, you can add the mnemonic as the value of the

Action.MNEMONIC_KEY key, as follows:

cutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));

Chapter 12 User Interface Components with Swing686

ptg16518469

Figure 12.21 Keyboard mnemonics

You can supply a mnemonic letter only in the constructor of a menu item, not in

the constructor for a menu. To attach a mnemonic to a menu, call the setMnemonic
method:

JMenu helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

To select a top-level menu from the menu bar, press the Alt key together with

the mnemonic letter. For example, press Alt+H to select the Help menu from the

menu bar.

Keyboard mnemonics let you select a submenu or menu item from the currently

open menu. In contrast, accelerators are keyboard shortcuts that let you select

menu items without ever opening a menu. For example, many programs attach

the accelerators Ctrl+O and Ctrl+S to the Open and Save items in the File menu.

Use the setAccelerator method to attach an accelerator key to a menu item. The

setAccelerator method takes an object of type Keystroke. For example, the following

call attaches the accelerator Ctrl+O to the openItem menu item:

openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl O"));

Typing the accelerator key combination automatically selects the menu option

and fires an action event, as if the user had selected the menu option manually.

You can attach accelerators only to menu items, not to menus. Accelerator keys

don’t actually open the menu. Instead, they directly fire the action event associated

with a menu.

Conceptually, adding an accelerator to a menu item is similar to the technique of

adding an accelerator to a Swing component. (We discussed that technique in

Chapter 11.) However, when the accelerator is added to a menu item, the key

combination is automatically displayed in the menu (see Figure 12.22).

68712.5 Menus

ptg16518469

Figure 12.22 Accelerators

NOTE: Under Windows, Alt+F4 closes a window. But this is not an accelerator
to be programmed in Java. It is a shortcut defined by the operating system. This
key combination will always trigger the WindowClosing event for the active window
regardless of whether there is a Close item on the menu.

javax.swing.JMenuItem 1.2

• JMenuItem(String label, int mnemonic)

constructs a menu item with a given label and mnemonic.

The label for this menu itemlabelParameters:

The mnemonic character for the item; this character will

be underlined in the label

mnemonic

• void setAccelerator(KeyStroke k)

sets the keystroke k as accelerator for this menu item.The accelerator key is displayed

next to the label.

javax.swing.AbstractButton 1.2

• void setMnemonic(int mnemonic)

sets the mnemonic character for the button.This character will be underlined in the

label.

• void setDisplayedMnemonicIndex(int index) 1.4

sets the index of the character to be underlined in the button text. Use this method

if you don’t want the first occurrence of the mnemonic character to be underlined.

Chapter 12 User Interface Components with Swing688

ptg16518469

12.5.6 Enabling and Disabling Menu Items
Occasionally, a particular menu item should be selected only in certain contexts.

For example, when a document is opened in read-only mode, the Save menu item

is not meaningful. Of course, we could remove the item from the menu with the

JMenu.remove method, but users would react with some surprise to menus whose

content keeps changing. Instead, it is better to deactivate the menu items that

lead to temporarily inappropriate commands. A deactivated menu item is shown

in gray, and it cannot be selected (see Figure 12.23).

Figure 12.23 Disabled menu items

To enable or disable a menu item, use the setEnabled method:

saveItem.setEnabled(false);

There are two strategies for enabling and disabling menu items. Each time circum-

stances change, you can call setEnabled on the relevant menu items or actions. For

example, as soon as a document has been set to read-only mode, you can locate

the Save and Save As menu items and disable them. Alternatively, you can disable

items just before displaying the menu. To do this, you must register a listener for

the “menu selected” event. The javax.swing.event package defines a MenuListener interface

with three methods:

void menuSelected(MenuEvent event)
void menuDeselected(MenuEvent event)
void menuCanceled(MenuEvent event)

The menuSelected method is called before the menu is displayed. It can therefore be

used to disable or enable menu items. The following code shows how to disable

the Save and Save As actions whenever the Read Only checkbox menu item is

selected:

68912.5 Menus

ptg16518469

public void menuSelected(MenuEvent event)
{
 saveAction.setEnabled(!readonlyItem.isSelected());
 saveAsAction.setEnabled(!readonlyItem.isSelected());
}

CAUTION: Disabling menu items just before displaying the menu is a clever
idea, but it does not work for menu items that also have accelerator keys. Since
the menu is never opened when the accelerator key is pressed, the action is
never disabled, and is still triggered by the accelerator key.

javax.swing.JMenuItem 1.2

• void setEnabled(boolean b)

enables or disables the menu item.

javax.swing.event.MenuListener 1.2

• void menuSelected(MenuEvent e)

is called when the menu has been selected, before it is opened.

• void menuDeselected(MenuEvent e)

is called when the menu has been deselected, after it has been closed.

• void menuCanceled(MenuEvent e)

is called when the menu has been canceled, for example, by a user clicking outside

the menu.

Listing 12.8 is a sample program that generates a set of menus. It shows all the

features that you saw in this section: nested menus, disabled menu items, checkbox

and radio button menu items, a pop-up menu, and keyboard mnemonics and

accelerators.

Listing 12.8 menu/MenuFrame.java

1 package menu;
 2

3 import java.awt.event.*;
4 import javax.swing.*;
 5

Chapter 12 User Interface Components with Swing690

ptg16518469

6 /**
7 * A frame with a sample menu bar.
8 */
9 public class MenuFrame extends JFrame
10 {
11 private static final int DEFAULT_WIDTH = 300;
12 private static final int DEFAULT_HEIGHT = 200;
13 private Action saveAction;
14 private Action saveAsAction;
15 private JCheckBoxMenuItem readonlyItem;
16 private JPopupMenu popup;
17

18 /**
19 * A sample action that prints the action name to System.out
20 */
21 class TestAction extends AbstractAction
22 {
23 public TestAction(String name)
24 {
25 super(name);
26 }
27

28 public void actionPerformed(ActionEvent event)
29 {
30 System.out.println(getValue(Action.NAME) + " selected.");
31 }
32 }
33

34 public MenuFrame()
35 {
36 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
37

38 JMenu fileMenu = new JMenu("File");
39 fileMenu.add(new TestAction("New"));
40

41 // demonstrate accelerators
42

43 JMenuItem openItem = fileMenu.add(new TestAction("Open"));
44 openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl O"));
45

46 fileMenu.addSeparator();
47

48 saveAction = new TestAction("Save");
49 JMenuItem saveItem = fileMenu.add(saveAction);
50 saveItem.setAccelerator(KeyStroke.getKeyStroke("ctrl S"));
51

52 saveAsAction = new TestAction("Save As");

(Continues)

69112.5 Menus

ptg16518469

Listing 12.8 (Continued)

53 fileMenu.add(saveAsAction);
54 fileMenu.addSeparator();
55

56 fileMenu.add(new AbstractAction("Exit")
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.exit(0);
61 }
62 });
63

64 // demonstrate checkbox and radio button menus
65

66 readonlyItem = new JCheckBoxMenuItem("Read-only");
67 readonlyItem.addActionListener(new ActionListener()
68 {
69 public void actionPerformed(ActionEvent event)
70 {
71 boolean saveOk = !readonlyItem.isSelected();
72 saveAction.setEnabled(saveOk);
73 saveAsAction.setEnabled(saveOk);
74 }
75 });
76

77 ButtonGroup group = new ButtonGroup();
78

79 JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");
80 insertItem.setSelected(true);
81 JRadioButtonMenuItem overtypeItem = new JRadioButtonMenuItem("Overtype");
82

83 group.add(insertItem);
84 group.add(overtypeItem);
85

86 // demonstrate icons
87

88 Action cutAction = new TestAction("Cut");
89 cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));
90 Action copyAction = new TestAction("Copy");
91 copyAction.putValue(Action.SMALL_ICON, new ImageIcon("copy.gif"));
92 Action pasteAction = new TestAction("Paste");
93 pasteAction.putValue(Action.SMALL_ICON, new ImageIcon("paste.gif"));
94

95 JMenu editMenu = new JMenu("Edit");
96 editMenu.add(cutAction);
97 editMenu.add(copyAction);
98 editMenu.add(pasteAction);
99

Chapter 12 User Interface Components with Swing692

ptg16518469

100 // demonstrate nested menus
101

102 JMenu optionMenu = new JMenu("Options");
103

104 optionMenu.add(readonlyItem);
105 optionMenu.addSeparator();
106 optionMenu.add(insertItem);
107 optionMenu.add(overtypeItem);
108

109 editMenu.addSeparator();
110 editMenu.add(optionMenu);
111

112 // demonstrate mnemonics
113

114 JMenu helpMenu = new JMenu("Help");
115 helpMenu.setMnemonic('H');
116

117 JMenuItem indexItem = new JMenuItem("Index");
118 indexItem.setMnemonic('I');
119 helpMenu.add(indexItem);
120

121 // you can also add the mnemonic key to an action
122 Action aboutAction = new TestAction("About");
123 aboutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));
124 helpMenu.add(aboutAction);
125

126 // add all top-level menus to menu bar
127

128 JMenuBar menuBar = new JMenuBar();
129 setJMenuBar(menuBar);
130

131 menuBar.add(fileMenu);
132 menuBar.add(editMenu);
133 menuBar.add(helpMenu);
134

135 // demonstrate pop-ups
136

137 popup = new JPopupMenu();
138 popup.add(cutAction);
139 popup.add(copyAction);
140 popup.add(pasteAction);
141

142 JPanel panel = new JPanel();
143 panel.setComponentPopupMenu(popup);
144 add(panel);
145 }
146 }

69312.5 Menus

ptg16518469

12.5.7 Toolbars
A toolbar is a button bar that gives quick access to the most commonly used

commands in a program (see Figure 12.24).

Figure 12.24 A toolbar

What makes toolbars special is that you can move them elsewhere. You can drag

the toolbar to one of the four borders of the frame (see Figure 12.25). When you

release the mouse button, the toolbar is dropped into the new location (see

Figure 12.26).

Figure 12.25 Dragging the toolbar

NOTE: Toolbar dragging works if the toolbar is inside a container with a border
layout, or any other layout manager that supports the North, East, South, and West
constraints.

Chapter 12 User Interface Components with Swing694

ptg16518469

Figure 12.26 The toolbar has been dragged to another border

The toolbar can even be completely detached from the frame. A detached toolbar

is contained in its own frame (see Figure 12.27). When you close the frame

containing a detached toolbar, the toolbar jumps back into the original frame.

Figure 12.27 Detaching the toolbar

Toolbars are straightforward to program. Add components into the toolbar:

JToolBar bar = new JToolBar();
bar.add(blueButton);

The JToolBar class also has a method to add an Action object. Simply populate the

toolbar with Action objects, like this:

bar.add(blueAction);

The small icon of the action is displayed in the toolbar.

You can separate groups of buttons with a separator:

69512.5 Menus

ptg16518469

bar.addSeparator();

For example, the toolbar in Figure 12.24 has a separator between the third and

fourth button.

Then, add the toolbar to the frame:

add(bar, BorderLayout.NORTH);

You can also specify a title for the toolbar that appears when the toolbar is

undocked:

bar = new JToolBar(titleString);

By default, toolbars are initially horizontal. To have a toolbar start out vertical, use

bar = new JToolBar(SwingConstants.VERTICAL)

or

bar = new JToolBar(titleString, SwingConstants.VERTICAL)

Buttons are the most common components inside toolbars. But there is no restric-

tion on the components that you can add to a toolbar. For example, you can add

a combo box to a toolbar.

12.5.8 Tooltips
A disadvantage of toolbars is that users are often mystified by the meanings of

the tiny icons in toolbars. To solve this problem, user interface designers invented

tooltips. A tooltip is activated when the cursor rests for a moment over a button.

The tooltip text is displayed inside a colored rectangle. When the user moves the

mouse away, the tooltip disappears. (See Figure 12.28.)

Figure 12.28 A tooltip

Chapter 12 User Interface Components with Swing696

ptg16518469

In Swing, you can add tooltips to any JComponent simply by calling the setToolTipText
method:

exitButton.setToolTipText("Exit");

Alternatively, if you use Action objects, you associate the tooltip with the

SHORT_DESCRIPTION key:

exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");

Listing 12.9 shows how the same Action objects can be added to a menu and a

toolbar. Note that the action names show up as the menu item names in the menu,

and the short descriptions as the tooltips in the toolbar.

Listing 12.9 toolBar/ToolBarFrame.java

1 package toolBar;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a toolbar and menu for color changes.
9 */
10 public class ToolBarFrame extends JFrame
11 {
12 private static final int DEFAULT_WIDTH = 300;
13 private static final int DEFAULT_HEIGHT = 200;
14 private JPanel panel;
15

16 public ToolBarFrame()
17 {
18 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
19

20 // add a panel for color change
21

22 panel = new JPanel();
23 add(panel, BorderLayout.CENTER);
24

25 // set up actions
26

27 Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);
28 Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
29 Color.YELLOW);
30 Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED);
31

(Continues)

69712.5 Menus

ptg16518469

Listing 12.9 (Continued)

32 Action exitAction = new AbstractAction("Exit", new ImageIcon("exit.gif"))
33 {
34 public void actionPerformed(ActionEvent event)
35 {
36 System.exit(0);
37 }
38 };
39 exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");
40

41 // populate toolbar
42

43 JToolBar bar = new JToolBar();
44 bar.add(blueAction);
45 bar.add(yellowAction);
46 bar.add(redAction);
47 bar.addSeparator();
48 bar.add(exitAction);
49 add(bar, BorderLayout.NORTH);
50

51 // populate menu
52

53 JMenu menu = new JMenu("Color");
54 menu.add(yellowAction);
55 menu.add(blueAction);
56 menu.add(redAction);
57 menu.add(exitAction);
58 JMenuBar menuBar = new JMenuBar();
59 menuBar.add(menu);
60 setJMenuBar(menuBar);
61 }
62

63 /**
64 * The color action sets the background of the frame to a given color.
65 */
66 class ColorAction extends AbstractAction
67 {
68 public ColorAction(String name, Icon icon, Color c)
69 {
70 putValue(Action.NAME, name);
71 putValue(Action.SMALL_ICON, icon);
72 putValue(Action.SHORT_DESCRIPTION, name + " background");
73 putValue("Color", c);
74 }
75

Chapter 12 User Interface Components with Swing698

ptg16518469

76 public void actionPerformed(ActionEvent event)
77 {
78 Color c = (Color) getValue("Color");
79 panel.setBackground(c);
80 }
81 }
82 }

javax.swing.JToolBar 1.2

• JToolBar()
• JToolBar(String titleString)
• JToolBar(int orientation)
• JToolBar(String titleString, int orientation)

constructs a toolbar with the given title string and orientation. orientation is one of

SwingConstants.HORIZONTAL (the default) or SwingConstants.VERTICAL.

• JButton add(Action a)

constructs a new button inside the toolbar with name, icon, short description, and

action callback from the given action, and adds the button to the end of the toolbar.

• void addSeparator()

adds a separator to the end of the toolbar.

javax.swing.JComponent 1.2

• void setToolTipText(String text)

sets the text that should be displayed as a tooltip when the mouse hovers over the

component.

12.6 Sophisticated Layout Management
So far we’ve been using only the border layout, flow layout, and grid layout for

the user interface of our sample applications. For more complex tasks, this is not

going to be enough. In this section, we will discuss advanced layout management

in detail.

Windows programmers may well wonder why Java makes so much fuss about

layout managers. After all, in Windows, layout management is not a big deal;

you just use a dialog editor to drag and drop your components onto the surface

of a dialog, and then use editor tools to line up components, to space them

equally, to center them, and so on. If you are working on a big project, you

69912.6 Sophisticated Layout Management

ptg16518469

probably don’t have to worry about component layout at all—a skilled user

interface designer does all this for you.

The problem with this approach is that the resulting layout must be manually

updated if the sizes of the components change. Why would the component sizes

change? This can happen when the strings in an application are translated to a

foreign language. For example, the German word for “Cancel” is “Abbrechen.”

If a button has been designed with just enough room for the string “Cancel”, the

German version will look broken, with a clipped string.

Why don’t the buttons simply grow to accommodate the labels? When you drop

buttons in a dialog editor, there is no indication in which direction they should

grow. After the dragging and dropping and arranging, the dialog editor merely

remembers the pixel position and size of each component. It does not remember

why the components were arranged in this fashion.

The Java layout managers are a much better approach to component layout. With

a layout manager, the layout comes with instructions about the relationships

among the components. This was particularly important in the original AWT,

which used native user interface elements. The size of a button or a list box in

Motif, Windows, and the Macintosh could vary widely, and an application or

applet would not know a priori on which platform it would display its user inter-

face. To some extent, that degree of variability has gone away with Swing. If your

application forces a particular look-and-feel, such as Metal, it looks identical on

all platforms. However, if you let users of your application choose their favorite

look-and-feel, then you again need to rely on the flexibility of layout managers

to arrange the components.

Since Java 1.0, the AWT includes the grid bag layout that lays out components in

rows and columns. The row and column sizes are flexible, and components can

span multiple rows and columns. This layout manager is very flexible, but also

very complex. The mere mention of the words “grid bag layout” has been known

to strike fear in the hearts of Java programmers.

In an unsuccessful attempt to design a layout manager that would free program-

mers from the tyranny of the grid bag layout, the Swing designers came up with

the box layout. According to the JDK documentation of the BoxLayout class: “Nesting

multiple panels with different combinations of horizontal and vertical [sic] gives

an effect similar to GridBagLayout, without the complexity.” However, as each box is

laid out independently, you cannot use box layouts to arrange neighboring

components both horizontally and vertically.

Java SE 1.4 saw yet another attempt to design a replacement for the grid bag

layout—the spring layout. You use imaginary springs to connect the components

in a container. As the container is resized, the springs stretch or shrink, thereby

Chapter 12 User Interface Components with Swing700

ptg16518469

adjusting the positions of the components. This sounds tedious and confusing,

and it is. The spring layout quickly sank into obscurity.

In 2005, the NetBeans team invented the Matisse technology, which combines a

layout tool and a layout manager. A user interface designer uses the tool to drop

components into a container and to indicate which components should line up.

The tool translates the designer’s intentions into instructions for the group layout

manager. This is much more convenient than writing the layout management code

by hand. The group layout manager became a part of Java SE 6. Even if you don’t

use NetBeans as your IDE, we think you should consider using its GUI builder

tool. You can design your GUI in NetBeans and paste the resulting code into your

IDE of choice.

In the coming sections, we will cover the grid bag layout because it is commonly

used and is still the easiest mechanism for producing layout code for older Java

versions. We will show you a strategy that makes grid bag layouts relatively

painless in common situations.

Next, we will cover the Matisse tool and the group layout manager. You will

want to know how the group layout manager works so that you can check whether

Matisse recorded the correct instructions when you visually positioned your

components.

Finally, we will show you how you can bypass layout management altogether

and place your components manually, and how you can write your own layout

manager.

12.6.1 The Grid Bag Layout
The grid bag layout is the mother of all layout managers. You can think of a grid

bag layout as a grid layout without the limitations. In a grid bag layout, the rows

and columns can have variable sizes. You can join adjacent cells to make room

for larger components. (Many word processors, as well as HTML, provide similar

capabilities for tables: You can start out with a grid and then merge adjacent cells

as necessary.) The components need not fill the entire cell area, and you can

specify their alignment within cells.

Consider the font selector of Figure 12.29. It consists of the following components:

• Two combo boxes to specify the font face and size

• Labels for these two combo boxes

• Two checkboxes to select bold and italic

• A text area for the sample string

70112.6 Sophisticated Layout Management

ptg16518469

Figure 12.29 A font selector

Now, chop up the container into a grid of cells, as shown in Figure 12.30. (The

rows and columns need not have equal size.) Each checkbox spans two columns,

and the text area spans four rows.

Figure 12.30 Dialog box grid used in design

To describe the layout to the grid bag manager, use the following procedure:

1. Create an object of type GridBagLayout. You don’t need to tell it how many rows

and columns the underlying grid has. Instead, the layout manager will try

to guess it from the information you give it later.

2. Set this GridBagLayout object to be the layout manager for the component.

Chapter 12 User Interface Components with Swing702

ptg16518469

3. For each component, create an object of type GridBagConstraints. Set field values

of the GridBagConstraints object to specify how the components are laid out

within the grid bag.

4. Finally, add each component with its constraints by using the call add(component,
constraints);

Here’s an example of the code needed. (We’ll go over the various constraints in

more detail in the sections that follow—so don’t worry if you don’t know what

some of the constraints do.)

GridBagLayout layout = new GridBagLayout();
panel.setLayout(layout);
GridBagConstraints constraints = new GridBagConstraints();
constraints.weightx = 100;
constraints.weighty = 100;
constraints.gridx = 0;
constraints.gridy = 2;
constraints.gridwidth = 2;
constraints.gridheight = 1;
panel.add(component, constraints);

The trick is knowing how to set the state of the GridBagConstraints object. We’ll discuss

this object in the sections that follow.

12.6.1.1 The gridx, gridy, gridwidth, and gridheight Parameters
The gridx, gridy, gridwidth, and gridheight constraints define where the component is

located in the grid. The gridx and gridy values specify the column and row positions

of the upper left corner of the component to be added. The gridwidth and gridheight
values determine how many columns and rows the component occupies.

The grid coordinates start with 0. In particular, gridx = 0 and gridy = 0 denotes the

top left corner. The text area in our example has gridx = 2, gridy = 0 because it starts

in column 2 (that is, the third column) of row 0. It has gridwidth = 1 and gridheight =
4 because it spans one column and four rows.

12.6.1.2 Weight Fields
You always need to set the weight fields (weightx and weighty) for each area in a grid

bag layout. If you set the weight to 0, the area never grows or shrinks beyond its

initial size in that direction. In the grid bag layout for Figure 12.29, we set the

weightx field of the labels to be 0. This allows the labels to keep constant width

when you resize the window. On the other hand, if you set the weights for all

areas to 0, the container will huddle in the center of its allotted area instead of

stretching to fill it.

70312.6 Sophisticated Layout Management

ptg16518469

Conceptually, the problem with the weight parameters is that weights are prop-

erties of rows and columns, not individual cells. But you need to specify them

for cells because the grid bag layout does not expose the rows and columns. The

row and column weights are computed as the maxima of the cell weights in each

row or column. Thus, if you want a row or column to stay at a fixed size, you

need to set the weights of all components in it to zero.

Note that the weights don’t actually give the relative sizes of the columns. They

tell what proportion of the “slack” space should be allocated to each area if the

container exceeds its preferred size. This isn’t particularly intuitive. We recom-

mend that you set all weights at 100. Then, run the program and see how the layout

looks. Resize the dialog to see how the rows and columns adjust. If you find that

a particular row or column should not grow, set the weights of all components

in it to zero. You can tinker with other weight values, but it is usually not worth

the effort.

12.6.1.3 The fill and anchor Parameters
If you don’t want a component to stretch out and fill the entire area, set

the fill constraint. You have four possibilities for this parameter: the valid

values are GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL, GridBagConstraints.VERTICAL, and

GridBagConstraints.BOTH.

If the component does not fill the entire area, you can specify where in the area

you want it by setting the anchor field. The valid values are GridBagConstraints.CENTER
(the default), GridBagConstraints.NORTH, GridBagConstraints.NORTHEAST, GridBagConstraints.EAST, and

so on.

12.6.1.4 Padding
You can surround a component with additional blank space by setting the insets
field of GridBagConstraints. Set the left, top, right, and bottom values of the Insets object

to the amount of space that you want to have around the component. This is

called the external padding.

The ipadx and ipady values set the internal padding. These values are added to the

minimum width and height of the component. This ensures that the component

does not shrink down to its minimum size.

Chapter 12 User Interface Components with Swing704

ptg16518469

12.6.1.5 Alternative Method to Specify the gridx, gridy, gridwidth, and gridheight
Parameters
The AWT documentation recommends that instead of setting the gridx and gridy
values to absolute positions, you set them to the constant GridBagConstraints.RELATIVE.

Then, add the components to the grid bag layout in a standardized order, going

from left to right in the first row, then moving along the next row, and so on.

You would still specify the number of rows and columns spanned, by giving the

appropriate gridheight and gridwidth fields. However, if the component extends to

the last row or column, you don’t need to specify the actual number, but the

constant GridBagConstraints.REMAINDER. This tells the layout manager that the component

is the last one in its row.

This scheme does seem to work. But it sounds really goofy to hide the actual

placement information from the layout manager and hope that it will rediscover it.

All this sounds like a lot of trouble and complexity. But in practice, the following

recipe makes grid bag layouts relatively trouble free:

1. Sketch out the component layout on a piece of paper.

2. Find a grid such that the small components are each contained in a cell and

the larger components span multiple cells.

3. Label the rows and columns of your grid with 0, 1, 2, 3, . . . You can now read

off the gridx, gridy, gridwidth, and gridheight values.

4. For each component, ask yourself whether it needs to fill its cell horizontally

or vertically. If not, how do you want it aligned? This tells you the fill and

anchor parameters.

5. Set all weights to 100. However, if you want a particular row or column to

always stay at its default size, set the weightx or weighty to 0 in all components

that belong to that row or column.

6. Write the code. Carefully double-check your settings for the GridBagConstraints.

One wrong constraint can ruin your whole layout.

7. Compile, run, and enjoy.

The GUI builder in NetBeans has tools for specifying the constraints visually—see

Figure 12.31.

70512.6 Sophisticated Layout Management

ptg16518469

Figure 12.31 Specifying grid bag constraints in NetBeans

12.6.1.6 A Helper Class to Tame the Grid Bag Constraints
The most tedious aspect of the grid bag layout is writing the code that sets the

constraints. Most programmers write helper functions or a small helper class for

this purpose. We present such a class after the complete code for the font dialog

example. This class has the following features:

• Its name is short: GBC instead of GridBagConstraints.

• It extends GridBagConstraints, so you can use shorter names such as GBC.EAST for the

constants.

• Use a GBC object when adding a component, such as

add(component, new GBC(1, 2));

• There are two constructors to set the most common parameters: gridx and gridy,

or gridx, gridy, gridwidth, and gridheight.

add(component, new GBC(1, 2, 1, 4));

Chapter 12 User Interface Components with Swing706

ptg16518469

• There are convenient setters for the fields that come in x/y pairs:

add(component, new GBC(1, 2).setWeight(100, 100));

• The setter methods return this, so you can chain them:

add(component, new GBC(1, 2).setAnchor(GBC.EAST).setWeight(100, 100));

• The setInsets methods construct the Insets object for you. To get one-pixel insets,

simply call

add(component, new GBC(1, 2).setAnchor(GBC.EAST).setInsets(1));

Listing 12.10 shows the frame class for the font dialog example. The GBC helper

class is in Listing 12.12. Here is the code that adds the components to the grid bag:

add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
add(face, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
add(size, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(bold, new GBC(0, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(italic, new GBC(0, 3, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(sample, new GBC(2, 0, 1, 4).setFill(GBC.BOTH).setWeight(100, 100));

Once you understand the grid bag constraints, this kind of code is fairly easy to

read and debug.

NOTE:The tutorial at http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html
suggests that you reuse the same GridBagConstraints object for all components.
We find the resulting code hard to read and error-prone. For example, look at
the demo at http://docs.oracle.com/javase/tutorial/uiswing/events/containerlistener.html.
Was it really intended that the buttons are stretched horizontally, or did the
programmer just forget to turn off the fill constraint?

Listing 12.10 gridbag/FontFrame.java

1 package gridbag;
 2

3 import java.awt.Font;
4 import java.awt.GridBagLayout;
5 import java.awt.event.ActionListener;
 6

7 import javax.swing.BorderFactory;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;
10 import javax.swing.JFrame;
11 import javax.swing.JLabel;

(Continues)

70712.6 Sophisticated Layout Management

http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html
http://docs.oracle.com/javase/tutorial/uiswing/events/containerlistener.html

ptg16518469

Listing 12.10 (Continued)

12 import javax.swing.JTextArea;
13

14 /**
15 * A frame that uses a grid bag layout to arrange font selection components.
16 */
17 public class FontFrame extends JFrame
18 {
19 public static final int TEXT_ROWS = 10;
20 public static final int TEXT_COLUMNS = 20;
21

22 private JComboBox<String> face;
23 private JComboBox<Integer> size;
24 private JCheckBox bold;
25 private JCheckBox italic;
26 private JTextArea sample;
27

28 public FontFrame()
29 {
30 GridBagLayout layout = new GridBagLayout();
31 setLayout(layout);
32

33 ActionListener listener = event -> updateSample();
34

35 // construct components
36

37 JLabel faceLabel = new JLabel("Face: ");
38

39 face = new JComboBox<>(new String[] { "Serif", "SansSerif", "Monospaced",
40 "Dialog", "DialogInput" });
41

42 face.addActionListener(listener);
43

44 JLabel sizeLabel = new JLabel("Size: ");
45

46 size = new JComboBox<>(new Integer[] { 8, 10, 12, 15, 18, 24, 36, 48 });
47

48 size.addActionListener(listener);
49

50 bold = new JCheckBox("Bold");
51 bold.addActionListener(listener);
52

53 italic = new JCheckBox("Italic");
54 italic.addActionListener(listener);
55

56 sample = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
57 sample.setText("The quick brown fox jumps over the lazy dog");
58 sample.setEditable(false);
59 sample.setLineWrap(true);

Chapter 12 User Interface Components with Swing708

ptg16518469

60 sample.setBorder(BorderFactory.createEtchedBorder());
61

62 // add components to grid, using GBC convenience class
63

64 add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
65 add(face, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100, 0)
66 .setInsets(1));
67 add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
68 add(size, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100, 0)
69 .setInsets(1));
70 add(bold, new GBC(0, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
71 add(italic, new GBC(0, 3, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
72 add(sample, new GBC(2, 0, 1, 4).setFill(GBC.BOTH).setWeight(100, 100));
73 pack();
74 updateSample();
75 }
76

77 public void updateSample()
78 {
79 String fontFace = (String) face.getSelectedItem();
80 int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
81 + (italic.isSelected() ? Font.ITALIC : 0);
82 int fontSize = size.getItemAt(size.getSelectedIndex());
83 Font font = new Font(fontFace, fontStyle, fontSize);
84 sample.setFont(font);
85 sample.repaint();
86 }
87 }

Listing 12.11 gridbag/GBC.java

1 package gridbag;
 2

3 import java.awt.*;
 4

5 /**
6 * This class simplifies the use of the GridBagConstraints class.
7 * @version 1.01 2004-05-06
8 * @author Cay Horstmann
9 */
10 public class GBC extends GridBagConstraints
11 {
12 /**
13 * Constructs a GBC with a given gridx and gridy position and all other grid
14 * bag constraint values set to the default.
15 * @param gridx the gridx position
16 * @param gridy the gridy position
17 */

(Continues)

70912.6 Sophisticated Layout Management

ptg16518469

Listing 12.11 (Continued)

18 public GBC(int gridx, int gridy)
19 {
20 this.gridx = gridx;
21 this.gridy = gridy;
22 }
23

24 /**
25 * Constructs a GBC with given gridx, gridy, gridwidth, gridheight and all
26 * other grid bag constraint values set to the default.
27 * @param gridx the gridx position
28 * @param gridy the gridy position
29 * @param gridwidth the cell span in x-direction
30 * @param gridheight the cell span in y-direction
31 */
32 public GBC(int gridx, int gridy, int gridwidth, int gridheight)
33 {
34 this.gridx = gridx;
35 this.gridy = gridy;
36 this.gridwidth = gridwidth;
37 this.gridheight = gridheight;
38 }
39

40 /**
41 * Sets the anchor.
42 * @param anchor the anchor value
43 * @return this object for further modification
44 */
45 public GBC setAnchor(int anchor)
46 {
47 this.anchor = anchor;
48 return this;
49 }
50

51 /**
52 * Sets the fill direction.
53 * @param fill the fill direction
54 * @return this object for further modification
55 */
56 public GBC setFill(int fill)
57 {
58 this.fill = fill;
59 return this;
60 }
61

62 /**
63 * Sets the cell weights.

Chapter 12 User Interface Components with Swing710

ptg16518469

64 * @param weightx the cell weight in x-direction
65 * @param weighty the cell weight in y-direction
66 * @return this object for further modification
67 */
68 public GBC setWeight(double weightx, double weighty)
69 {
70 this.weightx = weightx;
71 this.weighty = weighty;
72 return this;
73 }
74

75 /**
76 * Sets the insets of this cell.
77 * @param distance the spacing to use in all directions
78 * @return this object for further modification
79 */
80 public GBC setInsets(int distance)
81 {
82 this.insets = new Insets(distance, distance, distance, distance);
83 return this;
84 }
85

86 /**
87 * Sets the insets of this cell.
88 * @param top the spacing to use on top
89 * @param left the spacing to use to the left
90 * @param bottom the spacing to use on the bottom
91 * @param right the spacing to use to the right
92 * @return this object for further modification
93 */
94 public GBC setInsets(int top, int left, int bottom, int right)
95 {
96 this.insets = new Insets(top, left, bottom, right);
97 return this;
98 }
99

100 /**
101 * Sets the internal padding
102 * @param ipadx the internal padding in x-direction
103 * @param ipady the internal padding in y-direction
104 * @return this object for further modification
105 */
106 public GBC setIpad(int ipadx, int ipady)
107 {
108 this.ipadx = ipadx;
109 this.ipady = ipady;
110 return this;
111 }
112 }

71112.6 Sophisticated Layout Management

ptg16518469

java.awt.GridBagConstraints 1.0

• int gridx, gridy

specifies the starting column and row of the cell. The default is 0.

• int gridwidth, gridheight

specifies the column and row extent of the cell. The default is 1.

• double weightx, weighty

specifies the capacity of the cell to grow. The default is 0.

• int anchor

indicates the alignment of the component inside the cell.You can choose between

absolute positions:

NORTHEASTNORTHNORTHWEST

EASTCENTERWEST

SOUTHEASTSOUTHSOUTHWEST

or their orientation-independent counterparts:

FIRST_LINE_ENDLINE_STARTFIRST_LINE_START

PAGE_ENDCENTERPAGE_START

LAST_LINE_ENDLINE_ENDLAST_LINE_START

Use the latter if your application may be localized for right-to-left or top-to-bottom

text. The default is CENTER.

• int fill

specifies the fill behavior of the component inside the cell: one of NONE, BOTH, HORIZONTAL,

or VERTICAL. The default is NONE.

• int ipadx, ipady

specifies the “internal” padding around the component. The default is 0.

• Insets insets

specifies the “external” padding along the cell boundaries.The default is no padding.

• GridBagConstraints(int gridx, int gridy, int gridwidth, int gridheight, double weightx, double
weighty, int anchor, int fill, Insets insets, int ipadx, int ipady) 1.2

constructs a GridBagConstraints with all its fields specified in the arguments. This

constructor should only be used by automatic code generators because it makes

your source code very hard to read.

Chapter 12 User Interface Components with Swing712

ptg16518469

12.6.2 Group Layout
Before discussing the API of the GroupLayout class, let us have a quick look at the

Matisse GUI builder in NetBeans. We won’t give you a full Matisse tutorial—see

http://netbeans.org/kb/docs/java/quickstart-gui.html for more information.

Here is the workflow for laying out the top of the dialog in Figure 12.13. Start a

new project and add a new JFrame form. Drag a label until two guidelines appear

that separate it from the container borders:

Place another label below the first row:

Drag a text field so that its baseline lines up with the baseline of the first label.

Again, note the guidelines:

Finally, line up a password field with the label to the left and the text field above.

71312.6 Sophisticated Layout Management

http://netbeans.org/kb/docs/java/quickstart-gui.html

ptg16518469

Matisse translates these actions into the following Java code:

layout.setHorizontalGroup(
 layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()
.addComponent(jLabel1)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent(jTextField1))

.addGroup(layout.createSequentialGroup()
.addComponent(jLabel2)
.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
.addComponent(jPasswordField1)))

 .addContainerGap(222, Short.MAX_VALUE)));
layout.setVerticalGroup(
 layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabel1)

.addComponent(jTextField1))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)

.addComponent(jLabel2)

.addComponent(jPasswordField1))
 .addContainerGap(244, Short.MAX_VALUE)));

That looks a bit scary, but fortunately you don’t have to write this code. However,

it is helpful to have a basic understanding of the layout actions so that you can

spot errors. We will analyze the basic structure of the code. The API notes at the

end of this section explain each of the classes and methods in detail.

Components are organized by placing them into objects of type

GroupLayout.SequentialGroup or GroupLayout.ParallelGroup. These classes are subclasses of

GroupLayout.Group. Groups can contain components, gaps, and nested groups. The

Chapter 12 User Interface Components with Swing714

ptg16518469

various add methods of the group classes return the group object, so that method

calls can be chained like this:

group.addComponent(. . .).addPreferredGap(. . .).addComponent(. . .);

As you can see from the sample code, the group layout separates the horizontal

and vertical layout computations.

To visualize the horizontal computations, imagine that the components are

flattened so they have zero height, like this:

There are two parallel sequences of components, corresponding to the (slightly

simplified) code:

.addContainerGap()
 .addGroup(layout.createParallelGroup()
 .addGroup(layout.createSequentialGroup()

.addComponent(jLabel1)

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

.addComponent(jTextField1))
 .addGroup(layout.createSequentialGroup()

.addComponent(jLabel2)

.addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)

.addComponent(jPasswordField1)))

But wait, that can’t be right. If the labels have different lengths, the text field and

the password field won’t line up.

We have to tell Matisse that we want the fields to line up. Select both fields, right-

click, and select Align → Left to Column from the menu. Also line up the labels

(see Figure 12.32).

71512.6 Sophisticated Layout Management

ptg16518469

Figure 12.32 Aligning the labels and text fields in Matisse

This dramatically changes the layout code:

.addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addComponent(jLabel1, GroupLayout.Alignment.TRAILING)
 .addComponent(jLabel2, GroupLayout.Alignment.TRAILING))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addComponent(jTextField1)
 .addComponent(jPasswordField1))

Chapter 12 User Interface Components with Swing716

ptg16518469

Now the labels and fields are each placed in a parallel group. The first group has

an alignment of TRAILING (which means alignment to the right when the text direction

is left-to-right):

It seems like magic that Matisse can translate the designer’s instructions into

nested groups—but, as Arthur C. Clarke said, any sufficiently advanced

technology is indistinguishable from magic.

For completeness, let’s look at the vertical computation. Now you should think

of the components as having no width. We have a sequential group that contains

two parallel groups, separated by gaps:

The corresponding code is

71712.6 Sophisticated Layout Management

ptg16518469

layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel1)
 .addComponent(jTextField1))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel2)
 .addComponent(jPasswordField1))

As you can see from the code, the components are aligned by their baselines. (The

baseline is the line on which the component text is aligned.)

You can force a set of components to have equal size. For example, we may want

to make sure that the widths of the text field and the password field match exactly.

In Matisse, select both, right-click, and select Same Size → Same Width from the

menu (see Figure 12.33).

Figure 12.33 Forcing two components to have the same width

Matisse adds the following statement to the layout code:

layout.linkSize(SwingConstants.HORIZONTAL, new Component[] {jPasswordField1, jTextField1});

Chapter 12 User Interface Components with Swing718

ptg16518469

The code in Listing 12.12 shows how to lay out the font selector of the preceding

section using the GroupLayout instead of the GridBagLayout. The code may not look any

simpler than that of Listing 12.10, but we didn’t have to write it. We used Matisse

to do the layout and then cleaned up the code a bit.

Listing 12.12 groupLayout/FontFrame.java

1 package groupLayout;
 2

3 import java.awt.Font;
4 import java.awt.event.ActionListener;
 5

6 import javax.swing.BorderFactory;
7 import javax.swing.GroupLayout;
8 import javax.swing.JCheckBox;
9 import javax.swing.JComboBox;
10 import javax.swing.JFrame;
11 import javax.swing.JLabel;
12 import javax.swing.JScrollPane;
13 import javax.swing.JTextArea;
14 import javax.swing.LayoutStyle;
15 import javax.swing.SwingConstants;
16

17 /**
18 * A frame that uses a group layout to arrange font selection components.
19 */
20 public class FontFrame extends JFrame
21 {
22 public static final int TEXT_ROWS = 10;
23 public static final int TEXT_COLUMNS = 20;
24

25 private JComboBox<String> face;
26 private JComboBox<Integer> size;
27 private JCheckBox bold;
28 private JCheckBox italic;
29 private JScrollPane pane;
30 private JTextArea sample;
31

32 public FontFrame()
33 {
34 ActionListener listener = event -> updateSample();
35

36 // construct components
37

38 JLabel faceLabel = new JLabel("Face: ");
39

(Continues)

71912.6 Sophisticated Layout Management

ptg16518469

Listing 12.12 (Continued)

40 face = new JComboBox<>(new String[] { "Serif", "SansSerif", "Monospaced", "Dialog",
41 "DialogInput" });
42

43 face.addActionListener(listener);
44

45 JLabel sizeLabel = new JLabel("Size: ");
46

47 size = new JComboBox<>(new Integer[] { 8, 10, 12, 15, 18, 24, 36, 48 });
48

49 size.addActionListener(listener);
50

51 bold = new JCheckBox("Bold");
52 bold.addActionListener(listener);
53

54 italic = new JCheckBox("Italic");
55 italic.addActionListener(listener);
56

57 sample = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
58 sample.setText("The quick brown fox jumps over the lazy dog");
59 sample.setEditable(false);
60 sample.setLineWrap(true);
61 sample.setBorder(BorderFactory.createEtchedBorder());
62

63 pane = new JScrollPane(sample);
64

65 GroupLayout layout = new GroupLayout(getContentPane());
66 setLayout(layout);
67 layout.setHorizontalGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
68 .addGroup(
69 layout.createSequentialGroup().addContainerGap().addGroup(
70 layout.createParallelGroup(GroupLayout.Alignment.LEADING).addGroup(
71 GroupLayout.Alignment.TRAILING,
72 layout.createSequentialGroup().addGroup(
73 layout.createParallelGroup(GroupLayout.Alignment.TRAILING)
74 .addComponent(faceLabel).addComponent(sizeLabel))
75 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
76 .addGroup(
77 layout.createParallelGroup(
78 GroupLayout.Alignment.LEADING, false)
79 .addComponent(size).addComponent(face)))
80 .addComponent(italic).addComponent(bold)).addPreferredGap(
81 LayoutStyle.ComponentPlacement.RELATED).addComponent(pane)
82 .addContainerGap()));

Chapter 12 User Interface Components with Swing720

ptg16518469

83

84 layout.linkSize(SwingConstants.HORIZONTAL, new java.awt.Component[] { face, size });
85

86 layout.setVerticalGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
87 .addGroup(
88 layout.createSequentialGroup().addContainerGap().addGroup(
89 layout.createParallelGroup(GroupLayout.Alignment.LEADING).addComponent(
90 pane, GroupLayout.Alignment.TRAILING).addGroup(
91 layout.createSequentialGroup().addGroup(
92 layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
93 .addComponent(face).addComponent(faceLabel))
94 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
95 .addGroup(
96 layout.createParallelGroup(
97 GroupLayout.Alignment.BASELINE).addComponent(size)
98 .addComponent(sizeLabel)).addPreferredGap(
99 LayoutStyle.ComponentPlacement.RELATED).addComponent(
100 italic, GroupLayout.DEFAULT_SIZE,
101 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
102 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
103 .addComponent(bold, GroupLayout.DEFAULT_SIZE,
104 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)))
105 .addContainerGap()));
106 pack();
107 }
108

109 public void updateSample()
110 {
111 String fontFace = (String) face.getSelectedItem();
112 int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
113 + (italic.isSelected() ? Font.ITALIC : 0);
114 int fontSize = size.getItemAt(size.getSelectedIndex());
115 Font font = new Font(fontFace, fontStyle, fontSize);
116 sample.setFont(font);
117 sample.repaint();
118 }
119 }

72112.6 Sophisticated Layout Management

ptg16518469

javax.swing.GroupLayout 6

• GroupLayout(Container host)

constructs a GroupLayout for laying out the components in the host container. (Note

that you still need to call setLayout on the host object.)

• void setHorizontalGroup(GroupLayout.Group g)
• void setVerticalGroup(GroupLayout.Group g)

sets the group that controls horizontal or vertical layout.

• void linkSize(Component... components)
• void linkSize(int axis, Component... component)

forces the given components to have the same size, or the same size along the given

axis (one of SwingConstants.HORIZONTAL or SwingConstants.VERTICAL).

• GroupLayout.SequentialGroup createSequentialGroup()

creates a group that lays out its children sequentially.

• GroupLayout.ParallelGroup createParallelGroup()
• GroupLayout.ParallelGroup createParallelGroup(GroupLayout.Alignment align)
• GroupLayout.ParallelGroup createParallelGroup(GroupLayout.Alignment align, boolean resizable)

creates a group that lays out its children in parallel.

One of BASELINE, LEADING (default), TRAILING, or CENTERalignParameters:

true (default) when the group can be resized; false if the

preferred size is also the minimum and maximum size

resizable

• boolean getHonorsVisibility()
• void setHonorsVisibility(boolean b)

gets or sets the honorsVisibility property.When true (the default), nonvisible compo-

nents are not laid out. When false, they are laid out as if they were visible. This is

useful when you temporarily hide some components and don’t want the layout to

change.

• boolean getAutoCreateGaps()
• void setAutoCreateGaps(boolean b)
• boolean getAutoCreateContainerGaps()
• void setAutoCreateContainerGaps(boolean b)

gets and sets the autoCreateGaps and autoCreateContainerGaps properties.When true, gaps

are automatically added between components or at the container boundaries. The

default is false. A true value is useful when you manually produce a GroupLayout.

Chapter 12 User Interface Components with Swing722

ptg16518469

javax.swing.GroupLayout.Group

• GroupLayout.Group addComponent(Component c)
• GroupLayout.Group addComponent(Component c, int minimumSize, int preferredSize, int maximumSize)

adds a component to this group. The size parameters can be actual (non-negative)

values, or the special constants GroupLayout.DEFAULT_SIZE or GroupLayout.PREFERRED_SIZE.

When DEFAULT_SIZE is used, the component’s getMinimumSize, getPreferredSize, or

getMaximumSize is called. When PREFERRED_SIZE is used, the component’s getPreferredSize
method is called.

• GroupLayout.Group addGap(int size)
• GroupLayout.Group addGap(int minimumSize, int preferredSize, int maximumSize)

adds a gap of the given rigid or flexible size.

• GroupLayout.Group addGroup(GroupLayout.Group g)

adds the given group to this group.

javax.swing.GroupLayout.ParallelGroup

• GroupLayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align)
• GroupLayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align, int minimumSize,

int preferredSize, int maximumSize)
• GroupLayout.ParallelGroup addGroup(GroupLayout.Group g, GroupLayout.Alignment align)

adds a component or group to this group, using the given alignment (one of BASELINE,

LEADING, TRAILING, or CENTER).

javax.swing.GroupLayout.SequentialGroup

• GroupLayout.SequentialGroup addContainerGap()
• GroupLayout.SequentialGroup addContainerGap(int preferredSize, int maximumSize)

adds a gap for separating a component and the edge of the container.

• GroupLayout.SequentialGroup addPreferredGap(LayoutStyle.ComponentPlacement type)

adds a gap for separating components.The type is LayoutStyle.ComponentPlacement.RELATED
or LayoutStyle.ComponentPlacement.UNRELATED.

12.6.3 Using No Layout Manager
There will be times when you don’t want to bother with layout managers but just

want to drop a component at a fixed location (sometimes called absolute positioning).

72312.6 Sophisticated Layout Management

ptg16518469

This is not a great idea for platform-independent applications, but there is nothing

wrong with using it for a quick prototype.

Here is what you do to place a component at a fixed location:

1. Set the layout manager to null.

2. Add the component you want to the container.

3. Specify the position and size that you want:

frame.setLayout(null);
JButton ok = new JButton("OK");
frame.add(ok);
ok.setBounds(10, 10, 30, 15);

java.awt.Component 1.0

• void setBounds(int x, int y, int width, int height)

moves and resizes a component.

The new top left corner of the componentx, yParameters:

The new size of the componentwidth, height

12.6.4 Custom Layout Managers
You can design your own LayoutManager class that manages components in a special

way. As a fun example, let’s arrange all components in a container to form a circle

(see Figure 12.34).

Figure 12.34 Circle layout

Your own layout manager must implement the LayoutManager interface. You need to

override the following five methods:

Chapter 12 User Interface Components with Swing724

ptg16518469

void addLayoutComponent(String s, Component c);
void removeLayoutComponent(Component c);
Dimension preferredLayoutSize(Container parent);
Dimension minimumLayoutSize(Container parent);
void layoutContainer(Container parent);

The first two methods are called when a component is added or removed. If you

don’t keep any additional information about the components, you can make them

do nothing. The next two methods compute the space required for the minimum

and the preferred layout of the components. These are usually the same quantity.

The fifth method does the actual work and invokes setBounds on all components.

NOTE: The AWT has a second interface, called LayoutManager2, with ten methods
to implement rather than five. The main point of the LayoutManager2 interface is to
allow you to use the add method with constraints. For example, the BorderLayout
and GridBagLayout implement the LayoutManager2 interface.

Listing 12.13 shows the code for the CircleLayout manager which, uselessly enough,

lays out the components along a circle inside the parent. The frame class of the

sample program is in Listing 12.14.

Listing 12.13 circleLayout/CircleLayout.java

1 package circleLayout;
 2

3 import java.awt.*;
 4

5 /**
6 * A layout manager that lays out components along a circle.
7 */
8 public class CircleLayout implements LayoutManager
9 {
10 private int minWidth = 0;
11 private int minHeight = 0;
12 private int preferredWidth = 0;
13 private int preferredHeight = 0;
14 private boolean sizesSet = false;
15 private int maxComponentWidth = 0;
16 private int maxComponentHeight = 0;
17

18 public void addLayoutComponent(String name, Component comp)
19 {
20 }
21

(Continues)

72512.6 Sophisticated Layout Management

ptg16518469

Listing 12.13 (Continued)

22 public void removeLayoutComponent(Component comp)
23 {
24 }
25

26 public void setSizes(Container parent)
27 {
28 if (sizesSet) return;
29 int n = parent.getComponentCount();
30

31 preferredWidth = 0;
32 preferredHeight = 0;
33 minWidth = 0;
34 minHeight = 0;
35 maxComponentWidth = 0;
36 maxComponentHeight = 0;
37

38 // compute the maximum component widths and heights
39 // and set the preferred size to the sum of the component sizes.
40 for (int i = 0; i < n; i++)
41 {
42 Component c = parent.getComponent(i);
43 if (c.isVisible())
44 {
45 Dimension d = c.getPreferredSize();
46 maxComponentWidth = Math.max(maxComponentWidth, d.width);
47 maxComponentHeight = Math.max(maxComponentHeight, d.height);
48 preferredWidth += d.width;
49 preferredHeight += d.height;
50 }
51 }
52 minWidth = preferredWidth / 2;
53 minHeight = preferredHeight / 2;
54 sizesSet = true;
55 }
56

57 public Dimension preferredLayoutSize(Container parent)
58 {
59 setSizes(parent);
60 Insets insets = parent.getInsets();
61 int width = preferredWidth + insets.left + insets.right;
62 int height = preferredHeight + insets.top + insets.bottom;
63 return new Dimension(width, height);
64 }
65

66 public Dimension minimumLayoutSize(Container parent)
67 {

Chapter 12 User Interface Components with Swing726

ptg16518469

68 setSizes(parent);
69 Insets insets = parent.getInsets();
70 int width = minWidth + insets.left + insets.right;
71 int height = minHeight + insets.top + insets.bottom;
72 return new Dimension(width, height);
73 }
74

75 public void layoutContainer(Container parent)
76 {
77 setSizes(parent);
78

79 // compute center of the circle
80

81 Insets insets = parent.getInsets();
82 int containerWidth = parent.getSize().width - insets.left - insets.right;
83 int containerHeight = parent.getSize().height - insets.top - insets.bottom;
84

85 int xcenter = insets.left + containerWidth / 2;
86 int ycenter = insets.top + containerHeight / 2;
87

88 // compute radius of the circle
89

90 int xradius = (containerWidth - maxComponentWidth) / 2;
91 int yradius = (containerHeight - maxComponentHeight) / 2;
92 int radius = Math.min(xradius, yradius);
93

94 // lay out components along the circle
95

96 int n = parent.getComponentCount();
97 for (int i = 0; i < n; i++)
98 {
99 Component c = parent.getComponent(i);
100 if (c.isVisible())
101 {
102 double angle = 2 * Math.PI * i / n;
103

104 // center point of component
105 int x = xcenter + (int) (Math.cos(angle) * radius);
106 int y = ycenter + (int) (Math.sin(angle) * radius);
107

108 // move component so that its center is (x, y)
109 // and its size is its preferred size
110 Dimension d = c.getPreferredSize();
111 c.setBounds(x - d.width / 2, y - d.height / 2, d.width, d.height);
112 }
113 }
114 }
115 }

72712.6 Sophisticated Layout Management

ptg16518469

Listing 12.14 circleLayout/CircleLayoutFrame.java

1 package circleLayout;
 2

3 import javax.swing.*;
 4

5 /**
6 * A frame that shows buttons arranged along a circle.
7 */
8 public class CircleLayoutFrame extends JFrame
9 {
10 public CircleLayoutFrame()
11 {
12 setLayout(new CircleLayout());
13 add(new JButton("Yellow"));
14 add(new JButton("Blue"));
15 add(new JButton("Red"));
16 add(new JButton("Green"));
17 add(new JButton("Orange"));
18 add(new JButton("Fuchsia"));
19 add(new JButton("Indigo"));
20 pack();
21 }
22 }

java.awt.LayoutManager 1.0

• void addLayoutComponent(String name, Component comp)

adds a component to the layout.

An identifier for the component placementnameParameters:

The component to be addedcomp

• void removeLayoutComponent(Component comp)

removes a component from the layout.

• Dimension preferredLayoutSize(Container cont)

returns the preferred size dimensions for the container under this layout.

• Dimension minimumLayoutSize(Container cont)

returns the minimum size dimensions for the container under this layout.

• void layoutContainer(Container cont)

lays out the components in a container.

Chapter 12 User Interface Components with Swing728

ptg16518469

12.6.5 Traversal Order
When you add many components into a window, you need to give some thought

to the traversal order. When a window is first displayed, the first component in

the traversal order has the keyboard focus. Each time the user presses the Tab

key, the next component gains focus. (Recall that a component that has the key-

board focus can be manipulated with the keyboard. For example, a button can

be “clicked” with the space bar when it has focus.) You may not personally care

about using the Tab key to navigate through a set of controls, but plenty of users

do. Among them are the mouse haters and those who cannot use a mouse, perhaps

because of a handicap or because they are navigating the user interface by voice.

For that reason, you need to know how Swing handles traversal order.

The traversal order is straightforward: first, left to right, and then, top to bottom.

For example, in the font dialog example, the components are traversed in the

following order (see Figure 12.35):

1. Face combo box

2. Sample text area (press Ctrl+Tab to move to the next field; the Tab character

is considered text input)

3. Size combo box

4. Bold checkbox

5. Italic checkbox

Figure 12.35 Geometric traversal order

The situation is more complex if your container contains other containers. When

the focus is given to another container, it automatically ends up within the top

left component in that container and then traverses all other components in that

container. Finally, the focus is given to the component following the container.

72912.6 Sophisticated Layout Management

ptg16518469

You can use this to your advantage by grouping related elements in another

container such as a panel.

NOTE: Call

component.setFocusable(false);

to remove a component from the focus traversal. This is useful for painted
components that don’t take keyboard input.

12.7 Dialog Boxes
So far, all our user interface components have appeared inside a frame window

that was created in the application. This is the most common situation if you write

applets that run inside a web browser. But if you write applications, you usually

want separate dialog boxes to pop up to give information to, or get information

from, the user.

Just as with most windowing systems, AWT distinguishes between modal and

modeless dialog boxes. A modal dialog box won’t let users interact with the remain-

ing windows of the application until he or she deals with it. Use a modal dialog

box when you need information from the user before you can proceed with exe-

cution. For example, when the user wants to read a file, a modal file dialog box

is the one to pop up. The user must specify a file name before the program can

begin the read operation. Only when the user closes the modal dialog box

can the application proceed.

A modeless dialog box lets the user enter information in both the dialog box and

the remainder of the application. One example of a modeless dialog is a toolbar.

The toolbar can stay in place as long as needed, and the user can interact with

both the application window and the toolbar as needed.

We will start this section with the simplest dialogs—modal dialogs with just a

single message. Swing has a convenient JOptionPane class that lets you put up

a simple dialog without writing any special dialog box code. Next, you will see

how to write more complex dialogs by implementing your own dialog windows.

Finally, you will see how to transfer data from your application into a dialog

and back.

We’ll conclude this section by looking at two standard dialogs: file dialogs and

color dialogs. File dialogs are complex, and you definitely want to be familiar

with the Swing JFileChooser for this purpose—it would be a real challenge to write

your own. The JColorChooser dialog is useful when you want users to pick colors.

Chapter 12 User Interface Components with Swing730

ptg16518469

12.7.1 Option Dialogs
Swing has a set of ready-made simple dialogs that suffice to ask the user for a

single piece of information. The JOptionPane has four static methods to show

these simple dialogs:

Show a message and wait for the user to click OKshowMessageDialog

Show a message and get a confirmation (like OK/Cancel)showConfirmDialog

Show a message and get a user option from a set of optionsshowOptionDialog

Show a message and get one line of user inputshowInputDialog

Figure 12.36 shows a typical dialog. As you can see, the dialog has the following

components:

• An icon

• A message

• One or more option buttons

Figure 12.36 An option dialog

The input dialog has an additional component for user input. This can be a text

field into which the user can type an arbitrary string, or a combo box from which

the user can select one item.

The exact layout of these dialogs and the choice of icons for standard message

types depend on the pluggable look-and-feel.

The icon on the left side depends on one of five message types:

ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
QUESTION_MESSAGE
PLAIN_MESSAGE

The PLAIN_MESSAGE type has no icon. Each dialog type also has a method that lets you

supply your own icon instead.

73112.7 Dialog Boxes

ptg16518469

For each dialog type, you can specify a message. This message can be a string, an

icon, a user interface component, or any other object. Here is how the message

object is displayed:

Draw the stringString

Show the iconIcon

Show the componentComponent

Show all objects in the array, stacked on top of each otherObject[]

Apply toString and show the resulting stringAny other object

You can see these options by running the program in Listing 12.15.

Of course, supplying a message string is by far the most common case. Supplying

a Component gives you ultimate flexibility because you can make the paintComponent
method draw anything you want.

The buttons at the bottom depend on the dialog type and the option type. When

calling showMessageDialog and showInputDialog, you get only a standard set of buttons (OK

and OK/Cancel, respectively). When calling showConfirmDialog, you can choose among

four option types:

DEFAULT_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTION
OK_CANCEL_OPTION

With the showOptionDialog you can specify an arbitrary set of options. You supply an

array of objects for the options. Each array element is rendered as follows:

Make a button with the string as labelString

Make a button with the icon as labelIcon

Show the componentComponent

Apply toString and make a button with the resulting string

as label

Any other object

The return values of these functions are as follows:

NoneshowMessageDialog

An integer representing the chosen optionshowConfirmDialog

An integer representing the chosen optionshowOptionDialog

The string that the user supplied or selectedshowInputDialog

The showConfirmDialog and showOptionDialog return integers to indicate which button the

user chose. For the option dialog, this is simply the index of the chosen option or

Chapter 12 User Interface Components with Swing732

ptg16518469

the value CLOSED_OPTION if the user closed the dialog instead of choosing an option.

For the confirmation dialog, the return value can be one of the following:

OK_OPTION
CANCEL_OPTION
YES_OPTION
NO_OPTION
CLOSED_OPTION

This all sounds like a bewildering set of choices, but in practice it is simple. Follow

these steps:

1. Choose the dialog type (message, confirmation, option, or input).

2. Choose the icon (error, information, warning, question, none, or custom).

3. Choose the message (string, icon, custom component, or a stack of them).

4. For a confirmation dialog, choose the option type (default, Yes/No,

Yes/No/Cancel, or OK/Cancel).

5. For an option dialog, choose the options (strings, icons, or custom

components) and the default option.

6. For an input dialog, choose between a text field and a combo box.

7. Locate the appropriate method to call in the JOptionPaneAPI.

For example, suppose you want to show the dialog in Figure 12.36. The dialog

shows a message and asks the user to confirm or cancel. Thus, it is a confirmation

dialog. The icon is a question icon. The message is a string. The option type is

OK_CANCEL_OPTION. Here is the call you would make:

int selection = JOptionPane.showConfirmDialog(parent,
 "Message", "Title",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);
if (selection == JOptionPane.OK_OPTION) . . .

TIP: The message string can contain newline ('\n') characters. Such a string is
displayed in multiple lines.

The program whose frame class is shown in Listing 12.15 displays six button

panels (see Figure 12.37). Listing 12.16 shows the class for the panels. When you

click the Show button, the selected dialog is displayed.

73312.7 Dialog Boxes

ptg16518469Figure 12.37 The OptionDialogTest program

Listing 12.15 optionDialog/OptionDialogFrame.java

1 package optionDialog;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.geom.*;
6 import java.util.*;
7 import javax.swing.*;
 8

9 /**
10 * A frame that contains settings for selecting various option dialogs.
11 */
12 public class OptionDialogFrame extends JFrame
13 {
14 private ButtonPanel typePanel;
15 private ButtonPanel messagePanel;
16 private ButtonPanel messageTypePanel;
17 private ButtonPanel optionTypePanel;
18 private ButtonPanel optionsPanel;
19 private ButtonPanel inputPanel;
20 private String messageString = "Message";
21 private Icon messageIcon = new ImageIcon("blue-ball.gif");
22 private Object messageObject = new Date();

Chapter 12 User Interface Components with Swing734

ptg16518469

23 private Component messageComponent = new SampleComponent();
24

25 public OptionDialogFrame()
26 {
27 JPanel gridPanel = new JPanel();
28 gridPanel.setLayout(new GridLayout(2, 3));
29

30 typePanel = new ButtonPanel("Type", "Message", "Confirm", "Option", "Input");
31 messageTypePanel = new ButtonPanel("Message Type", "ERROR_MESSAGE", "INFORMATION_MESSAGE",
32 "WARNING_MESSAGE", "QUESTION_MESSAGE", "PLAIN_MESSAGE");
33 messagePanel = new ButtonPanel("Message", "String", "Icon", "Component", "Other",
34 "Object[]");
35 optionTypePanel = new ButtonPanel("Confirm", "DEFAULT_OPTION", "YES_NO_OPTION",
36 "YES_NO_CANCEL_OPTION", "OK_CANCEL_OPTION");
37 optionsPanel = new ButtonPanel("Option", "String[]", "Icon[]", "Object[]");
38 inputPanel = new ButtonPanel("Input", "Text field", "Combo box");
39

40 gridPanel.add(typePanel);
41 gridPanel.add(messageTypePanel);
42 gridPanel.add(messagePanel);
43 gridPanel.add(optionTypePanel);
44 gridPanel.add(optionsPanel);
45 gridPanel.add(inputPanel);
46

47 // add a panel with a Show button
48

49 JPanel showPanel = new JPanel();
50 JButton showButton = new JButton("Show");
51 showButton.addActionListener(new ShowAction());
52 showPanel.add(showButton);
53

54 add(gridPanel, BorderLayout.CENTER);
55 add(showPanel, BorderLayout.SOUTH);
56 pack();
57 }
58

59 /**
60 * Gets the currently selected message.
61 * @return a string, icon, component, or object array, depending on the Message panel selection
62 */
63 public Object getMessage()
64 {
65 String s = messagePanel.getSelection();
66 if (s.equals("String")) return messageString;
67 else if (s.equals("Icon")) return messageIcon;
68 else if (s.equals("Component")) return messageComponent;
69 else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
70 messageComponent, messageObject };

(Continues)

73512.7 Dialog Boxes

ptg16518469

Listing 12.15 (Continued)

71 else if (s.equals("Other")) return messageObject;
72 else return null;
73 }
74

75 /**
76 * Gets the currently selected options.
77 * @return an array of strings, icons, or objects, depending on the Option panel selection
78 */
79 public Object[] getOptions()
80 {
81 String s = optionsPanel.getSelection();
82 if (s.equals("String[]")) return new String[] { "Yellow", "Blue", "Red" };
83 else if (s.equals("Icon[]")) return new Icon[] { new ImageIcon("yellow-ball.gif"),
84 new ImageIcon("blue-ball.gif"), new ImageIcon("red-ball.gif") };
85 else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
86 messageComponent, messageObject };
87 else return null;
88 }
89

90 /**
91 * Gets the selected message or option type
92 * @param panel the Message Type or Confirm panel
93 * @return the selected XXX_MESSAGE or XXX_OPTION constant from the JOptionPane class
94 */
95 public int getType(ButtonPanel panel)
96 {
97 String s = panel.getSelection();
98 try
99 {
100 return JOptionPane.class.getField(s).getInt(null);
101 }
102 catch (Exception e)
103 {
104 return -1;
105 }
106 }
107

108 /**
109 * The action listener for the Show button shows a Confirm, Input, Message, or Option dialog
110 * depending on the Type panel selection.
111 */

Chapter 12 User Interface Components with Swing736

ptg16518469

112 private class ShowAction implements ActionListener
113 {
114 public void actionPerformed(ActionEvent event)
115 {
116 if (typePanel.getSelection().equals("Confirm")) JOptionPane.showConfirmDialog(
117 OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
118 getType(messageTypePanel));
119 else if (typePanel.getSelection().equals("Input"))
120 {
121 if (inputPanel.getSelection().equals("Text field")) JOptionPane.showInputDialog(
122 OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
123 else JOptionPane.showInputDialog(OptionDialogFrame.this, getMessage(), "Title",
124 getType(messageTypePanel), null, new String[] { "Yellow", "Blue", "Red" },
125 "Blue");
126 }
127 else if (typePanel.getSelection().equals("Message")) JOptionPane.showMessageDialog(
128 OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
129 else if (typePanel.getSelection().equals("Option")) JOptionPane.showOptionDialog(
130 OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
131 getType(messageTypePanel), null, getOptions(), getOptions()[0]);
132 }
133 }
134 }
135

136 /**
137 * A component with a painted surface
138 */
139

140 class SampleComponent extends JComponent
141 {
142 public void paintComponent(Graphics g)
143 {
144 Graphics2D g2 = (Graphics2D) g;
145 Rectangle2D rect = new Rectangle2D.Double(0, 0, getWidth() - 1, getHeight() - 1);
146 g2.setPaint(Color.YELLOW);
147 g2.fill(rect);
148 g2.setPaint(Color.BLUE);
149 g2.draw(rect);
150 }
151

152 public Dimension getPreferredSize()
153 {
154 return new Dimension(10, 10);
155 }
156 }

73712.7 Dialog Boxes

ptg16518469

Listing 12.16 optionDialog/ButtonPanel.java

1 package optionDialog;
 2

3 import javax.swing.*;
 4

5 /**
6 * A panel with radio buttons inside a titled border.
7 */
8 public class ButtonPanel extends JPanel
9 {
10 private ButtonGroup group;
11

12 /**
13 * Constructs a button panel.
14 * @param title the title shown in the border
15 * @param options an array of radio button labels
16 */
17 public ButtonPanel(String title, String... options)
18 {
19 setBorder(BorderFactory.createTitledBorder(BorderFactory.createEtchedBorder(), title));
20 setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
21 group = new ButtonGroup();
22

23 // make one radio button for each option
24 for (String option : options)
25 {
26 JRadioButton b = new JRadioButton(option);
27 b.setActionCommand(option);
28 add(b);
29 group.add(b);
30 b.setSelected(option == options[0]);
31 }
32 }
33

34 /**
35 * Gets the currently selected option.
36 * @return the label of the currently selected radio button.
37 */
38 public String getSelection()
39 {
40 return group.getSelection().getActionCommand();
41 }
42 }

Chapter 12 User Interface Components with Swing738

ptg16518469

javax.swing.JOptionPane 1.2

• static void showMessageDialog(Component parent, Object message, String title, int messageType,
Icon icon)

• static void showMessageDialog(Component parent, Object message, String title, int messageType)
• static void showMessageDialog(Component parent, Object message)
• static void showInternalMessageDialog(Component parent, Object message, String title, int

messageType, Icon icon)
• static void showInternalMessageDialog(Component parent, Object message, String title, int

messageType)
• static void showInternalMessageDialog(Component parent, Object message)

shows a message dialog or an internal message dialog. (An internal dialog is

rendered entirely within its owner’s frame.)

The parent component (can be null)parentParameters:

The message to show on the dialog (can be a string,

icon, component, or an array of them)

message

The string in the title bar of the dialogtitle

One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,

QUESTION_MESSAGE, PLAIN_MESSAGE

messageType

An icon to show instead of one of the standard iconsicon

• static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType, Icon icon)

• static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType)

• static int showConfirmDialog(Component parent, Object message, String title, int optionType)
• static int showConfirmDialog(Component parent, Object message)
• static int showInternalConfirmDialog(Component parent, Object message, String title, int

optionType, int messageType, Icon icon)
• static int showInternalConfirmDialog(Component parent, Object message, String title, int

optionType, int messageType)
• static int showInternalConfirmDialog(Component parent, Object message, String title, int

optionType)
• static int showInternalConfirmDialog(Component parent, Object message)

shows a confirmation dialog or an internal confirmation dialog. (An internal dialog

is rendered entirely within its owner’s frame.) Returns the option selected by the

user (one of OK_OPTION, CANCEL_OPTION, YES_OPTION, NO_OPTION), or CLOSED_OPTION if the user

closed the dialog.

(Continues)

73912.7 Dialog Boxes

ptg16518469

javax.swing.JOptionPane 1.2 (Continued)

parentParameters: The parent component (can be null)

The message to show on the dialog (can be a string,

icon, component, or an array of them)

message

The string in the title bar of the dialogtitle

One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,

QUESTION_MESSAGE, PLAIN_MESSAGE

messageType

One of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,

OK_CANCEL_OPTION

optionType

An icon to show instead of one of the standard iconsicon

• static int showOptionDialog(Component parent, Object message, String title, int optionType, int
messageType, Icon icon, Object[] options, Object default)

• static int showInternalOptionDialog(Component parent, Object message, String title, int
optionType, int messageType, Icon icon, Object[] options, Object default)

shows an option dialog or an internal option dialog. (An internal dialog is rendered

entirely within its owner’s frame.) Returns the index of the option selected by the

user, or CLOSED_OPTION if the user canceled the dialog.

The parent component (can be null)parentParameters:

The message to show on the dialog (can be a string,

icon, component, or an array of them)

message

The string in the title bar of the dialogtitle

One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,

QUESTION_MESSAGE, PLAIN_MESSAGE

messageType

One of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,

OK_CANCEL_OPTION

optionType

An icon to show instead of one of the standard iconsicon

An array of options (can be strings, icons, or

components)

options

The default option to present to the userdefault

• static Object showInputDialog(Component parent, Object message, String title, int messageType,
Icon icon, Object[] values, Object default)

• static String showInputDialog(Component parent, Object message, String title, int messageType)
• static String showInputDialog(Component parent, Object message)
• static String showInputDialog(Object message)
• static String showInputDialog(Component parent, Object message, Object default) 1.4
• static String showInputDialog(Object message, Object default) 1.4

(Continues)

Chapter 12 User Interface Components with Swing740

ptg16518469

javax.swing.JOptionPane 1.2 (Continued)

• static Object showInternalInputDialog(Component parent, Object message, String title, int
messageType, Icon icon, Object[] values, Object default)

• static String showInternalInputDialog(Component parent, Object message, String title, int
messageType)

• static String showInternalInputDialog(Component parent, Object message)

shows an input dialog or an internal input dialog. (An internal dialog is rendered

entirely within its owner’s frame.) Returns the input string typed by the user, or

null if the user canceled the dialog.

The parent component (can be null)parentParameters:

The message to show on the dialog (can be a string,

icon, component, or an array of them)

message

The string in the title bar of the dialogtitle

One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,

QUESTION_MESSAGE, PLAIN_MESSAGE

messageType

An icon to show instead of one of the standard iconsicon

An array of values to show in a combo boxvalues

The default value to present to the userdefault

12.7.2 Creating Dialogs
In the last section, you saw how to use the JOptionPane class to show a simple

dialog. In this section, you will see how to create such a dialog by hand.

Figure 12.38 shows a typical modal dialog box—a program information box that

is displayed when the user clicks the About button.

Figure 12.38 An About dialog box

74112.7 Dialog Boxes

ptg16518469

To implement a dialog box, you extend the JDialog class. This is essentially the

same process as extending JFrame for the main window for an application. More

precisely:

1. In the constructor of your dialog box, call the constructor of the superclass

JDialog.

2. Add the user interface components of the dialog box.

3. Add the event handlers.

4. Set the size for the dialog box.

When you call the superclass constructor, you will need to supply the owner frame,

the title of the dialog, and the modality.

The owner frame controls where the dialog is displayed. You can supply null
as the owner; then, the dialog is owned by a hidden frame.

The modality specifies which other windows of your application are blocked

while the dialog is displayed. A modeless dialog does not block other windows.

A modal dialog blocks all other windows of the application (except for the children

of the dialog). You would use a modeless dialog for a toolbox that the user can

always access. On the other hand, you would use a modal dialog if you want to

force the user to supply required information before continuing.

NOTE: As of Java SE 6, there are two additional modality types. A document-
modal dialog blocks all windows belonging to the same “document,” or more
precisely, all windows with the same parentless root window as the dialog. This
solves a problem with help systems. In older versions, users were unable to
interact with the help windows when a modal dialog was popped up. A toolkit-
modal dialog blocks all windows from the same “toolkit.” A toolkit is a Java pro-
gram that launches multiple applications, such as the applet engine in a browser.
For more information on these advanced issues, see www.oracle.com/technetwork/
articles/javase/modality-137604.html.

Here’s the code for a dialog box:

public AboutDialog extends JDialog
{
 public AboutDialog(JFrame owner)
 {
 super(owner, "About DialogTest", true);
 add(new JLabel(

"<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann</html>"),
BorderLayout.CENTER);

 JPanel panel = new JPanel();

Chapter 12 User Interface Components with Swing742

http://www.oracle.com/technetwork/rticles/javase/modality-137604.html
http://www.oracle.com/technetwork/rticles/javase/modality-137604.html

ptg16518469

 JButton ok = new JButton("OK");

 ok.addActionListener(event -> setVisible(false));
 panel.add(ok);
 add(panel, BorderLayout.SOUTH);
 setSize(250, 150);
 }
}

As you can see, the constructor adds user interface elements—in this case, labels

and a button. It adds a handler to the button and sets the size of the dialog.

To display the dialog box, create a new dialog object and make it visible:

JDialog dialog = new AboutDialog(this);
dialog.setVisible(true);

Actually, in the sample code below, we create the dialog box only once, and we

can reuse it whenever the user clicks the About button.

if (dialog == null) // first time
 dialog = new AboutDialog(this);
dialog.setVisible(true);

When the user clicks the OK button, the dialog box should close. This is handled

in the event handler of the OK button:

ok.addActionListener(event -> setVisible(false));

When the user closes the dialog by clicking the Close button, the dialog is also

hidden. Just as with a JFrame, you can override this behavior with the

setDefaultCloseOperation method.

Listing 12.17 is the code for the frame class of the test program. Listing 12.18

shows the dialog class.

Listing 12.17 dialog/DialogFrame.java

1 package dialog;
 2

3 import javax.swing.JFrame;
4 import javax.swing.JMenu;
5 import javax.swing.JMenuBar;
6 import javax.swing.JMenuItem;
 7

8 /**
9 * A frame with a menu whose File->About action shows a dialog.
10 */

(Continues)

74312.7 Dialog Boxes

ptg16518469

Listing 12.17 (Continued)

11 public class DialogFrame extends JFrame
12 {
13 private static final int DEFAULT_WIDTH = 300;
14 private static final int DEFAULT_HEIGHT = 200;
15 private AboutDialog dialog;
16

17 public DialogFrame()
18 {
19 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
20

21 // Construct a File menu.
22

23 JMenuBar menuBar = new JMenuBar();
24 setJMenuBar(menuBar);
25 JMenu fileMenu = new JMenu("File");
26 menuBar.add(fileMenu);
27

28 // Add About and Exit menu items.
29

30 // The About item shows the About dialog.
31

32 JMenuItem aboutItem = new JMenuItem("About");
33 aboutItem.addActionListener(event -> {
34 if (dialog == null) // first time
35 dialog = new AboutDialog(DialogFrame.this);
36 dialog.setVisible(true); // pop up dialog
37 });
38 fileMenu.add(aboutItem);
39

40 // The Exit item exits the program.
41

42 JMenuItem exitItem = new JMenuItem("Exit");
43 exitItem.addActionListener(event -> System.exit(0));
44 fileMenu.add(exitItem);
45 }
46 }

Listing 12.18 dialog/AboutDialog.java

1 package dialog;
 2

3 import java.awt.BorderLayout;
 4

5 import javax.swing.JButton;
6 import javax.swing.JDialog;

Chapter 12 User Interface Components with Swing744

ptg16518469

7 import javax.swing.JFrame;
8 import javax.swing.JLabel;
9 import javax.swing.JPanel;
10

11 /**
12 * A sample modal dialog that displays a message and waits for the user to click the OK button.
13 */
14 public class AboutDialog extends JDialog
15 {
16 public AboutDialog(JFrame owner)
17 {
18 super(owner, "About DialogTest", true);
19

20 // add HTML label to center
21

22 add(
23 new JLabel(
24 "<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann</html>"),
25 BorderLayout.CENTER);
26

27 // OK button closes the dialog
28

29 JButton ok = new JButton("OK");
30 ok.addActionListener(event -> setVisible(false));
31

32 // add OK button to southern border
33

34 JPanel panel = new JPanel();
35 panel.add(ok);
36 add(panel, BorderLayout.SOUTH);
37

38 pack();
39 }
40 }

javax.swing.JDialog 1.2

• public JDialog(Frame parent, String title, boolean modal)

constructs a dialog. The dialog is not visible until it is explicitly shown.

The frame that is the owner of the dialogparentParameters:

The title of the dialogtitle

true for modal dialogs (a modal dialog blocks input to

other windows)

modal

74512.7 Dialog Boxes

ptg16518469

12.7.3 Data Exchange
The most common reason to put up a dialog box is to get information from the

user. You have already seen how easy it is to make a dialog box object: Give it

initial data and call setVisible(true) to display the dialog box on the screen. Now

let’s see how to transfer data in and out of a dialog box.

Consider the dialog box in Figure 12.39 that could be used to obtain a user name

and a password to connect to some online service.

Figure 12.39 Password dialog box

Your dialog box should provide methods to set default data. For example, the

PasswordChooser class of the example program has a method, setUser, to place default

values into the next fields:

public void setUser(User u)
{
 username.setText(u.getName());
}

Once you set the defaults (if desired), show the dialog by calling setVisible(true).

The dialog is now displayed.

The user then fills in the information and clicks the OK or Cancel button. The

event handlers for both buttons call setVisible(false), which terminates the call to

setVisible(true). Alternatively, the user may close the dialog. If you did not install

a window listener for the dialog, the default window closing operation applies:

The dialog becomes invisible, which also terminates the call to setVisible(true).

The important issue is that the call to setVisible(true) blocks until the user has

dismissed the dialog. This makes it easy to implement modal dialogs.

You want to know whether the user has accepted or canceled the dialog. Our

sample code sets the ok flag to false before showing the dialog. Only the event

Chapter 12 User Interface Components with Swing746

ptg16518469

handler for the OK button sets the ok flag to true; that’s how you retrieve the user

input from the dialog.

NOTE: Transferring data out of a modeless dialog is not as simple. When a
modeless dialog is displayed, the call to setVisible(true) does not block and the
program continues running while the dialog is displayed. If the user selects items
on a modeless dialog and then clicks OK, the dialog needs to send an event to
some listener in the program.

The example program contains another useful improvement. When you construct

a JDialog object, you need to specify the owner frame. However, quite often you

want to show the same dialog with different owner frames. It is better to pick the

owner frame when you are ready to show the dialog, not when you construct

the PasswordChooser object.

The trick is to have the PasswordChooser extend JPanel instead of JDialog. Build a JDialog
object on the fly in the showDialog method:

public boolean showDialog(Frame owner, String title)
{
 ok = false;

 if (dialog == null || dialog.getOwner() != owner)
 {
 dialog = new JDialog(owner, true);
 dialog.add(this);
 dialog.pack();
 }

 dialog.setTitle(title);
 dialog.setVisible(true);
 return ok;
}

Note that it is safe to have owner equal to null.

You can do even better. Sometimes, the owner frame isn’t readily available. It is

easy enough to compute it from any parent component, like this:

Frame owner;
if (parent instanceof Frame)
 owner = (Frame) parent;
else
 owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);

We use this enhancement in our sample program. The JOptionPane class also uses

this mechanism.

74712.7 Dialog Boxes

ptg16518469

Many dialogs have a default button, which is automatically selected if the user

presses a trigger key (Enter in most look-and-feel implementations). The default

button is specially marked, often with a thick outline.

Set the default button in the root pane of the dialog:

dialog.getRootPane().setDefaultButton(okButton);

If you follow our suggestion of laying out the dialog in a panel, then you must

be careful to set the default button only after you wrapped the panel into a dialog.

The panel dialog itself has no root pane.

Listing 12.19 is for the frame class of the program that illustrates the data flow

into and out of a dialog box. Listing 12.20 shows the dialog class.

Listing 12.19 dataExchange/DataExchangeFrame.java

1 package dataExchange;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * A frame with a menu whose File->Connect action shows a password dialog.
9 */
10 public class DataExchangeFrame extends JFrame
11 {
12 public static final int TEXT_ROWS = 20;
13 public static final int TEXT_COLUMNS = 40;
14 private PasswordChooser dialog = null;
15 private JTextArea textArea;
16

17 public DataExchangeFrame()
18 {
19 // construct a File menu
20

21 JMenuBar mbar = new JMenuBar();
22 setJMenuBar(mbar);
23 JMenu fileMenu = new JMenu("File");
24 mbar.add(fileMenu);
25

26 // add Connect and Exit menu items
27

28 JMenuItem connectItem = new JMenuItem("Connect");
29 connectItem.addActionListener(new ConnectAction());
30 fileMenu.add(connectItem);
31

32 // The Exit item exits the program

Chapter 12 User Interface Components with Swing748

ptg16518469

33

34 JMenuItem exitItem = new JMenuItem("Exit");
35 exitItem.addActionListener(event -> System.exit(0));
36 fileMenu.add(exitItem);
37

38 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
39 add(new JScrollPane(textArea), BorderLayout.CENTER);
40 pack();
41 }
42

43 /**
44 * The Connect action pops up the password dialog.
45 */
46 private class ConnectAction implements ActionListener
47 {
48 public void actionPerformed(ActionEvent event)
49 {
50 // if first time, construct dialog
51

52 if (dialog == null) dialog = new PasswordChooser();
53

54 // set default values
55 dialog.setUser(new User("yourname", null));
56

57 // pop up dialog
58 if (dialog.showDialog(DataExchangeFrame.this, "Connect"))
59 {
60 // if accepted, retrieve user input
61 User u = dialog.getUser();
62 textArea.append("user name = " + u.getName() + ", password = "
63 + (new String(u.getPassword())) + "\n");
64 }
65 }
66 }
67 }

Listing 12.20 dataExchange/PasswordChooser.java

1 package dataExchange;
 2

3 import java.awt.BorderLayout;
4 import java.awt.Component;
5 import java.awt.Frame;
6 import java.awt.GridLayout;
 7

8 import javax.swing.JButton;
9 import javax.swing.JDialog;
10 import javax.swing.JLabel;

(Continues)

74912.7 Dialog Boxes

ptg16518469

Listing 12.20 (Continued)

11 import javax.swing.JPanel;
12 import javax.swing.JPasswordField;
13 import javax.swing.JTextField;
14 import javax.swing.SwingUtilities;
15

16 /**
17 * A password chooser that is shown inside a dialog
18 */
19 public class PasswordChooser extends JPanel
20 {
21 private JTextField username;
22 private JPasswordField password;
23 private JButton okButton;
24 private boolean ok;
25 private JDialog dialog;
26

27 public PasswordChooser()
28 {
29 setLayout(new BorderLayout());
30

31 // construct a panel with user name and password fields
32

33 JPanel panel = new JPanel();
34 panel.setLayout(new GridLayout(2, 2));
35 panel.add(new JLabel("User name:"));
36 panel.add(username = new JTextField(""));
37 panel.add(new JLabel("Password:"));
38 panel.add(password = new JPasswordField(""));
39 add(panel, BorderLayout.CENTER);
40

41 // create Ok and Cancel buttons that terminate the dialog
42

43 okButton = new JButton("Ok");
44 okButton.addActionListener(event -> {
45 ok = true;
46 dialog.setVisible(false);
47 });
48

49 JButton cancelButton = new JButton("Cancel");
50 cancelButton.addActionListener(event -> dialog.setVisible(false));
51

52 // add buttons to southern border
53

54 JPanel buttonPanel = new JPanel();
55 buttonPanel.add(okButton);
56 buttonPanel.add(cancelButton);
57 add(buttonPanel, BorderLayout.SOUTH);
58 }

Chapter 12 User Interface Components with Swing750

ptg16518469

59

60 /**
61 * Sets the dialog defaults.
62 * @param u the default user information
63 */
64 public void setUser(User u)
65 {
66 username.setText(u.getName());
67 }
68

69 /**
70 * Gets the dialog entries.
71 * @return a User object whose state represents the dialog entries
72 */
73 public User getUser()
74 {
75 return new User(username.getText(), password.getPassword());
76 }
77

78 /**
79 * Show the chooser panel in a dialog
80 * @param parent a component in the owner frame or null
81 * @param title the dialog window title
82 */
83 public boolean showDialog(Component parent, String title)
84 {
85 ok = false;
86

87 // locate the owner frame
88

89 Frame owner = null;
90 if (parent instanceof Frame)
91 owner = (Frame) parent;
92 else
93 owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);
94

95 // if first time, or if owner has changed, make new dialog
96

97 if (dialog == null || dialog.getOwner() != owner)
98 {
99 dialog = new JDialog(owner, true);
100 dialog.add(this);
101 dialog.getRootPane().setDefaultButton(okButton);
102 dialog.pack();
103 }
104

105 // set title and show dialog
106

(Continues)

75112.7 Dialog Boxes

ptg16518469

Listing 12.20 (Continued)

107 dialog.setTitle(title);
108 dialog.setVisible(true);
109 return ok;
110 }
111 }

javax.swing.SwingUtilities 1.2

• Container getAncestorOfClass(Class c, Component comp)

returns the innermost parent container of the given component that belongs to the

given class or one of its subclasses.

javax.swing.JComponent 1.2

• JRootPane getRootPane()

gets the root pane enclosing this component, or null if this component does not

have an ancestor with a root pane.

javax.swing.JRootPane 1.2

• void setDefaultButton(JButton button)

sets the default button for this root pane. To deactivate the default button, call this

method with a null parameter.

javax.swing.JButton 1.2

• boolean isDefaultButton()

returns true if this button is the default button of its root pane.

12.7.4 File Dialogs
In an application, you often want to be able to open and save files. A good file

dialog box that shows files and directories and lets the user navigate the file system

is hard to write, and you definitely don’t want to reinvent that wheel. Fortunately,

Swing provides a JFileChooser class that allows you to display a file dialog box

similar to the one that most native applications use. JFileChooser dialogs are always

Chapter 12 User Interface Components with Swing752

ptg16518469

modal. Note that the JFileChooser class is not a subclass of JDialog. Instead of calling

setVisible(true), call showOpenDialog to display a dialog for opening a file, or call

showSaveDialog to display a dialog for saving a file. The button for accepting a file is

then automatically labeled Open or Save. You can also supply your own button

label with the showDialog method. Figure 12.40 shows an example of the file chooser

dialog box.

Figure 12.40 File chooser dialog box

Here are the steps to put up a file dialog box and recover what the user chooses

from the box:

1. Make a JFileChooser object. Unlike the constructor for the JDialog class, you do

not supply the parent component. This allows you to reuse a file chooser

dialog with multiple frames.

For example:

JFileChooser chooser = new JFileChooser();

TIP: Reusing a file chooser object is a good idea because the JFileChooser con-
structor can be quite slow, especially on Windows when the user has many
mapped network drives.

75312.7 Dialog Boxes

ptg16518469

2. Set the directory by calling the setCurrentDirectory method.

For example, to use the current working directory

chooser.setCurrentDirectory(new File("."));

you need to supply a File object. File objects are explained in detail in

Chapter 2 of Volume II. All you need to know for now is that the constructor

File(String filename) turns a file or directory name into a File object.

3. If you have a default file name that you expect the user to choose, supply it

with the setSelectedFile method:

chooser.setSelectedFile(new File(filename));

4. To enable the user to select multiple files in the dialog, call the

setMultiSelectionEnabled method. This is, of course, entirely optional and not all

that common.

chooser.setMultiSelectionEnabled(true);

5. If you want to restrict the display of files in the dialog to those of a particular

type (for example, all files with extension .gif), you need to set a file filter. We

discuss file filters later in this section.

6. By default, a user can select only files with a file chooser. If you

want the user to select directories, use the setFileSelectionMode method. Call it

with JFileChooser.FILES_ONLY (the default), JFileChooser.DIRECTORIES_ONLY, or JFileChooser.
FILES_AND_DIRECTORIES.

7. Show the dialog box by calling the showOpenDialog or showSaveDialog method. You

must supply the parent component in these calls:

int result = chooser.showOpenDialog(parent);

or

int result = chooser.showSaveDialog(parent);

The only difference between these calls is the label of the “approve but-

ton”—the button that the user clicks to finish the file selection. You can also

call the showDialog method and pass an explicit text for the approve button:

int result = chooser.showDialog(parent, "Select");

These calls return only when the user has approved, canceled, or dismissed

the file dialog. The return value is JFileChooser.APPROVE_OPTION, JFileChooser.CANCEL_OPTION,

or JFileChooser.ERROR_OPTION.

8. Get the selected file or files with the getSelectedFile() or getSelectedFiles() method.

These methods return either a single File object or an array of File objects. If

you just need the name of the file object, call its getPath method. For example:

Chapter 12 User Interface Components with Swing754

ptg16518469

String filename = chooser.getSelectedFile().getPath();

For the most part, these steps are simple. The major difficulty with using a file

dialog is to specify a subset of files from which the user should choose. For exam-

ple, suppose the user should choose a GIF image file. Then, the file chooser should

only display files with the extension .gif. It should also give the user some kind

of feedback that the displayed files are of a particular category, such as “GIF Im-

ages.” But the situation can be more complex. If the user should choose a JPEG

image file, the extension can be either .jpg or .jpeg. Instead of a way to codify these

complexities, the designers of the file chooser povided a more elegant mechanism:

to restrict the displayed files, supply an object that extends the abstract class

javax.swing.filechooser.FileFilter. The file chooser passes each file to the file filter and

displays only those files that the filter accepts.

At the time of this writing, two such subclasses are supplied: the default filter

that accepts all files, and a filter that accepts all files with a given extension.

However, it is easy to write ad-hoc file filters. You simply implement the two

abstract methods of the FileFilter superclass:

public boolean accept(File f);
public String getDescription();

The first method tests whether a file should be accepted. The second method re-

turns a description of the file type that can be displayed in the file chooser dialog.

NOTE: An unrelated FileFilter interface in the java.io package has a single
method, boolean accept(File f). It is used in the listFiles method of the File class
to list files in a directory. We do not know why the designers of Swing didn’t ex-
tend this interface—perhaps the Java class library has now become so complex
that even the programmers at Sun were no longer aware of all the standard
classes and interfaces.

You will need to resolve the name conflict between these two identically named
types if you import both the java.io and the javax.swing.filechooser packages. The
simplest remedy is to import javax.swing.filechooser.FileFilter, not javax.swing.
filechooser.*.

Once you have a file filter object, use the setFileFilter method of the JFileChooser class

to install it into the file chooser object:

chooser.setFileFilter(new FileNameExtensionFilter("Image files", "gif", "jpg"));

You can install multiple filters to the file chooser by calling

75512.7 Dialog Boxes

ptg16518469

chooser.addChoosableFileFilter(filter1);
chooser.addChoosableFileFilter(filter2);
. . .

The user selects a filter from the combo box at the bottom of the file dialog. By

default, the “All files” filter is always present in the combo box. This is a good

idea—just in case a user of your program needs to select a file with a nonstandard

extension. However, if you want to suppress the “All files” filter, call

chooser.setAcceptAllFileFilterUsed(false)

CAUTION: If you reuse a single file chooser for loading and saving different file
types, call

chooser.resetChoosableFilters()

to clear any old file filters before adding new ones.

Finally, you can customize the file chooser by providing special icons and file

descriptions for each file that the file chooser displays. Do this by supplying an

object of a class extending the FileView class in the javax.swing.filechooser package. This

is definitely an advanced technique. Normally, you don’t need to supply a file

view—the pluggable look-and-feel supplies one for you. But if you want to show

different icons for special file types, you can install your own file view. You need

to extend the FileView class and implement five methods:

Icon getIcon(File f);
String getName(File f);
String getDescription(File f);
String getTypeDescription(File f);
Boolean isTraversable(File f);

Then, use the setFileView method to install your file view into the file chooser.

The file chooser calls your methods for each file or directory that it wants to dis-

play. If your method returns null for the icon, name, or description, the file

chooser then consults the default file view of the look-and-feel. That is good, be-

cause it means you need to deal only with the file types for which you want to

do something different.

The file chooser calls the isTraversable method to decide whether to open a directory

when a user clicks on it. Note that this method returns a Boolean object, not a boolean
value! This seems weird, but it is actually convenient—if you aren’t interested in

deviating from the default file view, just return null. The file chooser will then

Chapter 12 User Interface Components with Swing756

ptg16518469

consult the default file view. In other words, the method returns a Boolean to let

you choose among three options: true (Boolean.TRUE), false (Boolean.FALSE), or don’t

care (null).

The example program contains a simple file view class. That class shows a partic-

ular icon whenever a file matches a file filter. We use it to display a palette icon

for all image files.

class FileIconView extends FileView
{
 private FileFilter filter;
 private Icon icon;

 public FileIconView(FileFilter aFilter, Icon anIcon)
 {
 filter = aFilter;
 icon = anIcon;
 }

 public Icon getIcon(File f)
 {
 if (!f.isDirectory() && filter.accept(f))

return icon;
 else return null;
 }
}

Install this file view into your file chooser with the setFileView method:

chooser.setFileView(new FileIconView(filter,
 new ImageIcon("palette.gif")));

The file chooser will then show the palette icon next to all files that pass the filter
and use the default file view to show all other files. Naturally, we use the same

filter that we set in the file chooser.

TIP: You can find a more useful ExampleFileView class in the demo/jfc/FileChooserDemo
directory of the JDK. That class lets you associate icons and descriptions with
arbitrary extensions.

Finally, you can customize a file dialog by adding an accessory component. For

example, Figure 12.41 shows a preview accessory next to the file list. This accessory

displays a thumbnail view of the currently selected file.

An accessory can be any Swing component. In our case, we extend the JLabel class

and set its icon to a scaled copy of the graphics image:

75712.7 Dialog Boxes

ptg16518469

Figure 12.41 A file dialog with a preview accessory

class ImagePreviewer extends JLabel
{
 public ImagePreviewer(JFileChooser chooser)
 {
 setPreferredSize(new Dimension(100, 100));
 setBorder(BorderFactory.createEtchedBorder());
 }

 public void loadImage(File f)
 {
 ImageIcon icon = new ImageIcon(f.getPath());
 if(icon.getIconWidth() > getWidth())

icon = new ImageIcon(icon.getImage().getScaledInstance(
getWidth(), -1, Image.SCALE_DEFAULT));

 setIcon(icon);
 repaint();
 }
}

There is just one challenge. We want to update the preview image whenever the

user selects a different file. The file chooser uses the “JavaBeans” mechanism of

notifying interested listeners whenever one of its properties changes. The selected

Chapter 12 User Interface Components with Swing758

ptg16518469

file is a property that you can monitor by installing a PropertyChangeListener. We discuss

this mechanism in greater detail in Chapter 11 of Volume II. Here is the code that

you need to trap the notifications:

chooser.addPropertyChangeListener(event -> {
 if (event.getPropertyName() == JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
 {
 File newFile = (File) event.getNewValue();
 // update the accessory
 . . .
 }
});

In our example program, we add this code to the ImagePreviewer constructor.

Listings 12.21 through 12.23 contain a modification of the ImageViewer program from

Chapter 2, in which the file chooser has been enhanced by a custom file view and

a preview accessory.

Listing 12.21 fileChooser/ImageViewerFrame.java

1 package fileChooser;
 2

3 import java.io.*;
 4

5 import javax.swing.*;
6 import javax.swing.filechooser.*;
7 import javax.swing.filechooser.FileFilter;
 8

9 /**
10 * A frame that has a menu for loading an image and a display area for the
11 * loaded image.
12 */
13 public class ImageViewerFrame extends JFrame
14 {
15 private static final int DEFAULT_WIDTH = 300;
16 private static final int DEFAULT_HEIGHT = 400;
17 private JLabel label;
18 private JFileChooser chooser;
19

20 public ImageViewerFrame()
21 {
22 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
23

24 // set up menu bar

(Continues)

75912.7 Dialog Boxes

ptg16518469

Listing 12.21 (Continued)

25 JMenuBar menuBar = new JMenuBar();
26 setJMenuBar(menuBar);
27

28 JMenu menu = new JMenu("File");
29 menuBar.add(menu);
30

31 JMenuItem openItem = new JMenuItem("Open");
32 menu.add(openItem);
33 openItem.addActionListener(event -> {
34 chooser.setCurrentDirectory(new File("."));
35

36 // show file chooser dialog
37 int result = chooser.showOpenDialog(ImageViewerFrame.this);
38

39 // if image file accepted, set it as icon of the label
40 if (result == JFileChooser.APPROVE_OPTION)
41 {
42 String name = chooser.getSelectedFile().getPath();
43 label.setIcon(new ImageIcon(name));
44 pack();
45 }
46 });
47

48 JMenuItem exitItem = new JMenuItem("Exit");
49 menu.add(exitItem);
50 exitItem.addActionListener(event -> System.exit(0));
51

52 // use a label to display the images
53 label = new JLabel();
54 add(label);
55

56 // set up file chooser
57 chooser = new JFileChooser();
58

59 // accept all image files ending with .jpg, .jpeg, .gif
60 FileFilter filter = new FileNameExtensionFilter(
61 "Image files", "jpg", "jpeg", "gif");
62 chooser.setFileFilter(filter);
63

64 chooser.setAccessory(new ImagePreviewer(chooser));
65

66 chooser.setFileView(new FileIconView(filter, new ImageIcon("palette.gif")));
67 }
68 }

Chapter 12 User Interface Components with Swing760

ptg16518469

Listing 12.22 fileChooser/ImagePreviewer.java

1 package fileChooser;
 2

3 import java.awt.*;
4 import java.io.*;
 5

6 import javax.swing.*;
 7

8 /**
9 * A file chooser accessory that previews images.
10 */
11 public class ImagePreviewer extends JLabel
12 {
13 /**
14 * Constructs an ImagePreviewer.
15 * @param chooser the file chooser whose property changes trigger an image
16 * change in this previewer
17 */
18 public ImagePreviewer(JFileChooser chooser)
19 {
20 setPreferredSize(new Dimension(100, 100));
21 setBorder(BorderFactory.createEtchedBorder());
22

23 chooser.addPropertyChangeListener(event -> {
24 if (event.getPropertyName() == JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
25 {
26 // the user has selected a new file
27 File f = (File) event.getNewValue();
28 if (f == null)
29 {
30 setIcon(null);
31 return;
32 }
33

34 // read the image into an icon
35 ImageIcon icon = new ImageIcon(f.getPath());
36

37 // if the icon is too large to fit, scale it
38 if (icon.getIconWidth() > getWidth())
39 icon = new ImageIcon(icon.getImage().getScaledInstance(
40 getWidth(), -1, Image.SCALE_DEFAULT));
41

42 setIcon(icon);
43 }
44 });
45 }
46 }

76112.7 Dialog Boxes

ptg16518469

Listing 12.23 fileChooser/FileIconView.java

1 package fileChooser;
 2

3 import java.io.*;
4 import javax.swing.*;
5 import javax.swing.filechooser.*;
6 import javax.swing.filechooser.FileFilter;
 7

8 /**
9 * A file view that displays an icon for all files that match a file filter.
10 */
11 public class FileIconView extends FileView
12 {
13 private FileFilter filter;
14 private Icon icon;
15

16 /**
17 * Constructs a FileIconView.
18 * @param aFilter a file filter--all files that this filter accepts will be shown
19 * with the icon.
20 * @param anIcon--the icon shown with all accepted files.
21 */
22 public FileIconView(FileFilter aFilter, Icon anIcon)
23 {
24 filter = aFilter;
25 icon = anIcon;
26 }
27

28 public Icon getIcon(File f)
29 {
30 if (!f.isDirectory() && filter.accept(f)) return icon;
31 else return null;
32 }
33 }

javax.swing.JFileChooser 1.2

• JFileChooser()

creates a file chooser dialog box that can be used for multiple frames.

• void setCurrentDirectory(File dir)

sets the initial directory for the file dialog box.

(Continues)

Chapter 12 User Interface Components with Swing762

ptg16518469

javax.swing.JFileChooser 1.2 (Continued)

• void setSelectedFile(File file)
• void setSelectedFiles(File[] file)

sets the default file choice for the file dialog box.

• void setMultiSelectionEnabled(boolean b)

sets or clears the multiple selection mode.

• void setFileSelectionMode(int mode)

lets the user select files only (the default), directories only, or both files and

directories. The mode parameter is one of JFileChooser.FILES_ONLY, JFileChooser.
DIRECTORIES_ONLY, and JFileChooser.FILES_AND_DIRECTORIES.

• int showOpenDialog(Component parent)
• int showSaveDialog(Component parent)
• int showDialog(Component parent, String approveButtonText)

shows a dialog in which the approve button is labeled “Open”, “Save”, or with the

approveButtonText string. Returns APPROVE_OPTION, CANCEL_OPTION (if the user selected

the cancel button or dismissed the dialog), or ERROR_OPTION (if an error occurred).

• File getSelectedFile()
• File[] getSelectedFiles()

gets the file or files that the user selected (or returns null if the user didn’t select

any file).

• void setFileFilter(FileFilter filter)

sets the file mask for the file dialog box. All files for which filter.accept returns true
will be displayed. Also, adds the filter to the list of choosable filters.

• void addChoosableFileFilter(FileFilter filter)

adds a file filter to the list of choosable filters.

• void setAcceptAllFileFilterUsed(boolean b)

includes or suppresses an “All files” filter in the filter combo box.

• void resetChoosableFileFilters()

clears the list of choosable filters. Only the “All files” filter remains unless it is

explicitly suppressed.

• void setFileView(FileView view)

sets a file view to provide information about the files that the file chooser displays.

• void setAccessory(JComponent component)

sets an accessory component.

76312.7 Dialog Boxes

ptg16518469

javax.swing.filechooser.FileFilter 1.2

• boolean accept(File f)

returns true if the file chooser should display this file.

• String getDescription()

returns a description of this file filter, for example, "Image files (*.gif,*.jpeg)".

javax.swing.filechooser.FileNameExtensionFilter 6

• FileNameExtensionFilter(String description, String... extensions)

constructs a file filter with the given description that accepts all directories and all

files whose names end in a period followed by one of the given extension strings.

javax.swing.filechooser.FileView 1.2

• String getName(File f)

returns the name of the file f, or null. Normally, this method simply returns

f.getName().

• String getDescription(File f)

returns a human-readable description of the file f, or null. For example, if f is an

HTML document, this method might return its title.

• String getTypeDescription(File f)

returns a human-readable description of the type of the file f, or null. For example,

if f is an HTML document, this method might return a string "Hypertext document".

• Icon getIcon(File f)

returns an icon for the file f, or null. For example, if f is a JPEG file, this method

might return a thumbnail icon.

• Boolean isTraversable(File f)

returns Boolean.TRUE if f is a directory that the user can open. This method might

return Boolean.FALSE if a directory is conceptually a compound document. Like all

FileView methods, this method can return null to signify that the file chooser should

consult the default view instead.

12.7.5 Color Choosers
As you saw in the preceding section, a high-quality file chooser is an intricate

user interface component that you definitely do not want to implement yourself.

Chapter 12 User Interface Components with Swing764

ptg16518469

Many user interface toolkits provide other common dialogs: to choose a date/time,

currency value, font, color, and so on. The benefit is twofold: Programmers can

simply use a high-quality implementation instead of rolling out their own, and

users get a consistent experience with these components.

At this point, Swing provides only one additional chooser, the JColorChooser (see

Figures 12.42 through 12.44). Use it to let users pick a color value. Like the

JFileChooser class, the color chooser is a component, not a dialog, but it has conve-

nience methods to create dialogs that contain a color chooser component.

Here is how you show a modal dialog with a color chooser:

Color selectedColor = JColorChooser.showDialog(parent,title, initialColor);

Alternatively, you can display a modeless color chooser dialog. Supply the

following:

• A parent component

• The title of the dialog

• A flag to select either a modal or a modeless dialog

• A color chooser

• Listeners for the OK and Cancel buttons (or null if you don’t want a listener)

Figure 12.42 The Swatches pane of a color chooser

76512.7 Dialog Boxes

ptg16518469Figure 12.43 The HSB pane of a color chooser

Figure 12.44 The RGB pane of a color chooser

Chapter 12 User Interface Components with Swing766

ptg16518469

Here is how you make a modeless dialog that sets the background color when

the user clicks the OK button:

chooser = new JColorChooser();
dialog = JColorChooser.createDialog(
 parent,
 "Background Color",
false /* not modal */,
chooser,
event -> setBackground(chooser.getColor()),
null /* no Cancel button listener */);

You can do even better than that and give the user immediate feedback of the

color selection. To monitor the color selections, you need to obtain the selection

model of the chooser and add a change listener:

chooser.getSelectionModel().addChangeListener(event -> {
do something with chooser.getColor();

});

In this case, there is no benefit to the OK and Cancel buttons that the color

chooser dialog provides. You can just add the color chooser component directly

into a modeless dialog:

dialog = new JDialog(parent, false /* not modal */);
dialog.add(chooser);
dialog.pack();

The program in Listing 12.24 shows the three types of dialogs. If you click on the

Modal button, you must select a color before you can do anything else. If you

click on the Modeless button, you get a modeless dialog, but the color change

only happens when you click the OK button on the dialog. If you click the Imme-

diate button, you get a modeless dialog without buttons. As soon as you pick a

different color in the dialog, the background color of the panel is updated.

Listing 12.24 colorChooser/ColorChooserPanel.java

1 package colorChooser;
 2

3 import java.awt.Color;
4 import java.awt.Frame;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
 7

8 import javax.swing.JButton;
9 import javax.swing.JColorChooser;
10 import javax.swing.JDialog;
11 import javax.swing.JPanel;

(Continues)

76712.7 Dialog Boxes

ptg16518469

Listing 12.24 (Continued)

12

13 /**
14 * A panel with buttons to pop up three types of color choosers
15 */
16 public class ColorChooserPanel extends JPanel
17 {
18 public ColorChooserPanel()
19 {
20 JButton modalButton = new JButton("Modal");
21 modalButton.addActionListener(new ModalListener());
22 add(modalButton);
23

24 JButton modelessButton = new JButton("Modeless");
25 modelessButton.addActionListener(new ModelessListener());
26 add(modelessButton);
27

28 JButton immediateButton = new JButton("Immediate");
29 immediateButton.addActionListener(new ImmediateListener());
30 add(immediateButton);
31 }
32

33 /**
34 * This listener pops up a modal color chooser
35 */
36 private class ModalListener implements ActionListener
37 {
38 public void actionPerformed(ActionEvent event)
39 {
40 Color defaultColor = getBackground();
41 Color selected = JColorChooser.showDialog(ColorChooserPanel.this, "Set background",
42 defaultColor);
43 if (selected != null) setBackground(selected);
44 }
45 }
46

47 /**
48 * This listener pops up a modeless color chooser. The panel color is changed when the user
49 * clicks the OK button.
50 */
51 private class ModelessListener implements ActionListener
52 {
53 private JDialog dialog;
54 private JColorChooser chooser;
55

Chapter 12 User Interface Components with Swing768

ptg16518469

56 public ModelessListener()
57 {
58 chooser = new JColorChooser();
59 dialog = JColorChooser.createDialog(ColorChooserPanel.this, "Background Color",
60 false /* not modal */, chooser,
61 event -> setBackground(chooser.getColor()),
62 null /* no Cancel button listener */);
63 }
64

65 public void actionPerformed(ActionEvent event)
66 {
67 chooser.setColor(getBackground());
68 dialog.setVisible(true);
69 }
70 }
71

72 /**
73 * This listener pops up a modeless color chooser. The panel color is changed immediately when
74 * the user picks a new color.
75 */
76 private class ImmediateListener implements ActionListener
77 {
78 private JDialog dialog;
79 private JColorChooser chooser;
80

81 public ImmediateListener()
82 {
83 chooser = new JColorChooser();
84 chooser.getSelectionModel().addChangeListener(
85 event -> setBackground(chooser.getColor()));
86

87 dialog = new JDialog((Frame) null, false /* not modal */);
88 dialog.add(chooser);
89 dialog.pack();
90 }
91

92 public void actionPerformed(ActionEvent event)
93 {
94 chooser.setColor(getBackground());
95 dialog.setVisible(true);
96 }
97 }
98 }

76912.7 Dialog Boxes

ptg16518469

javax.swing.JColorChooser 1.2

• JColorChooser()

constructs a color chooser with an initial color of white.

• Color getColor()
• void setColor(Color c)

gets and sets the current color of this color chooser.

• static Color showDialog(Component parent, String title, Color initialColor)

shows a modal dialog that contains a color chooser.

The component over which to pop up the dialogparentParameters:

The title for the dialog box frametitle

The initial color to show in the color chooserinitialColor

• static JDialog createDialog(Component parent, String title, boolean modal, JColorChooser chooser,
ActionListener okListener, ActionListener cancelListener)

creates a dialog box that contains a color chooser.

The component over which to pop up the dialogparentParameters:

The title for the dialog box frametitle

true if this call should block until the dialog is closedmodal

The color chooser to add to the dialogchooser

The listeners of the OK and Cancel buttonsokListener,

cancelListener

12.8 Troubleshooting GUI Programs
In the next section, we will give a few debugging tips for GUI programming.

Then, we will show you how to use the AWT robot to automate GUI testing.

12.8.1 Debugging Tips
If you ever looked at a Swing window and wondered how its designer managed

to get all the components to line up so nicely, you can spy on the contents. Press

Ctrl+Shift+F1 to get a printout of all components in the hierarchy:

FontDialog[frame0,0,0,300x200,layout=java.awt.BorderLayout,...
 javax.swing.JRootPane[,4,23,292x173,layout=javax.swing.JRootPane$RootLayout,...
 javax.swing.JPanel[null.glassPane,0,0,292x173,hidden,layout=java.awt.FlowLayout,...
 javax.swing.JLayeredPane[null.layeredPane,0,0,292x173,...

javax.swing.JPanel[null.contentPane,0,0,292x173,layout=java.awt.GridBagLayout,...
javax.swing.JList[,0,0,73x152,alignmentX=null,alignmentY=null,...

Chapter 12 User Interface Components with Swing770

ptg16518469

javax.swing.CellRendererPane[,0,0,0x0,hidden]
javax.swing.DefaultListCellRenderer$UIResource[,-73,-19,0x0,...

javax.swing.JCheckBox[,157,13,50x25,layout=javax.swing.OverlayLayout,...
javax.swing.JCheckBox[,156,65,52x25,layout=javax.swing.OverlayLayout,...
javax.swing.JLabel[,114,119,30x17,alignmentX=0.0,alignmentY=null,...
javax.swing.JTextField[,186,117,105x21,alignmentX=null,alignmentY=null,...
javax.swing.JTextField[,0,152,291x21,alignmentX=null,alignmentY=null,...

If you design your own custom Swing component and it doesn’t seem to be dis-

played correctly, you’ll really love the Swing graphics debugger. Even if you don’t

write your own component classes, it is instructive and fun to see exactly how

the contents of a component are drawn. To turn on debugging for a Swing com-

ponent, use the setDebugGraphicsOptions method of the JComponent class. The following

options are available:

Flashes each line, rectangle, and text in red before

drawing it

DebugGraphics.FLASH_OPTION

Prints a message for each drawing operationDebugGraphics.LOG_OPTION

Displays the operations that are performed on

the off-screen buffer

DebugGraphics.BUFFERED_OPTION

Turns graphics debugging offDebugGraphics.NONE_OPTION

We have found that for the flash option to work, you must disable “double

buffering”—the strategy used by Swing to reduce flicker when updating a

window. The magic incantation for turning on the flash option is

RepaintManager.currentManager(getRootPane()).setDoubleBufferingEnabled(false);
((JComponent) getContentPane()).setDebugGraphicsOptions(DebugGraphics.FLASH_OPTION);

Simply place these lines at the end of your frame constructor. When the program

runs, you will see the content pane filled in slow motion. Or, for more localized

debugging, just call setDebugGraphicsOptions for a single component. Control freaks

can set the duration, count, and color of the flashes—see the online documentation

of the DebugGraphics class for details.

If you want to get a record of every AWT event generated in your GUI application,

you can install a listener in every component that emits events. This is easily au-

tomated, due to the power of reflection. Listing 12.25 shows the EventTracer class.

To spy on messages, add the component whose events you want to trace to an

event tracer:

EventTracer tracer = new EventTracer();
tracer.add(frame);

You will then get a textual description of all events, as shown in Figure 12.45.

77112.8 Troubleshooting GUI Programs

ptg16518469

Listing 12.25 eventTracer/EventTracer.java

1 package eventTracer;
 2

3 import java.awt.*;
4 import java.beans.*;
5 import java.lang.reflect.*;
 6

7 /**
8 * @version 1.31 2004-05-10
9 * @author Cay Horstmann
10 */
11 public class EventTracer
12 {
13 private InvocationHandler handler;
14

15 public EventTracer()
16 {
17 // the handler for all event proxies
18 handler = new InvocationHandler()
19 {
20 public Object invoke(Object proxy, Method method, Object[] args)
21 {
22 System.out.println(method + ":" + args[0]);
23 return null;
24 }
25 };
26 }
27

28 /**
29 * Adds event tracers for all events to which this component and its children can listen
30 * @param c a component
31 */
32 public void add(Component c)
33 {
34 try
35 {
36 // get all events to which this component can listen
37 BeanInfo info = Introspector.getBeanInfo(c.getClass());
38

39 EventSetDescriptor[] eventSets = info.getEventSetDescriptors();
40 for (EventSetDescriptor eventSet : eventSets)
41 addListener(c, eventSet);
42 }
43 catch (IntrospectionException e)
44 {
45 }
46 // ok not to add listeners if exception is thrown
47

Chapter 12 User Interface Components with Swing772

ptg16518469

48 if (c instanceof Container)
49 {
50 // get all children and call add recursively
51 for (Component comp : ((Container) c).getComponents())
52 add(comp);
53 }
54 }
55

56 /**
57 * Add a listener to the given event set
58 * @param c a component
59 * @param eventSet a descriptor of a listener interface
60 */
61 public void addListener(Component c, EventSetDescriptor eventSet)
62 {
63 // make proxy object for this listener type and route all calls to the handler
64 Object proxy = Proxy.newProxyInstance(null, new Class[] { eventSet.getListenerType() },
65 handler);
66

67 // add the proxy as a listener to the component
68 Method addListenerMethod = eventSet.getAddListenerMethod();
69 try
70 {
71 addListenerMethod.invoke(c, proxy);
72 }
73 catch (ReflectiveOperationException e)
74 {
75 }
76 // ok not to add listener if exception is thrown
77 }
78 }

Figure 12.45 The EventTracer class at work

77312.8 Troubleshooting GUI Programs

ptg16518469

12.8.2 Letting the AWT Robot Do the Work
The Robot class can send keystrokes and mouse clicks to any AWT program. This

class is intended for automatic testing of user interfaces.

To get a robot, you need to first get a GraphicsDevice object. You can get the default

screen device via this sequence of calls:

GraphicsEnvironment environment = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice screen = environment.getDefaultScreenDevice();

Then you construct a robot:

Robot robot = new Robot(screen);

To send a keystroke, tell the robot to simulate a key press and a key release:

robot.keyPress(KeyEvent.VK_TAB);
robot.keyRelease(KeyEvent.VK_TAB);

For a mouse click, you first need to move the mouse and then press and release

a button:

robot.mouseMove(x, y); // x and y are absolute screen pixel coordinates.
robot.mousePress(InputEvent.BUTTON1_MASK);
robot.mouseRelease(InputEvent.BUTTON1_MASK);

The idea is that you simulate key and mouse input and then take a screenshot to

see whether the application did what it was supposed to. To capture the screen,

use the createScreenCapture method:

Rectangle rect = new Rectangle(x, y, width, height);
BufferedImage image = robot.createScreenCapture(rect);

The rectangle coordinates also refer to absolute screen pixels.

Finally, you will usually want to add a small delay between robot instructions

so that the application can catch up. Use the delay method and give it the number

of milliseconds to delay. For example:

robot.delay(1000); // delay by 1000 milliseconds

The program in Listing 12.26 shows how you can use a robot. This robot tests the

button test program that you saw in Chapter 11. First, pressing the space bar ac-

tivates the leftmost button. Then the robot waits for two seconds so that you can

see what it has done. After the delay, the robot simulates the Tab key and another

space bar press to click on the next button. Finally, it simulates a mouse click on

the third button. (You may need to adjust the x and y coordinates of the program

to actually press the buttons.) The program ends by taking a screen capture and

displaying it in another frame (see Figure 12.46).

Chapter 12 User Interface Components with Swing774

ptg16518469

Figure 12.46 Capturing the screen with the AWT robot

NOTE: You need to run the robot in a separate thread, as shown in the example
code. See Chapter 14 for more information about threads.

As you can see from this example, the Robot class is not by itself suitable for conve-

nient user interface testing. Instead, it is a basic building block that can be a

foundational part of a testing tool. A professional testing tool can capture, store,

and replay user interaction scenarios and find out the screen locations of the

components so that mouse clicks aren’t guesswork.

Listing 12.26 robot/RobotTest.java

1 package robot;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.image.*;
6 import javax.swing.*;
 7

8 /**
9 * @version 1.05 2015-08-20
10 * @author Cay Horstmann
11 */

(Continues)

77512.8 Troubleshooting GUI Programs

ptg16518469

Listing 12.26 (Continued)

12 public class RobotTest
13 {
14 public static void main(String[] args)
15 {
16 EventQueue.invokeLater(() ->
17 {
18 // make frame with a button panel
19

20 ButtonFrame frame = new ButtonFrame();
21 frame.setTitle("ButtonTest");
22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 frame.setVisible(true);
24 });
25

26 // attach a robot to the screen device
27

28 GraphicsEnvironment environment = GraphicsEnvironment.getLocalGraphicsEnvironment();
29 GraphicsDevice screen = environment.getDefaultScreenDevice();
30

31 try
32 {
33 final Robot robot = new Robot(screen);
34 robot.waitForIdle();
35 new Thread()
36 {
37 public void run()
38 {
39 runTest(robot);
40 };
41 }.start();
42 }
43 catch (AWTException e)
44 {
45 e.printStackTrace();
46 }
47 }
48

49 /**
50 * Runs a sample test procedure
51 * @param robot the robot attached to the screen device
52 */
53 public static void runTest(Robot robot)
54 {

Chapter 12 User Interface Components with Swing776

ptg16518469

55 // simulate a space bar press
56 robot.keyPress(' ');
57 robot.keyRelease(' ');
58

59 // simulate a tab key followed by a space
60 robot.delay(2000);
61 robot.keyPress(KeyEvent.VK_TAB);
62 robot.keyRelease(KeyEvent.VK_TAB);
63 robot.keyPress(' ');
64 robot.keyRelease(' ');
65

66 // simulate a mouse click over the rightmost button
67 robot.delay(2000);
68 robot.mouseMove(220, 40);
69 robot.mousePress(InputEvent.BUTTON1_MASK);
70 robot.mouseRelease(InputEvent.BUTTON1_MASK);
71

72 // capture the screen and show the resulting image
73 robot.delay(2000);
74 BufferedImage image = robot.createScreenCapture(new Rectangle(0, 0, 400, 300));
75

76 ImageFrame frame = new ImageFrame(image);
77 frame.setVisible(true);
78 }
79 }
80

81 /**
82 * A frame to display a captured image
83 */
84 class ImageFrame extends JFrame
85 {
86 private static final int DEFAULT_WIDTH = 450;
87 private static final int DEFAULT_HEIGHT = 350;
88

89 /**
90 * @param image the image to display
91 */
92 public ImageFrame(Image image)
93 {
94 setTitle("Capture");
95 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
96

97 JLabel label = new JLabel(new ImageIcon(image));
98 add(label);
99 }
100 }

77712.8 Troubleshooting GUI Programs

ptg16518469

java.awt.GraphicsEnvironment 1.2

• static GraphicsEnvironment getLocalGraphicsEnvironment()

returns the local graphics environment.

• GraphicsDevice getDefaultScreenDevice()

returns the default screen device. Note that computers with multiple monitors have

one graphics device per screen—use the getScreenDevices method to obtain an array

of all screen devices.

java.awt.Robot 1.3

• Robot(GraphicsDevice device)

constructs a robot that can interact with the given device.

• void keyPress(int key)
• void keyRelease(int key)

simulates a key press or release.

The key code. See the KeyStroke class for more information

on key codes.

keyParameters:

• void mouseMove(int x, int y)

simulates a mouse move.

The mouse position in absolute pixel coordinatesx, yParameters:

• void mousePress(int eventMask)
• void mouseRelease(int eventMask)

simulates a mouse button press or release.

The event mask describing the mouse buttons. See the

InputEvent class for more information on event masks.

eventMaskParameters:

• void delay(int milliseconds)

delays the robot for the given number of milliseconds.

• BufferedImage createScreenCapture(Rectangle rect)

captures a portion of the screen.

The rectangle to be captured, in absolute pixel coordinatesrectParameters:

This ends our discussion of user interface components. The material in Chapters 10

through 12 showed you how to implement simple GUIs in Swing. Turn to Volume

II for more advanced Swing components and sophisticated graphics techniques.

Chapter 12 User Interface Components with Swing778

ptg16518469

13CHAPTER

Deploying Java Applications

In this chapter

• 13.1 JAR Files, page 780

• 13.2 Storage of Application Preferences, page 788

• 13.3 Service Loaders, page 800

• 13.4 Applets, page 802

• 13.5 Java Web Start, page 824

At this point, you should be comfortable with using most of the features of the

Java programming language, and you’ve had a pretty thorough introduction to

basic graphics programming in Java. Now that you are ready to create applications

for your users, you will want to know how to package them for deployment on

your users’ computers. The traditional deployment choice—which was responsible

for the unbelievable hype during the first few years of Java’s life—is to use applets.

An applet is a special kind of Java program that a Java-enabled browser can

download from the Internet and run. The hopes were that users would be freed

from the hassles of installing software and that they could access their software

from any Java-enabled computer or device with an Internet connection.

For a number of reasons, applets never quite lived up to these expectations.

Therefore, we will start this chapter with instructions for packaging applications.

We then show how your applications can store configuration information and

user preferences. You will also learn how to use the ServiceLoader class to load

plug-ins into your applications.

779

ptg16518469

Then, we turn to applets and show you what you need to know in case you need

to create or maintain them. We also discuss Java Web Start mechanism—an alter-

native approach for Internet-based application delivery which is in many ways

similar to applets, but more suitable for programs that do not live in a web page.

13.1 JAR Files
When you package your application, you want to give your users a single file,

not a directory structure filled with class files. Java Archive (JAR) files were de-

signed for this purpose. A JAR file can contain both class files and other file types

such as image and sound files. Moreover, JAR files are compressed, using the

familiar ZIP compression format.

TIP: An alternative to the ZIP format is the “pack200” compression scheme that
is specifically tuned to compress class files more efficiently. Oracle claims a
compression rate of close to 90% for class files. See http://docs.oracle.com/
javase/1.5.0/docs/guide/deployment/deployment-guide/pack200.html for more information.

13.1.1 Creating JAR files
Use the jar tool to make JAR files. (In the default JDK installation, it’s in the jdk/bin
directory.) The most common command to make a new JAR file uses the following

syntax:

jar cvf JARFileName File1 File2 . . .

For example:

jar cvf CalculatorClasses.jar *.class icon.gif

In general, the jar command has the following format:

jar options File1 File2 . . .

Table 13.1 lists all the options for the jar program. They are similar to the options

of the UNIX tar command.

You can package application programs, program components (sometimes called

“beans”—see Chapter 11 of Volume II), and code libraries into JAR files. For

example, the runtime library of the JDK is contained in a very large file rt.jar.

Chapter 13 Deploying Java Applications780

http://docs.oracle.com/javase/1.5.0/docs/guide/deployment/deployment-guide/pack200.html
http://docs.oracle.com/javase/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

ptg16518469

Table 13.1 jar Program Options

DescriptionOption

Creates a new or empty archive and adds files to it. If any of the specified

file names are directories, the jar program processes them recursively.

c

Temporarily changes the directory. For example,

jar cvf JARFileName.jar -C classes *.class

changes to the classes subdirectory to add class files.

C

Creates an entry point in the manifest (see Section 13.1.3).e

Specifies the JAR file name as the second command-line argument. If this

parameter is missing, jar will write the result to standard output (when

creating a JAR file) or read it from standard input (when extracting or

tabulating a JAR file).

f

Creates an index file (for speeding up lookups in a large archive).i

Adds a manifest to the JAR file. A manifest is a description of the archive

contents and origin. Every archive has a default manifest, but you can

supply your own if you want to authenticate the contents of the archive.

m

Does not create a manifest file for the entries.M

Displays the table of contents.t

Updates an existing JAR file.u

Generates verbose output.v

Extracts files. If you supply one or more file names, only those files are

extracted. Otherwise, all files are extracted.

x

Stores without ZIP compression.0

13.1.2 The Manifest
In addition to class files, images, and other resources, each JAR file contains a

manifest file that describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF subdirectory

of the JAR file. The minimum legal manifest is quite boring—just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are grouped

into sections. The first section in the manifest is called the main section. It applies

to the whole JAR file. Subsequent entries can specify properties of named entities

78113.1 JAR Files

ptg16518469

such as individual files, packages, or URLs. Those entries must begin with a Name
entry. Sections are separated by blank lines. For example:

Manifest-Version: 1.0
lines describing this archive

Name: Woozle.class
lines describing this file

Name: com/mycompany/mypkg/
lines describing this package

To edit the manifest, place the lines that you want to add to the manifest into a

text file. Then run

jar cfm JARFileName ManifestFileName . . .

For example, to make a new JAR file with a manifest, run

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To update the manifest of an existing JAR file, place the additions into a text file

and use a command such as

jar ufm MyArchive.jar manifest-additions.mf

NOTE: See http://docs.oracle.com/javase/8/docs/technotes/guides/jar for more
information on the JAR and manifest file formats.

13.1.3 Executable JAR Files
You can use the e option of the jar command to specify the entry point of

your program—the class that you would normally specify when invoking the

java program launcher:

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files to add

Alternatively, you can specify the main class of your program in the manifest,

including a statement of the form

Main-Class: com.mycompany.mypkg.MainAppClass

Do not add a .class extension to the main class name.

CAUTION: The last line in the manifest must end with a newline character.
Otherwise, the manifest will not be read correctly. It is a common error to produce
a text file containing just the Main-Class line without a line terminator.

Chapter 13 Deploying Java Applications782

http://docs.oracle.com/javase/8/docs/technotes/guides/jar

ptg16518469

With either method, users can simply start the program as

java -jar MyProgram.jar

Depending on the operating system configuration, users may even be able to

launch the application by double-clicking the JAR file icon. Here are behaviors

for various operating systems:

• On Windows, the Java runtime installer creates a file association for the “.jar”

extension that launches the file with the javaw -jar command. (Unlike the java
command, the javaw command doesn’t open a shell window.)

• On Solaris, the operating system recognizes the “magic number” of a JAR file

and starts it with the java -jar command.

• On Mac OS X, the operating system recognizes the “.jar” file extension and

executes the Java program when you double-click a JAR file.

However, a Java program in a JAR file does not have the same feel as a native

application. On Windows, you can use third-party wrapper utilities that turn JAR

files into Windows executables. A wrapper is a Windows program with the famil-

iar .exe extension that locates and launches the Java virtual machine (JVM) or tells

the user what to do when no JVM is found. There are a number of commercial

and open source products, such as Launch4J (http://launch4j.sourceforge.net) and IzPack

(http://izpack.org).

On the Macintosh, the situation is a bit easier. The Jar Bundler utility that is a part

of XCode lets you turn a JAR file into a first-class Mac application.

13.1.4 Resources
Classes used in both applets and applications often have associated data files,

such as:

• Image and sound files

• Text files with message strings and button labels

• Files with binary data—for example, to describe the layout of a map

In Java, such an associated file is called a resource.

NOTE: In Windows, the term “resource” has a more specialized meaning. Win-
dows resources also consist of images, button labels, and so on, but they are
attached to the executable file and accessed by a standard programming inter-
face. In contrast, Java resources are stored as separate files, not as part of class
files. It is up to each program to access and interpret the resource data.

78313.1 JAR Files

http://launch4j.sourceforge.net
http://izpack.org

ptg16518469

For example, consider a class AboutPanel that displays a message such as the one in

Figure 13.1.

Figure 13.1 Displaying a resource from a JAR file

Of course, the book title and copyright year in the panel will change for the next

edition of the book. To make it easy to track this change, we will put the text inside

a file and not hardcode it as a string.

But where should you put a file such as about.txt? Of course, it would be convenient

to simply place it with the rest of the program files inside the JAR file.

The class loader knows how to search for class files until it has located them

somewhere on the class path, or in an archive, or on a web server. The resource

mechanism gives you the same convenience for files that aren’t class files. Here

are the necessary steps:

1. Get the Class object of the class that has a resource—for example, AboutPanel.class.

2. If the resource is an image or audio file, call getResource(filename) to get the re-

source location as a URL. Then read it with the getImage or getAudioClip method.

3. For resources other than images or audio files, use the getResourceAsStream
method to read the data in the file.

The point is that the class loader remembers how to locate the class, so it can then

search for the associated resource in the same location.

For example, to make an icon with the image file about.gif, do the following:

URL url = ResourceTest.class.getResource("about.gif");
Image img = new ImageIcon(url).getImage();

Chapter 13 Deploying Java Applications784

ptg16518469

That means “locate the about.gif file in the same place where you found the

ResourceTest class.”

To read in the file about.txt, use these commands:

InputStream stream = ResourceTest.class.getResourceAsStream("about.txt");
Scanner in = new Scanner(stream, "UTF-8");

Instead of placing a resource file inside the same directory as the class file, you

can place it in a subdirectory. You can then use a hierarchical resource name

such as

data/text/about.txt

This resource name is interpreted relative to the package of the class that loads

the resource. Note that you must always use the / separator, regardless of the

directory separator on the system that actually stores the resource files. For exam-

ple, on the Windows file system, the resource loader automatically translates /
to \ separators.

A resource name starting with a / is called an absolute resource name. It is located

in the same way a class inside a package would be located. For example, a resource

/corejava/title.txt

is located in the corejava directory which may be a subdirectory of the class path,

inside a JAR file, or, for applets, on a web server.

Automating the loading of files is all the resource loading feature does. There are

no standard methods for interpreting the contents of resource files. Each program

must have its own way of interpreting its resource files.

Another common application of resources is the internationalization of programs.

Language-dependent strings, such as messages and user interface labels, are

stored in resource files, with one file per language. The internationalization API,

which is discussed in Chapter 5 of Volume II, supports a standard method for

organizing and accessing these localization files.

Listing 13.1 is a program that demonstrates resource loading. Compile, build a

JAR file, and execute it:

javac resource/ResourceTest.java
jar cvfm ResourceTest.jar resource/ResourceTest.mf resource/*.class resource/*.gif resource/*.txt
java -jar ResourceTest.jar

Move the JAR file to a different directory and run it again to check that the pro-

gram reads the resource files from the JAR file, not from the current directory.

78513.1 JAR Files

ptg16518469

Listing 13.1 resource/ResourceTest.java

1 package resource;
 2

3 import java.awt.*;
4 import java.io.*;
5 import java.net.*;
6 import java.util.*;
7 import javax.swing.*;
 8

9 /**
10 * @version 1.41 2015-06-12
11 * @author Cay Horstmann
12 */
13 public class ResourceTest
14 {
15 public static void main(String[] args)
16 {
17 EventQueue.invokeLater(() -> {
18 JFrame frame = new ResourceTestFrame();
19 frame.setTitle("ResourceTest");
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 frame.setVisible(true);
22 });
23 }
24 }
25

26 /**
27 * A frame that loads image and text resources.
28 */
29 class ResourceTestFrame extends JFrame
30 {
31 private static final int DEFAULT_WIDTH = 300;
32 private static final int DEFAULT_HEIGHT = 300;
33

34 public ResourceTestFrame()
35 {
36 setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
37 URL aboutURL = getClass().getResource("about.gif");
38 Image img = new ImageIcon(aboutURL).getImage();
39 setIconImage(img);
40

41 JTextArea textArea = new JTextArea();
42 InputStream stream = getClass().getResourceAsStream("about.txt");
43 try (Scanner in = new Scanner(stream, "UTF-8"))
44 {
45 while (in.hasNext())
46 textArea.append(in.nextLine() + "\n");
47 }

Chapter 13 Deploying Java Applications786

ptg16518469

48 add(textArea);
49 }
50 }

java.lang.Class 1.0

• URL getResource(String name) 1.1
• InputStream getResourceAsStream(String name) 1.1

finds the resource in the same place as the class and then returns a URL or input

stream that you can use for loading the resource. Returns null if the resource isn’t

found, so does not throw an exception for an I/O error.

13.1.5 Sealing
We mentioned in Chapter 4 that you can seal a Java language package to ensure

that no further classes can add themselves to it. You would want to seal a package

if you use package-visible classes, methods, and fields in your code. Without

sealing, other classes can place themselves into the same package and thereby

gain access to its package-visible features.

For example, if you seal the package com.mycompany.util, then no class outside the

sealed archive can be defined with the statement

package com.mycompany.util;

To achieve this, put all classes of the package into a JAR file. By default, packages

in a JAR file are not sealed. You can change that global default by placing the line

Sealed: true

into the main section of the manifest. For each individual package, you can

specify whether you want the package sealed or not, by adding another section

to the JAR file manifest, like this:

Name: com/mycompany/util/
Sealed: true

Name: com/mycompany/misc/
Sealed: false

To seal a package, make a text file with the manifest instructions. Then run the

jar command in the usual way:

jar cvfm MyArchive.jar manifest.mf files to add

78713.1 JAR Files

ptg16518469

13.2 Storage of Application Preferences
Users of your applications will usually expect that their preferences and customiza-

tions are saved and later restored when the application starts again. First, we will

cover the simple approach that Java applications have traditionally taken—storing

configuration information in property files. We then turn to the preferences API

that provides a more robust solution.

13.2.1 Property Maps
A property map is a data structure that stores key/value pairs. Property maps are

often used for storing configuration information. Property maps have three

particular characteristics:

• The keys and values are strings.

• The map can easily be saved to a file and loaded from a file.

• There is a secondary table for default values.

The Java class that implements a property map is called Properties.

Property maps are useful in specifying configuration options for programs. For

example:

Properties settings = new Properties();
settings.setProperty("width", "200");
settings.setProperty("title", "Hello, World!");

Use the store method to save map list of properties to a file. Here, we just save the

property map in the file program.properties. The second argument is a comment that

is included in the file.

OutputStream out = new FileOutputStream("program.properties");
settings.store(out, "Program Properties");

The sample set gives the following output:

#Program Properties
#Mon Apr 30 07:22:52 2007
width=200
title=Hello, World!

To load the properties from a file, use

InputStream in = new FileInputStream("program.properties");
settings.load(in);

It is customary to store program properties in a subdirectory of the user’s home

directory. The directory name is often chosen to start with a dot—on a UNIX

Chapter 13 Deploying Java Applications788

ptg16518469

system, this convention indicates a system directory which is hidden from the

user. Our sample program follows this convention.

To find the user’s home directory, you can call the System.getProperties method, which,

as it happens, also uses a Properties object to describe the system information. The

home directory has the key "user.home". There is also a convenience method to read

a single key:

String userDir = System.getProperty("user.home");

It is a good idea to provide defaults for our program properties, in case a user

edits the file by hand. The Properties class has two mechanisms for providing de-

faults. First, whenever you look up the value of a string, you can specify a default

that should be used automatically when the key is not present.

String title = settings.getProperty("title", "Default title");

If there is a "title" property in the property map, title is set to that string.

Otherwise, title is set to "Default title".

If you find it too tedious to specify the default in every call to getProperty, you can

pack all the defaults into a secondary property map and supply that map in the

constructor of your primary property map.

Properties defaultSettings = new Properties();
defaultSettings.setProperty("width", "300");
defaultSettings.setProperty("height", "200");
defaultSettings.setProperty("title", "Default title");
. . .
Properties settings = new Properties(defaultSettings);

Yes, you can even specify defaults to defaults if you give another property map

parameter to the defaultSettings constructor, but it is not something one would

normally do.

Listing 13.2 shows how you can use properties for storing and loading program

state. The program remembers the frame position, size, and title. You can also

manually edit the file .corejava/program.properties in your home directory to change

the program’s appearance to the way you want.

CAUTION: For historical reasons, the Properties class implements Map<Object,
Object>. Therefore, you can use the get and put methods of the Map interface. But
the get method returns the type Object, and the put method allows you to insert
any object. It is best to stick with the getProperty and setProperty methods that work
with strings, not objects.

78913.2 Storage of Application Preferences

ptg16518469

NOTE: Properties are simple tables without a hierarchical structure. It is common
to introduce a fake hierarchy with key names such as window.main.color,
window.main.title, and so on. But the Properties class has no methods that help
organize such a hierarchy. If you store complex configuration information, you
should use the Preferences class instead—see the next section.

Listing 13.2 properties/PropertiesTest.java

1 package properties;
 2

3 import java.awt.EventQueue;
4 import java.awt.event.*;
5 import java.io.*;
6 import java.util.Properties;
 7

8 import javax.swing.*;
 9

10 /**
11 * A program to test properties. The program remembers the frame position, size,
12 * and title.
13 * @version 1.01 2015-06-16
14 * @author Cay Horstmann
15 */
16 public class PropertiesTest
17 {
18 public static void main(String[] args)
19 {
20 EventQueue.invokeLater(() -> {
21 PropertiesFrame frame = new PropertiesFrame();
22 frame.setVisible(true);
23 });
24 }
25 }
26

27 /**
28 * A frame that restores position and size from a properties file and updates
29 * the properties upon exit.
30 */
31 class PropertiesFrame extends JFrame
32 {
33 private static final int DEFAULT_WIDTH = 300;
34 private static final int DEFAULT_HEIGHT = 200;
35

36 private File propertiesFile;
37 private Properties settings;
38

39 public PropertiesFrame()
40 {

Chapter 13 Deploying Java Applications790

ptg16518469

41 // get position, size, title from properties
42

43 String userDir = System.getProperty("user.home");
44 File propertiesDir = new File(userDir, ".corejava");
45 if (!propertiesDir.exists()) propertiesDir.mkdir();
46 propertiesFile = new File(propertiesDir, "program.properties");
47

48 Properties defaultSettings = new Properties();
49 defaultSettings.setProperty("left", "0");
50 defaultSettings.setProperty("top", "0");
51 defaultSettings.setProperty("width", "" + DEFAULT_WIDTH);
52 defaultSettings.setProperty("height", "" + DEFAULT_HEIGHT);
53 defaultSettings.setProperty("title", "");
54

55 settings = new Properties(defaultSettings);
56

57 if (propertiesFile.exists())
58 try (InputStream in = new FileInputStream(propertiesFile))
59 {
60 settings.load(in);
61 }
62 catch (IOException ex)
63 {
64 ex.printStackTrace();
65 }
66

67 int left = Integer.parseInt(settings.getProperty("left"));
68 int top = Integer.parseInt(settings.getProperty("top"));
69 int width = Integer.parseInt(settings.getProperty("width"));
70 int height = Integer.parseInt(settings.getProperty("height"));
71 setBounds(left, top, width, height);
72

73 // if no title given, ask user
74

75 String title = settings.getProperty("title");
76 if (title.equals(""))
77 title = JOptionPane.showInputDialog("Please supply a frame title:");
78 if (title == null) title = "";
79 setTitle(title);
80

81 addWindowListener(new WindowAdapter()
82 {
83 public void windowClosing(WindowEvent event)
84 {
85 settings.setProperty("left", "" + getX());
86 settings.setProperty("top", "" + getY());
87 settings.setProperty("width", "" + getWidth());
88 settings.setProperty("height", "" + getHeight());
89 settings.setProperty("title", getTitle());

(Continues)

79113.2 Storage of Application Preferences

ptg16518469

Listing 13.2 (Continued)

90 try (OutputStream out = new FileOutputStream(propertiesFile))
91 {
92 settings.store(out, "Program Properties");
93 }
94 catch (IOException ex)
95 {
96 ex.printStackTrace();
97 }
98 System.exit(0);
99 }
100 });
101 }
102 }

java.util.Properties 1.0

• Properties()

creates an empty property map.

• Properties(Properties defaults)

creates an empty property map with a set of defaults.

The defaults to use for lookupsdefaultsParameters:

• String getProperty(String key)

gets a property. Returns the string associated with the key, or the string associated

with the key in the default table if it wasn’t present in the table, or null if the key

wasn’t present in the default table either.

The key whose associated string to getkeyParameters:

• String getProperty(String key, String defaultValue)

gets a property with a default value if the key is not found. Returns the string

associated with the key, or the default string if it wasn’t present in the table.

The key whose associated string to getkeyParameters:

The string to return if the key is not presentdefaultValue

• Object setProperty(String key, String value)

sets a property. Returns the previously set value of the given key.

The key whose associated string to setkeyParameters:

The value to associate with the keyvalue

(Continues)

Chapter 13 Deploying Java Applications792

ptg16518469

java.util.Properties 1.0 (Continued)

• void load(InputStream in) throws IOException

loads a property map from an input stream.

The input streaminParameters:

• void store(OutputStream out, String header) 1.2

saves a property map to an output stream.

The output streamoutParameters:

The header in the first line of the stored fileheader

java.lang.System 1.0

• Properties getProperties()

retrieves all system properties.The application must have permission to retrieve all

properties, or a security exception is thrown.

• String getProperty(String key)

retrieves the system property with the given key name. The application must have

permission to retrieve the property, or a security exception is thrown.The following

properties can always be retrieved:

java.version
java.vendor
java.vendor.url
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name

NOTE: You can find the names of the freely accessible system properties in the
file security/java.policy in the directory of the Java runtime.

79313.2 Storage of Application Preferences

ptg16518469

13.2.2 The Preferences API
As you have seen, the Properties class makes it simple to load and save configuration

information. However, using property files has these disadvantages:

• Some operating systems have no concept of a home directory, making it

difficult to find a uniform location for configuration files.

• There is no standard convention for naming configuration files, increasing

the likelihood of name clashes as users install multiple Java applications.

Some operating systems have a central repository for configuration information.

The best-known example is the registry in Microsoft Windows. The Preferences
class provides such a central repository in a platform-independent manner. In

Windows, the Preferences class uses the registry for storage; on Linux, the informa-

tion is stored in the local file system instead. Of course, the repository

implementation is transparent to the programmer using the Preferences class.

The Preferences repository has a tree structure, with node path names such as

/com/mycompany/myapp. As with package names, name clashes are avoided as long

as programmers start the paths with reversed domain names. In fact, the designers

of the API suggest that the configuration node paths match the package names

in your program.

Each node in the repository has a separate table of key/value pairs that you can

use to store numbers, strings, or byte arrays. No provision is made for storing

serializable objects. The API designers felt that the serialization format is too

fragile for long-term storage. Of course, if you disagree, you can save serialized

objects in byte arrays.

For additional flexibility, there are multiple parallel trees. Each program user has

one tree; an additional tree, called the system tree, is available for settings that

are common to all users. The Preferences class uses the operating system notion of

the “current user” for accessing the appropriate user tree.

To access a node in the tree, start with the user or system root:

Preferences root = Preferences.userRoot();

or

Preferences root = Preferences.systemRoot();

Then access the node. You can simply provide a node path name:

Preferences node = root.node("/com/mycompany/myapp");

A convenient shortcut gets a node whose path name equals the package name of

a class. Simply take an object of that class and call

Chapter 13 Deploying Java Applications794

ptg16518469

Preferences node = Preferences.userNodeForPackage(obj.getClass());

or

Preferences node = Preferences.systemNodeForPackage(obj.getClass());

Typically, obj will be the this reference.

Once you have a node, you can access the key/value table with methods

String get(String key, String defval)
int getInt(String key, int defval)
long getLong(String key, long defval)
float getFloat(String key, float defval)
double getDouble(String key, double defval)
boolean getBoolean(String key, boolean defval)
byte[] getByteArray(String key, byte[] defval)

Note that you must specify a default value when reading the information, in case

the repository data is not available. Defaults are required for several reasons. The

data might be missing because the user never specified a preference. Certain

resource-constrained platforms might not have a repository, and mobile devices

might be temporarily disconnected from the repository.

Conversely, you can write data to the repository with put methods such as

put(String key, String value)
putInt(String key, int value)

and so on.

You can enumerate all keys stored in a node with the method

String[] keys()

There is currently no way to find out the type of the value of a particular key.

Central repositories such as the Windows registry traditionally suffer from two

problems:

• They turn into a “dumping ground,” filled with obsolete information.

• Configuration data gets entangled into the repository, making it difficult to

move preferences to a new platform.

The Preferences class has a solution for the second problem. You can export the

preferences of a subtree (or, less commonly, a single node) by calling the methods

void exportSubtree(OutputStream out)
void exportNode(OutputStream out)

The data are saved in XML format. You can import them into another repository

by calling

79513.2 Storage of Application Preferences

ptg16518469

void importPreferences(InputStream in)

Here is a sample file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE preferences SYSTEM "http://java.sun.com/dtd/preferences.dtd">
<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map/>
 <node name="com">

<map/>
<node name="horstmann">

<map/>
<node name="corejava">

<map>
<entry key="left" value="11"/>
<entry key="top" value="9"/>
<entry key="width" value="453"/>
<entry key="height" value="365"/>
<entry key="title" value="Hello, World!"/>

</map>
</node>

 </node>
 </node>
 </root>
</preferences>

If your program uses preferences, you should give your users the opportunity of

exporting and importing them, so they can easily migrate their settings from one

computer to another. The program in Listing 13.3 demonstrates this technique.

The program simply saves the position, size, and title of the main window. Try

resizing the window, then exit and restart the application. The window will be

just like you left it when you exited.

Listing 13.3 preferences/PreferencesTest.java

1 package preferences;
 2

3 import java.awt.*;
4 import java.io.*;
5 import java.util.prefs.*;
 6

7 import javax.swing.*;
8 import javax.swing.filechooser.*;
 9

10 /**
11 * A program to test preference settings. The program remembers the frame
12 * position, size, and title.

Chapter 13 Deploying Java Applications796

ptg16518469

13 * @version 1.03 2015-06-12
14 * @author Cay Horstmann
15 */
16 public class PreferencesTest
17 {
18 public static void main(String[] args)
19 {
20 EventQueue.invokeLater(() -> {
21 PreferencesFrame frame = new PreferencesFrame();
22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 frame.setVisible(true);
24 });
25 }
26 }
27

28 /**
29 * A frame that restores position and size from user preferences and updates the
30 * preferences upon exit.
31 */
32 class PreferencesFrame extends JFrame
33 {
34 private static final int DEFAULT_WIDTH = 300;
35 private static final int DEFAULT_HEIGHT = 200;
36 private Preferences root = Preferences.userRoot();
37 private Preferences node = root.node("/com/horstmann/corejava");
38

39 public PreferencesFrame()
40 {
41 // get position, size, title from preferences
42

43 int left = node.getInt("left", 0);
44 int top = node.getInt("top", 0);
45 int width = node.getInt("width", DEFAULT_WIDTH);
46 int height = node.getInt("height", DEFAULT_HEIGHT);
47 setBounds(left, top, width, height);
48

49 // if no title given, ask user
50

51 String title = node.get("title", "");
52 if (title.equals(""))
53 title = JOptionPane.showInputDialog("Please supply a frame title:");
54 if (title == null) title = "";
55 setTitle(title);
56

57 // set up file chooser that shows XML files
58

59 final JFileChooser chooser = new JFileChooser();
60 chooser.setCurrentDirectory(new File("."));
61 chooser.setFileFilter(new FileNameExtensionFilter("XML files", "xml"));

(Continues)

79713.2 Storage of Application Preferences

ptg16518469

Listing 13.3 (Continued)

62

63 // set up menus
64

65 JMenuBar menuBar = new JMenuBar();
66 setJMenuBar(menuBar);
67 JMenu menu = new JMenu("File");
68 menuBar.add(menu);
69

70 JMenuItem exportItem = new JMenuItem("Export preferences");
71 menu.add(exportItem);
72 exportItem
73 .addActionListener(event -> {
74 if (chooser.showSaveDialog(PreferencesFrame.this) == JFileChooser.APPROVE_OPTION)
75 {
76 try
77 {
78 savePreferences();
79 OutputStream out = new FileOutputStream(chooser
80 .getSelectedFile());
81 node.exportSubtree(out);
82 out.close();
83 }
84 catch (Exception e)
85 {
86 e.printStackTrace();
87 }
88 }
89 });
90

91 JMenuItem importItem = new JMenuItem("Import preferences");
92 menu.add(importItem);
93 importItem
94 .addActionListener(event -> {
95 if (chooser.showOpenDialog(PreferencesFrame.this) == JFileChooser.APPROVE_OPTION)
96 {
97 try
98 {
99 InputStream in = new FileInputStream(chooser
100 .getSelectedFile());
101 Preferences.importPreferences(in);
102 in.close();
103 }
104 catch (Exception e)
105 {
106 e.printStackTrace();
107 }
108 }
109 });

Chapter 13 Deploying Java Applications798

ptg16518469

110

111 JMenuItem exitItem = new JMenuItem("Exit");
112 menu.add(exitItem);
113 exitItem.addActionListener(event -> {
114 savePreferences();
115 System.exit(0);
116 });
117 }
118

119 public void savePreferences()
120 {
121 node.putInt("left", getX());
122 node.putInt("top", getY());
123 node.putInt("width", getWidth());
124 node.putInt("height", getHeight());
125 node.put("title", getTitle());
126 }
127 }

java.util.prefs.Preferences 1.4

• Preferences userRoot()

returns the root preferences node of the user of the calling program.

• Preferences systemRoot()

returns the systemwide root preferences node.

• Preferences node(String path)

returns a node that can be reached from the current node by the given path. If path
is absolute (that is, starts with a /), then the node is located starting from the root

of the tree containing this preference node. If there isn’t a node with the given path,

it is created.

• Preferences userNodeForPackage(Class cl)
• Preferences systemNodeForPackage(Class cl)

returns a node in the current user’s tree or the system tree whose absolute node

path corresponds to the package name of the class cl.

• String[] keys()

returns all keys belonging to this node.

(Continues)

79913.2 Storage of Application Preferences

ptg16518469

java.util.prefs.Preferences 1.4 (Continued)

• String get(String key, String defval)
• int getInt(String key, int defval)
• long getLong(String key, long defval)
• float getFloat(String key, float defval)
• double getDouble(String key, double defval)
• boolean getBoolean(String key, boolean defval)
• byte[] getByteArray(String key, byte[] defval)

returns the value associated with the given key or the supplied default value if no

value is associated with the key, the associated value is not of the correct type, or

the preferences store is unavailable.

• void put(String key, String value)
• void putInt(String key, int value)
• void putLong(String key, long value)
• void putFloat(String key, float value)
• void putDouble(String key, double value)
• void putBoolean(String key, boolean value)
• void putByteArray(String key, byte[] value)

stores a key/value pair with this node.

• void exportSubtree(OutputStream out)

writes the preferences of this node and its children to the specified stream.

• void exportNode(OutputStream out)

writes the preferences of this node (but not its children) to the specified stream.

• void importPreferences(InputStream in)

imports the preferences contained in the specified stream.

13.3 Service Loaders
Sometimes, you develop an application with a plug-in architecture. There are

platforms that encourage this approach, such as OSGi (http://osgi.org), which are

used in development environments, application servers, and other complex ap-

plications. Such platforms go well beyond the scope of this book, but the JDK also

offers a simple mechanism for loading plug-ins, which we describe here.

Often, when providing a plug-in, a program wants to give the plug-in designer

some freedom of how to implement the plug-in’s features. It can also be desirable

Chapter 13 Deploying Java Applications800

http://osgi.org

ptg16518469

to have multiple implementations to choose from. The ServiceLoader class makes it

easy to load plug-ins that conform to a common interface.

Define an interface (or, if you prefer, a superclass) with the methods that each

instance of the service should provide. For example, suppose your service provides

encryption.

package serviceLoader;

public interface Cipher
{
 byte[] encrypt(byte[] source, byte[] key);
 byte[] decrypt(byte[] source, byte[] key);
 int strength();
}

The service provider supplies one or more classes that implement this service,

for example

package serviceLoader.impl;

public class CaesarCipher implements Cipher
{
 public byte[] encrypt(byte[] source, byte[] key)
 {
 byte[] result = new byte[source.length];
 for (int i = 0; i < source.length; i++)

result[i] = (byte)(source[i] + key[0]);
 return result;
 }

 public byte[] decrypt(byte[] source, byte[] key)
 {
 return encrypt(source, new byte[] { (byte) -key[0] });
 }

 public int strength() { return 1; }
}

The implementing classes can be in any package, not necessarily the same package

as the service interface. Each of them must have a no-argument constructor.

Now add the names of the classes to a UTF-8 encoded text file in a file in the

META-INF/services directory whose name matches the fully qualified class name. In

our example, the file META-INF/services/serviceLoader.Cipher would contain the line

serviceLoader.impl.CaesarCipher

In this example, we provide a single implementing class. You could also provide

multiple classes and later pick among them.

80113.3 Service Loaders

ptg16518469

With this preparation done, the program initializes a service loader as follows:

public static ServiceLoader<Cipher> cipherLoader = ServiceLoader.load(Cipher.class);

This should be done just once in the program.

The iterator method of the service loader returns an iterator through all provided

implementations of the service. (See Chapter 9 for more information about itera-

tors.) It is easiest to use an enhanced for loop to traverse them. In the loop, pick

an appropriate object to carry out the service.

public static Cipher getCipher(int minStrength)
{
 for (Cipher cipher : cipherLoader) // Implicitly calls cipherLoader.iterator()
 {
 if (cipher.strength() >= minStrength) return cipher;
 }
 return null;
}

java.util.ServiceLoader<S> 1.6

• static <S> ServiceLoader<S> load(Class<S> service)

Creates a service loader for loading the classes that implement the given service

interface.

• Iterator<S> iterator()

Yields an iterator that lazily loads the service classes. That is, a class is loaded

whenever the iterator advances.

13.4 Applets
Applets are Java programs that are included in an HTML page. The HTML page

must tell the browser which applets to load and where to put each applet on the

web page. As you might expect, the tag needed to use an applet must tell the

browser where to get the class files and how the applet is positioned on the web

page (size, location, and so on). The browser then retrieves the class files from

the Internet (or from a directory on the user’s machine) and automatically

runs the applet.

When applets were first developed, you had to use Sun’s HotJava browser to

view web pages that contained applets. Naturally, few users were willing to use

a separate browser just to enjoy a new web feature. Java applets became popular

Chapter 13 Deploying Java Applications802

ptg16518469

when Netscape included a Java virtual machine in its Navigator browser. Microsoft

Internet Explorer followed suit. Unfortunately, the Java support in Internet Ex-

plorer support soon fell behind and only worked with outdated Java versions,

before being dropped altogether.

To solve this problem, Sun Microsystems developed the “Java Plug-in.” Using

browser extension mechanisms, it plugs in to a variety of browsers and enables

them to execute Java applets by using an external Java runtime environment.

For a number of years, this solution was adequate, and applets were commonly

used for educational tools, corporate applications, and some games. Unfortunately,

Sun Microsystems and, after its demise, Oracle were slow in fixing security vul-

nerabilities in the Java Virtual Machine that were discovered and exploited from

time to time. Since an insecure JVM puts users at real risk, browser manufacturers

made it harder to use Java. Some blocked all but the latest versions of the Java

Plug-in, and others discontinued support of the plug-in architecture. Oracle’s

reaction was similarly disappointing. It started requiring that all applets are

digitally signed (see Section 13.4.9, “Signed Code,” on p. 822).

Nowadays, it is a challenge for developers to deploy Java applets, and for users

to run them. Therefore, we believe that the sections that follow will be mostly of

interest to readers who need to maintain legacy applets.

NOTE: To run the applets in this chapter in a browser, you need to install the
current version of the Java Plug-in and make sure your browser is connected
with the plug-in. For testing applets, you also need to configure the plug-in so
that it trusts local files. See Section 2.5, “Building and Running Applets,” on p. 33
for instructions.

13.4.1 A Simple Applet
For tradition’s sake, let’s write a NotHelloWorld program as an applet. An applet is

simply a Java class that extends the java.applet.Applet class. In this book, we will use

Swing to implement applets. All of our applets will extend the JApplet class, the

superclass for Swing applets. As you can see in Figure 13.2, JApplet is an immediate

subclass of the ordinary Applet class.

NOTE: If your applet contains Swing components, you must extend the JApplet
class. Swing components inside a plain Applet don’t paint correctly.

80313.4 Applets

ptg16518469

Figure 13.2 Applet inheritance diagram

Chapter 13 Deploying Java Applications804

ptg16518469

Listing 13.4 shows the code for an applet version of “Not Hello World.”

Notice how similar this is to the corresponding program from Chapter 10. How-

ever, since the applet lives inside a web page, there is no need to specify a method

for exiting the applet.

Listing 13.4 applet/NotHelloWorld.java

1 package applet;
 2

3 import java.awt.*;
4 import javax.swing.*;
 5

6 /**
7 * @version 1.24 2015-06-12
8 * @author Cay Horstmann
9 */
10 public class NotHelloWorld extends JApplet
11 {
12 public void init()
13 {
14 EventQueue.invokeLater(() -> {
15 JLabel label = new JLabel("Not a Hello, World applet",
16 SwingConstants.CENTER);
17 add(label);
18 });
19 }
20 }

To execute the applet, carry out three steps:

1. Compile your Java source files into class files.

2. Package the classes into a JAR file (see Section 13.1.1, “Creating JAR files,”

on p. 780).

3. Create an HTML file that tells the browser which class file to load first and

how to size the applet.

Here are the contents of the file:

<applet class="applet/NotHelloWorld.class" archive="NotHelloWorld.jar" width="300" height="300">
</applet>

Before you view the applet in a browser, it is a good idea to test it in the applet

viewer program that is a part of the JDK. To use the applet viewer with our

example, enter

80513.4 Applets

ptg16518469

appletviewer NotHelloWorldApplet.html

on the command line. The command-line argument for the applet viewer program

is the name of the HTML file, not the class file. Figure 13.3 shows the applet

viewer displaying this applet.

Figure 13.3 Viewing an applet in the applet viewer

The applet viewer is good for the first stage of testing, but at some point you need

to run your applets in a real browser to see them as a user might see them. In

particular, the applet viewer program shows you only the applet, not the sur-

rounding HTML text. If your HTML file contains multiple applet tags, the applet

viewer pops up multiple windows.

To properly view the applet, simply load the HTML file into the browser (see

Figure 13.4). If the applet doesn’t show up, you need to install the Java Plug-in

and allow it to load unsigned local applets, as described in Section 2.5, “Building

and Running Applets,” on p. 33.

Figure 13.4 Viewing an applet in a browser

Chapter 13 Deploying Java Applications806

ptg16518469

TIP: If you make a change to your applet and recompile, you need to restart the
browser so that it loads the new class files. Simply refreshing the HTML page
will not load the new code. This is a hassle when you are debugging an applet.
You can avoid the painful browser restart from the Java console. Launch the
console and issue the x command, which clears the classloader cache. Then
you can reload the HTML page, and the new applet code is used. Under Win-
dows, open the Java Plug-in control in the Windows control panel. Under Linux,
run jcontrol and request that the Java console be displayed. The console will
pop up whenever an applet is loaded.

It is easy to convert a graphical Java application into an applet that you can embed

in a web page. Essentially, all of the user interface code can stay the same. Here

are the specific steps:

1. Make an HTML page with the appropriate tag to load the applet code.

2. Supply a subclass of the JApplet class. Make this class public. Otherwise, the

applet cannot be loaded.

3. Eliminate the main method in the application. Do not construct a frame window

for the application. Your application will be displayed inside the browser.

4. Move any initialization code from the frame window constructor to the init
method of the applet. You don’t need to explicitly construct the applet

object—the browser instantiates it for you and calls the init method.

5. Remove the call to setSize; for applets, sizing is done with the width and height
parameters in the HTML file.

6. Remove the call to setDefaultCloseOperation. An applet cannot be closed; it

terminates when the browser exits.

7. If the application calls setTitle, eliminate the call to the method. Applets cannot

have title bars. (You can, of course, title the web page itself, using the HTML

title tag.) /

8. Don’t call setVisible(true). The applet is displayed automatically.

java.applet.Applet 1.0

• void init()

is called when the applet is first loaded. Override this method and place all

initialization code here.

(Continues)

80713.4 Applets

ptg16518469

java.applet.Applet 1.0 (Continued)

• void start()

override this method for code that needs to be executed every time the user visits

the browser page containing this applet. A typical action is to reactivate a thread.

• void stop()

override this method for code that needs to be executed every time the user leaves

the browser page containing this applet. A typical action is to deactivate a thread.

• void destroy()

override this method for code that needs to be executed when the user exits the

browser.

• void resize(int width, int height)

requests that the applet be resized. This would be a great method if it worked on

web pages; unfortunately, it does not work in current browsers because it interferes

with their page layout mechanisms.

13.4.2 The applet HTML Tag and Its Attributes
In its most basic form, an example applet tag looks like this:

<applet code="applet/NotHelloWorld.class" archive="NotHelloWorld.jar"
 width="300" height="100"></applet>

You can use the following attributes within the applet tag:

• width, height

These attributes are required and give the width and height of the applet,

measured in pixels. In the applet viewer, this is the initial size of the

applet. You can resize any window that the applet viewer creates. In a

browser, you cannot resize the applet. You will need to make a good guess

about how much space your applet requires to show up well for all users.

• align

This attribute specifies the alignment of the applet. The attribute values are

the same as for the align attribute of the HTML img tag.

• vspace, hspace

These optional attributes specify the number of pixels above and below the

applet (vspace) and on each side of the applet (hspace).

Chapter 13 Deploying Java Applications808

ptg16518469

• code

This attribute gives the name of the applet’s class file.

The path name must match the package of the applet class. For example,

if the applet class is in the package com.mycompany, then the attribute is

code="com/mycompany/MyApplet.class". The alternative code="com.mycompany.MyApplet.class" is

also permitted.

The code attribute specifies only the name of the class that contains the applet

class. Of course, your applet may contain other class files. Once the browser’s

class loader loads the class containing the applet, it will realize that it needs

more class files and will load them.

• archive

This attribute lists the JAR file or files containing classes and other resources

for the applet. These files are fetched from the web server before the applet

is loaded. JAR files are separated by commas. For example:

<applet code="MyApplet.class"
 archive="MyClasses.jar,corejava/CoreJavaClasses.jar"
 width="100" height="150">

• codebase

This attribute is the URL from which JAR files (and, in earlier days, class files)

are loaded.

• object

This obsolete attribute specifies the name of a file that contains a serialized

applet object, which was intended for persisting applet state. Since there is

no way of signing a serialized file, this feature is no longer useful.

• alt

You can use the alt attribute to display a message when Java is disabled.

If a browser cannot process applets at all, it ignores the unknown applet and

param tags. All text between the <applet> and </applet> tags is displayed by the

browser. Conversely, Java-aware browsers do not display any text between

the <applet> and </applet> tags. You can display messages between these tags for

those poor folks. For example:

<applet . . . alt="If you activated Java, you would see my applet here">
 If your browser could show Java, you would see my applet here.
</applet>

80913.4 Applets

ptg16518469

• name

Scripters can give the applet a name attribute that they can use to refer to the

applet when scripting. Both Netscape and Internet Explorer let you call

methods of an applet on a page through JavaScript.

To access an applet from JavaScript, you first have to give it a name.

<applet ... name="mine"></applet>

You can then refer to the object as document.applets.appletname. For example:

var myApplet = document.applets.mine;

You can then call applet methods:

myApplet.init();

The name attribute is also essential when you want two applets on the same

page to communicate with each other directly. Specify a name for each current

applet instance and pass this string to the getApplet method of the AppletContext
interface. We discuss this mechanism, called inter-applet communication, later

in this chapter.

NOTE: In www.javaworld.com/javatips/jw-javatip80.html, Francis Lu uses JavaScript-
to-Java communication to solve an age-old problem: how to resize an applet so
that it isn’t bound by hardcoded width and height attributes.This is a good example
of the integration between Java and JavaScript.

13.4.3 Use of Parameters to Pass Information to Applets
Just as applications can use command-line information, applets can use parameters

that are embedded in the HTML file. This is done by the HTML tag called param
along with attributes that you define. For example, suppose you want to let the

web page determine the style of the font to use in your applet. You could use

the following HTML tags:

<applet code="FontParamApplet.class" ...>
 <param name="font" value="Helvetica"/>
</applet>

You can then pick up the value of the parameter using the getParameter method of

the Applet class:

public class FontParamApplet extends JApplet
{
 public void init()
 {

Chapter 13 Deploying Java Applications810

http://www.javaworld.com/javatips/jw-javatip80.html

ptg16518469

 String fontName = getParameter("font");
 . . .
 }
 . . .
}

NOTE: You can call the getParameter method only in the init method of the applet,
not in the constructor. When the applet constructor is executed, the parameters
are not yet prepared. Since the layout of most nontrivial applets is determined
by parameters, we recommend that you don’t supply constructors to applets.
Simply place all initialization code into the init method.

Parameters are always returned as strings. You need to convert the string to a

numeric type if that is what is called for. You do this in the standard way by using

the appropriate method, such as parseInt of the Integer class.

For example, if we want to add a size parameter for the font, the HTML code

might look like this:

<applet code="FontParamApplet.class" ...>
 <param name="font" value="Helvetica"/>
 <param name="size" value="24"/>
</applet>

The following source code shows how to read the integer parameter:

public class FontParamApplet extends JApplet
{
 public void init()
 {
 String fontName = getParameter("font");
 int fontSize = Integer.parseInt(getParameter("size"));
 . . .
 }
}

NOTE: A case-insensitive comparison is used when matching the name attribute
value in the param tag and the argument of the getParameter method.

In addition to ensuring that the parameters match in your code, you should find

out whether or not the size parameter was left out. You can do this with a simple

test for null. For example:

81113.4 Applets

ptg16518469

int fontsize;
String sizeString = getParameter("size");
if (sizeString == null) fontSize = 12;
else fontSize = Integer.parseInt(sizeString);

Here is a classic applet that uses parameters to draw a bar chart, shown in

Figure 13.5.

Figure 13.5 A chart applet

This applet takes the labels and the heights of the bars from the param values in

the HTML file. Here is what the HTML file for Figure 13.5 looks like:

<applet code="Chart.class" width="400" height="300">
 <param name="title" value="Diameters of the Planets"/>
 <param name="values" value="9"/>
 <param name="name.1" value="Mercury"/>
 <param name="name.2" value="Venus"/>
 <param name="name.3" value="Earth"/>
 <param name="name.4" value="Mars"/>
 <param name="name.5" value="Jupiter"/>
 <param name="name.6" value="Saturn"/>
 <param name="name.7" value="Uranus"/>
 <param name="name.8" value="Neptune"/>
 <param name="name.9" value="Pluto"/>
 <param name="value.1" value="3100"/>

Chapter 13 Deploying Java Applications812

ptg16518469

 <param name="value.2" value="7500"/>
 <param name="value.3" value="8000"/>
 <param name="value.4" value="4200"/>
 <param name="value.5" value="88000"/>
 <param name="value.6" value="71000"/>
 <param name="value.7" value="32000"/>
 <param name="value.8" value="30600"/>
 <param name="value.9" value="1430"/>
</applet>

You could have set up an array of strings and an array of numbers in the applet,

but there are two advantages to using the parameter mechanism instead. You

can have multiple copies of the same applet on your web page, showing different

graphs: Just put two applet tags with different sets of parameters on the page. And

you can change the data that you want to chart. Admittedly, the diameters of the

planets will stay the same for quite some time, but suppose your web page contains

a chart of weekly sales data. It is easy to update the web page because it is plain

text. Editing and recompiling a Java file weekly is more tedious.

In fact, there are commercial JavaBeans components (beans) that make much

fancier graphs than the one in our chart applet. If you buy one, you can drop it

into your web page and feed it parameters without ever needing to know how

the applet renders the graphs.

Listing 13.5 is the source code of our chart applet. Note that the init method reads

the parameters, and the paintComponent method draws the chart.

Listing 13.5 chart/Chart.java

1 package chart;
 2

3 import java.awt.*;
4 import java.awt.font.*;
5 import java.awt.geom.*;
6 import javax.swing.*;
 7

8 /**
9 * @version 1.34 2015-06-12
10 * @author Cay Horstmann
11 */
12 public class Chart extends JApplet
13 {
14 public void init()
15 {
16 EventQueue.invokeLater(() -> {
17 String v = getParameter("values");
18 if (v == null) return;

(Continues)

81313.4 Applets

ptg16518469

Listing 13.5 (Continued)

19 int n = Integer.parseInt(v);
20 double[] values = new double[n];
21 String[] names = new String[n];
22 for (int i = 0; i < n; i++)
23 {
24 values[i] = Double.parseDouble(getParameter("value." + (i + 1)));
25 names[i] = getParameter("name." + (i + 1));
26 }
27

28 add(new ChartComponent(values, names, getParameter("title")));
29 });
30 }
31 }
32

33 /**
34 * A component that draws a bar chart.
35 */
36 class ChartComponent extends JComponent
37 {
38 private double[] values;
39 private String[] names;
40 private String title;
41

42 /**
43 * Constructs a ChartComponent.
44 * @param v the array of values for the chart
45 * @param n the array of names for the values
46 * @param t the title of the chart
47 */
48 public ChartComponent(double[] v, String[] n, String t)
49 {
50 values = v;
51 names = n;
52 title = t;
53 }
54

55 public void paintComponent(Graphics g)
56 {
57 Graphics2D g2 = (Graphics2D) g;
58

59 // compute the minimum and maximum values
60 if (values == null) return;
61 double minValue = 0;
62 double maxValue = 0;
63 for (double v : values)
64 {

Chapter 13 Deploying Java Applications814

ptg16518469

65 if (minValue > v) minValue = v;
66 if (maxValue < v) maxValue = v;
67 }
68 if (maxValue == minValue) return;
69

70 int panelWidth = getWidth();
71 int panelHeight = getHeight();
72

73 Font titleFont = new Font("SansSerif", Font.BOLD, 20);
74 Font labelFont = new Font("SansSerif", Font.PLAIN, 10);
75

76 // compute the extent of the title
77 FontRenderContext context = g2.getFontRenderContext();
78 Rectangle2D titleBounds = titleFont.getStringBounds(title, context);
79 double titleWidth = titleBounds.getWidth();
80 double top = titleBounds.getHeight();
81

82 // draw the title
83 double y = -titleBounds.getY(); // ascent
84 double x = (panelWidth - titleWidth) / 2;
85 g2.setFont(titleFont);
86 g2.drawString(title, (float) x, (float) y);
87

88 // compute the extent of the bar labels
89 LineMetrics labelMetrics = labelFont.getLineMetrics("", context);
90 double bottom = labelMetrics.getHeight();
91

92 y = panelHeight - labelMetrics.getDescent();
93 g2.setFont(labelFont);
94

95 // get the scale factor and width for the bars
96 double scale = (panelHeight - top - bottom) / (maxValue - minValue);
97 int barWidth = panelWidth / values.length;
98

99 // draw the bars
100 for (int i = 0; i < values.length; i++)
101 {
102 // get the coordinates of the bar rectangle
103 double x1 = i * barWidth + 1;
104 double y1 = top;
105 double height = values[i] * scale;
106 if (values[i] >= 0)
107 y1 += (maxValue - values[i]) * scale;
108 else
109 {
110 y1 += maxValue * scale;
111 height = -height;
112 }
113

(Continues)

81513.4 Applets

ptg16518469

Listing 13.5 (Continued)

114 // fill the bar and draw the bar outline
115 Rectangle2D rect = new Rectangle2D.Double(x1, y1, barWidth - 2, height);
116 g2.setPaint(Color.RED);
117 g2.fill(rect);
118 g2.setPaint(Color.BLACK);
119 g2.draw(rect);
120

121 // draw the centered label below the bar
122 Rectangle2D labelBounds = labelFont.getStringBounds(names[i], context);
123

124 double labelWidth = labelBounds.getWidth();
125 x = x1 + (barWidth - labelWidth) / 2;
126 g2.drawString(names[i], (float) x, (float) y);
127 }
128 }
129 }

java.applet.Applet 1.0

• public String getParameter(String name)

gets the value of a parameter defined with a param tag in the web page loading the

applet. The string name is case sensitive.

• public String getAppletInfo()

is a method that many applet authors override to return a string with information

about the author, version, and copyright of the current applet.

• public String[][] getParameterInfo()

is a method that you can override to return an array of param tag options that this

applet supports. Each row contains three entries: the name, the type, and a

description of the parameter. Here is an example:

"fps", "1–10", "frames per second"
"repeat", "boolean", "repeat image loop?"
"images", "url", "directory containing images"

13.4.4 Accessing Image and Audio Files
Applets can handle both images and audio. As we write this, images must be in

GIF, PNG, or JPEG form, audio files in AU, AIFF, WAV, or MIDI. Animated GIFs

are supported, and the animation is displayed.

Specify the locations of image and audio files with relative URLs. The base URL

is usually obtained by calling the getDocumentBase or getCodeBase method. The former

Chapter 13 Deploying Java Applications816

ptg16518469

gets the URL of the HTML page in which the applet is contained, the latter the

URL specified by the applet’s codebase attribute.

Give the base URL and the file location to the getImage or getAudioClip method. For

example:

Image cat = getImage(getDocumentBase(), "images/cat.gif");
AudioClip meow = getAudioClip(getDocumentBase(), "audio/meow.au");

You saw in Chapter 10 how to display an image. To play an audio clip, simply

invoke its play method. You can also call the play method of the Applet class without

first loading the audio clip.

play(getDocumentBase(), "audio/meow.au");

java.applet.Applet 1.0

• URL getDocumentBase()

gets the URL of the web page containing this applet.

• URL getCodeBase()

gets the URL of the codebase directory from which this applet is loaded.That is either

the absolute URL of the directory referenced by the codebase attribute or the directory

of the HTML file if no codebase is specified.

• void play(URL url)
• void play(URL url, String name)

The first form plays an audio file specified by the URL. The second form uses the

string to provide a path relative to the URL in the first parameter. Nothing happens

if the audio clip cannot be found.

• AudioClip getAudioClip(URL url)
• AudioClip getAudioClip(URL url, String name)

The first form gets an audio clip from the given URL. The second form uses the

string to provide a path relative to the URL in the first argument. The methods

return null if the audio clip cannot be found.

• Image getImage(URL url)
• Image getImage(URL url, String name)

returns an image object that encapsulates the image specified by the URL. If the

image does not exist, it immediately returns null. Otherwise, a separate thread is

launched to load the image.

81713.4 Applets

ptg16518469

13.4.5 The Applet Context
An applet runs inside a browser or the applet viewer. An applet can ask the

browser to do things for it—for example, fetch an audio clip, show a short message

in the status line, or display a different web page. The ambient browser can carry

out these requests, or it can ignore them. For example, if an applet running inside

the applet viewer asks the applet viewer program to display a web page, nothing

happens.

To communicate with the browser, an applet calls the getAppletContext method. That

method returns an object that implements an interface of type AppletContext. You

can think of the concrete implementation of the AppletContext interface as a commu-

nication path between the applet and the ambient browser. In addition to getAudioClip
and getImage, the AppletContext interface contains several useful methods, which we

discuss in the next few sections.

13.4.6 Inter-Applet Communication
A web page can contain more than one applet. If a web page contains multiple

applets from the same codebase, they can communicate with each other. Naturally,

this is an advanced technique that you probably will not need very often.

If you give name attributes to each applet in the HTML file, you can use the getApplet
method of the AppletContext interface to get a reference to the applet. For example,

if your HTML file contains the tag

<applet code="Chart.class" width="100" height="100" name="Chart1">

then the call

Applet chart1 = getAppletContext().getApplet("Chart1");

gives you a reference to the applet. What can you do with the reference? Provided

you give the Chart class a method to accept new data and redraw the chart, you

can call this method by making the appropriate cast.

((Chart) chart1).setData(3, "Earth", 9000);

You can also list all applets on a web page, whether or not they have a name at-

tribute. The getApplets method returns an enumeration object. Here is a loop that

prints the class names of all applets on the current page:

Enumeration<Applet> e = getAppletContext().getApplets();
while (e.hasMoreElements())
{

Chapter 13 Deploying Java Applications818

ptg16518469

 Applet a = e.nextElement();
 System.out.println(a.getClass().getName());
}

An applet cannot communicate with an applet on a different web page.

13.4.7 Displaying Items in the Browser
You have access to two areas of the ambient browser: the status line and the web

page display area. Both use methods of the AppletContext interface.

You can display a string in the status line at the bottom of the browser with the

showStatus message. For example:

showStatus("Loading data . . . please wait");

TIP: In our experience, showStatus is of limited use. The browser is also using the
status line, and, more often than not, it will overwrite your precious message
with chatter like “Applet running.” Use the status line for fluff messages like “Loading
data . . . please wait,” but not for something the user cannot afford to miss.

You can tell the browser to show a different web page with the showDocument method.

There are several ways to do this. The simplest is a call to showDocument with one

argument, the URL you want to show.

URL u = new URL("http://horstmann.com/index.html");
getAppletContext().showDocument(u);

The problem with this call is that it opens the new web page in the same window

as your current page, thereby displacing your applet. To return to your applet,

the user must click the Back button of the browser.

You can tell the browser to show the document in another window by giving a

second parameter in the call to showDocument (see Table 13.2). If you supply the special

string "_blank", the browser opens a new window with the document, instead of

displacing the current document. More importantly, if you take advantage of the

frame feature in HTML, you can split a browser window into multiple frames,

each having a name. You can put your applet into one frame and have it show

documents in other frames. We show you an example of how to do this in the

next section.

NOTE: The applet viewer does not show web pages. The showDocument method
is ignored in the applet viewer.

81913.4 Applets

ptg16518469

Table 13.2 The showDocument Method

LocationTarget Parameter

Show the document in the current frame."_self" or none

Show the document in the parent frame."_parent"

Show the document in the topmost frame."_top"

Show in new, unnamed, top-level window."_blank"

Show in the frame with that name. If no frame with that name

exists, open a new window and give it that name.

Any other string

java.applet.Applet 1.2

• public AppletContext getAppletContext()

gives you a handle to the applet’s browser environment. In most browsers, you can

use this information to control the browser in which the applet is running.

• void showStatus(String msg)

shows the specified string in the status line of the browser.

java.applet.AppletContext 1.0

• Enumeration<Applet> getApplets()

returns an enumeration (see Chapter 9) of all the applets in the same context—that

is, the same web page.

• Applet getApplet(String name)

returns the applet in the current context with the given name; returns null if none

exists. Only the current web page is searched.

• void showDocument(URL url)
• void showDocument(URL url, String target)

shows a new web page in a frame in the browser. In the first form, the new page

displaces the current page. The second form uses the target parameter to identify

the target frame (see Table 13.2).

13.4.8 The Sandbox
Whenever code is loaded from a remote site and then executed locally, security

becomes vital. Visiting a web page automatically starts all applets on the page.

Chapter 13 Deploying Java Applications820

ptg16518469

Clicking a single link can launch a Java Web Start application. If visiting a web

page or clicking a link could execute arbitrary code on the user’s computer,

criminals would have an easy time stealing confidential information, accessing

financial data, or taking over users’ machines to send spam.

To ensure that the Java technology cannot be used for nefarious purposes, Java

has an elaborate security model that we discuss in detail in Volume II. A security

manager checks access to all system resources. By default, it only allows those

operations that are harmless. To allow additional operations, the user must

explicitly approve the applet or application.

What can remote code do on all platforms? It is always OK to show images and

play sounds, get keystrokes and mouse clicks from the user, and send user input

back to the host from which the code was loaded. That is enough functionality

to show facts and figures or to interact with an educational program or game.

The restricted execution environment is often called the “sandbox.” Code that

plays in the sandbox cannot alter the user’s system or spy on it.

In particular, programs in the sandbox have the following restrictions:

• They can never run any local executable program.

• They cannot read from or write to the local computer’s file system.

• They cannot find out any information about the local computer, except for

the Java version used and a few harmless operating system details. In partic-

ular, code in the sandbox cannot find out the user’s name, e-mail address,

and so on.

• Remotely loaded programs need user consent to communicate with any host

other than the server from which they were downloaded; that server is called

the originating host. This rule is often called “remote code can only phone

home.” The rule protects users from code that might try to spy on intranet

resources.

• All pop-up windows carry a warning message. This message is a security

feature to ensure that users do not mistake the window for a local application.

The fear is that an unsuspecting user could visit a web page, be tricked into

running remote code, and then type in a password or credit card number,

which can be sent back to the web server. In early versions of the JDK, that

message was very ominous: “Untrusted Java Applet Window.” Every succes-

sive version watered down the warning a bit: “Unauthenticated Java Applet

Window,” then “Warning: Java Applet Window.” Now it is a minuscule

warning triangle that only the most observant users will notice.

The sandbox concept is no longer as meaningful as it used to be. In the past,

anyone could deploy sandboxed code, and only code that needed permissions

beyond the sandbox needed to be digitally signed. Nowadays all code executed

82113.4 Applets

ptg16518469

through the Java Plug-in, whether it runs in the sandbox or not, must be digitally

signed.

13.4.9 Signed Code
The JAR files of an applet or Java Web Start application must be digitally signed.

A signed JAR file carries with it a certificate that indicates the identity of the

signer. Cryptographic techniques ensure that such a certificate cannot be forged,

and that any effort to tamper with the signed file will be detected.

For example, suppose you receive an application that is produced and digitally

signed by yWorks GmbH, using a certificate issued by Thawte (see Figure 13.6).

When you receive the application, you will be assured of the following:

1. The code is exactly as it was when it was signed; no third party has tampered

with it.

2. The signature really is from yWorks.

3. The certificate really was issued by Thawte. (The Java Plug-in knows how

to check certificates from Thawte and a number of other certificate vendors,

and it is also possible to install alternative “root certificates”.)

If you click on the “More Information” link, you are told that the application will

run without the security restrictions normally provided by Java. Should you install

and run the application? That really depends on your trust in yWorks GmbH.

Getting a certificate from one of the supported vendors costs hundreds of dollars

per year, and some certificate issuers require proof of incorporation or a business

license. In the past, some Java developers simply generated their own certificates

and used them for code signing. Of course, the Java Plug-in has no way of

checking the accuracy of these certificates. In the past, the Java Plug-in nevertheless

presented the certificate to the user for approval. This was quite worthless since

few users understood the difference between secure and insecure certificates.

Insecure certificates are no longer supported.

If you want to distribute a Java applet or Web Start application, you no longer

have a choice. You must obtain a certificate from a certificate issuer that is

supported by the Java Plug-in and use it to sign your JAR files.

If you work for a company, it is likely that your company already has an estab-

lished relationship with a certificate vendor, and you can simply order a Java

code signing certificate. If not, it pays to shop around since prices vary widely,

and some vendors are more relaxed about issuing certificates to individuals.

Chapter 13 Deploying Java Applications822

ptg16518469

Figure 13.6 A secure certificate

Your certificate will come with instructions to install it into a Java keystore—a

password-protected file from where it can be retrieved during the signing process.

Keep the keystore file and the password safe.

Next, you need to decide what permissions you want. You have the choice between

sandbox permissions and all permissions. Make a manifest file (see Section 13.1.2,

“The Manifest,” on p. 781).

Include either the line Permissions: sandbox or Permissions: all-permissions, for example:

Manifest-Version: 1.0
Permissions: all-permissions

Run the jar tool:

jar cvfm MyApplet.jar manifest.mf mypackage/*.class

The applet element of your HTML file should have an attribute archive="MyApplet.jar".

82313.4 Applets

ptg16518469

Finally, sign the JAR file. The command looks like this:

jarsigner -keystore keystorefile -tsa timestampURL MyApplet.jar keyalias

You need to ask your certificate issuer about the URL for time stamping. The key

alias was assigned by your certificate issuer. Run the command

keytool -keystore keystorefile -list

to find out what it was. You can also change it with the -changealias option of the

keytool command. (For more information on keytool, turn to Chapter 9 of Volume II.)

Now place the signed JAR file and the HTML file with the applet element on your

web server.

NOTE: It is possible to control in great detail which rights to grant a Java appli-
cation; we discuss this in Chapter 12 of Volume II. However, that system was
never put to use in a way that is meaningful to consumers. The Java Plug-in
only offers two security levels: sandbox or all permissions.

13.5 Java Web Start
Java Web Start is a technology for delivering applications over the Internet. Java

Web Start applications have the following characteristics:

• They are typically delivered through a browser. Once a Java Web Start appli-

cation has been downloaded, it can be started without using a browser.

• They do not live inside a browser window. The application is displayed in its

own frame, outside the browser.

• They do not use the Java implementation of the browser. The browser simply

launches an external application whenever it loads a Java Web Start application

descriptor. That is the same mechanism used to launch other helper

applications such as Adobe Acrobat or RealAudio.

• Digitally signed applications can be given arbitrary access rights on the local

machine. Unsigned applications run in a “sandbox” which prohibits potentially

dangerous operations.

13.5.1 Delivering a Java Web Start Application
To prepare an application for delivery by Java Web Start, package it in one or

more JAR files. Then, prepare a descriptor file in the Java Network Launch Protocol

(JNLP) format. Place these files on a web server.

Chapter 13 Deploying Java Applications824

ptg16518469

You also need to ensure that your web server reports a MIME type of

application/x-java-jnlp-file for files with extension .jnlp. (Browsers use the MIME type

to determine which helper application to launch.) Consult your web server

documentation for details.

TIP: To experiment with Java Web Start, install Tomcat from http://jakarta.
apache.org/tomcat. Tomcat is a container for servlets and JSP pages, but it also
serves web pages. It is preconfigured to serve the correct MIME type for JNLP
files. In the following instructions, we assume that you use Tomcat.

Let’s try out Java Web Start to deliver the calculator application from Chapter 12.

Follow these steps:

1. Compile the program.

javac -classpath .:jdk/jre/lib/javaws.jar webstart/*.java

2. Produce a JAR file with the command

jar cvfe Calculator.jar webstart.Calculator webstart/*.class

3. Prepare the launch file Calculator.jnlp with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://localhost:8080/calculator/" href="Calculator.jnlp">
 <information>
 <title>Calculator Demo Application</title>
 <vendor>Cay S. Horstmann</vendor>
 <description>A Calculator</description>
 <offline-allowed/>
 </information>
 <resources>
 <java version="1.6.0+"/>
 <jar href="Calculator.jar"/>
 </resources>
 <application-desc/>
</jnlp>

(Note that the version number must be 1.6.0, not 6.0.)

The launch file format is fairly self-explanatory. For a full specification, see

www.oracle.com/technetwork/java/javase/javawebstart.

4. Make a directory tomcat/webapps/calculator from which to serve the application.

Here tomcat is the base directory of your Tomcat installation. Make a subdi-

rectory tomcat/webapps/calculator/WEB-INF, and place the following minimal web.xml
file inside the WEB-INF subdirectory:

82513.5 Java Web Start

http://jakartaapache.org/tomcat
http://www.oracle.com/technetwork/java/javase/javawebstart
http://jakartaapache.org/tomcat

ptg16518469

<?xml version="1.0" encoding="utf-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd">
</web-app>

5. Place the JAR file and the launch file into the tomcat/webapps/calculator directory.

6. Following the process described in Section 2.5, “Building and Running Ap-

plets,” on p. 33, add the URL http://localhost:8080 to the list of trusted sites in

the Java Control Panel. Alternatively, you can sign the JAR file as described

in Section 13.4.9, “Signed Code,” on p. 822.

7. Start Tomcat by executing the startup script in the tomcat/bin directory.

8. Point your browser to the JNLP file. For example, if you use Tomcat, go to

http://localhost:8080/calculator/Calculator.jnlp. If your browser has been configured

for Java Web Start, you should see the launch window for Java Web Start

(see Figure 13.7).

Figure 13.7 Launching Java Web Start

If your browser does not know how to deal with JNLP files, it may offer you

the option of associating them with an application. If so, choose jdk/bin/javaws.

Otherwise, figure out how to associate the MIME type application/x-java-jnlp-file
with the javaws application. You can also try reinstalling the JDK which is

supposed to do that for you.

9. Soon afterward, the calculator should come up, with a border marking it as

a Java application (see Figure 13.8).

Chapter 13 Deploying Java Applications826

http://localhost:8080/calculator/Calculator.jnlp

ptg16518469

Figure 13.8 The calculator delivered by Java Web Start

10. When you access the JNLP file again, the application is retrieved from the

cache. You can review the cache content by using the Java Plug-in control

panel (see Figure 13.9). In Windows, look for the Java Plug-in control inside

the Windows control panel. Under Linux, run jdk/jre/bin/ControlPanel.

Figure 13.9 The application cache

82713.5 Java Web Start

ptg16518469

TIP: If you don’t want to run a web server while you are testing your JNLP
configuration, you can temporarily override the codebase URL in the launch file by
running

javaws -codebase file://programDirectory JNLPfile

For example, in UNIX, you can simply issue this command from the directory
containing the JNLP file:

javaws -codebase file://̀ pwd̀ Calculator.jnlp

Of course, you don’t want to tell your users to launch the cache viewer whenever

they want to run your application again. You can have the installer offer to install

desktop and menu shortcuts. Add these lines to the JNLP file:

<shortcut>
 <desktop/>
 <menu submenu="Accessories"/>
</shortcut>

When the user first downloads the application, a “desktop integration warning”

is displayed (see Figure 13.10).

Figure 13.10 The desktop integration warning

You should also supply an icon for the menu shortcut and the launch screen.

Oracle recommends that you supply a 32 × 32 and a 64 × 64 icon. Place the icon

files on the web server, together with the JNLP and JAR files. Add these lines to

the information section of the JNLP file:

<icon href="calc_icon32.png" width="32" height="32" />
<icon href="calc_icon64.png" width="64" height="64" />

Chapter 13 Deploying Java Applications828

ptg16518469

Note that these icons are not related to the application icon. If you want the appli-

cation to have an icon, you need to add a separate icon image into the JAR file

and call the setIconImage method on the frame class. (See Listing 13.1 for an example.)

13.5.2 The JNLP API
As an advantage over applets, Java Web Start has an API for sandboxed applica-

tions that provides useful services. The JNLP API allows sandboxed applications

to access local resources in a secure way. For example, there are services to load

and save files. The application can’t look at the file system and it can’t specify file

names. Instead, a file dialog is popped up, and the user selects the file. But before

the file dialog is popped up, the user is alerted and must agree to proceed (see

Figure 13.11). Furthermore, the API doesn’t actually give the program access to

a File object. In particular, the application has no way of finding out the file loca-

tion. Thus, programmers are given the tools to implement “file open” and “file

save” actions, but as much system information as possible is hidden from

untrusted applications.

Figure 13.11 A Java Web Start security advisory

The API provides the following services:

• Loading and saving files

• Accessing the clipboard

• Printing

• Downloading a file

• Displaying a document in the default browser

• Storing and retrieving persistent configuration information

• Ensuring that only a single instance of an application executes

82913.5 Java Web Start

ptg16518469

To access a service, use the ServiceManager, like this:

FileSaveService service = (FileSaveService) ServiceManager.lookup("javax.jnlp.FileSaveService");

This call throws an UnavailableServiceException if the service is not available.

NOTE: You must include the file javaws.jar in the class path if you want to compile
programs that use the JNLP API. That file is included in the jre/lib subdirectory
of the JDK.

We now discuss the most useful JNLP services. To save a file, provide suggestions

for the initial path name and file extensions for the file dialog, the data to be saved,

and a suggested file name. For example:

service.saveFileDialog(".", new String[] { "txt" }, data, "calc.txt");

The data must be delivered in an InputStream. That can be somewhat tricky to

arrange. The program in Listing 13.6 uses the following strategy:

1. It creates a ByteArrayOutputStream to hold the bytes to be saved.

2. It creates a PrintStream that sends its data to the ByteArrayOutputStream.

3. It prints the information to be saved to the PrintStream.

4. It creates a ByteArrayInputStream to read the saved bytes.

5. It passes that stream to the saveFileDialog method.

You will learn more about streams in Chapter 1 of Volume II. For now, you can

just gloss over the details in the sample program.

To read data from a file, use the FileOpenService instead. Its openFileDialog receives

suggestions for the initial path name and file extensions for the file dialog and

returns a FileContents object. You can then call the getInputStream and getOutputStream
methods to read and write the file data. If the user didn’t choose a file, the

openFileDialog method returns null.

FileOpenService service = (FileOpenService) ServiceManager.lookup("javax.jnlp.FileOpenService");
FileContents contents = service.openFileDialog(".", new String[] { "txt" });
if (contents != null)
{
 InputStream in = contents.getInputStream();
 . . .
}

Note that your application does not know the name or location of the file.

Conversely, if you want to open a specific file, use the ExtendedService:

Chapter 13 Deploying Java Applications830

ptg16518469

ExtendedService service = (ExtendedService) ServiceManager.lookup("javax.jnlp.ExtendedService");
FileContents contents = service.openFile(new File("c:\\autoexec.bat"));
if (contents != null)
{
 OutputStream out = contents.getOutputStream();
 . . .
}

The user of your program must agree to the file access (see Figure 13.12).

Figure 13.12 File access warning

To display a document in the default browser, use the BasicService interface. Note

that some systems may not have a default browser.

BasicService service = (BasicService) ServiceManager.lookup("javax.jnlp.BasicService");
if (service.isWebBrowserSupported())
 service.showDocument(url);
else . . .

A rudimentary PersistenceService lets an application store small amounts of

configuration information and retrieve it when the application runs again. The

mechanism is similar to HTTP cookies. The persistent store uses URLs as keys.

The URLs don’t have to point to a real web resource. The service simply uses

them as a convenient hierarchical naming scheme. For any given URL key, an

application can store arbitrary binary data. (The store may restrict the size of the

data block.)

For applications to be isolated from each other, each application can only use

URL keys that start with its codebase (as specified in the JNLP file). For example,

if an application is downloaded from http://myserver.com/apps, it can only use keys of

the form http://myserver.com/apps/subkey1/subkey2/...Attempts to access other keys will fail.

An application can call the getCodeBase method of the BasicService to find its codebase.

Create a new key with the create method of the PersistenceService.

83113.5 Java Web Start

http://myserver.com/apps
http://myserver.com/apps/subkey1/subkey2/...Attempts

ptg16518469

URL url = new URL(codeBase, "mykey");
service.create(url, maxSize);

To access the information associated with a particular key, call the get method.

That method returns a FileContents object through which you can read and write

the key data. For example:

FileContents contents = service.get(url);
InputStream in = contents.getInputStream();
OutputStream out = contents.getOutputStream(true); // true = overwrite

Unfortunately, there is no convenient way to find out whether a key already exists

or whether you need to create it. You can hope that the key exists and call get. If

the call throws a FileNotFoundException, you need to create the key.

NOTE: Both Java Web Start applications and applets can print, using the normal
printing API.A security dialog pops up, asking the user for permission to access
the printer. For more information on the printing API, turn to Chapter 7 of
Volume II.

The program in Listing 13.6 is a simple enhancement of the calculator application.

This calculator has a virtual paper tape that keeps track of all calculations. You

can save and load the calculation history. To demonstrate the persistent store,

the application lets you set the frame title. If you run the application again, it

retrieves your title choice from the persistent store (see Figure 13.13).

Listing 13.6 webstart/CalculatorFrame.java

1 package webstart;
 2

3 import java.io.BufferedReader;
4 import java.io.ByteArrayInputStream;
5 import java.io.ByteArrayOutputStream;
6 import java.io.FileNotFoundException;
7 import java.io.IOException;
8 import java.io.InputStream;
9 import java.io.InputStreamReader;
10 import java.io.OutputStream;
11 import java.io.PrintStream;
12 import java.net.MalformedURLException;
13 import java.net.URL;
14

15 import javax.jnlp.BasicService;
16 import javax.jnlp.FileContents;
17 import javax.jnlp.FileOpenService;

Chapter 13 Deploying Java Applications832

ptg16518469

18 import javax.jnlp.FileSaveService;
19 import javax.jnlp.PersistenceService;
20 import javax.jnlp.ServiceManager;
21 import javax.jnlp.UnavailableServiceException;
22 import javax.swing.JFrame;
23 import javax.swing.JMenu;
24 import javax.swing.JMenuBar;
25 import javax.swing.JMenuItem;
26 import javax.swing.JOptionPane;
27

28 /**
29 * A frame with a calculator panel and a menu to load and save the calculator history.
30 */
31 public class CalculatorFrame extends JFrame
32 {
33 private CalculatorPanel panel;
34

35 public CalculatorFrame()
36 {
37 setTitle();
38 panel = new CalculatorPanel();
39 add(panel);
40

41 JMenu fileMenu = new JMenu("File");
42 JMenuBar menuBar = new JMenuBar();
43 menuBar.add(fileMenu);
44 setJMenuBar(menuBar);
45

46 JMenuItem openItem = fileMenu.add("Open");
47 openItem.addActionListener(event -> open());
48 JMenuItem saveItem = fileMenu.add("Save");
49 saveItem.addActionListener(event -> save());
50

51 pack();
52 }
53

54 /**
55 * Gets the title from the persistent store or asks the user for the title if there is no prior
56 * entry.
57 */
58 public void setTitle()
59 {
60 try
61 {
62 String title = null;
63

64 BasicService basic = (BasicService) ServiceManager.lookup("javax.jnlp.BasicService");
65 URL codeBase = basic.getCodeBase();
66

(Continues)

83313.5 Java Web Start

ptg16518469

Listing 13.6 (Continued)

67 PersistenceService service = (PersistenceService) ServiceManager
68 .lookup("javax.jnlp.PersistenceService");
69 URL key = new URL(codeBase, "title");
70

71 try
72 {
73 FileContents contents = service.get(key);
74 InputStream in = contents.getInputStream();
75 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
76 title = reader.readLine();
77 }
78 catch (FileNotFoundException e)
79 {
80 title = JOptionPane.showInputDialog("Please supply a frame title:");
81 if (title == null) return;
82

83 service.create(key, 100);
84 FileContents contents = service.get(key);
85 OutputStream out = contents.getOutputStream(true);
86 PrintStream printOut = new PrintStream(out);
87 printOut.print(title);
88 }
89 setTitle(title);
90 }
91 catch (UnavailableServiceException | IOException e)
92 {
93 JOptionPane.showMessageDialog(this, e);
94 }
95 }
96

97 /**
98 * Opens a history file and updates the display.
99 */
100 public void open()
101 {
102 try
103 {
104 FileOpenService service = (FileOpenService) ServiceManager
105 .lookup("javax.jnlp.FileOpenService");
106 FileContents contents = service.openFileDialog(".", new String[] { "txt" });
107

108 JOptionPane.showMessageDialog(this, contents.getName());
109 if (contents != null)
110 {

Chapter 13 Deploying Java Applications834

ptg16518469

111 InputStream in = contents.getInputStream();
112 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
113 String line;
114 while ((line = reader.readLine()) != null)
115 {
116 panel.append(line);
117 panel.append("\n");
118 }
119 }
120 }
121 catch (UnavailableServiceException e)
122 {
123 JOptionPane.showMessageDialog(this, e);
124 }
125 catch (IOException e)
126 {
127 JOptionPane.showMessageDialog(this, e);
128 }
129 }
130

131 /**
132 * Saves the calculator history to a file.
133 */
134 public void save()
135 {
136 try
137 {
138 ByteArrayOutputStream out = new ByteArrayOutputStream();
139 PrintStream printOut = new PrintStream(out);
140 printOut.print(panel.getText());
141 InputStream data = new ByteArrayInputStream(out.toByteArray());
142 FileSaveService service = (FileSaveService) ServiceManager
143 .lookup("javax.jnlp.FileSaveService");
144 service.saveFileDialog(".", new String[] { "txt" }, data, "calc.txt");
145 }
146 catch (UnavailableServiceException e)
147 {
148 JOptionPane.showMessageDialog(this, e);
149 }
150 catch (IOException e)
151 {
152 JOptionPane.showMessageDialog(this, e);
153 }
154 }
155 }

83513.5 Java Web Start

ptg16518469
Figure 13.13 The WebStartCalculator application

javax.jnlp.ServiceManager

• static String[] getServiceNames()

returns the names of all available services.

• static Object lookup(String name)

returns a service with a given name.

javax.jnlp.BasicService

• URL getCodeBase()

returns the codebase of this application.

• boolean isWebBrowserSupported()

returns true if the Web Start environment can launch a web browser.

• boolean showDocument(URL url)

attempts to show the given URL in a browser. Returns true if the request succeeded.

Chapter 13 Deploying Java Applications836

ptg16518469

javax.jnlp.FileContents

• InputStream getInputStream()

returns an input stream to read the contents of the file.

• OutputStream getOutputStream(boolean overwrite)

returns an output stream to write to the file. If overwrite is true, then the existing

contents of the file are overwritten.

• String getName()

returns the file name (but not the full directory path).

• boolean canRead()
• boolean canWrite()

returns true if the underlying file is readable or writable.

javax.jnlp.FileOpenService

• FileContents openFileDialog(String pathHint, String[] extensions)
• FileContents[] openMultiFileDialog(String pathHint, String[] extensions)

displays a user warning and a file chooser. Returns content descriptors of the file

or files that the user selected, or null if the user didn’t choose a file.

javax.jnlp.FileSaveService

• FileContents saveFileDialog(String pathHint, String[] extensions, InputStream data, String
nameHint)

• FileContents saveAsFileDialog(String pathHint, String[] extensions, FileContents data)

displays a user warning and a file chooser. Writes the data and returns content de-

scriptors of the file or files that the user selected, or null if the user didn’t choose

a file.

javax.jnlp.PersistenceService

• long create(URL key, long maxsize)

creates a persistent store entry for the given key. Returns the maximum size granted

by the persistent store.

(Continues)

83713.5 Java Web Start

ptg16518469

javax.jnlp.PersistenceService (Continued)

• void delete(URL key)

deletes the entry for the given key.

• String[] getNames(URL url)

returns the relative key names of all keys that start with the given URL.

• FileContents get(URL key)

gets a content descriptor through which you can modify the data associated with

the given key. If no entry exists for the key, a FileNotFoundException is thrown.

This concludes our discussion of Java software deployment. In the final chapter

of this volume, we will cover the important topic of concurrent programming.

Chapter 13 Deploying Java Applications838

ptg16518469

14CHAPTER

Concurrency

In this chapter

• 14.1 What Are Threads?, page 840

• 14.2 Interrupting Threads, page 851

• 14.3 Thread States, page 855

• 14.4 Thread Properties, page 858

• 14.5 Synchronization, page 862

• 14.6 Blocking Queues, page 898

• 14.7 Thread-Safe Collections, page 905

• 14.8 Callables and Futures, page 915

• 14.9 Executors, page 920

• 14.10 Synchronizers, page 934

• 14.11 Threads and Swing, page 937

You are probably familiar with multitasking—your operating system’s ability to

have more than one program working at what seems like the same time. For ex-

ample, you can print while editing or downloading your email. Nowadays, you

are likely to have a computer with more than one CPU, but the number of concur-

rently executing processes is not limited by the number of CPUs. The operating

system assigns CPU time slices to each process, giving the impression of parallel

activity.

839

ptg16518469

Multithreaded programs extend the idea of multitasking by taking it one level

lower: Individual programs will appear to do multiple tasks at the same time.

Each task is usually called a thread, which is short for thread of control. Programs

that can run more than one thread at once are said to be multithreaded.

So, what is the difference between multiple processes and multiple threads? The

essential difference is that while each process has a complete set of its own vari-

ables, threads share the same data. This sounds somewhat risky, and indeed it

can be, as you will see later in this chapter. However, shared variables make

communication between threads more efficient and easier to program than inter-

process communication. Moreover, on some operating systems, threads are more

“lightweight” than processes—it takes less overhead to create and destroy

individual threads than it does to launch new processes.

Multithreading is extremely useful in practice. For example, a browser should be

able to simultaneously download multiple images. A web server needs to be able

to serve concurrent requests. Graphical user interface (GUI) programs have a

separate thread for gathering user interface events from the host operating envi-

ronment. This chapter shows you how to add multithreading capability to your

Java applications.

Fair warning: Concurrent programming can get very complex. In this chapter,

we cover all the tools that an application programmer is likely to need. However,

for more intricate system-level programming, we suggest that you turn to a more

advanced reference, such as Java Concurrency in Practice by Brian Goetz et al.

(Addison-Wesley Professional, 2006).

14.1 What Are Threads?
Let us start by looking at a program that does not use multiple threads and that,

as a consequence, makes it difficult for the user to perform several tasks with that

program. After we dissect it, we will show you how easy it is to have this program

run separate threads. This program animates a bouncing ball by continually

moving the ball, finding out if it bounces against a wall, and then redrawing it.

(See Figure 14.1.)

As soon as you click the Start button, the program launches a ball from the upper

left corner of the screen and the ball begins bouncing. The handler of the Start

button calls the addBall method. That method contains a loop running through

1,000 moves. Each call to move moves the ball by a small amount, adjusts the

direction if it bounces against a wall, and redraws the panel.

Chapter 14 Concurrency840

ptg16518469

Figure 14.1 Using a thread to animate a bouncing ball

Ball ball = new Ball();
panel.add(ball);
for (int i = 1; i <= STEPS; i++)
{
 ball.move(panel.getBounds());
 panel.paint(panel.getGraphics());
 Thread.sleep(DELAY);
}

The call to Thread.sleep does not create a new thread—sleep is a static method of the

Thread class that temporarily stops the activity of the current thread for the given

number of milliseconds.

The sleep method can throw an InterruptedException. We discuss this exception and

its proper handling later. For now, we simply terminate the bouncing if this

exception occurs.

If you run the program, the ball bounces around nicely, but it completely takes

over the application. If you become tired of the bouncing ball before it has finished

its 1,000 moves and click the Close button, the ball continues bouncing anyway.

You cannot interact with the program until the ball has finished bouncing.

84114.1 What Are Threads?

ptg16518469

NOTE: If you carefully look over the code at the end of this section, you will notice
the call

comp.paint(comp.getGraphics())

inside the addBall method of the BounceFrame class.That is pretty strange—normally,
you’d call repaint and let the AWT worry about getting the graphics context and
doing the painting. But if you try to call comp.repaint() in this program, you’ll find
that the panel is only repainted after the addBall method has returned. Also note
that the ball component extends JPanel; this makes it easier to erase the back-
ground. In the next program, in which we use a separate thread to compute the
ball position, we can go back to the familiar use of repaint and JComponent.

Obviously, the behavior of this program is rather poor. You would not want a

program you use to behave in this way when you ask it to do a time-consuming

job. After all, when you are reading data over a network connection, it is all too

common to be stuck in a task that you would really like to interrupt. For example,

suppose you download a large image and decide, after seeing a piece of it, that

you do not need or want to see the rest; you certainly would like to be able to

click a Stop or Back button to interrupt the loading process. In the next section,

we will show you how to keep the user in control by running crucial parts of the

code in a separate thread.

Listings 14.1 through 14.3 show the code for the program.

Listing 14.1 bounce/Bounce.java

1 package bounce;
 2

3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
 6

7 /**
8 * Shows an animated bouncing ball.
9 * @version 1.34 2015-06-21
10 * @author Cay Horstmann
11 */
12 public class Bounce
13 {
14 public static void main(String[] args)
15 {
16 EventQueue.invokeLater(() -> {
17 JFrame frame = new BounceFrame();
18 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Chapter 14 Concurrency842

ptg16518469

19 frame.setVisible(true);
20 });
21 }
22 }
23

24 /**
25 * The frame with ball component and buttons.
26 */
27 class BounceFrame extends JFrame
28 {
29 private BallComponent comp;
30 public static final int STEPS = 1000;
31 public static final int DELAY = 3;
32

33 /**
34 * Constructs the frame with the component for showing the bouncing ball and
35 * Start and Close buttons
36 */
37 public BounceFrame()
38 {
39 setTitle("Bounce");
40 comp = new BallComponent();
41 add(comp, BorderLayout.CENTER);
42 JPanel buttonPanel = new JPanel();
43 addButton(buttonPanel, "Start", event -> addBall());
44 addButton(buttonPanel, "Close", event -> System.exit(0));
45 add(buttonPanel, BorderLayout.SOUTH);
46 pack();
47 }
48

49 /**
50 * Adds a button to a container.
51 * @param c the container
52 * @param title the button title
53 * @param listener the action listener for the button
54 */
55 public void addButton(Container c, String title, ActionListener listener)
56 {
57 JButton button = new JButton(title);
58 c.add(button);
59 button.addActionListener(listener);
60 }
61

62 /**
63 * Adds a bouncing ball to the panel and makes it bounce 1,000 times.
64 */
65 public void addBall()
66 {

(Continues)

84314.1 What Are Threads?

ptg16518469

Listing 14.1 (Continued)

67 try
68 {
69 Ball ball = new Ball();
70 comp.add(ball);
71

72 for (int i = 1; i <= STEPS; i++)
73 {
74 ball.move(comp.getBounds());
75 comp.paint(comp.getGraphics());
76 Thread.sleep(DELAY);
77 }
78 }
79 catch (InterruptedException e)
80 {
81 }
82 }
83 }

Listing 14.2 bounce/Ball.java

1 package bounce;
 2

3 import java.awt.geom.*;
 4

5 /**
6 * A ball that moves and bounces off the edges of a rectangle
7 * @version 1.33 2007-05-17
8 * @author Cay Horstmann
9 */
10 public class Ball
11 {
12 private static final int XSIZE = 15;
13 private static final int YSIZE = 15;
14 private double x = 0;
15 private double y = 0;
16 private double dx = 1;
17 private double dy = 1;
18

19 /**
20 * Moves the ball to the next position, reversing direction if it hits one of the edges
21 */
22 public void move(Rectangle2D bounds)
23 {
24 x += dx;
25 y += dy;

Chapter 14 Concurrency844

ptg16518469

26 if (x < bounds.getMinX())
27 {
28 x = bounds.getMinX();
29 dx = -dx;
30 }
31 if (x + XSIZE >= bounds.getMaxX())
32 {
33 x = bounds.getMaxX() - XSIZE;
34 dx = -dx;
35 }
36 if (y < bounds.getMinY())
37 {
38 y = bounds.getMinY();
39 dy = -dy;
40 }
41 if (y + YSIZE >= bounds.getMaxY())
42 {
43 y = bounds.getMaxY() - YSIZE;
44 dy = -dy;
45 }
46 }
47

48 /**
49 * Gets the shape of the ball at its current position.
50 */
51 public Ellipse2D getShape()
52 {
53 return new Ellipse2D.Double(x, y, XSIZE, YSIZE);
54 }
55 }

Listing 14.3 bounce/BallComponent.java

1 package bounce;
 2

3 import java.awt.*;
4 import java.util.*;
5 import javax.swing.*;
 6

7 /**
8 * The component that draws the balls.
9 * @version 1.34 2012-01-26
10 * @author Cay Horstmann
11 */
12 public class BallComponent extends JPanel
13 {
14 private static final int DEFAULT_WIDTH = 450;
15 private static final int DEFAULT_HEIGHT = 350;

(Continues)

84514.1 What Are Threads?

ptg16518469

Listing 14.3 (Continued)

16

17 private java.util.List<Ball> balls = new ArrayList<>();
18

19 /**
20 * Add a ball to the component.
21 * @param b the ball to add
22 */
23 public void add(Ball b)
24 {
25 balls.add(b);
26 }
27

28 public void paintComponent(Graphics g)
29 {
30 super.paintComponent(g); // erase background
31 Graphics2D g2 = (Graphics2D) g;
32 for (Ball b : balls)
33 {
34 g2.fill(b.getShape());
35 }
36 }
37

38 public Dimension getPreferredSize() { return new Dimension(DEFAULT_WIDTH, DEFAULT_HEIGHT); }
39 }

java.lang.Thread 1.0

• static void sleep(long millis)

sleeps for the given number of milliseconds.

The number of milliseconds to sleepmillisParameters:

14.1.1 Using Threads to Give Other Tasks a Chance
We will make our bouncing ball program more responsive by running the code

that moves the ball in a separate thread. In fact, you will be able to launch multiple

balls, each moved by its own thread. In addition, the AWT event dispatch thread

will continue running in parallel, taking care of user interface events. Since each

thread gets a chance to run, the event dispatch thread has the opportunity to

notice that the user clicks the Close button while the balls are bouncing. The

thread can then process the “close” action.

We use ball-bouncing code as an example to give you a visual impression of the

need for concurrency. In general, you need to be wary of any long-running

Chapter 14 Concurrency846

ptg16518469

computation. Your computation is likely to be a part of some bigger framework,

such as a GUI or web framework. Whenever the framework calls one of your

methods, there is usually an expectation of a quick return. If you need to do any

task that takes a long time, your task should run concurrently.

Here is a simple procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that implements the

Runnable interface. That interface is very simple, with a single method:

public interface Runnable
{
 void run();
}

Since Runnable is a functional interface, you can make an instance with a

lambda expression:

Runnable r = () -> { task code };

2. Construct a Thread object from the Runnable:

Thread t = new Thread(r);

3. Start the thread:

t.start();

To make our bouncing ball program into a separate thread, we need only place

the code for the animation inside the run method of a Runnable, and then start

a thread:

Runnable r = () -> {
 try
 {
 for (int i = 1; i <= STEPS; i++)
 {

ball.move(comp.getBounds());
comp.repaint();
Thread.sleep(DELAY);

 }
 }
 catch (InterruptedException e)
 {
 }
};
Thread t = new Thread(r);
t.start();

Again, we need to catch an InterruptedException that the sleep method threatens to

throw. We will discuss this exception in the next section. Typically, interruption

84714.1 What Are Threads?

ptg16518469

is used to request that a thread terminates. Accordingly, our run method exits

when an InterruptedException occurs.

Whenever the Start button is clicked, the ball is moved in a new thread (see

Figure 14.2).

Figure 14.2 Running multiple threads

That’s all there is to it! You now know how to run tasks in parallel. The remainder

of this chapter tells you how to control the interaction between threads.

The complete code is shown in Listing 14.4.

NOTE: You can also define a thread by forming a subclass of the Thread class,
like this:

class MyThread extends Thread
{
 public void run()
 {

task code

 }
}

Then you construct an object of the subclass and call its start method. However,
this approach is no longer recommended.You should decouple the task that is
to be run in parallel from the mechanism of running it. If you have many tasks,
it is too expensive to create a separate thread for each of them. Instead, you
can use a thread pool—see Section 14.9, “Executors,” on p. 920.

Chapter 14 Concurrency848

ptg16518469

CAUTION: Do not call the run method of the Thread class or the Runnable object.
Calling the run method directly merely executes the task in the same thread—no
new thread is started. Instead, call the Thread.start method. It creates a new
thread that executes the run method.

Listing 14.4 bounceThread/BounceThread.java

1 package bounceThread;
 2

3 import java.awt.*;
4 import java.awt.event.*;
 5

6 import javax.swing.*;
 7

8 /**
9 * Shows animated bouncing balls.
10 * @version 1.34 2015-06-21
11 * @author Cay Horstmann
12 */
13 public class BounceThread
14 {
15 public static void main(String[] args)
16 {
17 EventQueue.invokeLater(() -> {
18 JFrame frame = new BounceFrame();
19 frame.setTitle("BounceThread");
20 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 frame.setVisible(true);
22 });
23 }
24 }
25

26 /**
27 * The frame with panel and buttons.
28 */
29 class BounceFrame extends JFrame
30 {
31 private BallComponent comp;
32 public static final int STEPS = 1000;
33 public static final int DELAY = 5;
34

35 /**
36 * Constructs the frame with the component for showing the bouncing ball and
37 * Start and Close buttons
38 */

(Continues)

84914.1 What Are Threads?

ptg16518469

Listing 14.4 (Continued)

39 public BounceFrame()
40 {
41 comp = new BallComponent();
42 add(comp, BorderLayout.CENTER);
43 JPanel buttonPanel = new JPanel();
44 addButton(buttonPanel, "Start", event -> addBall());
45 addButton(buttonPanel, "Close", event -> System.exit(0));
46 add(buttonPanel, BorderLayout.SOUTH);
47 pack();
48 }
49

50 /**
51 * Adds a button to a container.
52 * @param c the container
53 * @param title the button title
54 * @param listener the action listener for the button
55 */
56 public void addButton(Container c, String title, ActionListener listener)
57 {
58 JButton button = new JButton(title);
59 c.add(button);
60 button.addActionListener(listener);
61 }
62

63 /**
64 * Adds a bouncing ball to the canvas and starts a thread to make it bounce
65 */
66 public void addBall()
67 {
68 Ball ball = new Ball();
69 comp.add(ball);
70 Runnable r = () -> {
71 try
72 {
73 for (int i = 1; i <= STEPS; i++)
74 {
75 ball.move(comp.getBounds());
76 comp.repaint();
77 Thread.sleep(DELAY);
78 }
79 }
80 catch (InterruptedException e)
81 {
82 }
83 };

Chapter 14 Concurrency850

ptg16518469

84 Thread t = new Thread(r);
85 t.start();
86 }
87 }

java.lang.Thread 1.0

• Thread(Runnable target)

constructs a new thread that calls the run() method of the specified target.

• void start()

starts this thread, causing the run() method to be called. This method will return

immediately. The new thread runs concurrently.

• void run()

calls the run method of the associated Runnable.

java.lang.Runnable 1.0

• void run()

must be overridden and supplied with instructions for the task that you want to

have executed.

14.2 Interrupting Threads
A thread terminates when its run method returns—by executing a return statement,

after executing the last statement in the method body, or if an exception occurs

that is not caught in the method. In the initial release of Java, there also was a stop
method that another thread could call to terminate a thread. However, that method

is now deprecated. We discuss the reason in Section 14.5.15, “Why the stop and

suspend Methods Are Deprecated,” on p. 896.

Other than with the deprecated stop method, there is no way to force a thread to

terminate. However, the interrupt method can be used to request termination of

a thread.

When the interrupt method is called on a thread, the interrupted status of the thread

is set. This is a boolean flag that is present in every thread. Each thread should

occasionally check whether it has been interrupted.

To find out whether the interrupted status was set, first call the static

Thread.currentThread method to get the current thread, and then call the isInterrupted
method:

85114.2 Interrupting Threads

ptg16518469

while (!Thread.currentThread().isInterrupted() && more work to do)
{

do more work

}

However, if a thread is blocked, it cannot check the interrupted status. This is

where the InterruptedException comes in. When the interrupt method is called on a

thread that blocks on a call such as sleep or wait, the blocking call is terminated by

an InterruptedException. (There are blocking I/O calls that cannot be interrupted; you

should consider interruptible alternatives. See Chapters 1 and 3 of Volume II for

details.)

There is no language requirement that a thread which is interrupted should ter-

minate. Interrupting a thread simply grabs its attention. The interrupted thread

can decide how to react to the interruption. Some threads are so important that

they should handle the exception and continue. But quite commonly, a thread

will simply want to interpret an interruption as a request for termination. The run
method of such a thread has the following form:

Runnable r = () -> {
 try
 {
 . . .
 while (!Thread.currentThread().isInterrupted() && more work to do)
 {

do more work

 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep or wait
 }
 finally
 {

cleanup, if required

 }
 // exiting the run method terminates the thread
};

The isInterrupted check is neither necessary nor useful if you call the sleep method

(or another interruptible method) after every work iteration. If you call the sleep
method when the interrupted status is set, it doesn’t sleep. Instead, it clears the

status (!) and throws an InterruptedException. Therefore, if your loop calls sleep, don’t

check the interrupted status. Instead, catch the InterruptedException, like this:

Chapter 14 Concurrency852

ptg16518469

Runnable r = () -> {
 try
 {
 . . .
 while (more work to do)
 {

do more work

Thread.sleep(delay);
 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep
 }
 finally
 {

cleanup, if required

 }
 // exiting the run method terminates the thread
};

NOTE: There are two very similar methods, interrupted and isInterrupted. The
interrupted method is a static method that checks whether the current thread has
been interrupted. Furthermore, calling the interrupted method clears the interrupted
status of the thread. On the other hand, the isInterrupted method is an instance
method that you can use to check whether any thread has been interrupted.
Calling it does not change the interrupted status.

You’ll find lots of published code in which the InterruptedException is squelched at a

low level, like this:

void mySubTask()
{
 . . .
 try { sleep(delay); }
 catch (InterruptedException e) {} // Don't ignore!
 . . .
}

Don’t do that! If you can’t think of anything good to do in the catch clause, you

still have two reasonable choices:

85314.2 Interrupting Threads

ptg16518469

• In the catch clause, call Thread.currentThread().interrupt() to set the interrupted status.

Then the caller can test it.

void mySubTask()
{
 . . .
 try { sleep(delay); }
 catch (InterruptedException e) { Thread.currentThread().interrupt(); }
 . . .
}

• Or, even better, tag your method with throws InterruptedException and drop the try
block. Then the caller (or, ultimately, the run method) can catch it.

void mySubTask() throws InterruptedException
{
 . . .
 sleep(delay);
 . . .
}

java.lang.Thread 1.0

• void interrupt()

sends an interrupt request to a thread. The interrupted status of the thread is set to

true. If the thread is currently blocked by a call to sleep, then an InterruptedException
is thrown.

• static boolean interrupted()

tests whether the current thread (that is, the thread that is executing this instruction)

has been interrupted. Note that this is a static method. The call has a side effect—it

resets the interrupted status of the current thread to false.

• boolean isInterrupted()

tests whether a thread has been interrupted. Unlike the static interrupted method,

this call does not change the interrupted status of the thread.

• static Thread currentThread()

returns the Thread object representing the currently executing thread.

Chapter 14 Concurrency854

ptg16518469

14.3 Thread States
Threads can be in one of six states:

• New

• Runnable

• Blocked

• Waiting

• Timed waiting

• Terminated

Each of these states is explained in the sections that follow.

To determine the current state of a thread, simply call the getState method.

14.3.1 New Threads
When you create a thread with the new operator—for example, new Thread(r)—the

thread is not yet running. This means that it is in the new state. When a thread is

in the new state, the program has not started executing code inside of it. A certain

amount of bookkeeping needs to be done before a thread can run.

14.3.2 Runnable Threads
Once you invoke the start method, the thread is in the runnable state. A runnable

thread may or may not actually be running. It is up to the operating system to

give the thread time to run. (The Java specification does not call this a separate

state, though. A running thread is still in the runnable state.)

Once a thread is running, it doesn’t necessarily keep running. In fact, it is desirable

that running threads occasionally pause so that other threads have a chance to

run. The details of thread scheduling depend on the services that the operating

system provides. Preemptive scheduling systems give each runnable thread a

slice of time to perform its task. When that slice of time is exhausted, the operating

system preempts the thread and gives another thread an opportunity to work (see

Figure 14.4). When selecting the next thread, the operating system takes into ac-

count the thread priorities—see Section 14.4.1, “Thread Priorities,” on p. 858 for

more information.

85514.3 Thread States

ptg16518469

All modern desktop and server operating systems use preemptive scheduling.

However, small devices such as cell phones may use cooperative scheduling. In

such a device, a thread loses control only when it calls the yield method, or when

it is blocked or waiting.

On a machine with multiple processors, each processor can run a thread, and you

can have multiple threads run in parallel. Of course, if there are more threads

than processors, the scheduler still has to do time slicing.

Always keep in mind that a runnable thread may or may not be running at any

given time. (This is why the state is called “runnable” and not “running.”)

14.3.3 Blocked and Waiting Threads
When a thread is blocked or waiting, it is temporarily inactive. It doesn’t execute

any code and consumes minimal resources. It is up to the thread scheduler to

reactivate it. The details depend on how the inactive state was reached.

• When the thread tries to acquire an intrinsic object lock (but not a Lock in the

java.util.concurrent library) that is currently held by another thread, it becomes

blocked. (We discuss java.util.concurrent locks in Section 14.5.3, “Lock Objects,”

on p. 868 and intrinsic object locks in Section 14.5.5, “The synchronized Keyword,”

on p. 878.) The thread becomes unblocked when all other threads have relin-

quished the lock and the thread scheduler has allowed this thread to hold it.

• When the thread waits for another thread to notify the scheduler of a condition,

it enters the waiting state. We discuss conditions in Section 14.5.4, “Condition

Objects,” on p. 872. This happens by calling the Object.wait or Thread.join method,

or by waiting for a Lock or Condition in the java.util.concurrent library. In practice,

the difference between the blocked and waiting state is not significant.

• Several methods have a timeout parameter. Calling them causes the thread

to enter the timed waiting state. This state persists either until the timeout ex-

pires or the appropriate notification has been received. Methods with timeout

include Thread.sleep and the timed versions of Object.wait, Thread.join, Lock.tryLock,

and Condition.await.

Figure 14.3 shows the states that a thread can have and the possible transitions

from one state to another. When a thread is blocked or waiting (or, of course,

when it terminates), another thread will be scheduled to run. When a thread is

reactivated (for example, because its timeout has expired or it has succeeded in

acquiring a lock), the scheduler checks to see if it has a higher priority than the

currently running threads. If so, it preempts one of the current threads and picks

a new thread to run.

Chapter 14 Concurrency856

ptg16518469

Figure 14.3 Thread states

14.3.4 Terminated Threads
A thread is terminated for one of two reasons:

• It dies a natural death because the run method exits normally.

• It dies abruptly because an uncaught exception terminates the run method.

In particular, you can kill a thread by invoking its stop method. That method

throws a ThreadDeath error object that kills the thread. However, the stop method is

deprecated, and you should never call it in your own code.

85714.3 Thread States

ptg16518469

java.lang.Thread 1.0

• void join()

waits for the specified thread to terminate.

• void join(long millis)

waits for the specified thread to die or for the specified number of milliseconds

to pass.

• Thread.State getState() 5.0

gets the state of this thread: one of NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, or

TERMINATED.

• void stop()

stops the thread. This method is deprecated.

• void suspend()

suspends this thread’s execution. This method is deprecated.

• void resume()

resumes this thread.This method is only valid after suspend() has been invoked.This

method is deprecated.

14.4 Thread Properties
In the following sections, we discuss miscellaneous properties of threads: thread

priorities, daemon threads, thread groups, and handlers for uncaught exceptions.

14.4.1 Thread Priorities
In the Java programming language, every thread has a priority. By default, a thread

inherits the priority of the thread that constructed it. You can increase or decrease

the priority of any thread with the setPriority method. You can set the priority to

any value between MIN_PRIORITY (defined as 1 in the Thread class) and MAX_PRIORITY
(defined as 10). NORM_PRIORITY is defined as 5.

Whenever the thread scheduler has a chance to pick a new thread, it prefers

threads with higher priority. However, thread priorities are highly system dependent.

When the virtual machine relies on the thread implementation of the host platform,

the Java thread priorities are mapped to the priority levels of the host

platform, which may have more or fewer thread priority levels.

Chapter 14 Concurrency858

ptg16518469

For example, Windows has seven priority levels. Some of the Java priorities will

map to the same operating system level. In the Oracle JVM for Linux, thread

priorities are ignored altogether—all threads have the same priority.

Beginning programmers sometimes overuse thread priorities. There are few rea-

sons ever to tweak priorities. You should certainly never structure your programs

so that their correct functioning depends on priority levels.

CAUTION: If you do use priorities, you should be aware of a common beginner’s
error. If you have several threads with a high priority that don’t become inactive,
the lower-priority threads may never execute. Whenever the scheduler decides
to run a new thread, it will choose among the highest-priority threads first, even
though that may starve the lower-priority threads completely.

java.lang.Thread 1.0

• void setPriority(int newPriority)

sets the priority of this thread.The priority must be between Thread.MIN_PRIORITY and

Thread.MAX_PRIORITY. Use Thread.NORM_PRIORITY for normal priority.

• static int MIN_PRIORITY

is the minimum priority that a Thread can have. The minimum priority value is 1.

• static int NORM_PRIORITY

is the default priority of a Thread. The default priority is 5.

• static int MAX_PRIORITY

is the maximum priority that a Thread can have. The maximum priority value is 10.

• static void yield()

causes the currently executing thread to yield. If there are other runnable threads

with a priority at least as high as the priority of this thread, they will be scheduled

next. Note that this is a static method.

14.4.2 Daemon Threads
You can turn a thread into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread that

has no other role in life than to serve others. Examples are timer threads that send

regular “timer ticks” to other threads or threads that clean up stale cache entries.

85914.4 Thread Properties

ptg16518469

When only daemon threads remain, the virtual machine exits. There is no point

in keeping the program running if all remaining threads are daemons.

Daemon threads are sometimes mistakenly used by beginners who don’t want

to think about shutdown actions. However, this can be dangerous. A daemon

thread should never access a persistent resource such as a file or database since

it can terminate at any time, even in the middle of an operation.

java.lang.Thread 1.0

• void setDaemon(boolean isDaemon)

marks this thread as a daemon thread or a user thread.This method must be called

before the thread is started.

14.4.3 Handlers for Uncaught Exceptions
The run method of a thread cannot throw any checked exceptions, but it can be

terminated by an unchecked exception. In that case, the thread dies.

However, there is no catch clause to which the exception can be propagated. In-

stead, just before the thread dies, the exception is passed to a handler for uncaught

exceptions.

The handler must belong to a class that implements the Thread.UncaughtExceptionHandler
interface. That interface has a single method,

void uncaughtException(Thread t, Throwable e)

You can install a handler into any thread with the setUncaughtExceptionHandler
method. You can also install a default handler for all threads with the static method

setDefaultUncaughtExceptionHandler of the Thread class. A replacement handler might use

the logging API to send reports of uncaught exceptions into a log file.

If you don’t install a default handler, the default handler is null. However, if you

don’t install a handler for an individual thread, the handler is the thread’s ThreadGroup
object.

NOTE: A thread group is a collection of threads that can be managed together.
By default, all threads that you create belong to the same thread group, but it is
possible to establish other groupings. Since there are now better features for
operating on collections of threads, we recommend that you do not use thread
groups in your programs.

Chapter 14 Concurrency860

ptg16518469

The ThreadGroup class implements the Thread.UncaughtExceptionHandler interface. Its

uncaughtException method takes the following action:

1. If the thread group has a parent, then the uncaughtException method of the parent

group is called.

2. Otherwise, if the Thread.getDefaultUncaughtExceptionHandler method returns a non-null
handler, it is called.

3. Otherwise, if the Throwable is an instance of ThreadDeath, nothing happens.

4. Otherwise, the name of the thread and the stack trace of the Throwable are

printed on System.err.

That is the stack trace that you have undoubtedly seen many times in your

programs.

java.lang.Thread 1.0

• static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler handler) 5.0
• static Thread.UncaughtExceptionHandler getDefaultUncaughtExceptionHandler() 5.0

sets or gets the default handler for uncaught exceptions.

• void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler handler) 5.0
• Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() 5.0

sets or gets the handler for uncaught exceptions. If no handler is installed, the thread

group object is the handler.

java.lang.Thread.UncaughtExceptionHandler 5.0

• void uncaughtException(Thread t, Throwable e)

defined to log a custom report when a thread is terminated with an uncaught

exception.

The thread that was terminated due to an uncaught

exception

tParameters:

The uncaught exception objecte

86114.4 Thread Properties

ptg16518469

java.lang.ThreadGroup 1.0

• void uncaughtException(Thread t, Throwable e)

calls this method of the parent thread group if there is a parent, or calls the default

handler of the Thread class if there is a default handler, or otherwise prints a stack

trace to the standard error stream. (However, if e is a ThreadDeath object, the stack trace

is suppressed. ThreadDeath objects are generated by the deprecated stop method.)

14.5 Synchronization
In most practical multithreaded applications, two or more threads need to share

access to the same data. What happens if two threads have access to the same

object and each calls a method that modifies the state of the object? As you might

imagine, the threads can step on each other’s toes. Depending on the order in

which the data were accessed, corrupted objects can result. Such a situation is

often called a race condition.

14.5.1 An Example of a Race Condition
To avoid corruption of shared data by multiple threads, you must learn how to

synchronize the access. In this section, you’ll see what happens if you do not use

synchronization. In the next section, you’ll see how to synchronize data access.

In the next test program, we simulate a bank with a number of accounts. We

randomly generate transactions that move money between these accounts. Each

account has one thread. Each transaction moves a random amount of money from

the account serviced by the thread to another random account.

The simulation code is straightforward. We have the class Bank with the method

transfer. This method transfers some amount of money from one account to another.

(We don’t yet worry about negative account balances.) Here is the code for the

transfer method of the Bank class.

public void transfer(int from, int to, double amount)
 // CAUTION: unsafe when called from multiple threads
{
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount, from, to);
 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
}

Chapter 14 Concurrency862

ptg16518469

Here is the code for the Runnable instances. The run method keeps moving money

out of a given bank account. In each iteration, the run method picks a random

target account and a random amount, calls transfer on the bank object, and then

sleeps.

Runnable r = () -> {
 try
 {
 while (true)
 {

int toAccount = (int) (bank.size() * Math.random());
double amount = MAX_AMOUNT * Math.random();
bank.transfer(fromAccount, toAccount, amount);
Thread.sleep((int) (DELAY * Math.random()));

 }
 }
 catch (InterruptedException e)
 {
 }
};

When this simulation runs, we do not know how much money is in any one bank

account at any time. But we do know that the total amount of money in all

the accounts should remain unchanged because all we do is move money from

one account to another.

At the end of each transaction, the transfer method recomputes the total and

prints it.

This program never finishes. Just press Ctrl+C to kill the program.

Here is a typical printout:

. . .
Thread[Thread-11,5,main] 588.48 from 11 to 44 Total Balance: 100000.00
Thread[Thread-12,5,main] 976.11 from 12 to 22 Total Balance: 100000.00
Thread[Thread-14,5,main] 521.51 from 14 to 22 Total Balance: 100000.00
Thread[Thread-13,5,main] 359.89 from 13 to 81 Total Balance: 100000.00
. . .
Thread[Thread-36,5,main] 401.71 from 36 to 73 Total Balance: 99291.06
Thread[Thread-35,5,main] 691.46 from 35 to 77 Total Balance: 99291.06
Thread[Thread-37,5,main] 78.64 from 37 to 3 Total Balance: 99291.06
Thread[Thread-34,5,main] 197.11 from 34 to 69 Total Balance: 99291.06
Thread[Thread-36,5,main] 85.96 from 36 to 4 Total Balance: 99291.06
. . .
Thread[Thread-4,5,main]Thread[Thread-33,5,main] 7.31 from 31 to 32 Total Balance:
99979.24
 627.50 from 4 to 5 Total Balance: 99979.24
. . .

86314.5 Synchronization

ptg16518469

As you can see, something is very wrong. For a few transactions, the bank balance

remains at $100,000, which is the correct total for 100 accounts of $1,000 each. But

after some time, the balance changes slightly. When you run this program, errors

may happen quickly, or it may take a very long time for the balance to become

corrupted. This situation does not inspire confidence, and you would probably

not want to deposit your hard-earned money in such a bank.

The program in Listings 14.5 and 14.6 provides the complete source code. See if

you can spot the problems with the code. We will unravel the mystery in the next

section.

Listing 14.5 unsynch/UnsynchBankTest.java

1 package unsynch;
 2

3 /**
4 * This program shows data corruption when multiple threads access a data structure.
5 * @version 1.31 2015-06-21
6 * @author Cay Horstmann
7 */
8 public class UnsynchBankTest
9 {
10 public static final int NACCOUNTS = 100;
11 public static final double INITIAL_BALANCE = 1000;
12 public static final double MAX_AMOUNT = 1000;
13 public static final int DELAY = 10;
14

15 public static void main(String[] args)
16 {
17 Bank bank = new Bank(NACCOUNTS, INITIAL_BALANCE);
18 for (int i = 0; i < NACCOUNTS; i++)
19 {
20 int fromAccount = i;
21 Runnable r = () -> {
22 try
23 {
24 while (true)
25 {
26 int toAccount = (int) (bank.size() * Math.random());
27 double amount = MAX_AMOUNT * Math.random();
28 bank.transfer(fromAccount, toAccount, amount);
29 Thread.sleep((int) (DELAY * Math.random()));
30 }
31 }
32 catch (InterruptedException e)
33 {
34 }
35 };

Chapter 14 Concurrency864

ptg16518469

36 Thread t = new Thread(r);
37 t.start();
38 }
39 }
40 }

Listing 14.6 unsynch/Bank.java

1 package unsynch;
 2

3 import java.util.*;
 4

5 /**
6 * A bank with a number of bank accounts.
7 * @version 1.30 2004-08-01
8 * @author Cay Horstmann
9 */
10 public class Bank
11 {
12 private final double[] accounts;
13

14 /**
15 * Constructs the bank.
16 * @param n the number of accounts
17 * @param initialBalance the initial balance for each account
18 */
19 public Bank(int n, double initialBalance)
20 {
21 accounts = new double[n];
22 Arrays.fill(accounts, initialBalance);
23 }
24

25 /**
26 * Transfers money from one account to another.
27 * @param from the account to transfer from
28 * @param to the account to transfer to
29 * @param amount the amount to transfer
30 */
31 public void transfer(int from, int to, double amount)
32 {
33 if (accounts[from] < amount) return;
34 System.out.print(Thread.currentThread());
35 accounts[from] -= amount;
36 System.out.printf(" %10.2f from %d to %d", amount, from, to);
37 accounts[to] += amount;
38 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
39 }
40

(Continues)

86514.5 Synchronization

ptg16518469

Listing 14.6 (Continued)

41 /**
42 * Gets the sum of all account balances.
43 * @return the total balance
44 */
45 public double getTotalBalance()
46 {
47 double sum = 0;
48

49 for (double a : accounts)
50 sum += a;
51

52 return sum;
53 }
54

55 /**
56 * Gets the number of accounts in the bank.
57 * @return the number of accounts
58 */
59 public int size()
60 {
61 return accounts.length;
62 }
63 }

14.5.2 The Race Condition Explained
In the previous section, we ran a program in which several threads updated bank

account balances. After a while, errors crept in and some amount of money was

either lost or spontaneously created. This problem occurs when two threads are

simultaneously trying to update an account. Suppose two threads simultaneously

carry out the instruction

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be

processed as follows:

1. Load accounts[to] into a register.

2. Add amount.

3. Move the result back to accounts[to].

Chapter 14 Concurrency866

ptg16518469

Now, suppose the first thread executes Steps 1 and 2, and then it is preempted.

Suppose the second thread awakens and updates the same entry in the account
array. Then, the first thread awakens and completes its Step 3.

That action wipes out the modification of the other thread. As a result, the total

is no longer correct (see Figure 14.4).

Figure 14.4 Simultaneous access by two threads

Our test program detects this corruption. (Of course, there is a slight chance of

false alarms if the thread is interrupted as it is performing the tests!)

86714.5 Synchronization

ptg16518469

NOTE: You can actually peek at the virtual machine bytecodes that execute
each statement in our class. Run the command

javap -c -v Bank

to decompile the Bank.class file. For example, the line

accounts[to] += amount;

is translated into the following bytecodes:

aload_0
getfield #2; //Field accounts:[D
iload_2
dup2
daload
dload_3
dadd
dastore

What these codes mean does not matter. The point is that the increment com-
mand is made up of several instructions, and the thread executing them can be
interrupted at any instruction.

What is the chance of this corruption occurring? We boosted the chance of observ-

ing the problem by interleaving the print statements with the statements that

update the balance.

If you omit the print statements, the risk of corruption is quite a bit lower because

each thread does so little work before going to sleep again, and it is unlikely that

the scheduler will preempt it in the middle of the computation. However, the

risk of corruption does not go away completely. If you run lots of threads on a

heavily loaded machine, the program will still fail even after you have eliminated

the print statements. The failure may take a few minutes or hours or days to occur.

Frankly, there are few things worse in the life of a programmer than an error that

only manifests itself once every few days.

The real problem is that the work of the transfer method can be interrupted in the

middle. If we could ensure that the method runs to completion before the thread

loses control, the state of the bank account object would never be corrupted.

14.5.3 Lock Objects
There are two mechanisms for protecting a code block from concurrent access.

The Java language provides a synchronized keyword for this purpose, and Java SE 5.0

introduced the ReentrantLock class. The synchronized keyword automatically provides

a lock as well as an associated “condition,” which makes it powerful and

Chapter 14 Concurrency868

ptg16518469

convenient for most cases that require explicit locking. However, we believe that

it is easier to understand the synchronized keyword after you have seen locks and

conditions in isolation. The java.util.concurrent framework provides separate classes

for these fundamental mechanisms, which we explain here and in Section 14.5.4,

“Condition Objects,” on p. 872. Once you have understood these building blocks,

we present the synchronized keyword in Section 14.5.5, “The synchronized Keyword,”

on p. 878.

The basic outline for protecting a code block with a ReentrantLock is:

myLock.lock(); // a ReentrantLock object
try
{

critical section

}
finally
{
 myLock.unlock(); // make sure the lock is unlocked even if an exception is thrown
}

This construct guarantees that only one thread at a time can enter the critical

section. As soon as one thread locks the lock object, no other thread can get past

the lock statement. When other threads call lock, they are deactivated until the

first thread unlocks the lock object.

CAUTION: It is critically important that the unlock operation is enclosed in a finally
clause. If the code in the critical section throws an exception, the lock must be
unlocked. Otherwise, the other threads will be blocked forever.

NOTE: When you use locks, you cannot use the try-with-resources statement.
First off, the unlock method isn’t called close. But even if it was renamed, the try-
with-resources statement wouldn’t work. Its header expects the declaration of
a new variable. But when you use a lock, you want to keep using the same
variable that is shared among threads.

Let us use a lock to protect the transfer method of the Bank class.

public class Bank
{
 private Lock bankLock = new ReentrantLock(); // ReentrantLock implements the Lock interface
 . . .
 public void transfer(int from, int to, int amount)
 {
 bankLock.lock();

86914.5 Synchronization

ptg16518469

 try
 {

System.out.print(Thread.currentThread());
accounts[from] -= amount;
System.out.printf(" %10.2f from %d to %d", amount, from, to);
accounts[to] += amount;
System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());

 }

 finally
 {

bankLock.unlock();
 }
 }
}

Suppose one thread calls transfer and gets preempted before it is done. Suppose

a second thread also calls transfer. The second thread cannot acquire the lock and

is blocked in the call to the lock method. It is deactivated and must wait for the

first thread to finish executing the transfer method. When the first thread unlocks

the lock, then the second thread can proceed (see Figure 14.5).

Try it out. Add the locking code to the transfer method and run the program again.

You can run it forever, and the bank balance will not become corrupted.

Note that each Bank object has its own ReentrantLock object. If two threads try to access

the same Bank object, then the lock serves to serialize the access. However, if two

threads access different Bank objects, each thread acquires a different lock and

neither thread is blocked. This is as it should be, because the threads cannot

interfere with one another when they manipulate different Bank instances.

The lock is called reentrant because a thread can repeatedly acquire a lock that it

already owns. The lock has a hold count that keeps track of the nested calls to the

lock method. The thread has to call unlock for every call to lock in order to relinquish

the lock. Because of this feature, code protected by a lock can call another method

that uses the same locks.

For example, the transfer method calls the getTotalBalance method, which also locks

the bankLock object, which now has a hold count of 2. When the getTotalBalance method

exits, the hold count is back to 1. When the transfer method exits, the hold count

is 0, and the thread relinquishes the lock.

In general, you will want to protect blocks of code that update or inspect a shared

object, so you can be assured that these operations run to completion before

another thread can use the same object.

Chapter 14 Concurrency870

ptg16518469

Figure 14.5 Comparison of unsynchronized and synchronized threads

CAUTION: Be careful to ensure that the code in a critical section is not bypassed
by throwing an exception. If an exception is thrown before the end of the section,
the finally clause will relinquish the lock, but the object may be in a damaged
state.

java.util.concurrent.locks.Lock 5.0

• void lock()

acquires this lock; blocks if the lock is currently owned by another thread.

• void unlock()

releases this lock.

87114.5 Synchronization

ptg16518469

java.util.concurrent.locks.ReentrantLock 5.0

• ReentrantLock()

constructs a reentrant lock that can be used to protect a critical section.

• ReentrantLock(boolean fair)

constructs a lock with the given fairness policy. A fair lock favors the thread that

has been waiting for the longest time. However, this fairness guarantee can be a

significant drag on performance. Therefore, by default, locks are not required to

be fair.

CAUTION: It sounds nice to be fair, but fair locks are a lot slower than regular
locks.You should only enable fair locking if you truly know what you are doing
and have a specific reason to consider fairness essential for your program. Even
if you use a fair lock, you have no guarantee that the thread scheduler is fair. If
the thread scheduler chooses to neglect a thread that has been waiting a long
time for the lock, it doesn’t get the chance to be treated fairly by the lock.

14.5.4 Condition Objects
Often, a thread enters a critical section only to discover that it can’t proceed until

a condition is fulfilled. Use a condition object to manage threads that have acquired

a lock but cannot do useful work. In this section, we introduce the implementation

of condition objects in the Java library. (For historical reasons, condition objects

are often called condition variables.)

Let us refine our simulation of the bank. We do not want to transfer money out

of an account that does not have the funds to cover the transfer. Note that we

cannot use code like

if (bank.getBalance(from) >= amount)
 bank.transfer(from, to, amount);

It is entirely possible that the current thread will be deactivated between the

successful outcome of the test and the call to transfer.

if (bank.getBalance(from) >= amount)
 // thread might be deactivated at this point
 bank.transfer(from, to, amount);

By the time the thread is running again, the account balance may have fallen

below the withdrawal amount. You must make sure that no other thread can

modify the balance between the test and the transfer action. You do so by

protecting both the test and the transfer action with a lock:

Chapter 14 Concurrency872

ptg16518469

public void transfer(int from, int to, int amount)
{
 bankLock.lock();
 try
 {
 while (accounts[from] < amount)
 {

// wait
. . .

 }
 // transfer funds
 . . .
 }
 finally
 {
 bankLock.unlock();
 }
}

Now, what do we do when there is not enough money in the account? We wait

until some other thread has added funds. But this thread has just gained exclusive

access to the bankLock, so no other thread has a chance to make a deposit. This is

where condition objects come in.

A lock object can have one or more associated condition objects. You obtain a

condition object with the newCondition method. It is customary to give each condition

object a name that evokes the condition that it represents. For example, here we

set up a condition object to represent the “sufficient funds” condition.

class Bank
{
 private Condition sufficientFunds;
 . . .
 public Bank()
 {
 . . .
 sufficientFunds = bankLock.newCondition();
 }
}

If the transfer method finds that sufficient funds are not available, it calls

sufficientFunds.await();

The current thread is now deactivated and gives up the lock. This lets in another

thread that can, we hope, increase the account balance.

There is an essential difference between a thread that is waiting to acquire a lock

and a thread that has called await. Once a thread calls the await method, it enters a

wait set for that condition. The thread is not made runnable when the lock is

87314.5 Synchronization

ptg16518469

available. Instead, it stays deactivated until another thread has called the signalAll
method on the same condition.

When another thread has transferred money, it should call

sufficientFunds.signalAll();

This call reactivates all threads waiting for the condition. When the threads are

removed from the wait set, they are again runnable and the scheduler will even-

tually activate them again. At that time, they will attempt to reenter the object.

As soon as the lock is available, one of them will acquire the lock and continue

where it left off, returning from the call to await.

At this time, the thread should test the condition again. There is no guarantee

that the condition is now fulfilled—the signalAll method merely signals to the

waiting threads that it may be fulfilled at this time and that it is worth checking

for the condition again.

NOTE: In general, a call to await should be inside a loop of the form

while (!(ok to proceed))
 condition.await();

It is crucially important that some other thread calls the signalAll method eventually.

When a thread calls await, it has no way of reactivating itself. It puts its faith in

the other threads. If none of them bother to reactivate the waiting thread, it will

never run again. This can lead to unpleasant deadlock situations. If all other threads

are blocked and the last active thread calls await without unblocking one of the

others, it also blocks. No thread is left to unblock the others, and the program

hangs.

When should you call signalAll? The rule of thumb is to call signalAll whenever the

state of an object changes in a way that might be advantageous to waiting threads.

For example, whenever an account balance changes, the waiting threads should

be given another chance to inspect the balance. In our example, we call signalAll
when we have finished the funds transfer.

public void transfer(int from, int to, int amount)
{
 bankLock.lock();
 try
 {
 while (accounts[from] < amount)

sufficientFunds.await();
 // transfer funds
 . . .

Chapter 14 Concurrency874

ptg16518469

 sufficientFunds.signalAll();
 }
 finally
 {
 bankLock.unlock();
 }
}

Note that the call to signalAll does not immediately activate a waiting thread. It

only unblocks the waiting threads so that they can compete for entry into the

object after the current thread has relinquished the lock.

Another method, signal, unblocks only a single thread from the wait set, chosen

at random. That is more efficient than unblocking all threads, but there is a danger.

If the randomly chosen thread finds that it still cannot proceed, it becomes blocked

again. If no other thread calls signal again, then the system deadlocks.

CAUTION: A thread can only call await, signalAll, or signal on a condition if it
owns the lock of the condition.

If you run the sample program in Listing 14.7, you will notice that nothing ever

goes wrong. The total balance stays at $100,000 forever. No account ever has a

negative balance. (Again, press Ctrl+C to terminate the program.) You may also

notice that the program runs a bit slower—this is the price you pay for the added

bookkeeping involved in the synchronization mechanism.

In practice, using conditions correctly can be quite challenging. Before you start

implementing your own condition objects, you should consider using one of the

constructs described in Section 14.10, “Synchronizers,” on p. 934.

Listing 14.7 synch/Bank.java

1 package synch;
 2

3 import java.util.*;
4 import java.util.concurrent.locks.*;
 5

6 /**
7 * A bank with a number of bank accounts that uses locks for serializing access.
8 * @version 1.30 2004-08-01
9 * @author Cay Horstmann
10 */
11 public class Bank
12 {

(Continues)

87514.5 Synchronization

ptg16518469

Listing 14.7 (Continued)

13 private final double[] accounts;
14 private Lock bankLock;
15 private Condition sufficientFunds;
16

17 /**
18 * Constructs the bank.
19 * @param n the number of accounts
20 * @param initialBalance the initial balance for each account
21 */
22 public Bank(int n, double initialBalance)
23 {
24 accounts = new double[n];
25 Arrays.fill(accounts, initialBalance);
26 bankLock = new ReentrantLock();
27 sufficientFunds = bankLock.newCondition();
28 }
29

30 /**
31 * Transfers money from one account to another.
32 * @param from the account to transfer from
33 * @param to the account to transfer to
34 * @param amount the amount to transfer
35 */
36 public void transfer(int from, int to, double amount) throws InterruptedException
37 {
38 bankLock.lock();
39 try
40 {
41 while (accounts[from] < amount)
42 sufficientFunds.await();
43 System.out.print(Thread.currentThread());
44 accounts[from] -= amount;
45 System.out.printf(" %10.2f from %d to %d", amount, from, to);
46 accounts[to] += amount;
47 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
48 sufficientFunds.signalAll();
49 }
50 finally
51 {
52 bankLock.unlock();
53 }
54 }
55

56 /**
57 * Gets the sum of all account balances.
58 * @return the total balance
59 */

Chapter 14 Concurrency876

ptg16518469

60 public double getTotalBalance()
61 {
62 bankLock.lock();
63 try
64 {
65 double sum = 0;
66

67 for (double a : accounts)
68 sum += a;
69

70 return sum;
71 }
72 finally
73 {
74 bankLock.unlock();
75 }
76 }
77

78 /**
79 * Gets the number of accounts in the bank.
80 * @return the number of accounts
81 */
82 public int size()
83 {
84 return accounts.length;
85 }
86 }

java.util.concurrent.locks.Lock 5.0

• Condition newCondition()

returns a condition object associated with this lock.

java.util.concurrent.locks.Condition 5.0

• void await()

puts this thread on the wait set for this condition.

• void signalAll()

unblocks all threads in the wait set for this condition.

• void signal()

unblocks one randomly selected thread in the wait set for this condition.

87714.5 Synchronization

ptg16518469

14.5.5 The synchronized Keyword
In the preceding sections, you saw how to use Lock and Condition objects. Before

going any further, let us summarize the key points about locks and conditions:

• A lock protects sections of code, allowing only one thread to execute the code

at a time.

• A lock manages threads that are trying to enter a protected code segment.

• A lock can have one or more associated condition objects.

• Each condition object manages threads that have entered a protected code

section but that cannot proceed.

The Lock and Condition interfaces give programmers a high degree of control over

locking. However, in most situations, you don’t need that control—you can use

a mechanism that is built into the Java language. Ever since version 1.0, every object

in Java has an intrinsic lock. If a method is declared with the synchronized keyword,

the object’s lock protects the entire method. That is, to call the method, a thread

must acquire the intrinsic object lock.

In other words,

public synchronized void method()
{

method body

}

is the equivalent of

public void method()
{
 this.intrinsicLock.lock();
 try
 {

method body

 }
 finally { this.intrinsicLock.unlock(); }
}

For example, instead of using an explicit lock, we can simply declare the transfer
method of the Bank class as synchronized.

The intrinsic object lock has a single associated condition. The wait method adds

a thread to the wait set, and the notifyAll/notify methods unblock waiting threads.

In other words, calling wait or notifyAll is the equivalent of

intrinsicCondition.await();
intrinsicCondition.signalAll();

Chapter 14 Concurrency878

ptg16518469

NOTE: The wait, notifyAll, and notify methods are final methods of the Object
class. The Condition methods had to be named await, signalAll, and signal so that
they don’t conflict with those methods.

For example, you can implement the Bank class in Java like this:

class Bank
{
 private double[] accounts;

 public synchronized void transfer(int from, int to, int amount) throws InterruptedException
 {
 while (accounts[from] < amount)

wait(); // wait on intrinsic object lock's single condition
 accounts[from] -= amount;
 accounts[to] += amount;

notifyAll(); // notify all threads waiting on the condition
 }

 public synchronized double getTotalBalance() { . . . }
}

As you can see, using the synchronized keyword yields code that is much more

concise. Of course, to understand this code, you have to know that each object

has an intrinsic lock, and that the lock has an intrinsic condition. The lock manages

the threads that try to enter a synchronized method. The condition manages the

threads that have called wait.

TIP: Synchronized methods are relatively straightforward. However, beginners
often struggle with conditions. Before you use wait/notifyAll, you should consider
using one of the constructs described in Section 14.10, “Synchronizers,” on
p. 934.

It is also legal to declare static methods as synchronized. If such a method is

called, it acquires the intrinsic lock of the associated class object. For example, if

the Bank class has a static synchronized method, then the lock of the Bank.class object

is locked when it is called. As a result, no other thread can call this or any other

synchronized static method of the same class.

The intrinsic locks and conditions have some limitations. Among them:

• You cannot interrupt a thread that is trying to acquire a lock.

• You cannot specify a timeout when trying to acquire a lock.

• Having a single condition per lock can be inefficient.

87914.5 Synchronization

ptg16518469

What should you use in your code—Lock and Condition objects or synchronized

methods? Here is our recommendation:

• It is best to use neither Lock/Condition nor the synchronized keyword. In many situ-

ations, you can use one of the mechanisms of the java.util.concurrent package

that do all the locking for you. For example, in Section 14.6, “Blocking Queues,”

on p. 898, you will see how to use a blocking queue to synchronize threads

that work on a common task. You should also explore parallel streams—see

Volume II, Chapter 1.

• If the synchronized keyword works for your situation, by all means, use it. You’ll

write less code and have less room for error. Listing 14.8 shows the bank

example, implemented with synchronized methods.

• Use Lock/Condition if you really need the additional power that these constructs

give you.

Listing 14.8 synch2/Bank.java

1 package synch2;
 2

3 import java.util.*;
 4

5 /**
6 * A bank with a number of bank accounts that uses synchronization primitives.
7 * @version 1.30 2004-08-01
8 * @author Cay Horstmann
9 */
10 public class Bank
11 {
12 private final double[] accounts;
13

14 /**
15 * Constructs the bank.
16 * @param n the number of accounts
17 * @param initialBalance the initial balance for each account
18 */
19 public Bank(int n, double initialBalance)
20 {
21 accounts = new double[n];
22 Arrays.fill(accounts, initialBalance);
23 }
24

25 /**
26 * Transfers money from one account to another.
27 * @param from the account to transfer from
28 * @param to the account to transfer to
29 * @param amount the amount to transfer
30 */

Chapter 14 Concurrency880

ptg16518469

31 public synchronized void transfer(int from, int to, double amount) throws InterruptedException
32 {
33 while (accounts[from] < amount)
34 wait();
35 System.out.print(Thread.currentThread());
36 accounts[from] -= amount;
37 System.out.printf(" %10.2f from %d to %d", amount, from, to);
38 accounts[to] += amount;
39 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
40 notifyAll();
41 }
42

43 /**
44 * Gets the sum of all account balances.
45 * @return the total balance
46 */
47 public synchronized double getTotalBalance()
48 {
49 double sum = 0;
50

51 for (double a : accounts)
52 sum += a;
53

54 return sum;
55 }
56

57 /**
58 * Gets the number of accounts in the bank.
59 * @return the number of accounts
60 */
61 public int size()
62 {
63 return accounts.length;
64 }
65 }

java.lang.Object 1.0

• void notifyAll()

unblocks the threads that called wait on this object. This method can only be

called from within a synchronized method or block. The method throws an

IllegalMonitorStateException if the current thread is not the owner of the object’s lock.

(Continues)

88114.5 Synchronization

ptg16518469

java.lang.Object 1.0 (Continued)

• void notify()

unblocks one randomly selected thread among the threads that called wait on this

object.This method can only be called from within a synchronized method or block.

The method throws an IllegalMonitorStateException if the current thread is not the

owner of the object’s lock.

• void wait()

causes a thread to wait until it is notified. This method can only be called from

within a synchronized method or block. It throws an IllegalMonitorStateException if

the current thread is not the owner of the object’s lock.

• void wait(long millis)
• void wait(long millis, int nanos)

causes a thread to wait until it is notified or until the specified amount of time has

passed. These methods can only be called from within a synchronized method or

block.They throw an IllegalMonitorStateException if the current thread is not the owner

of the object’s lock.

The number of millisecondsmillisParameters:

The number of nanoseconds, not exceeding 1,000,000nanos

14.5.6 Synchronized Blocks
As we just discussed, every Java object has a lock. A thread can acquire the lock

by calling a synchronized method. There is a second mechanism for acquiring

the lock: by entering a synchronized block. When a thread enters a block of the form

synchronized (obj) // this is the syntax for a synchronized block
{

critical section

}

then it acquires the lock for obj.

You will sometimes find “ad hoc” locks, such as

public class Bank
{
 private double[] accounts;
 private Object lock = new Object();
 . . .

Chapter 14 Concurrency882

ptg16518469

 public void transfer(int from, int to, int amount)
 {

synchronized (lock) // an ad-hoc lock
 {

accounts[from] -= amount;
accounts[to] += amount;

 }
 System.out.println(. . .);

 }
}

Here, the lock object is created only to use the lock that every Java object possesses.

Sometimes, programmers use the lock of an object to implement additional

atomic operations—a practice known as client-side locking. Consider, for example,

the Vector class, which is a list whose methods are synchronized. Now suppose

we stored our bank balances in a Vector<Double>. Here is a naive implementation of

a transfer method:

public void transfer(Vector<Double> accounts, int from, int to, int amount) // Error
{
 accounts.set(from, accounts.get(from) - amount);
 accounts.set(to, accounts.get(to) + amount);
 System.out.println(. . .);
}

The get and set methods of the Vector class are synchronized, but that doesn’t help

us. It is entirely possible for a thread to be preempted in the transfer method after

the first call to get has been completed. Another thread may then store a different

value into the same position. However, we can hijack the lock:

public void transfer(Vector<Double> accounts, int from, int to, int amount)
{
 synchronized (accounts)
 {
 accounts.set(from, accounts.get(from) - amount);
 accounts.set(to, accounts.get(to) + amount);
 }
 System.out.println(. . .);
}

This approach works, but it is entirely dependent on the fact that the Vector class

uses the intrinsic lock for all of its mutator methods. However, is this really a

fact? The documentation of the Vector class makes no such promise. You have to

carefully study the source code and hope that future versions do not introduce

unsynchronized mutators. As you can see, client-side locking is very fragile and

not generally recommended.

88314.5 Synchronization

ptg16518469

14.5.7 The Monitor Concept
Locks and conditions are powerful tools for thread synchronization, but they are

not very object oriented. For many years, researchers have looked for ways to

make multithreading safe without forcing programmers to think about explicit

locks. One of the most successful solutions is the monitor concept that was pio-

neered by Per Brinch Hansen and Tony Hoare in the 1970s. In the terminology

of Java, a monitor has these properties:

• A monitor is a class with only private fields.

• Each object of that class has an associated lock.

• All methods are locked by that lock. In other words, if a client calls obj.method(),

then the lock for obj is automatically acquired at the beginning of the method

call and relinquished when the method returns. Since all fields are private,

this arrangement ensures that no thread can access the fields while another

thread manipulates them.

• The lock can have any number of associated conditions.

Earlier versions of monitors had a single condition, with a rather elegant syntax.

You can simply call await accounts[from] >= amount without using an explicit condition

variable. However, research showed that indiscriminate retesting of conditions

can be inefficient. This problem is solved with explicit condition variables, each

managing a separate set of threads.

The Java designers loosely adapted the monitor concept. Every object in Java has

an intrinsic lock and an intrinsic condition. If a method is declared with the

synchronized keyword, it acts like a monitor method. The condition variable is

accessed by calling wait/notifyAll/notify.

However, a Java object differs from a monitor in three important ways,

compromising thread safety:

• Fields are not required to be private.

• Methods are not required to be synchronized.

• The intrinsic lock is available to clients.

This disrespect for security enraged Per Brinch Hansen. In a scathing review of

the multithreading primitives in Java, he wrote: “It is astounding to me that Java’s

insecure parallelism is taken seriously by the programming community, a quarter

of a century after the invention of monitors and Concurrent Pascal. It has no

merit” [Java’s Insecure Parallelism, ACM SIGPLAN Notices 34:38–45, April 1999].

Chapter 14 Concurrency884

ptg16518469

14.5.8 Volatile Fields
Sometimes, it seems excessive to pay the cost of synchronization just to read or

write an instance field or two. After all, what can go wrong? Unfortunately, with

modern processors and compilers, there is plenty of room for error.

• Computers with multiple processors can temporarily hold memory values in

registers or local memory caches. As a consequence, threads running in

different processors may see different values for the same memory location!

• Compilers can reorder instructions for maximum throughput. Compilers

won’t choose an ordering that changes the meaning of the code, but they make

the assumption that memory values are only changed when there are explicit

instructions in the code. However, a memory value can be changed by another

thread!

If you use locks to protect code that can be accessed by multiple threads, you

won’t have these problems. Compilers are required to respect locks by flushing

local caches as necessary and not inappropriately reordering instructions. The

details are explained in the Java Memory Model and Thread Specification devel-

oped by JSR 133 (see www.jcp.org/en/jsr/detail?id=133). Much of the specification is

highly complex and technical, but the document also contains a number of

clearly explained examples. A more accessible overview article by Brian Goetz

is available at www.ibm.com/developerworks/library/j-jtp02244.

NOTE: Brian Goetz coined the following “synchronization motto”: “If you
write a variable which may next be read by another thread, or you read a
variable which may have last been written by another thread, you must use
synchronization.”

The volatile keyword offers a lock-free mechanism for synchronizing access to an

instance field. If you declare a field as volatile, then the compiler and the virtual

machine take into account that the field may be concurrently updated by another

thread.

For example, suppose an object has a boolean flag done that is set by one thread and

queried by another thread. As we already discussed, you can use a lock:

private boolean done;
public synchronized boolean isDone() { return done; }
public synchronized void setDone() { done = true; }

Perhaps it is not a good idea to use the intrinsic object lock. The isDone and setDone
methods can block if another thread has locked the object. If that is a concern,

88514.5 Synchronization

http://www.jcp.org/en/jsr/detail?id=133
http://www.ibm.com/developerworks/library/j-jtp02244

ptg16518469

one can use a separate lock just for this variable. But this is getting to be a lot of

trouble.

In this case, it is reasonable to declare the field as volatile:

private volatile boolean done;
public boolean isDone() { return done; }
public void setDone() { done = true; }

The compiler will insert the appropriate code to ensure that a change to the done
variable in one thread is visible from any other thread that reads the variable.

CAUTION: Volatile variables do not provide any atomicity. For example, the
method

public void flipDone() { done = !done; } // not atomic

is not guaranteed to flip the value of the field. There is no guarantee that the
reading, flipping, and writing is uninterrupted.

14.5.9 Final Variables
As you saw in the preceding section, you cannot safely read a field from multiple

threads unless you use locks or the volatile modifier.

There is one other situation in which it is safe to access a shared field—when it

is declared final. Consider

final Map<String, Double> accounts = new HashMap<>();

Other threads get to see the accounts variable after the constructor has finished.

Without using final, there would be no guarantee that other threads would see

the updated value of accounts—they might all see null, not the constructed HashMap.

Of course, the operations on the map are not thread safe. If multiple threads

mutate and read the map, you still need synchronization.

14.5.10 Atomics
You can declare shared variables as volatile provided you perform no operations

other than assignment.

There are a number of classes in the java.util.concurrent.atomic package that use efficient

machine-level instructions to guarantee atomicity of other operations without

using locks. For example, the AtomicInteger class has methods incrementAndGet and

decrementAndGet that atomically increment or decrement an integer. For example, you

can safely generate a sequence of numbers like this:

Chapter 14 Concurrency886

ptg16518469

public static AtomicLong nextNumber = new AtomicLong();
// In some thread...
long id = nextNumber.incrementAndGet();

The incrementAndGet method atomically increments the AtomicLong and returns the post-

increment value. That is, the operations of getting the value, adding 1, setting it,

and producing the new value cannot be interrupted. It is guaranteed that

the correct value is computed and returned, even if multiple threads access the

same instance concurrently.

There are methods for atomically setting, adding, and subtracting values, but if

you want to make a more complex update, you have to use the compareAndSet method.

For example, suppose you want to keep track of the largest value that is observed

by different threads. The following won’t work:

public static AtomicLong largest = new AtomicLong();
// In some thread...
largest.set(Math.max(largest.get(), observed)); // Error--race condition!

This update is not atomic. Instead, compute the new value and use compareAndSet in

a loop:

do {
 oldValue = largest.get();
 newValue = Math.max(oldValue, observed);
} while (!largest.compareAndSet(oldValue, newValue));

If another thread is also updating largest, it is possible that it has beat this thread

to it. Then compareAndSet will return false without setting the new value. In that case,

the loop tries again, reading the updated value and trying to change it. Eventually,

it will succeed replacing the existing value with the new one. This sounds tedious,

but the compareAndSet method maps to a processor operation that is faster than using

a lock.

In Java SE 8, you don’t have to write the loop boilerplate any more. Instead, you

provide a lambda expression for updating the variable, and the update is done

for you. In our example, we can call

largest.updateAndGet(x -> Math.max(x, observed));

or

largest.accumulateAndGet(observed, Math::max);

The accumulateAndGet method takes a binary operator that is used to combine the

atomic value and the supplied argument.

There are also methods getAndUpdate and getAndAccumulate that return the old value.

88714.5 Synchronization

ptg16518469

NOTE: These methods are also provided for the classes AtomicInteger,
AtomicIntegerArray, AtomicIntegerFieldUpdater, AtomicLongArray, AtomicLongFieldUpdater,
AtomicReference, AtomicReferenceArray, and AtomicReferenceFieldUpdater.

When you have a very large number of threads accessing the same atomic values,

performance suffers because the optimistic updates require too many retries.

Java SE 8 provides classes LongAdder and LongAccumulator to solve this problem. ALongAdder
is composed of multiple variables whose collective sum is the current value.

Multiple threads can update different summands, and new summands are auto-

matically provided when the number of threads increases. This is efficient in the

common situation where the value of the sum is not needed until after all work

has been done. The performance improvement can be substantial.

If you anticipate high contention, you should simply use a LongAdder instead of an

AtomicLong. The method names are slightly different. Call increment to increment a

counter or add to add a quantity, and sum to retrieve the total.

final LongAdder adder = new LongAdder();
for (. . .)
 pool.submit(() -> {
 while (. . .) {

. . .
if (. . .) adder.increment();

 }
 });
. . .
long total = adder.sum());

NOTE: Of course, the increment method does not return the old value. Doing that
would undo the efficiency gain of splitting the sum into multiple summands.

The LongAccumulator generalizes this idea to an arbitrary accumulation operation. In

the constructor, you provide the operation, as well as its neutral element. To

incorporate new values, call accumulate. Call get to obtain the current value. The

following has the same effect as a LongAdder:

LongAccumulator adder = new LongAccumulator(Long::sum, 0);
// In some thread...
adder.accumulate(value);

Internally, the accumulator has variables a
1
, a

2
, . . ., a

n

. Each variable is initialized

with the neutral element (0 in our example).

Chapter 14 Concurrency888

ptg16518469

When accumulate is called with value v, then one of them is atomically updated as

a
i

 = a
i

op v, where op is the accumulation operation written in infix form. In our

example, a call to accumulate computes a
i

 = a
i

 + v for some i.

The result of get is a
1

op a
2

op . . . op a
n

. In our example, that is the sum of the

accumulators, a
1
 + a

2
 + . . . + a

n

.

If you choose a different operation, you can compute maximum or minimum. In

general, the operation must be associative and commutative. That means that the

final result must be independent of the order in which the intermediate values

were combined.

There are also DoubleAdder and DoubleAccumulator that work in the same way, except with

double values.

14.5.11 Deadlocks
Locks and conditions cannot solve all problems that might arise in multithreading.

Consider the following situation:

1. Account 1: $200

2. Account 2: $300

3. Thread 1: Transfer $300 from Account 1 to Account 2

4. Thread 2: Transfer $400 from Account 2 to Account 1

As Figure 14.6 indicates, Threads 1 and 2 are clearly blocked. Neither can proceed

because the balances in Accounts 1 and 2 are insufficient.

It is possible that all threads get blocked because each is waiting for more money.

Such a situation is called a deadlock.

In our program, a deadlock cannot occur for a simple reason. Each transfer amount

is for, at most, $1,000. Since there are 100 accounts and a total of $100,000 in them,

at least one of the accounts must have must have at least $1,000 at any time. The

thread moving money out of that account can therefore proceed.

But if you change the run method of the threads to remove the $1,000 transaction

limit, deadlocks can occur quickly. Try it out. Set NACCOUNTS to 10. Construct each

transfer runnable with a max value of 2 * INITIAL_BALANCE and run the program. The

program will run for a while and then hang.

TIP: When the program hangs, press Ctrl+\.You will get a thread dump that lists
all threads. Each thread has a stack trace, telling you where it is currently blocked.
Alternatively, run jconsole, as described in Chapter 7, and consult the Threads
panel (see Figure 14.7).

88914.5 Synchronization

ptg16518469

Figure 14.6 A deadlock situation

Another way to create a deadlock is to make the ith thread responsible for putting

money into the ith account, rather than for taking it out of the ith account. In this

case, there is a chance that all threads will gang up on one account, each trying

to remove more money from it than it contains. Try it out. In the SynchBankTest pro-

gram, turn to the run method of the TransferRunnable class. In the call to transfer, flip

fromAccount and toAccount. Run the program and see how it deadlocks almost

immediately.

Here is another situation in which a deadlock can occur easily: Change the signalAll
method to signal in the SynchBankTest program. You will find that the program even-

tually hangs. (Again, it is best to set NACCOUNTS to 10 to observe the effect more

quickly.) Unlike signalAll, which notifies all threads that are waiting for added

funds, the signal method unblocks only one thread. If that thread can’t proceed,

Chapter 14 Concurrency890

ptg16518469

Figure 14.7 The Threads panel in jconsole

all threads can be blocked. Consider the following sample scenario of a developing

deadlock:

1. Account 1: $1,990

2. All other accounts: $990 each

3. Thread 1: Transfer $995 from Account 1 to Account 2

4. All other threads: Transfer $995 from their account to another account

Clearly, all threads but Thread 1 are blocked, because there isn’t enough money

in their accounts.

Thread 1 proceeds. Afterward, we have the following situation:

1. Account 1: $995

2. Account 2: $1,985

3. All other accounts: $990 each

Then, Thread 1 calls signal. The signal method picks a thread at random to unblock.

Suppose it picks Thread 3. That thread is awakened, finds that there isn’t enough

89114.5 Synchronization

ptg16518469

money in its account, and calls await again. But Thread 1 is still running. A new

random transaction is generated, say,

1. Thread 1: Transfer $997 from Account 1 to Account 2

Now, Thread 1 also calls await, and all threads are blocked. The system has

deadlocked.

The culprit here is the call to signal. It only unblocks one thread, and it may not

pick the thread that is essential to make progress. (In our scenario, Thread 2 must

proceed to take money out of Account 2.)

Unfortunately, there is nothing in the Java programming language to avoid or

break these deadlocks. You must design your program to ensure that a deadlock

situation cannot occur.

14.5.12 Thread-Local Variables
In the preceding sections, we discussed the risks of sharing variables between

threads. Sometimes, you can avoid sharing by giving each thread its own instance,

using the ThreadLocal helper class. For example, the SimpleDateFormat class is not

thread safe. Suppose we have a static variable

public static final SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");

If two threads execute an operation such as

String dateStamp = dateFormat.format(new Date());

then the result can be garbage since the internal data structures used by the

dateFormat can be corrupted by concurrent access. You could use synchronization,

which is expensive, or you could construct a local SimpleDateFormat object whenever

you need it, but that is also wasteful.

To construct one instance per thread, use the following code:

public static final ThreadLocal<SimpleDateFormat> dateFormat =
 ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy-MM-dd"));

To access the actual formatter, call

String dateStamp = dateFormat.get().format(new Date());

The first time you call get in a given thread, the lambda in the constructor is called.

From then on, the get method returns the instance belonging to the current thread.

A similar problem is the generation of random numbers in multiple threads. The

java.util.Random class is thread safe. But it is still inefficient if multiple threads need

to wait for a single shared generator.

Chapter 14 Concurrency892

ptg16518469

You could use the ThreadLocal helper to give each thread a separate generator, but

Java SE 7 provides a convenience class for you. Simply make a call such as

int random = ThreadLocalRandom.current().nextInt(upperBound);

The call ThreadLocalRandom.current() returns an instance of the Random class that is unique

to the current thread.

java.lang.ThreadLocal<T> 1.2

• T get()

Gets the current value of this thread. If get is called for the first time, the value is

obtained by calling initialize.

• protected initialize()

Override this method to supply an initial value. By default, this method returns

null.

• void set(T t)

Sets a new value for this thread.

• void remove()

Removes the value for this thread.

• static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) 8

Creates a thread local variable whose initial value is produced by invoking the given

supplier.

java.util.concurrent.ThreadLocalRandom 7

• static ThreadLocalRandom current()

returns an instance of the Random class that is unique to the current thread.

14.5.13 Lock Testing and Timeouts
A thread blocks indefinitely when it calls the lock method to acquire a lock that

is owned by another thread. You can be more cautious about acquiring a lock.

The tryLock method tries to acquire a lock and returns true if it was successful.

Otherwise, it immediately returns false, and the thread can go off and do

something else.

if (myLock.tryLock())
{
 // now the thread owns the lock

89314.5 Synchronization

ptg16518469

 try { . . . }
 finally { myLock.unlock(); }
}
else
 // do something else

You can call tryLock with a timeout parameter, like this:

if (myLock.tryLock(100, TimeUnit.MILLISECONDS)) . . .

TimeUnit is an enumeration with values SECONDS, MILLISECONDS, MICROSECONDS, and NANOSECONDS.

The lock method cannot be interrupted. If a thread is interrupted while it is waiting

to acquire a lock, the interrupted thread continues to be blocked until the lock is

available. If a deadlock occurs, then the lock method can never terminate.

However, if you call tryLock with a timeout, an InterruptedException is thrown if the

thread is interrupted while it is waiting. This is clearly a useful feature because

it allows a program to break up deadlocks.

You can also call the lockInterruptibly method. It has the same meaning as tryLock
with an infinite timeout.

When you wait on a condition, you can also supply a timeout:

myCondition.await(100, TimeUnit.MILLISECONDS))

The await method returns if another thread has activated this thread by calling

signalAll or signal, or if the timeout has elapsed, or if the thread was interrupted.

The await methods throw an InterruptedException if the waiting thread is interrupted.

In the (perhaps unlikely) case that you’d rather continue waiting, use the

awaitUninterruptibly method instead.

java.util.concurrent.locks.Lock 5.0

• boolean tryLock()

tries to acquire the lock without blocking; returns true if it was successful. This

method grabs the lock if it is available even if it has a fair locking policy and other

threads have been waiting.

• boolean tryLock(long time, TimeUnit unit)

tries to acquire the lock, blocking no longer than the given time; returns true if it

was successful.

• void lockInterruptibly()

acquires the lock, blocking indefinitely. If the thread is interrupted, throws an

InterruptedException.

Chapter 14 Concurrency894

ptg16518469

java.util.concurrent.locks.Condition 5.0

• boolean await(long time, TimeUnit unit)

enters the wait set for this condition, blocking until the thread is removed from the

wait set or the given time has elapsed. Returns false if the method returned because

the time elapsed, true otherwise.

• void awaitUninterruptibly()

enters the wait set for this condition, blocking until the thread is removed from

the wait set. If the thread is interrupted, this method does not throw an

InterruptedException.

14.5.14 Read/Write Locks
The java.util.concurrent.locks package defines two lock classes, the ReentrantLock that

we already discussed and the ReentrantReadWriteLock. The latter is useful when there

are many threads that read from a data structure and fewer threads that modify

it. In that situation, it makes sense to allow shared access for the readers. Of course,

a writer must still have exclusive access.

Here are the steps that are necessary to use a read/write lock:

1. Construct a ReentrantReadWriteLock object:

private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

2. Extract the read and write locks:

private Lock readLock = rwl.readLock();
private Lock writeLock = rwl.writeLock();

3. Use the read lock in all accessors:

public double getTotalBalance()
{
 readLock.lock();
 try { . . . }
 finally { readLock.unlock(); }
}

4. Use the write lock in all mutators:

public void transfer(. . .)
{
 writeLock.lock();
 try { . . . }
 finally { writeLock.unlock(); }
}

89514.5 Synchronization

ptg16518469

java.util.concurrent.locks.ReentrantReadWriteLock 5.0

• Lock readLock()

gets a read lock that can be acquired by multiple readers, excluding all writers.

• Lock writeLock()

gets a write lock that excludes all other readers and writers.

14.5.15 Why the stop and suspend Methods Are Deprecated
The initial release of Java defined a stop method that simply terminates a thread,

and a suspend method that blocks a thread until another thread calls resume. The

stop and suspend methods have something in common: Both attempt to control the

behavior of a given thread without the thread’s cooperation.

The stop, suspend, and resume methods have been deprecated. The stop method is in-

herently unsafe, and experience has shown that the suspend method frequently

leads to deadlocks. In this section, you will see why these methods are problematic

and what you can do to avoid problems.

Let us turn to the stop method first. This method terminates all pending methods,

including the run method. When a thread is stopped, it immediately gives up the

locks on all objects that it has locked. This can leave objects in an inconsistent

state. For example, suppose a TransferRunnable is stopped in the middle of moving

money from one account to another, after the withdrawal and before the deposit.

Now the bank object is damaged. Since the lock has been relinquished, the damage

is observable from the other threads that have not been stopped.

When a thread wants to stop another thread, it has no way of knowing when the

stop method is safe and when it leads to damaged objects. Therefore, the method

has been deprecated. You should interrupt a thread when you want it to stop.

The interrupted thread can then stop when it is safe to do so.

NOTE: Some authors claim that the stop method has been deprecated because
it can cause objects to be permanently locked by a stopped thread. However,
that claim is not valid. A stopped thread exits all synchronized methods it has
called—technically, by throwing a ThreadDeath exception. As a consequence, the
thread relinquishes the intrinsic object locks that it holds.

Next, let us see what is wrong with the suspend method. Unlike stop, suspend won’t

damage objects. However, if you suspend a thread that owns a lock, then the lock

Chapter 14 Concurrency896

ptg16518469

is unavailable until the thread is resumed. If the thread that calls the suspend method

tries to acquire the same lock, the program deadlocks: The suspended thread

waits to be resumed, and the suspending thread waits for the lock.

This situation occurs frequently in graphical user interfaces. Suppose we have a

graphical simulation of our bank. A button labeled Pause suspends the transfer

threads, and a button labeled Resume resumes them.

pauseButton.addActionListener(event -> {
 for (int i = 0; i < threads.length; i++)
 threads[i].suspend(); // Don't do this
});
resumeButton.addActionListener(event -> {
 for (int i = 0; i < threads.length; i++)
 threads[i].resume();
});

Suppose a paintComponent method paints a chart of each account, calling a getBalances
method to get an array of balances.

As you will see in Section 14.11, “Threads and Swing,” on p. 937, both the button

actions and the repainting occur in the same thread, the event dispatch thread.

Consider the following scenario:

1. One of the transfer threads acquires the lock of the bank object.

2. The user clicks the Pause button.

3. All transfer threads are suspended; one of them still holds the lock on the

bank object.

4. For some reason, the account chart needs to be repainted.

5. The paintComponent method calls the getBalances method.

6. That method tries to acquire the lock of the bank object.

Now the program is frozen.

The event dispatch thread can’t proceed because the lock is owned by one of the

suspended threads. Thus, the user can’t click the Resume button, and the threads

won’t ever resume.

If you want to safely suspend a thread, introduce a variable suspendRequested and test

it in a safe place of your run method—in a place where your thread doesn’t lock

objects that other threads need. When your thread finds that the suspendRequested
variable has been set, it should keep waiting until it becomes available again.

89714.5 Synchronization

ptg16518469

14.6 Blocking Queues
You have now seen the low-level building blocks that form the foundations of

concurrent programming in Java. However, for practical programming, you want

to stay away from the low-level constructs whenever possible. It is much easier

and safer to use higher-level structures that have been implemented by

concurrency experts.

Many threading problems can be formulated elegantly and safely by using one

or more queues. Producer threads insert items into the queue, and consumer

threads retrieve them. The queue lets you safely hand over data from one thread

to another. For example, consider our bank transfer program. Instead of accessing

the bank object directly, the transfer threads insert transfer instruction objects

into a queue. Another thread removes the instructions from the queue and carries

out the transfers. Only that thread has access to the internals of the bank object.

No synchronization is necessary. (Of course, the implementors of the thread-safe

queue classes had to worry about locks and conditions, but that was their problem,

not yours.)

A blocking queue causes a thread to block when you try to add an element when

the queue is currently full or to remove an element when the queue is empty.

Blocking queues are a useful tool for coordinating the work of multiple threads.

Worker threads can periodically deposit intermediate results into a blocking

queue. Other worker threads remove the intermediate results and modify them

further. The queue automatically balances the workload. If the first set of threads

runs slower than the second, the second set blocks while waiting for the results.

If the first set of threads runs faster, the queue fills up until the second set catches

up. Table 14.1 shows the methods for blocking queues.

The blocking queue methods fall into three categories that differ by the action

they perform when the queue is full or empty. If you use the queue as a thread

management tool, use the put and take methods. The add, remove, and element operations

throw an exception when you try to add to a full queue or get the head of an

empty queue. Of course, in a multithreaded program, the queue might become

full or empty at any time, so you will instead want to use the offer, poll, and peek
methods. These methods simply return with a failure indicator instead of

throwing an exception if they cannot carry out their tasks.

NOTE: The poll and peek methods return null to indicate failure. Therefore, it is
illegal to insert null values into these queues.

Chapter 14 Concurrency898

ptg16518469

Table 14.1 Blocking Queue Methods

Action in Special CircumstancesNormal ActionMethod

Throws an IllegalStateException if the

queue is full

Adds an elementadd

Throws a NoSuchElementException if the

queue is empty

Returns the head elementelement

Returns false if the queue is fullAdds an element and returns trueoffer

Returns null if the queue is emptyReturns the head elementpeek

Returns null if the queue is emptyRemoves and returns the head

element

poll

Blocks if the queue is fullAdds an elementput

Throws a NoSuchElementException if the

queue is empty

Removes and returns the head

element

remove

Blocks if the queue is emptyRemoves and returns the head

element

take

There are also variants of the offer and poll methods with a timeout. For example,

the call

boolean success = q.offer(x, 100, TimeUnit.MILLISECONDS);

tries for 100 milliseconds to insert an element to the tail of the queue. If it succeeds,

it returns true; otherwise, it returns false when it times out. Similarly, the call

Object head = q.poll(100, TimeUnit.MILLISECONDS)

tries for 100 milliseconds to remove the head of the queue. If it succeeds, it returns

the head; otherwise, it returns null when it times out.

The put method blocks if the queue is full, and the take method blocks if the queue

is empty. These are the equivalents of offer and poll with no timeout.

The java.util.concurrent package supplies several variations of blocking queues. By

default, the LinkedBlockingQueue has no upper bound on its capacity, but a maximum

capacity can be optionally specified. The LinkedBlockingDeque is a double-ended version.

The ArrayBlockingQueue is constructed with a given capacity and an optional parameter

to require fairness. If fairness is specified, then the longest-waiting threads are

given preferential treatment. As always, fairness exacts a significant performance

penalty, and you should only use it if your problem specifically requires it.

The PriorityBlockingQueue is a priority queue, not a first-in/first-out queue. Elements

are removed in order of their priority. The queue has unbounded capacity, but

89914.6 Blocking Queues

ptg16518469

retrieval will block if the queue is empty. (See Chapter 9 for more information on

priority queues.)

A DelayQueue contains objects that implement the Delayed interface:

interface Delayed extends Comparable<Delayed>
{
 long getDelay(TimeUnit unit);
}

The getDelay method returns the remaining delay of the object. A negative value

indicates that the delay has elapsed. Elements can only be removed from a DelayQueue
if their delay has elapsed. You also need to implement the compareTo method. The

DelayQueue uses that method to sort the entries.

Java SE 7 adds a TransferQueue interface that allows a producer thread to wait until

a consumer is ready to take on an item. When a producer calls

q.transfer(item);

the call blocks until another thread removes it. The LinkedTransferQueue class

implements this interface.

The program in Listing 14.9 shows how to use a blocking queue to control a set

of threads. The program searches through all files in a directory and its

subdirectories, printing lines that contain a given keyword.

A producer thread enumerates all files in all subdirectories and places them in a

blocking queue. This operation is fast, and the queue would quickly fill up with

all files in the file system if it was not bounded.

We also start a large number of search threads. Each search thread takes a file

from the queue, opens it, prints all lines containing the keyword, and then takes

the next file. We use a trick to terminate the application when no further work is

required. In order to signal completion, the enumeration thread places a dummy

object into the queue. (This is similar to a dummy suitcase with a label “last bag”

in a baggage claim belt.) When a search thread takes the dummy, it puts it back

and terminates.

Note that no explicit thread synchronization is required. In this application, we

use the queue data structure as a synchronization mechanism.

Listing 14.9 blockingQueue/BlockingQueueTest.java

1 package blockingQueue;
 2

3 import java.io.*;
4 import java.util.*;
5 import java.util.concurrent.*;

Chapter 14 Concurrency900

ptg16518469

 6

7 /**
8 * @version 1.02 2015-06-21
9 * @author Cay Horstmann
10 */
11 public class BlockingQueueTest
12 {
13 private static final int FILE_QUEUE_SIZE = 10;
14 private static final int SEARCH_THREADS = 100;
15 private static final File DUMMY = new File("");
16 private static BlockingQueue<File> queue = new ArrayBlockingQueue<>(FILE_QUEUE_SIZE);
17

18 public static void main(String[] args)
19 {
20 try (Scanner in = new Scanner(System.in))
21 {
22 System.out.print("Enter base directory (e.g. /opt/jdk1.8.0/src): ");
23 String directory = in.nextLine();
24 System.out.print("Enter keyword (e.g. volatile): ");
25 String keyword = in.nextLine();
26

27 Runnable enumerator = () -> {
28 try
29 {
30 enumerate(new File(directory));
31 queue.put(DUMMY);
32 }
33 catch (InterruptedException e)
34 {
35 }
36 };
37

38 new Thread(enumerator).start();
39 for (int i = 1; i <= SEARCH_THREADS; i++) {
40 Runnable searcher = () -> {
41 try
42 {
43 boolean done = false;
44 while (!done)
45 {
46 File file = queue.take();
47 if (file == DUMMY)
48 {
49 queue.put(file);
50 done = true;
51 }
52 else search(file, keyword);
53 }
54 }

(Continues)

90114.6 Blocking Queues

ptg16518469

Listing 14.9 (Continued)

55 catch (IOException e)
56 {
57 e.printStackTrace();
58 }
59 catch (InterruptedException e)
60 {
61 }
62 };
63 new Thread(searcher).start();
64 }
65 }
66 }
67

68 /**
69 * Recursively enumerates all files in a given directory and its subdirectories.
70 * @param directory the directory in which to start
71 */
72 public static void enumerate(File directory) throws InterruptedException
73 {
74 File[] files = directory.listFiles();
75 for (File file : files)
76 {
77 if (file.isDirectory()) enumerate(file);
78 else queue.put(file);
79 }
80 }
81

82 /**
83 * Searches a file for a given keyword and prints all matching lines.
84 * @param file the file to search
85 * @param keyword the keyword to search for
86 */
87 public static void search(File file, String keyword) throws IOException
88 {
89 try (Scanner in = new Scanner(file, "UTF-8"))
90 {
91 int lineNumber = 0;
92 while (in.hasNextLine())
93 {
94 lineNumber++;
95 String line = in.nextLine();
96 if (line.contains(keyword))
97 System.out.printf("%s:%d:%s%n", file.getPath(), lineNumber, line);
98 }
99 }
100 }
101 }

Chapter 14 Concurrency902

ptg16518469

java.util.concurrent.ArrayBlockingQueue<E> 5.0

• ArrayBlockingQueue(int capacity)
• ArrayBlockingQueue(int capacity, boolean fair)

constructs a blocking queue with the given capacity and fairness settings.The queue

is implemented as a circular array.

java.util.concurrent.LinkedBlockingQueue<E> 5.0
java.util.concurrent.LinkedBlockingDeque<E> 6

• LinkedBlockingQueue()
• LinkedBlockingDeque()

constructs an unbounded blocking queue or deque, implemented as a linked list.

• LinkedBlockingQueue(int capacity)
• LinkedBlockingDeque(int capacity)

constructs a bounded blocking queue or deque with the given capacity, implemented

as a linked list.

java.util.concurrent.DelayQueue<E extends Delayed> 5.0

• DelayQueue()

constructs an unbounded blocking queue of Delayed elements. Only elements whose

delay has expired can be removed from the queue.

java.util.concurrent.Delayed 5.0

• long getDelay(TimeUnit unit)

gets the delay for this object, measured in the given time unit.

90314.6 Blocking Queues

ptg16518469

java.util.concurrent.PriorityBlockingQueue<E> 5.0

• PriorityBlockingQueue()
• PriorityBlockingQueue(int initialCapacity)
• PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator)

constructs an unbounded blocking priority queue implemented as a heap.

The initial capacity of the priority queue. Default

is 11.

initialCapacityParameters

The comparator used to compare elements. If not

specified, the elements must implement the

Comparable interface.

comparator

java.util.concurrent.BlockingQueue<E> 5.0

• void put(E element)

adds the element, blocking if necessary.

• E take()

removes and returns the head element, blocking if necessary.

• boolean offer(E element, long time, TimeUnit unit)

adds the given element and returns true if successful, blocking if necessary until

the element has been added or the time has elapsed.

• E poll(long time, TimeUnit unit)

removes and returns the head element, blocking if necessary until an element is

available or the time has elapsed. Returns null upon failure.

java.util.concurrent.BlockingDeque<E> 6

• void putFirst(E element)
• void putLast(E element)

adds the element, blocking if necessary.

• E takeFirst()
• E takeLast()

removes and returns the head or tail element, blocking if necessary.

(Continues)

Chapter 14 Concurrency904

ptg16518469

java.util.concurrent.BlockingDeque<E> 6 (Continued)

• boolean offerFirst(E element, long time, TimeUnit unit)
• boolean offerLast(E element, long time, TimeUnit unit)

adds the given element and returns true if successful, blocking if necessary until

the element has been added or the time has elapsed.

• E pollFirst(long time, TimeUnit unit)
• E pollLast(long time, TimeUnit unit)

removes and returns the head or tail element, blocking if necessary until an element

is available or the time has elapsed. Returns null upon failure.

java.util.concurrent.TransferQueue<E> 7

• void transfer(E element)
• boolean tryTransfer(E element, long time, TimeUnit unit)

transfers a value, or tries transferring it with a given timeout, blocking until another

thread has removed the item. The second method returns true if successful.

14.7 Thread-Safe Collections
If multiple threads concurrently modify a data structure, such as a hash table, it

is easy to damage that data structure. (See Chapter 9 for more information on

hash tables.) For example, one thread may begin to insert a new element. Suppose

it is preempted in the middle of rerouting the links between the hash table’s

buckets. If another thread starts traversing the same list, it may follow invalid

links and create havoc, perhaps throwing exceptions or being trapped in an

infinite loop.

You can protect a shared data structure by supplying a lock, but it is usually

easier to choose a thread-safe implementation instead. The blocking queues that

we discussed in the preceding section are, of course, thread-safe collections. In

the following sections, we discuss the other thread-safe collections that the Java

library provides.

14.7.1 Efficient Maps, Sets, and Queues
The java.util.concurrent package supplies efficient implementations for maps,

sorted sets, and queues: ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet, and

ConcurrentLinkedQueue.

90514.7 Thread-Safe Collections

ptg16518469

These collections use sophisticated algorithms that minimize contention by

allowing concurrent access to different parts of the data structure.

Unlike most collections, the size method of these classes does not necessarily op-

erate in constant time. Determining the current size of one of these collections

usually requires traversal.

NOTE: Some applications use humongous concurrent hash maps, so large that
the size method is insufficient because it returns an int. What is one to do with
a map that has over two billion entries? Java SE 8 introduces a mappingCount
method that returns the size as a long.

The collections return weakly consistent iterators. That means that the iterators

may or may not reflect all modifications that are made after they were

constructed, but they will not return a value twice and they will not throw a

ConcurrentModificationException.

NOTE: In contrast, an iterator of a collection in the java.util package throws a
ConcurrentModificationException when the collection has been modified after
construction of the iterator.

The concurrent hash map can efficiently support a large number of readers and

a fixed number of writers. By default, it is assumed that there are up to 16 simul-

taneous writer threads. There can be many more writer threads, but if more than

16 write at the same time, the others are temporarily blocked. You can specify a

higher number in the constructor, but it is unlikely that you will need to.

NOTE: A hash map keeps all entries with the same hash code in the same
“bucket.” Some applications use poor hash functions, and as a result all entries
end up in a small number of buckets, severely degrading performance. Even
generally reasonable hash functions, such as that of the String class, can be
problematic. For example, an attacker can slow down a program by crafting a
large number of strings that hash to the same value. As of Java SE 8, the con-
current hash map organizes the buckets as trees, not lists, when the key type
implements Comparable, guaranteeing O(log(n)) performance.

Chapter 14 Concurrency906

ptg16518469

java.util.concurrent.ConcurrentLinkedQueue<E> 5.0

• ConcurrentLinkedQueue<E>()

constructs an unbounded, nonblocking queue that can be safely accessed by multiple

threads.

java.util.concurrent.ConcurrentSkipListSet<E> 6

• ConcurrentSkipListSet<E>()
• ConcurrentSkipListSet<E>(Comparator<? super E> comp)

constructs a sorted set that can be safely accessed by multiple threads. The first

constructor requires that the elements implement the Comparable interface.

java.util.concurrent.ConcurrentHashMap<K, V> 5.0
java.util.concurrent.ConcurrentSkipListMap<K, V> 6

• ConcurrentHashMap<K, V>()
• ConcurrentHashMap<K, V>(int initialCapacity)
• ConcurrentHashMap<K, V>(int initialCapacity, float loadFactor, int concurrencyLevel)

constructs a hash map that can be safely accessed by multiple threads.

initialCapacityParameters The initial capacity for this collection. Default is 16.

Controls resizing: If the average load per bucket

exceeds this factor, the table is resized. Default is 0.75.

loadFactor

The estimated number of concurrent writer threads.concurrencyLevel

• ConcurrentSkipListMap<K, V>()
• ConcurrentSkipListSet<K, V>(Comparator<? super K> comp)

constructs a sorted map that can be safely accessed by multiple threads. The first

constructor requires that the keys implement the Comparable interface.

14.7.2 Atomic Update of Map Entries
The original version of ConcurrentHashMap only had a few methods for atomic updates,

which made for somewhat awkward programming. Suppose we want to count

how often certain features are observed. As a simple example, suppose multiple

threads encounter words, and we want to count their frequencies.

90714.7 Thread-Safe Collections

ptg16518469

Can we use a ConcurrentHashMap<String, Long>? Consider the code for incrementing a

count. Obviously, the following is not thread safe:

Long oldValue = map.get(word);
Long newValue = oldValue == null ? 1 : oldValue + 1;
map.put(word, newValue); // Error--might not replace oldValue

Another thread might be updating the exact same count at the same time.

NOTE: Some programmers are surprised that a supposedly thread-safe data
structure permits operations that are not thread safe. But there are two entirely
different considerations. If multiple threads modify a plain HashMap, they can destroy
the internal structure (an array of linked lists). Some of the links may go missing,
or even go in circles, rendering the data structure unusable. That will never
happen with a ConcurrentHashMap. In the example above, the code for get and put
will never corrupt the data structure. But, since the sequence of operations is
not atomic, the result is not predictable.

A classic trick is to use the replace operation, which atomically replaces an old

value with a new one, provided that no other thread has come before and replaced

the old value with something else. You have to keep doing it until replace succeeds:

do
{
 oldValue = map.get(word);
 newValue = oldValue == null ? 1 : oldValue + 1;
} while (!map.replace(word, oldValue, newValue));

Alternatively, you can use a ConcurrentHashMap<String, AtomicLong> or, with Java SE 8, a

ConcurrentHashMap<String, LongAdder>. Then the update code is:

map.putIfAbsent(word, new LongAdder());
map.get(word).increment();

The first statement ensures that there is a LongAdder present that we can increment

atomically. Since putIfAbsent returns the mapped value (either the existing one or

the newly put one), you can combine the two statements:

map.putIfAbsent(word, new LongAdder()).increment();

Java SE 8 provides methods that make atomic updates more convenient. The

compute method is called with a key and a function to compute the new value. That

function receives the key and the associated value, or null if there is none, and it

computes the new value. For example, here is how we can update a map of integer

counters:

map.compute(word, (k, v) -> v == null ? 1 : v + 1);

Chapter 14 Concurrency908

ptg16518469

NOTE: You cannot have null values in a ConcurrentHashMap. There are many
methods that use a null value as an indication that a given key is not present in
the map.

There are also variants computeIfPresent and computeIfAbsent that only compute a new

value when there is already an old one, or when there isn’t yet one. A map of

LongAdder counters can be updated with

map.computeIfAbsent(word, k -> new LongAdder()).increment();

That is almost like the call to putIfAbsent that you saw before, but the LongAdder
constructor is only called when a new counter is actually needed.

You often need to do something special when a key is added for the first time.

The merge method makes this particularly convenient. It has a parameter for the

initial value that is used when the key is not yet present. Otherwise, the function

that you supplied is called, combining the existing value and the initial value.

(Unlike compute, the function does not process the key.)

map.merge(word, 1L, (existingValue, newValue) -> existingValue + newValue);

or, more simply,

map.merge(word, 1L, Long::sum);

It doesn’t get more concise than that.

NOTE: If the function that is passed to compute or merge returns null, the existing
entry is removed from the map.

CAUTION: When you use compute or merge, keep in mind that the function that
you supply should not do a lot of work. While that function runs, some other
updates to the map may be blocked. Of course, that function should also
not update other parts of the map.

14.7.3 Bulk Operations on Concurrent Hash Maps
Java SE 8 provides bulk operations on concurrent hash maps that can safely exe-

cute even while other threads operate on the map. The bulk operations traverse

the map and operate on the elements they find as they go along. No effort is

made to freeze a snapshot of the map in time. Unless you happen to know that

the map is not being modified while a bulk operation runs, you should treat its

result as an approximation of the map’s state.

90914.7 Thread-Safe Collections

ptg16518469

There are three kinds of operations:

• search applies a function to each key and/or value, until the function yields a

non-null result. Then the search terminates and the function’s result is

returned.

• reduce combines all keys and/or values, using a provided accumulation

function.

• forEach applies a function to all keys and/or values.

Each operation has four versions:

• operationKeys: operates on keys.

• operationValues: operates on values.

• operation: operates on keys and values.

• operationEntries: operates on Map.Entry objects.

With each of the operations, you need to specify a parallelism threshold. If the map

contains more elements than the threshold, the bulk operation is parallelized. If

you want the bulk operation to run in a single thread, use a threshold of

Long.MAX_VALUE. If you want the maximum number of threads to be made available

for the bulk operation, use a threshold of 1.

Let’s look at the search methods first. Here are the versions:

U searchKeys(long threshold, BiFunction<? super K, ? extends U> f)
U searchValues(long threshold, BiFunction<? super V, ? extends U> f)
U search(long threshold, BiFunction<? super K, ? super V,? extends U> f)
U searchEntries(long threshold, BiFunction<Map.Entry<K, V>, ? extends U> f)

For example, suppose we want to find the first word that occurs more than

1,000 times. We need to search keys and values:

String result = map.search(threshold, (k, v) -> v > 1000 ? k : null);

Then result is set to the first match, or to null if the search function returns null for

all inputs.

The forEach methods have two variants. The first one simply applies a consumer

function for each map entry, for example

map.forEach(threshold,
 (k, v) -> System.out.println(k + " -> " + v));

The second variant takes an additional transformer function, which is applied first,

and its result is passed to the consumer:

map.forEach(threshold,
 (k, v) -> k + " -> " + v, // Transformer
 System.out::println); // Consumer

Chapter 14 Concurrency910

ptg16518469

The transformer can be used as a filter. Whenever the transformer returns

null, the value is silently skipped. For example, here we only print the entries with

large values:

map.forEach(threshold,
 (k, v) -> v > 1000 ? k + " -> " + v : null, // Filter and transformer
 System.out::println); // The nulls are not passed to the consumer

The reduce operations combine their inputs with an accumulation function. For

example, here is how you can compute the sum of all values:

Long sum = map.reduceValues(threshold, Long::sum);

As with forEach, you can also supply a transformer function. Here we compute the

length of the longest key:

Integer maxlength = map.reduceKeys(threshold,
 String::length, // Transformer
 Integer::max); // Accumulator

The transformer can act as a filter, by returning null to exclude unwanted inputs.

Here, we count how many entries have value > 1000:

Long count = map.reduceValues(threshold,
 v -> v > 1000 ? 1L : null,
 Long::sum);

NOTE: If the map is empty, or all entries have been filtered out, the reduce oper-
ation returns null. If there is only one element, its transformation is returned,
and the accumulator is not applied.

There are specializations for int, long, and double outputs with suffixes ToInt, ToLong,

and ToDouble. You need to transform the input to a primitive value and specify a

default value and an accumulator function. The default value is returned when

the map is empty.

long sum = map.reduceValuesToLong(threshold,
 Long::longValue, // Transformer to primitive type
 0, // Default value for empty map
 Long::sum); // Primitive type accumulator

CAUTION: These specializations act differently from the object versions where
there is only one element to be considered. Instead of returning the transformed
element, it is accumulated with the default. Therefore, the default must be the
neutral element of the accumulator.

91114.7 Thread-Safe Collections

ptg16518469

14.7.4 Concurrent Set Views
Suppose you want a large, thread-safe set instead of a map. There is no

ConcurrentHashSet class, and you know better than trying to create your own. Of

course, you can use a ConcurrentHashMap with bogus values, but then you get a map,

not a set, and you can’t apply operations of the Set interface.

The static newKeySet method yields a Set<K> that is actually a wrapper around a

ConcurrentHashMap<K, Boolean>. (All map values are Boolean.TRUE, but you don’t actually

care since you just use it as a set.)

Set<String> words = ConcurrentHashMap.<String>newKeySet();

Of course, if you have an existing map, the keySet method yields the set of keys.

That set is mutable. If you remove the set’s elements, the keys (and their values)

are removed from the map. But it doesn’t make sense to add elements to the key

set, because there would be no corresponding values to add. Java SE 8 adds a

second keySet method to ConcurrentHashMap, with a default value, to be used when

adding elements to the set:

Set<String> words = map.keySet(1L);
words.add("Java");

If "Java" wasn’t already present in words, it now has a value of one.

14.7.5 Copy on Write Arrays
The CopyOnWriteArrayList and CopyOnWriteArraySet are thread-safe collections in which all

mutators make a copy of the underlying array. This arrangement is useful if the

threads that iterate over the collection greatly outnumber the threads that mutate

it. When you construct an iterator, it contains a reference to the current array. If

the array is later mutated, the iterator still has the old array, but the collection’s

array is replaced. As a consequence, the older iterator has a consistent (but poten-

tially outdated) view that it can access without any synchronization expense.

14.7.6 Parallel Array Algorithms
As of Java SE 8, the Arrays class has a number of parallelized operations. The static

Arrays.parallelSort method can sort an array of primitive values or objects. For

example,

String contents = new String(Files.readAllBytes(
 Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string
String[] words = contents.split("[\\P{L}]+"); // Split along nonletters
Arrays.parallelSort(words);

Chapter 14 Concurrency912

ptg16518469

When you sort objects, you can supply a Comparator.

Arrays.parallelSort(words, Comparator.comparing(String::length));

With all methods, you can supply the bounds of a range, such as

values.parallelSort(values.length / 2, values.length); // Sort the upper half

NOTE: At first glance, it seems a bit odd that these methods have parallel in
their name, since the user shouldn’t care how the sorting happens. However,
the API designers wanted to make it clear that the sorting is parallelized. That
way, users are on notice to avoid comparators with side effects.

The parallelSetAll method fills an array with values that are computed from a

function. The function receives the element index and computes the value at that

location.

Arrays.parallelSetAll(values, i -> i % 10);
 // Fills values with 0 1 2 3 4 5 6 7 8 9 0 1 2 . . .

Clearly, this operation benefits from being parallelized. There are versions for all

primitive type arrays and for object arrays.

Finally, there is a parallelPrefix method that replaces each array element with the

accumulation of the prefix for a given associative operation. Huh? Here is an ex-

ample. Consider the array [1, 2, 3, 4, . . .] and the × operation. After executing

Arrays.parallelPrefix(values, (x, y) -> x * y), the array contains

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, . . .]

Perhaps surprisingly, this computation can be parallelized. First, join neighboring

elements, as indicated here:

[1, 1 × 2, 3, 3 × 4, 5, 5 × 6, 7, 7 × 8]

The gray values are left alone. Clearly, one can make this computation in parallel

in separate regions of the array. In the next step, update the indicated elements

by multiplying them with elements that are one or two positions below:

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, 5, 5 × 6, 5 × 6 × 7, 5 × 6 × 7 × 8]

This can again be done in parallel. After log(n) steps, the process is complete. This

is a win over the straightforward linear computation if sufficient processors are

available. On special-purpose hardware, this algorithm is commonly used, and

users of such hardware are quite ingenious in adapting it to a variety of problems.

91314.7 Thread-Safe Collections

ptg16518469

14.7.7 Older Thread-Safe Collections
Ever since the initial release of Java, the Vector and Hashtable classes provided thread-

safe implementations of a dynamic array and a hash table. These classes are now

considered obsolete, having been replaced by the ArrayList and HashMap classes. Those

classes are not thread safe. Instead, a different mechanism is supplied in the col-

lections library. Any collection class can be made thread safe by means of a

synchronization wrapper:

List<E> synchArrayList = Collections.synchronizedList(new ArrayList<E>());
Map<K, V> synchHashMap = Collections.synchronizedMap(new HashMap<K, V>());

The methods of the resulting collections are protected by a lock, providing

thread safe access.

You should make sure that no thread accesses the data structure through the

original unsynchronized methods. The easiest way to ensure this is not to save

any reference to the original object. Simply construct a collection and immediately

pass it to the wrapper, as we did in our examples.

You still need to use “client-side” locking if you want to iterate over the collection

while another thread has the opportunity to mutate it:

synchronized (synchHashMap)
{
 Iterator<K> iter = synchHashMap.keySet().iterator();
 while (iter.hasNext()) . . .;
}

You must use the same code if you use a “for each” loop because the loop uses

an iterator. Note that the iterator actually fails with a ConcurrentModificationException if

another thread mutates the collection while the iteration is in progress. The syn-

chronization is still required so that the concurrent modification can be reliably

detected.

You are usually better off using the collections defined in the java.util.concurrent
package instead of the synchronization wrappers. In particular, the ConcurrentHashMap
map has been carefully implemented so that multiple threads can access it without

blocking each other, provided they access different buckets. One exception is an

array list that is frequently mutated. In that case, a synchronized ArrayList can

outperform a CopyOnWriteArrayList.

Chapter 14 Concurrency914

ptg16518469

java.util.Collections 1.2

• static <E> Collection<E> synchronizedCollection(Collection<E> c)
• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> c)

constructs a view of the collection whose methods are synchronized.

14.8 Callables and Futures
A Runnable encapsulates a task that runs asynchronously; you can think of it as an

asynchronous method with no parameters and no return value. ACallable is similar

to a Runnable, but it returns a value. The Callable interface is a parameterized type,

with a single method call.

public interface Callable<V>
{
 V call() throws Exception;
}

The type parameter is the type of the returned value. For example, a Callable<Integer>
represents an asynchronous computation that eventually returns an Integer object.

A Future holds the result of an asynchronous computation. You can start a compu-

tation, give someone the Future object, and forget about it. The owner of the Future
object can obtain the result when it is ready.

The Future interface has the following methods:

public interface Future<V>
{
 V get() throws . . .;
 V get(long timeout, TimeUnit unit) throws . . .;
 void cancel(boolean mayInterrupt);
 boolean isCancelled();
 boolean isDone();
}

A call to the first get method blocks until the computation is finished. The second

method throws a TimeoutException if the call timed out before the computation finished.

If the thread running the computation is interrupted, both methods throw an

InterruptedException. If the computation has already finished, get returns immediately.

91514.8 Callables and Futures

ptg16518469

The isDone method returns false if the computation is still in progress, true if it is

finished.

You can cancel the computation with the cancel method. If the computation has

not yet started, it is canceled and will never start. If the computation is currently

in progress, it is interrupted if the mayInterrupt parameter is true.

The FutureTask wrapper is a convenient mechanism for turning a Callable into both

a Future and a Runnable—it implements both interfaces. For example:

Callable<Integer> myComputation = . . .;
FutureTask<Integer> task = new FutureTask<Integer>(myComputation);
Thread t = new Thread(task); // it's a Runnable
t.start();
. . .
Integer result = task.get(); // it's a Future

The program in Listing 14.10 puts these concepts to work. This program is similar

to the preceding example that found files containing a given keyword. However,

now we will merely count the number of matching files. Thus, we have a

long-running task that yields an integer value—an example of a Callable<Integer>.

class MatchCounter implements Callable<Integer>
{
 public MatchCounter(File directory, String keyword) { . . . }
 public Integer call() { . . . } // returns the number of matching files
}

Then we construct a FutureTask object from the MatchCounter and use it to start a thread.

FutureTask<Integer> task = new FutureTask<Integer>(counter);
Thread t = new Thread(task);
t.start();

Finally, we print the result.

System.out.println(task.get() + " matching files.");

Of course, the call to get blocks until the result is actually available.

Inside the call method, we use the same mechanism recursively. For each subdi-

rectory, we produce a new MatchCounter and launch a thread for it. We also stash

the FutureTask objects away in an ArrayList<Future<Integer>>. At the end, we add up all

results:

for (Future<Integer> result : results)
 count += result.get();

Each call to get blocks until the result is available. Of course, the threads run in

parallel, so there is a good chance that the results will all be available at about

the same time.

Chapter 14 Concurrency916

ptg16518469

Listing 14.10 future/FutureTest.java

1 package future;
 2

3 import java.io.*;
4 import java.util.*;
5 import java.util.concurrent.*;
 6

7 /**
8 * @version 1.01 2012-01-26
9 * @author Cay Horstmann
10 */
11 public class FutureTest
12 {
13 public static void main(String[] args)
14 {
15 try (Scanner in = new Scanner(System.in))
16 {
17 System.out.print("Enter base directory (e.g. /usr/local/jdk5.0/src): ");
18 String directory = in.nextLine();
19 System.out.print("Enter keyword (e.g. volatile): ");
20 String keyword = in.nextLine();
21

22 MatchCounter counter = new MatchCounter(new File(directory), keyword);
23 FutureTask<Integer> task = new FutureTask<>(counter);
24 Thread t = new Thread(task);
25 t.start();
26 try
27 {
28 System.out.println(task.get() + " matching files.");
29 }
30 catch (ExecutionException e)
31 {
32 e.printStackTrace();
33 }
34 catch (InterruptedException e)
35 {
36 }
37 }
38 }
39 }
40

41 /**
42 * This task counts the files in a directory and its subdirectories that contain a given keyword.
43 */
44 class MatchCounter implements Callable<Integer>
45 {

(Continues)

91714.8 Callables and Futures

ptg16518469

Listing 14.10 (Continued)

46 private File directory;
47 private String keyword;
48

49 /**
50 * Constructs a MatchCounter.
51 * @param directory the directory in which to start the search
52 * @param keyword the keyword to look for
53 */
54 public MatchCounter(File directory, String keyword)
55 {
56 this.directory = directory;
57 this.keyword = keyword;
58 }
59

60 public Integer call()
61 {
62 int count = 0;
63 try
64 {
65 File[] files = directory.listFiles();
66 List<Future<Integer>> results = new ArrayList<>();
67

68 for (File file : files)
69 if (file.isDirectory())
70 {
71 MatchCounter counter = new MatchCounter(file, keyword);
72 FutureTask<Integer> task = new FutureTask<>(counter);
73 results.add(task);
74 Thread t = new Thread(task);
75 t.start();
76 }
77 else
78 {
79 if (search(file)) count++;
80 }
81

82 for (Future<Integer> result : results)
83 try
84 {
85 count += result.get();
86 }
87 catch (ExecutionException e)
88 {
89 e.printStackTrace();
90 }
91 }

Chapter 14 Concurrency918

ptg16518469

92 catch (InterruptedException e)
93 {
94 }
95 return count;
96 }
97

98 /**
99 * Searches a file for a given keyword.
100 * @param file the file to search
101 * @return true if the keyword is contained in the file
102 */
103 public boolean search(File file)
104 {
105 try
106 {
107 try (Scanner in = new Scanner(file, "UTF-8"))
108 {
109 boolean found = false;
110 while (!found && in.hasNextLine())
111 {
112 String line = in.nextLine();
113 if (line.contains(keyword)) found = true;
114 }
115 return found;
116 }
117 }
118 catch (IOException e)
119 {
120 return false;
121 }
122 }
123 }

java.util.concurrent.Callable<V> 5.0

• V call()

runs a task that yields a result.

java.util.concurrent.Future<V> 5.0

• V get()
• V get(long time, TimeUnit unit)

gets the result, blocking until it is available or the given time has elapsed.The second

method throws a TimeoutException if it was unsuccessful.

(Continues)

91914.8 Callables and Futures

ptg16518469

java.util.concurrent.Future<V> 5.0 (Continued)

• boolean cancel(boolean mayInterrupt)

attempts to cancel the execution of this task. If the task has already started and the

mayInterrupt parameter is true, it is interrupted. Returns true if the cancellation was

successful.

• boolean isCancelled()

returns true if the task was canceled before it completed.

• boolean isDone()

returns true if the task completed, through normal completion, cancellation, or an

exception.

java.util.concurrent.FutureTask<V> 5.0

• FutureTask(Callable<V> task)
• FutureTask(Runnable task, V result)

constructs an object that is both a Future<V> and a Runnable.

14.9 Executors
Constructing a new thread is somewhat expensive because it involves interaction

with the operating system. If your program creates a large number of short-lived

threads, it should use a thread pool instead. A thread pool contains a number of

idle threads that are ready to run. You give a Runnable to the pool, and one of the

threads calls the run method. When the run method exits, the thread doesn’t die

but stays around to serve the next request.

Another reason to use a thread pool is to throttle the number of concurrent threads.

Creating a huge number of threads can greatly degrade performance and even

crash the virtual machine. If you have an algorithm that creates lots of threads,

you should use a “fixed” thread pool that bounds the total number of concurrent

threads.

The Executors class has a number of static factory methods for constructing thread

pools; see Table 14.2 for a summary.

Chapter 14 Concurrency920

ptg16518469

Table 14.2 Executors Factory Methods

DescriptionMethod

New threads are created as needed; idle threads are

kept for 60 seconds.

newCachedThreadPool

The pool contains a fixed set of threads; idle threads

are kept indefinitely.

newFixedThreadPool

A “pool” with a single thread that executes the

submitted tasks sequentially (similar to the Swing event

dispatch thread).

newSingleThreadExecutor

A fixed-thread pool for scheduled execution; a

replacement for java.util.Timer.

newScheduledThreadPool

A single-thread “pool” for scheduled execution.newSingleThreadScheduledExecutor

14.9.1 Thread Pools
Let us look at the first three methods in Table 14.2 (we will discuss the remaining

methods in Section 14.9.2, “Scheduled Execution,” on p. 926). The newCachedThreadPool
method constructs a thread pool that executes each task immediately, using an

existing idle thread when available and creating a new thread otherwise. The

newFixedThreadPool method constructs a thread pool with a fixed size. If more tasks

are submitted than there are idle threads, the unserved tasks are placed on a

queue. They are run when other tasks have completed. The newSingleThreadExecutor is

a degenerate pool of size 1 where a single thread executes the submitted tasks,

one after another. These three methods return an object of the ThreadPoolExecutor class

that implements the ExecutorService interface.

You can submit a Runnable or Callable to an ExecutorService with one of the following

methods:

Future<?> submit(Runnable task)
Future<T> submit(Runnable task, T result)
Future<T> submit(Callable<T> task)

The pool will run the submitted task at its earliest convenience. When you call

submit, you get back a Future object that you can use to query the state of the task.

The first submit method returns an odd-looking Future<?>. You can use such an object

to call isDone, cancel, or isCancelled, but the get method simply returns null upon

completion.

The second version of submit also submits a Runnable, and the get method of the Future
returns the given result object upon completion.

92114.9 Executors

ptg16518469

The third version submits a Callable, and the returned Future gets the result of the

computation when it is ready.

When you are done with a thread pool, call shutdown. This method initiates the

shutdown sequence for the pool. An executor that is shut down accepts no new

tasks. When all tasks are finished, the threads in the pool die. Alternatively, you

can call shutdownNow. The pool then cancels all tasks that have not yet begun and

attempts to interrupt the running threads.

Here, in summary, is what you do to use a thread pool:

1. Call the static newCachedThreadPool or newFixedThreadPool method of the Executors class.

2. Call submit to submit Runnable or Callable objects.

3. If you want to be able to cancel a task, or if you submit Callable objects, hang

on to the returned Future objects.

4. Call shutdown when you no longer want to submit any tasks.

For example, the preceding example program produced a large number of short-

lived threads, one per directory. The program in Listing 14.11 uses a thread pool

to launch the tasks instead.

For informational purposes, this program prints out the largest pool size during

execution. This information is not available through the ExecutorService interface.

For that reason, we had to cast the pool object to the ThreadPoolExecutor class.

Listing 14.11 threadPool/ThreadPoolTest.java

1 package threadPool;
 2

3 import java.io.*;
4 import java.util.*;
5 import java.util.concurrent.*;
 6

7 /**
8 * @version 1.02 2015-06-21
9 * @author Cay Horstmann
10 */
11 public class ThreadPoolTest
12 {
13 public static void main(String[] args) throws Exception
14 {
15 try (Scanner in = new Scanner(System.in))
16 {
17 System.out.print("Enter base directory (e.g. /usr/local/jdk5.0/src): ");
18 String directory = in.nextLine();
19 System.out.print("Enter keyword (e.g. volatile): ");

Chapter 14 Concurrency922

ptg16518469

20 String keyword = in.nextLine();
21

22 ExecutorService pool = Executors.newCachedThreadPool();
23

24 MatchCounter counter = new MatchCounter(new File(directory), keyword, pool);
25 Future<Integer> result = pool.submit(counter);
26

27 try
28 {
29 System.out.println(result.get() + " matching files.");
30 }
31 catch (ExecutionException e)
32 {
33 e.printStackTrace();
34 }
35 catch (InterruptedException e)
36 {
37 }
38 pool.shutdown();
39

40 int largestPoolSize = ((ThreadPoolExecutor) pool).getLargestPoolSize();
41 System.out.println("largest pool size=" + largestPoolSize);
42 }
43 }
44 }
45

46 /**
47 * This task counts the files in a directory and its subdirectories that contain a given keyword.
48 */
49 class MatchCounter implements Callable<Integer>
50 {
51 private File directory;
52 private String keyword;
53 private ExecutorService pool;
54 private int count;
55

56 /**
57 * Constructs a MatchCounter.
58 * @param directory the directory in which to start the search
59 * @param keyword the keyword to look for
60 * @param pool the thread pool for submitting subtasks
61 */
62 public MatchCounter(File directory, String keyword, ExecutorService pool)
63 {
64 this.directory = directory;
65 this.keyword = keyword;
66 this.pool = pool;
67 }
68

(Continues)

92314.9 Executors

ptg16518469

Listing 14.11 (Continued)

69 public Integer call()
70 {
71 count = 0;
72 try
73 {
74 File[] files = directory.listFiles();
75 List<Future<Integer>> results = new ArrayList<>();
76

77 for (File file : files)
78 if (file.isDirectory())
79 {
80 MatchCounter counter = new MatchCounter(file, keyword, pool);
81 Future<Integer> result = pool.submit(counter);
82 results.add(result);
83 }
84 else
85 {
86 if (search(file)) count++;
87 }
88

89 for (Future<Integer> result : results)
90 try
91 {
92 count += result.get();
93 }
94 catch (ExecutionException e)
95 {
96 e.printStackTrace();
97 }
98 }
99 catch (InterruptedException e)
100 {
101 }
102 return count;
103 }
104

105 /**
106 * Searches a file for a given keyword.
107 * @param file the file to search
108 * @return true if the keyword is contained in the file
109 */
110 public boolean search(File file)
111 {
112 try
113 {

Chapter 14 Concurrency924

ptg16518469

114 try (Scanner in = new Scanner(file, "UTF-8"))
115 {
116 boolean found = false;
117 while (!found && in.hasNextLine())
118 {
119 String line = in.nextLine();
120 if (line.contains(keyword)) found = true;
121 }
122 return found;
123 }
124 }
125 catch (IOException e)
126 {
127 return false;
128 }
129 }
130 }

java.util.concurrent.Executors 5.0

• ExecutorService newCachedThreadPool()

returns a cached thread pool that creates threads as needed and terminates threads

that have been idle for 60 seconds.

• ExecutorService newFixedThreadPool(int threads)

returns a thread pool that uses the given number of threads to execute tasks.

• ExecutorService newSingleThreadExecutor()

returns an executor that executes tasks sequentially in a single thread.

java.util.concurrent.ExecutorService 5.0

• Future<T> submit(Callable<T> task)
• Future<T> submit(Runnable task, T result)
• Future<?> submit(Runnable task)

submits the given task for execution.

• void shutdown()

shuts down the service, completing the already submitted tasks but not accepting

new submissions.

92514.9 Executors

ptg16518469

java.util.concurrent.ThreadPoolExecutor 5.0

• int getLargestPoolSize()

returns the largest size of the thread pool during the life of this executor.

14.9.2 Scheduled Execution
The ScheduledExecutorService interface has methods for scheduled or repeated execution

of tasks. It is a generalization of java.util.Timer that allows for thread pooling. The

newScheduledThreadPool and newSingleThreadScheduledExecutor methods of the Executors class return

objects that implement the ScheduledExecutorService interface.

You can schedule a Runnable or Callable to run once, after an initial delay. You can

also schedule a Runnable to run periodically. See the API notes for details.

java.util.concurrent.Executors 5.0

• ScheduledExecutorService newScheduledThreadPool(int threads)

returns a thread pool that uses the given number of threads to schedule tasks.

• ScheduledExecutorService newSingleThreadScheduledExecutor()

returns an executor that schedules tasks in a single thread.

java.util.concurrent.ScheduledExecutorService 5.0

• ScheduledFuture<V> schedule(Callable<V> task, long time, TimeUnit unit)
• ScheduledFuture<?> schedule(Runnable task, long time, TimeUnit unit)

schedules the given task after the given time has elapsed.

• ScheduledFuture<?> scheduleAtFixedRate(Runnable task, long initialDelay, long period, TimeUnit
unit)

schedules the given task to run periodically, every period units, after the initial delay

has elapsed.

• ScheduledFuture<?> scheduleWithFixedDelay(Runnable task, long initialDelay, long delay, TimeUnit
unit)

schedules the given task to run periodically, with delay units between completion

of one invocation and the start of the next, after the initial delay has elapsed.

Chapter 14 Concurrency926

ptg16518469

14.9.3 Controlling Groups of Tasks
You have seen how to use an executor service as a thread pool to increase the

efficiency of task execution. Sometimes, an executor is used for a more tactical

reason, simply to control a group of related tasks. For example, you can cancel

all tasks in an executor with the shutdownNow method.

The invokeAny method submits all objects in a collection of Callable objects and returns

the result of a completed task. You don’t know which task that is—presumably,

it is the one that finished most quickly. Use this method for a search problem in

which you are willing to accept any solution. For example, suppose that you need

to factor a large integer—a computation that is required for breaking the RSA ci-

pher. You could submit a number of tasks, each attempting a factorization with

numbers in a different range. As soon as one of these tasks has an answer, your

computation can stop.

The invokeAll method submits all objects in a collection of Callable objects, blocks

until all of them complete, and returns a list of Future objects that represent the

solutions to all tasks. You can process the results of the computation when they

are available, like this:

List<Callable<T>> tasks = . . .;
List<Future<T>> results = executor.invokeAll(tasks);
for (Future<T> result : results)
 processFurther(result.get());

A disadvantage of this approach is that you may wait needlessly if the first task

happens to take a long time. It would make more sense to obtain the results

in the order in which they are available. This can be arranged with the

ExecutorCompletionService.

Start with an executor, obtained in the usual way. Then construct an

ExecutorCompletionService. Submit tasks to the completion service. The service manages

a blocking queue of Future objects, containing the results of the submitted tasks as

they become available. Thus, a more efficient organization for the preceding

computation is the following:

ExecutorCompletionService<T> service = new ExecutorCompletionService<>(executor);
for (Callable<T> task : tasks) service.submit(task);
for (int i = 0; i < tasks.size(); i++)
 processFurther(service.take().get());

92714.9 Executors

ptg16518469

java.util.concurrent.ExecutorService 5.0

• T invokeAny(Collection<Callable<T>> tasks)
• T invokeAny(Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

executes the given tasks and returns the result of one of them. The second method

throws a TimeoutException if a timeout occurs.

• List<Future<T>> invokeAll(Collection<Callable<T>> tasks)
• List<Future<T>> invokeAll(Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

executes the given tasks and returns the results of all of them. The second method

throws a TimeoutException if a timeout occurs.

java.util.concurrent.ExecutorCompletionService<V> 5.0

• ExecutorCompletionService(Executor e)

constructs an executor completion service that collects the results of the given

executor.

• Future<V> submit(Callable<V> task)
• Future<V> submit(Runnable task, V result)

submits a task to the underlying executor.

• Future<V> take()

removes the next completed result, blocking if no completed results are available.

• Future<V> poll()
• Future<V> poll(long time, TimeUnit unit)

removes and returns the next completed result, or return null if no completed results

are available. The second method waits for the given time.

14.9.4 The Fork-Join Framework
Some applications use a large number of threads that are mostly idle. An example

would be a web server that uses one thread per connection. Other applications

use one thread per processor core, in order to carry out computationally intensive

tasks, such as image or video processing. The fork-join framework, which appeared

in Java SE 7, is designed to support the latter. Suppose you have a processing

task that naturally decomposes into subtasks, like this:

if (problemSize < threshold)
solve problem directly

else
{

Chapter 14 Concurrency928

ptg16518469

break problem into subproblems

recursively solve each subproblem

combine the results

}

One example is image processing. To enhance an image, you can transform the

top half and the bottom half. If you have enough idle processors, those operations

can run in parallel. (You will need to do a bit of extra work along the strip that

separates the two halves, but that’s a technical detail.)

Here, we will discuss a simpler example. Suppose we want to count how many

elements of an array fulfill a particular property. We cut the array in half, compute

the counts of each half, and add them up.

To put the recursive computation in a form that is usable by the framework,

supply a class that extends RecursiveTask<T> (if the computation produces a result of

type T) or RecursiveAction (if it doesn’t produce a result). Override the compute method

to generate and invoke subtasks, and to combine their results.

class Counter extends RecursiveTask<Integer>
{
 . . .
 protected Integer compute()
 {
 if (to - from < THRESHOLD)
 {

solve problem directly

 }
 else
 {

int mid = (from + to) / 2;
Counter first = new Counter(values, from, mid, filter);
Counter second = new Counter(values, mid, to, filter);
invokeAll(first, second);
return first.join() + second.join();

 }
 }
}

Here, the invokeAll method receives a number of tasks and blocks until all of them

have completed. The join method yields the result. Here, we apply join to each

subtask and return the sum.

NOTE: There is also a get method for getting the current result, but it is less at-
tractive since it can throw checked exceptions that we are not allowed to throw
in the compute method.

92914.9 Executors

ptg16518469

Listing 14.12 shows the complete example.

Behind the scenes, the fork-join framework uses an effective heuristic for balancing

the workload among available threads, called work stealing. Each worker thread

has a deque (double-ended queue) for tasks. A worker thread pushes subtasks

onto the head of its own deque. (Only one thread accesses the head, so no locking

is required.) When a worker thread is idle, it “steals” a task from the tail of another

deque. Since large subtasks are at the tail, such stealing is rare.

Listing 14.12 forkJoin/ForkJoinTest.java

1 package forkJoin;
 2

3 import java.util.concurrent.*;
4 import java.util.function.*;
 5

6 /**
7 * This program demonstrates the fork-join framework.
8 * @version 1.01 2015-06-21
9 * @author Cay Horstmann
10 */
11 public class ForkJoinTest
12 {
13 public static void main(String[] args)
14 {
15 final int SIZE = 10000000;
16 double[] numbers = new double[SIZE];
17 for (int i = 0; i < SIZE; i++) numbers[i] = Math.random();
18 Counter counter = new Counter(numbers, 0, numbers.length, x -> x > 0.5);
19 ForkJoinPool pool = new ForkJoinPool();
20 pool.invoke(counter);
21 System.out.println(counter.join());
22 }
23 }
24

25 class Counter extends RecursiveTask<Integer>
26 {
27 public static final int THRESHOLD = 1000;
28 private double[] values;
29 private int from;
30 private int to;
31 private DoublePredicate filter;
32

33 public Counter(double[] values, int from, int to, DoublePredicate filter)
34 {
35 this.values = values;
36 this.from = from;

Chapter 14 Concurrency930

ptg16518469

37 this.to = to;
38 this.filter = filter;
39 }
40

41 protected Integer compute()
42 {
43 if (to - from < THRESHOLD)
44 {
45 int count = 0;
46 for (int i = from; i < to; i++)
47 {
48 if (filter.test(values[i])) count++;
49 }
50 return count;
51 }
52 else
53 {
54 int mid = (from + to) / 2;
55 Counter first = new Counter(values, from, mid, filter);
56 Counter second = new Counter(values, mid, to, filter);
57 invokeAll(first, second);
58 return first.join() + second.join();
59 }
60 }
61 }

14.9.5 Completable Futures
The traditional approach for dealing with nonblocking calls is to use event han-

dlers, where the programmer registers a handler for the action that should occur

after a task completes. Of course, if the next action is also asynchronous, the next

action after that is in a different event handler. Even though the programmer

thinks in terms of “first do step 1, then step 2, then step 3,” the program logic

becomes dispersed in different handlers. It gets worse when one has to add error

handling. Suppose step 2 is “the user logs in.” You may need to repeat that step

since the user can mistype the credentials. Trying to implement such a control

flow in a set of event handlers, or to understand it once it has been implemented,

is challenging.

The CompletableFuture class of Java SE 8 provides an alternative approach. Unlike

event handlers, completable futures can be composed.

For example, suppose we want to extract all links from a web page in order to

build a web crawler. Let’s say we have a method

public void CompletableFuture<String> readPage(URL url)

that yields the text of a web page when it becomes available. If the method

93114.9 Executors

ptg16518469

public static List<URL> getLinks(String page)

yields the URLs in an HTML page, you can schedule it to be called when the page

is available:

CompletableFuture<String> contents = readPage(url);
CompletableFuture<List<URL>> links = contents.thenApply(Parser::getLinks);

The thenApply method doesn’t block either. It returns another future. When the first

future has completed, its result is fed to the getLinks method, and the return value

of that method becomes the final result.

With completable futures, you just specify what you want to have done and in

which order. It won’t all happen right away, of course, but what is important is

that all the code is in one place.

Conceptually, CompletableFuture is a simple API, but there are many variants of

methods for composing completable futures. Let us first look at those that deal

with a single future (see Table 14.3). (For each method shown, there are also two

Async variants that I don’t show. One of them uses a shared ForkJoinPool, and the

other has an Executor parameter.) In the table, I use a shorthand notation for the

ponderous functional interfaces, writing T -> U instead of Function<? super T, U>. These

aren’t actual Java types, of course.

You have already seen the thenApply method. The calls

CompletableFuture<U> future.thenApply(f);
CompletableFuture<U> future.thenApplyAsync(f);

return a future that applies f to the result of future when it is available. The second

call runs f in yet another thread.

The thenCompose method, instead of taking a function T -> U, takes a function T ->
CompletableFuture<U>. That sounds rather abstract, but it can be quite natural. Consider

the action of reading a web page from a given URL. Instead of supplying a method

public String blockingReadPage(URL url)

it is more elegant to have that method return a future:

public CompletableFuture<String> readPage(URL url)

Now, suppose we have another method that gets the URL from user input, perhaps

from a dialog that won’t reveal the answer until the user has clicked the OK button.

That, too, is an event in the future:

Chapter 14 Concurrency932

ptg16518469

public CompletableFuture<URL> getURLInput(String prompt)

Here we have two functions T -> CompletableFuture<U> and U -> CompletableFuture<V>.

Clearly, they compose to a function T -> CompletableFuture<V> if the second function is

called when the first one has completed. That is exactly what thenCompose does.

The third method in Table 14.3 focuses on a different aspect that I have ignored

so far: failure. When an exception is thrown in a CompletableFuture, it is captured and

wrapped in an unchecked ExecutionException when the get method is called. But per-

haps get is never called. In order to handle an exception, use the handle method.

The supplied function is called with the result (or null if none) and the exception

(or null if none), and it gets to make sense of the situation.

The remaining methods have void result and are normally used at the end of a

processing pipeline.

Table 14.3 Adding an Action to a CompletableFuture<T> Object

DescriptionParameterMethod

Apply a function to the result.T -> UthenApply

Invoke the function on the result and

execute the returned future.

T -> CompletableFuture<U>thenCompose

Process the result or error.(T, Throwable) -> Uhandle

Like thenApply, but with void result.T -> voidthenAccept

Like handle, but with void result.(T, Throwable) -> voidwhenComplete

Execute the Runnable with void result.RunnablethenRun

Now let us turn to methods that combine multiple futures (see Table 14.4).

The first three methods run a CompletableFuture<T> and a CompletableFuture<U> action in

parallel and combine the results.

The next three methods run two CompletableFuture<T> actions in parallel. As soon as

one of them finishes, its result is passed on, and the other result is ignored.

Finally, the static allOf and anyOf methods take a variable number of completable

futures and yield a CompletableFuture<Void> that completes when all of them, or any

one of them, completes. No results are propagated.

93314.9 Executors

ptg16518469

Table 14.4 Combining Multiple Composition Objects

DescriptionParameterMethod

Execute both and combine the

results with the given function.

CompletableFuture<U>, (T, U) -> VthenCombine

Like thenCombine, but with void result.CompletableFuture<U>, (T, U) -> voidthenAcceptBoth

Execute the runnable after both

complete.

CompletableFuture<?>, RunnablerunAfterBoth

When a result is available from one

or the other, pass it to the given

function.

CompletableFuture<T>, T -> VapplyToEither

Like applyToEither, but with void result.CompletableFuture<T>, T -> voidacceptEither

Execute the runnable after one or

the other completes.

CompletableFuture<?>, RunnablerunAfterEither

Complete with void result after all

given futures complete.

CompletableFuture<?>...static allOf

Complete with void result after any

of the given futures completes.

CompletableFuture<?>...static anyOf

NOTE: Technically speaking, the methods in this section accept parameters of
type CompletionStage, not CompletableFuture. That is an interface with almost forty
abstract methods, implemented only by CompletableFuture.The interface is provided
so that third-party frameworks can implement it.

14.10 Synchronizers
The java.util.concurrent package contains several classes that help manage a set of

collaborating threads—see Table 14.5. These mechanisms have “canned function-

ality” for common rendezvous patterns between threads. If you have a set of

collaborating threads that follow one of these behavior patterns, you should

simply reuse the appropriate library class instead of trying to come up with a

handcrafted collection of locks and conditions.

Chapter 14 Concurrency934

ptg16518469

Table 14.5 Synchronizers

NotesWhat It DoesClass

Use when a number of threads need

to complete before their results can

be used. The barrier can be reused

after the waiting threads have been

released.

Allows a set of threads to

wait until a predefined

count of them has reached

a common barrier, and then

optionally executes a

barrier action.

CyclicBarrier

Introduced in Java SE 7.Like a cyclic barrier, but

with a mutable party count.

Phaser

Use when one or more threads need

to wait until a specified number of

events have occurred.

Allows a set of threads to

wait until a count has been

decremented to 0.

CountDownLatch

Use when two threads work on two

instances of the same data structure,

with the first thread filling one

instance and the second thread

emptying the other.

Allows two threads to

exchange objects when both

are ready for the exchange.

Exchanger

Use to restrict the total number of

threads that can access a resource. If

the permit count is one, use to block

threads until another thread gives

permission.

Allows a set of threads to

wait until permits are

available for proceeding.

Semaphore

Use to send an object from one

thread to another when both are

ready, without explicit

synchronization.

Allows a thread to hand off

an object to another thread.

SynchronousQueue

14.10.1 Semaphores
Conceptually, a semaphore manages a number of permits. The number is supplied

in the constructor. To proceed past the semaphore, a thread requests a permit by

calling acquire. (There are no actual permit objects. The semaphore simply keeps

a count.) Since only a fixed number of permits is available, a semaphore limits

the number of threads that are allowed to pass. Other threads may issue permits

by calling release. Moreover, a permit doesn’t have to be released by the thread

that acquires it. Any thread can release any number of permits, potentially

increasing the number of permits beyond the initial count.

Semaphores were invented by Edsger Dijkstra in 1968, for use as a synchronization

primitive. Dijkstra showed that semaphores can be efficiently implemented and

93514.10 Synchronizers

ptg16518469

that they are powerful enough to solve many common thread synchronization

problems. In just about any operating systems textbook, you will find

implementations of bounded queues using semaphores.

Of course, application programmers shouldn’t reinvent bounded queues. Usually,

semaphores do not map directly to common application situations.

14.10.2 Countdown Latches
A CountDownLatch lets a set of threads wait until a count has reached zero. The

countdown latch is one-time only. Once the count has reached 0, you cannot

increment it again.

A useful special case is a latch with a count of 1. This implements a one-time gate.

Threads are held at the gate until another thread sets the count to 0.

Imagine, for example, a set of threads that need some initial data to do their work.

The worker threads are started and wait at the gate. Another thread prepares the

data. When it is ready, it calls countDown, and all worker threads proceed.

You can then use a second latch to check when all worker threads are done. Ini-

tialize the latch with the number of threads. Each worker thread counts down

that latch just before it terminates. Another thread that harvests the work results

waits on the latch, and proceeds as soon as all workers have terminated.

14.10.3 Barriers
The CyclicBarrier class implements a rendezvous called a barrier. Consider a number

of threads that are working on parts of a computation. When all parts are ready,

the results need to be combined. When a thread is done with its part, we let it

run against the barrier. Once all threads have reached the barrier, the barrier gives

way and the threads can proceed.

Here are the details. First, construct a barrier, giving the number of participating

threads:

CyclicBarrier barrier = new CyclicBarrier(nthreads);

Each thread does some work and calls await on the barrier upon completion:

public void run()
{
 doWork();
 barrier.await();
 . . .
}

Chapter 14 Concurrency936

ptg16518469

The await method takes an optional timeout parameter:

barrier.await(100, TimeUnit.MILLISECONDS);

If any of the threads waiting for the barrier leaves the barrier, then the barrier

breaks. (A thread can leave because it called await with a timeout or because it

was interrupted.) In that case, the await method for all other threads throws a

BrokenBarrierException. Threads that are already waiting have their await call terminated

immediately.

You can supply an optional barrier action that is executed when all threads have

reached the barrier:

Runnable barrierAction = . . .;
CyclicBarrier barrier = new CyclicBarrier(nthreads, barrierAction);

The action can harvest the results of the individual threads.

The barrier is called cyclic because it can be reused after all waiting threads have

been released. In this regard, it differs from a CountDownLatch which can only be

used once.

The Phaser class adds more flexibility, allowing you to vary the number of partici-

pating threads between phases.

14.10.4 Exchangers
An Exchanger is used when two threads are working on two instances of the same

data buffer. Typically, one thread fills the buffer, and the other consumes its

contents. When both are done, they exchange their buffers.

14.10.5 Synchronous Queues
A synchronous queue is a mechanism that pairs up producer and consumer

threads. When a thread calls put on a SynchronousQueue, it blocks until another thread

calls take, and vice versa. Unlike the case with an Exchanger, data are only transferred

in one direction, from the producer to the consumer.

Even though the SynchronousQueue class implements the BlockingQueue interface, it is not

conceptually a queue. It does not contain any elements—its size method always

returns 0.

14.11 Threads and Swing
As we mentioned in the introduction to this chapter, one of the reasons to use

threads in your programs is to make your programs more responsive. When your

93714.11 Threads and Swing

ptg16518469

program needs to do something time consuming, you should fire up another

worker thread instead of blocking the user interface.

However, you have to be careful what you do in a worker thread because, perhaps

surprisingly, Swing is not thread safe. If you try to manipulate user interface

elements from multiple threads, your user interface can become corrupted.

To see the problem, run the upcoming test program in Listing 14.13. When you

click the Bad button, a new thread is started whose run method tortures a combo

box, randomly adding and removing values.

public void run()
{
 try
 {
 while (true)
 {

int i = Math.abs(generator.nextInt());
if (i % 2 == 0)

combo.insertItemAt(new Integer(i), 0);
else if (combo.getItemCount() > 0)

combo.removeItemAt(i % combo.getItemCount());
sleep(1);

 }
 catch (InterruptedException e) {}
 }
}

Try it out. Click the Bad button. Click the combo box a few times. Move the

scrollbar. Move the window. Click the Bad button again. Keep clicking the combo

box. Eventually, you should see an exception report (Figure 14.8).

What is going on? When an element is inserted into the combo box, the combo

box fires an event to update the display. Then, the display code springs into action,

reading the current size of the combo box and preparing to display the values.

But the worker thread keeps going—occasionally resulting in a reduction of the

count of the values in the combo box. The display code then thinks that there are

more values in the model than there actually are, asks for a nonexistent value,

and triggers an ArrayIndexOutOfBounds exception.

This situation could have been avoided if programmers could lock the combo

box object while displaying it. However, the designers of Swing decided not to

expend any effort to make Swing thread safe, for two reasons. First, synchroniza-

tion takes time, and nobody wanted to slow down Swing any further. More im-

portantly, the Swing team checked out the experience other teams had with

thread-safe user interface toolkits. What they found was not encouraging. Pro-

grammers using thread-safe toolkits turned out to be confused by the demands

for synchronization and often created deadlock-prone programs.

Chapter 14 Concurrency938

ptg16518469Figure 14.8 Exception reports in the console

14.11.1 Running Time-Consuming Tasks
When you use threads together with Swing, you have to follow two simple rules.

1. If an action takes a long time, do it in a separate worker thread and never in

the event dispatch thread.

2. Do not touch Swing components in any thread other than the event dispatch

thread.

The reason for the first rule is easy to understand. If you take a long time in the

event dispatch thread, the application seems “dead” because it cannot respond

to any events. In particular, the event dispatch thread should never make

input/output calls, which might block indefinitely, and it should never call sleep.

(If you need to wait for a specific amount of time, use timer events.)

The second rule is often called the single-thread rule for Swing programming. We

discuss it further on page 951.

These two rules seem to be in conflict with each other. Suppose you fire up a

separate thread to run a time-consuming task. You would usually want to update

the user interface to indicate progress while your thread is working. When your

task is finished, you’d want to update the GUI again. But you can’t touch Swing

93914.11 Threads and Swing

ptg16518469

components from your thread. For example, if you want to update a progress bar

or a label text, you can’t simply set its value from your thread.

To solve this problem, you can use, in any thread, two utility methods to add

arbitrary actions to the event queue. For example, suppose you want to periodi-

cally update a label in a thread to indicate progress. You can’t call label.setText
from your thread.

Instead, use the invokeLater and invokeAndWait methods of the EventQueue class to have

that call executed in the event dispatching thread.

Here is what you do. Place the Swing code into the run method of a class that im-

plements the Runnable interface. Then, create an object of that class and pass it to

the static invokeLater or invokeAndWait method. For example, here is how to update a

label text:

EventQueue.invokeLater(() -> {
 label.setText(percentage + "% complete");
});

The invokeLater method returns immediately when the event is posted to the event

queue. The run method of the Runnable is executed asynchronously. The invokeAndWait
method waits until the run method has actually been executed.

For updating a progress label, the invokeLater method is more appropriate. Users

would rather have the worker thread make more progress than have the most

precise progress indicator.

Both methods execute the run method in the event dispatch thread. No new thread

is created.

Listing 14.13 demonstrates how to use the invokeLater method to safely modify

the contents of a combo box. If you click the Good button, a thread inserts and

removes numbers. However, the actual modification takes place in the event

dispatching thread.

Listing 14.13 swing/SwingThreadTest.java

1 package swing;
 2

3 import java.awt.*;
4 import java.util.*;
 5

6 import javax.swing.*;
 7

8 /**

Chapter 14 Concurrency940

ptg16518469

9 * This program demonstrates that a thread that runs in parallel with the event
10 * dispatch thread can cause errors in Swing components.
11 * @version 1.24 2015-06-21
12 * @author Cay Horstmann
13 */
14 public class SwingThreadTest
15 {
16 public static void main(String[] args)
17 {
18 EventQueue.invokeLater(() -> {
19 JFrame frame = new SwingThreadFrame();
20 frame.setTitle("SwingThreadTest");
21 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 frame.setVisible(true);
23 });
24 }
25 }
26

27 /**
28 * This frame has two buttons to fill a combo box from a separate thread. The
29 * "Good" button uses the event queue, the "Bad" button modifies the combo box
30 * directly.
31 */
32 class SwingThreadFrame extends JFrame
33 {
34 public SwingThreadFrame()
35 {
36 final JComboBox<Integer> combo = new JComboBox<>();
37 combo.insertItemAt(Integer.MAX_VALUE, 0);
38 combo.setPrototypeDisplayValue(combo.getItemAt(0));
39 combo.setSelectedIndex(0);
40

41 JPanel panel = new JPanel();
42

43 JButton goodButton = new JButton("Good");
44 goodButton.addActionListener(event ->
45 new Thread(new GoodWorkerRunnable(combo)).start());
46 panel.add(goodButton);
47 JButton badButton = new JButton("Bad");
48 badButton.addActionListener(event ->
49 new Thread(new BadWorkerRunnable(combo)).start());
50 panel.add(badButton);
51

52 panel.add(combo);
53 add(panel);
54 pack();
55 }
56 }
57

(Continues)

94114.11 Threads and Swing

ptg16518469

Listing 14.13 (Continued)

58 /**
59 * This runnable modifies a combo box by randomly adding and removing numbers.
60 * This can result in errors because the combo box methods are not synchronized
61 * and both the worker thread and the event dispatch thread access the combo
62 * box.
63 */
64 class BadWorkerRunnable implements Runnable
65 {
66 private JComboBox<Integer> combo;
67 private Random generator;
68

69 public BadWorkerRunnable(JComboBox<Integer> aCombo)
70 {
71 combo = aCombo;
72 generator = new Random();
73 }
74

75 public void run()
76 {
77 try
78 {
79 while (true)
80 {
81 int i = Math.abs(generator.nextInt());
82 if (i % 2 == 0)
83 combo.insertItemAt(i, 0);
84 else if (combo.getItemCount() > 0)
85 combo.removeItemAt(i % combo.getItemCount());
86 Thread.sleep(1);
87 }
88 }
89 catch (InterruptedException e)
90 {
91 }
92 }
93 }
94

95 /**
96 * This runnable modifies a combo box by randomly adding and removing numbers.
97 * In order to ensure that the combo box is not corrupted, the editing
98 * operations are forwarded to the event dispatch thread.
99 */
100 class GoodWorkerRunnable implements Runnable
101 {
102 private JComboBox<Integer> combo;
103 private Random generator;
104

Chapter 14 Concurrency942

ptg16518469

105 public GoodWorkerRunnable(JComboBox<Integer> aCombo)
106 {
107 combo = aCombo;
108 generator = new Random();
109 }
110

111 public void run()
112 {
113 try
114 {
115 while (true)
116 {
117 EventQueue.invokeLater(() ->
118 {
119 int i = Math.abs(generator.nextInt());
120 if (i % 2 == 0)
121 combo.insertItemAt(i, 0);
122 else if (combo.getItemCount() > 0)
123 combo.removeItemAt(i % combo.getItemCount());
124 });
125 Thread.sleep(1);
126 }
127 }
128 catch (InterruptedException e)
129 {
130 }
131 }
132 }

java.awt.EventQueue 1.1

• static void invokeLater(Runnable runnable) 1.2

causes the run method of the runnable object to be executed in the event dispatch

thread after pending events have been processed.

• static void invokeAndWait(Runnable runnable) 1.2

causes the run method of the runnable object to be executed in the event dispatch

thread after pending events have been processed. This call blocks until the run
method has terminated.

• static boolean isDispatchThread() 1.2

returns true if the thread executing this method is the event dispatch thread.

14.11.2 Using the Swing Worker
When a user issues a command for which processing takes a long time, you will

want to fire up a new thread to do the work. As you saw in the preceding section,

94314.11 Threads and Swing

ptg16518469

that thread should use the EventQueue.invokeLater method to update the user interface.

The SwingWorker class reduces the tedium of implementing background tasks.

The program in Listing 14.14 has commands for loading a text file and for canceling

the file loading process. You should try the program with a long file, such as the

full text of The Count of Monte Cristo, supplied in the gutenberg directory of the book’s

companion code. The file is loaded in a separate thread. While the file is being

read, the Open menu item is disabled and the Cancel item is enabled (see

Figure 14.9). After each line is read, a line counter in the status bar is updated.

After the reading process is complete, the Open menu item is reenabled, the

Cancel item is disabled, and the status line text is set to Done.

Figure 14.9 Loading a file in a separate thread

This example shows the typical UI activities of a background task:

• After each work unit, update the UI to show progress.

• After the work is finished, make a final change to the UI.

The SwingWorker class makes it easy to implement such a task. Override the

doInBackground method to do the time-consuming work and occasionally call publish
to communicate work progress. This method is executed in a worker thread. The

publish method causes a process method to execute in the event dispatch thread to

Chapter 14 Concurrency944

ptg16518469

deal with the progress data. When the work is complete, the done method is called

in the event dispatch thread so that you can finish updating the UI.

Whenever you want to do some work in the worker thread, construct a new

worker. (Each worker object is meant to be used only once.) Then call the execute
method. You will typically call execute on the event dispatch thread, but that is not

a requirement.

It is assumed that a worker produces a result of some kind; therefore, SwingWorker<T,
V> implements Future<T>. This result can be obtained by the get method of the Future
interface. Since the get method blocks until the result is available, you don’t want

to call it immediately after calling execute. It is a good idea to call it only when you

know that the work has been completed. Typically, you call get from the done
method. (There is no requirement to call get. Sometimes, processing the progress

data is all you need.)

Both the intermediate progress data and the final result can have arbitrary types.

The SwingWorker class has these types as type parameters. A SwingWorker<T, V> produces

a result of type T and progress data of type V.

To cancel the work in progress, use the cancel method of the Future interface. When

the work is canceled, the get method throws a CancellationException.

As already mentioned, the worker thread’s call to publish will cause calls to process
on the event dispatch thread. For efficiency, the results of several calls to publish
may be batched up in a single call to process. The process method receives a List<V>
containing all intermediate results.

Let us put this mechanism to work for reading in a text file. As it turns out, a

JTextArea is quite slow. Appending lines from a long text file (such as all lines in

The Count of Monte Cristo) takes considerable time.

To show the user that progress is being made, we want to display the number of

lines read in a status line. Thus, the progress data consist of the current line

number and the current line of text. We package these into a trivial inner class:

private class ProgressData
{
 public int number;
 public String line;
}

The final result is the text that has been read into a StringBuilder. Thus, we need a

SwingWorker<StringBuilder, ProgressData>.

In the doInBackground method, we read a file, a line at a time. After each line, we call

publish to publish the line number and the text of the current line.

94514.11 Threads and Swing

ptg16518469

@Override public StringBuilder doInBackground() throws IOException, InterruptedException
{
 int lineNumber = 0;
 Scanner in = new Scanner(new FileInputStream(file), "UTF-8");
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 lineNumber++;
 text.append(line).append("\n");
 ProgressData data = new ProgressData();
 data.number = lineNumber;
 data.line = line;
 publish(data);
 Thread.sleep(1); // to test cancellation; no need to do this in your programs
 }
 return text;
}

We also sleep for a millisecond after every line so that you can test cancellation

without getting stressed out, but you wouldn’t want to slow down your own

programs by sleeping. If you comment out this line, you will find that The Count

of Monte Cristo loads quite quickly, with only a few batched user interface updates.

NOTE: You can make this program behave quite smoothly by updating the text
area from the worker thread, but this is not possible for most Swing components.
We show you the general approach in which all component updates occur in
the event dispatch thread.

In the process method, we ignore all line numbers but the last one, and we

concatenate all lines for a single update of the text area.

@Override public void process(List<ProgressData> data)
{
 if (isCancelled()) return;
 StringBuilder b = new StringBuilder();
 statusLine.setText("" + data.get(data.size() - 1).number);
 for (ProgressData d : data) b.append(d.line).append("\n");
 textArea.append(b.toString());
}

In the done method, the text area is updated with the complete text, and the Cancel

menu item is disabled.

Note how the worker is started in the event listener for the Open menu item.

Chapter 14 Concurrency946

ptg16518469

This simple technique allows you to execute time-consuming tasks while keeping

the user interface responsive.

Listing 14.14 swingWorker/SwingWorkerTest.java

1 package swingWorker;
 2

3 import java.awt.*;
4 import java.io.*;
5 import java.util.*;
6 import java.util.List;
7 import java.util.concurrent.*;
 8

9 import javax.swing.*;
10

11 /**
12 * This program demonstrates a worker thread that runs a potentially time-consuming task.
13 * @version 1.11 2015-06-21
14 * @author Cay Horstmann
15 */
16 public class SwingWorkerTest
17 {
18 public static void main(String[] args) throws Exception
19 {
20 EventQueue.invokeLater(() -> {
21 JFrame frame = new SwingWorkerFrame();
22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 frame.setVisible(true);
24 });
25 }
26 }
27

28 /**
29 * This frame has a text area to show the contents of a text file, a menu to open a file and
30 * cancel the opening process, and a status line to show the file loading progress.
31 */
32 class SwingWorkerFrame extends JFrame
33 {
34 private JFileChooser chooser;
35 private JTextArea textArea;
36 private JLabel statusLine;
37 private JMenuItem openItem;
38 private JMenuItem cancelItem;
39 private SwingWorker<StringBuilder, ProgressData> textReader;
40 public static final int TEXT_ROWS = 20;
41 public static final int TEXT_COLUMNS = 60;
42

(Continues)

94714.11 Threads and Swing

ptg16518469

Listing 14.14 (Continued)

43 public SwingWorkerFrame()
44 {
45 chooser = new JFileChooser();
46 chooser.setCurrentDirectory(new File("."));
47

48 textArea = new JTextArea(TEXT_ROWS, TEXT_COLUMNS);
49 add(new JScrollPane(textArea));
50

51 statusLine = new JLabel(" ");
52 add(statusLine, BorderLayout.SOUTH);
53

54 JMenuBar menuBar = new JMenuBar();
55 setJMenuBar(menuBar);
56

57 JMenu menu = new JMenu("File");
58 menuBar.add(menu);
59

60 openItem = new JMenuItem("Open");
61 menu.add(openItem);
62 openItem.addActionListener(event -> {
63 // show file chooser dialog
64 int result = chooser.showOpenDialog(null);
65

66 // if file selected, set it as icon of the label
67 if (result == JFileChooser.APPROVE_OPTION)
68 {
69 textArea.setText("");
70 openItem.setEnabled(false);
71 textReader = new TextReader(chooser.getSelectedFile());
72 textReader.execute();
73 cancelItem.setEnabled(true);
74 }
75 });
76

77 cancelItem = new JMenuItem("Cancel");
78 menu.add(cancelItem);
79 cancelItem.setEnabled(false);
80 cancelItem.addActionListener(event -> textReader.cancel(true));
81 pack();
82 }
83

84 private class ProgressData
85 {
86 public int number;
87 public String line;
88 }
89

Chapter 14 Concurrency948

ptg16518469

90 private class TextReader extends SwingWorker<StringBuilder, ProgressData>
91 {
92 private File file;
93 private StringBuilder text = new StringBuilder();
94

95 public TextReader(File file)
96 {
97 this.file = file;
98 }
99

100 // The following method executes in the worker thread; it doesn't touch Swing components.
101

102 @Override
103 public StringBuilder doInBackground() throws IOException, InterruptedException
104 {
105 int lineNumber = 0;
106 try (Scanner in = new Scanner(new FileInputStream(file), "UTF-8"))
107 {
108 while (in.hasNextLine())
109 {
110 String line = in.nextLine();
111 lineNumber++;
112 text.append(line).append("\n");
113 ProgressData data = new ProgressData();
114 data.number = lineNumber;
115 data.line = line;
116 publish(data);
117 Thread.sleep(1); // to test cancellation; no need to do this in your programs
118 }
119 }
120 return text;
121 }
122

123 // The following methods execute in the event dispatch thread.
124

125 @Override
126 public void process(List<ProgressData> data)
127 {
128 if (isCancelled()) return;
129 StringBuilder b = new StringBuilder();
130 statusLine.setText("" + data.get(data.size() - 1).number);
131 for (ProgressData d : data) b.append(d.line).append("\n");
132 textArea.append(b.toString());
133 }
134

135 @Override
136 public void done()
137 {

(Continues)

94914.11 Threads and Swing

ptg16518469

Listing 14.14 (Continued)

138 try
139 {
140 StringBuilder result = get();
141 textArea.setText(result.toString());
142 statusLine.setText("Done");
143 }
144 catch (InterruptedException ex)
145 {
146 }
147 catch (CancellationException ex)
148 {
149 textArea.setText("");
150 statusLine.setText("Cancelled");
151 }
152 catch (ExecutionException ex)
153 {
154 statusLine.setText("" + ex.getCause());
155 }
156

157 cancelItem.setEnabled(false);
158 openItem.setEnabled(true);
159 }
160 };
161 }

javax.swing.SwingWorker<T, V> 6

• abstract T doInBackground()

is the method to override to carry out the background task and to return the result

of the work.

• void process(List<V> data)

is the method to override to process intermediate progress data in the event dispatch

thread.

• void publish(V... data)

forwards intermediate progress data to the event dispatch thread. Call this method

from doInBackground.

• void execute()

schedules this worker for execution on a worker thread.

• SwingWorker.StateValue getState()

gets the state of this worker, one of PENDING, STARTED, or DONE.

Chapter 14 Concurrency950

ptg16518469

14.11.3 The Single-Thread Rule
Every Java application starts with a main method that runs in the main thread. In

a Swing program, the main thread is short lived. It schedules the construction of

the user interface in the event dispatch thread and then exits. After the user inter-

face construction, the event dispatch thread processes event notifications, such

as calls to actionPerformed or paintComponent. Other threads, such as the thread that posts

events into the event queue, are running behind the scenes, but those threads are

invisible to the application programmer.

Earlier in the chapter, we introduced the single-thread rule: “Do not touch Swing

components in any thread other than the event dispatch thread.” In this section,

we investigate that rule further.

There are a few exceptions to the single-thread rule.

• You can safely add and remove event listeners in any thread. Of course, the

listener methods will be invoked in the event dispatch thread.

• A small number of Swing methods are thread safe. They are specially marked

in the API documentation with the sentence “This method is thread safe, although

most Swing methods are not.” The most useful among these thread-safe

methods are:

JTextComponent.setText
JTextArea.insert
JTextArea.append
JTextArea.replaceRange
JComponent.repaint
JComponent.revalidate

NOTE: We used the repaint method many times in this book, but the revalidate
method is less common. Its purpose is to force a layout of a component after
the contents have changed. The traditional AWT has a validate method to
force the layout of a component. For Swing components, you should simply call
revalidate instead. (However, to force the layout of a JFrame, you still need to
call validate—a JFrame is a Component but not a JComponent.)

Historically, the single-thread rule was more permissive. Any thread was allowed

to construct components, set their properties, and add them into containers, as

long as none of these components had been realized. A component is realized if

it can receive paint or validation events. This is the case after the setVisible(true) or

pack (!) methods have been invoked on the component, or after the component

has been added to a container that has been realized.

95114.11 Threads and Swing

ptg16518469

That version of the single-thread rule was convenient. It allowed you to create

the GUI in the main method and then call setVisible(true) on the top-level frame of the

application. There was no bothersome scheduling of a Runnable on the event dispatch

thread.

Unfortunately, some component implementors did not pay attention to the sub-

tleties of the original single-thread rule. They launched activities on the event

dispatch thread without ever bothering to check whether the component was

realized. For example, if you call setSelectionStart or setSelectionEnd on a JTextComponent,

a caret movement is scheduled in the event dispatch thread, even if the component

is not visible.

It might well have been possible to detect and fix these problems, but the Swing

designers took the easy way out. They decreed that it is never safe to access

components from any thread other than the event dispatch thread. Therefore,

you need to construct the user interface in the event dispatch thread, using the

calls to EventQueue.invokeLater that you have seen in all our sample programs.

Of course, there are plenty of programs that are not so careful and live by the old

version of the single-thread rule, initializing the user interface on the main thread.

Those programs incur the slight risk that some of the user interface initialization

may cause actions on the event dispatch thread that conflict with actions on the

main thread. As we said in Chapter 10, you don’t want to be one of the unlucky

few who run into trouble and waste time debugging an intermittent threading

bug. Therefore, you should simply follow the strict single-thread rule.

You have now reached the end of Volume I of Core Java. This volume covered the

fundamentals of the Java programming language and the parts of the standard

library that you need for most programming projects. We hope that you enjoyed

your tour through the Java fundamentals and that you found useful information

along the way. For advanced topics, such as networking, advanced AWT/Swing,

security, and internationalization, please turn to Volume II.

Chapter 14 Concurrency952

ptg16518469

AAPPENDIX

Java Keywords

See ChapterMeaningKeyword

5An abstract class or methodabstract

7Used to locate internal program errorassert

3The Boolean typeboolean

3Breaks out of a switch or loopbreak

3The 8-bit integer typebyte

3A case of a switchcase

7The clause of a try block catching an exceptioncatch

3The Unicode character typechar

4Defines a class typeclass

Not usedconst

3Continues at the end of a loopcontinue

3, 6The default clause of a switch, or a default method

in an interface

default

3The top of a do/while loopdo

3The double-precision floating-number typedouble

3The else clause of an if statementelse

3An enumerated typeenum

953

ptg16518469

See ChapterMeaningKeyword

4Defines the parent class of a class, or an upper

bound of a wildcard

extends

5A constant, or a class or method that cannot be

overridden

final

7The part of a try block that is always executedfinally

3The single-precision floating-point typefloat

3A loop typefor

Not usedgoto

3A conditional statementif

6Defines the interface(s) that a class implementsimplements

4Imports a packageimport

5Tests if an object is an instance of a classinstanceof

3The 32-bit integer typeint

6An abstract type with methods that a class can

implement

interface

3The 64-bit long integer typelong

12 (Vol. II)A method implemented by the host systemnative

3Allocates a new object or arraynew

3A null reference (note that null is technically a

literal, not a keyword)

null

4A package of classespackage

4A feature that is accessible only by methods of this

class

private

5A feature that is accessible only by methods of this

class, its children, and other classes in the same

package

protected

4A feature that is accessible by methods of all

classes

public

3Returns from a methodreturn

3The 16-bit integer typeshort

3, 6A feature that is unique to a class or interface, not

to instances of a class

static

Appendix Java Keywords954

ptg16518469

See ChapterMeaningKeyword

2Use strict rules for floating-point computationsstrictfp

5The superclass object or constructor, or a lower

bound in a wildcard

super

3A selection statementswitch

14A method or code block that is atomic to a threadsynchronized

4The implicit argument of a method, or a

constructor of this class

this

7Throws an exceptionthrow

11The exceptions that a method can throwthrows

2 (Vol. II)Marks data that should not be persistenttransient

7A block of code that traps exceptionstry

3Denotes a method that returns no valuevoid

14Ensures that a field is coherently accessed by

multiple threads

volatile

3A loopwhile

955Appendix A Java Keywords

ptg16518469

This page intentionally left blank

ptg16518469

Numbers
- (minus sign)

arithmetic operator, 56, 64

printf flag, 84

-- operator, 61, 64

_ (underscore)

delimiter, in number literals, 48

in instance field names (C++), 176

, (comma)

operator (C++), 65

printf flag, 83–84

; (semicolon)

for statements, 45, 53

in class path (Windows), 191

: (colon)

in assertions, 385

in class path (UNIX), 191

inheritance token (C++), 204

:: operator (C++), 153, 161, 207, 320

! operator, 62, 64

!= operator, 62, 64, 101

?: operator, 62, 64

/ (slash)

arithmetic operator, 56, 64

in file names, 785

// comments, 46

/* . . . */ comments, 46

/** . . . */ comments, 46, 194

. (period)

in class path, 191–192

in directory names (UNIX), 788

... (ellipsis), in varargs, 257

 ̂ operator, 63–64, 316

~ operator, 63–64

', " (single, double quote), escape

sequences for, 50

". . ." (double quotes), for strings, 45

((left parenthesis), printf flag, 83–84

() (empty parentheses), in method calls, 46

(. . .) (parentheses)

for casts, 60, 64, 219

for operator hierarchy, 64–65

[] (empty square brackets), in generics, 421

[. . .] (square brackets), for arrays, 111,

115

{. . .} (curly braces)

for blocks, 44–45, 89

for enumerated type, 65

in lambda expressions, 316

{{. . .}} (double curly braces), in inner

classes, 344

@ (at), in javadoc comments, 194, 196

$ (dollar sign)

delimiter, for inner classes, 336

in variable names, 53

printf flag, 84

* (asterisk)

arithmetic operator, 56, 64

echo character, 652

in class path, 191

in imports, 183

\ (backslash)

escape sequence for, 50

in file names, 87, 785

& (ampersand)

bitwise operator, 63–64

in bounding types, 423

in reference parameters (C++), 169

&& operator, 62, 64

(number sign)

in javadoc hyperlinks, 197

in property files, 599

printf flag, 84

% (percent sign)

arithmetic operator, 56, 64

formatting output for, 83

printf flag, 84

+ (plus sign)

arithmetic operator, 56, 60, 64

for objects and strings, 66–67, 239

printf flag, 84

++ operator, 61, 64

957

Index

ptg16518469

< (left angle bracket)

in shell syntax, 88

printf flag, 84–85

relational operator, 62, 64

<? (in wildcard types), 443

<<, >>, >>> operators, 63–64

<= operator, 62, 64

<. . .> (angle brackets), for type

parameters, 245, 419

> (right angle bracket)

in shell syntax, 88, 411

relational operator, 62, 64

-> (in lambda expressions), 315–317

>& (in shell syntax), 411

>= operator, 62, 64

= operator, 54, 61

== operator, 62, 64

for class objects, 262

for enumerated types, 258

for floating-point numbers, 101

for identity hash maps, 507

for strings, 69

for wrappers, 254

| operator, 63–64

|| operator, 62, 64

0, 0b, 0x prefixes (in integers), 48

0, printf flag, 84

2> (in shell syntax), 411

2D shapes, 560–569

A
Absolute positioning (Swing), 723

Abstract classes, 221–227

extending, 223

interfaces and, 297

object variables of, 223

abstract keyword, 221–227

Abstract methods, 222

in functional interfaces, 318

AbstractAction class, 609, 612, 680, 683

AbstractButton class, 627, 681–684

is/setSelected methods, 684

setAction method, 681

setActionCommand method, 663

setDisplayedMnemonicIndex method, 686, 688

setHorizontalTextPosition method, 682–683

setMnemonic method, 688

abstractClasses/Employee.java, 226

abstractClasses/Person.java, 226

abstractClasses/PersonTest.java, 225

abstractClasses/Student.java, 227

AbstractCollection class, 467, 479

AbstractQueue class, 463

Accelerators (in menus), 687–688

accept method (FileFilter), 755, 764

acceptEither method (CompletableFuture), 934

Access modifiers

checking, 265

final, 55, 157, 217–218, 295, 339–342, 886

private, 150, 189–190, 333

protected, 227–228, 283, 311

public, 42–43, 56, 147–150, 189–190,

289–290

public static final, 296

static, 44–45, 158–164

static final, 55

void, 44–45

Access order, 505

AccessibleObject class

isAccessible method, 275

setAccessible method, 272, 275

Accessor methods, 141–145, 153–154, 444

Accessory components, 757

accumulate method (LongAccumulator), 888

accumulateAndGet method (AtomicType), 887

Action interface, 607–615, 680

actionPerformed method, 608

add/removePropertyChangeListener methods,

608–609

get/putValue methods, 608, 615

is/setEnabled methods, 608, 615

predefined action table names, 609

Action listeners, 607–615

action/ActionFrame.java, 613

ActionEvent class, 588, 626–627

getActionCommand method, 598, 627

getModifiers method, 627

ActionListener interface, 626

actionPerformed method, 302–303, 314,

331–332, 337, 342, 589–593, 597, 601,

607, 609, 627, 897

overriding, 680

implementing, 318, 589, 597

ActionMap class, 612

Actions, 607–615

associating with keystrokes, 610

asynchronous, 931

names of, 612

Index958

ptg16518469

predefined, 609

ActiveX, 5, 15

Adapter classes, 603–607

add method

of ArrayList, 245–251

of BigDecimal, BigInteger, 110–111

of BlockingQueue, 898–899

of ButtonGroup, 663

of Collection, 463, 467–469

of Container, 591, 595, 641

of GregorianCalendar, 142

of HashSet, 487

of JFrame, 555, 559

of JMenu, 679, 681

of JToolBar, 695–699

of List, 470, 482

of ListIterator, 470, 476–478, 483

of LongAdder, 888

of Queue, 494

of Set, 471

addAll method

of ArrayList, 417

of Collection, 467–468

of Collections, 523

of List, 482

addChoosableFileFilter method (JFileChooser), 763

addComponent, addGroup methods (GroupLayout), 723

addFirst/Last methods

of Deque, 494

of LinkedList, 484

addHandler method (Logger), 406

addItem method (JComboBox), 669–671

Addition operator, 56, 64

for different numeric types, 60

for objects and strings, 66–67, 239

addLayoutComponent method (LayoutManager), 728

addPropertyChangeListener method (Action),

608–609

addSeparator method

of JMenu, 679, 681

of JToolBar, 695–699

addShutdownHook method (Runtime), 182

addSuppressed method (Throwable), 377, 380

AdjustmentEvent class, 626

methods of, 627

AdjustmentListener interface, 626

adjustmentValueChanged method, 627

Adobe Flash, 9

Aggregation, 133–135

Algorithms, 130

for binary search, 521–522

for shuffling, 520

for sorting, 518–521

QuickSort, 117, 519

simple, in the standard library, 522–524

writing, 526–528

Algorithms + Data Structures = Programs

(Wirth), 130

Algorithms in C++ (Sedgewick), 519

Alice in Wonderland (Carroll), 487, 490

allOf method (EnumSet), 508, 934

Alt+F4, in Windows, 688

and, andNot methods (BitSet), 533

Andreessen, Mark, 10

Annotations, 430

Anonymous arrays, 114

Anonymous inner classes, 329, 342–345

anonymousInnerClass/AnonymousInnerClassTest.java, 344

Antisymmetry rule, 295

anyOf method (CompletableFuture), 934

append method

of JTextArea, 656, 951

of StringBuilder, 77–78

appendCodePoint method (StringBuilder), 78

Applet class, 803

destroy method, 808

getAppletContext method, 818–820

getAppletInfo method, 816

getCodeBase, getDocumentBase methods, 816–817

getImage, getAudioClip methods, 817

getParameter method, 810–811, 816

getParameterInfo method, 816

init method, 807, 811

play method, 817

resize method, 808

showStatus method, 819–820

start, stop methods, 808

applet element (HTML), 34, 805, 808–810

align attribute, 808

alt attribute, 809

archive attribute, 809

code attribute, 809

codebase attribute, 809

height, width attributes, 807–808

hspace, vspace attributes, 808

name attribute, 810

object attribute (obsolete), 809

applet/NotHelloWorld.java, 805

959Index

ptg16518469

AppletContext interface, 818

getApplet, getApplets methods, 818, 820

showDocument method, 819–820

Applets, 8–9, 14, 802–824

accessing from JavaScript, 810

aligning, 808

changing warning string in, 190

communicating to each other, 810, 818

context of, 818

debugging, 807

digitally signed, 822–824

executing, 805

image and audio files in, 816–817

multiple copies of, 813

no title bars for, 807

passing information to, 816

printing in, 832

resizing, 808–810

running in a browser, 8, 33–39, 802–803,

818–820

serialized objects of, 809

testing, 805–806

trusted local, 35, 806

appletviewer program, 33, 805–806

Application Programming Interfaces (APIs),

online documentation, 71, 74–77

Applications

cache of, 827

closing by user, 545

codebase of, 831

compiling/running from the command

line, 30–33

debugging, 25–26, 358–366

deploying, 779–838

extensible, 217

launching, 43

localization of, 136, 393–394, 785

monitoring and managing in JVM, 412

platform-independent, 724

preferences of, 788–800

terminating, 45

testing, 384–388

applyToEither method (CompletableFuture), 934

Arguments. See Parameters

Arithmetic operators, 56–65

accuracy of, 56

autoboxing with, 253

combining with assignment, 61

precedence of, 64

Array class, 276–279

get, getXxx, set, setXxx methods, 279

getLength method, 277, 279

newInstance method, 276, 279

Array lists, 112, 484

anonymous, 344

capacity of, 246

elements of:

accessing, 247–251

adding, 245–249

removing, 249

traversing, 249

generic, 244–252

raw vs. typed, 251–252

Array variables, 111

ArrayBlockingQueue class, 899, 903

ArrayDeque class, 462, 494–495

as a concrete collection type, 472

ArrayIndexOutOfBoundsException, 112, 361–363, 938

ArrayList class, 113, 244–252, 416–418, 474

add method, 245–251

addAll method, 417

as a concrete collection type, 472

ensureCapacity method, 246–247

get, set methods, 247, 251

remove method, 249, 251

removeIf method, 319

size method, 246–247

synchronized, 914

toArray method, 435

trimToSize method, 246–247

arrayList/ArrayListTest.java, 250

Arrays, 111–127

anonymous, 114

circular, 462–463

cloning, 311

converting to collections, 525–526

copying, 114–115

on write, 912

creating, 111

elements of:

computing in parallel, 913

numbering, 112

remembering types of, 214

removing from the middle, 474

traversing, 112–113, 122

equality testing for, 234

generic methods for, 276–279

hash codes of, 238

Index960

ptg16518469

in command-line parameters, 116

initializing, 112, 114

multidimensional, 120–125, 240

not of generic types, 321, 431–432, 441

of integers, 240

of subclass/superclass references, 214

of wildcard types, 432

out-of-bounds access in, 360

parallel operations on, 912

printing, 122, 240

ragged, 124–127

size of, 112, 246, 277

equal to 0, 114, 526

equal to 1, 341

increasing, 115

setting at runtime, 244

sorting, 117–120, 292, 912

type erasure and, 434–436

Arrays class

asList method, 509, 516, 526

binarySearch method, 120, 352

copyOf method, 115, 119, 276

copyOfRange method, 119

deepToString method, 122, 240

equals method, 120, 234

fill method, 120

hashCode method, 238

sort method, 117–119, 290, 292, 294, 314,

318

toString method, 114, 119

arrays/CopyOfTest.java, 278

ArrayStoreException, 431, 433, 441

Ascender, ascent (in typesetting), 576

ASCII standard, 51, 575

asList method (Arrays), 509, 516, 526

assert keyword, 384–388

Assertions, 384–388

checking parameters with, 386–387

defined, 384

documenting assumptions with, 387–388

enabling/disabling, 385–386

Assignment operator, 54, 61

Asynchronous methods, 915

atan, atan2 methods (Math), 58

Atomic operations, 886–889

client-side locking for, 883

in concurrent hash maps, 907–909

performance of, 888

AtomicType classes, 887

Audio files, accessing from applets, 816–817

@author comment (javadoc), 196, 199

Autoboxing, 252–256

AutoCloseable interface, 376

close method, 376–377

await method (Condition), 856, 873–877,

893–895

awaitUninterruptibly method (Condition), 893–895

AWT (Abstract Window Toolkit), 538

events in:

debugging, 774–778

hierarchy of, 624–628

tracing, 771

preferred field sizes in, 649

AWTEvent class, 624

B
\b (backspace escape sequence), 50

Background

default color for, 570–571

erasing, 842

painting, 558

Backspace, escape sequence for, 50

BadCastException, 451

Barriers, 936–937

Base classes. See Superclasses

Baseline (in typesetting), 576, 718

Basic multilingual planes, 51

BasicButtonUI class, 637

BasicService interface, 831

getCodeBase method, 831, 836

isWebBrowserSupported method, 836

showDocument method, 836

Batch files, 193

Beans, 780

beep method (Toolkit), 305

BiConsumer interface, 326

BiFunction interface, 319, 326

BIG-5 standard, 51

BigDecimal, BigInteger classes, 108–111

add, compareTo, subtract, multiply, divide, mod
methods, 110–111

valueOf method, 108, 110–111

BigIntegerTest/BigIntegerTest.java, 109

Binary search, 521–522

BinaryOperator interface, 326

binarySearch method

of Arrays, 120, 352

of Collections, 521–522

961Index

ptg16518469

BiPredicate interface, 326

Bit masks, 63, 616

Bit sets, 532–536

and the sieve of Eratosthenes benchmark,

533–536

Bitecode files, 43

BitSet interface, 460, 532–536

methods of, 533

Bitwise operators, 63–64

Blank lines, printing, 46

Blocking queues, 898–905

BlockingDeque interface

offerFirst/Last, pollFirst/Last methods, 905

putFirst/Last, takeFirst/Last methods, 904

BlockingQueue interface

add, element, peek, remove methods, 898–899

offer, poll, put, take methods, 898–899,

904

blockingQueue/BlockingQueueTest.java, 900

Blocks, 44–45, 89–90

nested, 89

Boolean class

converting from boolean, 252

hashCode method, 237

boolean operators, 62, 64

boolean type, 52

default initialization of, 172

formatting output for, 83

no casting to numeric types for, 61

BooleanHolder class, 255

Border layout manager, 641–644

border/BorderFrame.java, 665

BorderFactory class, 664–668

createTypeBorder methods, 664–667

BorderLayout class, 641–644

constants of, 642

Borders, 664–668

compound, 664

rounded corners of, 665

styles of, 664

with a title, 664

bounce/Ball.java, 844

bounce/BallComponent.java, 845

bounce/Bounce.java, 842

bounceThread/BounceThread.java, 849

Bounded collections, 463

Bounding rectangle, 563–565

Bounds checking, 115

Box layout, 700

break statement, 104–108

labeled/unlabeled, 106

missing, 412

Bridge methods, 428–429, 440

brighter method (Color), 571

BrokenBarrierException, 937

Browsers

default, 831

display area of, 819–820

installing Java Plug-in in, 803

Java-enabled, 809

MIME types in, 825

running applets in, 8, 33–39, 802–803,

818–820

status bar of, 819–820

Buckets (of hash tables), 485

Bulk operations, 524–525

button/ButtonFrame.java, 594

ButtonGroup class, 660

add method, 663

getSelection method, 661, 663

ButtonModel interface, 636–638

getActionCommand method, 661, 663

getSelectedObjects method, 661

properties of, 637

Buttons

appearance of, 632

associating actions with, 610

clicking, 592

creating, 591

event handling for, 591–595

listening to, 592

model-view-controller analysis of,

636–638

rearranging automatically, 639

ButtonUIListener class, 637

Byte class

converting from byte, 252

hashCode method, 237

byte type, 47

ByteArrayOutputStream class, 830

C
C programming language

assert macro in, 385

event-driven programming in,

588

function pointers in, 279

integer types in, 6

Index962

ptg16518469

C# programming language, 8

delegates in, 280

polymorphism in, 218

useful features of, 11

C++ programming language

, (comma) operator in, 65

:: operator in, 153, 207

>> operator in, 64

access privileges in, 156

algorithms in, 518

arrays in, 115, 126

bitset template in, 532

boolean values in, 52

classes in, 45

nested, 330

code units and code points in, 70

control flow in, 89

copy constructors in, 139

dynamic binding in, 209

dynamic casts in, 221

exceptions in, 361, 364–365, 369

fields in:

instance, 175–176

static, 161

for loop in, 100

function pointers in, 279

#include in, 184

inheritance in, 204, 213, 297

integer types in, 6, 47

methods in:

accessor, 142

default, 300

destructor, 181

static, 161

namespace, using directives in, 184

new operator in, 151

NULL, object pointers in, 139

operator overloading in, 109

passing parameters in, 167, 169

performance of, compared to Java, 534

polymorphism in, 218

protected modifier in, 228

pure virtual functions (= 0) in, 224

references in, 139

Standard Template Library in, 460, 465

static member functions in, 45

strings in, 68–69

superclasses in, 208

syntax of, 3

templates in, 11, 420, 423, 426

this pointer in, 176

type parameters in, 422

using iterators as parameters in, 530

variables in, 55

redefining in nested blocks, 90

vector template in, 247

virtual constructors in, 263

void* pointer in, 229

Cache, 827

calculator/CalculatorPanel.java, 645

Calendar class, 140

get/setTime methods, 218

Calendars

displaying, 142–144

vs. time measurement, 140

CalendarTest/CalendarTest.java, 144

Call by reference, 164

Call by value, 164–171

Callable interface, 927

call method, 915, 919

wrapper for, 916

Callables, 915–920

Callbacks, 302–305

Camel case (CamelCase), 43

cancel method (Future), 915, 920–921, 945

CancellationException, 945

Canned functionality, 934

canRead/Write methods (FileContents), 837

Carriage return, escape sequence for,

50

case statement, 104

cast method (Class), 451

Casts, 60–61, 219–221

bad, 360

checking before attempting, 220

catch statement, 367–381

ceiling method (NavigableSet), 493

ChangeListener interface, 672

stateChanged method, 672–673

char type, 50–51

Character class

converting from char, 252

hashCode method, 237

isJavaIdentifierXxx methods, 53

Characters, formatting output for, 83

charAt method (String), 70, 72

chart/Chart.java, 813

checkBox/CheckBoxFrame.java, 658

963Index

ptg16518469

Checkboxes, 657–659

in menus, 683–684

Checked exceptions, 261–264

applicability of, 383

declaring, 361–364

suppressing with generics, 437–439

Checked views, 513

checkedCollection methods (Collections), 515

Child classes. See Subclasses

Choice components, 657–678

borders, 664–668

checkboxes, 657–659

combo boxes, 668–671

radio buttons, 660–663

sliders, 672–678

ChronoLocalDate interface, 446

Church, Alonzo, 315

circleLayout/CircleLayout.java, 725

circleLayout/CircleLayoutFrame.java, 728

Circular arrays, 462–463

Clark, Jim, 10

Clarke, Arthur C., 717

Class class, 261–263

cast method, 451

forName method, 261, 265

generic, 434, 450–453

getClass method, 261

getComponentType method, 277

getConstructor, getDeclaredConstructor methods,

451

getConstructors, getDeclaredConstructors methods,

266, 270

getDeclaredMethods method, 266, 270, 280

getEnumConstants method, 451

getField, getDeclaredField methods, 275

getFields, getDeclaredFields methods, 266, 270,

272, 275

getGenericXxx methods, 457

getImage, getAudioClip methods, 784

getMethod method, 280

getMethods method, 266, 270

getName method, 244, 261–262

getResource, getResourceAsStream methods, 784,

787

getSuperclass method, 244, 451

getTypeParameters method, 457

newInstance method, 263, 265, 451

Class constants, 55

Class diagrams, 134–135

.class file extension, 43

Class files, 185, 190

locating, 192

names of, 43, 147

class keyword, 42

Class loaders, 351, 385

Class path, 190–193

checking directories on, 412

setting, 193

Class wins rule, 301

Class<T> parameters, 452

ClassCastException, 220, 276, 295, 435, 441, 513

Classes, 131–132, 204–228

abstract, 221–227, 297

access privileges for, 156

adapter, 603–607

adding to packages, 185–188

analyzing:

capabilities of, 265–271

objects of, at runtime, 271–276

companion, 298–299

constructors for, 149

defining, 145–157

at runtime, 350

deprecated, 197

designing, 133, 200–202

documentation comments for, 194–198

encapsulation of, 131–132, 153–156

extending, 132

final, 217–218

generic, 245, 418–420, 441, 669

helper, 706–712

immutable, 157

implementing multiple interfaces, 296–297

importing, 183–184

inner, 329–349

anonymous, 606

instances of, 131, 136

loading, 262, 411

multiple source files for, 149

names of, 25, 43, 182, 201

full package, 183

number of basic types in, 200

package scope of, 189

parameters in, 152–153

predefined, 135–145

private methods in, 156–157

protected, 227–228

public, 194

Index964

ptg16518469

accessing, 183

relationships between, 133–135

serializable, 412

sharing, among programs, 191

unit testing, 162

wrapper, 252–256

ClassLoader class, 388

CLASSPATH environment variable, 26, 193

clear method

of BitSet, 533

of Collection, 467, 469

clearAssertionStatus method (ClassLoader), 388

Client-side locking, 882–883

clone method

of array types, 311

of Object, 156, 306–313, 318

clone/CloneTest.java, 312

clone/Employee.java, 312

Cloneable interface, 306–313

CloneNotSupportedException, 310

close method

of AutoCloseable, 376–377

of Closeable, 376

of Handler, 406

Closeable interface, 376

Closures, 323

Code errors, 359

Code planes, 52

Code points, code units, 52, 70

Codebase (in JNLP files), 831

codePointAt, codePoints methods (String), 72

codePointCount method (String), 70, 73

Collection interface, 463, 469, 479

add method, 463, 467–469

addAll method, 467–468

clear method, 467, 469

contains, containsAll methods, 467–468, 479

equals method, 467

generic, 466–469

isEmpty method, 299, 467–468

iterator method, 463, 468

remove, removeAll methods, 467–468

removeIf method, 468, 524

retain method, 467

retainAll method, 469

size method, 467–468

toArray method, 249, 467, 469

Collections, 459–536

algorithms for, 517–528

bounded, 463

bulk operations in, 524–525

concrete, 472–496

concurrent modifications of, 479

converting to arrays, 525–526

debugging, 479

elements of:

inserting, 469

maximum, 517

removing, 465

traversing, 464

interfaces for, 460–471

legacy, 528–536

lightweight wrappers for, 509–510

ordered, 470, 476

performance of, 471, 486

searching in, 521–522

sorted, 489

thread-safe, 512–513, 905–915

type parameters for, 418

using for method parameters, 527

Collections class, 520

addAll method, 523

binarySearch method, 521–522

checkedCollection, emptyCollection methods, 515

copy method, 523

disjoint method, 524

fill method, 523

frequency method, 524

indexOfSubList, lastIndexOfSubList methods, 524

min, max methods, 523

nCopies method, 510, 515

replaceAll method, 523

reverse method, 524

rotate method, 524

shuffle method, 520–521

singleton, singletonCollection methods, 510,

515

sort method, 518–521

swap method, 524

synchronizedCollection methods, 512–513, 515,

915

unmodifiableCollection methods, 511–512, 514

Collections framework. See Java collections

framework (JCF)

Color choosers, 764–770

Color class, 569–573

brighter, darker methods, 571

predefined constants, 570

965Index

ptg16518469

colorChooser/ColorChooserPanel.java, 767

Colors

background, 558, 570–571

changing, 609

custom, 570

foreground, 570

predefined, 570–572

system, 571

Columns (of a text field), 649

com.sun.java package, 599

Combo boxes, 668–671

adding items to, 669

current selection in, 669

comboBox/ComboBoxFrame.java, 670

Command line

compiling/launching Java from, 24

parameters in, 116

Comments, 46–47

blocks of, 46

for automatic documentation, 46, 194–199

in property files, 599

not nesting, 47

to the end of line, 46

Companion classes, 298–299

Comparable interface, 288, 352, 422–423, 446,

519

compareTo method, 289–293

comparator method (SortedMap), 493, 500

Comparator interface, 305–306, 314, 328–329,

519

chaining comparators in, 328

comparing method, 328–329

lambdas and, 318

naturalOrder method, 329

nullFirst/Last methods, 329

reversed, reverseOrder methods, 329, 519, 521

thenComparing method, 328–329

compare method (integer types), 294, 318

compareAndSet method (AtomicType), 887

compareTo method

in subclasses, 295

of BigDecimal, BigInteger, 110–111

of Comparable, 289–293, 422, 446

of Enum, 260

of String, 72

Compilation errors, 29

Compiler

autoboxing in, 254

bridge methods in, 428

command-line options of, 412

creating bytecode files in, 43

deducting method types in, 421

enforcing throws specifiers in, 368

error messages in, 29, 363

just-in-time, 6–7, 14, 153, 218, 413, 534

launching, 25

optimizing method calls in, 7, 218

overloading resolution in, 215

shared strings in, 67, 69

translating inner classes in, 336

translating typed array lists in, 252

type parameters in, 417

warnings in, 105, 252

whitespace in, 44

Completable futures, 931–934

combining, 933

composing, 932

exception handling in, 933

CompletableFuture class

acceptEither, applyToEither methods, 934

allOf, anyOf methods, 934

handle method, 933

runAfterXxx methods, 934

thenAccept, thenApply, thenApplyAsync, thenRun
methods, 933

thenAcceptBoth, thenCombine methods, 934

thenCompose method, 932–933

whenComplete method, 933

CompletionStage interface, 934

Component class, 627

getBackground/Foreground methods, 573

getFont method, 651

getPreferredSize method, 557, 559

getSize method, 552

inheritance hierarchies of, 640

isVisible method, 552

repaint method, 556, 559

setBackground/Foreground methods, 570, 573

setBounds method, 546, 548, 552, 724

setCursor method, 624

setLocation method, 546, 548, 552

setSize method, 552

setVisible method, 546, 552, 951

validate method, 651, 951

Components, 639

displaying information in, 553

labeling, 651–652

realized, 951

Index966

ptg16518469

Composite design pattern, 631

CompoundInterest/CompoundInterest.java, 122

Computations

performance of, 56, 59

truncated, 56

compute, computeIfPresent/Absent methods (Map),

501

Concrete collections, 472–496

Concrete methods, 222

Concurrent hash maps

atomic updates in, 907–909

buckets as trees in, 906

bulk operations on, 909–911

efficiency of, 906

size of, 906

Concurrent modification detection, 479

Concurrent programming, 7, 839–952

synchronization in, 862–897

Concurrent sets, 912

ConcurrentHashMap class, 905–907

atomic updates in, 907–909

compute, computeIfXxx methods, 908–909

forEach method, 910–911

get method, 908

keySet, newKeySet methods, 912

mappingCount method, 906

merge method, 909

organizing buckets as trees in, 906

put, putIfAbsent methods, 908

reduce, reduceXxx methods, 910–911

replace method, 908

search, searchXxx methods, 910–911

vs. synchronization wrappers, 914

ConcurrentLinkedQueue class, 905, 907

ConcurrentModificationException, 478–479, 906,

914

ConcurrentSkipListMap class, 905–907

ConcurrentSkipListSet class, 905, 907

Condition interface, 878

await method, 856, 893–895

awaitUninterruptibly method, 893–895

signal, signalAll methods, 890

vs. synchronization methods, 880

Condition objects, 872–877

Condition variables, 872

Conditional statements, 90–94

config method (Logger), 390, 404

Configuration files, 794–800

Confirmation dialogs, 733

Console

debugging applets in, 807

printing messages to, 42–46

Console class

reading passwords with, 80

readLine/Password methods, 81

console method (System), 81

ConsoleHandler class, 394–399, 407

ConsoleWindow class, 770

const keyword, 56

Constants, 55–56

documentation comments for, 196

names of, 55

public, 56, 159

static, 159

Constructor class, 265

getDeclaringClass method, 270

getModifiers method, 265, 270

getName method, 265, 270

getXxxTypes methods, 270

newInstance method, 265, 452

Constructor references, 321–322

Constructors, 149–151, 171–182

calling another constructor in, 176

defined, 136

documentation comments for, 194

field initialization in:

default, 172–173

explicit, 174

final, 265

initialization blocks in, 177–181

names of, 136, 150

no-argument, 173, 208, 801

overloading, 172

parameter names in, 175

private, 265

protected, 194

public, 194, 265

with super keyword, 207

ConstructorTest/ConstructorTest.java, 179

Consumer interface, 326

Consumer threads, 898

Container class, 639

add method, 591, 595, 641

setLayout method, 641

Containers, 639

contains method

of Collection, 467–468, 479

of HashSet, 487

967Index

ptg16518469

containsAll method (Collection), 467–468, 479

containsKey/Value methods (Map), 499

Content pane, 554

continue statement, 108

Control flow, 89–108

block scope, 89–90

breaking, 106–108

conditional statements, 90–94

loops, 94–99

determinate, 99–103

“for each,” 113–114

multiple selections, 103–105

Controllers, 633

Conversion characters, 82–83

Cooperative scheduling, 856

Coordinated Universal Time (UTC), 139

copy method (Collections), 523

copyArea method (Graphics), 583, 586

copyOf method (Arrays), 115, 119, 276

copyOfRange method (Arrays), 119

CopyOnWriteArrayList class, 912, 914

CopyOnWriteArraySet class, 912

Core Java program examples, 23

Cornell, Gary, 1

Corruption of data, 862–868

cos method (Math), 58

Count of Monte Cristo, The (Dumas), 490,

944–946

Countdown latches, 936

CountDownLatch class, 935–936

Covariant return types, 429

create method

of EventHandler, 598

of PersistenceService, 831, 837

createCustomCursor method (Toolkit), 618, 623

createDialog method (JColorChooser), 770

createFont method (Font), 575

createScreenCapture method (Robot), 778

createTypeBorder methods (BorderFactory),

664–667

createXxxGroup methods (GroupLayout), 722

Ctrl+\, for thread dump, 889

Ctrl+C, for program termination, 863, 875

Ctrl+O, Ctrl+S accelerators, 687

Ctrl+Shift+F1, in Swing, 770

Ctrl+Tab, in text fields, 729

current method (ThreadLocalRandom), 893

Current user, 794

currentThread method (Thread), 851–854

Cursor class, getPredefinedCursor method, 617

Cursor shapes, 618

Custom layout managers, 724–728

Customizations. See Preferences

CyclicBarrier class, 935–937

D
D suffix (double numbers), 49

Daemon threads, 859

darker method (Color), 571

Data exchange, 746–752

Data fields

initializing, 176–181

public, 150

Data types, 47–53

boolean type, 52

casting between, 60–61

char type, 50–51

conversions between, 59–60, 219–221

floating-point, 48–49

integer, 47–48

Databases, closing connections to, 372

dataExchange/DataExchangeFrame.java, 748

dataExchange/PasswordChooser.java, 749

Date and time

formatting output for, 83–84

no built-in types for, 136

Date class, 140

getDay/Month/Year methods (deprecated), 141

toString method, 137

DateInterval class, 428

Deadlocks, 874, 889–892, 896

breaking up, 893

in GUI, 897

Debugging, 8, 409–414

applets, 807

AWT events, 771, 774–778

collections, 479

debuggers for, 409

generic types, 513

GUI programs, 367, 770–778

including class names in, 344

intermittent bugs, 69, 545, 952

messages for, 366

reflection for, 272

trapping program errors in a file for, 411

when running applications in terminal

window, 25–26

DebugGraphics class, 771

Index968

ptg16518469

Decorator design pattern, 631

Decrement operators, 61–62

Deep copies, 308

deepToString method (Arrays), 122, 240

Default methods, 298–300

resolving conflicts in, 300–302

Default packages, 185

default statement, 104, 298–300

DefaultButtonModel class, 636

DefaultComboBoxModel class, 669

Deferred execution, 325

delay method (Robot), 778

Delayed interface, 900

getDelay method, 900, 903

DelayQueue class, 900, 903

Delegates, 280

delete method

of PersistenceService, 838

of StringBuilder, 78

Dependence, 133–135

Deprecated classes, 197

Deprecated methods, 141, 197, 412

Deprecated variables, 197

@deprecated comment (javadoc), 197

Deque interface, 494–495

addFirst/Last methods, 494

getFirst/Last methods, 495

offerFirst/Last methods, 494

peekFirst/Last methods, 495

pollFirst/Last methods, 495

removeFirst/Last methods, 495

Deques, 494–495

Derived classes. See Subclasses

deriveFont method (Font), 575, 581

Descender, descent (in typesetting), 576

descendingIterator method (NavigableSet), 493

Design patterns, 630–632

Design Patterns—Elements of Reusable

Object-Oriented Software (Gamma et al.),

632

destroy method (Applet), 808

Determinate loops, 99–103

Development environments

choosing, 23–26

in terminal window, 25

integrated, 26–30

Device errors, 359

dialog/AboutDialog.java, 744

dialog/DialogFrame.java, 743

Dialogs, 730–770

accepting/canceling, 746

centering, 304

closing, 603–607, 688, 743, 746

color choosers, 764–770

confirmation, 733

creating, 741–745

data exchange in, 746–752

default button in, 748

displaying, 743

document- and toolkit-modal, 742

file, 752–764

input, 733

maximized, 603

modal, 730–741

modeless, 730, 742–743

data exchange with, 747

option, 731–741

pop-up, 821

root pane of, 748

traversal order of, 729–730

Diamond syntax, 245

Dijkstra, Edsger, 935

disjoint method (Collections), 524

divide method (BigDecimal, BigInteger), 110–111

Division operator, 56

do/while loop, 96, 99

Doclets, 199

Documentation comments, 46, 194–199

extracting, 198–199

for fields, 196

for methods, 195–196

for packages, 198

general, 196

HTML markup in, 194

hyperlinks in, 198

inserting, 194–195

links to other files in, 195

overview, 198

Document-modal dialogs, 742

doInBackground method (SwingWorker), 944–945,

950

Do-nothing methods, 604

Double brace initialization, 344

Double buffering, 771

Double class

compare method, 294

converting from double, 252

hashCode method, 237

969Index

ptg16518469

Double class (continued)

POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants, 49

double type, 48

arithmetic computations with, 56

converting to other numeric types,

59–60

DoubleAccumulator, DoubleAdder classes, 889

Double-precision numbers, 48–49

Doubly linked lists, 474

draw method (Graphics2D), 561

draw/DrawTest.java, 566

drawImage method (Graphics), 582, 585

Drawing with mouse, 616–624

drawString method (Graphics/Graphics2D), 581

Drop-down lists, 668

Dynamic binding, 209, 214–217

Dynamic languages, 8

E
e (exponent), in numbers, 49

E
as type variable, 419

constant (Math), 58

Echo character, 652–653

Eclipse, 24, 26–30, 409

configuring projects in, 28

editing source files in, 29

error messages in, 29–30

imports in, 183

SWT toolkit, 543

ECMA-262 (JavaScript subset), 15

Eiffel programming language, multiple

inheritance in, 297

element method

of BlockingQueue, 898–899

of Queue, 494

elements method (Hashtable, Vector), 530

Ellington, Duke, 539

Ellipse2D class, 560, 564–565

setFrameFromCenter method, 565

setFrameFromDiagonal method, 564

Ellipse2D.Double class, 569

Ellipses, 560, 564–565

bounding rectangles of, 563–565

constructing, 565

filling with color, 569

else statement, 92–93

else if statement, 93–94

EmployeeTest/EmployeeTest.java, 147

emptyCollection methods (Collections), 515

EmptyStackException, 381, 383

Encapsulation, 131–132

benefits of, 153–156

protected instance fields and, 284

endsWith method (String), 72

ensureCapacity method (ArrayList), 246–247

entering method (Logger), 405

Enterprise Edition (Java EE), 11, 18

entrySet method (Map), 502–503

Enum class, 258–260

compareTo, ordinal methods, 260

toString, valueOf methods, 258, 260

enum keyword, 65

Enumerated types, 65

equality testing for, 258

in switch statement, 105

Enumeration interface, 460, 528–530

nextElement, hasMoreElements methods, 465, 528,

530

Enumeration maps/sets, 506

Enumerations, 258–260, 818

legacy, 528–530

EnumMap class, 506, 508

as a concrete collection type, 472

enums/EnumTest.java, 259

EnumSet class, 506

allOf, noneOf, of, range methods, 508

as a concrete collection type, 472

EOFException, 364

Epoch, 139

equals method, 302

for wrappers, 254

hashCode method and, 236–237

implementing, 233

inheritance and, 231–235

of Arrays, 120, 234

of Collection, 467

of Object, 229–235, 244, 512

of proxy classes, 355

of Set, 471

of String, 68, 72

redefining, 236–237

equals/Employee.java, 241

equals/EqualsTest.java, 240

equals/Manager.java, 243

equalsIgnoreCase method (String), 68, 72

Error class, 360

Index970

ptg16518469

Errors

checking, in mutator methods, 154

code, 359

compilation, 29

device, 359

internal, 360, 363, 386

messages for, 369

NoClassDefFoundError, 26

physical limitations, 359

ThreadDeath, 857, 862, 896

user input, 359

Escape sequences, 50

Event delegation model, 588

Event dispatch thread, 545, 846, 897

time-consuming tasks and, 939

Event handling, 587–628

defined, 587

for asynchronous actions, 931

semantic vs. low-level events, 626

summary of, 626–628

Event listeners, 588–589

with a single method call, 597

with lambda expressions, 595

Event objects, 588

Event procedures, 587

Event sources, 588–589

EventHandler class

create method, 598

creating listeners automatically with, 597

EventObject class, 588, 624

getActionCommand method, 624

getSource method, 598, 624

EventQueue class

invokeAndWait method, 940, 943

invokeLater method, 940, 943, 952

isDispatchThread method, 943

eventTracer/EventTracer.java, 772

ExampleFileView class, 757

Exception class, 360, 380

Exception handlers, 263, 359

Exception specification, 362

Exceptions

ArrayIndexOutOfBoundsException, 112, 361–363, 938

ArrayStoreException, 431, 433, 441

BadCastException, 451

BrokenBarrierException, 937

CancellationException, 945

catching, 263–265, 363, 367–381

multiple, 369–370

changing type of, 370

checked, 261–264, 361–364, 383

ClassCastException, 220, 276, 295, 435, 441,

513

classification of, 359–361

CloneNotSupportedException, 310

ConcurrentModificationException, 478–479, 906,

914

creating classes for, 365–366

documentation comments for, 196

EmptyStackException, 381, 383

EOFException, 364

FileNotFoundException, 362–364, 438

finally clause in, 372–376

generics in, 437–439

hierarchy of, 359, 383

IllegalAccessException, 272

IllegalStateException, 465, 469, 483, 494, 899

InterruptedException, 841, 847, 851–854,

893–895, 915

IOException, 88, 361, 364, 368, 375

logging, 392, 400

micromanaging, 381

NoSuchElementException, 464, 469, 483, 494–495

NullPointerException, 361, 383

NumberFormatException, 383

propagating, 368, 384

rethrowing and chaining, 370, 410

RuntimeException, 360, 383

ServletException, 370

squelching, 383

stack trace for, 377–381

“throw early, catch late,” 384

throwing, 263–265, 364–365

TimeoutException, 915

tips for using, 381–384

UnavailableServiceException, 830

uncaught, 411, 857, 860–862

unchecked, 264, 361–363, 383

unexpected, 392, 400

UnsupportedOperationException, 503, 510, 512, 514

using type variables in, 437

variables for, implicitly final, 370

vs. simple tests, 381

wrapping, 371

Exchanger class, 935, 937

Exchangers, 937

.exe file extension, 783

Executable JAR files, 782–783

971Index

ptg16518469

Executable path, 20

execute method (SwingWorker), 945, 950

Execution flow, tracing, 391

ExecutionException, 933

ExecutorCompletionService class, 927

poll, submit, take methods, 928

Executors, 920–934

groups of tasks, controlling, 927–928

scheduled, 926

Executors class

newCachedThreadPool method, 921, 925

newFixedThreadPool method, 921, 925

newScheduledThreadPool method, 921, 926

newSingleThreadExecutor method, 921, 925

newSingleThreadScheduledExecutor method, 921,

926

ExecutorService interface, 921–922

invokeAny/All methods, 927–928

shutdown method, 922, 925

shutdownNow method, 922, 927

submit method, 921, 925

Exit codes, 45

exit method (System), 45

exiting method (Logger), 391, 405

exp method (Math), 58

Explicit parameters, 152–153

exportXxx methods (Preferences), 795, 800

ExtendedService class, 830

extends keyword, 204–228, 422–423

External padding, 704

F
F suffix (float numbers), 49

Factorial functions, 378

Factory methods, 161

Fair locks, 872

Fallthrough behavior, 105, 412

fdlibm (Freely Distributable Math Library),

59

Field class, 265

get method, 276

getDeclaringClass method, 270

getModifiers method, 265, 270

getName method, 265, 270

getType method, 265

set method, 276

Field width, of numbers, 82

Fields

adding, in subclasses, 207

default initialization of, 172–173

documentation comments for, 194,

196

final, 159, 218

instance, 131, 150–153, 157, 174, 200

private, 200, 206

protected, 194, 228, 283

public, 194, 196

public static final, 296

static, 158–159, 178, 185, 436

volatile, 885–886

File access warning, 831

File dialogs, 752–764

adding accessory components to, 757

fileChooser/FileIconView.java, 762

fileChooser/ImagePreviewer.java, 761

fileChooser/ImageViewerFrame.java, 759

FileContents class

canRead/Write methods, 837

getName method, 837

getXxxStream methods, 830, 837

FileFilter class (Swing)

accept method, 755, 764

getDescription method, 755, 764

FileFilter interface (java.io package), 755

FileHandler class, 394–399, 407

configuration parameters of, 396

FileNameExtensionFilter interface, 764

FileNotFoundException, 362–364, 438

FileOpenService class

openFileDialog method, 830, 837

openMultiFileDialog method, 837

Files

extensions of, 757

filters for, 755–757

MIME types of, 825

names of, 25, 87

opening/saving in GUI, 752–764

reading, 87

all words from, 376

in a separate thread, 944

writing, 87

FileSaveService class

saveAsFileDialog method, 837

saveFileDialog method, 830, 837

FileView class, 756

getIcon, getName, getDescription, getTypeDescription
methods, 756, 764

isTraversable method, 756, 764

Index972

ptg16518469

fill method

of Arrays, 120

of Collections, 523

of Graphics2D, 569–570, 573

Filter interface, 398

isLoggable method, 398, 408

final access modifier, 55, 217–218

checking, 265

for fields in interfaces, 296

for instance fields, 157

for methods in superclass, 295

for shared fields, 886

inner classes and, 339–342

finalize method, 181–182

finally clause, 372–376

not completed normally, 412

return statements in, 374

unlock operation in, 869

without catch, 373

Financial calculations, 49

fine, finer, finest methods (Logger), 390, 404

Firefox, 34

first method (SortedSet), 493

First Person, Inc., 10

firstKey method (SortedMap), 500

FirstSample/FirstSample.java, 46

Float class

converting from float, 252

hashCode method, 237

POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants, 49

float type, 48

converting to other numeric types, 59–60

Floating-point numbers, 48–49

arithmetic computations with, 56

equality of, 101

formatting output for, 82–83

rounding, 49, 60

Floating-point overflow, 57

floor method (NavigableSet), 493

floorMod method (Math), 57

Flow layout manager, 638

FlowLayout class, 641

flush method (Handler), 406

FocusAdapter class, 626

FocusEvent class, 626

isTemporary method, 627

FocusListener interface, 626

focusGained/Lost methods, 627

Font class, 574–581

createFont method, 575

deriveFont method, 575, 581

getFamily, getFontName, getName methods, 580

getLineMetrics method, 577, 580

getStringBounds method, 576–577, 580

font/FontTest.java, 578

fontconfig.properties file, 575

FontMetrics class, getFontRenderContext method,

582

Fonts, 573–582

checking availability of, 573

face/family names of, 573

logical names of, 574

size of, 574–575

styles of, 575

typesetting properties of, 576

“for each” loop, 112–114

for array lists, 249

for collections, 464, 914

for multidimensional arrays, 122

for loop, 99–103

comma-separated lists of expressions in,

65

defining variables inside, 101

for collections, 464

forEach method

of ConcurrentHashMap, 910–911

of Map, 499

Foreground color, specifying, 570

Fork-join framework, 928

forkJoin/ForkJoinTest.java, 930

Format specifiers (printf), 82

format, formatTo methods (String), 83

Formattable interface, 83

Formatter class, methods of, 399, 408

forName method (Class), 261, 265

Frame class, 543

get/setExtendedState method, 553

getIconImage method, 553

getTitle method, 553

is/setUndecorated methods, 553

isResizable method, 553

setIconImage method, 546, 553

setResizable method, 546, 553

setTitle method, 546, 553

Frames

closing by user, 545

creating, 543–546

973Index

ptg16518469

Frames (continued)

decorating, 546

displaying:

information in, 554–560

text in, 557

positioning, 546–554

properties of, 549

size of, 549–554

frequency method (Collections), 524

Full-screen mode, 550

Function interface, 326

Functional interfaces, 318–319

abstract methods in, 318

annotating, 328

conversion to, 318

generic, 319

using supertype bounds in, 447

@FunctionalInterface annotation, 328

Functions. See Methods

Future interface, 927

cancel method, 915, 920–921, 945

get method, 915, 919, 921, 945

isCancelled, isDone methods, 915, 920–921

future/FutureTest.java, 917

Futures, 915–920

combining multiple, 934

completable, 931–934

FutureTask class, 915–920

G
Garbage collection, 68, 139

hash maps and, 504

GB18030 standard, 51

General Public License (GPL), 14

Generic programming, 415–458

classes in, 245, 418–420, 669

extending/implementing other generic

classes, 441

no throwing or catching instances of,

436–437

collection interfaces in, 525

converting to raw types, 412, 441

debugging, 513

expressions in, 426

in JVM, 425, 452–458

inheritance rules for, 440–442

legacy code and, 429

methods in, 421–422, 427–429, 466–469

not for arrays, 434–436

reflection and, 450–458

required skill levels for, 417

static fields or methods and, 436

type erasure in, 425–430, 434

clashes after, 439–440

type matching in, 452

vs. arrays, 321

vs. inheritance, 416–418

wildcard types in, 442–450

GenericArrayType interface, 453

getGenericComponentType method, 458

genericReflection/GenericReflectionTest.java, 454

get method

of Array, 279

of ArrayList, 247, 251

of BitSet, 533

of ConcurrentHashMap, 908

of Field, 276

of Future, 915, 919, 921, 945

of LinkedList, 480

of List, 470, 483

of LongAccumulator, 888

of Map, 469, 497, 499

of PersistenceService, 838

of Preferences, 795, 800

of ThreadLocal, 893

of Vector, 883

getActionCommand method

of ActionEvent, 598, 627

of ButtonModel, 661, 663

of EventObject, 624

getActionMap method (JComponent), 615

getActualTypeArguments method (ParameterizedType),

458

getAdjustable, getAdjustmentType methods

(AdjustmentEvent), 627

getAncestorOfClass method (SwingUtilities), 747,

752

getAndType methods (AtomicType), 887

getApplet, getApplets methods (AppletContext), 818,

820

getAppletContext method (Applet), 818–820

getAppletInfo method (Applet), 816

getAscent method (LineMetrics), 581

getAudioClip method (Class), 784, 817

getAutoCreateXxx methods (GroupLayout), 722

getAvailableFontFamilyNames method

(GraphicsEnvironment), 573

getBackground method (Component), 573

Index974

ptg16518469

getBoolean method (Array), 279

getBounds method (TypeVariable), 457

getByte method (Array), 279

getCause method (Throwable), 379

getCenterX/Y methods (RectangularShape), 563, 568

getChar method (Array), 279

getClass method

always returning raw types, 431

of Class, 261

of Object, 244

getClassName method

of LookAndFeelInfo, 603

of StackTraceElement, 380

getClickCount method (MouseEvent), 616, 623, 627

getCodeBase method

of Applet, 816–817

of BasicService, 831, 836

getColor method

of Graphics, 572

of JColorChooser, 770

getColumns method (JTextField), 650

getComponentPopupMenu method (JComponent), 686

getComponentType method (Class), 277

getConstructor method (Class), 451

getConstructors method (Class), 266, 270

getContentPane method (JFrame), 559

getDataType methods (Preferences), 795, 800

getDay method (Date, deprecated), 141

getDayXxx methods (LocalDate), 141, 145

getDeclaredConstructor method (Class), 451

getDeclaredConstructors method (Class), 266, 270

getDeclaredField method (Class), 275

getDeclaredFields method (Class), 266, 270, 272,

275

getDeclaredMethods method (Class), 266, 270, 280

getDeclaringClass method (java.lang.reflect), 270

getDefaultScreenDevice method (GraphicsEnvironment),

774, 778

getDefaultToolkit method (Toolkit), 305, 549, 553

getDefaultUncaughtExceptionHandler method (Thread),

861

getDelay method (Delayed), 900, 903

getDescent method (LineMetrics), 581

getDescription method

of FileFilter, 755, 764

of FileView, 756, 764

getDocumentBase method (Applet), 816–817

getDouble method (Array), 279

getEnumConstants method (Class), 451

getExceptionTypes method (Constructor), 270

getExtendedState method (Frame), 553

getFamily method (Font), 580

getField method (Class), 275

getFields method (Class), 266, 270, 275

getFileName method (StackTraceElement), 380

getFilter method (Handler, Logger), 406

getFirst/Last methods

of Deque, 495

of LinkedList, 484

getFloat method (Array), 279

getFont method

of Component, 651

of Graphics, 581

getFontMetrics method (JComponent), 577, 582

getFontName method (Font), 580

getFontRenderContext method

of FontMetrics, 582

of Graphics2D, 576, 582

getForeground method (Component), 573

getFormatter method (Handler), 406

getGenericComponentType method (GenericArrayType),

458

getGenericParameterTypes, getGenericReturnType
methods (Method), 457

getGenericXxx methods (Class), 457

getGlobal method (Logger), 389, 410

getHandlers method (Logger), 406

getHead method (Formatter), 399, 408

getHeight method

of LineMetrics, 581

of RectangularShape, 563, 568

getHonorsVisibility, getHorizontalGroup methods

(GroupLayout), 722

getIcon method

of FileView, 756, 764

of JLabel, 652

getIconImage method (Frame), 553

getImage method

of Applet, 817

of Class, 784

of ImageIcon, 554, 582

getInheritsPopupMenu method (JComponent), 686

getInputMap method (JComponent), 612, 615

getInputStream method (FileContents), 830, 837

getInstalledLookAndFeels method (UIManager), 602

getInt method (Array), 279

getItem, getItemSelectable methods (ItemEvent),

627

975Index

ptg16518469

getItemAt method (JComboBox), 669

getKey method (Map.Entry), 503

getKeyStroke method (KeyStroke), 610, 615

getKeyXxx methods (KeyEvent), 627

getLargestPoolSize method (ThreadPoolExecutor), 926

getLeading method (LineMetrics), 581

getLength method (Array), 277, 279

getLevel method

of Handler, 406

of Logger, 405

of LogRecord, 407

getLineMetrics method (Font), 577, 580

getLineNumber method (StackTraceElement), 380

getLocalGraphicsEnvironment method

(GraphicsEnvironment), 774,

778

getLogger method (Logger), 390, 404

getLoggerName method (LogRecord), 407

getLong method (Array), 279

getLowerBounds method (WildcardType), 458

getMaxX/Y methods (RectangularShape), 568

getMessage method

of LogRecord, 407

of Throwable, 366

getMethod method (Class), 280

getMethodName method (StackTraceElement), 380

getMethods method (Class), 266, 270

getMillis method (LogRecord), 408

getMinX/Y methods (RectangularShape), 568

getModifiers method

of ActionEvent, 627

of java.lang.reflect, 265, 270

getModifiersEx method (InputEvent), 617, 623

getModifiersExText method (InputEvent), 623

getMonth method (Date, deprecated), 141

getMonthXxx methods (LocalDate), 141, 145

getName method

of Class, 244, 261–262

of FileContents, 837

of FileView, 756, 764

of Font, 580

of java.lang.reflect, 265, 270

of LookAndFeelInfo, 603

of TypeVariable, 457

getNames method (PersistenceService), 838

getNewState, getOldState methods (WindowEvent),

607, 628

getOppositeWindow method (WindowEvent), 628

getOrDefault method (Map), 499

getOutputStream method (FileContents), 830, 837

getOwnerType method (ParameterizedType), 458

getPaint method (Graphics2D), 573

getParameter method (Applet), 810–811, 816

getParameterInfo method (Applet), 816

getParameters method (LogRecord), 407

getParameterTypes method (Method), 270

getParent method (Logger), 406

getPassword method (JPasswordField), 653

getPoint method (MouseEvent), 623, 627

getPredefinedCursor method (Cursor), 617

getPreferredSize method (Component), 557, 559

getProperties method (System), 789, 793

getProperty method

of Properties, 531, 789, 792

of System, 793

getProxyClass method (Proxy), 355–356

getRawType method (ParameterizedType), 458

getResource, getResourceAsStream methods (Class),

784, 787

getResourceBundle, getResourceBundleName methods

(LogRecord), 407

getReturnType method (Method), 270

getRootPane method (JComponent), 748, 752

getScreenSize method (Toolkit), 549, 553

getScrollAmount method (MouseWheelEvent), 628

getSelectedFile/Files methods (JFileChooser), 754,

763

getSelectedItem method (JComboBox), 669–671

getSelectedObjects method (ItemSelectable), 661

getSelection method (ButtonGroup), 661, 663

getSequenceNumber method (LogRecord), 408

getServiceNames method (ServiceManager), 836

getShort method (Array), 279

getSize method (Component), 552

getSource method (EventObject), 598, 624

getSourceXxxName methods (LogRecord), 408

getStackTrace method (Throwable), 377, 379

getState method

of SwingWorker, 950

of Thread, 858

getStateChange method (ItemEvent), 627

getStringBounds method (Font), 576–577, 580

getSuperclass method (Class), 244, 451

getSuppressed method (Throwable), 377, 380

getTail method (Formatter), 399, 408

Getter/setter pairs. See Properties

getText method

of JLabel, 652

Index976

ptg16518469

of JTextComponent, 650

getThreadID method (LogRecord), 408

getThrown method (LogRecord), 408

getTime method (Calendar), 218

getTitle method (Frame), 553

getType method (Field), 265

getTypeDescription method (FileView), 756, 764

getTypeParameters method (Class, Method), 457

getUncaughtExceptionHandler method (Thread), 861

getUpperBounds method (WildcardType), 458

getUseParentHandlers method (Logger), 406

getValue method

of Action, 608, 615

of AdjustmentEvent, 627

of Map.Entry, 503

getWheelRotation method (MouseWheelEvent), 628

getWidth method

of Rectangle2D, 563

of RectangularShape, 563, 568

getWindow method (WindowEvent), 628

getX/Y methods

of MouseEvent, 616, 623, 627

of RectangularShape, 568

getYear method

of Date (deprecated), 141

of LocalDate, 141, 145

GMT (Greenwich Mean Time), 139

Goetz, Brian, 840, 885

Gosling, James, 10–11

goto statement, 89, 106

Graphical User Interface (GUI), 537–586

automatic testing, 774–778

components of, 629–778

choice components, 657–678

dialog boxes, 730–770

text input, 648–656

toolbars, 694–696

tooltips, 696–699

traversal order of, 729–730

deadlocks in, 897

debugging, 367, 770–778

events in, 587

keyboard focus in, 611

layout of, 638–648, 699–730

multithreading for, 846–851

Graphics class, 560, 582–586

copyArea method, 583, 586

drawImage method, 582, 585

drawString method, 581

get/setFont methods, 581

getColor method, 572

setColor method, 570, 572

Graphics editor applications, 616–624

Graphics2D class, 560–569

draw method, 561

drawString method, 582

fill method, 569–570, 573

getFontRenderContext method, 576, 582

getPaint method, 573

setPaint method, 569, 573

GraphicsDevice class, 550, 774

GraphicsEnvironment class, 550

getAvailableFontFamilyNames method, 573

getDefaultScreenDevice method, 774, 778

getLocalGraphicsEnvironment method, 774, 778

Green project, 10

GregorianCalendar class, 142

add method, 142

constructors for, 140, 172

Grid bag layout, 700–712

padding in, 704

Grid layout, 644–648

gridbag/FontFrame.java, 707

gridbag/GBC.java, 709

GridBagConstraints class, 703

fill, anchor parameters, 704, 712

gridx/y, gridwidth/height parameters, 703–706,

712

helper class for, 706–712

insets field, 704, 712

ipadx/y parameters, 712

weightx/y fields, 703, 712

GridLayout class, 641, 644–648

Group layout, 701, 713–723

GroupLayout class, 713–723

methods of, 722

groupLayout/FontFrame.java, 719

GroupLayout.Group class, 723

GroupLayout.ParallelGroup class, 723

GroupLayout.SequentialGroup class, 723

GTK look-and-feel, 539–540

GUI. See Graphical User Interface

H
handle method (CompletableFuture), 933

Handler class, 397

close method, 406

flush method, 406

977Index

ptg16518469

Handler class (continued)

get/setFilter methods, 406

get/setLevel methods, 406

getFormatter method, 406

publish method, 398, 406

setFormatter method, 399, 406

Handlers, 394–398

Hansen, Per Brinch, 884

“Has–a” relationship, 133–135

hash method (Objects), 237

Hash codes, 235–238, 485

default, 235

formatting output for, 83

Hash collisions, 486

Hash maps, 497

concurrent, 905–907

identity, 507–509

linked, 504–506

setting, 497

vs. tree maps, 497

weak, 504

Hash sets, 485–489

adding elements to, 490

linked, 504–506

Hash tables, 485

legacy, 528

load factor of, 486

rehashing, 486

hashCode method, 235–238

equals method and, 236–237

null-safe, 236

of Arrays, 238

of Boolean, Byte, Character, Double, Float, Integer,

Long, Short, 237

of Object, 237, 489

of Objects, 236–237

of proxy classes, 355

of Set, 471

of String, 485

HashMap class, 497, 500

as a concrete collection type, 472

HashSet class, 464, 487–488

add method, 487

as a concrete collection type, 472

contains method, 487

Hashtable interface, 460, 528, 914–915

as a concrete collection type, 472

elements, keys methods, 530

synchronized methods, 528

hasMoreElements method (Enumeration), 465, 528,

530

hasNext method

of Iterator, 463, 465, 469

of Scanner, 81

hasNextType methods (Scanner), 81

hasPrevious method (ListIterator), 476, 483

headMap method

of NavigableMap, 517

of SortedMap, 511, 516

headSet method (NavigableSet, SortedSet), 511,

516

Heap, 495

dumping, 413

Height (in typesetting), 576

Helper classes, 706–712

Helper methods, 156, 448

Hexadecimal numbers

formatting output for, 82–83

prefix for, 48

higher method (NavigableSet), 493

Hoare, Tony, 884

Hold count, 870

Holder types, 255

HotJava browser, 11, 802

Hotspot just-in-time compiler, 534

HTML (HyperText Markup Language),

12–13

applet element, 34, 805, 808–810

param element, 810–816

tables, 701

target attribute, 820

title element, 807

HTML editors, 633

I
Icons

associating with file extensions, 757

in menu items, 682–683

in sliders, 674

Identity hash maps, 507–509

identityHashCode method (System), 507, 509

IdentityHashMap class, 507–509

as a concrete collection type, 472

IEEE 754 specification, 49, 59

if statement, 90–94

IFC (Internet Foundation Classes), 538

IllegalAccessException, 272

IllegalStateException, 465, 469, 483, 494, 899

Index978

ptg16518469

image/ImageTest.java, 583

ImageIcon class, 550

getImage method, 554, 582

Images

accessing from applets, 816–817

displaying, 582–586

ImageViewer/ImageViewer.java, 31

Immutable classes, 157

Implementations, 460

implements keyword, 290

Implicit parameters, 152–153

none, in static methods, 160

state of, 409

import statement, 183–184

static, 185

importPreferences method (Preferences), 795,

800

Inconsistent state, 896

increment method (LongAdder), 888

Increment operators, 61–62

Incremental linking, 7

incrementAndGet method (AtomicType), 887

Index (in arrays), 111

indexOf method

of List, 483

of String, 73

indexOfSubList method (Collections), 524

info method (Logger), 389–390, 404

Information hiding. See Encapsulation

Inheritance, 133–135, 203–286

design hints for, 283–286

equality testing and, 231–235

hierarchies of, 212–213

multiple, 213, 297

preventing, 217–218

vs. type parameters, 416, 440–442

inheritance/Employee.java, 210

inheritance/Manager.java, 211

inheritance/ManagerTest.java, 210

init method (Applet), 807, 811

initCause method (Throwable), 379

Initialization blocks, 177–181

static, 178

initialize method (ThreadLocal), 893

Inlining, 7, 218

Inner classes, 329–349

accessing object state with, 331–334

anonymous, 329, 342–345, 606

applicability of, 335–338

defined, 329

local, 339

private, 333

static, 331, 346–349

syntax of, 334–335

vs. lambdas, 318

innerClass/InnerClassTest.java, 333

Input dialogs, 733

Input maps, 611–613

Input, reading, 79–81

InputEvent class

getModifiersEx method, 617, 623

getModifiersExText method, 623

InputTest/InputTest.java, 80

insert method

of JMenu, 681

of JTextArea, 951

of StringBuilder, 78

insertItemAt method (JComboBox), 669, 671

insertSeparator method (JMenu), 681

Instance fields, 131

final, 157

initializing, 200

explicit, 174

not present in interfaces, 289, 296

private, 150, 200

protected, 283

public, 150

shadowing, 151, 175–176

values of, 153–154

volatile, 885–886

vs. local variables, 151–152, 173

instanceof operator, 64, 220–221, 295

Instances, 131

creating on the fly, 263

int type, 47

converting to other numeric types,

59–60

fixed size for, 6

platform-independence of, 48

random number generator for, 181

Integer class

compare method, 294, 318

converting from int, 252

hashCode method, 237

intValue method, 255

parseInt method, 254, 256, 811

toString method, 256

valueOf method, 256

979Index

ptg16518469

Integer types, 47–48

arithmetic computations with, 56

arrays of, 240

formatting output for, 82

no unsigned types in Java, 48

Integrated Development Environment (IDE),

20, 26–30

Inter-applet communication, 810, 818

interface keyword, 288

Interface types, 462

Interface variables, 295

Interfaces, 288–305

abstract classes and, 297

callbacks and, 302–305

constants in, 296

defined, 288

documentation comments for, 194

evolution of, 299

extending, 295

for custom algorithms, 526–528

functional, 318–319

listener, 588

marker, 309

methods in, 298

clashes between, 300–302

do-nothing, 604

nonabstract, 318

no instance fields in, 289, 296

properties of, 295–296

public, 194

tagging, 309, 426, 471

vs. implementations, 460–463

interfaces/Employee.java, 293

interfaces/EmployeeSortTest.java, 292

Intermittent bugs, 69, 545, 952

Internal errors, 360, 363, 386

Internal padding, 704

Internationalization. See Localization

Internet Explorer

applets in, 810

Java in, 9

limited Java support in, 803

security of, 15

Interpreted languages, 14

Interpreter, 7

interrupt method (Thread), 851–854

interrupted method (Thread), 853–854

InterruptedException, 841, 847, 851–854, 893–895,

915

IntHolder class, 255

Intrinsic locks, 878, 884

Introduction to Algorithms (Cormen et al.),

489

intValue method (Integer), 255

Invocation handlers, 350

InvocationHandler interface, 350, 355

invoke method

of InvocationHandler, 350, 355

of Method, 279–283

invokeAndWait method (EventQueue), 940, 943

invokeAny/All methods (ExecutorService),

927–928

invokeLater method (EventQueue), 940, 943, 952

IOException, 88, 361, 364, 368, 375

“Is–a” relationship, 133–135, 213, 284

isAbstract method (Modifier), 271

isAccessible method (AccessibleObject), 275

isActionKey method (KeyEvent), 627

isCancelled, isDone methods (Future), 915,

920–921

isDefaultButton method (JButton), 752

isDispatchThread method (EventQueue), 943

isEditable method

of JComboBox, 671

of JTextComponent, 648

isEmpty method (Collection), 299, 467–468

isEnabled method (Action), 608, 615

isFinal method (Modifier), 265, 271

isInterface method (Modifier), 271

isInterrupted method (Thread), 851–854

isJavaIdentifierXxx methods (Character), 53

isLocationByPlatform method (Window), 552

isLoggable method (Filter), 398, 408

isNaN method (Double), 49

isNative method (Modifier), 271

isNativeMethod method (StackTraceElement), 381

ISO 8859–1 standard, 51

isPopupTrigger method

of JPopupMenu, 685

of MouseEvent, 686

isPrivate method (Modifier), 265, 271

isProtected method (Modifier), 271

isProxyClass method (Proxy), 355–356

isPublic method (Modifier), 265, 271

isResizable method (Frame), 553

isSelected method

of AbstractButton, 684

of JCheckBox, 658–659

Index980

ptg16518469

isStatic, isStrict, isSynchronized methods

(Modifier), 271

isTemporary method (FocusEvent), 627

isTraversable method (FileView), 756, 764

isUndecorated method (Frame), 553

isVisible method (Component), 552

isVolatile method (Modifier), 271

isWebBrowserSupported method (BasicService), 836

ItemEvent class, 626

getItem, getItemSelectable, getStateChange
methods, 627

ItemListener interface, 626

itemStateChanged method, 627

ItemSelectable interface, getSelectedObjects
method, 661

Iterable interface, 113

iterator method

of Collection, 463, 468

of ServiceLoader, 802

Iterator interface, 463–466

“for each” loop, 464

generic, 466

hasNext, next, remove methods, 463, 465,

469

Iterators, 463–466

being between elements, 465

weakly consistent, 906

IzPack utility, 783

J
J# programming language, 8

J++ programming language, 8

delegates in, 280

JApplet class, 803–808

Jar Bundler utility, 783

JAR files, 190, 780–787

creating, 780

digitally signed, 822–824

dropping in jre/lib/ext directory, 193

executable, 782–783

manifest of, 781–782

resources and, 783–787

sealing, 787

jar program, 780

command-line options of, 781–782

Java programming language

architecture-neutral object file format of,

5

as a programming platform, 1–2

available under GPL, 14

basic syntax of, 42–46, 145

calling by value in, 165

case-sensitiveness of, 26, 42, 53–56, 528

communicating with JavaScript, 809

compiling/launching from the command

line, 24

design of, 2–8

documentation for, 23

dynamic, 8

dynamic binding in, 209, 214–217

garbage collection in, 68, 139

history of, 10–12

interpreter in, 7

libraries in, 12–13

installing, 22–23

misconceptions about, 13–15

multithreading in, 7, 839–952

networking capabilities of, 4

no multiple inheritance in, 297

no operator overloading in, 109

no unsigned types in, 48

performance of, 7, 14, 534

portability of, 6, 13, 56

reliability of, 4

reserved words in, 43, 53, 56

security of, 4–5, 14, 820–822

simplicity of, 3, 315

strongly typed, 47, 291

versions of, 11–12, 538, 700

vs. C++, 3

Java 2 (J2), 18

Java 2D library, 560–569

floating-point coordinates in, 561

Java bug parade, 44, 393

Java collections framework (JCF), 459–536

algorithms in, 517–528

converting between collections and arrays

in, 525–526

interfaces in, 469–471

legacy classes in, 528–536

operations in:

bulk, 524–525

optional, 514

separating interfaces from

implementations in, 460–463

views and wrappers in, 509–517

vs. traditional collections libraries, 465

Java Concurrency in Practice (Goetz), 840

981Index

ptg16518469

Java Development Kit (JDK), 5, 17–39

applet viewer, 805–806

documentation in, 74–77, 612

downloading, 18–20

fonts shipped with, 574

installation of, 18–23

default, 780

setting up, 20–22

.java file extension, 43

Java Language Specification, 43

Java look-and-feel, 611

Java Memory Model and Thread

Specification, 885

Java Network Launch Protocol (JNLP),

824–838

Java Plug-in, 802–824

control panel of, 827

enabling, 34

installing, 803

Java console in, 807

restrictiveness of, 9, 822

running local applets in, 806

signed code in, 822–824

java program, 25

command-line options of, 385–386

Java Runtime Environment (JRE), 18

Java SE 8, 12, 18

adding static methods to interfaces in,

298–299, 523

completable futures in, 931

concurrent hash maps in, 906–911

constructor expressions in, 433

hash tables in, 486

Java Plug-in for, 34

lambda expressions in, 314–329, 464, 887

LongAdder, LongAccumulator classes in, 888

parallelized operations on arrays in, 912

Java virtual machine (JVM), 6

generics in, 425, 452–458

launching, 25

monitoring and managing applications

in, 412

optimizing execution in, 391

precomputing method tables in, 216

security vulnerabilities in, 803

thread priority levels in, 859

truncating arithmetic computations in,

56

watching class loading in, 411

Java Virtual Machine Specification, 44

Java Web Start, 824–838

launching, 826

printing in, 832

security of, 829

java.applet.Applet API, 807–808, 816–817, 820

java.applet.AppletContext API, 820

java.awt.BorderLayout API, 644

java.awt.Color API, 572

java.awt.Component API, 552, 559, 573, 624, 651,

724

java.awt.Container API, 595, 641

java.awt.event.ActionEvent API, 598

java.awt.event.InputEvent API, 623

java.awt.event.MouseEvent API, 623, 686

java.awt.event.WindowEvent API, 607

java.awt.event.WindowListener API, 606

java.awt.event.WindowStateListener API, 607

java.awt.EventQueue API, 943

java.awt.FlowLayout API, 641

java.awt.Font API, 580–581

java.awt.font.LineMetrics API, 581

java.awt.FontMetrics API, 582

java.awt.Frame API, 553

java.awt.geom.Ellipse2D.Double API, 569

java.awt.geom.Line2D.Double API, 569

java.awt.geom.Point2D.Double API, 569

java.awt.geom.Rectangle2D.Double API, 568

java.awt.geom.Rectangle2D.Float API, 569

java.awt.geom.RectangularShape API, 568

java.awt.Graphics API, 572, 581, 585–586

java.awt.Graphics2D API, 573, 582

java.awt.GraphicsEnvironment API, 778

java.awt.GridLayout API, 648

java.awt.LayoutManager API, 728

java.awt.Robot API, 778

java.awt.Toolkit API, 305, 553, 623

java.awt.Window API, 552, 560

java.beans.EventHandler API, 598

java.io.Console API, 81

java.io.PrintWriter API, 89

java.lang.Boolean API, 237

java.lang.Byte API, 237

java.lang.Character API, 237

java.lang.Class API, 244, 265, 270, 275, 451,

457, 787

java.lang.ClassLoader API, 388

java.lang.Comparable API, 293

java.lang.Double API, 237, 294

Index982

ptg16518469

java.lang.Enum API, 260

java.lang.Exception API, 380

java.lang.Float API, 237

java.lang.Integer API, 237, 255–256, 294

java.lang.Long API, 237

java.lang.Object API, 132, 237, 244, 489,

881–882

java.lang.Objects API, 237

java.lang.reflect package, 265, 276

java.lang.reflect.AccessibleObject API, 275

java.lang.reflect.Array API, 279

java.lang.reflect.Constructor API, 265, 270, 452

java.lang.reflect.Field API, 270, 276

java.lang.reflect.GenericArrayType API, 458

java.lang.reflect.InvocationHandler API, 355

java.lang.reflect.Method API, 270, 283, 457

java.lang.reflect.Modifier API, 271

java.lang.reflect.ParameterizedType API, 458

java.lang.reflect.Proxy API, 356

java.lang.reflect.TypeVariable API, 457

java.lang.reflect.WildcardType API, 458

java.lang.Runnable API, 851

java.lang.RuntimeException API, 380

java.lang.Short API, 237

java.lang.StackTraceElement API, 380–381

java.lang.String API, 72–73

java.lang.StringBuilder API, 78

java.lang.System API, 81, 509, 793

java.lang.Thread API, 846, 851, 854, 858–861

java.lang.Thread.UncaughtExceptionHandler API, 861

java.lang.ThreadGroup API, 862

java.lang.ThreadLocal API, 893

java.lang.Throwable API, 265, 366, 379–380

java.math.BigDecimal API, 111

java.math.BigInteger API, 110

java.nio.file.Paths API, 89

java.text.NumberFormat API, 256

java.time.LocalDate API, 145

java.util.ArrayDeque API, 495

java.util.ArrayList API, 247, 251

java.util.Arrays API, 119–120, 234, 238, 294,

516

java.util.BitSet API, 533

java.util.Collection API, 468–469, 524

java.util.Collections API, 514–515, 520–524,

915

java.util.Comparator API, 521

java.util.concurrent package, 868

canned functionality classes in, 934–937

efficient collections in, 905–907

java.util.concurrent.ArrayBlockingQueue API, 903

java.util.concurrent.atomic package, 886

java.util.concurrent.BlockingDeque API, 904–905

java.util.concurrent.BlockingQueue API, 904

java.util.concurrent.Callable API, 919

java.util.concurrent.ConcurrentHashMap API, 907

java.util.concurrent.ConcurrentLinkedQueue API, 907

java.util.concurrent.ConcurrentSkipListMap API, 907

java.util.concurrent.ConcurrentSkipListSet API, 907

java.util.concurrent.Delayed API, 903

java.util.concurrent.DelayQueue API, 903

java.util.concurrent.ExecutorCompletionService API,

928

java.util.concurrent.Executors API, 925–926

java.util.concurrent.ExecutorService API, 925, 928

java.util.concurrent.Future API, 919–920

java.util.concurrent.FutureTask API, 920

java.util.concurrent.LinkedBlockingQueue API, 903

java.util.concurrent.locks.Condition API, 877, 895

java.util.concurrent.locks.Lock API, 871, 877, 894

java.util.concurrent.locks.ReentrantLock API, 872

java.util.concurrent.locks.ReentrantReadWriteLock API,

896

java.util.concurrent.PriorityBlockingQueue API, 904

java.util.concurrent.ScheduledExecutorService API,

926

java.util.concurrent.ThreadLocalRandom API, 893

java.util.concurrent.ThreadPoolExecutor API, 926

java.util.concurrent.TransferQueue API, 905

java.util.Deque API, 494–495

java.util.Enumeration API, 530

java.util.EnumMap API, 508

java.util.EnumSet API, 508

java.util.EventObject API, 598

java.util.function API, 319

java.util.HashMap API, 500

java.util.HashSet API, 488

java.util.Hashtable API, 530

java.util.IdentityHashMap API, 509

java.util.Iterator API, 469

java.util.LinkedHashMap API, 508

java.util.LinkedHashSet API, 507

java.util.LinkedList API, 484

java.util.List API, 482–483, 516, 521, 524

java.util.ListIterator API, 483

java.util.logging.ConsoleHandler API, 407

java.util.logging.FileHandler API, 407

java.util.logging.Filter API, 408

983Index

ptg16518469

java.util.logging.Formatter API, 408

java.util.logging.Handler API, 406

java.util.logging.Logger API, 404–406

java.util.logging.LogRecord API, 407–408

java.util.Map API, 499, 501–503

java.util.Map.Entry API, 503

java.util.NavigableMap API, 517

java.util.NavigableSet API, 493, 516

java.util.Objects API, 235

java.util.prefs.Preferences API, 799–800

java.util.PriorityQueue API, 496

java.util.Properties API, 531, 792–793

java.util.Queue API, 494

java.util.Random API, 181

java.util.Scanner API, 81, 89

java.util.ServiceLoader API, 802

java.util.SortedMap API, 500, 516

java.util.SortedSet API, 493, 516

java.util.Stack API, 532

java.util.TreeMap API, 500

java.util.TreeSet API, 493

java.util.Vector API, 530

java.util.WeakHashMap API, 507

JavaBeans, 260, 758, 813

javac program, 25

current directory in, 192

javadoc program, 194–199

command-line options of, 199

comments in:

class, 194–198

extracting, 198–199

field, 194, 196

general, 196

method, 194–195, 198

overview, 198

package, 194, 198

redeclaring Object methods for, 318

HTML markup in, 194

hyperlinks in, 198

links to other files in, 195

online documentation of, 199

JavaFX, 543

javap program, 336

JavaScript, 15

accessing applets from, 810

communicating with Java, 809

javaws program, 828

javaws.jar file, 830

javax.jnlp.BasicService API, 836

javax.jnlp.FileContents API, 837

javax.jnlp.FileOpenService API, 837

javax.jnlp.FileSaveService API, 837

javax.jnlp.PersistenceService API, 837–838

javax.jnlp.ServiceManager API, 836

javax.swing package, 545

javax.swing.AbstractAction API, 683

javax.swing.AbstractButton API, 663, 681–684, 688

javax.swing.Action API, 615

javax.swing.border.LineBorder API, 668

javax.swing.border.SoftBevelBorder API, 667

javax.swing.BorderFactory API, 666–667

javax.swing.ButtonGroup API, 663

javax.swing.ButtonModel API, 663

javax.swing.event package, 627

javax.swing.event.MenuListener API, 690

javax.swing.filechooser.FileFilter API, 764

javax.swing.filechooser.FileNameExtensionFilter API,

764

javax.swing.filechooser.FileView API, 764

javax.swing.GroupLayout API, 722

javax.swing.GroupLayout.Group API, 723

javax.swing.GroupLayout.ParallelGroup API, 723

javax.swing.GroupLayout.SequentialGroup API, 723

javax.swing.ImageIcon API, 554

javax.swing.JButton API, 595, 752

javax.swing.JCheckBox API, 659

javax.swing.JCheckBoxMenuItem API, 684

javax.swing.JColorChooser API, 770

javax.swing.JComboBox API, 671

javax.swing.JComponent API, 560, 582, 615, 650,

668, 686, 699, 752

javax.swing.JDialog API, 745

javax.swing.JFileChooser API, 762–763

javax.swing.JFrame API, 559, 682

javax.swing.JLabel API, 652

javax.swing.JMenu API, 681

javax.swing.JMenuItem API, 681–682, 688, 690

javax.swing.JOptionPane API, 304, 739–741

javax.swing.JPasswordField API, 653

javax.swing.JPopupMenu API, 685

javax.swing.JRadioButton API, 663

javax.swing.JRadioButtonMenuItem API, 684

javax.swing.JRootPane API, 752

javax.swing.JScrollPane API, 656

javax.swing.JSlider API, 678

javax.swing.JTextArea API, 656

javax.swing.JTextField API, 650

javax.swing.JToolBar API, 699

Index984

ptg16518469

javax.swing.KeyStroke API, 615

javax.swing.SwingUtilities API, 752

javax.swing.SwingWorker API, 950

javax.swing.text.JTextComponent API, 648

javax.swing.Timer API, 305

javax.swing.UIManager API, 602

javax.swing.UIManager.LookAndFeelInfo API, 603

JButton class, 591, 595, 610, 636–638

isDefaultButton method, 752

JCheckBox class, 657–659

isSelected method, 658–659

setSelected method, 657, 659

JCheckBoxMenuItem class, 683–684

JColorChooser class, 764–770

methods of, 770

JComboBox class, 627, 668–671

addItem method, 669–671

getItemAt method, 669

getSelectedItem method, 669–671

insertItemAt method, 669, 671

isEditable method, 671

removeXxx methods, 669, 671

setEditable method, 669, 671

setModel method, 669

JComponent class, 554

action maps, 612

get/setComponentPopupMenu methods, 685–686

get/setInheritsPopupMenu methods, 685–686

getActionMap method, 615

getFontMetrics method, 577, 582

getInputMap method, 612, 615

getRootPane method, 748, 752

input maps, 611–613

paintComponent method, 554–556, 560, 577,

583

repaint method, 951

revalidate method, 649–650, 951

setBorder method, 664, 668

setDebugGraphicsOptions method, 771

setFont method, 650

setSelectionStart/End methods, 952

setToolTipText method, 699

jconsole program, 393, 412, 771, 889

jcontrol program, 807

JDialog class, 741–745

setDefaultCloseOperation method, 743, 807

setVisible method, 743, 746, 807

JDK. See Java Development Kit

JEditorPane class, 654

JFC (Java Foundation Classes), 539

JFileChooser class, 752–764

addChoosableFileFilter method, 763

getSelectedFile/Files methods, 754, 763

resetChoosableFilters method, 756, 763

setAcceptAllFileFilterUsed method, 756, 763

setAccessory method, 763

setCurrentDirectory method, 754, 762

setFileFilter method, 755, 763

setFileSelectionMode method, 754, 763

setFileView method, 756–757, 763

setMultiSelectionEnabled method, 754, 763

setSelectedFile/Files methods, 754, 763

showDialog, showXxxDialog methods, 747, 752,

754, 763

JFrame class, 543–547, 640

add method, 555, 559

getContentPane method, 559

internal structure of, 554–555

setJMenuBar method, 679, 682

JLabel class, 651–652, 757

getIcon, getText methods, 652

setIcon, setText methods, 651–652

JList class, 670

jmap program, 413

JMenu class

add, addSeparator methods, 679, 681

insert, insertSeparator methods, 681

remove method, 681

JMenuBar class, 679–682

JMenuItem class, 681–682

setAccelerator method, 687–688

setEnabled method, 689–690

setIcon method, 682

Jmol applet, 9

JNLP API, 829–838

compiling programs with, 830

join method (Thread), 73, 856–858

JOptionPane class, 730–741

message types, 731

showConfirmDialog method, 731–732, 739

showInputDialog method, 731–732, 740

showInternalConfirmDialog method, 739

showInternalInputDialog method, 741

showInternalMessageDialog method, 739

showInternalOptionDialog method, 740

showMessageDialog method, 304, 731–732, 739

showOptionDialog method, 731–732, 739–740

JPanel class, 558, 638, 842

985Index

ptg16518469

JPasswordField class, 652–653

getPassword, setEchoChar methods, 653

JPopupMenu class, 684–686

isPopupTrigger, show methods, 685

JRadioButton class, 660–663

JRadioButtonMenuItem class, 684

JRootPane class, setDefaultButton method, 748,

752

JScrollbar class, 627

JScrollPane class, 656

JSlider class, 672–678

setInverted method, 674, 678

setLabelTable method, 429, 673, 678

setPaintLabels method, 673, 678

setPaintTicks method, 673, 678

setPaintTrack method, 674, 678

setSnapToTicks method, 673, 678

setXxxTickSpacing methods, 678

JTextArea class, 653–654

append method, 656, 951

insert method, 951

replaceRange method, 951

setColumns, setRows methods, 654, 656

setLineWrap method, 654, 656

setTabSize method, 656

setWrapStyleWord method, 656

JTextComponent class

getText method, 650

is/setEditable methods, 648

setText method, 648, 650, 951

JTextField class, 627, 649–651

getColumns method, 650

setColumns method, 649–650

JToolBar class, 695–696

add, addSeparator methods, 695–699

JUnit framework, 410

Just-in-time compiler, 6–7, 14, 153, 218, 413,

534

JVM. See Java virtual machine

K
K type variable, 419

Key/value pairs. See Properties

KeyAdapter class, 626

Keyboard

associating with actions, 610

focus of, 611

mnemonics for, 686–688

Keyboard focus, 729

KeyEvent class, 626

getKeyXxx, isActionKey methods, 627

KeyListener interface, 626

keyXxx methods, 627

keyPress/Release methods (Robot), 778

keys method

of Hashtable, 530

of Preferences, 795, 799

keySet method

of ConcurrentHashMap, 912

of Map, 502–503

KeyStroke class, getKeyStroke method, 610, 615

Knuth, Donald, 106

KOI-8 standard, 51

L
L suffix (long integers), 48

Labeled break statement, 106

Labels

for components, 651–652

for slider ticks, 673

Lambda expressions, 314–329

accessing variables in, 322–324

atomic updates with, 887

capturing values by, 323

for event listeners, 595

functional interfaces and, 318

method references and, 320

no assigning to a variable of type Object,
319

parameter types of, 316

processing, 324–328

result type of, 316

scope of, 324

syntax of, 315–317

this keyword in, 324

vs. inner classes, 318

lambda/LambdaTest.java, 317

Langer, Angelika, 458

last method (SortedSet), 493

lastIndexOf method

of List, 483

of String, 73

lastIndexOfSubList method (Collections), 524

lastKey method (SortedMap), 500

Launch4J utility, 783

Layout management, 638–648

absolute positioning, 723

border, 641–644

Index986

ptg16518469

box, 700

custom, 724–728

flow, 638

grid, 644–648

grid bag, 700–712

group, 701, 713–723

sophisticated, 699–730

spring, 700

LayoutManager interface

designing custom, 724–728

methods of, 728

LayoutManager2 interface, 725

Leading (in typesetting), 576

Legacy code and generics, 429–430

Legacy collections, 528–536

bit sets, 532–536

enumerations, 528–530

hash tables, 528

property maps, 530–531

stacks, 531

length method

of arrays, 112

of BitSet, 533

of String, 69–70, 73

of StringBuilder, 78

Lightweight collection wrappers,

509–510

Line2D class, 560, 565

Line2D.Double class, 569

LineBorder class, 665, 668

Linefeed, escape sequence for, 50

LineMetrics class, 577

getXxx methods, 581

Lines, 560

constructing, 565

@link comment (javadoc), 198

Linked hash maps/sets, 504–506

Linked lists, 474–484

concurrent modifications of, 479

doubly linked, 474

printing, 481

random access in, 479, 517

removing elements from, 475

LinkedBlockingDeque class, 903

LinkedBlockingQueue class, 899

LinkedHashMap class, 504–508

access vs. insertion order, 505

as a concrete collection type, 472

removeEldestEntry method, 506, 508

LinkedHashSet class, 504–507

as a concrete collection type, 472

LinkedList class, 462, 476, 479, 494

addFirst/Last, getFirst/Last methods, 484

as a concrete collection type, 472

get method, 480

listIterator method, 476

next/previousIndex methods, 480

removeAll method, 480

removeFirst/Last methods, 484

linkedList/LinkedListTest.java, 481

linkSize method (GroupLayout), 722

Linux

debugging applets in, 807

Eclipse versions for, 27

JDK versions for, 18

no thread priorities in Oracle JVM for,

859

pop-up trigger in, 685

running applets in, 34–35

setting paths in, 20, 191–193

setting up JDK in, 20

troubleshooting Java programs in, 26

List interface, 470, 509

add method, 470, 482

addAll method, 482

get, set methods, 470, 483

indexOf, lastIndexOf methods, 483

listIterator method, 482

remove method, 470, 483

replaceAll method, 524

sort method, 521

subList method, 510, 516

Listener interfaces, 588

Listener objects, 588

Listeners. See Action listeners, Event

listeners, Window listeners

ListIterator interface, 479

add method, 470, 476–478, 483

hasPrevious method, 476, 483

next/previousIndex methods, 483

previous method, 476, 483

remove method, 478

set method, 478, 483

listIterator method

of LinkedList, 476

of List, 482

Lists, 470

modifiable/resizable, 520

987Index

ptg16518469

load method

of Properties, 531, 788, 793

of ServiceLoader, 802

Local inner classes, 339

accessing final variables from outer

methods in, 339–342

Local variables

annotating, 430

vs. instance fields, 151–152, 173

LocalDate class, 139–141

extending, 285

getXxx methods, 141, 145

minusDays method, 145

now, of methods, 140, 145

plusDays method, 141, 145

processing arrays of, 446

Locales, 393

Localization, 136, 393–394, 784–785

Lock interface, 878

await method, 873–877

lock method, 871, 893–895

lockInterruptibly method, 893–895

newCondition method, 873, 877

signal method, 875–877

signalAll method, 874–877

tryLock method, 856, 893–895

unlock method, 869, 871

vs. synchronization methods,

880

Lock objects, 868–872

client-side, 883

deadlocks, 874, 889–893, 896

fair, 872

hold count for, 870

inconsistent state and, 896

intrinsic, 878, 884

not with try-with-resources statement,

869

read/write, 895–896

reentrant, 870

testing and timeouts, 893–895

Locks

condition objects for, 872–877

in synchronized blocks, 882–883

log, log10 methods (Math), 58

Logarithms, 58

Logger class

add/removeHandler methods, 406

entering, exiting methods, 391, 405

get/setFilter methods, 398, 406

get/setParent methods, 406

get/setUseParentHandlers methods, 406

getGlobal method, 389, 410

getHandlers method, 406

getLevel method, 405

getLogger method, 390, 404

info method, 389

log method, 390, 392, 405

logp method, 391, 405

logrb method, 405

setLevel method, 389, 405

severe, warning, info, config, fine, finer, finest
methods, 390, 404

throwing method, 392, 405

Loggers

configuring, 392–393

default, 389, 391

hierarchical names of, 390

writing your own, 390–392

Logging, 389–408

advanced, 390–392

basic, 389

file pattern variables for, 396

file rotation for, 397

filters for, 398

formatters for, 399

handlers for, 394–398

configuring, 396

including class names in, 344

levels of, 390–391

changing, 392–393

localization of, 393–394

messages for, 240

recipe for, 399–408

resource bundles and, 393–394

Logging proxy, 410

logging/LoggingImageViewer.java, 400

logging.properties file, 392–393

Logical conditions, 52

Logical “and,” “or,” 62

LogManager class, 393

readConfiguration method, 392

LogRecord class

getLevel method, 407

getLoggerName method, 407

getMessage method, 407

getMillis method, 408

getParameters method, 407

Index988

ptg16518469

getResourceBundle, getResourceBundleName methods,

407

getSequenceNumber method, 408

getSourceXxxName methods, 408

getThreadID method, 408

getThrown method, 408

Long class

converting from long, 252

hashCode method, 237

long type, 47

platform-independence of, 48

LongAccumulator class, methods of, 888

LongAdder class, 888, 908

add, increment, sum methods, 888

Look-and-feel, 539, 700

appearance of buttons in, 632

changing, 598–603

pluggable, 756

LookAndFeelInfo class, methods of, 603

lookup method (ServiceManager), 836

Loops

break statements in, 106–108

continue statements in, 108

determinate (for), 99–103

“for each,” 113–114

while, 94–99

LotteryArray/LotteryArray.java, 126

LotteryDrawing/LotteryDrawing.java, 118

LotteryOdds/LotteryOdds.java, 102

lower method (NavigableSet), 493

Low-level events, 626

Lu, Francis, 810

M
Mac OS X

Eclipse versions for, 27

executing JARs in, 783

JDK versions for, 18

running applets in, 34–35

setting paths in, 20

setting up JDK in, 20

main method, 161–164

body of, 44

declared public, 43

declared static void, 44–45

eliminating, for applets, 807

loading classes from, 262

not defined, 145, 179

separate for each class, 409

String[] args parameter of, 116

tagged with throws, 88

make program (UNIX), 149

MANIFEST.MF (manifest file), 781–782

editing, 782

newline characters in, 782

permissions in, 823

Map interface, 469

compute, computeIfPresent/Absent methods, 501

containsKey/Value methods, 499

entrySet, keySet methods, 502–503

forEach method, 499

get, put methods, 469, 497, 499

merge method, 501

putAll method, 499

remove method, 498

replaceAll method, 502

values method, 502–503

map/MapTest.java, 498

Map.Entry interface, 502

getKey, get/setValue methods, 503

mappingCount method (ConcurrentHashMap), 906

Maps, 497–509

adding/retrieving objects to/from, 497

concurrent, 905–907

garbage collecting, 504

hash vs. tree, 497

implementations for, 497

keys for, 498

enumerating, 502

subranges of, 511

Marker interfaces, 309

Math class, 57–59

E, PI static constants, 58, 159

floorMod method, 57

logarithms, 58

pow method, 57, 160

round method, 60

sqrt method, 57

trigonometric functions, 58

Matisse, 701, 713–723

max method (Collections), 523

Maximum value, computing, 419

menu/MenuFrame.java, 690

MenuListener interface, 689

menuXxx methods, 689–690

Menus, 678–699

accelerators for, 687–688

checkboxes and radio buttons in, 683–684

989Index

ptg16518469

Menus (continued)

icons in, 682–683

keyboard mnemonics for, 686–688

menu bar in, 679

menu items in, 679–684

enabling/disabling, 689–693

pop-up, 684–686

submenus in, 679

merge method

of ConcurrentHashMap, 909

of Map, 501

Merge sort algorithm, 519

META-INF directory, 781

Metal look-and-feel, 541, 598

Method class, 265

getDeclaringClass method, 270

getExceptionTypes method, 270

getGenericXxx methods, 457

getModifiers method, 265, 270

getName method, 265, 270

getParameterTypes, getReturnType methods, 270

getTypeParameters method, 457

invoke method, 279–283

toString method, 266

Method parameters. See Parameters

Method pointers, 279–281

Method references, 319–321

this, super parameters in, 320

Method tables, 216

Methods, 131

abstract, 222

in functional interfaces, 318

accessor, 141–145, 153–154, 444

adding, in subclasses, 207

applying to objects, 137

asynchronous, 915

body of, 44–45

bridge, 428–429, 440

calling by reference vs. by value, 164–171

casting, 219–221

concrete, 222

consistent, 231

default, 298–300

deprecated, 141, 197, 412

destructor, 181–182

documentation comments for, 194–198

do-nothing, 604

dynamic binding for, 209, 214–217

exception specification in, 362

factory, 161

final, 215, 217–218, 265, 295

generic, 421–422, 427–429, 466–469

helper, 156, 448

inlining, 7, 218

invoking, 45

arbitrary, 279–283

mutator, 141–145, 154, 444

names of, 201

overloading, 172

overriding, 206–207, 234, 285

exceptions and, 364

return type and, 427

package scope of, 189

parameters of, 45–46

passing objects to, 136

private, 156–157, 215, 265

protected, 194, 228, 311

public, 194, 265, 290

reflexive, 231

resolving conflicts in, 300–302

return type of, 172, 215

signature of, 172, 215

static, 160–161, 185, 215, 436

adding to interfaces, 298

symmetric, 231

tracing, 351

transitive, 231

varargs, 256–257

passing generic types to, 432–433

visibility of, in subclasses, 217

methods/MethodTableTest.java, 282

Micro Edition (Java ME), 3, 11, 18

Microsoft

.NET platform, 6

ActiveX, 5, 15

C#, 8, 11, 218, 280

Internet Explorer, 9, 15, 803, 810

J#, J++, 8, 280

Visual Basic, 3, 136, 587, 638

Visual Studio, 23

MIME types, 825

min method (Collections), 523

Minimum value, computing, 419

minimumLayoutSize method (LayoutManager),

728

minusDays method (LocalDate), 145

mod method (BigDecimal, BigInteger), 110–111

Modality, 730, 742

Index990

ptg16518469

Model-view-controller design pattern,

632–636

classes in, 632

multiple views in, 634

Modifier class

isAbstract, isInterface, isNative, isProtected,

isStatic, isStrict, isSynchronized, isVolatile
methods, 271

isFinal, isPrivate, isPublic, toString methods,

265, 271

Modulus, 56

Monitor concept, 884

Mosaic, 10

Mouse events, 616–624

with keyboard modifiers, 616

mouse/MouseComponent.java, 620

mouse/MouseFrame.java, 619

MouseAdapter class, 619, 626

MouseEvent class, 626

getClickCount method, 616, 623, 627

getPoint method, 623, 627

getX/Y methods, 616, 623, 627

isPopupTrigger method, 686

translatePoint method, 627

MouseHandler class, 619

MouseListener interface, 617, 626

mouseClicked method, 616–617, 619, 627

mouseDragged method, 619

mouseEntered/Exited methods, 619, 627

mousePressed method, 616–617, 627

mouseReleased method, 616, 627

MouseMotionHandler class, 619

MouseMotionListener interface, 617, 619, 626

mouseDragged method, 628

mouseMoved method, 618–619, 628

MouseWheelEvent class, 626

getScrollAmount, getWheelRotation methods, 628

MouseWheelListener interface, mouseWheelMoved
method, 628

mouseXxx methods (Robot), 778

Mozilla Firefox, 34

Multidimensional arrays, 120–125

printing, 240

ragged, 124–127

Multiple inheritance, 297

not supported in Java, 213

Multiple selections, 103–105

Multiplication operator, 56

multiply method (BigDecimal, BigInteger), 110–111

Multitasking, 839

Multithreading, 7, 839–952

deadlocks in, 874, 889–892

deferred execution in, 325

performance and, 872, 888, 899, 920

preemptive vs. cooperative scheduling

for, 855

synchronization in, 862–897

using pools for, 920–926

Mutator methods, 444

error checking in, 154

N
\n escape sequence, 50

NaN (not a number), 49

Napkin look-and-feel, 542

naturalOrder method (Comparator), 329

Naughton, Patrick, 10–11

NavigableMap interface, 471

subMap, headMap, tailMap methods, 517

NavigableSet interface, 471, 490, 511

ceiling, floor methods, 493

descendingIterator method, 493

higher, lower methods, 493

pollFirst/Last methods, 493

subSet, headSet, tailSet methods, 511, 516

nCopies method (Collections), 510, 515

Negation operator, 62

Negative infinity, 49

.NET platform, 6

NetBeans, 20, 24, 409

Matisse, 701, 713–723

specifying grid bag constraints in, 706

Netscape, 10

IFC library, 538

LiveScript/JavaScript, 15

Navigator browser, 9, 803, 810

Networking, 4

new operator, 64, 71, 136, 150

return value of, 138

with arrays, 111

with generic classes, 245

with threads, 855

new keyword, in constructor references, 321

newCachedThreadPool method (Executors), 921, 925

newCondition method (Lock), 873, 877

newFixedThreadPool method (Executors), 921, 925

newInstance method

of Array, 276, 279

991Index

ptg16518469

newInstance method (continued)

of Class, 263, 265, 451

of Constructor, 265, 452

newKeySet method (ConcurrentHashMap), 912

newProxyInstance method (Proxy), 350, 355–356

newScheduledThreadPool method (Executors), 921,

926

newSingleThreadExecutor method (Executors), 921,

925

newSingleThreadScheduledExecutor method (Executors),

921, 926

next method

of Iterator, 463, 465, 469

of Scanner, 81

nextDouble method (Scanner), 79, 81

nextElement method (Enumeration), 465, 528, 530

nextIndex method

of LinkedList, 480

of ListIterator, 483

nextInt method

of Random, 181

of Scanner, 79, 81

nextLine method (Scanner), 79, 81

Nimbus look-and-feel, 541

No-argument constructors, 173, 208, 801

NoClassDefFoundError, 26

node method (Preferences), 794, 799

noneOf method (EnumSet), 508

NoSuchElementException, 464, 469, 483, 494–495

Notepad text editor, 26

notHelloWorld/NotHelloWorld.java, 558

notify, notifyAll methods (Objects), 878,

881–882

now method (LocalDate), 140, 145

null value, 138

equality testing to, 231

nullFirst/Last methods (Comparator), 329

NullPointerException, 361, 383

Number class, 253

NumberFormat class

factory methods, 161

parse method, 256

NumberFormatException, 383

Numeric types

casting, 60–61

comparing, 62, 328

converting:

to other numeric types, 59–60

to strings, 254

default initialization of, 172

fixed sizes for, 6

precision of, 108

printing, 82

O
Oak programming language, 10

Object class, 132, 228–244

clone method, 156, 306–313, 318

equals method, 229–235, 244, 302, 512

getClass method, 244

hashCode method, 235, 237, 489

no redefining for methods of, 302

notify, notifyAll methods, 878, 881–882

toString method, 238–244, 302, 318

wait method, 856, 878, 882

Object references

as method parameters, 165

converting, 219

default initialization of, 172

modifying, 166

Object traversal algorithms, 507

Object variables, 223

in predefined classes, 136–139

initializing, 137

setting to null, 138

vs. C++ object pointers, 139

vs. objects, 137

objectAnalyzer/ObjectAnalyzer.java, 273

objectAnalyzer/ObjectAnalyzerTest.java, 273

Object-oriented programming (OOP), 4,

130–135, 203

design principles of, 632

passing objects in, 302

separating time measurement from

calendars in, 140

vs. procedural, 130–135

Objects, 130–133

analyzing at runtime, 271–276

applying methods to, 137

behavior of, 132

cloning, 306–313

comparing, 295

concatenating with strings, 239

constructing, 131, 171–182

damaged, 896

default hash codes of, 235

destruction of, 181–182

equality testing for, 229–235, 262

Index992

ptg16518469

finalize method of, 181–182

identity of, 132

implementing an interface, checks of, 295

in predefined classes, 136–139

initializing, 136

intrinsic locks of, 878

passing to methods, 136

references to, 138

runtime type identification of, 261

serializing, 507

sorting, 290

state of, 131–132, 331–334

vs. object variables, 137

Objects class

hash method, 237

hashCode method, 236–237

Ocean look-and-feel, 541

Octal numbers

formatting output for, 82

prefix for, 48

of method

of EnumSet, 508

of LocalDate, 140, 145

offer method

of BlockingQueue, 898–899, 904

of Queue, 494

offerFirst/Last methods

of BlockingDeque, 905

of Deque, 494

offsetByCodePoints method (String), 70, 72

Online documentation, 71, 74–77, 194, 199

openFileDialog method (FileOpenService), 830, 837

openMultiFileDialog method (FileOpenService), 837

OpenType format, 575

Operators

arithmetic, 56–65

bitwise, 63

boolean, 62

hierarchy of, 64–65

increment/decrement, 61–62

no overloading for, 109

relational, 62

Option dialogs, 731–741

Optional operations, 514

optionDialog/ButtonPanel.java, 738

optionDialog/OptionDialogFrame.java, 734

or method (BitSet), 533

Oracle, 12, 18, 20

Java Plug-in, 803

JavaFX, 543

Ordered collections, 470, 476

ordinal method (Enum), 260

org.omg.CORBA package, 255

Originating host, 821

OSGi platform, 800

Output statements, 66

Output, formatting, 82–87

Overloading resolution, 172, 215

@Override annotation, 234

overview.html, 198

Owner frame, 742

P
p (exponent), in hexadecimal numbers, 49

pack method (Window), 550, 557, 560

pack200 compression, 780

package statement, 183, 185

package.html, 198

package-info.java, 198

Packages, 182–190

adding classes into, 185–188

default, 185

documentation comments for, 194, 198

importing, 183

names of, 182, 261

online documentation for, 71

scope of, 189–190

sealing, 787

PackageTest/com/horstmann/corejava/Employee.java, 188

PackageTest/PackageTest.java, 187

paintComponent method (JComponent), 554–556, 560,

577, 583, 897

overriding, 624

pair1/PairTest1.java, 420

pair2/PairTest2.java, 423

pair3/PairTest3.java, 449

ParallelGroup class, 714, 723

Parallelism threshold, 910

param element (HTML), 810–816

Parameterized types. See Type parameters

ParameterizedType interface, 453

getXxx methods, 458

Parameters, 45–46, 164–171

checking, with assertions, 386–387

documentation comments for, 196

explicit, 152–153

implicit, 152–153, 160, 409

modifying, 165–167, 169

993Index

ptg16518469

Parameters (continued)

names of, 175

string, 45

using collection interfaces in, 527

variable number of, 256–257

passing generic types to, 432–433

ParamTest/ParamTest.java, 170

Parent classes. See Superclasses

parse method (NumberFormat), 256

parseInt method (Integer), 254, 256, 811

Pascal, 10

architecture-neutral object file format of,

5

passing parameters in, 167

Password fields, 652–653

PasswordChooser class, 746

Passwords

dialog box for, 746

reading from console, 80

PATH environment variable, 20

Path interface, 298

Paths class, 89, 298

Payne, Jonathan, 11

peek method

of BlockingQueue, 898–899

of Queue, 494

of Stack, 532

peekFirst/Last methods (Deque), 495

Performance, 7

collections and, 471, 486, 906

computations and, 56, 59

JAR files and, 190

measuring with the sieve of Eratosthenes,

533–536

multithreading and, 872, 888, 899, 920

of Java vs. C++, 14, 534

of tests vs. catching exceptions, 381

Permits, 935

PersistenceService class, 831

create method, 831, 837

delete method, 838

get, getNames methods, 838

Persistent storage, 272

Phaser class, 937

Physical limitations, 359

PI constant (Math), 58, 159

plaf/PlafFrame.java, 601

play method (Applet), 817

Plug-ins, 800–802

plusDays method (LocalDate), 141, 145

Point class, 564

Point size (in typesetting), 574–575

Point2D class, 563–564

Point2D.Double class, 563, 569

Point2D.Float class, 563

poll method

of BlockingQueue, 898–899, 904

of ExecutorCompletionService, 928

of Queue, 494

pollFirst/Last methods

of Deque, 495, 905

of NavigableSet, 493

Polymorphism, 209, 213–214, 285

pop method (Stack), 532

Pop-up menus, 684–686

triggers for, 685

Pop-up windows, 821

Positive infinity, 49

PostScript Type 1 format, 575

pow method (Math), 57, 160

Precision, of numbers, 82

Preconditions, 387

Predefined action table names, 609

Predefined classes, 135–145

mutator and accessor methods in,

141–145

objects and object variables in, 136–139

Predicate interface, 319, 326

Preemptive scheduling, 855

Preferences, 788–800

accessing, 794

enumerating keys in, 795

importing/exporting, 795

Preferences class, 794–800

exportXxx methods, 795, 800

get, getDataType methods, 795, 800

importPreferences method, 795, 800

keys method, 795, 799

node method, 794, 799

platform-independency of, 794

put, putDataType methods, 795, 800

system/userNodeForPackage methods, 794, 799

system/userRoot methods, 794, 799

preferences/PreferencesTest.java, 796

preferredLayoutSize method (LayoutManager), 728

previous method (ListIterator), 476, 483

previousIndex method

of LinkedList, 480

Index994

ptg16518469

of ListIterator, 483

Prime numbers, 533

Primitive types, 47–53

as method parameters, 165

comparing, 328

converting to objects, 252

final fields of, 157

not for type parameters, 430–431

transforming hash map values to, 911

values of, not object, 229

Princeton University, 5

print method (System.out), 46, 82

printf method (System.out), 82–86

conversion characters for, 82

flags for, 83–84

for date and time, 84–85

parameters of, 256

println method (System.out), 45–46, 79, 319,

389

printStackTrace method (Throwable), 264–265, 377,

410

PrintStream class, 830

PrintWriter class, 87, 89

Priority queues, 495

PriorityBlockingQueue class, 899, 904

PriorityQueue class, 496

as a concrete collection type, 472

priorityQueue/PriorityQueueTest.java, 496

private access modifier, 150, 189–190, 333

checking, 265

for fields, in superclasses, 206

for methods, 156–157

Procedures, 130

process method (SwingWorker), 944–946, 950

Processes, vs. threads, 840

Producer threads, 898

Profilers, 413

Programs. See Applications

Properties, 549, 788–793

Properties class, 528–531, 788–793

getProperty method, 531, 789, 792

load, store methods, 531, 788, 793

setProperty method, 792

properties/PropertiesTest.java, 790

Property maps, 530–531, 788–793

comments in, 599

names of, 788

reading/writing, 788

PropertyChangeListener interface, 758

protected access modifier, 227–228, 311

for fields, 283

Proxies, 350–356

properties of, 355–356

purposes of, 351

Proxy class, 355–356

get/isProxyClass methods, 355–356

newProxyInstance method, 350, 355–356

proxy/ProxyTest.java, 353

public access modifier, 42, 56, 147–150,

189–190, 290

checking, 265

for fields in interfaces, 296

for main method, 43

for only one class in source file, 147

not specified for interfaces, 289

publish method

of Handler, 398, 406

of SwingWorker, 944–945, 950

Pure virtual functions (C++), 224

push method (Stack), 532

put method, 908

of BlockingQueue, 898–899, 904

of Map, 469, 497, 499

of Preferences, 795, 800

putAll method (Map), 499

putDataType methods (Preferences), 795,

800

putFirst/Last methods (BlockingDeque), 904

putIfAbsent method (ConcurrentHashMap), 908

putValue method (Action), 608, 615

Q
Queue interface, 460, 462, 494–495

methods of, 494

Queues, 460–463, 494–495

blocking, 898–905

concurrent, 905–907

double-ended. See Deques

QuickSort algorithm, 117, 519

R
\r escape sequence, 50

Race conditions, 862–868

and atomic operations, 887

Radio buttons, 660–663

in menus, 683–684

radioButton/RadioButtonFrame.java, 662

Ragged arrays, 124–127

995Index

ptg16518469

Random class, 181

nextInt method, 181

thread-safe, 892

Random number generation, 181, 892

RandomAccess interface, 471, 520, 522

range method (EnumSet), 508

Raw types, 425–426

converting type parameters to, 441

type inquiring at runtime, 431

Read/write locks, 895–896

readConfiguration method (LogManager), 392

readLine/Password methods (Console), 81

Rectangle class, 490, 564

Rectangle2D class, 560, 562–565

getWidth, setRect methods, 563

Rectangle2D.Double class, 562–563, 568

Rectangle2D.Float class, 562–563, 569

Rectangles, 560

comparing, 490

constructing, 564

drawing, 561

filling with color, 569

RectangularShape class, 563

getHeight/Width, getCenterX/Y methods, 563, 568

getX/Y, getMinX/Y, getMaxX/Y methods, 568

Recursive computations, 929

RecursiveAction class, 929

RecursiveTask class, 929

Red-black trees, 489

reduce, reduceXxx methods (ConcurrentHashMap),

910–911

Redundant keywords, 296

Reentrant locks, 870

ReentrantLock class, 868–872

ReentrantReadWriteLock class, 895–896

Reflection, 204, 260–283

analyzing:

classes, 265–271

objects, at runtime, 271–276

generics and, 276–279, 450–458

overusing, 286

reflection/ReflectionTest.java, 267

Relational operators, 62, 64

Relative resource names, 784

remove method

of ArrayList, 249, 251

of BlockingQueue, 898–899

of Collection, 467–468

of Iterator, 463, 465, 469

of JMenu, 681

of List, 470, 483

of ListIterator, 478

of Map, 498

of Queue, 494

of ThreadLocal, 893

removeAll method

of Collection, 467–468

of LinkedList, 480

removeEldestEntry method (LinkedHashMap), 506, 508

removeFirst/Last methods

of Deque, 495

of LinkedList, 484

removeHandler method (Logger), 406

removeIf method

of ArrayList, 319

of Collection, 468, 524

removeLayoutComponent method (LayoutManager), 728

removePropertyChangeListener method (Action),

608–609

removeXxx methods (JComboBox), 669, 671

repaint method

of Component, 556

of JComponent, 559, 841, 951

replace method

of ConcurrentHashMap, 908

of String, 73

replaceAll method

of Collections, 523

of List, 524

of Map, 502

replaceRange method (JTextArea), 951

Reserved words, 43

forbidden for variable names, 53

not used, 56

resetChoosableFilters method (JFileChooser), 756,

763

resize method (Applet), 808

Resource bundles, 393–394

resource/ResourceTest.java, 786

ResourceBundle class, 394

Resources, 783–787

closing, 373

exhaustion of, 360

localization of, 784

names of, 784–785

Restricted views, 514

resume method (Thread), 858

retain method (Collection), 467

Index996

ptg16518469

retainAll method (Collection), 469

Retirement/Retirement.java, 97

Retirement2/Retirement2.java, 98

return statement

in finally blocks, 374

in lambda expressions, 316

Return types, 215

covariant, 429

documentation comments for, 196

for overridden methods, 427

Return values, 138

@return comment (javadoc), 196

revalidate method (JComponent), 649–650, 951

reverse method (Collections), 524

reversed, reverseOrder methods (Comparator), 329,

519, 521

RoadApplet/RoadApplet.html, 36

RoadApplet/RoadApplet.java, 38

Robot class, 774–778

methods of, 778

robot/RobotTest.java, 775

rotate method (Collections), 524

round method (Math), 60

Rounding mode, 111

RoundingMode class, 111

rt.jar file, 780

run method (Thread), 849, 851

runAfterXxx methods (CompletableFuture), 934

runFinalizersOnExit method (System), 182

Runnable interface, 326, 847

lambdas and, 318

run method, 325, 851

Runtime

adding shutdown hooks at, 182

analyzing objects at, 271–276

creating classes at, 350

setting the size of an array at, 244

type identification at, 220, 261, 431

RuntimeException, 360, 380, 383

S
@SafeVarargs annotation, 432

Sandbox, 820–822

saveAsFileDialog method (FileSaveService), 837

saveFileDialog method (FileSaveService), 830, 837

Scala programming language, default

methods in, 300

Scanner class, 79–81, 87, 89

next, hasNext, hasNextType methods, 81

nextXxx methods, 79, 81

Scheduled execution, 926

ScheduledExecutorService class, methods of, 926

Scroll panes, 654–656

Scrollbars, 654–656

Sealing, 787

search, searchXxx methods (ConcurrentHashMap),

910–911

Secure certificates, 822

Security, 4–5, 14, 820–822

@see comment (javadoc), 197–198

Semantic events, 626

Semaphore class, 935

Semaphores, 935

SequentialGroup class, 714, 723

Serialization, 507

of applet objects, 809

Service loaders, 800–802

ServiceLoader class, 801

iterator, load methods, 802

ServiceManager interface, 830

getServiceNames, lookup methods, 836

ServletException, 370

Servlets, 370

Set interface, methods of, 471

set method

of Array, 279

of ArrayList, 247, 251

of BitSet, 533

of Field, 276

of List, 483

of ListIterator, 478, 483

of ThreadLocal, 893

of Vector, 883

set/SetTest.java, 487

setAccelerator method (JMenuItem), 687–688

setAcceptAllFileFilterUsed method (JFileChooser),

756, 763

setAccessible method (AccessibleObject), 272, 275

setAccessory method (JFileChooser), 763

setAction method (AbstractButton), 681

setActionCommand method (AbstractButton), 663

setAutoCreateXxx methods (GroupLayout), 722

setBackground method (Component), 570, 573

setBoolean, setByte, setChar methods (Array), 279

setBorder method (JComponent), 664, 668

setBounds method (Component), 546, 552, 724

coordinates in, 548

setCharAt method (StringBuilder), 78

997Index

ptg16518469

setClassAssertionStatus method (ClassLoader), 388

setColor method

of Graphics, 570, 572

of JColorChooser, 770

setColumns method

of JTextArea, 654, 656

of JTextField, 649–650

setComponentPopupMenu method (JComponent), 685–686

setCurrentDirectory method (JFileChooser), 754,

762

setCursor method (Component), 624

setDaemon method (Thread), 859–860

setDebugGraphicsOptions method (JComponent), 771

setDefaultAssertionStatus method (ClassLoader), 388

setDefaultButton method (JRootPane), 748, 752

setDefaultCloseOperation method (JDialog), 743,

807

setDefaultUncaughtExceptionHandler method (Thread),

411, 860–861

setDisplayedMnemonicIndex method (AbstractButton),

686, 688

setDouble method (Array), 279

setEchoChar method (JPasswordField), 653

setEditable method

of JComboBox, 669, 671

of JTextComponent, 648

setEnabled method

of Action, 608, 615

of JMenuItem, 689–690

setExtendedState method (Frame), 553

setFileFilter method (JFileChooser), 755, 763

setFileSelectionMode method (JFileChooser), 754,

763

setFileView method (JFileChooser), 756–757, 763

setFilter method

of Handler, 406

of Logger, 398, 406

setFloat method (Array), 279

setFont method

of Graphics, 581

of JComponent, 650

setForeground method (Component), 570, 573

setFormatter method (Handler), 399, 406

setFrameFromCenter method (Ellipse2D), 565

setFrameFromDiagonal method (Ellipse2D), 564

setHonorsVisibility, setHorizontalGroup methods

(GroupLayout), 722

setHorizontalTextPosition method (AbstractButton),

682–683

setIcon method

of JLabel, 651–652

of JMenuItem, 682

setIconImage method (Frame), 546, 553

setInheritsPopupMenu method (JComponent), 685–686

setInt method (Array), 279

setInverted method (JSlider), 674, 678

setJMenuBar method (JFrame), 679, 682

setLabelTable method (JSlider), 429, 673, 678

setLayout method (Container), 641

setLevel method

of Handler, 406

of Logger, 389, 405

setLineWrap method (JTextArea), 654, 656

setLocation method (Component), 546, 552

coordinates in, 548

setLocationByPlatform method (Window), 552

setLong method (Array), 279

setLookAndFeel method (UIManager), 599, 602

setMnemonic method (AbstractButton), 687–688

setModel method (JComboBox), 669

setMultiSelectionEnabled method (JFileChooser),

754, 763

setOut method (System), 159

setPackageAssertionStatus method (ClassLoader), 388

setPaint method (Graphics2D), 569, 573

setPaintLabels method (JSlider), 673, 678

setPaintTicks method (JSlider), 673–674, 678

setPaintTrack method (JSlider), 678

setParent method (Logger), 406

setPriority method (Thread), 859

setProperty method

of Properties, 792

of System, 392

setRect method (Rectangle2D), 563

setResizable method (Frame), 546, 553

setRows method (JTextArea), 654, 656

Sets, 487

concurrent, 905–907

intersecting, 525

mutating elements of, 487

subranges of, 511

thread-safe, 912

setSelected method

of AbstractButton, 684

of JCheckBox, 657, 659

setSelectedFile/Files methods (JFileChooser), 754,

763

setSelectionStart/End methods (JComponent), 952

Index998

ptg16518469

setShort method (Array), 279

setSize method (Component), 552

setSnapToTicks method (JSlider), 673, 678

setTabSize method (JTextArea), 656

setText method

of JLabel, 651–652

of JTextComponent, 648, 650, 951

setTime method (Calendar), 218

setTitle method (JFrame), 546, 553

setToolTipText method (JComponent), 699

setUncaughtExceptionHandler method (Thread), 861

setUndecorated method (Frame), 546, 553

setUseParentHandlers method (Logger), 406

setValue method (Map.Entry), 503

setVerticalGroup method (GroupLayout), 722

setVisible method

of Component, 546, 552, 951

of JDialog, 743, 746, 807

setWrapStyleWord method (JTextArea), 656

setXxxTickSpacing methods (JSlider), 678

severe method (Logger), 390, 404

Shallow copies, 308–310

Shape interface, 560–561

Shell

redirection syntax of, 88

scripts in, 193

Shift operators, 63

short type, 47

Short class

converting from short, 252

hashCode method, 237

show method (JPopupMenu), 685

showConfirmDialog method (JOptionPane), 731–732,

739

showDialog method

of JColorChooser, 770

of JFileChooser, 747, 752, 754, 763

showDocument method

of AppletContext, 819–820

of BasicService, 836

showInputDialog method (JOptionPane), 731–732,

740

showInternalConfirmDialog, showInternalMessageDialog
methods (JOptionPane), 739

showInternalInputDialog method (JOptionPane), 741

showInternalOptionDialog method (JOptionPane),

740

showMessageDialog method (JOptionPane), 304,

731–732, 739

showOptionDialog method (JOptionPane), 731–732,

739–740

showStatus method (Applet), 819–820

showXxxDialog methods (JFileChooser), 747, 752,

754, 763

shuffle method (Collections), 520–521

shuffle/ShuffleTest.java, 520

Shuffling, 520

Shutdown hooks, 182

shutdown method (ExecutorService), 922, 925

shutdownNow method (ExecutorService), 922, 927

Sieve of Eratosthenes benchmark,

533–536

sieve/sieve.cpp, 535

sieve/Sieve.java, 534

signal method (Condition), 875–877, 890

signalAll method (Condition), 874–877, 890

Signatures (of methods), 172, 215

simpleframe/SimpleFrameTest.java, 544

sin method (Math), 58

Single-thread rule (Swing), 939, 951–952

singleton, singletonCollection methods

(Collections), 510, 515

size method

of ArrayList, 246–247

of Collection, 467–468

of concurrent collections, 905

sizedFrame/SizedFrameTest.java, 551

sleep method (Thread), 841, 846–847, 852

slider/SliderFrame.java, 674

Sliders, 672–678

ticks on, 673–674

vertical, 672

SoftBevelBorder class, 665, 667

Software Development Kit (SDK), 18

Solaris

Eclipse versions for, 27

executing JARs in, 783

JDK versions for, 18

sort method

of Arrays, 117–119, 290, 292, 294, 314, 318

of Collections, 518–521

of List, 521

SortedMap interface, 471

comparator, first/lastKey methods, 500

subMap, headMap, tailMap methods, 511, 516

SortedSet interface, 471, 511

comparator, first, last methods, 493

subSet, headSet, tailSet methods, 511, 516

999Index

ptg16518469

Sorting

algorithms for, 117, 518–521

arrays, 117–120, 292

assertions for, 387

in reverse order, 519

people, by name, 328–329

strings by length, 305–306, 314, 316

Source files, 192

editing in Eclipse, 29

installing, 22–23

Special characters, 50

Splash screen, 262

Spring layout, 700

sqrt method (Math), 57

src.zip file, 22

Stack interface, 460, 528, 531

peek, pop, push methods, 532

Stack trace, 377–381, 889

Stacks, 531

stackTrace/StackTraceTest.java, 378

StackTraceElement class

getLineNumber method, 380

getXxxName methods, 380

isNativeMethod method, 381

toString method, 378, 381

Standard Edition (Java SE), 11, 18

Standard Java library

companion classes in, 298

online API documentation for, 71, 74–77,

194, 199

packages in, 182

Standard Template Library (STL), 460, 465

start method

of Applet, 808

of Thread, 849, 851, 855

of Timer, 305

startsWith method (String), 72

stateChanged method (ChangeListener), 672–673

Statements, 45

compound. See Blocks

static access modifier, 158–164

for fields in interfaces, 296

for main method, 44–45

Static binding, 215

Static constants, 159

documentation comments for, 196

Static fields, 158–159

accessing, in static methods, 160

importing, 185

initializing, 178

no type variables in, 436

static final access modifier, 55

Static imports, 185

Static inner classes, 331, 346–349

Static methods, 160–161

accessing static fields in, 160

adding to interfaces, 298

importing, 185

no type variables in, 436

Static variables, 159

staticInnerClass/StaticInnerClassTest.java, 348

StaticTest/StaticTest.java, 163

stop method

of Applet, 808

of Thread (deprecated), 851, 858,

896–897

of Timer, 305

store method (Properties), 531, 788, 793

Strategy design pattern, 631

Stream interface, toArray method, 321

StreamHandler class, 397

strictfp keyword, 57

StrictMath class, 57, 59

String class, 65–78

charAt method, 70, 72

codePointAt, codePoints methods, 72

codePointCount method, 70, 73

compareTo method, 72

endsWith method, 72

equals, equalsIgnoreCase methods, 68, 72

format, formatTo methods, 83

hashCode method, 235, 485

immutability of, 67, 157, 218

indexOf method, 73, 172

join method, 73

lastIndexOf method, 73

length method, 69–70, 73

offsetByCodePoints method, 70, 72

replace method, 73

startsWith method, 72

substring method, 66, 73, 510

toLowerCase, toUpperCase methods, 73

trim method, 73, 650

StringBuilder class, 77–78

append method, 77–78

appendCodePoint method, 78

delete method, 78

insert method, 78

Index1000

ptg16518469

length method, 78

setCharAt method, 78

toString method, 77–78

Strings, 65–78

building, 77–78

code points/code units of, 70

comparing, 305–306

concatenating, 66–67

with objects, 239

converting to numbers, 254

empty, 69

equality of, 68

formatting output for, 82–87

immutability of, 67

length of, 66, 69

null, 69

shared, in compiler, 67, 69

sorting by length, 305–306, 314, 316

substrings of, 66

using ". . ." for, 45

Strongly typed languages, 47, 291

Subclasses, 204–228

adding fields/methods to, 207

anonymous, 344

cloning, 311

comparing objects from, 295

constructors for, 207

defining, 204

method visibility in, 217

no access to private fields of superclass,

227

overriding superclass methods in, 207

subList method (List), 510, 516

subMap method

of NavigableMap, 517

of SortedMap, 511, 516

Submenus, 679

submit method

of ExecutorCompletionService, 925, 928

of ExecutorService, 921

Subranges, 510–511

subSet method (NavigableSet, SortedSet), 511,

516

Substitution principle, 213

substring method (String), 66, 73, 510

subtract method (BigDecimal, BigInteger),

110–111

Subtraction operator, 56

sum method (LongAdder), 888

Sun Microsystems, 2, 5–12, 14, 539

HotJava browser, 11, 802

Java Plug-in, 803

super keyword, 207, 444

capturing in method references, 320

vs. this, 207–208

Superclass wins rule, 300

Superclasses, 204–228

accessing private fields of, 206

common fields and methods in, 223, 283

overriding methods of, 234

throws specifiers in, 364, 369

Supertype bounds, 444–447

Supplementary characters, 52

Supplier interface, 326

@SuppressWarnings annotation, 105, 252, 430, 432,

437–439

Surrogates area (Unicode), 52

suspend method (Thread, deprecated), 858,

896–897

swap method (Collections), 524

Swing, 537–586, 629–778

advantages of, 539

debugging, 770–778

double buffering in, 771

implementing applets with, 803–808

in full-screen, 550

model-view-controller analysis of,

636–638

starting, 545

threads and, 937–943

single-thread rule, 939, 951–952

Swing graphics debugger, 771

swing/SwingThreadTest.java, 940

swing.properties file, 598

SwingConstants interface, 296, 651

SwingUtilities class

getAncestorOfClass method, 747, 752

updateComponentTreeUI method, 599

SwingWorker class, 943–950

doInBackground method, 944–945, 950

execute method, 945, 950

getState method, 950

process method, 944–946, 950

publish method, 944–945, 950

swingWorker/SwingWorkerTest.java, 947

switch statement, 103–105

enumerated constants in, 105

missing break statements in, 412

1001Index

ptg16518469

SWT toolkit, 543

synch/Bank.java, 875

synch2/Bank.java, 880

Synchronization, 862–897

condition objects, 872–877

final variables, 886

in Vector, 484

lock objects, 868–872

lock testing and timeouts, 893–895

monitor concept, 884

race conditions, 862–868, 887

read/write locks, 895

volatile fields, 885–886

Synchronization primitives, 935

Synchronization wrappers, 914–915

Synchronized blocks, 882–883

synchronized keyword, 868, 878–882, 884

Synchronized views, 512–513

synchronizedCollection methods (Collections),

512–513, 515, 915

Synchronizers, 934–937

barriers, 936–937

countdown latches, 936

exchangers, 937

semaphores, 935

synchronous queues, 937

SynchronousQueue class, 935–937

Synth look-and-feel, 542

System class

console method, 81

exit method, 45

getProperties method, 789, 793

getProperty method, 793

identityHashCode method, 507, 509

runFinalizersOnExit method, 182

setOut method, 159

setProperty method, 392

System of Patterns, A (Buschmann et al.),

632

System.err class, 411

System.in class, 79

System.out class, 45–46, 159, 411

print method, 82

printf method, 82–86, 256

println method, 79, 389

SystemColor class, 571–572

systemNodeForPackage method (Preferences), 794,

799

systemRoot method (Preferences), 794, 799

T
T type variable, 419

\t escape sequence, 50

Tab key

escape sequence for, 50

navigating GUI controls with, 729

Tagging interfaces, 309, 426, 471

tailMap method

of NavigableMap, 517

of SortedMap, 511, 516

tailSet method (NavigableSet, SortedSet), 511,

516

take method

of BlockingQueue, 898–899, 904

of ExecutorCompletionService, 928

takeFirst/Last methods (BlockingDeque), 904

tan method (Math), 58

tar command, 780

target attribute (HTML), 820

Tasks

controlling groups of, 927–928

decoupling from mechanism of running,

848

interrupting, 842

multiple, 839

running asynchronously, 915

scheduled, 926

time-consuming, 939–943

work stealing for, 930

Template code bloat, 426

Terminal window, 25

Text

centering, 576

displaying, 557

fonts for, 573–582

typesetting properties of, 576

Text areas, 653–654

formatted text in, 654

preferred size of, 654

scrollbars in, 654–656

Text fields, 649–651

columns in, 649

creating blank, 650

preferred size of, 649

Text input, 648–656

labels for, 651–652

password fields, 652–653

scroll panes, 654

text/TextComponentFrame.java, 655

Index1002

ptg16518469

thenAccept, thenApply, thenApplyAsync, thenRun
methods (CompletableFuture), 933

thenAcceptBoth, thenCombine methods

(CompletableFuture), 934

thenComparing method (Comparator), 328–329

thenCompose method (CompletableFuture),

932–933

this keyword, 152, 176

capturing in method references, 320

in first statement of constructor, 176

in inner classes, 335

in lambda expressions, 324

vs. super, 207–208

Thread class

currentThread method, 851–854

extending, 848

get/setUncaughtExceptionHandler methods, 861

getDefaultUncaughtExceptionHandler method,

861

getState method, 858

interrupt, isInterrupted methods, 851–854

interrupted method, 853–854

join method, 856–858

methods with timeout, 856

resumes method, 858

run method, 849, 851

setDaemon method, 859–860

setDefaultUncaughtExceptionHandler method, 411,

860–861

setPriority method, 859

sleep method, 841, 846–847, 852

start method, 849, 851, 855

stop method (deprecated), 851, 858,

896–897

suspend method (deprecated), 858,

896–897

yield method, 859

Thread dump, 889

Thread groups, 860

Thread pools, 920–926

of fixed size, 921

Thread.UncaughtExceptionHandler interface,

860–862

ThreadDeath error, 857, 862, 896

ThreadGroup class, 861

uncaughtException method, 861–862

ThreadLocal class, methods of, 893

ThreadLocalRandom class, current method,

893

threadPool/ThreadPoolTest.java, 922

ThreadPoolExecutor class, 921–922

getLargestPoolSize method, 926

Threads

accessing collections from, 512–513,

905–915

blocked, 852, 856–857

condition objects for, 872–877

daemon, 859

defined, 840–851

executing code in, 325

handlers for uncaught exceptions in,

860–862

idle, 928

interrupting, 851–854

listing all, 889

locking, 882–883

new, 855

preemptive vs. cooperative scheduling

for, 855

priorities of, 858

producer/customer, 898

purposes of, 846–851

runnable, 855–856

simple procedure for, 846–851

states of, 855–858

Swing and, 937–943, 951–952

synchronizing, 862–897, 934–937

terminated, 847, 851, 857

thread-local variables in, 892–893

timed waiting, 856–857

unblocking, 875

vs. processes, 840

waiting, 856–857, 873

work stealing for, 930

Thread-safe collections, 905–915

callables and futures, 915–920

concurrent, 905–907

copy on write arrays, 912

synchronization wrappers, 914–915

throw keyword, 364–365

Throwable class, 360, 383

add/getSuppressed methods, 377, 380

get/initCause methods, 379

getMessage method, 366

getStackTrace method, 377, 379

printStackTrace method, 264–265, 377,

410

toString method, 366

1003Index

ptg16518469

throwing method (Logger), 392, 405

throws keyword, 361–364

for main method, 88

@throws comment (javadoc), 196

Ticks, 673

icons for, 674

labeling, 673

snapping to, 673

Time measurement vs. calendars, 140

Timed waiting threads, 856–857

Timeless Way of Building, The (Alexander),

630

TimeoutException, 915

Timer class, 302, 314, 627

start, stop methods, 305

timer/TimerTest.java, 304

title element (HTML), 807

toArray method

of ArrayList, 435

of Collection, 249, 467, 469

of Stream, 321

toBack/Front methods (Window), 552

toLowerCase method (String), 73

Tomcat, 824–838

toolBar/ToolBarFrame.java, 697

Toolbars, 694–696

detaching, 695

dragging, 694

title of, 696

vertical, 696

Toolkit class

beep method, 305

createCustomCursor method, 618, 623

getDefaultToolkit method, 305, 549, 553

getScreenSize method, 549, 553

Toolkit-modal dialogs, 742

Tooltips, 696–699

toString method

adding to all classes, 240

Formattable and, 83

of Arrays, 114, 119

of Date, 137

of Enum, 258, 260

of Integer, 256

of Modifier, 266, 271

of Object, 238–244, 302

of proxy classes, 355

of StackTraceElement, 378, 381

of StringBuilder, 77–78

of Throwable, 366

redeclaring, 318

working with any class, 272

Total ordering, 490

toUpperCase method (String), 73

TraceHandler class, 351

Tracing execution flow, 391

TransferQueue interface, 900

transfer, tryTransfer methods, 905

translatePoint method (MouseEvent), 627

Traversal order, 729–730

Tree maps, 497

Tree sets, 489–493

adding elements to, 490

red-black, 489

total ordering of, 490

vs. priority queues, 495

TreeMap class, 471, 497, 500

as a concrete collection type, 472

vs. HashMap, 497

TreeSet class, 471, 489–493

as a concrete collection type, 472

treeSet/Item.java, 491

treeSet/TreeSetTest.java, 490

Trigonometric functions, 58

trim method (String), 73, 650

trimToSize method (ArrayList), 246–247

Troubleshooting. See Debugging

TrueType format, 575

Truncated computations, 56

try/catch statement, 264, 367–372

decoupling, 374

generics and, 436–437

wrapping entire task in try block, 382

try/finally statement, 372–376

decoupling, 374

tryLock method (Lock), 856, 893–895

Try-with-resources statement, 376–377

no locks with, 869

Two-dimensional arrays, 120–125

Type interface, 453

Type erasure, 425–430

clashes after, 439–440

Type parameters, 245

converting to raw types, 441

not for arrays, 431–432, 441

not instantiated with primitive types,

430–431

vs. inheritance, 416

Index1004

ptg16518469

Type variables

bounds for, 422–424

in exceptions, 437

in static fields or methods, 436

matching in generic methods, 452

names of, 419

no instantiating for, 433–434

replacing with bound types, 425–426

Typesetting terms, 576

TypeVariable interface, 453

getBounds, getName methods, 457

U
UCSD Pascal system, 5

UIManager class

getInstalledLookAndFeels, setLookAndFeel methods,

602

setLookAndFeel method, 599

UML (Unified Modeling Language)

notation, 134–135

UnaryOperator interface, 326

UnavailableServiceException, 830

uncaughtException method (ThreadGroup), 861–862

UncaughtExceptionHandler interface, 860–862

uncaughtException method, 861

Unchecked exceptions, 264, 361–363

applicability of, 383

Unequality operator, 62

Unicode standard, 6, 51–52, 65

in char type, 50

Unit testing, 162

University of Illinois, 10

UNIX

Eclipse versions for, 27

JNLP configuration in, 828

running applets in, 34

setting paths in, 20, 191–193

setting up JDK in, 20

system directories, 788

troubleshooting Java programs in,

26

unlock method (Lock), 869, 871

Unmodifiable views, 511–512

unmodifiableCollection methods (Collections),

511–512, 514

UnsupportedOperationException, 503, 510, 512,

514

unsynch/Bank.java, 865

unsynch/UnsynchBankTest.java, 864

updateAndGet method (AtomicType), 887

updateComponentTreeUI method (SwingUtilities),

599

User input, 650

errors of, 359

User Interface. See Graphical User Interface

userNodeForPackage method (Preferences), 794,

799

userRoot method (Preferences), 794, 799

“Uses–a” relationship, 133–135

UTC (Coordinated Universal Time), 139

UTF-8 standard, 87

Utility classes, 298–299

V
V type variable, 419

validate method (Component), 651, 951

valueOf method

of BigDecimal, BigInteger, 108, 110–111

of Enum, 258, 260

of Integer, 256

values method (Map), 502–503

Values, captured by lambda expressions,

323

Varargs, 256–257

passing generic types to, 432–433

Variables, 53–56

accessing in lambdas, 322–324

copying, 306

declarations of, 53

deprecated, 197

effectively final, 324

final, accessing from outer methods,

339–342

initializing, 54, 200

local, 138, 430

annotating, 430

mutating in lambda expressions, 323

names of, 53–56

package scope of, 189

printing/logging values of, 409

static, 159

thread-local, 892–893

Vector class, 460, 528, 883, 914–915

elements method, 530

for dynamic arrays, 245

get, set methods, 883

synchronization in, 484

@version comment (javadoc), 197, 199

1005Index

ptg16518469

Views, 509, 633

bulk operations for, 525

checked, 513

restricted, 514

subranges of, 510–511

synchronized, 512–513

unmodifiable, 511–512

Visual Basic programming language

built-in date type in, 136

event handling in, 587

forms in, 638

syntax of, 3

Visual Studio, 23

void keyword, 44–45

Volatile fields, 885–886

volatile keyword, 885–886

von der Ahé, Peter, 422

W
wait method (Object), 856, 878, 882

Wait sets, 873

warning method (Logger), 390, 404

Warnings

fallthrough behavior, 105

generic types, 252, 430, 432,

437–439

suppressing, 432, 437–439

Weak hash maps, 504

Weak references, 504

WeakHashMap class, 504, 507

as a concrete collection type, 472

Weakly consistent iterators, 906

WeakReference object, 504

Web pages

dynamic, 9

reading from URL, 932

showing applets on, 802–824

title of, 807

webstart/CalculatorFrame.java, 832

Welcome/Welcome.java, 25

whenComplete method (CompletableFuture), 933

while loop, 94–99

Whitespace, irrelevant to Java compiler,

44

Wildcard types, 417, 442–450

arrays of, 432

capturing, 448–450

supertype bounds for, 444–447

unbounded, 447

WildcardType interface, 453

getLowerBounds, getUpperBounds methods, 458

Window class, 628

is/setLocationByPlatform methods, 552

pack method, 550, 557, 560

toBack/Front methods, 552

Window listeners, 603–607

Window place, 630–631

WindowAdapter class, 626

WindowClosing event, 688

WindowEvent class, 588, 603, 626

getNewState, getOldState methods, 607,

628

getWindow, getOppositeWindow, getScrollAmount
methods, 628

WindowFocusListener interface, 626

windowGainedFocus, windowLostFocus methods,

628

WindowListener interface, 626

windowActivated/Deactivated methods, 603, 607,

628

windowClosing/Closed methods, 603–607, 628

windowIconified/Deiconified methods, 603, 607,

628

windowOpened method, 603, 606, 628

Windows. See Dialogs

Windows look-and-feel, 539–540

Windows operating system

Alt+F4 in, 688

debugging applets in, 807

default location in, 395

device context in, 556

Eclipse versions for, 27

executing JARs in, 783

file separators in, 785

fonts shipped with, 574

JDK versions for, 18

pop-up trigger in, 685

registry in, 794–795

resources in, 783

running applets in, 34–35

setting paths in, 20, 191, 193

setting up JDK in, 20

thread priority levels in, 859

WindowStateListener interface, 603, 626

windowStateChanged method, 607,

628

Wirth, Niklaus, 5, 10, 130

withInitial method (ThreadLocal), 893

Index1006

ptg16518469

Work stealing, 930

Wrappers, 252–256

equality testing for, 254

immutability of, 253

lightweight collection, 509–510

X
X11 programming, 556

XML (Extensible Markup Language), 12–13

xor method (BitSet), 533

Y
yield method (Thread), 859

Z
ZIP format, 191, 780

1007Index

ptg16518469

This page intentionally left blank

ptg16518469

http://www.informit.com/title/9780321774095

ptg16518469

http://www.informit.com
http://www.informit.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com
http://www.informit.com/register

ptg16518469

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Cover
	Contents
	Preface
	Acknowledgments
	Chapter 1: An Introduction to Java
	1.1 Java as a Programming Platform
	1.2 The Java “White Paper” Buzzwords
	1.2.1 Simple
	1.2.2 Object-Oriented
	1.2.3 Distributed
	1.2.4 Robust
	1.2.5 Secure
	1.2.6 Architecture-Neutral
	1.2.7 Portable
	1.2.8 Interpreted
	1.2.9 High-Performance
	1.2.10 Multithreaded
	1.2.11 Dynamic

	1.3 Java Applets and the Internet
	1.4 A Short History of Java
	1.5 Common Misconceptions about Java

	Chapter 2: The Java Programming Environment
	2.1 Installing the Java Development Kit
	2.1.1 Downloading the JDK
	2.1.2 Setting up the JDK
	2.1.3 Installing Source Files and Documentation

	2.2 Using the Command-Line Tools
	2.3 Using an Integrated Development Environment
	2.4 Running a Graphical Application
	2.5 Building and Running Applets

	Chapter 3: Fundamental Programming Structures in Java
	3.1 A Simple Java Program
	3.2 Comments
	3.3 Data Types
	3.3.1 Integer Types
	3.3.2 Floating-Point Types
	3.3.3 The char Type
	3.3.4 Unicode and the char Type
	3.3.5 The boolean Type

	3.4 Variables
	3.4.1 Initializing Variables
	3.4.2 Constants

	3.5 Operators
	3.5.1 Mathematical Functions and Constants
	3.5.2 Conversions between Numeric Types
	3.5.3 Casts
	3.5.4 Combining Assignment with Operators
	3.5.5 Increment and Decrement Operators
	3.5.6 Relational and boolean Operators
	3.5.7 Bitwise Operators
	3.5.8 Parentheses and Operator Hierarchy
	3.5.9 Enumerated Types

	3.6 Strings
	3.6.1 Substrings
	3.6.2 Concatenation
	3.6.3 Strings Are Immutable
	3.6.4 Testing Strings for Equality
	3.6.5 Empty and Null Strings
	3.6.6 Code Points and Code Units
	3.6.7 The String API
	3.6.8 Reading the Online API Documentation
	3.6.9 Building Strings

	3.7 Input and Output
	3.7.1 Reading Input
	3.7.2 Formatting Output
	3.7.3 File Input and Output

	3.8 Control Flow
	3.8.1 Block Scope
	3.8.2 Conditional Statements
	3.8.3 Loops
	3.8.4 Determinate Loops
	3.8.5 Multiple Selections—The switch Statement
	3.8.6 Statements That Break Control Flow

	3.9 Big Numbers
	3.10 Arrays
	3.10.1 The “for each” Loop
	3.10.2 Array Initializers and Anonymous Arrays
	3.10.3 Array Copying
	3.10.4 Command-Line Parameters
	3.10.5 Array Sorting
	3.10.6 Multidimensional Arrays
	3.10.7 Ragged Arrays

	Chapter 4: Objects and Classes
	4.1 Introduction to Object-Oriented Programming
	4.1.1 Classes
	4.1.2 Objects
	4.1.3 Identifying Classes
	4.1.4 Relationships between Classes

	4.2 Using Predefined Classes
	4.2.1 Objects and Object Variables
	4.2.2 The LocalDate Class of the Java Library
	4.2.3 Mutator and Accessor Methods

	4.3 Defining Your Own Classes
	4.3.1 An Employee Class
	4.3.2 Use of Multiple Source Files
	4.3.3 Dissecting the Employee Class
	4.3.4 First Steps with Constructors
	4.3.5 Implicit and Explicit Parameters
	4.3.6 Benefits of Encapsulation
	4.3.7 Class-Based Access Privileges
	4.3.8 Private Methods
	4.3.9 Final Instance Fields

	4.4 Static Fields and Methods
	4.4.1 Static Fields
	4.4.2 Static Constants
	4.4.3 Static Methods
	4.4.4 Factory Methods
	4.4.5 The main Method

	4.5 Method Parameters
	4.6 Object Construction
	4.6.1 Overloading
	4.6.2 Default Field Initialization
	4.6.3 The Constructor with No Arguments
	4.6.4 Explicit Field Initialization
	4.6.5 Parameter Names
	4.6.6 Calling Another Constructor
	4.6.7 Initialization Blocks
	4.6.8 Object Destruction and the finalize Method

	4.7 Packages
	4.7.1 Class Importation
	4.7.2 Static Imports
	4.7.3 Addition of a Class into a Package
	4.7.4 Package Scope

	4.8 The Class Path
	4.8.1 Setting the Class Path

	4.9 Documentation Comments
	4.9.1 Comment Insertion
	4.9.2 Class Comments
	4.9.3 Method Comments
	4.9.4 Field Comments
	4.9.5 General Comments
	4.9.6 Package and Overview Comments
	4.9.7 Comment Extraction

	4.10 Class Design Hints

	Chapter 5: Inheritance
	5.1 Classes, Superclasses, and Subclasses
	5.1.1 Defining Subclasses
	5.1.2 Overriding Methods
	5.1.3 Subclass Constructors
	5.1.4 Inheritance Hierarchies
	5.1.5 Polymorphism
	5.1.6 Understanding Method Calls
	5.1.7 Preventing Inheritance: Final Classes and Methods
	5.1.8 Casting
	5.1.9 Abstract Classes
	5.1.10 Protected Access

	5.2 Object: The Cosmic Superclass
	5.2.1 The equals Method
	5.2.2 Equality Testing and Inheritance
	5.2.3 The hashCode Method
	5.2.4 The toString Method

	5.3 Generic Array Lists
	5.3.1 Accessing Array List Elements
	5.3.2 Compatibility between Typed and Raw Array Lists

	5.4 Object Wrappers and Autoboxing
	5.5 Methods with a Variable Number of Parameters
	5.6 Enumeration Classes
	5.7 Reflection
	5.7.1 The Class Class
	5.7.2 A Primer on Catching Exceptions
	5.7.3 Using Reflection to Analyze the Capabilities of Classes
	5.7.4 Using Reflection to Analyze Objects at Runtime
	5.7.5 Using Reflection to W rite Generic Array Code
	5.7.6 Invoking Arbitrary Methods

	5.8 Design Hints for Inheritance

	Chapter 6: Interfaces, Lambda Expressions, and Inner Classes
	6.1 Interfaces
	6.1.1 The Interface Concept
	6.1.2 Properties of Interfaces
	6.1.3 Interfaces and Abstract Classes
	6.1.4 Static Methods
	6.1.5 Default Methods
	6.1.6 Resolving Default Method Conflicts

	6.2 Examples of Interfaces
	6.2.1 Interfaces and Callbacks
	6.2.2 The Comparator Interface
	6.2.3 Object Cloning

	6.3 Lambda Expressions
	6.3.1 Why Lambdas?
	6.3.2 The Syntax of Lambda Expressions
	6.3.3 Functional Interfaces
	6.3.4 Method References
	6.3.5 Constructor References
	6.3.6 Variable Scope
	6.3.7 Processing Lambda Expressions
	6.3.8 More about Comparators

	6.4 Inner Classes
	6.4.1 Use of an Inner Class to Access Object State
	6.4.2 Special Syntax Rules for Inner Classes
	6.4.3 Are Inner Classes Useful? Actually Necessary? Secure?
	6.4.4 Local Inner Classes
	6.4.5 Accessing Variables from Outer Methods
	6.4.6 Anonymous Inner Classes
	6.4.7 Static Inner Classes

	6.5 Proxies
	6.5.1 When to Use Proxies
	6.5.2 Creating Proxy Objects
	6.5.3 Properties of Proxy Classes

	Chapter 7: Exceptions, Assertions, and Logging
	7.1 Dealing with Errors
	7.1.1 The Classification of Ex ceptions
	7.1.2 Declaring Checked Exceptions
	7.1.3 How to Throw an Exception
	7.1.4 Creating Exception Classes

	7.2 Catching Exceptions
	7.2.1 Catching an Exception
	7.2.2 Catching Multiple Exceptions
	7.2.3 Rethrowing and Chaining Exceptions
	7.2.4 The finally Clause
	7.2.5 The Try-with-Resources Statement
	7.2.6 Analyzing Stack Trace Elements

	7.3 Tips for Using Exceptions
	7.4 Using Assertions
	7.4.1 The Assertion Concept
	7.4.2 Assertion Enabling and Disabling
	7.4.3 Using Assertions for Parameter Checking
	7.4.4 Using Assertions for Documenting Assumptions

	7.5 Logging
	7.5.1 Basic Logging
	7.5.2 Advanced Logging
	7.5.3 Changing the Log Manager Configuration
	7.5.4 Localization
	7.5.5 Handlers
	7.5.6 Filters
	7.5.7 Formatters
	7.5.8 A Logging Recipe

	7.6 Debugging Tips

	Chapter 8: Generic Programming
	8.1 Why Generic Programming?
	8.1.1 The Advantage of Type Parameters
	8.1.2 Who Wants to Be a Generic Programmer?

	8.2 Defining a Simple Generic Class
	8.3 Generic Methods
	8.4 Bounds for Type Variables
	8.5 Generic Code and the Virtual Machine
	8.5.1 Type Erasure
	8.5.2 Translating Generic Expressions
	8.5.3 Translating Generic Methods
	8.5.4 Calling Legacy Code

	8.6 Restrictions and Limitations
	8.6.1 Type Parameters Cannot Be Instantiated with Primitive Types
	8.6.2 Runtime Type Inquiry Only Works with Raw Types
	8.6.3 You Cannot Create Arrays of Parameterized Types
	8.6.4 Varargs Warnings
	8.6.5 You Cannot Instantiate Type Variables
	8.6.6 You Cannot Construct a Generic Array
	8.6.7 Type Variables Are Not Valid in Static Contexts of Generic Classes
	8.6.8 You Cannot Throw or Catch Instances of a Generic Class
	8.6.9 You Can Defeat Checked Exception Checking
	8.6.10 Beware of Clashes after Erasure

	8.7 Inheritance Rules for Generic Types
	8.8 Wildcard Types
	8.8.1 The Wildcard Concept
	8.8.2 Supertype Bounds for Wildcards
	8.8.3 Unbounded Wildcards
	8.8.4 Wildcard Capture

	8.9 Reflection and Generics
	8.9.1 The Generic Class Class
	8.9.2 Using Class<T> Parameters for Type Matching
	8.9.3 Generic Type Information in the Virtual Machine

	Chapter 9: Collections
	9.1 The Java Collections Framework
	9.1.1 Separating Collection Interfaces and Implementation
	9.1.2 The Collection Interface
	9.1.3 Iterators
	9.1.4 Generic Utility Methods
	9.1.5 Interfaces in the Collections Framework

	9.2 Concrete Collections
	9.2.1 Linked Lists
	9.2.2 Array Lists
	9.2.3 Hash Sets
	9.2.4 Tree Sets
	9.2.5 Queues and Deques
	9.2.6 Priority Queues

	9.3 Maps
	9.3.1 Basic Map Operations
	9.3.2 Updating Map Entries
	9.3.3 Map Views
	9.3.4 Weak Hash Maps
	9.3.5 Linked Hash Sets and Maps
	9.3.6 Enumeration Sets and Maps
	9.3.7 Identity Hash Maps

	9.4 Views and Wrappers
	9.4.1 Lightweight Collection Wrappers
	9.4.2 Subranges
	9.4.3 Unmodifiable V iews
	9.4.4 Synchronized Views
	9.4.5 Checked Views
	9.4.6 A Note on Optional Operations

	9.5 Algorithms
	9.5.1 Sorting and Shuffling
	9.5.2 Binary Search
	9.5.3 Simple Algorithms
	9.5.4 Bulk Operations
	9.5.5 Converting between Collections and Arrays
	9.5.6 Writing Your Own Algorithms

	9.6 Legacy Collections
	9.6.1 The Hashtable Class
	9.6.2 Enumerations
	9.6.3 Property Maps
	9.6.4 Stacks
	9.6.5 Bit Sets

	Chapter 10: Graphics Programming
	10.1 Introducing Swing
	10.2 Creating a Frame
	10.3 Positioning a Frame
	10.3.1 Frame Properties
	10.3.2 Determining a Good Frame Size

	10.4 Displaying Information in a Component
	10.5 Working with 2D Shapes
	10.6 Using Color
	10.7 Using Special Fonts for Text
	10.8 Displaying Images

	Chapter 11: Event Handling
	11.1 Basics of Event Handling
	11.1.1 Example: Handling a Button Click
	11.1.2 Specifying Listeners Concisely
	11.1.3 Example: Changing the Look-and-Feel
	11.1.4 Adapter Classes

	11.2 Actions
	11.3 Mouse Events
	11.4 The AWT Event Hierarchy
	11.4.1 Semantic and Low-Level Events

	Chapter 12: User Interface Components with Swing
	12.1 Swing and the Model-View-Controller Design Pattern
	12.1.1 Design Patterns
	12.1.2 The Model-View-Controller Pattern
	12.1.3 A Model-View-Controller Analysis of Swing Buttons

	12.2 Introduction to Layout Management
	12.2.1 Border Layout
	12.2.2 Grid Layout

	12.3 Text Input
	12.3.1 Text Fields
	12.3.2 Labels and Labeling Components
	12.3.3 Password Fields
	12.3.4 Text Areas
	12.3.5 Scroll Panes

	12.4 Choice Components
	12.4.1 Checkboxes
	12.4.2 Radio Buttons
	12.4.3 Borders
	12.4.4 Combo Boxes
	12.4.5 Sliders

	12.5 Menus
	12.5.1 Menu Building
	12.5.2 Icons in Menu Items
	12.5.3 Checkbox and Radio Button Menu Items
	12.5.4 Pop-Up Menus
	12.5.5 Keyboard Mnemonics and Accelerators
	12.5.6 Enabling and Disabling Menu Items
	12.5.7 Toolbars
	12.5.8 Tooltips

	12.6 Sophisticated Layout Management
	12.6.1 The Grid Bag Layout
	12.6.1.1 The gridx, gridy, gridwidth, and gridheight Parameters
	12.6.1.2 Weight Fields
	12.6.1.3 The fill and anchor Parameters
	12.6.1.4 Padding
	12.6.1.5 Alternative Method to Specify the gridx, gridy, gridwidth, and gridheight Parameters
	12.6.1.6 A Helper Class to Tame the Grid Bag Constraints

	12.6.2 Group Layout
	12.6.3 Using No Layout Manager
	12.6.4 Custom Layout Managers
	12.6.5 Traversal Order

	12.7 Dialog Boxes
	12.7.1 Option Dialogs
	12.7.2 Creating Dialogs
	12.7.3 Data Exchange
	12.7.4 File Dialogs
	12.7.5 Color Choosers

	12.8 Troubleshooting GUI Programs
	12.8.1 Debugging Tips
	12.8.2 Letting the AWT Robot Do the Work

	Chapter 13: Deploying Java Applications
	13.1 JAR Files
	13.1.1 Creating JAR files
	13.1.2 The Manifest
	13.1.3 Executable JAR Files
	13.1.4 Resources
	13.1.5 Sealing

	13.2 Storage of Application Preferences
	13.2.1 Property Maps
	13.2.2 The Preferences API

	13.3 Service Loaders
	13.4 Applets
	13.4.1 A Simple Applet
	13.4.2 The applet HTML Tag and Its Attributes
	13.4.3 Use of Parameters to Pass Information to Applets
	13.4.4 Accessing Image and Audio Files
	13.4.5 The Applet Context
	13.4.6 Inter-Applet Communication
	13.4.7 Displaying Items in the Browser
	13.4.8 The Sandbox
	13.4.9 Signed Code

	13.5 Java Web Start
	13.5.1 Delivering a Java Web Start Application
	13.5.2 The JNLP API

	Chapter 14: Concurrency
	14.1 What Are Threads?
	14.1.1 Using Threads to Give Other Tasks a Chance

	14.2 Interrupting Threads
	14.3 Thread States
	14.3.1 New Threads
	14.3.2 Runnable Threads
	14.3.3 Blocked and Waiting Threads
	14.3.4 Terminated Threads

	14.4 Thread Properties
	14.4.1 Thread Priorities
	14.4.2 Daemon Threads
	14.4.3 Handlers for Uncaught Exceptions

	14.5 Synchronization
	14.5.1 An Example of a Race Condition
	14.5.2 The Race Condition Explained
	14.5.3 Lock Objects
	14.5.4 Condition Objects
	14.5.5 The synchronized Keyword
	14.5.6 Synchronized Blocks
	14.5.7 The Monitor Concept
	14.5.8 Volatile Fields
	14.5.9 Final Variables
	14.5.10 Atomics
	14.5.11 Deadlocks
	14.5.12 Thread-Local Variables
	14.5.13 Lock Testing and Timeouts
	14.5.14 Read/Write Locks
	14.5.15 Why the stop and suspend Methods Are Deprecated

	14.6 Blocking Queues
	14.7 Thread-Safe Collections
	14.7.1 Efficient Maps, Sets, and Queues
	14.7.2 Atomic Update of Map Entries
	14.7.3 Bulk Operations on Concurrent Hash Maps
	14.7.4 Concurrent Set Views
	14.7.5 Copy on Write Arrays
	14.7.6 Parallel Array Algorithms
	14.7.7 Older Thread-Safe Collections

	14.8 Callables and Futures
	14.9.1 Thread Pools
	14.9.2 Scheduled Execution
	14.9.3 Controlling Groups of Tasks
	14.9.4 The Fork-Join Framework
	14.9.5 Completable Futures

	14.9 Executors
	14.10 Synchronizers
	14.10.1 Semaphores
	14.10.2 Countdown Latches
	14.10.3 Barriers
	14.10.4 Exchangers
	14.10.5 Synchronous Queues

	14.11 Threads and Swing
	14.11.1 Running Time-Consuming Tasks
	14.11.2 Using the Swing Worker
	14.11.3 The Single-Thread Rule

	Appendix A: Java Keywords
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

