¢2 PRENTICE

F)
ee HALL

JAVA

Volume |—Fundamentals

TENTH EDlTlDNA

CAY S. HORSTMANN

http://www.allitebooks.org

Core Java®

Volume |—Fundamentals
Tenth Edition

vww allitebooks.cond

http://www.allitebooks.org

This page intentionally left blank

M.al | itebooks.cogl

http://www.allitebooks.org

Core Java°

Volume I—Fundamentals
Tenth Edition

Cay S. Horstmann

PRENTICE
HALL

Boston ® Columbus ¢ Indianapolis ® New York ¢ San Francisco ® Amsterdam ¢ Cape Town
Dubai ® London ¢ Madrid ¢ Milan ® Munich e Paris ® Montreal ® Toronto ® Delhi ® Mexico City

Sao Paulo ¢ Sidney ® Hong Kong ® Seoul ® Singapore ¢ Taipei ® Tokyo

vww allitebooks.cond

http://www.allitebooks.org

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Names: Horstmann, Cay S., 1959- author.

Title: Core Java / Cay S. Horstmann.

Description: Tenth edition. | New York : Prentice Hall, [2016] | Includes
index.

Identifiers: LCCN 2015038763 | ISBN 9780134177304 (volume 1 : pbk. : alk.
paper) | ISBN 0134177304 (volume 1 : pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 H6753 2016 | DDC 005.13/3—dc23

LC record available at http://lcen.loc.gov /2015038763

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Portions © Cay S. Horstmann

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Oracle America Inc. does not make any representations or warranties as to the accuracy,
adequacy or completeness of any information contained in this work, and is not responsible
for any errors or omissions.

ISBN-13: 978-0-13-417730-4
ISBN-10: 0-13-417730-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, December 2015

Mw.al | itebooks.cogl

http://lccn.loc.gov/2015038763
http://www.pearsoned.com/permissions/
http://www.allitebooks.org

Contents

PrefaCeoooueeeeeeeeeeeee e Xix
ACKNOWIEAGMENIES ... XXV
Chapter 1: An Introduction t0 Javacceeeecciiiiceecccrrrrrr e 1
1.1 Java as a Programming Platformcccccceoeviiiinnniiinccceene 1
1.2 The Java “White Paper” Buzzwordsccooeeiniiiiiiiiiiic 2
1.21 SIMPLE e 3

122 Object-Oriented ..o, 4

1.2.3 Distributed ..o 4

124 RODUSE oo 4

1.2.5 SECUTE oo 4

1.2.6 Architecture-Neutral ..o, 5

1.2.7 Portable ... 6

1.2.8 Interpreted ... 7

1.2.9 High-Performance ..o 7

1.2.10 Multithreadedccooiiiiiiiii 7

1.2.11 DyNamIC oottt 8

1.3 Java Applets and the Internetcooooeiiiii 8
1.4 A Short History of Java ..o 10
1.5 Common Misconceptions about Javacccccceceeeereinceevrceceenne 13
Chapter 2: The Java Programming Environmentccccococmiiecmrniicnnnnennns 17
2.1 Installing the Java Development Kitcccccoviiiiiiiiiiiiiiiiinns 18
21.1 Downloading the JDKcccccoiiiiiiiiiiicciiicccccces 18

212 Setting up the JDKccoooiiiiiiiiiiceeeccceceeceeeeenenenes 20

2.1.3 Installing Source Files and Documentationccceceueeee 22

2.2 Using the Command-Line TOOoISccccccceiuiiiiiiiiiiiiiiccciicenes 23
2.3 Using an Integrated Development Environmentcccccoovvviinnnnes 26
24 Running a Graphical Application ..o, 30
2.5 Building and Running Applets ... 33

vww allitebooks.cond

http://www.allitebooks.org

n Contents

Chapter 3: Fundamental Programming Structures in Javac.cccceeueeen. 41
3.1 A Simple Java Program ... 42
3.2 COMMENES ..cuoviniiiiiiiiiice e 46
3.3 Data TYPES ..cooovieiiiiiiieiiiece s 47

3.3.1 Integer TYPeS ...t 47
3.3.2 Floating-Point TYPescccceviiivininninininiiicccccceaes 48
333 The char TYPe coomoviiecii s 50
3.34 Unicode and the char Typeccovviviiiiiiniiiiice 51
3.3.5 The boolean TYPE ..coviiiuiiiiiiiieece s 52
3.4 Variables ... 53
3.4.1 Initializing Variables ... 54
342 Constants ... 55
3.5 OPErators ..ot 56
3.5.1 Mathematical Functions and Constantscccocoevviinnnnen 57
3.5.2 Conversions between Numeric Typescccoooeueierrieiiinnnnan. 59
353 €SS s 60
3.54 Combining Assignment with Operatorsccccooeoriieinne. 61
3.5.5 Increment and Decrement Operatorsccccoeeeveveinircnnncnnes 61
3.5.6 Relational and boolean Operatorsccccceveieueieiicicieiiiinine, 62
3.5.7 Bitwise Operators ... 63
3.5.8 Parentheses and Operator Hierarchyc.cccccoevenevinnncncnnee 64
3.5.9 Enumerated Types ... 65
3.6 SHANES oo s 65
3.6.1 SUDSLIINGS ..ocvvieieiiie 66
3.6.2 Concatenationccccecveoinioiniiciniiiieceeee e 66
3.6.3 Strings Are Immutableccccooooiiiiiiii 67
3.64 Testing Strings for Equalitycccocoviiinnnnii 68
3.6.5 Empty and Null Stringsccccceveeininnnnnnnnrceeeeeenes 69
3.6.6 Code Points and Code URitsccccevvvivivivniiniiiiiniiiiiins 70
3.6.7 The String API c..ooueoeieieeeeeeeeeeeeeeeee ettt 71
3.6.8 Reading the Online API Documentationc.ccoceveinnnneen 74
3.6.9 Building Stringscccccovviiiiininnniii 77
3.7 Input and OULPUL ...c.ccceuiuiiiiiiiiiiiicecceceeee e 78
3.71 Reading INput ..o 79
3.7.2 Formatting Outputccovviiiviiiniiiiiiie 82

Mw.al | itebooks.cogl

http://www.allitebooks.org

Contents

3.7.3 File Input and Outputccoooiriiiiiiii 87

3.8 Control FIOWcovoiiiiiieiiiiiciiccccc e 89
3.8.1 BIOCK SCOPE ...ttt 89

3.82 Conditional Statementsccccccvvueueirnuereieneeeenreeeeennenes 90

3.8.3 LOOPS ettt 94

3.8.4 Determinate LOOPScccoeiviriiiiiiiiniiiiiiiccccncen 99

3.8.5 Multiple Selections—The switch Statementccccccooveueeee 103

3.8.6 Statements That Break Control FIowcccccccooiinn 106

3.9 Big NUMDETS ...cocuiiiiiiiiiiciiciicc e 108
310 ATTAYS woiveiiiieciet ettt s 111
3.10.1 The “for each” LOOP ...cccoviiiiiiiiiiiiiiccccccces 113
3.10.2 Array Initializers and Anonymous Arraysc.ccccceeeeeeune. 114
3.10.3 Array COPYING ..oooeueieiicieieiiccie s 114
3.10.4 Command-Line Parametersccccoooeviiiviiiiniccniniccnnnn 116
3.10.5 Array SOrtingccoceeiieieieiiicicice s 117
3.10.6 Multidimensional AITays ... 120
3.10.7 Ragged ATTAYS ...ccoriiiiiiiiiciciiirccceeeeee s 124
Chapter 4: Objects and Classescccvuremmrnrmsinsssinsmssiss s sansssennas 129
41 Introduction to Object-Oriented Programmingc.cccocoeeueininncnes 130
411 ClASSES oottt 131

412 ODJECES et 132

413 Identifying Classesc.ccocomriiiiimrieieiiicicecce e 133

414 Relationships between Classesccooveiiiiniciiinincncnnne. 133

42 Using Predefined Classescccooeuririnininininininiciececiece e 135
421 Objects and Object Variablescccoouiiiiiiniiniinininicnne. 136

422 The Localbate Class of the Java Libraryccccccooveiieiiinnnnnes 139

423 Mutator and Accessor Methods ..o 141

4.3 Defining Your OWn CIaSSesccoeeiiriireiiininieciiiecceeeeeeenes 145
431 An Enployee ClasS ..ccovevvieieviiieeieeeeieee ettt 145

43.2 Use of Multiple Source Filescccoouiiiiininniiiicnnns 149

43.3 Dissecting the Employee Classcccooviviviiiniiiiininn 149

43.4 First Steps with Constructorscccoeviiiiiiiiiiiicnns 150

43.5 Implicit and Explicit Parameterscccoeevoieriecccnnencncncnes 152

4.3.6 Benefits of Encapsulation ..., 153

43.7 Class-Based Access Privilegescccooooiiiiiniiinicncnccncnes 156

Mw.al | itebooks.cogl

http://www.allitebooks.org

Contents
4.3.8 Private Methodscccooeeiieiieiiieeeieeeeeceeeeeee e 156
4.3.9 Final Instance Fieldsccccooevevieieieieieieieeeeeeeeeeeens 157
4.4 Static Fields and Methodscccooieieiiieienieieeeeeceeee e 158
4471 Static FIeldsS .oooieieiecieieceeeceeece ettt 158
4,42 Static CONSEANTS ...ccveevervieieeeieiieeeie ettt e se e e s e eeseens 159
443 Static Methodscoeeeieiieiiieeieeeeeeeete e 160
444 Factory Methods ..o 161
445 The main Methodccoeovveieeiieiieeeeceeeeee e 161
45 Method Parameterscoceceeererierienierieieieteeeseeee e ssesens 164
4.6 Object CONSIUCHON ..ovovvviieieicicicicccc e 171
4.6.1 Overloadingcccooviiiiiiinininiiiii 172
4.6.2 Default Field Initializationcccccecveevevvecievenienisenesesresienns 172
4.6.3 The Constructor with No Argumentsccccooeveriiiiinnne. 173
464 Explicit Field Initializationc.ccccoevvvnnnnnnnnnnne 174
4.6.5 Parameter INAMESccccoceeveeriiiriienieeiienieeieesteesieeseesveesneeaee 175
4.6.6 Calling Another Constructorccccoovvvvnnnnnnnnncnnnes 176
4.6.7 Initialization BIOCKSccoevvevieieieieicieccieeee e 177
4.6.8 Object Destruction and the finalize Methodc.cccevveenne 181
4.7 Packages ...cccceeuiiiiiiiic e 182
47.1 Class Importation ... 183
472 Static IMPOrtsccocoovvieiiiiiiiiic 185
473 Addition of a Class into a Packagec.ccccocevervieiiiiinnnnes 185
474 Package SCOPE ..o 189
4.8 The Class Path ...ttt 190
48.1 Setting the Class Pathccccooooiiii 193
4.9 Documentation COMMENTESccceveieieriiriierieieneeieeeee et 194
49.1 Comment INSEIrtioNccoceeevvieieriieieneeeere et se e 194
492 Class COMIMENLScceeeveeieereeriereeieeeeeteeee e eresreeae e ereereeneens 195
49.3 Method COMMENLSccevverreieieieieteieeeeeeee et eresaens 195
494 Field COMMENTES ...oocviiieiiciieiieeeieeeeie et 196
495 General COMMENTScccevververierieieieieteeeieeeeeeeressessessessenens 196
49.6 Package and Overview Commentscocoeuereiririereininnnnen. 198
49.7 Comment EXtractioncccccceevieeviieiieeieciieeieeceeeee e ene e 198
4.10 Class Design Hintscccoovuiiiiiiiiiiieiicie e 200

Mw.al | itebooks.cogl

http://www.allitebooks.org

Contents

Chapter 5: INheritance ... s e 203
5.1 Classes, Superclasses, and Subclassesccccevvvviiiiiiiiiiinnns 204
51.1 Defining Subclassesccoooiiiiiiiiiiiiiiicccces 204

512 Overriding Methodsccccooiiiiiiiiii 206

51.3 Subclass CONSIIUCLOLSccoceiviiiiiiiiiiie 207

514 Inheritance Hierarchies ... 212

5.1.5 Polymorphism ..o 213

51.6 Understanding Method Callscccccocoviiiiniininiiiinnes 214

5.1.7 Preventing Inheritance: Final Classes and Methods 217

51.8 CaStiNg ..ccoveiiiiiiciciec e 219

519 ADbstract Classes ... s 221
5.1.10 Protected ACCESS ... 227

5.2 Object: The Cosmic SUPEICIasscccoeueueuriruririiiciriririciceeeeeeeeeeeee 228
5221 The equals Methodccoooeeeiieieniiiieceeececeeee e 229

52.2 Equality Testing and Inheritancecccccccoovviiiiiinnnnne. 231

52.3 The hashCode Method ..o 235

5.2.4 The toString Methodccccouieieoiiiiicieieceeeeeeeeee e 238

5.3 Generic Array Lists ... 244
5.3.1 Accessing Array List Elementsccccccooiiiiiin 247

53.2 Compatibility between Typed and Raw Array Lists 251

5.4 Object Wrappers and AutoboXingcooeeveieiinieiiiiniciciccie, 252
5.5 Methods with a Variable Number of Parametersccccceeuvivunnnns 256
5.6 Enumeration Classes ... 258
5.7 RefleCtiON ..c.c.coeueieuiiiieiiiiieieieieieieieieieieieieete ettt 260
571 The (1ass Class ...ccccecirruereuiniriiiciiiririeccrrieeeeeeeree e 261

572 A Primer on Catching Exceptionsccccooeeinceccninncncecnee 263

5.7.3 Using Reflection to Analyze the Capabilities of Classes 265

574 Using Reflection to Analyze Objects at Runtime 271

5.7.5 Using Reflection to Write Generic Array Code 276

5.7.6 Invoking Arbitrary Methodscccccooiiiiiiinnininnes 279

5.8 Design Hints for Inheritancecccccooooiiiiiiiiiic 283
Chapter 6: Interfaces, Lambda Expressions, and Inner Classes 287
6.1 INterfaces ... 288
6.1.1 The Interface Conceptcccocevvirvivviiiviririiiiicirrcccccie 288

vww allitebooks.cond

http://www.allitebooks.org

Contents

6.1.2 Properties of Interfacescccooooueueiriiniiiiniiice 295

6.1.3 Interfaces and Abstract Classesccccccceerueuecirvinicncrccnnee 297

6.1.4 Static Methodsccccooiiiiiiiiiiiiiicccs 298

6.1.5 Default Methodsccooveeininieiiininiciinecinecceseeeeens 298

6.1.6 Resolving Default Method Conflictscccovvriiirinirininnnn. 300

6.2 Examples of Interfacesccocovviviiiniininiiiiincccs 302
6.2.1 Interfaces and Callbackscccccoeeueurueuiueenniciccecccccennee 302

6.2.2 The Comparator INterfacecccceveeviereerieeiereeeeeeeeee e 305

6.2.3 Object ClONINgccccevueuiuiiiiiiriiiciciciireccceeeeeeeeeeees 306

6.3 Lambda EXPTeSSIONSccceoiiurieiiiiiicieicincicie e 314
6.3.1 Why Lambdas?ccccceiiiiiniiiiiiiicccccccceee 314

6.3.2 The Syntax of Lambda Expressionsccccccoeeueueueucrcrcennee 315

6.3.3 Functional Interfacescccoccoeoivinniiinnciiincciccccens 318

6.34 Method Referencescccccoeceeeiiiiiciiicieicciciccieeccccennee 319

6.3.5 Constructor Referencesccccoevviviiiiinviiiiiiiiicnns 321

6.3.6 Variable SCOPEccccevuiiiiiiiiririiiiiiiccccc s 322

6.3.7 Processing Lambda EXpressionsc.cccocoeveueiviicieiiiinnnnen. 324

6.3.8 More about Comparatorscceceeeeeueueieieceieieeccieeeenens 328

6.4 INNET CLASSESeovvieiiiieiete e 329
6.4.1 Use of an Inner Class to Access Object State 331

6.42 Special Syntax Rules for Inner Classesccccccceuvueueucucuennne 334

6.4.3 Are Inner Classes Useful? Actually Necessary? Secure? 335

6.44 Local INner Classesccccoccevrueueuieirnieniiriniecinsiereeeseeaeeeeas 339

6.45 Accessing Variables from Outer Methodsccccccceueueunene. 339

6.4.6 Anonymous Inner Classesc.cccooeeueiriiceieicicccicieicne, 342

6.4.7 Static Inner Classesccccceurururueueieuriricicicicieicceeeeeeeeneas 346

6.5 PIrOXIES ..ooooiviiiiiiiiiiiiiii 350
6.5.1 When to Use ProXi€sc.ccoeeueieireueerinniecinnnereieneeneeenens 350

6.5.2 Creating Proxy ODbjectscccooeeiiiiieiiiiiiiccicceecnnas 350

6.5.3 Properties of Proxy Classescccceeuriririvniiiiiiiiiiiiiiinininnns 355
Chapter 7: Exceptions, Assertions, and Loggingccceeeemrirererisamenssanens 357
7.1 Dealing with EITOTSccccccoviviviiiiiiiiiiiiiiiiiiccccces 358
711 The Classification of Exceptionsccccccovvvvvniiviiniinnnnn 359

712 Declaring Checked Exceptionsccccoevvviiiiiiiiiiniiiiniiinnns 361

71.3 How to Throw an EXceptionc.ccccccceeevniicciniiccennae 364

Contents

714 Creating Exception Classescccooeeueivicieieiniiccicieiiccn 365

7.2 Catching EXCEPHONS ..o 367
721 Catching an EXception ... 367

722 Catching Multiple EXceptionsccccovvvvivnvnnninnnnnnns 369

723 Rethrowing and Chaining Exceptionsccccccooeeirininnnnee. 370

724 The finally Clauseccceeeevieerieiieieieeeecteeeere et 372

725 The Try-with-Resources Statementcccccocevuvurererirerrennnne 376

7.2.6 Analyzing Stack Trace Elementsccccoooiiiiiriiinnnn 377

7.3 Tips for Using EXCEPIONScccvuviviviiiiiririiiiiiiiirinceceeeceeae 381
7.4 USING ASSEItIONS ...ovviiiiiiiiti e 384
74.1 The Assertion CONCepPtcccovvviviviiiiiiiiiiiiiininiiins 384

742 Assertion Enabling and Disablingc.ccccceevvvviiinnnnne 385

743 Using Assertions for Parameter Checkingccccccceeenee 386

744 Using Assertions for Documenting Assumptions 387

7.5 LOZZING oottt 389
7.5.1 Basic LOZZINGcccovrririiiiiiiiiiiiccc 389

752 Advanced LOGZINGccccovvriririrrrirrrreeceeeeeeeeeeeeeae 390

753 Changing the Log Manager Configurationccccc...... 392

754 Localization ..o 393

755 Handlers ... 394

7.5.6 FAIEEIS ..ooviuiiiiiiiiicciecce et 398

7.5.7 FOrmatters ... 399

7.5.8 A Logging ReCipe ..ot 399

7.6 Debugging TiPscccocovvririrririrriirreree e 409
Chapter 8: Generic Programmingcccuceesrssmsmsssmsmsssssssssssssssssssssasssssasss 415
8.1 Why Generic Programming?ccoooeuoiniiiiiiiciineec 416
8.1.1 The Advantage of Type Parameterscccccevvririririrrinnnnne 416

8.1.2 Who Wants to Be a Generic Programmer?cccccceeueenee 417

8.2 Defining a Simple Generic Classccccoovrueieiiiiniciiiiccecc 418
8.3 Generic Methodsccccvieieuiiiriiciincceccre e 421
8.4 Bounds for Type Variablescccccocoiiirrriiciiciiceeeeeeeeeeeae 422
8.5 Generic Code and the Virtual Machineccccocovvniniinnnnnnn. 425
8.5.1 Type Erasure ... 425

8.5.2 Translating Generic EXpressionsccccocoeeueiirieieiiincnnnn 426

8.5.3 Translating Generic Methodsccccccoooviiiini 427

Contents
8.5.4 Calling Legacy Codeccccoovimiiiiiiiiciciicceecc e 429
8.6 Restrictions and Limitationsccccceveveeeinnrereinnnieceennerecneneeneneees 430
8.6.1 Type Parameters Cannot Be Instantiated with Primitive

TYPOS e 430
8.6.2 Runtime Type Inquiry Only Works with Raw Types 431
8.6.3 You Cannot Create Arrays of Parameterized Types 431
8.6.4 Varargs Warningsccccceceeeveinininiiinnnieccnecccceencecns 432
8.6.5 You Cannot Instantiate Type Variablesccccccccceeennne. 433
8.6.6 You Cannot Construct a Generic Arrayc.cococoeueveienrunen. 434

8.6.7 Type Variables Are Not Valid in Static Contexts of Generic
CLASSES .eevevvinerereriireteietrerte ettt 436
8.6.8 You Cannot Throw or Catch Instances of a Generic Class ... 436
8.6.9 You Can Defeat Checked Exception Checking 437
8.6.10 Beware of Clashes after Erasurecccoeeceenrercinnenccecnnns 439
8.7 Inheritance Rules for Generic Typescccoeeieiiiniiiiiiiciciiccice, 440
8.8 WIldcard TYPES ...cccvuvururiiiiiiiiiricicicicicceceee e 442
8.8.1 The Wildcard Concept ..o 442
8.8.2 Supertype Bounds for Wildcardsc.ccoooeeeiniiinnnnnnnn. 444
8.8.3 Unbounded Wildcardsccoceceeerrerecrmnnercrnnereinnenercenens 447
8.8.4 Wildcard Capture ..o 448
8.9 Reflection and GENETICSc.ceeerureereueirerrereirinrereiireereeeresreeeeseeneneaes 450
8.9.1 The Generic (1355 Classc..ccveveruerurrerieeneerinieeneeneeenreenneeenes 450
8.9.2 Using (lass<T> Parameters for Type Matchingc....... 452
8.9.3 Generic Type Information in the Virtual Machine 452
Chapter 9: ColleCtionscccocciiicerinsnrnss s s 459
9.1 The Java Collections Frameworkccccccevriririenenenenenenenenenes 460
9.1.1 Separating Collection Interfaces and Implementation 460
9.1.2 The Collection INtErfacecocececevvvevevereniriericnireccrnieecreneeenenes 463
9.1.3 THETALOTS weoveeeiiiiiiieieeeececcecetete et 463
9.14 Generic Utility Methodsccoovvinnnnnnneeccne 466
9.1.5 Interfaces in the Collections Frameworkc.cccccccceveennencnn 469
9.2 Concrete COLLECIONSc.cueeerevreuerieinreieieirireeieeereeereeeere et nene 472
9.2.1 Linked LiSts ..cccoeoireiriiiiieiceiccrctneteceeeee e 474
9.22 Array Lists ..o 484

0.2.3 HASK SIS weoieeeiieiiceeeeee e 485

Contents

924 Tree Sets ..o 489

925 Queues and DeqUES ... 494

9.2.6 Priority QUEUEScccvovieriiiicciec s 495

9.3 MAPS s 497
9.3.1 Basic Map Operationscccccocoeveimiviiiiiniiiniiccnes 497

9.3.2 Updating Map Entriescccccoviiiiiiinncc 500

9.33 Map VIEWS ..ot 502

9.34 Weak Hash Mapscccccoceuiiiiriciiiiiccecc 504

9.3.5 Linked Hash Sets and Mapsccccccoceiiiiiininccniincnccnnes 504

9.3.6 Enumeration Sets and Mapsccccooeueeiiiieiiiniicic 506

9.3.7 Identity Hash Mapscccccooeiiiiiiiiiiiicccccccccicnes 507

9.4 Views and WIAPPETScccccceurueueururiririiieicieeeieieieeeeeeeeeeeeaeeeeeeeaeseeeeseenenas 509
9.41 Lightweight Collection Wrapperscccocoeueiveccieiiircnnne. 509

9.4.2 SUDIANGES ...ccimimimimiiiiiiiiicccrccc s 510

9.43 Unmodifiable VIEWSccccccviiviiiiiiiicniccis 511

9.44 Synchronized VIEWScccoiiiiiiiiiiiiciicccccces 512

9.45 Checked VIEWS ..o 513

9.4.6 A Note on Optional Operationscccoeeviviviinciniiinnnnnne 514

9.5 AIZOTItRINS ..oviiiiiiicccc e 517
9.5.1 Sorting and Shuffling ..o 518

9.5.2 Binary Search ... 521

9.53 Simple AlgOrithmscccooiiiiiiiiii 522

9.54 Bulk Operations ..o 524

9.5.5 Converting between Collections and Arraysc.c.cceeeeuee. 525

9.5.6 Writing Your Own Algorithmsccccoooiiii 526

9.6 Legacy COlECtIONScceuruririiiiiiiiiriiciciciereceeeeeeeee e 528
9.6.1 The Hashtable Class ... 528

9.6.2 ENUMETAtioNSccovveuivieiiiiiniiiricicceeeeeee s 528

9.6.3 Property Mapsccccocoeeininieieinieiiccee 530

9.6.4 STACKS ..eiiiiiiic s 531

9.6.5 Bit Sets ..c.cvviuiiiiiii 532
Chapter 10: Graphics Programmingccccuceemisssmnsmsmsssmsssssssssssasssssanns 537
10.1 Introducing SWinNgccoceeieiiiiiciiicce s 538
10.2 Creating a Framecocoooeiiiiiiiiiic e 543

10.3 Positioning a Framecccccooeiiviiiiiniiiiiccccccne 546

Contents
10.3.1 Frame Properties ... 549
10.3.2 Determining a Good Frame Sizeccocoeiiiiiiiinncnnne. 549
10.4 Displaying Information in a Componentcccooeeeiiireiiininnne. 554
10.5 Working with 2D Shapes ..., 560
10.6 USING COLOT ...oovmiiiiiiiiiciiiiiciccicicccce e 569
10.7 Using Special Fonts for Textccccoeoiiiiiiiiiiice 573
10.8 Displaying IMages ... 582
Chapter 11: Event Handlingcccciiiimmminiimnninseessnnssemsn s sssnsnnns 587
11.1 Basics of Event Handling ... 587
11.1.1 Example: Handling a Button Click ..o, 591
11.1.2 Specifying Listeners CONciselycccouviiiiiiiiiicnnnne. 595
11.1.3 Example: Changing the Look-and-Feelccccccccvurrnncee. 598
11.1.4 Adapter Classesccocooimmieiiiicieieieiccieeeec i 603
11,2 ACHONS .ooviiiiciciiccc s 607
11.3° Mouse EVENtS ...ttt 616
11.4 The AWT Event Hierarchy ..o, 624
11.4.1 Semantic and Low-Level Eventsccccoeoiiiiciiinncnnne. 626
Chapter 12: User Interface Components with Swingccccceeriinrncanen 629
12.1 Swing and the Model-View-Controller Design Pattern 630
12.1.1 Design Patterns ... 630
12.1.2 The Model-View-Controller Patternccccocoeeciiiincncnee 632
12.1.3 A Model-View-Controller Analysis of Swing Buttons 636
12.2 Introduction to Layout Managementcccccccoeiiiiiiiiinicncnne. 638
1221 Border Layoutococeueioiiiieiiiiiiieec 641
12.2.2 Grid Layout ... 644
123 Text INPUL oo 648
12.3.1 Text Fields ... 649
12.3.2 Labels and Labeling Componentscccccooveieiirncncnne 651
12.3.3 Password Fields ..o, 652
12.3.4 TeXt ATAS ..ccorveuiiiiiiiiiieciiceecee e 653
12.3.5 Scroll Panes ..o 654
12.4 Choice COMPONENLSc.cuvvimimimiiiiiiiiiiiiiiices 657
1241 ChecKDOXES ...t 657

12.4.2 Radio BULONS ...eveiieeiiiieeeeeeeee e 660

Contents

12.6

12.7

12.8

12.4.3 BOTAEIS ..oooviiieiieeeteeeeeteettet ettt 664
12,44 COMDO BOXES ..oovvevienieiienieiieiieieiieieesie sttt seees 668
12.4.5 SHAETS wouveviieiiieiieieeeeeetete ettt sttt sttt eesens 672
IMLEITUS ..vviietiieiieette ettt et te et e e ae e bt e s te e ve e st e e saessseenbaesssaenseesnsansnennns 678
12.5.1 Menu Buildingcccooeveiiieiiiiiec e 679
12.5.2 Iconsin Menu Itemscccveeeiienieeiiienieceecee e 682
12.5.3 Checkbox and Radio Button Menu Itemsccceeveeveneeneee. 683
1254 Pop-Up Menus ... 684
12.5.5 Keyboard Mnemonics and Acceleratorscccccccueueunneee 686
12.5.6 Enabling and Disabling Menu Itemsccccoovoiiiiiiinnnne, 689
12.5.7 TOOIDATS ...cuvieieieeiieieeeeteeeteeee ettt ettt e beeanens 694
12.5.8 TOOIPS -.evvvmmicmiicicicicicieeieeieeice e nenene 696
Sophisticated Layout Managementccooeeioiiiiiininicceicccnn 699
12.6.1 The Grid Bag Layout ... 701
12.6.1.1 The gridx, gridy, gridwidth, and gridheight Parameters ... 703
12.6.1.2 Weight Fields ... 703
12.6.1.3 The i1l and anchor Parametersccceevevvevevennenens 704
12.6.1.4 Paddingcccccovveviierriniicieriiiccceeece s 704
12.6.1.5 Alternative Method to Specify the gridx, gridy,
gridwidth, and gridheight Parameterscccoveeveevvennnne 705
12.6.1.6 A Helper Class to Tame the Grid Bag
CONSETAINES ...oveeeveiieeieeiiereeeete et 706
12.6.2 Group Layout ..o 713
12.6.3 Using No Layout Managercccceoeeeeieinnnnnnininnnninnns 723
12.6.4 Custom Layout Managers ... 724
12.6.5 Traversal Orderccccevieieieieieeseeieeesie et ees 729
Dialog BOXESc.cuviiiiiiiicicie s 730
12.7.1 Option Dialogsccccceuimimimiuiiiiiiiecieiccceeeeeeeeieece e 731
12.7.2 Creating Dialogscccoouiumieiiiiiiiciiccic 741
12.7.3 Data EXChangeccccccoveiiiiiiiiiiiiiiccciccccccicccceens 746
12.7.4 File Dialogscccovvevrveiiieiiieiieie s 752
12.7.5 COlOr ChOOSETSccveeevirienrierietieteeete ettt veenens 764
Troubleshooting GUI Programs ... 770
12.8.1 Debugging Tipscccccoeoieimieiiiiicieieieiccie e 770

12.8.2 Letting the AWT Robot Do the Workcccccccciiiiinnn 774

m Contents

Chapter 13: Deploying Java Applicationsccccceriimninsemnsnssssscmsnnsanens 779
13.1 JAR FIES .oviiiiiiiii s 780
13.1.1 Creating JAR files ... 780
13.1.2 The Manifest ... 781
13.1.3 Executable JAR FileScccooevieieieieieieiceeeee e 782
13.1.4 RESOUICES ...ouvoviniiiniiiiitiicicieere e 783
13.1.5 S€aliNG ...ouvviiiciii 787

13.2 Storage of Application Preferences ..., 788
13.2.1 Property Maps ..ot 788
13.2.2 The Preferences API ... 794

13.3 Service LOAders ... 800
134 APPLEtS oo s 802
1341 A Simple Applet ..o 803
13.4.2 The applet HTML Tag and Its Attributescccoeviinnnnnn. 808
13.4.3 Use of Parameters to Pass Information to Applets 810
13.4.4 Accessing Image and Audio Filesccoooiiiiiiiinncnnne. 816
13.4.5 The Applet Context ..o, 818
13.4.6 Inter-Applet Communicationcccccceceeiiiccciicncncnnn. 818
13.4.7 Displaying Items in the Browserccccoooiiiiii, 819
13.4.8 The SandboXccccvveuiirinieieiirieeieeeee e 820
13.4.9 Signed Code ..o 822

13.5 Java WED SEart ...ccoooieieieieieieeeeeee ettt s 824
13.5.1 Delivering a Java Web Start Applicationcccccocvreennnee. 824
13.5.2 The JNLP APIccooiiiiiiiiiiiiiccccccccee e 829
Chapter 14: CONCUITENCYccccorrnrmrisssmsmsssmsssssssssssasssssssssssasssssssssasmssnsanes 839
14.1 What Are Threads? ... 840
14.1.1 Using Threads to Give Other Tasks a Chance 846

14.2 Interrupting Threads ... 851
14.3 Thread Statesccccecvererieiririereiireccee et 855
14.3.1 New Threads ..o 855
14.3.2 Runnable Threads ..o 855
14.3.3 Blocked and Waiting Threads ..o 856
14.3.4 Terminated Threads ..., 857

14.4 Thread Properties ... 858

14.4.1 Thread Prioriti€Scccociiiiiieieiiieiiieeeeieeeeieeeeereeeeeveeeeeeeeans 858

Contents

14.5

14.6
14.7

14.8
14.9

14.4.2 Daemon Threadscccocevveeieeiieieniieeeeceee e 859
14.4.3 Handlers for Uncaught Exceptionsccccccocccuiciiccnnee 860
Synchronization ..o 862
1451 An Example of a Race Conditioncccccceeieiiiiincnnne 862
14.5.2 The Race Condition Explainedcccoovveiiiiiiininnnnnnen. 866
14.5.3 Lock ObJectsccoiuiiiiiiiiiiiiiiiiiicicccicc s 868
14.5.4 Condition ODbJECEScceuimimimiuiuiuicmieiieicceeeeeceee e 872
14.5.5 The synchronized Keywordccooemiiiiiiiiii, 878
14.5.6 Synchronized BIOCKSc.cccccoiiiiiiiiiiiiiiicccccccee, 882
14.5.7 The Monitor Conceptccoeuevimeieiniiiieieiecee e, 884
14.5.8 Volatile FIieldsccoeevieirieiicrieiicieeeeteee e 885
14.5.9 Final Variablescccccoceieieieieineneseeesie et 886
14.5.10 ALOIMICS .eviverieiieeeieeieeereeitteeteesteesteesaeessaessseesseesnseessaesnsessssessenns 886
14.5.11 DeadlOoCKS ..ccveoveverienieieiieiieiieieieeieestessessessessessessesessessessessessenes 889
14.5.12 Thread-Local Variablesccccccevieviinieieneeieseeieseeeeeenns 892
14.5.13 Lock Testing and Timeoutsc.ccccceeecuicicccciciiieennen. 893
14.5.14 Read/Write LOCKS ...oooiiviiiiiiiiiiceeeeeeee et 895
14.5.15 Why the stop and suspend Methods Are Deprecated 896
Blocking QUEUEScciuiuimimiiiiiiiccitecccc e 898
Thread-Safe COlleCHONSccccvevveveieierieereiereeeee et e s eenens 905
14.7.1 Efficient Maps, Sets, and Queuesccccccoeeeiciiiienennen 905
14.7.2 Atomic Update of Map Entriesccooevvviiviniiniiiicnns 907
14.7.3 Bulk Operations on Concurrent Hash Mapsc.......... 909
14.7.4 Concurrent Set VIEWSccocveeiieienieiereeereeeeseeeseee e 912
14.7.5 Copy on Write AITaysccocooimeieiiiiriceiiceie e 912
14.7.6 Parallel Array Algorithmsccccccooiiiiiiiiiiiiiccenee 912
14.7.7 Older Thread-Safe ColleCtionsccecevueereeereeeriererieerieienens 914
Callables and FULULESccvecvieiieiiciieeeeeeee e 915
EXECULOTS ..ottt ettt st 920
14.9.1 Thread POOISccecueeiieiieieeeeteeeee e 921
14.9.2 Scheduled EX@CUHIONcccocvririeeieiriisiieieriesieieieieeee e 926
14.9.3 Controlling Groups of Taskscccccoueuvirinininininiciiciene 927
14.9.4 The Fork-Join Frameworkcccccoceverenenenienieeeeeeceene, 928
14.9.5 Completable FULUIEScccccociuiiiiiiiiiicccccccceeeceeenens 931

14.10 SYNChIONIZETS ..ot 934

Contents
14.10.1 SemaphOTescccoioiueieiiiiiicieieece e 935
14.10.2 Countdown Latchescccccoevviiiiiiiiiiiccas 936
14.10.3 BaITIETS ..oovevieieiiictcniiictcnceeet s 936
14.10.4 EXChANGETScccooimimimiiiiiiiiiiicccccc e 937
14.10.5 Synchronous QUEUESccccovimieieiiiiciciiice 937
14.11 Threads and SWING ... 937
14.11.1 Running Time-Consuming Tasksccccccoeouiivccicinnccnne 939
14.11.2 Using the Swing Worker ..o, 943
14.11.3 The Single-Thread Ruleccccooiiiiiiiiiiiiiiiiicne, 951
VY o] o =14 o GRS IPPPPR 953
INABX e 957

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene and
gained instant celebrity status. The promise of Java technology was that it would
become the universal glue that connects users with information wherever it comes
from—web servers, databases, information providers, or any other imaginable
source. Indeed, Java is in a unique position to fulfill this promise. It is an extremely
solidly engineered language that has gained wide acceptance. Its built-in security
and safety features are reassuring both to programmers and to the users of Java
programs. Java has built-in support for advanced programming tasks, such as
network programming, database connectivity, and concurrency.

Since 1995, nine major revisions of the Java Development Kit have been released.
Over the course of the last 20 years, the Application Programming Interface (API)
has grown from about 200 to over 4,000 classes. The API now spans such diverse
areas as user interface construction, database management, internationalization,
security, and XML processing.

The book you have in your hands is the first volume of the tenth edition of Core
Java®. Each edition closely followed a release of the Java Development Kit, and
each time, we rewrote the book to take advantage of the newest Java features.
This edition has been updated to reflect the features of Java Standard Edition
(SE) 8.

As with the previous editions of this book, we still target serious programmers who
want to put Java to work on real projects. We think of you, our reader, as a program-
mer with a solid background in a programming language other than Java, and
we assume that you don’t like books filled with toy examples (such as toasters,
zoo animals, or “nervous text”). You won't find any of these in our book. Our
goal is to enable you to fully understand the Java language and library, not to
give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every language
and library feature that we discuss. We keep the sample programs purposefully
simple to focus on the major points, but, for the most part, they aren’t fake and
they don’t cut corners. They should make good starting points for your own code.

vww allitebooks.cond

Xix

http://www.allitebooks.org

Preface

We assume you are willing, even eager, to learn about all the advanced features
that Java puts at your disposal. For example, we give you a detailed treatment of

* Object-oriented programming

* Reflection and proxies

¢ Interfaces and inner classes

¢ Exception handling

¢ Generic programming

¢ The collections framework

¢ The event listener model

* Graphical user interface design with the Swing UI toolkit

¢ Concurrency

With the explosive growth of the Java class library, a one-volume treatment of
all the features of Java that serious programmers need to know is no longer pos-
sible. Hence, we decided to break up the book into two volumes. The first volume,
which you hold in your hands, concentrates on the fundamental concepts of the
Java language, along with the basics of user-interface programming. The second
volume, Core Java®, Volume II—Advanced Features, goes further into the enterprise

features and advanced user-interface programming. It includes detailed discus-
sions of

¢ The Stream API

¢ File processing and regular expressions

¢ Databases

e XML processing

* Annotations

* Internationalization

* Network programming

* Advanced GUI components

* Advanced graphics

¢ Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much
like to know about them. But, of course, we’d prefer to learn about each of them
only once. We have put up a list of frequently asked questions, bug fixes, and
workarounds on a web page at http://horstmann.con/corejava. Strategically placed at
the end of the errata page (to encourage you to read through it first) is a form you

can use to report bugs and suggest improvements. Please don’t be disappointed
if we don’t answer every query or don’t get back to you immediately. We do read

http://horstmann.com/corejava

Preface

all e-mail and appreciate your input to make future editions of this book clearer
and more informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out
to do and to what extent they succeeded. Then, we give a short history of how
Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program
examples for this book. Then we guide you through compiling and running three
typical Java programs—a console application, a graphical application, and an
applet—using the plain JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the
basics: variables, loops, and simple functions. If you are a C or C++ programmer,
this is smooth sailing because the syntax for these language features is essentially
the same as in C. If you come from a non-C background such as Visual Basic, you
will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming
practice, and Java is an object-oriented programming language. Chapter 4 intro-
duces encapsulation, the first of two fundamental building blocks of object orien-
tation, and the Java language mechanism to implement it—that is, classes and
methods. In addition to the rules of the Java language, we also give advice on
sound OOP design. Finally, we cover the marvelous javadoc tool that formats your
code comments as a set of hyperlinked web pages. If you are familiar with C++,
you can browse through this chapter quickly. Programmers coming from a non-
object-oriented background should expect to spend some time mastering the OOP
concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 in-
troduces the other—namely, inheritance. Inheritance lets you take an existing class
and modify it according to your needs. This is a fundamental technique for pro-
gramming in Java. The inheritance mechanism in Java is quite similar to that in
C++. Once again, C++ programmers can focus on the differences between the
languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you
go beyond the simple inheritance model of Chapter 5. Mastering interfaces allows
you to have full access to the power of Java’s completely object-oriented approach
to programming. After we cover interfaces, we move on to lambda expressions, a

Preface

concise way for expressing a block of code that can be executed at a later point
in time. We then cover a useful technical feature of Java called inner classes.

Chapter 7 discusses exception handling—]Java’s robust mechanism to deal with the
fact that bad things can happen to good programs. Exceptions give you an efficient
way of separating the normal processing code from the error handling. Of course,
even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the final part of this chapter, we give you a
number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming
makes your programs easier to read and safer. We show you how to use strong
typing and remove unsightly and unsafe casts, and how to deal with the complex-
ities that arise from the need to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. When-
ever you want to collect multiple objects and retrieve them later, you should use
a collection that is best suited for your circumstances, instead of just tossing the
elements into an array. This chapter shows you how to take advantage of
the standard collections that are prebuilt for your use.

Chapter 10 starts the coverage of GUI programming. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to
format text in multiple fonts, and how to display images.

Chapter 11 is a detailed discussion of the event model of the AWT, the abstract
window toolkit. You’'ll see how to write code that responds to events, such as mouse
clicks or key presses. Along the way you'll see how to handle basic GUI elements
such as buttons and panels.

Chapter 12 discusses the Swing GUI toolkit in great detail. The Swing toolkit al-
lows you to build cross-platform graphical user interfaces. You'll learn all about
the various kinds of buttons, text components, borders, sliders, list boxes, menus,
and dialog boxes. However, some of the more advanced components are discussed
in Volume II.

Chapter 13 shows you how to deploy your programs, either as applications or
applets. We describe how to package programs in JAR files, and how to deliver
applications over the Internet with the Java Web Start and applet mechanisms.
We also explain how Java programs can store and retrieve configuration
information once they have been deployed.

Chapter 14 finishes the book with a discussion of concurrency, which enables
you to program tasks to be done in parallel. This is an important and exciting

Preface

application of Java technology in an era where most processors have multiple
cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

6 TIP: Tips are tagged with “tip” icons that look like this.

0 CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between

@ Java and C++. You can skip over them if you don't have a background in C++
or if you consider your experience with that language a bad dream of which
you'd rather not be reminded.

Java comes with a large programming library, or Application Programming In-
terface (API). When using an API call for the first time, we add a short summary
description at the end of the section. These descriptions are a bit more informal
but, we hope, also a little more informative than those in the official online API
documentation. The names of interfaces are in italics, just like in the official doc-
umentation. The number after a class, interface, or method name is the JDK version
in which the feature was introduced, as shown in the following example:

Application Programming Interface

Preface

Programs whose source code is on the book’s companion web site are presented
as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code

The web site for this book at http://horstmann.com/corejava contains all sample code
from the book, in compressed form. You can expand the file either with one of
the familiar unzipping programs or simply with the jar utility that is part of the
Java Development Kit. See Chapter 2 for more information on installing
the Java Development Kit and the sample code.

http://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem to
be much easier, especially with the continuous change in Java technology. Making
a book a reality takes many dedicated people, and it is my great pleasure to
acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall provided valuable assistance but
managed to stay behind the scenes. I'd like them all to know how much I appre-
ciate their efforts. As always, my warm thanks go to my editor, Greg Doench, for
steering the book through the writing and production process, and for allowing
me to be blissfully unaware of the existence of all those folks behind the scenes.
Iam very grateful to Julie Nahil for production support, and to Dmitry Kirsanov
and Alina Kirsanova for copyediting and typesetting the manuscript. My thanks
also to my coauthor of earlier editions, Gary Cornell, who has since moved on to
other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors
and made lots of thoughtful suggestions for improvement. I am particularly
grateful to the excellent reviewing team who went over the manuscript with an
amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley Univer-
sity), Lance Andersen (Oracle), Paul Anderson (Anderson Software Group), Alec
Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch, David Brown,
Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),
Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David
Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon,
Dan Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford),
Cameron Gregory (olabs.com), Marty Hall (coreservlets.com, Inc.), Vincent Hardy
(Adobe Systems), Dan Harkey (San Jose State University), William Higgins (IBM),
Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies), Tim Kimmet
(Walmart), Chris Laffra, Charlie Lai (Apple), Angelika Langer, Doug Langston,
Hang Lau (McGill University), Mark Lawrence, Doug Lea (SUNY Oswego),
Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne (consultant),
Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida
Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges
(University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders
(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and

XXV

Acknowledgments

Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),
Yoshiki Shibata, Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,
Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet
Traub, Paul Tyma (consultant), Peter van der Linden, Christian Ullenboom, Burt
Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Cay Horstmann
Biel/Bienne, Switzerland
November 2015

CHAPTER

An Introduction to Java

In this chapter

* 1.1 Java as a Programming Platform, page 1

* 1.2 The Java ‘White Paper’ Buzzwords, page 2
* 1.3 Java Applets and the Internet, page 8

* 1.4 A Short History of Java, page 10

* 15 Common Misconceptions about Java, page 13

The first release of Java in 1996 generated an incredible amount of excitement,
not just in the computer press, but in mainstream media such as the New York
Times, the Washington Post, and BusinessWeek. Java has the distinction of being
the first and only programming language that had a ten-minute story on National
Public Radio. A $100,000,000 venture capital fund was set up solely for products
using a specific computer language. I hope you will enjoy the brief history of Java
that you will find in this chapter.

1.1 Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to write
about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good pro-
gramming language. There is no doubt that it is one of the better languages

Chapter 1 m An Introduction to Java

available to serious programmers. We think it could potentially have been a great
programming language, but it is probably too late for that. Once a language is
out in the field, the ugly reality of compatibility with existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at Sun
Microsystems, the company that originally developed Java. The Java language
has a lot of nice features that we will examine in detail later in this chapter. It has
its share of warts, and some of the newer additions to the language are not as
elegant as the original features because of the ugly reality of compatibility.

But, as we already said in the first edition, Java was never just a language. There
are lots of programming languages out there, but few of them make much of a
splash. Java is a whole platform, with a huge library, containing lots of reusable
code, and an execution environment that provides services such as security,
portability across operating systems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and compre-
hensible semantics (i.e., not C++). Java fits the bill, as do dozens of other fine
languages. Some languages give you portability, garbage collection, and the like,
but they don’t have much of a library, forcing you to roll your own if you want
fancy graphics or networking or database access. Well, Java has everything—a
good language, a high-quality execution environment, and a vast library.
That combination is what makes Java an irresistible proposition to so many
programmers.

1.2 The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their design
goals and accomplishments. They also published a shorter overview that is
organized along the following 11 buzzwords:

Simple
Object-Oriented
Distributed

Robust

Secure
Architecture-Neutral
Portable

Interpreted

e AT L e

High-Performance

1.2 The Java “White Paper” Buzzwords n

10. Multithreaded
11. Dynamic
In this section, you will find a summary, with excerpts from the white paper, of

what the Java designers say about each buzzword, together with a commentary
based on my experiences with the current version of Java.

D NOTE: The white paper can be found at www.oracle.com/technetwork/java/
é Tangenv-140151.html. You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gos1ing. pdf.

1.2.1 Simple

We wanted to build a system that could be programmed easily without a lot of eso-
teric training and which leveraged today’s standard practice. So even though we
found that C++ was unsuitable, we designed Java as closely to C++ as possible in
order to make the system more comprehensible. Java omits many rarely used,
poorly understood, confusing features of C++ that, in our experience, bring more
grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is no
need for header files, pointer arithmetic (or even a pointer syntax), structures,
unions, operator overloading, virtual base classes, and so on. (See the C++ notes
interspersed throughout the text for more on the differences between Java and
C++.) The designers did not, however, attempt to fix all of the clumsy features
of C++. For example, the syntax of the switch statement is unchanged in Java. If
you know C++, you will find the transition to the Java syntax easy.

At the time that Java was released, C++ was actually not the most commonly
used programming language. Many developers used Visual Basic and its drag-
and-drop programming environment. These developers did not find Java
simple. It took several years for Java development environments to catch up.
Nowadays, Java development environments are far ahead of those for most other
programming languages.

Another aspect of being simple is being small. One of the goals of Java is to enable
the construction of software that can run stand-alone on small machines. The size
of the basic interpreter and class support is about 40K; the basic standard libraries
and thread support (essentially a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since grown
to huge proportions. There is now a separate Java Micro Edition with a smaller
library, suitable for embedded devices.

vww allitebooks.cond

http://www.oracle.com/technetwork/java/
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf
http://www.allitebooks.org

Chapter 1 m An Introduction to Java

1.2.2 Object-Oriented

Simply stated, object-oriented design is a programming technique that focuses on
the data (= objects) and on the interfaces to that object. To make an analogy with
carpentry, an “object-oriented” carpenter would be mostly concerned with the chair
he is building, and secondarily with the tools used to make it; a “non-object-oriented”
carpenter would think primarily of his tools. The object-oriented facilities of Java
are essentially those of C++.

Object orientation was pretty well established when Java was developed.
The object-oriented features of Java are comparable to those of C++. The major
difference between Java and C++ lies in multiple inheritance, which Java has re-
placed with the simpler concept of interfaces. Java has a richer capacity for runtime
introspection than C++ (which is discussed in Chapter 5).

1.2.3 Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net via
URLs with the same ease as when accessing a local file system.

Nowadays, one takes this for granted, but in 1995, connecting to a web server
from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . The single
biggest difference between Java and C/C++ is that Java has a pointer model that
eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show
up only at runtime. As for the second point, anyone who has spent hours chasing
memory corruption caused by a pointer bug will be very happy with this aspect
of Java.

1.25 Secure

Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction of
virus-free, tamper-free systems.

1.2 The Java “White Paper” Buzzwords

From the beginning, Java was designed to make certain kinds of attacks impossible,
among them:

¢ Overrunning the runtime stack—a common attack of worms and viruses
¢ Corrupting memory outside its own process space
® Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!” Un-
trusted code was executed in a sandbox environment where it could not impact
the host system. Users were assured that nothing bad could happen because Java
code, no matter where it came from, was incapable of escaping from the sandbox.

However, the security model of Java is complex. Not long after the first version
of the Java Development Kit was shipped, a group of security experts at Princeton
University found subtle bugs that allowed untrusted code to attack the host
system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers got
quite good at spotting subtle flaws in the implementation of the security
architecture. Sun, and then Oracle, had a tough time keeping up with bug fixes.

After a number of high-profile attacks, browser vendors and Oracle became in-
creasingly cautious. Java browser plug-ins no longer trust remote code unless it
is digitally signed and users have agreed to its execution.

p NOTE: Even though in hindsight, the Java security model was not as successful
as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft relied on digital signatures alone for security.
Clearly this was not sufficient—as any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create damage.

1.2.6 Architecture-Neutral

The compiler generates an architecture-neutral object file format—the compiled
code is executable on many processors, given the presence of the Java runtime system.
The Java compiler does this by generating bytecode instructions which have nothing
to do with a particular computer architecture. Rather, they are designed to be both
easy to interpret on any machine and easily translated into native machine code on

the fly.

Generating code for a “virtual machine” was not a new idea at the time. Program-
ming languages such as Lisp, Smalltalk, and Pascal had employed this technique
for many years.

Chapter 1 m An Introduction to Java

Of course, interpreting virtual machine instructions is slower than running ma-
chine instructions at full speed. However, virtual machines have the option of
translating the most frequently executed bytecode sequences into machine code—a
process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it can
check the behavior of instruction sequences.

1.2.7 Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the behavior
of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a
16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes.
The only restriction is that the int type must have at least as many bytes as a short
int and cannot have more bytes than a Tong int. Having a fixed size for number
types eliminates a major porting headache. Binary data is stored and
transmitted in a fixed format, eliminating confusion about byte ordering. Strings
are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows, and
the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has ever
tried knows, it is an effort of heroic proportions to implement a user interface
that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0
made the heroic effort, delivering a simple toolkit that provided common user
interface elements on a number of platforms. Unfortunately, the result was a li-
brary that, with a lot of work, could give barely acceptable results on different
systems. That initial user interface toolkit has since been replaced, and replaced
again, and portability across platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java libraries do
a great job of letting you work in a platform-independent manner. You can work
with files, regular expressions, XML, dates and times, databases, network connec-
tions, threads, and so on, without worrying about the underlying operating system.
Not only are your programs portable, but the Java APIs are often of higher quality
than the native ones.

1.2 The Java “White Paper” Buzzwords

1.2.8 Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to which
the interpreter has been ported. Since linking is a more incremental and lightweight
process, the development process can be much more rapid and exploratory.

This seems a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development process
is. You try out something, and you instantly see the result. Java development
environments are not focused on that experience.

1.2.9 High-Performance

While the performance of interpreted bytecodes is usually more than adequate, there
are situations where higher performance is required. The bytecodes can be translated
on the fly (at runtime) into machine code for the particular CPU the application is
TUnning on.

In the early years of Java, many users disagreed with the statement that the per-
formance was “more than adequate.” Today, however, the just-in-time compilers
have become so good that they are competitive with traditional compilers and,
in some cases, even outperform them because they have more information
available. For example, a just-in-time compiler can monitor which code is executed
frequently and optimize just that code for speed. A more sophisticated optimiza-
tion is the elimination (or “inlining”) of function calls. The just-in-time compiler
knows which classes have been loaded. It can use inlining when, based upon the
currently loaded collection of classes, a particular function is never overridden,
and it can undo that optimization later if necessary.

1.2.10 Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

Nowadays, we care about concurrency because Moore’s law is coming to an end.
Instead of faster processors, we just get more of them, and we have to keep them
busy. Yet when you look at most programming languages, they show a shocking
disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to support
concurrent programming. As you can see from the white paper, its motivation
was a little different. At the time, multicore processors were exotic, but web pro-
gramming had just started, and processors spent a lot of time waiting for a

Chapter 1 m An Introduction to Java

response from the server. Concurrent programming was needed to make sure
the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job making
it manageable.

1.2.11 Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was de-
signed to adapt to an evolving environment. Libraries can freely add new methods
and instance variables without any effect on their clients. In Java, finding out
runtime type information is straightforward.

This is an important feature in the situations where code needs to be added to a
running program. A prime example is code that is downloaded from the Internet
to run in a browser. In C or C++, this is indeed a major challenge, but the Java
designers were well aware of dynamic languages that made it easy to evolve a
running program. Their achievement was to bring this feature to a mainstream
programming language.

p NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. At this point, Microsoft is no longer supporting J++ and has
instead introduced another language called C# that also has many similarities
with Java but runs on a different virtual machine. This book does not cover J++
or C#.

1.3 Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the Internet
and run them on their own machines. Java programs that work on web pages are
called applets. To use an applet, you only need a Java-enabled web browser, which
will execute the bytecodes for you. You need not install any software. You get
the latest version of the program whenever you visit the web page containing the
applet. Most importantly, thanks to the security of the virtual machine, you never
need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image. The
applet becomes a part of the page, and the text flows around the space used for
the applet. The point is, this image is alive. It reacts to user commands, changes
its appearance, and exchanges data between the computer presenting the applet
and the computer serving it.

1.3 Java Applets and the Internet

Figure 1.1 shows a good example of a dynamic web page that carries out sophis-
ticated calculations. The Jmol applet displays molecular structures. By using the
mouse, you can rotate and zoom each molecule to better understand its structure.
This kind of direct manipulation is not achievable with static web pages, but
applets make it possible. (You can find this applet at http://jmol.sourceforge.net.)

& - - i\[:;,J 1 http:ffjmol.sourceforge.netydemofaminoacids/ | B
x |ala- X |arg - x|asnf x |asp - B
alanine arginine asparagine aspartate

amino acids xleys- x|gn- x|gu- x|gy-
cystine glutamine glutamate glycine

_x|nis- x|l - X |leu- _x|lys-

histidine isoleucine leucine lysine

X |met- Xi|phe- _x|pro- _x|ser-

methionine phenylalanine proline serine

_xthr- x|trp- xtyr- x|val-

threonine tryptophan tyrosine valine

select * | select mainchain | select sidechain |

wireframe on | wireframe 0.1 | wireframe 0.2 |

cpk off | cpk 20% I cpk on I

label %a | label%n | label off |

color label white | color label none I

color atoms cpk | color atoms amino I

<1

Figure 1.1 The Jmol applet

When applets first appeared, they created a huge amount of excitement. Many
people believe that the lure of applets was responsible for the astonishing popu-
larity of Java. However, the initial excitement soon turned into frustration. Various
versions of the Netscape and Internet Explorer browsers ran different versions
of Java, some of which were seriously outdated. This sorry situation made it in-
creasingly difficult to develop applets that took advantage of the most current
Java version. Instead, Adobe’s Flash technology became popular for achieving
dynamic effects in the browser. Later, when Java was dogged by serious security
issues, browsers and the Java browser plug-in became increasingly restrictive.
Nowadays, it requires skill and dedication to get applets to work in your browser.
For example, if you visit the Jmol web site, you will likely encounter a message
exhorting you to configure your browser for allowing applets to run.

http://jmol.sourceforge.net

Chapter 1 m An Introduction to Java

1.4 A Short History of Java

This section gives a short history of Java’s evolution. It is based on various pub-
lished sources (most importantly an interview with Java’s creators in the July
1995 issue of SunWorld’s online magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton
and James Gosling (a Sun Fellow and an all-around computer wizard), wanted
to design a small computer language that could be used for consumer devices
like cable TV switchboxes. Since these devices do not have a lot of power or
memory, the language had to be small and generate very tight code. Also, as
different manufacturers may choose different central processing units (CPUs), it
was important that the language not be tied to any single architecture. The project
was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to design
a portable language that generated intermediate code for a virtual machine.

The Sun people came from a UNIX background, so they based their language on
C++ rather than Lisp, Smalltalk, or Pascal. But, as Gosling says in the interview,
“All along, the language was a tool, not the end.” Gosling decided to call his
language “Oak” (presumably because he liked the look of an oak tree that was
right outside his window at Sun). The people at Sun later realized that Oak
was the name of an existing computer language, so they changed the name to
Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an extreme-
ly intelligent remote control. Unfortunately, no one was interested in producing
this at Sun, and the Green people had to find other ways to market their technol-
ogy. However, none of the standard consumer electronics companies were inter-
ested either. The group then bid on a project to design a cable TV box that could
deal with emerging cable services such as video-on-demand. They did not get
the contract. (Amusingly, the company that did was led by the same Jim Clark
who started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and
half of 1994 looking for people to buy its technology. No one was found. (Patrick
Naughton, one of the founders of the group and the person who ended up doing
most of the marketing, claims to have accumulated 300,000 air miles in trying to
sell the technology.) First Person was dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the Internet
was growing bigger and bigger. The key to the World Wide Web was the
browser translating hypertext pages to the screen. In 1994, most people were using
Mosaic, a noncommercial web browser that came out of the supercomputing

1.4 A Short History of Java

center at the University of Illinois in 1993. (Mosaic was partially written by Marc
Andreessen as an undergraduate student on a work-study project, for $6.85 an
hour. He moved on to fame and fortune as one of the cofounders and the chief
of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers
realized that “We could build a real cool browser. It was one of the few things in
the client/server mainstream that needed some of the weird things we’d done:
architecture-neutral, real-time, reliable, secure—issues that weren’t terribly
important in the workstation world. So we built a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and
evolved into the HotJava browser, which was designed to show off the power of
Java. The builders made the browser capable of executing Java code inside web
pages. This “proof of technology” was shown at SunWorld "95 on May 23, 1995,
and inspired the Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized that
Java 1.0 was not going to cut it for serious application development. Sure, you
could use Java 1.0 to make a nervous text applet that moved text randomly around
in a canvas. But you couldn’t even print in Java 1.0. To be blunt, Java 1.0 was not
ready for prime time. Its successor, version 1.1, filled in the most obvious gaps,
greatly improved the reflection capability, and added a new event model for GUI
programming. It was still rather limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2,
which replaced the early toylike GUI and graphics toolkits with sophisticated
scalable versions and came a lot closer to the promise of “Write Once, Run Any-
where”™ than its predecessors. Three days after (!) its release in December 1998,
Sun’s marketing department changed the name to the catchy Java 2 Standard Edition
Software Development Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro
Edition for embedded devices such as cell phones, and the Enterprise Edition for
server-side processing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition were incremental improvements
over the initial Java 2 release, with an ever-growing standard library, increased
performance, and, of course, quite a few bug fixes. During this time, much of the
initial hype about Java applets and client-side applications abated, but Java became
the platform of choice for server-side applications.

Version 5.0 was the first release since version 1.1 that updated the Java language
in significant ways. (This version was originally numbered 1.5, but the version
number jumped to 5.0 at the 2004 JavaOne conference.) After many years of
research, generic types (roughly comparable to C++ templates) have been

Chapter 1 m An Introduction to Java

added—the challenge was to add this feature without requiring changes in the
virtual machine. Several other useful language features were inspired by C#: a
“for each” loop, autoboxing, and annotations.

Version 6 (without the .0 suffix) was released at the end of 2006. Again, there
were no language changes but additional performance improvements and library
enhancements.

As datacenters increasingly relied on commodity hardware instead of specialized
servers, Sun Microsystems fell on hard times and was purchased by Oracle in
2009. Development of Java stalled for a long time. In 2011, Oracle released a new
version with simple enhancements as Java 7.

In 2014, the release of Java 8 followed, with the most significant changes to the
Java language in almost two decades. Java 8 embraces a “functional” style of
programming that makes it easy to express computations that can be executed
concurrently. All programming languages must evolve to stay relevant, and Java
has shown a remarkable capacity to do so.

Table 1.1 shows the evolution of the Java language and library. As you can see,
the size of the application programming interface (API) has grown tremendously.

Table 1.1 Evolution of the Java Language

Version Year New Language Features Number of Classes
and Interfaces

1.0 1996 The language itself 211

1.1 1997 Inner classes 477

1.2 1998 The strictfp modifier 1,524

1.3 2000 None 1,840

14 2002 Assertions 2,723

5.0 2004 Generic classes, “for each” loop, varargs, 3,279
autoboxing, metadata, enumerations, static
import

6 2006 None 3,793

7 2011 Switch with strings, diamond operator, 4,024
binary literals, exception handling
enhancements

8 2014 Lambda expressions, interfaces with default 4,240

methods, stream and date/time libraries

1.5 Common Misconceptions about Java

1.5 Common Misconceptions about Java

This chapter closes with a commented list of some common misconceptions
about Java.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a
web page. They have nothing in common except that there are HTML extensions
for placing Java applets on a web page.

Tuse XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can process
XML data with any programming language, but the Java API contains excellent
support for XML processing. In addition, many important XML tools are
implemented in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to dis-
tinguish between how easy it is to write toy programs and how hard it is to do
serious work. Also, consider that only seven chapters in this book discuss the Java
language. The remaining chapters of both volumes show how to put the language
to work, using the Java libraries. The Java libraries contain thousands of classes
and interfaces and tens of thousands of functions. Luckily, you do not need to
know every one of them, but you do need to know surprisingly many to use Java
for anything realistic.

Java will become a universal programming language for all platforms.

This is possible in theory. But in practice, there are domains where other languages
are entrenched. Objective C and its successor, Swift, are not going to be replaced
on iOS devices. Anything that happens in a browser is controlled by JavaScript.
Windows programs are written in C++ or C#. Java has the edge in server-side
programming and in cross-platform client applications.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it to C, C++, or
C#. But there have been hundreds of nice programming languages that never
gained widespread popularity, whereas languages with obvious flaws, such as
C++ and Visual Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the
utility of the support system surrounding it than by the elegance of its syntax. Are
there useful, convenient, and standard libraries for the features that you need to
implement? Are there tool vendors that build great programming and debugging

Chapter 1 m An Introduction to Java

environments? Do the language and the toolset integrate with the rest of the
computing infrastructure? Java is successful because its libraries let you easily
do things such as networking, web applications, and concurrency. The fact that
Java reduces pointer errors is a bonus, so programmers seem to be more
productive with Java—but these factors are not the source of its success.

Java is proprietary, and it should therefore be avoided.

When Java was first created, Sun gave free licenses to distributors and end users.
Although Sun had ultimate control over Java, they involved many other companies
in the development of language revisions and the design of new libraries. Source
code for the virtual machine and the libraries has always been freely available,
but only for inspection, not for modification and redistribution. Java was “closed
source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that future
versions of Java would be available under the General Public License (GPL), the
same open source license that is used by Linux. Oracle has committed to keeping
Java open source. There is only one fly in the ointment—patents. Everyone is
given a patent grant to use and modify Java, subject to the GPL, but only on
desktop and server platforms. If you want to use Java in embedded systems, you
need a different license and will likely need to pay royalties. However,
these patents will expire within the next decade, and at that point Java will be
entirely free.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, the Java vir-
tual machine uses a just-in-time compiler. The “hot spots” of your code will run
just as fast in Java as they would in C++, and in some cases even faster.

People used to complain that Java desktop applications are slow. However, today’s
computers are much faster than they were when these complaints started. A slow
Java program will still run quite a bit better today than those blazingly fast C++
programs did a few years ago.

All Java programs run inside a web page.

All Java applets run inside a web browser. That is the definition of an applet—a
Java program running inside a browser. But most Java programs are stand-alone
applications that run outside of a web browser. In fact, many Java programs run
on web servers and produce the code for web pages.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures in
the Java security system. Researchers viewed it as a challenge to find chinks
in the Java armor and to defy the strength and sophistication of the applet security

1.5 Common Misconceptions about Java

model. The technical failures that they found have all been quickly corrected.
Later, there were more serious exploits, to which Sun, and later Oracle, responded
too slowly. Browser manufacturers reacted, and perhaps overreacted, by deacti-
vating Java by default. To keep this in perspective, consider the literally millions
of virus attacks in Windows executable files and Word macros that cause real
grief but surprisingly little criticism of the weaknesses of the attacked platform.

Some system administrators have even deactivated Java in company browsers,
while continuing to permit their users to download executable files and Word
documents which pose a far greater risk. Even 20 years after its creation, Java is
far safer than any other commonly available execution platform.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was invented
by Netscape and originally called LiveScript. JavaScript has a syntax that is rem-
iniscent of Java, and the languages” names sound similar, but otherwise they are
unrelated. A subset of JavaScript is standardized as ECMA-262. JavaScript is more
tightly integrated with browsers than Java applets are. In particular, a JavaScript
program can modify the document that is being displayed, whereas an applet
can only control the appearance of a limited area.

With Java, I can replace my desktop computer with a cheap “Internet appliance.”

When Java was first released, some people bet big that this was going to happen.
Companies produced prototypes of Java-powered network computers, but users
were not ready to give up a powerful and convenient desktop for a limited ma-
chine with no local storage. Nowadays, of course, the world has changed, and
for a large majority of end users, the platform that matters is a mobile phone or
tablet. The majority of these devices are controlled by the Android platform,
which is a derivative of Java. Learning Java programming will help you with
Android programming as well.

This page intentionally left blank

CHAPTER

The Java Programming
Environment

In this chapter

e 2.1 Installing the Java Development Kit, page 18

e 2.2 Using the Command-Line Tools, page 23

e 2.3 Using an Integrated Development Environment, page 26
e 2.4 Running a Graphical Application, page 30

e 2.5 Building and Running Applets, page 33

In this chapter, you will learn how to install the Java Development Kit (JDK) and
how to compile and run various types of programs: console programs, graphical
applications, and applets. You can run the JDK tools by typing commands in a
terminal window. However, many programmers prefer the comfort of an inte-
grated development environment. You will learn how to use a freely available
development environment to compile and run Java programs. Although easier
to learn, integrated development environments can be resource-hungry and te-
dious to use for small programs. Once you have mastered the techniques in this
chapter and picked your development tools, you are ready to move on to
Chapter 3, where you will begin exploring the Java programming language.

17

Chapter 2 m The Java Programming Environment

2.1 Installing the Java Development Kit

The most complete and up-to-date versions of the Java Development Kit (JDK)
are available from Oracle for Linux, Mac OS X, Solaris, and Windows. Versions
in various states of development exist for many other platforms, but those
versions are licensed and distributed by the vendors of those platforms.

2.1.1 Downloading the JOK

To download the Java Development Kit, visit the web site at ww.oracle.con/
technetwork/java/javase/downloads and be prepared to decipher an amazing amount of
jargon before you can get the software you need. See Table 2.1 for a summary.

You already saw the abbreviation JDK for Java Development Kit. Somewhat
confusingly, versions 1.2 through 1.4 of the kit were known as the Java SDK
(Software Development Kit). You will still find occasional references to the old
term. There is also a Java Runtime Environment (JRE) that contains the virtual
machine but not the compiler. That is not what you want as a developer. It is
intended for end users who have no need for the compiler.

Next, you'll see the term Java SE everywhere. That is the Java Standard Edition,
in contrast to Java EE (Enterprise Edition) and Java ME (Micro Edition).

You might run into the term Java 2 that was coined in 1998 when the marketing
folks at Sun felt that a fractional version number increment did not properly
communicate the momentous advances of JDK 1.2. However, because they had
that insight only after the release, they decided to keep the version number 1.2
for the development kit. Subsequent releases were numbered 1.3, 1.4, and 5.0. The
platform, however, was renamed from Java to Java 2. Thus, we had Java 2 Standard
Edition Software Development Kit Version 5.0, or J2SE SDK 5.0.

Fortunately, in 2006, the numbering was simplified. The next version of the Java
Standard Edition was called Java SE 6, followed by Java SE 7 and Java SE 8.
However, the “internal” version numbers are 1.6.0, 1.7.0, and 1.8.0.

When Oracle makes a minor version change to fix urgent issues, it refers to the
change as an update. For example, Java SE 8u31 is the 31st update of Java SE 8§,
and it has the internal version number 1.8.0_31. An update does not need to be
installed over a prior version—it contains the most current version of the whole
JDK. Also, not all updates are released to the public, so don’t panic if update 31
isn’t followed by update 32.

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

2.1 Installing the Java Development Kit

Table 2.1 Java Jargon

Name Acronym Explanation

Java Development Kit JDK The software for programmers who want
to write Java programs

Java Runtime Environment JRE The software for consumers who want to
run Java programs

Server JRE — The software for running Java programs
on servers

Standard Edition SE The Java platform for use on desktops
and simple server applications

Enterprise Edition EE The Java platform for complex server
applications

Micro Edition ME The Java platform for use on cell phones
and other small devices

Java FX — An alternate toolkit for graphical user
interfaces that is included in Oracle’s Java
SE distribution

Open]DK — A free and open source implementation
of Java SE. It does not include browser
integration or JavaFX.

Java 2 J2 An outdated term that described Java
versions from 1998 until 2006

Software Development Kit ~ SDK An outdated term that described the JDK
from 1998 until 2006

Update u Oracle’s term for a bug fix release

NetBeans — Oracle’s integrated development

environment

With Windows or Linux, you need to choose between the x86 (32-bit) and x64
(64-bit) versions. Pick the one that matches the architecture of your operating
system.

With Linux, you have a choice between an RPM file and a .tar.gz file. We
recommend the latter—you can simply uncompress it anywhere you like.

Now you know how to pick the right JDK. To summarize:

Chapter 2 m The Java Programming Environment

You want the JDK (Java SE Development Kit), not the JRE.
Windows or Linux: Choose x86 for 32 bit, x64 for 64 bit.

Linux: Pick the .tar.gz version.

Accept the license agreement and download the file.

NOTE: Oracle offers a bundle that contains both the Java Development Kit and

the NetBeans integrated development environment. | suggest that you stay away
from all bundles and install only the Java Development Kit at this time. If you
later decide to use NetBeans, simply download it from http://netbeans.org.

2.1.2 Setting up the JDK

After downloading the JDK, you need to install it and figure out where it was
installed—you’ll need that information later.

Under Windows, launch the setup program. You will be asked where to install
the JDK. It is best not to accept a default location with spaces in the path name,
such as c:\Progran Files\Java\jdk1.8.0_version. Just take out the Program Files part of the
path name.

On the Mac, run the installer. It installs the software into /Library/Java/
JavaVirtualMachines/jdk1.8.0_version.jdk/Contents/Home. Locate it with the Finder.

On Linux, simply uncompress the .tar.gz file to a location of your choice, such
as your home directory or /opt. Or, if you installed from the RPM file,
double-check that it is installed in /usr/java/jdk1.8.0_version.

In this book, the installation directory is denoted as jdk. For example, when
referring to the jdk/bin directory, I mean the directory with a name such as
/opt/jdk1.8.0_31/bin or c:\Java\jdk1.8.0_31\bin.

When you install the JDK on Windows or Linux, you need to carry out one addi-
tional step: Add the jdk/bin directory to the executable path—the list of directories
that the operating system traverses to locate executable files.

On Linux, add a line such as the following to the end of your ~/.bashrc or
~/ .bash_profile file:

export PATH=jdk/bin: $PATH
Be sure to use the correct path to the JDK, such as /opt/jdk1.8.0_31.

Under Windows, start the Control Panel, select System and Security, select
System, then select Advanced System Settings (see Figure 2.1). In the System
Properties dialog, click the Advanced tab, then click the Environment button.

http://netbeans.org

2.1 Installing the Java Development Kit

Scroll through the System Variables list until you find a variable named Path.
Click the Edit button (see Figure 2.2). Add the jdk\bin directory to the beginning
of the path, using a semicolon to separate the new entry, like this:

jdk\bin;other stuff

Be careful to replace jdk with the actual path to your Java installation, such as
c:\Java\jdk1.8.0_31. If you ignored the advice to drop the Progran Files directory,
enclose the entire path segment in double quotes: "c:\Program Files\Java\
jdk1.8.0_31\bin"; other stuff.

Save your settings. Any new console windows that you start will have the
correct path.

[E=S e ==
@uv@ » Control Panel » By
Adjust your computer’s settings Viewby: Category v
? System and Security [E=3 R x5
/4 Revi 's status -
] &()=[% » ConrolPanel » System and Security » B
Control Panel Home .
“ﬁ Action Center
v R
i Windows Firewall
Checkfirewall status | Allow a program through Windows Firewall
0 System
L
E=7 Programs -
l Uninstall program v E=mEeE
&)=l » Control Pane » system and Secuity » System ~T4s|
\@ Powel| SN S
Chang Control Panel Home p o 2 i
an View basic information about your computer
anager Windows edition
tings Windows 7 Professional
£ Wind] & System protection 2000 Microsoft Co
S Getm,
%) Advanced system settings
2, Admi
7= Freeup
& Cre
p Flash
System b
Rating Retreving system rating
P Not Avai
Instlled memory (RAM): Not Available
Systemn type: 32-bit Operating System
Pen and Touch: No Pen or Touch Input is available for this Display
Computer name, domain, and workgroup settings
Seeals cay-pC @ Change settings
Action Center cay-PC
Windows Update -
Performance Information and WORKGROUP
Tools

Figure 2.1 Setting system properties in Windows 7
Here is how you test whether you did it right: Start a terminal window. Type
the line
javac -version
and press the Enter key. You should get a display such as this one:
javac 1.8.0_31

Chapter 2 m The Java Programming Environment

If instead you get a message such as “javac: command not found” or “The name
specified is not recognized as an internal or external command, operable program
or batch file”, then you need to go back and double-check your installation.

System Properties @
Environment Variables
Computer Name I Hardware | Advanced |Sysiem Protection I Hemotel @
You must be logged on as an Administrator to make most of these changes. User variables for cay
Perfomance Variable Value
Wisual effects, processor scheduling, memory usage, and vitual memory e %USERPROFILE%/\AppDatalLocalTemp
T™MP lISERPROFILE%:\AppData\Local Temp
User Profiles
Desktop settings related to your logon New...] [Edit... I [Delete
System variables
Variable Value =
Startup and Recoves (]
B L - s ComSpec C:\Wwindows\system32\cmd. exe =
System startup, system failure, and debugging information FP_NO_HOST_C... NO
NUMBER_OF P... 1
0s Windows_NT i
New...] [Edit... I [Delete]
Environment Variables...
Edit System Variable (=23
Variable name: Path
Variable value: c:Yjidk 1.8, 0%bin; DT %\System32\WindowsPa

Figure 2.2 Setting the Path environment variable in Windows 7

2.1.3 Installing Source Files and Documentation

The library source files are delivered in the JDK as a compressed file src.zip. Unpack
that file to get access to the source code. Simply do the following:

1. Make sure the JDK is installed and that the jdk/bin directory is on the
executable path.

2. Make a directory javasrc in your home directory. If you like, you can do this
from a terminal window.

mkdir javasrc

2.2 Using the Command-Line Tools

3. Inside the jdk directory, locate the file src.zip.

4. Unzip the src.zip file into the javasrc directory. In a terminal window, you can
execute the commands

cd javasrc
jar xvf jdk/src.zip
..

TIP: The src.zip file contains the source code for all public libraries. To obtain
even more source (for the compiler, the virtual machine, the native methods,
and the private helper classes), go to http://jdk8.java.net.

The documentation is contained in a compressed file that is separate from the
JDK. You can download the documentation from www.oracle.com/technetwork/java/javase/
downloads. Simply follow these steps:

1. Download the documentation zip file. It is called jdk-version-docs-all.zip, where
version is something like 8u31.

2. Unzip the file and rename the doc directory into something more descriptive,
like javadoc. If you like, you can do this from the command line:

jar xvf Downloads/jdk-version-docs-all.zip
mv doc javadoc

where version is the appropriate version number.

3. In your browser, navigate to javadoc/api/index.htnl and add this page to your
bookmarks.

You should also install the Core Java program examples. You can download them
from http://horstmann.con/corejava. The programs are packaged into a zip file corejava.zip.
Just unzip them into your home directory. They will be located in a directory
corejava. If you like, you can do this from the command line:

jar xvf Downloads/corejava.zip

2.2 Using the Command-Line Tools

If your programming experience comes from using a development environment
such as Microsoft Visual Studio, you are accustomed to a system with a built-in
text editor, menus to compile and launch a program, and a debugger. The JDK
contains nothing even remotely similar. You do everything by typing in commands
in a terminal window. This sounds cumbersome, but it is nevertheless an essential

vww allitebooks.cond

http://jdk8.java.net
http://www.oracle.com/technetwork/java/javase/downloads
http://horstmann.com/corejava
http://www.oracle.com/technetwork/java/javase/downloads
http://www.allitebooks.org

Chapter 2 m The Java Programming Environment

skill. When you first install Java, you will want to troubleshoot your installation
before you install a development environment. Moreover, by executing the
basic steps yourself, you gain a better understanding of what a development
environment does behind your back.

However, after you have mastered the basic steps of compiling and running Java
programs, you will want to use a professional development environment. You
will see how to do that in the following section.

Let’s get started the hard way: compiling and launching a Java program from the
command line.

1. Open a terminal window.

2. Go to the corejava/vich02/Welcome directory. (The corejava directory is the directory
into which you installed the source code for the book examples, as explained
in Section 2.1.3, “Installing Source Files and Documentation,” on p. 22.)

3. Enter the following commands:

javac Welcome.java
java Welcome

You should see the output shown in Figure 2.3 in the terminal window.

[E] Terminal

~$ cd corejava/v1lch@2/Welcome E
~/corejava/v1lch@2/Welcome$ javac Welcome.java

~/corejava/v1lch02/Welcome$ java Welcome

Welcome to Core Java!

~/corejava/v1ch@2/Welcome$ |

Figure 2.3 Compiling and running lielcone. java

2.2 Using the Command-Line Tools

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file
Welcome.java into the file Welcome.class. The java program launches the Java virtual
machine. It executes the bytecodes that the compiler placed in the class file.

The lielcone program is extremely simple. It merely prints a message to the console.
You may enjoy looking inside the program, shown in Listing 2.1. You will see
how it works in the next chapter.

Listing 2.1 We1come/Welcome. java
[k

1

2 * This program displays a greeting for the reader.
3 * @version 1.30 2014-02-27

¢ * @author Cay Horstmann

5 %/
6

7

8

9

public class Welcome

{

public static void main(String[] args)

{
10 String greeting = "Welcome to Core Javal";
1 System.out.printIn(greeting);
2 for (int 1 = 0; i < greeting.length(); i++)
¥} System.out.print("=");
14 System.out.printin();
15 }

In the age of visual development environments, many programmers are unfamiliar
with running programs in a terminal window. Any number of things can go
wrong, leading to frustrating results.

Pay attention to the following points:

¢ If you type in the program by hand, make sure you correctly enter the upper-
case and lowercase letters. In particular, the class name is Welcone and not welcome
or WELCOME.

® The compiler requires a file name (Welcone.java). When you run the program, you
specify a class name (Welcone) without a .java or .class extension.

¢ Ifyou getamessage such as “Bad command or file name” or “javac: command
not found”, then go back and double-check your installation, in particular the
executable path setting.

m Chapter 2 m The Java Programming Environment

If javac reports that it cannot find the file Welcome.java, then you should check
whether that file is present in the directory.

Under Linux, check that you used the correct capitalization for Welcome.java.

Under Windows, use the dir command, not the graphical Explorer tool. Some
text editors (in particular Notepad) insist on adding an extension .txt to every
file’s name. If you use Notepad to edit Welcone.java, it will actually save it as
Welcome.java.txt. Under the default Windows settings, Explorer conspires with
Notepad and hides the .txt extension because it belongs to a “known file type.”
In that case, you need to rename the file, using the ren command, or save it
again, placing quotes around the file name: "Welcome.java".

If you launch your program and get an error message complaining about a
java.lang.NoClassDefFoundError, then carefully check the name of the offending class.

If you get a complaint about welcone (with a lowercase w), then you should
reissue the java Welcome command with an uppercase W. As always, case matters
in Java.

If you get a complaint about lielcone/java, it means you accidentally typed java
Welcome.java. Reissue the command as java Welcome.

If you typed java lielcome and the virtual machine can’t find the Welcone class,
check if someone has set the CLASSPATH environment variable on your system.
It is not a good idea to set this variable globally, but some poorly written
software installers in Windows do just that. Follow the same procedure as for
setting the PATH environment variable, but this time, remove the setting.

6 TIP: The excellent tutorial at http://docs.oracle.com/javase/tutorial /getStarted/cupojava

goes into much greater detail about the “gotchas” that beginners can run into.

2.3 Using an Integrated Development Environment

In the preceding section, you saw how to compile and run a Java program from
the command line. That is a useful skill, but for most day-to-day work, you should
use an integrated development environment. These environments have become

http://docs.oracle.com/javase/tutorial/getStarted/cupojava

2.3 Using an Integrated Development Environment

so powerful and convenient that it simply doesn’t make much sense to labor on
without them. Excellent choices are the freely available Eclipse, NetBeans, and
Intelli] IDEA programs. In this chapter, you will learn how to get started with

Eclipse. Of course, if you prefer a different development environment, you can
certainly use it with this book.

In this section, you will see how to compile a program with Eclipse, an integrated
development environment that is freely available from http://eclipse.org/downToads.
Versions exist for Linux, Mac OS X, Solaris, and Windows. When you visit the
download site, pick the “Eclipse IDE for Java Developers”. Choose between
the 32- or 64-bit versions, matching your operating system.

Simply unzip Eclipse to a location of your choice, and execute the eclipse program
inside the zip file.

Here are the steps to write a program with Eclipse.
1. After starting Eclipse, select File - New — Project from the menu.

2. Select “Java Project” from the wizard dialog (see Figure 2.4).

& New Project
Select a wizard

Create a Java project

Wizards:
\

w,,,|

| &Javapofecc | o
4 Java Project from Existing Ant Buildfile
5£ Plug-in Project

b = General

b =Cvs

b = Java

b = Java EE

b & JavaScript

Figure 2.4 The New Project dialog in Eclipse

http://eclipse.org/downloads

m Chapter 2 m The Java Programming Environment

3. Click the Next button. Uncheck the “Use default location” checkbox. Click
on Browse and navigate to the corejava/vich02/Welcome directory (see Figure 2.5).

= New Java Project -ox

Create a Java Project »
Create a Java project in the workspace or in an external location.

Project name: |We|cume| |

[] Use default location

Location: ‘Ihume/cayicureiavalv1ch02.’WeIcome Browse...

O

Working sets

[Add project to working sets

(@ The wizard will automatically configure the JRE and the project layout
based on the existing source.

Figure 2.5 Configuring a project in Eclipse

4. Click the Finish button. The project is now created.

5. Click on the triangles in the left pane next to the project until you locate the
file Welcome.java, and double-click on it. You should now see a pane with
the program code (see Figure 2.6).

2.3 Using an Integrated Development Environment

File Edit Source Refactor Navigate Search Project Run Window Help
il = iF -0 QWG e S w
‘ = ‘3‘,‘]3va|
[# Package Explorer 2 = 0O [J] welcome.java 3 = g
2% < 16 =
2 * This program displays a greeting for the reader.
< & welcome 3 ® 1.30 2014-02-27
— # (default package) 4 ’ Cay Horstmann
5 *
Q ava 6 public class Welcome
b A JRE System Library [jdk1.e 7 1)
8= public static veoid main(String[] args)
9
18 String greeting = "Welcome to Core Java!";
11 System.owut.println(greeting);
12 for (int i = 0; i < greeting.length(); i++) 3
13 System.out.print("=");
14 System.out.println();
15 }
16 }
17
]l m Bl
[2! Problems 2 Javadoc Declaration v = g
0 items
Description Resource Path Location Type
m [<] n |
Welcome.java - Welcome

Figure 2.6 Editing a source file with Eclipse

6. With the right mouse button, click on the project name (Welcome) in the left
pane. Select Run — Run As — Java Application. The program output is
displayed in the console pane.

Presumably, this program does not have typos or bugs. (It was only a few lines
of code, after all.) Let us suppose, for the sake of argument, that your code occa-
sionally contains a typo (perhaps even a syntax error). Try it out—ruin your file,
for example, by changing the capitalization of String as follows:

string greeting = "Welcome to Core Javal";

Note the wiggly line under string. In the tabs below the source code, click on
Problems and expand the triangles until you see an error message that complains
about an unknown string type (see Figure 2.7). Click on the error message. The
cursor moves to the matching line in the edit pane, where you can correct your
error. This feature allows you to fix your errors quickly.

Chapter 2 m The Java Programming Environment

& Java - Welcome/Welcome.java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help
o~ - %0 -QU-i#HE-@®@o P i ™o -
| -1 ‘%’java‘
[Package Explorer &2 = B &) Welcome.java & = g
25 - 16 /*+ []m
2 * This program displays a greeting for the reader.
- b‘}JWEI({lmE 3 ¥ 1.30 2014-02-27
< g (default package) i €ay Horsimann
5 %
b =4 JRE System Library [jdk1.t 74 . .) . ;
g 8o public static void main(String[] args)
9 {
16 string greeting = "Welcome to Core Java!"; =
System.out.println(greeting);
for (int i = ©; i < greeting.length(); i++)
System.out.print("=");
System.out.println();
5 }
16 }
17
[il
gl Problems 2 @ Javadoc Declaration Console ¥ = g8
Description Resource Path Location Type
<~ @ Errors (1 item) i H
4 string cannot be resolved to a type Welcome.javi; /Welcome line 10 Java P
I 1

Figure 2.7 Error messages in Eclipse

TIP: Often, an Eclipse error report is accompanied by a lightbulb icon. Click on
the lightbulb to get a list of suggested fixes.

2.4 Running a Graphical Application

The liel come program was not terribly exciting. Next, try out a graphical application.
This program is a simple image file viewer that loads and displays an image.
Again, let us first compile and run it from the command line.

1. Open a terminal window.
2. Change to the directory corejava/vich02/InageViewer.
3. Enter the following:

javac ImageViewer.java
java ImageViewer

2.4 Running a Graphical Application n

A new program window pops up with the ImageViewer application (see
Figure 2.8).

B ImageViewer =1ES

File

Figure 2.8 Running the ImageViewer application

Now, select File — Open and look for an image file to open. (There are a couple
of sample files in the same directory.) To close the program, click on the Close
box in the title bar or select File — Exit from the menu.

Have a quick look at the source code (Listing 2.2). The program is substantially
longer than the first program, but it is not too complex if you consider how much
code it would take in C or C++ to write a similar application. You’'ll learn how
to write graphical programs like this in Chapters 10 through 12.

Listing 2.2 InageViewer/InageViewer.java

import java.awt.*;
import java.io.*;
import javax.swing.*;

/;‘rs‘:
* A program for viewing images.
* @version 1.30 2014-02-27

P Y- T S UV NN

(Continues)

Chapter 2 m The Java Programming Environment

Listing 2.2 (Continued)

¢ ¥ @author Cay Horstmann

v ¥/

10 public class ImageViewer

1n {

2 public static void main(String[] args)

13 {

14 EventQueue.invokeLater(() -> {

15 JFrame frame = new ImageViewerFrame();
16 frame.setTitle("InageViewer");

7 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 frame.setVisible(true);

19 DE

20 }

a)

22

73 /7‘:7‘:

2 * A frame with a Tabel to show an image.

26 class ImageViewerFrame extends JFrame

a7 {

28 private JLabel Tabel;

2 private JFileChooser chooser;

30 private static final int DEFAULT_WIDTH = 300;
31 private static final int DEFAULT_HEIGHT = 400;

33 public ImageViewerFrame()

3 {

35 setSize (DEFAULT_WIDTH, DEFAULT_HEIGHT);

36

37 // use a label to display the images

38 Tabel = new JLabel();

3 add(Tabel);

40

4 // set up the file chooser

) chooser = new JFiTeChooser();

E] chooser. setCurrentDirectory(new File("."));
44

I // set up the menu bar

46 IMenuBar menuBar = new JMenuBar();

47 setIMenuBar(menuBar);

48

49 IMenu menu = new JMenu("File");

50 menuBar.add(menu) ;

51

52 IMenuItem openItem = new JMenuItem("Open");

53 menu. add (openItem);

2.5 Building and Running Applets

54 openItem.addActionListener(event -> {

55 // show file chooser dialog

56 int result = chooser.showOpenDialog(null);

57

58 // if file selected, set it as icon of the Tabel
59 if (result == JFileChooser.APPROVE_OPTION)

60 {

61 String name = chooser.getSelectedFile().getPath();
62 Tabel.setIcon(new ImageIcon(name));

63 }

64 D

65

66 IMenuItem exitItem = new IMenuItem("Exit");

67 menu.add(exitItem);

68 exitItem.addActionlistener(event -> System.exit(0));
69 }

0 }

2.5 Building and Running Applets

The first two programs presented in this book are Java applications—stand-alone
programs like any native programs. On the other hand, as mentioned in the pre-
vious chapter, most of the early hype about Java came from its ability to run applets
inside a web browser.

If you are interested in experiencing a “blast from the past,” follow along to see
how to build and run an applet and how to display it in a web browser; if you
aren’t interested, by all means, skip this example and move on to Chapter 3.

Open a terminal window and go to the directory corejava/vich02/RoadApplet, then enter
the following commands:

javac RoadApplet.java
jar cvfm RoadApplet.jar RoadApplet.mf *.class
appletviewer RoadApplet.html

Figure 2.9 shows what you see in the applet viewer window. This applet visualizes
how traffic jams can be caused by drivers who randomly slow down. In 1996,
applets were a great tool for creating such visualizations.

The first command is the now-familiar command to invoke the Java compiler.
This compiles the RoadApplet.java source into the bytecode file RoadApplet.class.

This time, however, you do not run the java program. First, you bundle the class
filesinto a “JAR file,” using the jar utility. Then you invoke the appletviewer program,
a tool included with the JDK that lets you quickly test an applet. You need to give
this program an HTML file name, rather than the name of a Java class file. The
contents of the RoadApplet.htnl file are shown at the end of this section in Listing 2.3.

Chapter 2 m The Java Programming Environment

B applet Viewer: RoadApplet.class -Ox
Applet

Slowdown [JF—— Arrival ==

ry, AL e

T

(T T

+
e

-y 45
s
A

Applet started.

Figure 2.9 The RoadApplet as viewed by the applet viewer

If you are familiar with HTML, you will notice standard HTML markup and the
applet tag, telling the applet viewer to load the applet whose code is stored in
RoadApplet.jar. The applet viewer ignores all HTML tags except for the applet tag.

Of course, applets are meant to be viewed in a browser. Unfortunately, nowadays,
many browsers do not have Java support, or make it difficult to enable it. Your
best bet is to use Firefox.

If you use Windows or Mac OS X, Firefox should automatically pick up the Java
installation on your computer. Under Linux, you need to enable the plug-in with
the following commands:

mkdir -p ~/.mozilla/plugins
cd ~/.mozi11a/plugins
In -s jdk/jre/1ib/amd64/Tibnpjp2.so

To double-check, type about:plugins into the address bar and look for the Java Plug-in.
Make sure it uses the Java SE 8 version of the plug-in—look for a MIME type of
application/x-java-applet;version=1.8.

Next, turn your browser to http://horstmann.com/applets/RoadApplet/RoadApplet.htnl, agree to
all the scary security prompts, and make sure the applet appears.

http://horstmann.com/applets/RoadApplet/RoadApplet.html

2.5 Building and Running Applets

Unfortunately, that is not enough to test the applet that you just compiled. The
applet on the horstmann.con server is digitally signed. I had to expend some effort,
getting a certificate issuer that is trusted by the Java virtual machine to trust me
and sell me a certificate, which I used to sign the JAR file. The browser plug-in
will no longer run untrusted applets. This is a big change from the past, when a
simple applet that draws pixels on the screen would have been confined to the
“sandbox” and would work without being signed. Sadly, not even Oracle has
faith in the security of the sandbox any more.

To overcome this problem, you can temporarily configure Java to trust applets
from the local file system. First, open the Java control panel.

* In Windows, look inside the Programs section of the control panel.

¢ On a Mac, open System Preferences.

e On Linux, run jcontrol.

Then click the Security tab and the Edit Site List button. Click Add and type in

file:///. Click OK, accept another security prompt, and click OK again (see
Figure 2.10).

B Java Control Panel —ox

B Exception Site List -0X
General | Java | Security | Advanced
Applications launched from the sites listed below will be allowed to run after the appropriate security
[¥lEnable Java content in the browser e

T =
(e File: 17

Security level for applications not on the Exception site list

© Very High - Only Java applications identified by a certificate from a
trusted authority are allowed to run, and only if the certificate can be
verified as not revoked.

® High -Java applications identified by a certificate from a trusted
authority are allowed to run, even if the revocation status of the
certificate cannot be verified.

Add
‘s FILE and HTTP protocols are considered a security risk. We recommend using HTTPS sites where available.

Exception Site List
Applications launched from the sites listed below will be allowed to run B security Warning - FILE Location - OXx
after the appropriate security prompts.

< Including a FILE Location on the Exception Site '
j Edit Site List... List is considered a security risk .
Restore Security Prompts || Manage Certificates... |

Location: fie:/

Locations that use FILE protocol are a security risk and may

cancel compromise the personal information on your computer. We

including only HTTPS sites on the Exception Site List.

Click Continue to accept this location or Cancel to abort this
hange.

Figure 210 Configuring Java to trust local applets

Now you should be able to load the file corejava/v1ch02/RoadApplet/RoadApplet.html into
your browser and have the applet appear, together with the surrounding text. It
will look something like Figure 2.11.

Chapter 2 m The Java Programming Environment

£) A Traffic Simulator Applet - Mozilla Firefox -Ox

] file:/f/datafcay/books/cj10/code/v1ch02/RoadApplet/RoadApplet.html ve ¥ 8| =
Try out the following experiments. Decrease the probability of slowdown to 0. Crank up the [l
arrival rate to 1. That means, every time unit, a new car enters the road. Note how the road can
carry this load.

Now increase the probability that some cars slow down. Note how traffic jams occur almost
immediately.

The moral is: If it wasn't for the rubberneckers, the cellular phone users, and the makeup-appliers
who can't keep up a constant speed, we'd all get to work more quickly.

Notice how the traffic jam is stationary or even moves backwards, even though the individual cars
are still moving. In fact, the first car causing the jam has long left the scene by the time the jam
gets bad. (To make it easier to track cars, every tenth vehicle is colored red.)

Arrival

For more information about applets, graphics programming and multithreading in Java, see Core

ava.

Figure 211 Running the RoadApplet in a browser

The code for the applet class is shown in Listing 2.4. At this point, do not give it

more than a glance. We will come back to writing applets in Chapter 13.

Listing 2.3 RoadApplet/RoadApplet. html

<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head><title>A Traffic Simulator Applet</title></head>
<body>
<h1>Traffic Simulator Applet</hl>

<p>I wrote this traffic simulation, following the article "Und nun die
Stauvorhersagefquot; of the German Magazine <i>Die Zeit</i>, June 7,

1996. The article describes the work of Professor Michael Schreckenberger
of the University of Duisburg and unnamed collaborators at the University
of Cologne and Los Alamos National Laboratory. These researchers model
traffic flow according to simple rules, such as the following: </p>

2.5 Building and Running Applets

A freeway is modeled as a sequence of grid points. </1i>
Every car occupies one grid point. Each grid point occupies at most
one car. </1i>
<1i>A car can have a speed of 0 - 5 grid points per time interval. </1i>
<1i>A car with speed of Tess than 5 increases its speed by one unit in
each time interval, until it reaches the maximum speed. </1i>
<Ii>If a car's distance to the car in front is <i>d</i> grid points, its
speed is reduced to <i>d</i>-1 if necessary to avoid crashing into it.
</1i>
With a certain probability, in each time interval some cars slow down
one unit for no good reason whatsoever. </1i>

<p>This applet models these rules. Each Tine shows an image of the same
stretch of road. Each square denotes one car. The first scrollbar Tets you
adjust the probability that some cars slow down. If the slider is all the
way to the Teft, no car slows down. If it is all the way to the right,
every car slows down one unit. A typical setting is that 10% - 20% of the
cars slow down. The second slider controls the arrival rate of the cars.
When it is all the way to the left, no new cars enter the freeway. If it
is all the way to the right, a new car enters the freeway every time
interval, provided the freeway entrance is not blocked. </p>

<p>Try out the following experiments. Decrease the probability of slowdown
to 0. Crank up the arrival rate to 1. That means, every time unit, a new
car enters the road. Note how the road can carry this load. </p>

<p>Now increase the probability that some cars slow down. Note how traffic
jams occur almost immediately. </p>

<p>The moral is: If it wasn't for the rubberneckers, the cellular phone
users, and the makeup-appliers who can't keep up a constant speed, we'd all
get to work more quickly. </p>

<p>Notice how the traffic jam is stationary or even moves backwards, even
though the individual cars are still moving. In fact, the first car

causing the jam has long Teft the scene by the time the jam gets bad.

(To make it easier to track cars, every tenth vehicle is colored red.) </p>

<p><applet code="RoadApplet.class" archive="RoadApplet.jar"
width="400" height="400" alt="Traffic jam visualization">
</applet></p>

<p>For more information about applets, graphics programming and
multithreading in Java, see
Core Java. </p>

</body>

60 </html>

n Chapter 2 m The Java Programming Environment

Listing 2.4 RoadApplet/RoadApplet.java

import java.awt.*;
import java.applet.*;
import javax.swing.*;

*
EX

1

2

3

4

5 public class RoadApplet extends JApplet
5 {
7 private RoadComponent roadComponent;
8 private JSTider sTowdown;

9 private JSlider arrival;

11 public void init()

n {

13 EventQueue.invokelater(() ->

14 {

15 roadComponent = new RoadComponent();
16 slowdown = new JSTider(0, 100, 10);
7 arrival = new JSTider(0, 100, 50);
18

19 JPanel p = new JPanel();

2 p.setLayout(new GridLayout(l, 6));
21 p.add(new JLabel ("STowdown"));

2 p.add(sTowdown) ;

23 p.add(new JLabel(""));

214 p.add(new JLabel("Arrival"));

2 p.add(arrival);

26 p.add(new JLabel(""));

27 setlayout (new BorderLayout());

28 add(p, BorderLayout.NORTH);

29 add (roadComponent, BorderLayout.CENTER);
3 DF

3 }

2

3 public void start()

34 {

35 new Thread(() ->

3 {

37 for (;3)

38 {

39 roadComponent.update(

40 0.01 * sTowdown.getValue(),
4 0.01 * arrival.getValue());
2 try { Thread.sleep(50); } catch(InterruptedException) {}
43 1

44 1 .start();

45 }

2.5 Building and Running Applets n

In this chapter, you learned about the mechanics of compiling and running Java
programs. You are now ready to move on to Chapter 3 where you will start
learning the Java language.

This page intentionally left blank

CHAPTER

Fundamental Programming
Structures in Java

In this chapter

* 3.1 A Simple Java Program, page 42
e 3.2 Comments, page 46

* 3.3 Data Types, page 47

e 3.4 Variables, page 53

* 3.5 Operators, page 56

e 3.6 Strings, page 65

e 3.7 Input and Output, page 78

e 3.8 Control Flow, page 89

* 3.9 Big Numbers, page 108

e 3.10 Arrays, page 111

At this point, we are assuming that you successfully installed the JDK and were
able to run the sample programs that we showed you in Chapter 2. It’s time to
start programming. This chapter shows you how the basic programming concepts
such as data types, branches, and loops are implemented in Java.

41

Chapter 3 m Fundamental Programming Structures in Java

Unfortunately, in Java you can’t easily write a program that uses a GUl—you
need to learn a fair amount of machinery to put up windows, add text boxes and
buttons that respond to them, and so on. Introducing the techniques needed to
write GUI-based Java programs would take us too far away from our goal of
covering the basic programming concepts, so the sample programs in this chapter
are “toy” programs designed to illustrate a concept. All these examples simply
use a terminal window for input and output.

Finally, if you are an experienced C++ programmer, you can get away with just
skimming this chapter: Concentrate on the C/C++ notes that are interspersed
throughout the text. Programmers coming from another background, such as
Visual Basic, will find most of the concepts familiar, but the syntax is very
different—you should read this chapter very carefully.

3.1 ASimple Java Program

Let’s look more closely at one of the simplest Java programs you can have—one
that simply prints a message to console:

public class FirstSample

{

public static void main(String[] args)

{
System.out.printTn("We will not use 'Hello, World!'");

}

It is worth spending all the time you need to become comfortable with the
framework of this sample; the pieces will recur in all applications. First and
foremost, Java is case sensitive. If you made any mistakes in capitalization (such
as typing Main instead of main), the program will not run.

Now let’s look at this source code line by line. The keyword public is called an access
modifier; these modifiers control the level of access other parts of a program have
to this code. We have more to say about access modifiers in Chapter 5. The key-
word class reminds you that everything in a Java program lives inside a class.
Although we will spend a lot more time on classes in the next chapter, for now
think of a class as a container for the program logic that defines the behavior of
an application. As mentioned in Chapter 1, classes are the building blocks with
which all Java applications and applets are built. Everything in a Java program
must be inside a class.

3.1 A Simple Java Program

Following the keyword class is the name of the class. The rules for class names in
Java are quite generous. Names must begin with a letter, and after that, they can
have any combination of letters and digits. The length is essentially unlimited.
You cannot use a Java reserved word (such as public or class) for a class name. (See
Appendix A for a list of reserved words.)

The standard naming convention (which we follow in the name FirstSample) is that
class names are nouns that start with an uppercase letter. If a name consists of
multiple words, use an initial uppercase letter in each of the words. (This use of
uppercase letters in the middle of a word is sometimes called “camel case” or,
self-referentially, “CamelCase”.)

You need to make the file name for the source code the same as the name of the
public class, with the extension .java appended. Thus, you must store this code
in a file called FirstSample.java. (Again, case is important—don’t use firstsanple.java.)

If you have named the file correctly and not made any typos in the source code,
then when you compile this source code, you end up with a file containing the
bytecodes for this class. The Java compiler automatically names the bytecode file
FirstSample.class and stores it in the same directory as the source file. Finally, launch
the program by issuing the following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply
displays the string We will not use 'Hello, World!" on the console.

When you use

java ClassName

to run a compiled program, the Java virtual machine always starts execution with
the code in the main method in the class you indicate. (The term “method” is Java-
speak for a function.) Thus, you must have a main method in the source file for
your class for your code to execute. You can, of course, add your own methods
to a class and call them from the main method. (We cover writing your own
methods in the next chapter.)

P NOTE: According to the Java Language Specification, the main method must be
declared public. (The Java Language Specification is the official document that
describes the Java language. You can view or download it from http://docs.
oracle.com/javase/specs.)

http://docs.oracle.com/javase/specs
http://docs.oracle.com/javase/specs

Chapter 3 m Fundamental Programming Structures in Java

However, several versions of the Java launcher were willing to execute Java
programs even when the main method was not public. A programmer filed a bug
report. To see it, visit http://bugs.java.com/bugdatabase/index.jsp and enter the

bug identification number 4252539. That bug was marked as “closed, will not
be fixed.” A Sun engineer added an explanation that the Java Virtual Machine
Specification (at http://docs.oracle.com/javase/specs/jvms/se8/html) does not mandate
that main is public and that “fixing it will cause potential troubles.” Fortunately,
sanity finally prevailed. The Java launcher in Java SE 1.4 and beyond enforces
that the main method is public.

There are a couple of interesting aspects about this story. On the one hand, it
is frustrating to have quality assurance engineers, who are often overworked
and not always experts in the fine points of Java, make questionable decisions
about bug reports. On the other hand, it is remarkable that Sun made the bug
reports and their resolutions available for anyone to scrutinize, long before Java
was open source. At one point, Sun even let programmers vote for their most
despised bugs and used the vote counts to decide which of them would get fixed
in the next JDK release.

Notice the braces { } in the source code. In Java, as in C/C++, braces delineate
the parts (usually called blocks) in your program. In Java, the code for any method
must be started by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We follow
a style that lines up matching braces. As whitespace is irrelevant to the Java
compiler, you can use whatever brace style you like. We will have more to say
about the use of braces when we talk about the various kinds of loops.

For now, don’t worry about the keywords static void—just think of them as part
of what you need to get a Java program to compile. By the end of Chapter 4, you
will understand this incantation completely. The point to remember for now is
that every Java application must have a main method that is declared in the
following way:

public class ClassName

{

public static void main(String[] args)

{

program statements

http://bugs.java.com/bugdatabase/index.jsp
http://docs.oracle.com/javase/specs/jvms/se8/html

3.1 A Simple Java Program

C++ NOTE: As a C++ programmer, you know what a class is. Java classes are

@ similar to C++ classes, but there are a few differences that can trap you. For
example, in Java all functions are methods of some class. (The standard termi-
nology refers to them as methods, not member functions.) Thus, in Java you
must have a shell class for the main method. You may also be familiar with the
idea of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The main method in Java is always
static. Finally, as in C/C++, the void keyword indicates that this method does not
return a value. Unlike C/C++, the main method does not return an “exit code” to
the operating system. If the main method exits normally, the Java program has
the exit code 0, indicating successful completion. To terminate the program with
a different exit code, use the System.exit method.

Next, turn your attention to this fragment:

{
System.out.printIn("We will not use 'Hello, World!'");

Braces mark the beginning and end of the body of the method. This method has
only one statement in it. As with most programming languages, you can think
of Java statements as sentences of the language. In Java, every statement must
end with a semicolon. In particular, carriage returns do not mark the end of a
statement, so statements can span multiple lines if need be.

The body of the main method contains a statement that outputs a single line of text
to the console.

Here, we are using the System.out object and calling its println method. Notice the
periods used to invoke a method. Java uses the general syntax

object. method (parameters)
as its equivalent of a function call.

In this case, we are calling the println method and passing it a string parameter.
The method displays the string parameter on the console. It then terminates the
output line, so that each call to printin displays its output on a new line. Notice
that Java, like C/C++, uses double quotes to delimit strings. (You can find more
information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero, one,
or more parameters (some programmers call them arguments). Even if a method

Chapter 3 m Fundamental Programming Structures in Java

takes no parameters, you must still use empty parentheses. For example, a variant
of the println method with no parameters just prints a blank line. You invoke it
with the call

System.out.printIn();

) NOTE: System.out also has a print method that doesn’t add a newline character
é to the output. For example, System.out.print("Hello") prints Hello without a newline.
The next output appears immediately after the letter o.

3.2 Comments

Comments in Java, as in most programming languages, do not show up in the
executable program. Thus, you can add as many comments as needed without
fear of bloating the code. Java has three ways of marking comments. The most
common form is a //. Use this for a comment that runs from the // to the end of
the line.

System.out.printIn("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you can
use the /* and */ comment delimiters that let you block off a longer comment.

Finally, a third kind of comment can be used to generate documentation automat-
ically. This comment uses a /#* to start and a */ to end. You can see this type of
comment in Listing 3.1. For more on this type of comment and on automatic
documentation generation, see Chapter 4.

Listing 3.1 FirstSample/FirstSample.java

1 /7‘::‘:

2 * This is the first sample program in Core Java Chapter 3
3 % @version 1.01 1997-03-22

¢ * Qauthor Gary Cornell

5 ¥/

6 public class FirstSample

7 {

8 public static void main(String[] args)

L

10 System.out.printIn("We will not use 'Hello, World!'");
1 }

n }

3.3 Data Types

CAUTION: /* */ comments do not nest in Java. That is, you might not be able
o to deactivate code simply by surrounding it with /* and */ because the code you
want to deactivate might itself contain a */ delimiter.

3.3 Data Types

Java is a strongly typed language. This means that every variable must have a de-
clared type. There are eight primitive types in Java. Four of them are integer types;
two are floating-point number types; one is the character type char, used for code
units in the Unicode encoding scheme (see Section 3.3.3, “The char Type,” on p. 50);
and one is a hoolean type for truth values.

P NOTE: Java has an arbitrary-precision arithmetic package. However, “big
é numbers,” as they are called, are Java objects and not a new Java type. You
will see how to use them later in this chapter.

3.3.1 Integer Types

The integer types are for numbers without fractional parts. Negative values are
allowed. Java provides the four integer types shown in Table 3.1.

Table 3.1 Java Integer Types

Type Storage Requirement Range (Inclusive)

int 4 bytes -2,147,483,648 to 2,147,483, 647 (just over 2 billion)
short 2 bytes -32,768 to 32,767

Tong 8 bytes —9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
byte 1 byte -128 to 127

In most situations, the int type is the most practical. If you want to represent the
number of inhabitants of our planet, you'll need to resort to a Tong. The byte and
short types are mainly intended for specialized applications, such as low-level file
handling, or for large arrays when storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on
which you will be running the Java code. This alleviates a major pain for the
programmer who wants to move software from one platform to another, or even
between operating systems on the same platform. In contrast, C and C++ programs
use the most efficient integer type for each processor. As a result, a C program

Chapter 3 m Fundamental Programming Structures in Java

that runs well on a 32-bit processor may exhibit integer overflow on a 16-bit sys-
tem. Since Java programs must run with the same results on all machines, the
ranges for the various types are fixed.

Long integer numbers have a suffix L or 1 (for example, 4000000000L). Hexadecimal
numbers have a prefix 0x or 0X (for example, 0xCAFE). Octal numbers have a prefix
0 (for example, 010 is 8)—naturally, this can be confusing, so we recommend
against the use of octal constants.

Starting with Java SE 7, you can write numbers in binary, with a prefix 0b or 08.
For example, 0b1001 is 9. Also starting with Java SE 7, you can add underscores to
number literals, such as 1.000_000 (or 0b1111_0100_0010_0100_0000) to denote one million.
The underscores are for human eyes only. The Java compiler simply removes them.

C++ NOTE: In C and C++, the sizes of types such as int and Tong depend on

@ the target platform. On a 16-bit processor such as the 8086, integers are 2 bytes,
but on a 32-bit processor like a Pentium or SPARC they are 4-byte quantities.
Similarly, long values are 4-byte on 32-bit processors and 8-byte on 64-bit pro-
cessors. These differences make it challenging to write cross-platform programs.
In Java, the sizes of all numeric types are platform independent.

Note that Java does not have any unsigned versions of the int, Tong, short, or byte
types.

3.3.2 Floating-Point Types

The floating-point types denote numbers with fractional parts. The two
floating-point types are shown in Table 3.2.

Table 3.2 Floating-Point Types

Type Storage Requirement Range

float 4 bytes Approximately +3.40282347E+38F (67 significant
decimal digits)

double 8 bytes Approximately +1.79769313486231570E+308

(15 significant decimal digits)

The name double refers to the fact that these numbers have twice the precision of
the float type. (Some people call these double-precision numbers.) The limited pre-
cision of float (67 significant digits) is simply not sufficient for many situations.
Use float values only when you work with a library that requires them, or when
you need to store a very large number of them.

3.3 Data Types

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-point
numbers without an F suffix (such as 3.14) are always considered to be of type
double. You can optionally supply the D or d suffix (for example, 3.14D).

P NOTE: You can specify floating-point literals in hexadecimal. For example, 0.125
=273 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an e,
to denote the exponent. (An e is a hexadecimal digit.) Note that the mantissa is
written in hexadecimal and the exponent in decimal. The base of the exponent

is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular,
there are three special floating-point values to denote overflows and errors:

¢ DPositive infinity
¢ Negative infinity
¢ NaN (not a number)

For example, the result of dividing a positive number by 0 is positive infinity.
Computing 0/0 or the square root of a negative number yields NaN.

P NOTE: The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and Double.NaN
é (as well as corresponding Float constants) represent these special values, but
they are rarely used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number” values
are considered distinct. However, you can use the Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

CAUTION: Floating-point numbers are not suitable for financial calculations in

0 which roundoff errors cannot be tolerated. For example, the command
System.out.printn(2.0 - 1.1) prints 0.8999999999999999, not 0.9 as you would expect.
Such roundoff errors are caused by the fact that floating-point numbers are
represented in the binary number system. There is no precise binary represen-
tation of the fraction 1/10, just as there is no accurate representation of the
fraction 1/3 in the decimal system. If you need precise numerical computations
without roundoff errors, use the BigDecimal class, which is introduced later in this
chapter.

Chapter 3 m Fundamental Programming Structures in Java

3.3.3 The char Type

The char type was originally intended to describe individual characters. However,
this is no longer the case. Nowadays, some Unicode characters can be described
with one char value, and other Unicode characters require two char values. Read
the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is a
character constant with value 65. It is different from "A", a string containing a
single character. Values of type char can be expressed as hexadecimal values that
run from \u0000 to \uFFFF. For example, \u2122 is the trademark symbol (*™™) and \u03C0
is the Greek letter pi ().

Besides the \u escape sequences, there are several escape sequences for special
characters, as shown in Table 3.3. You can use these escape sequences inside
quoted character literals and strings, such as '\u2122" or "Hello\n". The \u escape se-
quence (but none of the other escape sequences) can even be used outside quoted
character constants and strings. For example,

public static void main(String\u005B\u0O0SD args)
is perfectly legal—\u0058 and \u005D are the encodings for [and].

Table 3.3 Escape Sequences for Special Characters

Escape sequence Name Unicode Value
\b Backspace \u0008
\t Tab \u0009
\n Linefeed \u000a
\r Carriage return \u00od
\" Double quote \u0022
\' Single quote \u0027

\\ Backslash \u005¢

3.3 Data Types

CAUTION: Unicode escape sequences are processed before the code is parsed.
o For example, "\u0022+\u0022" is not a string consisting of a plus sign surrounded
by quotation marks (U+0022). Instead, the \u0022 are converted into " before

parsing, yielding ""+"", or an empty string.
Even more insidiously, you must beware of \u inside comments. The comment
// \uO0AQ is a newline

yields a syntax error since \u00A0 is replaced with a newline when the program
is read. Similarly, a comment

// Look inside c:\users

yields a syntax error because the \u is not followed by four hex digits.

3.3.4 Unicode and the char Type

To fully understand the char type, you have to know about the Unicode encoding
scheme. Unicode was invented to overcome the limitations of traditional character
encoding schemes. Before Unicode, there were many different standards: ASCII
in the United States, ISO 8859-1 for Western European languages, KOI-8 for
Russian, GB18030 and BIG-5 for Chinese, and so on. This caused two problems.
A particular code value corresponds to different letters in the different encoding
schemes. Moreover, the encodings for languages with large character sets have
variable length: Some common characters are encoded as single bytes, others
require two or more bytes.

Unicode was designed to solve these problems. When the unification effort
started in the 1980s, a fixed 2-byte code was more than sufficient to encode all
characters used in all languages in the world, with room to spare for future ex-
pansion—or so everyone thought at the time. In 1991, Unicode 1.0 was released,
using slightly less than half of the available 65,536 code values. Java was designed
from the ground up to use 16-bit Unicode characters, which was a major advance
over other programming languages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond 65,536
characters, primarily due to the addition of a very large set of ideographs used
for Chinese, Japanese, and Korean. Now, the 16-bit char type is insufficient to
describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in Java,
beginning with Java SE 5.0. A code point is a code value that is associated with

Chapter 3 m Fundamental Programming Structures in Java

a character in an encoding scheme. In the Unicode standard, code points are
written in hexadecimal and prefixed with U+, such as U+0041 for the code point of
the Latin letter A. Unicode has code points that are grouped into 17 code planes.
The first code plane, called the basic multilingual plane, consists of the “classic”
Unicode characters with code points U+0000 to U+FFFF. Sixteen additional planes,
with code points U+10000 to U+10FFFF, hold the supplementary characters.

The UTF-16 encoding represents all Unicode code points in a variable-length
code. The characters in the basic multilingual plane are represented as 16-bit
values, called code units. The supplementary characters are encoded as consecutive
pairs of code units. Each of the values in such an encoding pair falls into a range
of 2048 unused values of the basic multilingual plane, called the surrogates area
(U+D800 to U+DBFF for the first code unit, U+DC00 to U+DFFF for the second code unit). This
is rather clever, because you can immediately tell whether a code unit
encodes a single character or it is the first or second part of a supplementary
character. For example, O (the mathematical symbol for the set of octonions,
http://math.ucr.edu/home/baez/octonions) has code point U+10546 and is encoded by the two
code units U+D835 and U+DD46. (See http://en.wikipedia.org/wiki/UTF-16 for a description of
the encoding algorithm.)

In Java, the char type describes a code unit in the UTF-16 encoding.

Our strong recommendation is not to use the char type in your programs unless
you are actually manipulating UTF-16 code units. You are almost always better
off treating strings (which we will discuss in Section 3.6, “Strings,” on p. 65) as
abstract data types.

3.3.5 The hoolean Type

The boolean type has two values, false and true. It is used for evaluating logical
conditions. You cannot convert between integers and boolean values.

C++ NOTE: In C++, numbers and even pointers can be used in place of hoolean

@ values. The value 0 is equivalent to the bool value false, and a nonzero value is
equivalent to true. This is not the case in Java. Thus, Java programmers are
shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java, the test
does not compile because the integer expression x = 0 cannot be converted to
a boolean value.

http://math.ucr.edu/home/baez/octonions
http://en.wikipedia.org/wiki/UTF-16

3.4 Variables

3.4 Variables

In Java, every variable has a type. You declare a variable by placing the type first,
followed by the name of the variable. Here are some examples:

double salary;

int vacationDays;
Tong earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary
because a declaration is a complete Java statement.

A variable name must begin with a letter and must be a sequence of letters or
digits. Note that the terms “letter” and “digit” are much broader in Java than in
most languages. A letter is defined as 'A'-'Z", 'a'-'z', '_', '§$', or any Unicode char-
acter that denotes a letter in a language. For example, German users can use
umlauts such as 'é' in variable names; Greek speakers could use a n. Similarly,
digits are '0'-'9' and any Unicode characters that denote a digit in a language.
Symbols like '+' or '¢' cannot be used inside variable names, nor can spaces. All
characters in the name of a variable are significant and case is also significant. The
length of a variable name is essentially unlimited.

TIP: If you are really curious as to what Unicode characters are “letters” as far
as Java is concerned, you can use the isJavaldentifierStart and isJavaldentifierPart
methods in the Character class to check.

TIP: Even though § is a valid Java letter, you should not use it in your own code.
Itis intended for names that are generated by the Java compiler and other tools.

You also cannot use a Java reserved word as a variable name. (See Appendix A
for a list of reserved words.)

You can declare multiple variables on a single line:
int i, j; // both are integers

However, we don’t recommend this style. If you declare each variable separately,
your programs are easier to read.

Chapter 3 m Fundamental Programming Structures in Java

) NOTE: As you saw, names are case sensitive, for example, hireday and hireDay
are two separate names. In general, you should not have two names that only
differ in their letter case. However, sometimes it is difficult to come up with a
good name for a variable. Many programmers then give the variable the same
name as the type, for example

Box hox; // "Box" is the type and "box" is the variable name
Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.1 Initializing Variables

After you declare a variable, you must explicitly initialize it by means of an as-
signment statement—you can never use the value of an uninitialized variable.
For example, the Java compiler flags the following sequence of statements as an
erTor:

int vacationDays;
System.out.printin(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on the
left, an equal sign (=), and then some Java expression with an appropriate value
on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:
int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For example,
the following is valid code in Java:

double salary = 65000.0;
System.out.printin(salary);
int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as possible to
the point where they are first used.

3.4 Variables

C++ NOTE: C and C++ distinguish between the declaration and definition of a
variable. For example,

int i = 10;
is a definition, whereas
extern int i;

is a declaration. In Java, no declarations are separate from definitions.

3.4.2 Constants
In Java, you use the keyword final to denote a constant. For example:

public class Constants

{
public static void main(String[] args)
{
final double CM_PER_INCH = 2.54;
double paperWidth = 8.5;
double paperHeight = 11;
System.out.printIn("Paper size in centimeters: "
+ paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
}
}

The keyword final indicates that you can assign to the variable once, and then its
value is set once and for all. It is customary to name constants in all uppercase.

It is probably more common in Java to create a constant so it’s available to multiple
methods inside a single class. These are usually called class constants. Set up a
class constant with the keywords static final. Here is an example of using a class
constant:

public class Constants2

{
public static final double CM_PER_INCH = 2.54;

public static void main(String[] args)
{
double paperWidth = 8.5;
double paperHeight = 11;
System.out.printIn("Paper size in centimeters:
+ paperWidth * (M_PER_INCH + " by " + paperHeight * CM_PER_INCH);

Chapter 3 m Fundamental Programming Structures in Java

Note that the definition of the class constant appears outside the main method. Thus,
the constant can also be used in other methods of the same class. Furthermore,
if the constant is declared, as in our example, public, methods of other classes can
also use it—in our example, as Constants2.CM_PER_INCH.

C++ NOTE: const is a reserved Java keyword, but it is not currently used for
anything. You must use final for a constant.

3.9 Operators

The usual arithmetic operators +, -, *, / are used in Java for addition, subtraction,
multiplication, and division. The / operator denotes integer division if both argu-
ments are integers, and floating-point division otherwise. Integer remainder
(sometimes called modulus) is denoted by %. For example, 15 / 2is 7, 15 % 2 is 1, and
15.0 / 21is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division
by 0 yields an infinite or NaN result.

p NOTE: One of the stated goals of the Java programming language is portability.
A computation should yield the same results no matter which virtual machine
executes it. For arithmetic computations with floating-point numbers, it is surpris-
ingly difficult to achieve this portability. The double type uses 64 bits to store a
numeric value, but some processors use 80-bit floating-point registers. These
registers yield added precision in intermediate steps of a computation. For
example, consider the following computation:

double w=x *vy / z;

Many Intel processors compute x * y, leave the result in an 80-bit register, then
divide by z, and finally truncate the result back to 64 bits. That can yield a more
accurate result, and it can avoid exponent overflow. But the result may be differ-
ent from a computation that uses 64 bits throughout. For that reason, the initial
specification of the Java virtual machine mandated that all intermediate compu-
tations must be truncated. The numeric community hated it. Not only can the
truncated computations cause overflow, they are actually slower than the more
precise computations because the truncation operations take time. For that
reason, the Java programming language was updated to recognize the
conflicting demands for optimum performance and perfect reproducibility. By
default, virtual machine designers are now permitted to use extended precision
for intermediate computations. However, methods tagged with the strictfp
keyword must use strict floating-point operations that yield reproducible results.

3.5 Operators

For example, you can tag main as
public static strictfp void main(String[] args)

Then all instructions inside the main method will use strict floating-point computa-
tions. If you tag a class as strictfp, then all of its methods must use strict
floating-point computations.

The gory details are very much tied to the behavior of the Intel processors. In
the default mode, intermediate results are allowed to use an extended exponent,
but not an extended mantissa. (The Intel chips support truncation of the mantissa
without loss of performance.) Therefore, the only difference between the default
and strict modes is that strict computations may overflow when default
computations don't.

If your eyes glazed over when reading this note, don’t worry. Floating-point
overflow isn't a problem that one encounters for most common programs. We
don't use the strictfp keyword in this book.

3.5.1 Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you may
occasionally need, depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.printIn(y); // prints 2.0

P NOTE: There is a subtle difference between the println method and the sqrt
method. The println method operates on the System.out object. But the sqrt method
in the Math class does not operate on any object. Such a method is called a
static method. You can learn more about static methods in Chapter 4.

The Java programming language has no operator for raising a quantity to a
power: You must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (x*). The pow method’s parameters are both of
type double, and it returns a double as well.

The floorMod method aims to solve a long-standing problem with integer remainders.
Consider the expression n % 2. Everyone knows that this is 0 if n is even and 1if n
is odd. Except, of course, when n is negative. Then it is -1. Why? When the first

Chapter 3 m Fundamental Programming Structures in Java

computers were built, someone had to make rules for how integer division and
remainder should work for negative operands. Mathematicians had known the
optimal (or “Euclidean”) rule for a few hundred years: always leave the remainder
2 0. But, rather than open a math textbook, those pioneers came up with rules
that seemed reasonable but are actually inconvenient.

Consider this problem. You compute the position of the hour hand of a clock. An
adjustment is applied, and you want to normalize to a number between 0 and 11.
That is easy: (position + adjustment) % 12. But what if the adjustment is negative? Then
you might get a negative number. So you have to introduce a branch, or use
((position + adjustment) % 12 + 12) % 12. Either way, it is a hassle.

The floorMod method makes it easier: floorMod(position + adjustment, 12) always yields a
value between 0 and 11. (Unfortunately, floorfod gives negative results for negative
divisors, but that situation doesn’t often occur in practice.)

The Math class supplies the usual trigonometric functions:

Math.sin
Math. cos
Math.tan
Math.atan
Math.atan2

and the exponential function with its inverse, the natural logarithm, as well as
the decimal logarithm:

Math.exp
Math.Tog
Math.Tog10

Finally, two constants denote the closest possible approximations to the
mathematical constants n and e:

Math.PI
Math.E

TIP: You can avoid the Math prefix for the mathematical methods and constants
by adding the following line to the top of your source file:

import static java.lang.Math.*;
For example:
System.out.printIn("The square root of \u03C0 is " + sqrt(PI));

We discuss static imports in Chapter 4.

3.5 Operators

p NOTE: The methods in the Math class use the routines in the computer’s floating-

point unit for fastest performance. If completely predictable results are more
important than performance, use the StrictMath class instead. It implements the
algorithms from the “Freely Distributable Math Library” fdlibm, guaranteeing
identical results on all platforms. See www.netlib.org/fd1ibm for the source code of
these algorithms. (Whenever fdlibm provides more than one definition for a
function, the StrictMath class follows the IEEE 754 version whose name starts
with an “e?)

3.5.2 Conversions hetween Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3.1 shows
the legal conversions.

o))

i "/ V
Erm Sy

Figure 3.1 Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information loss.
The three dotted arrows denote conversions that may lose precision. For example,
a large integer such as 123456789 has more digits than the float type can represent.
When the integer is converted to a float, the resulting value has the correct
magnitude but loses some precision.

int n = 123456789;
float f =n; // f is 1.23456792E8

http://www.netlib.org/fdlibm

Chapter 3 m Fundamental Programming Structures in Java

When two values are combined with a binary operator (such as n + f where n is
an integer and f is a floating-point value), both operands are converted to a
common type before the operation is carried out.

o If either of the operands is of type double, the other one will be converted to a
double.

* Otherwise, if either of the operands is of type float, the other one will be
converted to a float.

* Otherwise, if either of the operands is of type Tong, the other one will be
converted to a long.

¢ Otherwise, both operands will be converted to an int.

3.5.3 Casts

In the preceding section, you saw that int values are automatically converted to
double values when necessary. On the other hand, there are obviously times when
you want to consider a double as an integer. Numeric conversions are possible in
Java, but of course information may be lost. Conversions in which loss of infor-
mation is possible are done by means of casts. The syntax for casting is to give
the target type in parentheses, followed by the variable name. For example:

double x = 9.997;
int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value to an
integer discards the fractional part.

If you want to round a floating-point number to the nearest integer (which in most
cases is a more useful operation), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when you
call round. The reason is that the return value of the round method is a long, and a
Tong can only be assigned to an int with an explicit cast because there is the
possibility of information loss.

CAUTION: If you try to cast a number of one type to another that is out of range
0 for the target type, the result will be a truncated number that has a different value.
For example, (byte) 300 is actually 44.

3.5 Operators

C++ NOTE: You cannot cast between hoolean values and any numeric type. This
convention prevents common errors. In the rare case when you want to convert
a boolean value to a number, you can use a conditional expression such as
b?1:0.

3.5.4 Combining Assignment with Operators

There is a convenient shortcut for using binary operators in an assignment. For
example,

X += 4;
is equivalent to
X=X+4

(In general, place the operator to the left of the = sign, such as *= or %=.)

y NOTE: If the operator yields a value whose type is different than that of the left-
é hand side, then it is coerced to fit. For example, if x is an int, then the statement

X += 3.5;

is valid, setting x to (int) (x + 3.5).

3.5.5 Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with a
numeric variable is to add or subtract 1. Java, following in the footsteps of C and
C++, has both increment and decrement operators: n+ adds 1 to the current value
of the variable n, and n-- subtracts 1 from it. For example, the code

int n = 12;
N++;

changes n to 13. Since these operators change the value of a variable, they cannot
be applied to numbers themselves. For example, 4++ is not a legal statement.

There are two forms of these operators; you've just seen the postfix form of the
operator that is placed after the operand. There is also a prefix form, +n. Both
change the value of the variable by 1. The difference between the two appears
only when they are used inside expressions. The prefix form does the addition
first; the postfix form evaluates to the old value of the variable.

intm=7,;
intn="7,;

Chapter 3 m Fundamental Programming Structures in Java

int a
int b

2 % +4m; // now a is 16, m is 8
2 * n++; // now b is 14, nis 8

We recommend against using ++ inside expressions because this often leads to
confusing code and annoying bugs.

3.5.6 Relational and boolean Operators

Java has the full complement of relational operators. To test for equality, use a
double equal sign, ==. For example, the value of

3==17

is false.

Use a != for inequality. For example, the value of
31=7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal),
and »= (greater than or equal) operators.

Java, following C++, uses & for the logical “and” operator and || for the logical
“or” operator. As you can easily remember from the != operator, the exclamation
point ! is the logical negation operator. The & and || operators are evaluated in
“short circuit” fashion: The second argument is not evaluated if the first argument
already determines the value. If you combine two expressions with the & operator,

expression; && expression,

and the truth value of the first expression has been determined to be false, then
it is impossible for the result to be true. Thus, the value for the second expression
is not calculated. This behavior can be exploited to avoid errors. For example, in
the expression

x!1=08& 1/ x>x+y// nodivision by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if
x is zero, and no divide-by-zero error can occur.

Similarly, the value of expression; || expression, is automatically true if the first
expression is true, without evaluating the second expression.

Finally, Java supports the ternary ?: operator that is occasionally useful. The
expression

condition ? expression; . expression

3.5 Operators

evaluates to the first expression if the condition is true, to the second expression
otherwise. For example,

X<y?7x:y

gives the smaller of x and y.

3.5.7 Bitwise Operators

When working with any of the integer types, you have operators that can work
directly with the bits that make up the integers. This means that you can use
masking techniques to get at individual bits in a number. The bitwise operators are

& ("and") | ("or") A ("xor") ~('"not")
These operators work on bit patterns. For example, if n is an integer variable, then
int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n is 1,
and 0 otherwise. Using & with the appropriate power of 2 lets you mask out all
but a single bit.

P NOTE: When applied to boolean values, the & and | operators yield a hoolean
value. These operators are similar to the & and || operators, except that the
& and | operators are not evaluated in “short circuit” fashion—that is, both
arguments are evaluated before the result is computed.

There are also > and <« operators which shift a bit pattern to the right or left.
These operators are convenient when you need to build up bit patterns to do bit
masking:

int fourthBitFromRight = (n & (1 << 3)) > 3;

Finally, a >»> operator fills the top bits with zero, unlike »> which extends the sign
bit into the top bits. There is no «« operator.

CAUTION: The right-hand argument of the shift operators is reduced modulo
32 (unless the left-hand argument is a Tong, in which case the right-hand argument
is reduced modulo 64). For example, the value of 1 <« 35 isthe same as 1« 3
or 8.

vww allitebooks.cond

http://www.allitebooks.org

Chapter 3 m Fundamental Programming Structures in Java

C++ NOTE: In C/C++, there is no guarantee as to whether >> performs an

@ arithmetic shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whichever is more efficient. That means the
C/C++ >> operator may yield implementation-dependent results for negative
numbers. Java removes that uncertainty.

3.5.8 Parentheses and Operator Hierarchy

Table 3.4 shows the precedence of operators. If no parentheses are used, operations
are performed in the hierarchical order indicated. Operators on the same
level are processed from left to right, except for those that are right-associative,
as indicated in the table. For example, & has a higher precedence than ||, so the
expression

addb||c

means
(adb) || c

Table 3.4 Operator Precedence

Operators Assaciativity

1 . 0 (method call) Left to right
I~ ++ -- + (unary) - (unary) () (cast) new Right to left
L) Left to right
- Left to right
<< >> > Left to right
< <= > >= instanceof Left to right
= l= Left to right
& Left to right
A Left to right
| Left to right
& Left to right
[Left to right
” Right to left

= om e f= e e |2 s <cm 2= oo Right to left

3.6 Strings

Since += associates right to left, the expression
a+=b+=c¢

means
a+=(b+=10)

That is, the value of b += ¢ (which is the value of b after the addition) is added to a.

C++ NOTE: Unlike C or C++, Java does not have a comma operator. However,
you can use a comma-separated list of expressions in the first and third slot of
a for statement.

3.5.9 Enumerated Types

Sometimes, a variable should only hold a restricted set of values. For example,
you may sell clothes or pizza in four sizes: small, medium, large, and extra large.
Of course, you could encode these sizes as integers 1, 2, 3, 4 or characters S, N, L,
and X. But that is an error-prone setup. It is too easy for a variable to hold a wrong
value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises. An
enumerated type has a finite number of named values. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type declaration,
or the special value nu11 that indicates that the variable is not set to any value at all.

We discuss enumerated types in greater detail in Chapter 5.

3.6 Strings

Conceptually, Java strings are sequences of Unicode characters. For example, the
string "Java\u2122" consists of the five Unicode characters], a, v, a, and ™. Java does
not have a built-in string type. Instead, the standard Java library contains a pre-
defined class called, naturally enough, String. Each quoted string is an instance of
the String class:

String e = ""; // an empty string
String greeting = "Hello";

Chapter 3 m Fundamental Programming Structures in Java

3.6.1 Substrings

You can extract a substring from a larger string with the substring method of the
String class. For example,

String greeting = "Hello";
String s = greeting.substring(0, 3);

creates a string consisting of the characters "Hel".

The second parameter of substring is the first position that you do not want to copy.
In our case, we want to copy positions 0, 1, and 2 (from position 0 to position 2
inclusive). As substring counts it, this means from position 0 inclusive to position
3 exclusive.

There is one advantage to the way substring works: Computing the length of the
substring is easy. The string s.substring(a, b) always has length b — a. For example,
the substring "Hel" has length 3 — 0 = 3.

3.6.2 Concatenation

Java, like most programming languages, allows you to use + to join (concatenate)
two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string "Expletivedeleted”. (Note the
lack of a space between the words: The + operator joins two strings in the order
received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is con-
verted to a string. (As you will see in Chapter 5, every Java object can be converted
to a string.) For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".
This feature is commonly used in output statements. For example,
System.out.printIn("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with the correct
spacing because of the space after the word is).

3.6 Strings

If you need to put multiple strings together, separated by a delimiter, use the
static join method:

String all = String.join(" / ", "S", "M", "L", "XL");
// all is the string "S /M / L/ XL"

3.6.3 Strings Are Inmutable

The String class gives no methods that let you change a character in an existing
string. If you want to turn greeting into "Help!", you cannot directly change the last
positions of greeting into 'p' and '!'. If you are a C programmer, this will make
you feel pretty helpless. How are we going to modify the string? In Java, it is
quite easy: Concatenate the substring that you want to keep with the characters
that you want to replace.

greeting = greeting.substring(0, 3) + "p!";
This declaration changes the current value of the greeting variable to "Help!".

Since you cannot change the individual characters in a Java string, the documen-
tation refers to the objects of the String class as immutable. Just as the number 3 is
always 3, the string "Hello" will always contain the code-unit sequence for the
characters H, ¢, 1, 1, 0. You cannot change these values. Yet you can, as you just
saw, change the contents of the string variable greeting and make it refer to a different
string, just as you can make a numeric variable currently holding the value 3 hold
the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units than
to build up a whole new string from scratch. Well, yes and no. Indeed, it isn’t
efficient to generate a new string that holds the concatenation of "Hel" and "p!".
But immutable strings have one great advantage: The compiler can arrange that
strings are shared.

To understand how this works, think of the various strings as sitting in a common
pool. String variables then point to locations in the pool. If you copy a string
variable, both the original and the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs
the inefficiency of string editing by extracting substrings and concatenating. Look
at your own programs; we suspect that most of the time, you don’t change
strings—you just compare them. (There is one common exception—assembling
strings from individual characters or from shorter strings that come from the
keyboard or a file. For these situations, Java provides a separate class that we
describe in Section 3.6.9, “Building Strings,” on p. 77.)

u Chapter 3 m Fundamental Programming Structures in Java

C++ NOTE: C programmers are generally bewildered when they see Java strings
for the first time because they think of strings as arrays of characters:

char greeting[] = "Hello";
That is a wrong analogy: A Java string is roughly analogous to a char* pointer,
char* greeting = "Hello";

When you replace greeting with another string, the Java code does roughly the
following:

char* temp = malloc(6);

strncpy (temp, greeting, 3);

strncpy(temp + 3, "p!", 3);

greeting = temp;
Sure, now greeting points to the string "Help!". And even the most hardened C
programmer must admit that the Java syntax is more pleasant than a sequence
of strncpy calls. But what if we make another assignment to greeting?

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on the
heap. Fortunately, Java does automatic garbage collection. If a block of memory
is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI C++,
you will be much more comfortable with the Java String type. C++ string objects
also perform automatic allocation and deallocation of memory. The memory
management is performed explicitly by constructors, assignment operators, and
destructors. However, C++ strings are mutable—you can modify individual
characters in a string.

3.0.4 Testing Strings for Equality

To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can
be string variables or string literals. For example, the expression

"Hell0".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the
upper/lowercase letter distinction, use the equalsIgnore(ase method.

"Hell0".equalsIgnoreCase("hello")

3.6 Strings

Do not use the == operator to test whether two strings are equal! It only determines
whether or not the strings are stored in the same location. Sure, if strings are in
the same location, they must be equal. But it is entirely possible to store multiple
copies of identical strings in different places.

String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello") . . .

// probably true
if (greeting.substring(0, 3) == "Hel") . . .

// probably false

If the virtual machine always arranges for equal strings to be shared, then you
could use the == operator for testing equality. But only string literals are shared,
not strings that are the result of operations like + or substring. Therefore, never use
== to compare strings lest you end up with a program with the worst kind of
bug—an intermittent one that seems to occur randomly.

careful about equality testing. The C++ string class does overload the == operator
to test for equality of the string contents. It is perhaps unfortunate that Java goes
out of its way to give strings the same “look and feel” as numeric values but then
makes strings behave like pointers for equality testing. The language designers
could have redefined == for strings, just as they made a special arrangement for
+. Oh well, every language has its share of inconsistencies.

@ C++ NOTE: If you are used to the C++ string class, you have to be particularly

C programmers never use == to compare strings but use strcmp instead. The
Java method compareTo is the exact analog to strcmp. You can use

if (greeting.compareTo("Hello") == 0) . . .

but it seems clearer to use equals instead.

3.6.5 Empty and Null Strings

The empty string
by calling

is a string of length 0. You can test whether a string is empty

if (str.length() == 0)
or
if (str.equals(""))

An empty string is a Java object which holds the string length (namely 0) and an
empty contents. However, a String variable can also hold a special value, called
nu11, that indicates that no object is currently associated with the variable. (See

Chapter 3 m Fundamental Programming Structures in Java

Chapter 4 for more information about nul1.) To test whether a string is nu1l, use
the condition

if (str == null)

Sometimes, you need to test that a string is neither nul1 nor empty. Then use the
condition

if (str != null & str.length() != 0)

You need to test that str is not 1l first. As you will see in Chapter 4, it is an error
to invoke a method on a null value.

3.6.6 Code Points and Code Units

Java strings are implemented as sequences of char values. As we discussed in
Section 3.3.3, “The char Type,” on p. 50, the char data type is a code unit for repre-
senting Unicode code points in the UTF-16 encoding. The most commonly used
Unicode characters can be represented with a single code unit. The supplementary
characters require a pair of code units.

The Tength method yields the number of code units required for a given string in
the UTF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.lengthQ); // is 5.

To get the true length—that is, the number of code points—call
int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at position n, where n is between 0 and
s.Tength() - 1. For example:

char first = greeting.charAt(0); // first is 'H'
char Tast = greeting.charAt(4); // last is 'o'

To get at the 1th code point, use the statements

int index = greeting.offsetByCodePoints(0, 1);
int cp = greeting.codePointAt(index);

P NOTE: Like C and C++, Java counts code units and code points in strings
é starting with 0.

3.6 Strings

Why are we making a fuss about code units? Consider the sentence

@ is the set of octonions

The character ©@ (U+1D546) requires two code units in the UTF-16 encoding. Calling

char ch = sentence.charAt(1)

doesn’t return a space but the second code unit of 0. To avoid this problem, you
should not use the char type. It is too low-level.

If your code traverses a string, and you want to look at each code point in turn,
you can use these statements:

int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i += 2;
else i++;

You can move backwards with the following statements:

i
if (Character.isSurrogate(sentence.charAt(i))) i--;
int cp = sentence.codePointAt(i);

Obviously, that is quite painful. An easier way is to use the codePoints method that
yields a “stream” of int values, one for each code point. (We will discuss streams
in Chapter 2 of Volume II.) You can just turn it into an array (see Section 3.10,
“Arrays,” on p. 111) and traverse that.

int[] codePoints = str.codePoints().toArray();

Conversely, to turn an array of code points to a string, use a constructor. (We
discuss constructors and the new operator in detail in Chapter 4.)

String str = new String(codePoints, 0, codePoints.length);

3.6.7 The String API

The String class in Java contains more than 50 methods. A surprisingly large
number of them are sufficiently useful so that we can imagine using them
frequently. The following API note summarizes the ones we found most useful.

the Java Application Programming Interface (API). Each API note starts with the
name of a class, such as java.lang.String (the significance of the so-called package
name java.lang is explained in Chapter 4). The class name is followed by the
names, explanations, and parameter descriptions of one or more methods.

NOTE: These API notes, found throughout the book, will help you understand

Chapter 3 m Fundamental Programming Structures in Java

We typically do not list all methods of a particular class but select those that are
most commonly used and describe them in a concise form. For a full listing,
consult the online documentation (see Section 3.6.8, “Reading the Online API
Documentation,” on p. 74).

We also list the version number in which a particular class was introduced. If a
method has been added later, it has a separate version number.

java.lang.String

char charAt(int index)

returns the code unit at the specified location. You probably don’'t want to call this
method unless you are interested in low-level code units.

int codePointAt(int index)
returns the code point that starts at the specified location.
int offsetByCodePoints(int startIndex, int cpCount)

returns the index of the code point that is cplount code points away from the code
point at startIndex.

int compareTo(String other)

returns a negative value if the string comes before other in dictionary order, a positive
value if the string comes after other in dictionary order, or 0 if the strings are equal.

IntStream codePoints()

returns the code points of this string as a stream. Call toArray to put them in an array.
new String(int[] codePoints, int offset, int count)

constructs a string with the count code points in the array starting at offset.

hoolean equals(Object other)

returns true if the string equals other.

hoolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase distinction.

boolean startsWith(String prefix)
boolean endsWith(String suffix)

returns true if the string starts or ends with suffix.

(Continues)

3.6 Strings

java.lang.String (Continued)

int index0f(String str)

int index0f(String str, int fromIndex)
int index0f(int cp)

int index0f(int cp, int fromIndex)

returns the start of the first substring equal to the string str or the code point cp,
starting at index 0 or at fromIndex, or -1 if str does not occur in this string.

int TastIndex0f(String str)

int TastIndex0f(String str, int fromIndex)
int TastindexOf(int cp)

int TastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the string str or the code point cp,
starting at the end of the string or at fromIndex.

int Tength()

returns the number of code units of the string.

int codePointCount(int startIndex, int endIndex)

returns the number of code points between startIndex and endIndex - 1.
String replace(CharSequence oldString, CharSequence newString)

returns a new string that is obtained by replacing all substrings matching oldString
in the string with the string newString. You can supply String or StringBuilder objects
for the CharSequence parameters.

String substring(int beginIndex)
String substring(int beginIndex, int endIndex)

returns a new string consisting of all code units from beginIndex until the end of the
string or until endIndex - 1.

String toLowerCase()
String toUpperCase()

returns a new string containing all characters in the original string, with uppercase
characters converted to lowercase, or lowercase characters converted to uppercase.

String trim()

returns a new string by eliminating all leading and trailing whitespace in the original
string.

String join(CharSequence delimiter, CharSequence... elements)

Returns a new string joining all elements with the given delimiter.

Chapter 3 m Fundamental Programming Structures in Java

4 NOTE: In the API notes, there are a few parameters of type CharSequence. This is
an interface type to which all strings belong. You will learn about interface types
in Chapter 6. For now, you just need to know that you can pass arguments of
type String whenever you see a CharSequence parameter.

3.6.8 Reading the Online APl Documentation

As you just saw, the String class has lots of methods. Furthermore, there are
thousands of classes in the standard libraries, with many more methods. It is
plainly impossible to remember all useful classes and methods. Therefore, it
is essential that you become familiar with the online API documentation that lets
you look up all classes and methods in the standard library. The API documenta-
tion is part of the JDK. It is in HTML format. Point your web browser to the
docs/api/index.html subdirectory of your JDK installation (Figure 3.2).

?) Overview (Java Platform SE 8) - Mozilla Firefox

Lo GOS0 m PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

Standard Ed. 8 Java™ Platform
All Classes All Prq || PREV NEXT FRAMES NO FRAMES

Packages

Java™ Platform, Standard Edition 8
API Specification

java.applet

java.awt
I i

This document is the API specification for the Java™ Platform, Standard

Edition.
AbstractAction See: Description
AbstractAnnotationVa
AbstractAnnotationva
AbstractAnnotationva -
AbstractBorder Profiles
AbstractButton + compactl
AbstractCellEditor + compact2
AbstractChronelogy » compact3

AbstractCollection

AbstractColorChooser|
AbstractDocument

AbstractDocument. A Packages
AbstractDecument.Cg
AbstractDocument.El
AbstractElementVisitg java.applet
AbstractElementVisitd
AbstractElementVisitg

Package Description

Provides the classes necessar

create an applet and the clas|
applet uses to communicate

AhstractEyer torSe e v

| e >

Figure 3.2 The three panes of the API documentation

3.6 Strings

The screen is organized into three frames. A small frame on the top left shows all
available packages. Below it, a larger frame lists all classes. Click on a class name,
and the API documentation for the class is displayed in the large frame to the
right (see Figure 3.3). For example, to get more information on the methods of
the String class, scroll the second frame until you see the String link, then click
on it.

%) String (Java Platform SE 8) - Mozilla Firefox

&€ & | A https://docs.oracle.com/javase/8/docs/api/

- E
L L] OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP
Standard Ed. 8

Java™ Platform

All Classes All Prq PREV CLASS NEXT CLASS FRAMES NO FRAMES
Packages SUMMARY. NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.applet compactl, compact2, compact3

java.awt java.lang
[] [>]

StreamPrintSerwceFa. Class 5tl’ll‘lg|

StreamReaderDelegat . .
StreamResult java.lang.Object

StreamSource java.lang.string

StreamSupport All Implemented Interfaces:

Srreamokenizer Serializable, CharSequence, Comparable<String>
StrictMath

String

StringBuffer

public final class String

StringBufferinputStre
extends Object

StringBuilder

stringCharacteriterat implements Serializable, Comparable<String=, CharSequence
StringContent .))))
StringHolder The String class represents character strings. All string literals in Java

smngmdexoutoﬂgoU programs, such as "abc", are implemented as instances of this class.

stringjoiner))
StringMonitor Strings are constant; their values cannot be changed after they are created.

StringMonitorMBean String buffers support mutable strings. Because String objects are immutable
StringNameHelper they can be shared. For example:

ader .
Iﬂp [>] String str = "abc": ML

Figure 3.3 Class description for the String class

Chapter 3 m Fundamental Programming Structures in Java

Then scroll the frame on the right until you reach a summary of all methods,
sorted in alphabetical order (see Figure 3.4). Click on any method name for a de-
tailed description of that method (see Figure 3.5). For example, if you click on the
compareTolgnoreCase link, you'll get the description of the compareToIgnoreCase
method.

%) String (Java Platform SE 8 } - Mozilla Firefox

/docs.oracle.com/j 8/docs
[-]
Java™ Platform
Standard Ed. 8 Method Summary
All Classes All Prg
CURL GG LT ER] Static Methods | Instance Methods
Packages
Concrete Methods | Deprecated Methods
java.applet
java.awt Modifier and Type Method and Description
[]
T — char charAt(int index)
StreamPrintServiceral !))
StreamReaderDelegat Returns the char value at the specified index.
St Result
feamaesy int codePointAt(int index)
StreamSource
StreamSupport Returns the character (Unicode code point) at the
StreamTokenizer specified index.
StrictMath . .) .
String int codePointBefore(int index)
StringBuffer Returns the character (Unicode code point) before
stringBufferinputstre the specified index.
StringBuilder
StringCharacteriterat int codePointCount(int beginIndex, int endIndex)
StringContent Returns the number of Unicode code points in the
StringHolder specified text range of this String.
StringindexOutOfBou,
Stringjoiner |] int compareTo(String anotherString)
StringMonitor Compares two strings lexicographically.
StringMonitorMBean
StringNameHelper o int compareToIgnoreCase(String str)
w ader Compares two strings lexicographically, ignoring -

Figure 3.4 Method summary of the String class

6 TIP: Bookmark the docs/api/index.html page in your browser right now.

3.6 Strings

) string (Java Platform SE 8) - Mozilla Firefox

StreamReaderDelegat value is returned.

StreamResult

Specified by:
StreamSource ..
StreamSupport charAt in interface CharSeguence
Strear"uToﬁenizer Parameters:
StrictMat) .

index - the index of the char value.
String
StringBuffer Returns:

StringBufferinputStre
StringBuilder

stringCharacteriterat
StringContent Throws:

the char value at the specified index of this string. The first
char value is at index @.

StringHolder IndexOut0fBoundsException - if the index argument is negative or

StringindexQutofiou not less than the length of this string.
StringJoiner

StringMenitor
StringMonitorMBean ~
StringNameHelper FrF

A0er
nuhlic int codePointAt(int index)

€ s://docs.oracle.com/j v & F =
b .

Java™ Platform . charAt E

Standard Ed. 8

All Classes All Prg public char charAt{int index)

Packages Returns the char value at the specified index. An index ranges from @ to

java.applet length() - 1. The first char value of the sequence is at index @, the next

iava.awt ~ at index 1, and so on, as for array indexing.

[

StreamPrintServicera If the char value specified by the index is a surrogate, the surrogate

Figure 3.5 Detailed description of a String method

3.6.9 Building Strings

Occasionally, you need to build up strings from shorter strings, such as keystrokes
or words from a file. It would be inefficient to use string concatenation for this
purpose. Every time you concatenate strings, a new String object is constructed.
This is time consuming and wastes memory. Using the StringBuilder class avoids

this problem.

Follow these steps if you need to build a string from many small pieces. First,

construct an empty string builder:

StringBuilder builder = new StringBuilder();

Each time you need to add another part, call the append method.

builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will get a

String object with the character sequence contained in the builder.

String completedString = builder.toString();

Chapter 3 m Fundamental Programming Structures in Java

NOTE: The StringBuilder class was introduced in JDK 5.0. lts predecessor,
StringBuffer, is slightly less efficient, but it allows multiple threads to add or remove
characters. If all string editing happens in a single thread (which is usually the
case), you should use StringBuilder instead. The APIs of both classes are identical.

The following API notes contain the most important methods for the StringBuilder
class.

jav

3.7

a.lang.StringBuilder

StringBuilder()

constructs an empty string builder.

int Tength()

returns the number of code units of the builder or buffer.

StringBuilder append(String str)

appends a string and returns this.

StringBuilder append(char c)

appends a code unit and returns this.

StringBuilder appendCodePoint(int cp)

appends a code point, converting it into one or two code units, and returns this.
void setCharAt(int i, char c)

sets the ith code unit to c.

StringBuilder insert(int offset, String str)

inserts a string at position offset and returns this.

StringBuilder insert(int offset, char c)

inserts a code unit at position offset and returns this.

StringBuilder delete(int startIndex, int endIndex)

deletes the code units with offsets startIndex to endIndex - 1 and returns this.
String toString()

returns a string with the same data as the builder or buffer contents.

Input and Output

To make our example programs more interesting, we want to accept input and
properly format the program output. Of course, modern programs use a GUI for

3.7 Input and Output

collecting user input. However, programming such an interface requires more
tools and techniques than we have at our disposal at this time. Our first order of
business is to become more familiar with the Java programming language, so we
make do with the humble console for input and output for now. GUI programming
is covered in Chapters 10 through 12.

3.7.1 Reading Input

You saw that it is easy to print output to the “standard output stream” (that is,
the console window) just by calling System.out.println. Reading from the “standard
input stream” Systen.in isn’t quite as simple. To read console input, you first
construct a Scanner that is attached to System.in:

Scanner in = new Scanner(System.in);
(We discuss constructors and the new operator in detail in Chapter 4.)

Now you can use the various methods of the Scamer class to read input. For
example, the nextline method reads a line of input.

System.out.print("What is your name? ");
String name = in.nextLine();

Here, we use the nextline method because the input might contain spaces. To read
a single word (delimited by whitespace), call

String firstName = in.next();
To read an integer, use the nextInt method.

System.out.print("How old are you? ");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

The program in Listing 3.2 asks for the user’s name and age and then prints a
message like

Hello, Cay. Next year, you'll be 57
Finally, note the line
import java.util.*;

at the beginning of the program. The Scanner class is defined in the java.util package.
Whenever you use a class that is not defined in the basic java.lang package, you
need to use an import directive. We look at packages and import directives in more
detail in Chapter 4.

Chapter 3 m Fundamental Programming Structures in Java

Listing 3.2 InputTest/InputTest.java

import java.util.*;

* This program demonstrates console input.

J

@author Cay Horstmann

public class InputTest

{
10
1
12
13
14
15
16
17
18

1
2
3
4
5 % @version 1.10 2004-02-10
6
7
8
9

public static void main(String[] args)

{

Scanner in = new Scanner(System.in);

// get first input
System.out.print("What is your name? ");
String name = in.nextLine();

// get second input
System.out.print("How old are you? ");
int age = in.nextInt();

// display output on console
System.out.printIn("Hello, " + name + ". Next year, you'll be " + (age + 1));

NOTE: The Scanner class is not suitable for reading a password from a console
since the input is plainly visible to anyone. Java SE 6 introduces a Console class
specifically for this purpose. To read a password, use the following code:

Console cons = System.console();
String username = cons.readLine("User name: ");
char[] passwd = cons.readPassword("Password: ");

For security reasons, the password is returned in an array of characters rather
than a string. After you are done processing the password, you should immedi-
ately overwrite the array elements with a filler value. (Array processing is
discussed in Section 3.10, ‘Arrays,” on p. 111.)

Input processing with a Console object is not as convenient as with a Scanner. You
must read the input a line at a time. There are no methods for reading individual
words or numbers.

3.7 Input and Output

java.util.Scanner 5.0

e Scanner(InputStream in)

constructs a Scanner object from the given input stream.
e String nextLine()

reads the next line of input.
e String next()

reads the next word of input (delimited by whitespace).

e int nextInt()
e double nextDouble()

reads and converts the next character sequence that represents an integer or
floating-point number.

e hoolean hasNext()
tests whether there is another word in the input.

¢ hoolean hasNextInt()

¢ hoolean hasNextDouble()
tests whether the next character sequence represents an integer or floating-point
number.

java.lang.System 1.0

e static Console console() 6
returns a (onsole object for interacting with the user through a console window if
such an interaction is possible, null otherwise. A (onsole object is available for any
program that is launched in a console window. Otherwise, the availability is system
dependent.

java.io.Console 6

e static char[] readPassword(String prompt, Object... args)

e static String readLine(String prompt, Object... args)
displays the prompt and reads the user input until the end of the input line. The
args parameters can be used to supply formatting arguments, as described in
the next section.

Chapter 3 m Fundamental Programming Structures in Java

3.7.2 Formatting Output

You can print a number x to the console with the statement Systen.out.print(x). That
command will print x with the maximum number of nonzero digits for that type.
For example,

double x = 10000.0 / 3.0;
System.out.print(x);

prints
3333.3333333333335
That is a problem if you want to display, for example, dollars and cents.

In early versions of Java, formatting numbers was a bit of a hassle. Fortunately,
Java SE 5.0 brought back the venerable printf method from the C library. For
example, the call

System.out.printf("%8.2f", x);

prints x with a field width of 8 characters and a precision of 2 characters. That is,
the printout contains a leading space and the seven characters

3333.33
You can supply multiple parameters to printf. For example:
System.out.printf("Hello, %s. Next year, you'll he %d", name, age);

Each of the format specifiers that start with a % character is replaced with the corre-
sponding argument. The conversion character that ends a format specifier indicates
the type of the value to be formatted: f is a floating-point number, s a string, and
d a decimal integer. Table 3.5 shows all conversion characters.

Table 3.5 Conversions for printf

Conversion Type Example
Character

d Decimal integer 159

X Hexadecimal integer 9f

0 Octal integer 237

f Fixed-point floating-point 15.9

(Continues)

3.7 Input and Output

Table 3.5 (Continued)

Conversion Type Example
Character
e Exponential floating-point 1.59%+01
g General floating-point (the shorter of e —
and f)
a Hexadecimal floating-point 0x1.fcedp3
s String Hello
c Character H
b boolean true
h Hash code 4262802
tx or Tx Date and time (T forces uppercase) Obsolete, use the java.time

classes instead—see
Chapter 6 of Volume II

The percent symbol

%

The platform-dependent line separator

In addition, you can specify flags that control the appearance of the formatted
output. Table 3.6 shows all flags. For example, the comma flag adds group
separators. That is,

System.out.printf("%,.2f", 10000.0 / 3.0);

prints

3,333.33

You can use multiple flags, for example "%, (.2f" to use group separators and enclose
negative numbers in parentheses.

p NOTE: You can use the s conversion to format arbitrary objects. If an arbitrary
object implements the Formattable interface, the object’s formatTo method is invoked.
Otherwise, the toString method is invoked to turn the object into a string. We
discuss the toString method in Chapter 5 and interfaces in Chapter 6.

You can use the static String.format method to create a formatted string without

printing it:

String message = String.format("Hello, %s. Next year, you'll be %d", name, age);

m Chapter 3 m Fundamental Programming Structures in Java

Table 3.6 Flags for printf

Flag Purpose Example

+ Prints sign for positive and negative numbers. +3333.33
space Adds a space before positive numbers. | 3333.33]
0 Adds leading zeroes. 003333.33
- Left-justifies field. [3333.33 |
(Encloses negative numbers in parentheses. (3333.33)
, Adds group separators. 3,333.33
(for f format) Always includes a decimal point. 3,333

(for x or o format) Adds 0x or 0 prefix. Oxcafe

) Specifies the index of the argument to be 159 9F

formatted; for example, %1§d %1§x prints the first
argument in decimal and hexadecimal.

< Formats the same value as the previous 159 9F
specification; for example, % %x prints the
same number in decimal and hexadecimal.

In the interest of completeness, we briefly discuss the date and time formatting
options of the printf method. For new code, you should use the methods of the
java.time package described in Chapter 6 of Volume II. But you may encounter the
Date class and the associated formatting options in legacy code. The format consists
of two letters, starting with t and ending in one of the letters of Table 3.7; for
example,

System.out.printf("%tc", new Date());
prints the current date and time in the format
Mon Feb 09 18:05:19 PST 2015

As you can see in Table 3.7, some of the formats yield only a part of a given
date—for example, just the day or just the month. It would be a bit silly if you
had to supply the date multiple times to format each part. For that reason, a format
string can indicate the index of the argument to be formatted. The index must
immediately follow the %, and it must be terminated by a §. For example,

System.out.printf("%18s %2§tB %2$te, %25tY", "Due date:", new Date());
prints

Due date: February 9, 2015

3.7 Input and Output

Alternatively, you can use the < flag. It indicates that the same argument as in
the preceding format specification should be used again. That is, the statement

System.out.printf("%s %tB %<te, %<tY", "Due date:", new Date());

yields the same output as the preceding statement.

Table 3.7 Date and Time Conversion Characters

Conversion Type Example

Character

c Complete date and time Mon Feb 09 18:05:19 PST 2015

F ISO 8601 date 2015-02-09

D U.S. formatted date (month/day/year) 02/09/2015

T 24-hour time 18:05:19

r 12-hour time 06:05:19 pm

R 24-hour time, no seconds 18:05

Y Four-digit year (with leading zeroes) 2015

y Last two digits of the year (with leading 15
zeroes)

C First two digits of the year (with leading 20
zeroes)

B Full month name February

borh Abbreviated month name Feb

m Two-digit month (with leading zeroes) 02

d Two-digit day (with leading zeroes) 09

e Two-digit day (without leading zeroes) 9

A Full weekday name Monday

a Abbreviated weekday name Mon

i Three-digit day of year (with leading zeroes), 069
between 001 and 366

H Two-digit hour (with leading zeroes), between 18
00 and 23

(Continues)

Chapter 3 m Fundamental Programming Structures in Java

Table 3.7 (Continued)

Conversion Type Example

Character

k Two-digit hour (without leading zeroes), 18
between 0 and 23

I Two-digit hour (with leading zeroes), between 06
01 and 12

1 Two-digit hour (without leading zeroes), 6
between 1 and 12

M Two-digit minutes (with leading zeroes) 05

S Two-digit seconds (with leading zeroes) 19

L Three-digit milliseconds (with leading zeroes) 047

N Nine-digit nanoseconds (with leading zeroes) 047000000

p Morning or afternoon marker pm

z RFC 822 numeric offset from GMT -0800

z Time zone PST

s Seconds since 1970-01-01 00:00:00 GMT 1078884319

Q Milliseconds since 1970-01-01 00:00:00 GMT 1078884319047

o

CAUTION: Argument index values start with 1, not with 0: %1§... formats the first
argument. This avoids confusion with the 0 flag.

You have now seen all features of the printf method. Figure 3.6 shows a syntax
diagram for format specifiers.

format-specifier:

conversion

el ey

Figure 3.6 Format specifier syntax

precision

conversion
character

character

3.7 Input and Output

p NOTE: The formatting of numbers and dates is locale specific. For example, in
Germany, the group separator is a period, not a comma, and Monday is formatted
as Montag. Chapter 7 of Volume Il shows how to control the international behavior

of your applications.

3.7.3 File Input and Output
To read from a file, construct a Scanner object like this:
Scanner in = new Scanner(Paths.get("myfile.txt"), "UTF-8");

If the file name contains backslashes, remember to escape each of them with an
additional backslash: "c:\\mydirectory\\myfile.txt".

D NOTE: Here, we specify the UTF-8 character encoding, which is common (but
not universal) for files on the Internet. You need to know the character encoding
when you read a text file—see Volume II, Chapter 2 for more information. If you
omit the character encoding, then the “default encoding” of the computer running
the Java program is used. That is not a good idea—the program might act
differently depending on where it is run.

Now you can read from the file, using any of the Scanner methods that we already
described.

To write to a file, construct a Printliriter object. In the constructor, supply the file
name and the character encoding:

PrintWriter out = new PrintWriter("myfile.txt", "UTF-8");

If the file does not exist, it is created. You can use the print, printin, and printf
commands as you did when printing to System.out.

CAUTION: You can construct a Scanner with a string parameter, but the scanner
interprets the string as data, not a file name. For example, if you call
Scanner in = new Scanner("myfile.txt"); // ERROR?

then the scanner will see ten characters of data: 'n', 'y', 'f', and so on. That is
probably not what was intended in this case.

Chapter 3 m Fundamental Programming Structures in Java

4 NOTE: When you specify a relative file name, such as "myfile.txt",
"mydirectory/myfile.txt", or "../myfile.txt", the file is located relative to the directory
in which the Java virtual machine was started. If you launched your program
from a command shell, by executing

java MyProg

then the starting directory is the current directory of the command shell. However,
if you use an integrated development environment, it controls the starting
directory. You can find the directory location with this call:

String dir = System.getProperty("user.dir");

If you run into grief with locating files, consider using absolute path names such
as "c:\\mydirectory\\myfile.txt" or "/home/me/mydirectory/myfile.txt".

As you just saw, you can access files just as easily as you can use Systen.in and
System.out. There is just one catch: If you construct a Scanner with a file that does not
exist or a Printiiriter with a file name that cannot be created, an exception occurs.
The Java compiler considers these exceptions to be more serious than a “divide
by zero” exception, for example. In Chapter 7, you will learn various ways of
handling exceptions. For now, you should simply tell the compiler that you are
aware of the possibility of an “input/output” exception. You do this by tagging
the main method with a throws clause, like this:

public static void main(String[] args) throws IOException

{
Scanner in = new Scanner(Paths.get("myfile.txt"), "UTF-8");

}

You have now seen how to read and write files that contain textual data. For more
advanced topics, such as dealing with different character encodings, processing
binary data, reading directories, and writing zip files, turn to Chapter 2 of
Volume II.

4 NOTE: When you launch a program from a command shell, you can use the
é redirection syntax of your shell and attach any file to System.in and System.out:

java MyProg < myfile.txt > output.txt

Then, you need not worry about handling the I0Exception.

3.8 Control Flow

java.util.Scanner

e Scanner(Path p, String encoding)
constructs a Scamner that reads data from the given path, using the given character
encoding.

e Scanner(String data)

constructs a Scanner that reads data from the given string.

java.io.PrintWriter

e PrintWriter(String fileName)

constructs a Printiiriter that writes data to the file with the given file name.

java.nio.file.Paths

e static Path get(String pathname)

constructs a Path from the given path name.

3.8 Control Flow

Java, like any programming language, supports both conditional statements and
loops to determine control flow. We will start with the conditional statements,
then move on to loops, to end with the somewhat cumbersome switch statement
that you can use to test for many values of a single expression.

C++ NOTE: The Java control flow constructs are identical to those in C and

@ C++, with a few exceptions. There is no goto, but there is a “labeled” version of
break that you can use to break out of a nested loop (where, in C, you perhaps
would have used a goto). Finally, there is a variant of the for loop that has no
analog in C or C++. It is similar to the foreach loop in C#.

3.8.1 Block Scope

Before learning about control structures, you need to know more about blocks.

A block or compound statement consists of a number of Java statements,
surrounded by a pair of braces. Blocks define the scope of your variables. A block

Chapter 3 m Fundamental Programming Structures in Java

can be nested inside another block. Here is a block that is nested inside the block
of the mainmethod:

public static void main(String[] args)

{

int n;

{
int k;

} // ks only defined up to here
}

You may not declare identically named variables in two nested blocks. For
example, the following is an error and will not compile:

public static void main(String[] args)

{
int n;
{
int k;
int n; // Error--can't redefine n in inner block
}
}

C++ NOTE: In C++, it is possible to redefine a variable inside a nested block.
The inner definition then shadows the outer one. This can be a source of
programming errors; hence, Java does not allow it.

3.8.2 Conditional Statements
The conditional statement in Java has the form
if (condition) statement
The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute mul-
tiple statements when a single condition is true. In this case, use a block statement
that takes the form

3.8 Control Flow n

{
statementy
statement,

}

For example:

if (yourSales >= target)
{

performance = "Satisfactory”;
bonus = 100;
}

In this code all the statements surrounded by the braces will be executed when
yourSales is greater than or equal to target (see Figure 3.7).

yourSales >target

! G

performance
=“Satisfactory”

e

Y

 C—

bonus=100

Figure 3.7 Flowchart for the if statement

Chapter 3 m Fundamental Programming Structures in Java

P NOTE: A block (sometimes called a compound statement) enables you to have
é more than one (simple) statement in any Java programming structure that

otherwise allows for a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statementy else statement,

NO

yourSales > target

Y

performance

performance
=“Unsatisfactory”

=“Satisfactory”

bonus=
100+0.01* bonus=0

(yourSales—target)

Figure 3.8 Flowchart for the if/else statement

3.8 Control Flow

For example:

if (yourSales >= target)
{
performance = "Satisfactory";
bonus = 100 + 0.01 * (yourSales - target);

1

else

{
performance = "Unsatisfactory";
bonus = 0;

}

The else part is always optional. An else groups with the closest if. Thus, in the
statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to clarify
this code:

if (x<=0) {if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9). For example:
if (yourSales >= 2 * target)
{
performance = "Excellent”;
bonus = 1000;

else if (yourSales >= 1.5 * target)

performance = "Fine";
bonus = 500;

else if (yourSales >= target)

performance = "Satisfactory";
bonus = 100;

}

else

{

System.out.printin("You're fired");

Chapter 3 m Fundamental Programming Structures in Java

YES performance

yourSales >2*target 1 bonus=1000

=“Excellent”
- N - N
f

yourSales >1.5*target pe :?,r:m?ce | bonus=500 Y

N (N\
performance + _ \

yourSales >target =Satisfactory” | bonus=100
N —
Print
“You're fired”

Figure 3.9 Flowchart for the if/else if (multiple branches)

3.8.3 Loops

The while loop executes a statement (which may be a block statement) while a
condition is true. The general form is

while (condition) statement

3.8 Control Flow

The while loop will never execute if the condition is false at the outset (see
Figure 3.10).

balance < goal

update
balance

Y

years++

e

\

Print years

Figure 3.10 Flowchart for the while statement

The program in Listing 3.3 determines how long it will take to save a specific
amount of money for your well-earned retirement, assuming you deposit the
same amount of money per year and the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently
accumulated in the body of the loop until the total exceeds the targeted amount.

m Chapter 3 m Fundamental Programming Structures in Java

while (balance < goal)

{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;

}

System.out.printin(years +

" years.");

(Don't rely on this program to plan for your retirement. We left out a few niceties
such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never be exe-
cuted. If you want to make sure a block is executed at least once, you need to
move the test to the bottom, using the do/while loop. Its syntax looks like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then tests
the condition. If it’s true, it repeats the statement and retests the condition, and
so on. The code in Listing 3.4 computes the new balance in your retirement account
and then asks if you are ready to retire:

do
{

balance += payment;

double interest = balance * interestRate / 100;
balance += interest;

year++;

// print current balance

// ask if ready to retire and get input

}
while (input.equals("N"));

Aslong as the user answers "', the loop is repeated (see Figure 3.11). This program
is a good example of a loop that needs to be entered at least once, because the
user needs to see the balance before deciding whether it is sufficient for retirement.

3.8 Control Flow

Listing 3.3 Reti rement/Reti rement.java

1 import java.util.*;

2

3
4
5
6
7
8
9

{

/M

R

* This program demonstrates a <code>while</code> Toop.
* @version 1.20 2004-02-10
* @author Cay Horstmann

*/

public class Retirement

public static void main(String[] args)

{

// read inputs
Scanner in = new Scanner(System.in);

System.out.print("How much money do you need to retire? ");
double goal = in.nextDouble();

System.out.print("How much money will you contribute every year? ");
double payment = in.nextDouble();

System.out.print("Interest rate in %: ");
double interestRate = in.nextDouble();

double balance = 0;
int years = 0;

// update account balance while goal isn't reached
while (balance < goal)
{
// add this year's payment and interest
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;

}

System.out.printIn("You can retire in " + years + " years.");

n Chapter 3 m Fundamental Programming Structures in Java

Listing 3.4 Reti rement2/Reti rement2.java

import java.util.*;

1
2
¢ * This program demonstrates a <code>do/while</code> Toop.
5 % @version 1.20 2004-02-10

6 * @author Cay Horstmann

7

v:/
s public class Retirement2
v {
10 public static void main(String[] args)
11 {
n Scanner in = new Scanner(System.in);
13
14 System.out.print("How much money will you contribute every year? ");
15 double payment = in.nextDouble();
16
i System.out.print("Interest rate in %: ");
18 double interestRate = in.nextDouble();
19
2 double balance = 0;
21 int year = 0;
22
3 String input;
24
2 // update account balance while user isn't ready to retire
26 do
2 {
2 // add this year's payment and interest
2 balance += payment;
30 double interest = balance * interestRate / 100;
3 balance += interest;
32
3 yeart+;
34
35 // print current balance
3 System.out.printf("After year %d, your balance is %,.2f%n", year, balance);
37
38 // ask if ready to retire and get input
39 System.out.print("Ready to retire? (Y/N) ");
40 input = in.next();
4 }
Q while (input.equals("N"));
43 }

3.8 Control Flow n

/

\
update
balance
\

print balance
ask “Ready
to retire?

input="N"

Figure 3.11 Flowchart for the do/while statement

3.8.4 Determinate Loops

The for loop is a general construct to support iteration controlled by a counter or
similar variable that is updated after every iteration. As Figure 3.12 shows, the
following loop prints the numbers from 1 to 10 on the screen.

for (int i =1; 1 <= 10; i++)
System.out.printin(i);
The first slot of the for statement usually holds the counter initialization. The
second slot gives the condition that will be tested before each new pass through
the loop, and the third slot specifies how to update the counter.

m Chapter 3 m Fundamental Programming Structures in Java

E]

i
i<

|

: Printi ;

)
y

1

10
YES
+

i+

|
Figure 3.12 Flowchart for the for statement

Although Java, like C++, allows almost any expression in the various slots of a
for loop, it is an unwritten rule of good taste that the three slots should only ini-
tialize, test, and update the same counter variable. One can write very obscure
loops by disregarding this rule.

Even within the bounds of good taste, much is possible. For example, you can
have loops that count down:

for (int i =10;1 > 0; i--)
System.out.printIn("Counting down . . .
System.out.printIn("Blastoff!");

+1);

3.8 Control Flow

CAUTION: Be careful about testing for equality of floating-point numbers in
o loops. A for loop like this one

for (double x = 0; x !=10; x +=0.1) . . .

might never end. Because of roundoff errors, the final value might not be reached
exactly. In this example, x jumps from 9.99999999999998 to 10.09999999999998 because
there is no exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that
variable extends until the end of the body of the for loop.

for (inti=1;1 <= 10; i++)

{
}

// i no Tonger defined here

In particular, if you define a variable inside a for statement, you cannot use its
value outside the loop. Therefore, if you wish to use the final value of a loop
counter outside the for loop, be sure to declare it outside the loop header.

int i;
for (i =1; i <= 10; i++)
{

}
// 1 is still defined here

On the other hand, you can define variables with the same name in separate for
loops:

for (inti=1; 1 <=10; i++)

{
}

for (int 1 = 11; 1 <= 20; i++) // OK to define another variable named i

{
}
A for loop is merely a convenient shortcut for a while loop. For example,

for (int i =10; 1 > 0; i--)
System.out.printIn("Counting down . . . " + 1);

can be rewritten as

m Chapter 3 m Fundamental Programming Structures in Java

int i = 10;

while (i > 0)

{
System.out.printIn("Counting down . . . " +1);
i

}

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you must
pick six numbers from the numbers 1 to 50 to win, then there are (50 x 49 x 48 x
47 x 46 x 45)/(1 x 2 x 3 x 4 x 5 x 6) possible outcomes, so your chance is 1 in
15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

nxm-1)xnm-2)x---xmn-k+1)
1x2x3x4x---xk

possible outcomes. The following for loop computes this value:

int TotteryOdds = 1;
for (inti=1;1<=k; i+s)
TotteryOdds = TotteryOdds * (n -1 + 1) / 1;

4 NOTE: See Section 3.10.1, “The ‘for each’ Loop,” on p. 113 for a description of
the “generalized for loop” (also called “for each” loop) that was added to the
Java language in Java SE 5.0.

Listing 3.5 Lottery0dds/Lottery0dds.java

import java.util.*;

1
2
3 [
¢ * This program demonstrates a <code>for</code> Toop.
5 % @version 1.20 2004-02-10

6 * @author Cay Horstmann

7 ¥
s public class LotteryOdds
v {

10 public static void main(String[] args)

11 {

n Scanner in = new Scanner(System.in);

14 System.out.print("How many numbers do you need to draw? ");
15 int k = in.nextInt();

3.8 Control Flow

7 System.out.print("What is the highest number you can draw? ");

18 int n = in.nextInt(Q;

19

20 /*

21 * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1¥2%3%,..%k)
2 */

23

2 int TotteryOdds = 1;

2 for (inti=1;1 <=k; i+4)

26 TotteryOdds = TotteryOdds * (n - i +1) / i;

27

28 System.out.printIn("Your odds are 1 in " + TotteryOdds + ". Good Tuck!");
2 }

30 }

3.8.5 Multiple Selections—The switch Statement

The if/else construct can be cumbersome when you have to deal with multiple
selections with many alternatives. Java has a switch statement that is exactly like
the switch statement in C and C++, warts and all.

For example, if you set up a menu system with four alternatives like that in
Figure 3.13, you could use code that looks like this:

Scanner in = new Scanner(System.in);
System.out.print("Select an option (1, 2, 3, 4) ");
int choice = in.nextInt();

switch (choice)

{

case 1:
break;
case 2:
break;
case 3:
break;
case 4:
break;
default:
// bad input

break;

m Chapter 3 m Fundamental Programming Structures in Java

(default)
bad input

Figure 3.13 Flowchart for the switch statement

Execution starts at the case label that matches the value on which the selection is
performed and continues until the next break or the end of the switch. If none of
the case labels match, then the default clause is executed, if it is present.

3.8 Control Flow

CAUTION: It is possible for multiple alternatives to be triggered. If you forget to

o add a break at the end of an alternative, execution falls through to the next alter-
native! This behavior is plainly dangerous and a common cause for errors. For
that reason, we never use the switch statement in our programs.

If you like the switch statement better than we do, consider compiling your code
with the -Xlint:fallthrough option, like this:

javac -Xlint:fallthrough Test.java

Then the compiler will issue a warning whenever an alternative does not end
with a break statement.

If you actually want to use the fallthrough behavior, tag the surrounding method
with the annotation @SuppressWarnings("fallthrough"). Then no warnings will be gen-
erated for that method. (An annotation is a mechanism for supplying information
to the compiler or a tool that processes Java source or class files. We discuss
annotations in detail in Chapter 8 of Volume Il.)

A case label can be

¢ A constant expression of type char, byte, short, or int
¢ An enumerated constant
¢ Starting with Java SE 7, a string literal

For example,

String input = . . .;
switch (input.tolowerCase())

{
case "yes": // OK since Java SE 7
break;
}

When you use the switch statement with enumerated constants, you need not
supply the name of the enumeration in each label—it is deduced from the switch
value. For example:

Sizesz=...;
switch (sz)

case SMALL: // no need to use Size.SMALL

break;

Chapter 3 m Fundamental Programming Structures in Java

3.8.6 Statements That Break Control Flow

Although the designers of Java kept goto as a reserved word, they decided not to
include it in the language. In general, goto statements are considered poor style.
Some programmers feel the anti-goto forces have gone too far (see, for example,
the famous article of Donald Knuth called “Structured Programming with goto
statements”). They argue that unrestricted use of goto is error-prone but that an
occasional jump out of a loop is beneficial. The Java designers agreed and even
added a new statement, the labeled break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement that
you use to exit a switch can also be used to break out of a loop. For example:

while (years <= 100)

balance += payment;

double interest = balance * interestRate / 100;
balance += interest;

if (balance >= goal) break;

years++;

}

Now the loop is exited if either years > 100 occurs at the top of the loop or balance >=
goal occurs in the middle of the loop. Of course, you could have computed the
same value for years without a break, like this:

while (years <= 100 && balance < goal)
{

balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance < goal)
years++;
}

But note that the test halance < goal is repeated twice in this version. To avoid this
repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of
multiple nested loops. Occasionally something weird happens inside a deeply
nested loop. In that case, you may want to break completely out of all the nested
loops. It is inconvenient to program that simply by adding extra conditions to
the various loop tests.

Here’s an example that shows the break statement at work. Notice that the label
must precede the outermost loop out of which you want to break. It also must be
followed by a colon.

3.8 Control Flow

Scanner in = new Scanner(System.in);

int n;

read_data:

while (. . .) // this Toop statement is tagged with the Tabel

1l°0|l" (. .) // this inner Toop is not Tabeled

System.out.print("Enter a number >= 0: ");

n = in.nextInt();

if (n < 0) // should never happen-can't go on
break read_data;
// break out of read_data Toop

}
}

// this statement is executed immediately after the labeled break
if (n < 0) // check for bad situation

// deal with bad situation
}

else

{

// carry out normal processing

If there is a bad input, the labeled break moves past the end of the labeled block.
As with any use of the break statement, you then need to test whether the loop
exited normally or as a result of a break.

P NOTE: Curiously, you can apply a label to any statement, even an if statement
é or a block statement, like this:

label:
{

if (condition) break label; // exits block

}

// jumps here when the break statement executes

Thus, if you are lusting after a goto and if you can place a block that ends just
before the place to which you want to jump, you can use a break statement!
Naturally, we don’'t recommend this approach. Note, however, that you can only
jump out of a block, never into a block.

107

Chapter 3 m Fundamental Programming Structures in Java

Finally, there is a continue statement that, like the break statement, breaks the regular
flow of control. The continue statement transfers control to the header of the
innermost enclosing loop. Here is an example:

Scanner in = new Scanner(System.in);
while (sum < goal)

System.out.print("Enter a number: ");
n = in.nextInt(Q);

if (n < 0) continue;

sum += n; // not executed if n< 0

}

If n < 0, then the continue statement jumps immediately to the loop header, skipping
the remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the
for loop. For example:

for (count = 1; count <= 100; count++)
{
System.out.print("Enter a number, -1 to quit: ");
n = in.nextInt();
if (n < 0) continue;
sum += n; // not executed if n< 0

}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the header of
the loop with the matching label.

TIP: Many programmers find the break and continue statements confusing. These
statements are entirely optional—you can always express the same logic without
them. In this book, we never use break or continue.

3.9 Big Numbers

If the precision of the basic integer and floating-point types is not sufficient, you
can turn to a couple of handy classes in the java.math package: BigInteger and BigDecimal.
These are classes for manipulating numbers with an arbitrarily long sequence of
digits. The BigInteger class implements arbitrary-precision integer arithmetic, and
Bighecimal does the same for floating-point numbers.

Use the static value0f method to turn an ordinary number into a big number:

BigInteger a = BigInteger.value0f(100);

3.9 Big Numbers

Unfortunately, you cannot use the familiar mathematical operators such as + and
* to combine big numbers. Instead, you must use methods such as add and mltiply
in the big number classes.

BigInteger ¢ = a.add(b); // c=a+b
BigInteger d = c.multiply(b.add(BigInteger.value0f(2))); // d=c* (b +2)

C++ NOTE: Unlike C++, Java has no programmable operator overloading. There
@ was no way for the programmers of the BigInteger class to redefine the + and *
operators to give the add and multiply operations of the BigInteger classes. The
language designers did overload the + operator to denote concatenation of
strings. They chose not to overload other operators, and they did not give Java
programmers the opportunity to overload operators in their own classes.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5,
updated to work with big numbers. For example, if you are invited to participate
in a lottery in which you need to pick 60 numbers out of a possible 490 numbers,
you can use this program to tell you your odds of winning. They are 1 in
716395843461995557415116222540092933411717612789263493493351013459481104668848. Good luck!

The program in Listing 3.5 computed the statement
TotteryOdds = TotteryOdds * (n -1 + 1) / i;
When big numbers are used, the equivalent statement becomes

TotteryOdds = TotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(BigInteger.value0f(i));

Listing 3.6 BigIntegerTest/BigIntegerTest.java

import java.math.*;
import java.util.#;

1
2
3
AL
s * This program uses big numbers to compute the odds of winning the grand prize in a lottery.
6 * @version 1.20 2004-02-10

7 * @author Cay Horstmann

s ¥/

9 public class BigIntegerTest

0 {

u public static void main(String[] args)

n {

13 Scanner in = new Scanner(System.in);

(Continues)

Chapter 3 m Fundamental Programming Structures in Java

Listing 3.6 (Continued)

System.out.print("How many numbers do you need to draw? ");
int k = in.nextInt();

System.out.print("What is the highest number you can draw? ");
int n = in.nextInt();

/
compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1#2%3%...%k)

EE

/

BigInteger TotteryOdds = BigInteger.valueOf(1);
for (inti=1;1<=k; i+s)
TotteryOdds = TotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(
BigInteger.value0f(i));

System.out.printIn("Your odds are 1 in " + TotteryOdds + ". Good Tuck!");

java.math.BigInteger

BigInteger add(BigInteger other)

BigInteger subtract(BigInteger other)

BigInteger multiply(BigInteger other)

BigInteger divide(BigInteger other)

BigInteger mod(BigInteger other)

returns the sum, difference, product, quotient, and remainder of this big integer
and other.

int compareTo(BigInteger other)

returns 0 if this big integer equals other, a negative result if this big integer is less
than other, and a positive result otherwise.

static BigInteger valueOf(Tong x)

returns a big integer whose value equals x.

3.10 Arrays

java.math.BigDecimal

e BigDecimal add(BigDecimal other)

e BigDecimal subtract(BigDecimal other)

e BigDecimal multiply(BigDecimal other)

e BigDecimal divide(BigDecimal other, RoundingMode mode)

returns the sum, difference, product, or quotient of this big decimal and other. To
compute the quotient, you must supply a rounding mode. The mode RoundingMode. HALF_UP
is the rounding mode that you learned in school: round down the digits 0 to 4,
round up the digits 5 to 9. It is appropriate for routine calculations. See the API
documentation for other rounding modes.

e int compareTo(BigDecimal other)

returns 0 if this big decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

e static BigDecimal valueOf(long x)
e static BigDecimal valueOf(Tong x, int scale)

returns a big decimal whose value equals x or x / 105¢1¢,

3.10 Arrays

An array is a data structure that stores a collection of values of the same type.
You access each individual value through an integer index. For example, if a is
an array of integers, then ali] is the ith integer in the array.

Declare an array variable by specifying the array type—which is the element type
followed by []—and the array variable name. For example, here is the declaration
of an array a of integers:

int(] a;

However, this statement only declares the variable a. It does not yet initialize a
with an actual array. Use the new operator to create the array.

int[] a = new int[100];
This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of length n.

Chapter 3 m Fundamental Programming Structures in Java

NOTE: You can define an array variable either as
int] a;
or as
int a[l;

Most Java programmers prefer the former style because it neatly separates the
type int[] (integer array) from the variable name.

The array elements are numbered from 0 to 99 (and not 1 to 100). Once the array is
created, you can fill the elements in an array, for example, by using a loop:

int[] a = new int[100];
for (int i =0; 1< 100; i++)
afi] = 1; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero. Arrays
of hoolean are initialized with false. Arrays of objects are initialized with the special
value nul1, which indicates that they do not (yet) hold any objects. This can be
surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are nul1. If you want the array to hold
empty strings, you must supply them:

for (int i =0; 1 < 10; i++) names[i] = "";

CAUTION: If you construct an array with 100 elements and then try to access
0 the element a[100] (or any other index outside the range from 0 to 99), your
program will terminate with an “array index out of bounds” exception.

To find the number of elements of an array, use array.length. For example:

for (int i =0; i < a.length; i++)
System.out.printIn(a[il);

Once you create an array, you cannot change its size (although you can, of course,
change an individual array element). If you frequently need to expand the size
of an array while your program is running, you should use a different data
structure called an array list. (See Chapter 5 for more on array lists.)

3.10 Arrays

3.10.1 The “for each” Loop

Java has a powerful looping construct that allows you to loop through each ele-
ment in an array (or any other collection of elements) without having to fuss with
index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes the
statement (which, of course, may be a block). The collection expression must be an
array or an object of a class that implements the Iterable interface, such as Arraylist.
We discuss array lists in Chapter 5 and the Iterable interface in Chapter 9.

For example,

for (int element : a)
System.out.printin(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the Java
language considered using keywords, such as foreach and in. But this loop was a
late addition to the Java language, and in the end nobody wanted to break the
old code that already contained methods or variables with these names (such as
System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int 1 = 0; i < a.length; i++)
System.out.printin(a[i]);

However, the “for each” loop is more concise and less error-prone, as you don’t
have to worry about those pesky start and end index values.

P NOTE: The loop variable of the “for each” loop traverses the elements of the
é array, not the index values.

The “for each” loop is a pleasant improvement over the traditional loop if you
need to process all elements in a collection. However, there are still plenty of
opportunities to use the traditional for loop. For example, you might not want to
traverse the entire collection, or you may need the index value inside the loop.

Chapter 3 m Fundamental Programming Structures in Java

TIP: There is an even easier way to print all values of an array, using the toString

d method of the Arrays class. The call Arrays.toString(a) returns a string containing
the array elements, enclosed in brackets and separated by commas, such as
"2, 3, 5, 7, 11, 13]". To print the array, simply call

System.out.printIn(Arrays.toString(a));

3.10.2 Array Initializers and Anonymous Arrays

Java has a shortcut for creating an array object and supplying initial values at the
same time. Here’s an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };
Notice that you do not call new when you use this syntax.
You can even initialize an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces.
It counts the number of initial values and sets the array size accordingly. You can
use this syntax to reinitialize an array without creating a new variable. For
example,

smal1Primes = new int[] { 17, 19, 23, 29, 31, 37 };
is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

write a method that computes an array result and the result happens to be
empty. Construct an array of length 0 as

NOTE: It is legal to have arrays of length 0. Such an array can be useful if you

new elementType[0]

Note that an array of length 0 is not the same as null.

3.10.3 Array Copying

You can copy one array variable into another, but then both variables refer to the
same array:

int[] TuckyNumbers = smallPrimes;
TuckyNumbers[5] = 12; // now smallPrimes[5] is also 12

3.10 Arrays

Figure 3.14 shows the result. If you actually want to copy all values of one array
into a new array, you use the copy0f method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf (TuckyNumbers, TuckyNumbers.length);

smallPrimes = E——!
IuckyNumbers:E-/v

\lmwm’

—_
—_

Figure 3.14 Copying an array variable

The second parameter is the length of the new array. A common use of this method
is to increase the size of an array:

TuckyNumbers = Arrays.copyOf(TuckyNumbers, 2 * TuckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false if
the array contains hoolean values. Conversely, if the length is less than the length
of the original array, only the initial values are copied.

C++ NOTE: A Java array is quite different from a C++ array on the stack. It is,
however, essentially the same as a pointer to an array allocated on the heap.
That is,

int[] a = new int[100]; // Java
is not the same as

int a[100]; // C++
but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking. Furthermore,
there is no pointer arithmetic—you can’t increment a to point to the next element
in the array.

Chapter 3 m Fundamental Programming Structures in Java

3.10.4 Command-Line Parameters

You have already seen one example of a Java array repeated quite a few times.
Every Java program has a main method with a String[] args parameter. This param-
eter indicates that the main method receives an array of strings—namely, the
arguments specified on the command line.

For example, consider this program:

public class Message
{
public static void main(String[] args)
{
if (args.length == 0 || args[0].equals("-h"))
System.out.print("Hello,");
else if (args[0].equals("-g"))
System.out.print("Goodbye,");
// print the other command-Tine arguments
for (int i =1; i < args.length; i++)
System.out.print(" " + args[i]);
System.out.printin("1");
}
}

If the program is called as
java Message -g cruel world
then the args array has the following contents:
args[0]: "-¢"
args[1]: "cruel”
args[2]: "world"
The program prints the message

Goodbye, cruel world!

C++ NOTE: In the main method of a Java program, the name of the program is
not stored in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message" or "java".

3.10 Arrays

3.10.5 Array Sorting

To sort an array of numbers, you can use one of the sort methods in the Arrays class:
int[] a = new int[10000];

Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to
be very efficient on most data sets. The Arrays class provides several other conve-
nience methods for arrays that are included in the API notes at the end of this
section.

The program in Listing 3.7 puts arrays to work. This program draws a random
combination of numbers for a lottery game. For example, if you play a “choose
6 numbers from 49” lottery, the program might print this:

Bet the following combination. It'11 make you rich!
4
7
8
19
30
44

To select such a random set of numbers, we first fill an array numbers with the values
1,2,...,n:

int[] numbers = new int[n];
for (int 1 = 0; i < numbers.length; i++)
numbers[i] =1 + 1;

A second array holds the numbers to be drawn:
int[] result = new int[k];

Now we draw k numbers. The Math.randon method returns a random floating-point
number that is between 0 (inclusive) and 1 (exclusive). By multiplying the result
with n, we obtain a random number between 0 and n - 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r + 1, but
as you'll see presently, the contents of the nunbers array are changed after each
draw.

result[i] = numbers[r];

Now we must be sure never to draw that number again—all lottery numbers
must be distinct. Therefore, we overwrite numbers[r] with the last number in the
array and reduce n by 1.

117

Chapter 3 m Fundamental Programming Structures in Java

numbers[r] = numbers[n - 1];

n--;
The point is that in each draw we pick an index, not the actual value. The index
points into an array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing
output:

Arrays.sort(result);
for (int r : result)
System.out.printIn(r);

Listing 3.7 LotteryDrawing/LotteryDrawing.java

import java.util.*;

1
2
¢ * This program demonstrates array manipulation.
5 % @version 1.20 2004-02-10

6 * @author Cay Horstmann

7

8

9

#/
public class LotteryDrawing
{
10 public static void main(String[] args)
11 {
n Scanner in = new Scanner(System.in);
13
14 System.out.print("How many numbers do you need to draw? ");
15 int k = in.nextInt();
16
7 System.out.print("What is the highest number you can draw? ");
18 int n = in.nextInt();
19
20 // fill an array with numbers 123 .. . n
21 int[] numbers = new int[n];
2 for (int i =0; 1 < numbers.length; i++)
23 numbers[i] =1 + 1;
24
25 // draw k numbers and put them into a second array
2 int[] result = new int[k];
7 for (int 1 =0; 1 < result.length; i++)
2
29 // make a random index between 0 and n - 1

30 int r = (int) (Math.random() * n);

3.10 Arrays

// pick the element at the random location
result[i] = numbers[r];

// move the last element into the random Tocation
numbers(r] = numbers[n - 1];
n--;

}

// print the sorted array
Arrays.sort(result);
System.out.printIn("Bet the following combination. It'11 make you rich!");
for (int r : result)
System.out.printin(r);

java.util.Arrays

static String toString(type(] a)

returns a string with the elements of a, enclosed in brackets and delimited by

commas.

Parameters: a An array of type int, Tong, short, char, byte, boolean, float,
or double.

static type[] copyOf (type[] a, int Tength)

static type[] copyOfRange(type[] a, int start, int end)

returns an array of the same type as a, of length either Tength or end - start, filled

with the values of a.

Parameters: a An array of type int, long, short, char, byte, boolean, float,
or double.
start The starting index (inclusive).
end The ending index (exclusive). May be larger than

a.Tength, in which case the result is padded with 0 or
false values.

Tength The length of the copy. If Tength is larger than a.length,
the result is padded with 0 or false values. Otherwise,
only the initial Tength values are copied.

static void sort(type[] a)
sorts the array, using a tuned QuickSort algorithm.

Parameters: a An array of type int, Tong, short, char, byte, float, or
double.

(Continues)

m Chapter 3 m Fundamental Programming Structures in Java

java.util.Arrays (Continued)

e static int binarySearch(type[] a, type V)

e static int binarySearch(type[] a, int start, int end, type v)
Uses the binary search algorithm to search for the value v. If it is found, its index is
returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

Parameters: a a sorted array of type int, Tong, short, char, byte, float, or
doubTe.
start The starting index (inclusive).
end The ending index (exclusive).
v A value of the same type as the elements of a.

e static void fill(type[] a, type V)

Sets all elements of the array to v.

Parameters: a An array of type int, long, short, char, byte, boolean, float,
or double.
v A value of the same type as the elements of a.

e static hoolean equals(type[] a, typel] b)
Returns true if the arrays have the same length and if the elements in corresponding
indexes match.

Parameters: a, b Arrays of type int, long, short, char, byte, boolean, float,
or double.

3.10.6 Muttidimensional Arrays

Multidimensional arrays use more than one index to access array elements. They
are used for tables and other more complex arrangements. You can safely skip
this section until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an invest-
ment of $10,000 will grow under different interest rate scenarios in which interest
is paid annually and reinvested (Table 3.8).

You can store this information in a two-dimensional array (matrix), which we
call balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

3.10 Arrays

Table 3.8 Growth of an Investment at Different Interest Rates

10% 1% 12% 13% 14% 15%
10,000.00 10,000.00 10,000.00 10,000.00 10,000.00 10,000.00
11,000.00 11,100.00 11,200.00 11,300.00 11,400.00 11,500.00

12,100.00 12,321.00 12,544.00 12,769.00 12,996.00 13,225.00
13,310.00 13,676.31 14,049.28 14,428.97 14,815.44 15,208.75

14,641.00 15,180.70 15,735.19 16,304.74 16,889.60 17,490.06

16,105.10 16,850.58 17,623.42 18,424.35 19,254.15 20,113.57

17,715.61 18,704.15 19,738.23 20,819.52 21,949.73 23,130.61

19,487.17 20,761.60 22,106.81 23,526.05 25,022.69 26,600.20

21,435.89 23,045.38 24,759.63 26,584.44 28,525.86 30,590.23
23,579.48 25,580.37 27,730.79 30,040.42 32,519.49 35,178.76

You cannot use the array until you initialize it. In this case, you can do the
initialization as follows:

balances = new double[NYEARS] [NRATES];

In other cases, if you know the array elements, you can use a shorthand notation
for initializing a multidimensional array without a call to new. For example:

int[][] magicSquare =

{16, 3, 2, 13},

{s, 10, 11, 8},

{9, 6, 7, 12},

{4, 15, 14, 1}
h

Once the array is initialized, you can access individual elements by supplying
two pairs of brackets—for example, balances[i][]].

The example program stores a one-dimensional array interest of interest rates and
a two-dimensional array balances of account balances, one for each year and interest
rate. We initialize the first row of the array with the initial balance:

< balances[0].Tength; j++)

for (int j =0; j
[31 = 10000;

=0
balances[0]

Then we compute the other rows, as follows:

Chapter 3 m Fundamental Programming Structures in Java

for (int 1 = 1; 1 < balances.length; i++)
{
for (int j = 0; j < balances[i].length; j++)

double oldBalance = balances[i - 1][j];
double interest = . . .;
balances[i][j] = oldBalance + interest;

}
Listing 3.8 shows the full program.

< NOTE: A “for each” loop does not automatically loop through all elements in a
two-dimensional array. Instead, it loops through the rows, which are themselves
one-dimensional arrays. To visit all elements of a two-dimensional array a, nest
two loops, like this:

for (double[] row : a)
for (double value : row)
do something with value

TIP: To print out a quick-and-dirty list of the elements of a two-dimensional
array, call

System.out.printin(Arrays.deepToString(a));
The output is formatted like this:

[[16) 3! 21 13]! [51 10) l]'! 8]! [9) 6! 7! 12]1 [4l 15’ 141 1]]

Listing 3.8 CompoundInterest/CompoundInterest.java

2 * This program shows how to store tabular data in a 2D array.
3 % @version 1.40 2004-02-10

4 * Q@author Cay Horstmann

5 %/

6 public class CompoundInterest

7 {

8 public static void main(String[] args)

L

10 final double STARTRATE = 10;

1 final int NRATES = 6;

3.10 Arrays

final int NYEARS = 10;

// set interest rates to 10 . . . 15%

double[] interestRate = new double[NRATES];

for (int j = 0; j < interestRate.length; j++)
interestRate[j] = (STARTRATE + j) / 100.0;

doubTe[][] balances = new double[NYEARS] [NRATES];

// set initial balances to 10000
for (int j = 0; j < balances[0].length; j++)
balances[0] [j] = 10000;

// compute interest for future years
for (int i = 1; i < balances.length; i++)
{
for (int j = 0; j < balances[i].length; j++)
{
// get last year's balances from previous row
double oldBalance = balances[i - 1][j];

// compute interest
double interest = oldBalance * interestRate[j];

// compute this year's balances
balances[i][j] = oldBalance + interest;
}
}

// print one row of interest rates
for (int j = 0; j < interestRate.length; j++)
System.out.printf("%9.0f%%", 100 * interestRate[j]);

System.out.printin();

// print balance table
for (double[] row : balances)
{
// print table row
for (double b : row)
System.out.printf("%10.2f", b);

System.out.printin();

M.al | itebooks.cogl

http://www.allitebooks.org

Chapter 3 m Fundamental Programming Structures in Java

3.10.7 Ragged Arrays

So far, what you have seen is not too different from other programming languages.
But there is actually something subtle going on behind the scenes that you can
sometimes turn to your advantage: Java has no multidimensional arrays at all,
only one-dimensional arrays. Multidimensional arrays are faked as “arrays of
arrays.”

For example, the balances array in the preceding example is actually an array that
contains ten elements, each of which is an array of six floating-point numbers
(Figure 3.15).

A 4

balances = | } 10000.0
alances[1] = — 10000.0

10000.0
10000.0
10000.0
10000.0

11000.0
11100.0
11200.0
11300.0
11400.0
11500.0

balances[1][2] =

23579.48
25580.37
27730.79
30040.42
32519.49
35178.76

Figure 3.15 A two-dimensional array

3.10 Arrays

The expression balances[i] refers to the ith subarray—that is, the ith row of the
table. It is itself an array, and halances[i][j] refers to the jth element of that array.

Since rows of arrays are individually accessible, you can actually swap them!

double[] temp = balances[il;
balances[i] = balances[i + 1];
balances[i + 1] = temp;

It is also easy to make “ragged” arrays—that is, arrays in which different rows
have different lengths. Here is the standard example. Let us make an array in
which the element at row i and column j equals the number of possible outcomes
of a “choose j numbers from i numbers” lottery.

e e
IS IRV I O TRy SR
o oW

S O &

1
1010 51

15201561
As j can never be larger than i, the matrix is triangular. The ith row has i + 1 el-
ements. (We allow choosing 0 elements; there is one way to make such a choice.)

To build this ragged array, first allocate the array holding the rows.
int[][] odds = new int[NMAX + 1][1;

Next, allocate the rows.

for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way,
provided we do not overstep the bounds.

for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].Tlength; k++)
{
// compute TotteryOdds

t.)dtlisl[n] (k] = Tottery0dds;
}

Listing 3.9 gives the complete program.

m Chapter 3 m Fundamental Programming Structures in Java

C++ NOTE: In C++, the Java declaration
double[][] balances = new double[10][6]; // Java
is not the same as
double balances[10]1[6]; // C++
or even
double (*balances)[6] = new double[10][6]; // C++
Instead, an array of ten pointers is allocated:
double** balances = new double*[10]; // C++
Then, each element in the pointer array is filled with an array of six numbers:

for (i =0; 1 < 10; i+4)
balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10] [6]. When you
want ragged arrays, you allocate the row arrays separately.

Listing 3.9 LotteryArray/LotteryArray.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

* This program demonstrates a triangular array.
¥ @version 1.20 2004-02-10

J

* @author Cay Horstmann

public class LotteryArray

{

public static void main(String[] args)

{

final int NMAX = 10;

// allocate triangular array

int[][] odds = new int[NMAX + 1][];

for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

// fi1l triangular array
for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].Tength; k++)
{
* compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1%2%3*...%K)
*/

3.10 Arrays

int TotteryOdds = 1;
for (inti=1;1<=k; i+4)
TotteryOdds = TotteryOdds * (n -1 + 1) / 1;

odds[n] [k] = TotteryOdds;
}

// print triangular array
for (int[] row : odds)

for (int odd : row)
System.out.printf("%4d", odd);
System.out.printin();

You have now seen the fundamental programming structures of the Java language.

The next chapter covers object-oriented programming in Java.

127

This page intentionally left blank

CHAPTER

Objects and Classes

In this chapter

* 4.1 Introduction to Object-Oriented Programming, page 130
e 4.2 Using Predefined Classes, page 135

* 4.3 Defining Your Own Classes, page 145

* 4.4 Static Fields and Methods, page 158

* 4.5 Method Parameters, page 164

* 4.6 Object Construction, page 171

* 4.7 Packages, page 182

* 4.8 The Class Path, page 190

* 4.9 Documentation Comments, page 194

e 4.10 Class Design Hints, page 200

In this chapter, we

¢ Introduce you to object-oriented programming;

¢ Show you how you can create objects that belong to classes from the standard
Java library; and

* Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want
to read this chapter carefully. Object-oriented programming requires a different

129

Chapter 4 m Objects and Classes

way of thinking than procedural languages. The transition is not always easy,
but you do need some familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter,
presents familiar information; however, there are enough differences between
the two languages that you should read the later sections of this chapter carefully.
You'll find the C++ notes helpful for making the transition.

4.1 Introduction to Object-Oriented Programming

Object-oriented programming, or OOP for short, is the dominant programming
paradigm these days, having replaced the “structured” or procedural program-
ming techniques that were developed in the 1970s. Since Java is object oriented,
you have to be familiar with OOP to become productive with Java.

An object-oriented program is made of objects. Each object has a specific function-
ality, exposed to its users, and a hidden implementation. Many objects in your
programs will be taken “off-the-shelf” from a library; others will be custom de-
signed. Whether you build an object or buy it might depend on your budget or
on time. But, basically, as long as an object satisfies your specifications, you don’t
care how the functionality is implemented.

Traditional structured programming consists of designing a set of procedures (or
algorithms) to solve a problem. Once the procedures are determined, the traditional
next step was to find appropriate ways to store the data. This is why the designer
of the Pascal language, Niklaus Wirth, called his famous book on programming
Algorithms + Data Structures = Programs (Prentice Hall, 1975). Notice that in Wirth’s
title, algorithms come first, and data structures come second. This reflects the
way programmers worked at that time. First, they decided on the procedures for
manipulating the data; then, they decided what structure to impose on the data
to make the manipulations easier. OOP reverses the order: puts the data first,
then looks at the algorithms to operate on the data.

For small problems, the breakdown into procedures works very well. But objects
are more appropriate for larger problems. Consider a simple web browser. It
might require 2,000 procedures for its implementation, all of which manipulate
a set of global data. In the object-oriented style, there might be 100 classes with
an average of 20 methods per class (see Figure 4.1). This structure is much easier
for a programmer to grasp. It is also much easier to find bugs in. Suppose the
data of a particular object is in an incorrect state. It is far easier to search for
the culprit among the 20 methods that had access to that data item than among
2,000 procedures.

4.1 Introduction to Object-Oriented Programming

— J S 0 B
QrocedureI method
method | Object data
QrocedureI
S
method
rocedure —_—P>
PCEEUy! Global data method | Object data
——eeeer
grocedurel
method
procedure method | Object data
N~ N

Figure 4.1 Procedural vs. OO programming

4.1.1 Classes

A class is the template or blueprint from which objects are made. Think about
classes as cookie cutters. Objects are the cookies themselves. When you construct
an object from a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard
Java library supplies several thousand classes for such diverse purposes as user
interface design, dates and calendars, and network programming. Nonetheless,
in Java you still have to create your own classes to describe the objects of your
application’s problem domain.

Encapsulation (sometimes called information hiding) is a key concept in working
with objects. Formally, encapsulation is simply combining data and behavior in
one package and hiding the implementation details from the users of the object.
The bits of data in an object are called its instance fields, and the procedures that
operate on the data are called its methods. A specific object that is an instance of
a class will have specific values of its instance fields. The set of those values is the
current state of the object. Whenever you invoke a method on an object, its state
may change.

The key to making encapsulation work is to have methods never directly access
instance fields in a class other than their own. Programs should interact with object
data only through the object’s methods. Encapsulation is the way to give an

Chapter 4 m Objects and Classes

object its “black box” behavior, which is the key to reuse and reliability. This
means a class may totally change how it stores its data, but as long as it continues
to use the same methods to manipulate the data, no other object will know or care.

When you start writing your own classes in Java, another tenet of OOP will make
this easier: Classes can be built by extending other classes. Java, in fact, comes with
a “cosmic superclass” called Object. All other classes extend this class. You will
learn more about the Object class in the next chapter.

When you extend an existing class, the new class has all the properties and
methods of the class that you extend. You then supply new methods and data
fields that apply to your new class only. The concept of extending a class to obtain
another class is called inheritance. See the next chapter for details on inheritance.

4.1.2 Objects

To work with OOP, you should be able to identify three key characteristics of
objects:

* The object’s behavior—what can you do with this object, or what methods can
you apply to it?
* The object’s state—how does the object react when you invoke those methods?

* The object’s identity—how is the object distinguished from others that may
have the same behavior and state?

All objects that are instances of the same class share a family resemblance by
supporting the same behavior. The behavior of an object is defined by the methods
that you can call.

Next, each object stores information about what it currently looks like. This is the
object’s state. An object’s state may change over time, but not spontaneously. A
change in the state of an object must be a consequence of method calls. (If an ob-
ject’s state changed without a method call on that object, someone broke
encapsulation.)

However, the state of an object does not completely describe it, because each object
has a distinct identity. For example, in an order processing system, two orders are
distinct even if they request identical items. Notice that the individual objects
that are instances of a class always differ in their identity and usually differ in their
state.

These key characteristics can influence each other. For example, the state of an
object can influence its behavior. (If an order is “shipped” or “paid,” it may reject

4.1 Introduction to Object-Oriented Programming

a method call that asks it to add or remove items. Conversely, if an order is
“empty”—that is, no items have yet been ordered—it should not allow itself to
be shipped.)

4.1.3 ldentifying Classes

In a traditional procedural program, you start the process at the top, with the main
function. When designing an object-oriented system, there is no “top,” and new-
comers to OOP often wonder where to begin. The answer is: Identify your classes
and then add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem
analysis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of the nouns are

e Jtem

® Order

* Shipping address
¢ Payment

* Account

These nouns may lead to the classes Item, Order, and so on.

Next, look for verbs. Items are added to orders. Orders are shipped or canceled.
Payments are applied to orders. With each verb, such as “add,” “ship,” “cancel,”
or “apply,” you identify the object that has the major responsibility for carrying
it out. For example, when a new item is added to an order, the order object should
be the one in charge because it knows how it stores and sorts items. That is, add
should be a method of the Order class that takes an Iten object as a parameter.

Of course, the “noun and verb” is but a rule of thumb; only experience can help
you decide which nouns and verbs are the important ones when building your
classes.

4.1.4 Relationships between Classes

The most common relationships between classes are
® Dependence (“uses—a”

e Aggregation (“has-a”)

e [nheritance (“is—a”

Chapter 4 m Objects and Classes

The dependence, or “uses—a” relationship, is the most obvious and also the most
general. For example, the Order class uses the Account class because Order objects need
to access Account objects to check for credit status. But the Iten class does not depend
on the Account class, because Iten objects never need to worry about customer ac-
counts. Thus, a class depends on another class if its methods use or manipulate
objects of that class.

Try to minimize the number of classes that depend on each other. The point is,
if a class A is unaware of the existence of a class 8, it is also unconcerned about
any changes to 8. (And this means that changes to 8 do not introduce bugs into
A.) In software engineering terminology, you want to minimize the coupling
between classes.

The aggregation, or “has—a” relationship, is easy to understand because it is con-
crete; for example, an Order object contains Item objects. Containment means that
objects of class A contain objects of class B.

P NOTE: Some methodologists view the concept of aggregation with disdain and

é prefer to use a more general “association” relationship. From the point of view
of modeling, that is understandable. But for programmers, the “has—a” relationship
makes a lot of sense. We like to use aggregation for another reason as well:
The standard notation for associations is less clear. See Table 4.1.

The inheritance, or “is—a” relationship, expresses a relationship between a more
special and a more general class. For example, a RushOrder class inherits from an
Order class. The specialized RushOrder class has special methods for priority handling
and a different method for computing shipping charges, but its other methods,
such as adding items and billing, are inherited from the Order class. In general, if
class A extends class 8, class A inherits methods from class B but has more capabil-
ities. (We describe inheritance more fully in the next chapter, in which we discuss
this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw
class diagrams that describe the relationships between classes. You can see an ex-
ample of such a diagram in Figure 4.2. You draw classes as rectangles, and rela-
tionships as arrows with various adornments. Table 4.1 shows the most common
UML arrow styles.

4.2 Using Predefined Classes

File Edit View Help
orders wiolet
Ad =R P
The account
RushOrder to which .
the order u u Select
is charged B Class
7 B Interface
[Package
[Mote
00 |inked diagram
Order Account 4 Depends on
% Inherits from
“ implements interface
M Is associated with
W Is an aggregate of
W |s composed of
ltem . Note connectar
[note €3 showyHide side bar
T T

Figure 4.2 A class diagram

Table 4.1 UML notation for class relationships

Relationship UML Connector

Inheritance =
Interface implementation @~ @~ - — — — — — — -
Dependency === 0- = = = — — — =
Aggregation <>

Association

Directed association

4.2 Using Predefined Classes

You can’t do anything in Java without classes, and you have already seen several
classes at work. However, not all of these show off the typical features of object
orientation. Take, for example, the Math class. You have seen that you can use
methods of the Math class, such as Math.randon, without needing to know how they
are implemented—all you need to know is the name and parameters (if any).

Chapter 4 m Objects and Classes

That’s the point of encapsulation, and it will certainly be true of all classes. But the
Math class only encapsulates functionality; it neither needs nor hides data. Since
there is no data, you do not need to worry about making objects and initializing
their instance fields—there aren’t any!

In the next section, we will look at a more typical class, the Date class. You will see
how to construct objects and call methods of this class.

4.2.1 Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then
you apply methods to the objects.

In the Java programming language, you use constructors to construct new instances.
A constructor is a special method whose purpose is to construct and initialize
objects. Let us look at an example. The standard Java library contains a Date class.
Its objects describe points in time, such as “December 31, 1999, 23:59:59 GMT".

p NOTE: You may be wondering: Why use a class to represent dates rather than

(as in some languages) a built-in type? For example, Visual Basic has a built-in
date type, and programmers can specify dates in the format #6/1/1995#. On the
surface, this sounds convenient—programmers can simply use the built-in date
type without worrying about classes. But actually, how suitable is the Visual
Basic design? In some locales, dates are specified as month/day/year, in others
as day/month/year. Are the language designers really equipped to foresee these
kinds of issues? If they do a poor job, the language becomes an unpleasant
muddle, but unhappy programmers are powerless to do anything about it. With
classes, the design task is offloaded to a library designer. If the class is not
perfect, other programmers can easily write their own classes to enhance or
replace the system classes. (To prove the point: The Java date library started
out a bit muddled, and it has been redesigned twice.)

Constructors always have the same name as the class name. Thus, the constructor
for the Date class is called Date. To construct a Date object, combine the constructor
with the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current
date and time.

If you like, you can pass the object to a method:

System.out.printin(new Date());

4.2 Using Predefined Classes

Alternatively, you can apply a method to the object that you just constructed.
One of the methods of the Date class is the toString method. That method yields a
string representation of the date. Here is how you would apply the toString method
to a newly constructed Date object:

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you will
want to hang on to the objects that you construct so that you can keep using them.
Simply store the object in a variable:

Date birthday = new Date();

Figure 4.3 shows the object variable birthday that refers to the newly constructed
object.

birthday = [Date

Figure 4.3 Creating a new object

There is an important difference between objects and object variables. For example,
the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type Date. It is impor-
tant to realize that the variable deadline is not an object and, in fact, does not even
refer to an object yet. You cannot use any Date methods on this variable at this
time. The statement

s = deadline.toString(); // not yet
would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course,
you can initialize the variable with a newly constructed object:

deadline = new Date();

137

m Chapter 4 m Objects and Classes

Or you can set the variable to refer to an existing object:

deadline = birthday;

Now both variables refer to the same object (see Figure 4.4).

birthday = Date

deadline =

Figure 4.4 Object variables that refer to the same object

It is important to realize that an object variable doesn’t actually contain an object. It
only refers to an object.

In Java, the value of any object variable is a reference to an object that is stored
elsewhere. The return value of the new operator is also a reference. A statement
such as

Date deadline = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value
is a reference to that newly created object. That reference is then stored in the
deadline variable.

You can explicitly set an object variable to null to indicate that it currently refers
to no object.

deadline = null;

if (deadline != null)
System.out.printIn(deadline);

If you apply a method to a variable that holds n11, a runtime error occurs.

birthday = null;
String s = birthday.toString(); // runtime error!

Local variables are not automatically initialized to null. You must initialize them,
either by calling new or by setting them to nu11.

4.2 Using Predefined Classes

C++ NOTE: Many people mistakenly believe that Java object variables behave

@ like C++ references. But in C++ there are no null references, and references
cannot be assigned. You should think of Java object variables as analogous to
object pointers in C++. For example,

Date birthday; // Java
is really the same as
Date* birthday; // C++

Once you make this association, everything falls into place. Of course, a Date*
pointer isn't initialized until you initialize it with a call to new. The syntax is almost
the same in C++ and Java.

Date* birthday = new Date(); // C++

If you copy one variable to another, then both variables refer to the same
date—they are pointers to the same object. The equivalent of the Java null
reference is the C++ NULL pointer.

All Java objects live on the heap. When an object contains another object
variable, it contains just a pointer to yet another heap object.

In C++, pointers make you nervous because they are so error-prone. It is easy
to create bad pointers or to mess up memory management. In Java, these
problems simply go away. If you use an uninitialized pointer, the runtime system
will reliably generate a runtime error instead of producing random results. You
don't have to worry about memory management, because the garbage collector
takes care of it.

C++ makes quite an effort, with its support for copy constructors and assignment
operators, to allow the implementation of objects that copy themselves automat-
ically. For example, a copy of a linked list is a new linked list with the same
contents but with an independent set of links. This makes it possible to design
classes with the same copy behavior as the built-in types. In Java, you must use
the clone method to get a complete copy of an object.

4.2.2 The LocalDate Class of the Java Library

In the preceding examples, we used the Date class that is a part of the standard
Java library. An instance of the Date class has a state, namely a particular point
in time.

Although you don’t need to know this when you use the Date class, the time is
represented by the number of milliseconds (positive or negative) from a fixed
point, the so-called epoch, which is 00:00:00 UTC, January 1, 1970. UTC is the

Chapter 4 m Objects and Classes

Coordinated Universal Time, the scientific time standard which is, for practical
purposes, the same as the more familiar GMT, or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating the kind of
calendar information that humans use for dates, such as “December 31, 1999”.
This particular description of a day follows the Gregorian calendar, which is the
calendar used in most countries of the world. The same point in time would be
described quite differently in the Chinese or Hebrew lunar calendars, not to
mention the calendar used by your customers from Mars.

P NOTE: Throughout human history, civilizations grappled with the design of cal-
endars to attach names to dates and bring order to the solar and lunar cycles.
For a fascinating explanation of calendars around the world, from the French
Revolutionary calendar to the Mayan long count, see Calendrical Calculations
by Nachum Dershowitz and Edward M. Reingold (Cambridge University Press,
3rd ed., 2007).

The library designers decided to separate the concerns of keeping time and attach-
ing names to points in time. Therefore, the standard Java library contains two
separate classes: the Date class, which represents a point in time, and the LocalDate
class, which expresses days in the familiar calendar notation. Java SE 8 introduced
quite a few other classes for manipulating various aspects of date and time—see
Chapter 6 of Volume II.

Separating time measurement from calendars is good object-oriented design. In
general, it is a good idea to use separate classes to express different concepts.

You do not use a constructor to construct objects of the LocalDate class. Instead, use
static factory methods that call constructors on your behalf. The expression

LocalDate.now()

constructs a new object that represents the date at which the object was
constructed.

You can construct an object for a specific date by supplying year, month, and day:
LocalDate.of(1999, 12, 31)

Of course, you will usually want to store the constructed object in an object
variable:

LocalDate newYearsEve = LocalDate.of(1999, 12, 31);

Once you have a LocalDate object, you can find out the year, month, and day with
the methods getYear, getMonthValue, and getDayOfMonth:

4.2 Using Predefined Classes

int year = newYearsEve.getYear(); // 1999
int month = newYearsEve.getMonthvalue(); // 12
int day = newYearsEve.getDayOfMonth(); // 31

This may seem pointless because they are the very same values that you just used
to construct the object. But sometimes, you have a date that has been computed,
and then you will want to invoke those methods to find out more about it. For
example, the plusDays method yields a new LocalDate that is a given number of days
away from the object to which you apply it:

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);
year = aThousandDaysLater.getYear(); // 2002

month = aThousandDaysLater.getMonthValue(); // 09

day = aThousandDaysLater.getDayOfMonth(); // 26

The LocalDate class has encapsulated instance fields to maintain the date to which
it is set. Without looking at the source code, it is impossible to know the represen-
tation that the class uses internally. But, of course, the point of encapsulation is
that this doesn’t matter. What matters are the methods that a class exposes.

p NOTE: Actually, the Date class also has methods to get the day, month, and
year, called getDay, getMonth, and getYear, but these methods are deprecated. A
method is deprecated when a library designer realizes that the method should
have never been introduced in the first place.

These methods were a part of the Date class before the library designers realized
that it makes more sense to supply separate classes to deal with calendars.
When an earlier set of calendar classes was introduced in Java 1.1, the Date
methods were tagged as deprecated. You can still use them in your programs,
but you will get unsightly compiler warnings if you do. It is a good idea to stay
away from using deprecated methods because they may be removed in a future
version of the library.

4.2.3 Mutator and Accessor Methods
Have another look at the plusbays method call that you saw in the preceding section:
LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

What happens to newearstve after the call? Has it been changed to be a thousand
days later? As it turns out, it has not. The plushays method yields a new LocalDate
object, which is then assigned to the aThousandDaysLater variable. The original object
remains unchanged. We say that the plusDays method does not mutate the
object on which it is invoked. (This is similar to the toUpperCase method of the String

Chapter 4 m Objects and Classes

class that you saw in Chapter 3. When you call toUpperCase on a string, that string
stays the same, and a new string with uppercase characters is returned.)

An earlier version of the Java library had a different class for dealing with calen-
dars, called GregorianCalendar. Here is how you add a thousand days to a date
represented by that class:

GregorianCalendar someDay = new GregorianCalendar(1999, 11, 31);
// 0dd feature of that class: month numbers go from 0 to 11
someDay. add (Calendar.DAY_OF_MONTH, 1000);

Unlike the LocalDate.plusDays method, the GregorianCalendar.add method is a mutator method.
After invoking it, the state of the someDay object has changed. Here is how you can
find out the new state:

year = someDay.get(Calendar.YEAR); // 2002
month = someDay.get(Calendar.MONTH) + 1; // 09
day = someDay.get(Calendar.DAY_OF MONTH); // 26

That’s why we called the variable someday and not newYearstve—it no longer is new
year’s eve after calling the mutator method.

In contrast, methods that only access objects without modifying them are some-
times called accessor methods. For example, LocalDate.getYear and GregorianCalendar.get
are accessor methods.

C++ NOTE: In C++, the const suffix denotes accessor methods. A method that
is not declared as const is assumed to be a mutator. However, in the Java pro-
gramming language, no special syntax distinguishes accessors from mutators.

We finish this section with a program that puts the LocalDate class to work. The
program displays a calendar for the current month, like this:

Mon Tue Wed Thu Fri Sat Sun

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26% 27 28 29
30

The current day is marked with an asterisk (*). As you can see, the program needs
to know how to compute the length of a month and the weekday of a given day.

4.2 Using Predefined Classes

Let us go through the key steps of the program. First, we construct an object that
is initialized with the current date.

LocalDate date = LocalDate.now();

We capture the current month and day.

int month = date.getMonthValue();
int today = date.getDayOfMonth();

Then we set date to the first of the month and get the weekday of that date.

date = date.minusDays(today - 1); // Set to start of month
DayOflleek weekday = date.getDayOfWeek();
int value = weekday.getValue(); // 1 = Monday, ... 7 = Sunday

The variable weekday is set to an object of type Day0flieek. We call the getValue method
of that object to get a numerical value for the weekday. This yields an integer that
follows the international convention where the weekend comes at the end of the
week, returning 11 for Monday;, 2 for Tuesday, and so on. Sunday has value 7.

Note that the first line of the calendar is indented, so that the first day of the month
falls on the appropriate weekday. Here is the code to print the header and the
indentation for the first line:

System.out.printIn("Mon Tue Wed Thu Fri Sat Sun");
for (int i =1; i < value; i++)
System.out.print(" ");

Now, we are ready to print the body of the calendar. We enter a loop in which
date traverses the days of the month.

In each iteration, we print the date value. If date is today, the date is marked with
an *. Then, we advance date to the next day. If we reach the beginning of each
new week, we print a new line:

while (date.getMonthValue() == month)
{
System.out.printf("%3d", date.getDayOfMonth());
if (date.getDayOfMonth() == today)
System.out.print("*");
else
System.out.print(" ");
date = date.plusDays(1);
if (date.getDayOfWeek().getValue() == 1) System.out.printin();

When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days.
Instead, we keep iterating while date is still in the current month.

Chapter 4 m Objects and Classes

Listing 4.1 shows the complete program.

As you can see, the LocalDate class makes it possible to write a calendar program
that takes care of complexities such as weekdays and the varying month lengths.
You don’t need to know how the LocalDate class computes months and weekdays.
You just use the interface of the class—the methods such as plusDays and getDay0fiieek.

The point of this example program is to show you how you can use the interface
of a class to carry out fairly sophisticated tasks without having to know the
implementation details.

Listing 4.1 CalendarTest/CalendarTest.java

1 import java.time.*;

2

AL

4 * @version 1.5 2015-05-08

5 % @author Cay Horstmann

6 ¥/

7

¢ public class CalendarTest

v {

10 public static void main(String[] args)

11 {

n LocalDate date = LocalDate.now();

13 int month = date.getMonthValue();

1 int today = date.getDayOfMonth();

15

16 date = date.minusDays(today - 1); // Set to start of month
7 DayOfWleek weekday = date.getDayOfWeek();

18 int value = weekday.getValue(); // 1 = Monday, ... 7 = Sunday
19

20 System.out.printIn("Mon Tue Wed Thu Fri Sat Sun");

21 for (int i =1; i < value; i++)

2 System.out.print(" ");

23 while (date.getMonthValue() == month)

1 {

2 System.out.printf("%3d", date.getDayOfMonth());

2 if (date.getDayOfMonth() == today)

7 System.out.print("*");

2 else

29 System.out.print(" ");

30 date = date.plusDays(1);

31 if (date.getDayOfWeek().getValue() == 1) System.out.printin();
2 }

3 if (date.getDayOfWeek().getValue() != 1) System.out.printin();
34 }

4.3 Defining Your Own Classes

java.time.LocalDate

e static LocalTime now()
constructs an object that represents the current date.
e static LocalTime of (int year, int month, int day)
constructs an object that represents the given date.

o int getYear()
e int getMonthValue()
e int getDayOfMonth()

get the year, month, and day of this date.
o DayOfWeek getDayOfWeek
Gets the weekday of this date as an instance of the Day0flleek class. Call getValue to
get a weekday between 1 (Monday) and 7 (Sunday).
e LocalDate plusDays(int n)
e LocalDate minusDays(int n)
Yields the date that is n days after or before this date.

4.3 Defining Your Own Classes

In Chapter 3, you started writing simple classes. However, all those classes had
just a single main method. Now the time has come to show you how to write the
kind of “workhorse classes” that are needed for more sophisticated applications.
These classes typically do not have a main method. Instead, they have their own
instance fields and methods. To build a complete program, you combine several
classes, one of which has a main method.

4.3.1 An Employee Class
The simplest form for a class definition in Java is

class ClassName
{

fieldy

ﬁeldz

constructory
constructor;

m Chapter 4 m Objects and Classes

methody
method,
}

Consider the following, very simplified, version of an Enployee class that might be
used by a business in writing a payroll system.

class Employee

// instance fields
private String name;
private double salary;
private LocalDate hireDay;

// constructor
public Employee(String n, double s, int year, int month, int day)
{
name = n;
salary = s;
hireDay = LocalDate.of(year, month, day);
}

// a method
public String getName()
{

return name;

}

// more methods

}

We break down the implementation of this class, in some detail, in the sections
that follow. First, though, Listing 4.2 is a program that shows the Enployee class in
action.

In the program, we construct an Employee array and fill it with three employee
objects:

Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise each employee’s
salary by 5%:

for (Employee e : staff)
e.raiseSalary(5);

4.3 Defining Your Own Classes

Finally, we print out information about each employee, by calling the getNane,
getSalary, and getHireDay methods:

for (Employee e : staff)
System.out.printIn("name=" + e.getName()
+ ",salary=" + e.getSalary()
+ " hireDay=" + e.getHireDay());

Note that the example program consists of two classes: the Employee class and a class
EmployeeTest with the public access specifier. The main method with the instructions
that we just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java because the name of the file must
match the name of the public class. You can only have one public class in a source
file, but you can have any number of nonpublic classes.

Next, when you compile this source code, the compiler creates two class files in
the directory: EmployeeTest.class and Employee.class.

You then start the program by giving the bytecode interpreter the name of the
class that contains the min method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the EmployeeTest
class. This code in turn constructs three new Enployee objects and shows you their
state.

Listing 4.2 EmployeeTest/EmployeeTest.java

1 import java.time.*;

/¥

* This program tests the Employee class.

2

3

4

s * @version 1.12 2015-05-08

¢ * @author Cay Horstmann

7 ¥/

s public class EmployeeTest

9 {

10 public static void main(String[] args)

11 {

12 // fill the staff array with three Employee objects

13 Employee[] staff = new Employee[3];

14

15 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
16 staff{1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
7 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

(Continues)

147

Chapter 4 m Objects and Classes

Listing 4.2 (Continued)

19 // raise everyone's salary by 5%

2 for (Employee e : staff)

21 e.raiseSalary(5);

22

3 // print out information about all Employee objects

u for (Employee e : staff)

25 System.out.printin("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
2 + e.getHireDay());

27 }

8}

30 class Employee

i {

3 private String name;

3 private double salary;

34 private LocalDate hireDay;

36 public Employee(String n, double s, int year, int month, int day)

37 {

38 name = n;

39 salary = s;

40 hireDay = LocalDate.of (year, month, day);
4 }

2

IE public String getName()
4 {

I return name;

46 }

47

48 public double getSalary()
49 {

50 return salary;

51 }

53 public LocalDate getHireDay()

54 {

55 return hireDay;

56 }

57

58 public void raiseSalary(double byPercent)
59 {

60 double raise = salary * byPercent / 100;
61 salary += raise;

62 }

4.3 Defining Your Own Classes

4.3.2 Use of Multiple Source Files

The program in Listing 4.2 has two classes in a single source file. Many program-
mers prefer to put each class into its own source file. For example, you can place
the Employee class into a file Employee.java and the EmployeeTest class into EmployeeTest.java.

If you like this arrangement, you have two choices for compiling the program.
You can invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files. Or,
you can simply type

javac EmployeeTest.java

You may find it surprising that the second choice works even though the
Employee.java file is never explicitly compiled. However, when the Java compiler
sees the Employee class being used inside EmployeeTest.java, it will look for a file named
Employee.class. If it does not find that file, it automatically searches for Employee.java
and compiles it. Moreover, if the timestamp of the version of Employee.java that it
finds is newer than that of the existing Employee.class file, the Java compiler will
automatically recompile the file.

P NOTE: If you are familiar with the make facility of UNIX (or one of its Windows
é cousins, such as nmake), then you can think of the Java compiler as having the
make functionality already built in.

4.3.3 Dissecting the Employee Class

In the sections that follow, we will dissect the Employee class. Let’s start with the
methods in this class. As you can see by examining the source code, this class has
one constructor and four methods:

public Employee(String n, double s, int year, int month, int day)
public String getName()

pubTic double getSalary()

public LocalDate getHireDay()

public void raiseSalary(double byPercent)

All methods of this class are tagged as public. The keyword public means that any
method in any class can call the method. (The four possible access levels are
covered in this and the next chapter.)

Next, notice the three instance fields that will hold the data manipulated inside
an instance of the Employee class.

Chapter 4 m Objects and Classes

private String name;
private double salary;
private LocalDate hireDay;

The private keyword makes sure that the only methods that can access these instance
fields are the methods of the Employee class itself. No outside method can read or
write to these fields.

< NOTE: You could use the public keyword with your instance fields, but it would
be a very bad idea. Having public data fields would allow any part of the program
to read and modify the instance fields, completely ruining encapsulation. Any
method of any class can modify public fields—and, in our experience, some
code will take advantage of that access privilege when you least expect it. We
strongly recommend to make all your instance fields private.

Finally, notice that two of the instance fields are themselves objects: The name and
hireDay fields are references to String and LocalDate objects. This is quite usual:
Classes will often contain instance fields of class type.

4.3.4 First Steps with Constructors
Let’s look at the constructor listed in our Employee class.

public Employee(String n, double s, int year, int month, int day)

name = n;
salary = s;
LocalDate hireDay = LocalDate.of(year, month, day);
}

As you can see, the name of the constructor is the same as the name of the class.
This constructor runs when you construct objects of the Employee class—giving the
instance fields the initial state you want them to have.

For example, when you create an instance of the Enployee class with code like this:
new Employee("James Bond", 100000, 1950, 1, 1)
you have set the instance fields as follows:

name = "James Bond";
salary = 100000;
hireDay = LocalDate.of(1950, 1, 1); // January 1, 1950

There is an important difference between constructors and other methods. A
constructor can only be called in conjunction with the new operator. You can’t apply
a constructor to an existing object to reset the instance fields. For example,

4.3 Defining Your Own Classes m

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep
the following in mind:

e A constructor has the same name as the class.

e A class can have more than one constructor.

® A constructor can take zero, one, or more parameters.

e A constructor has no return value.

* A constructor is always called with the new operator.

C++ NOTE: Constructors work the same way in Java as they do in C++. Keep

@ in mind, however, that all Java objects are constructed on the heap and that a
constructor must be combined with new. It is a common error of C++ programmers
to forget the new operator:

Employee number007("James Bond", 100000, 1950, 1, 1);
// C++, not Java

That works in C++ but not in Java.

CAUTION: Be careful not to introduce local variables with the same names as
the instance fields. For example, the following constructor will not set the salary:

public Employee(String n, double s, . . .)
{

String name = n; // Error
double salary = s; // Error

}

The constructor declares local variables name and salary. These variables are
only accessible inside the constructor. They shadow the instance fields with the
same name. Some programmers accidentally write this kind of code when they
type faster than they think, because their fingers are used to adding the data
type. This is a nasty error that can be hard to track down. You just have to be
careful in all of your methods to not use variable names that equal the names
of instance fields.

Chapter 4 m Objects and Classes

4.3.5 Implicit and Explicit Parameters

Methods operate on objects and access their instance fields. For example, the
method

public void raiseSalary(double byPercent)

{
double raise = salary * byPercent / 100;
salary += raise;

}

sets a new value for the salary instance field in the object on which this method is
invoked. Consider the call

number007. raiseSalary(5);

The effect is to increase the value of the nunber007.salary field by 5%. More specifically,
the call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the implicit
parameter, is the object of type Employee that appears before the method name. The
second parameter, the number inside the parentheses after the method name, is
an explicit parameter. (Some people call the implicit parameter the target or receiver
of the method call.)

As you can see, the explicit parameters are explicitly listed in the method decla-
ration, for example, double byPercent. The implicit parameter does not appear in the
method declaration.

In every method, the keyword this refers to the implicit parameter. If you like,
you can write the raiseSalary method as follows:

public void raiseSalary(double byPercent)

{
double raise = this.salary * byPercent / 100;
this.salary += raise;

}

Some programmers prefer that style because it clearly distinguishes between
instance fields and local variables.

4.3 Defining Your Own Classes

@ C++ NOTE: In C++, you generally define methods outside the class:

void Employee::raiseSalary(double byPercent) // C++, not Java

{
}

If you define a method inside a class, then it is, automatically, an inline method.

class Employee

{

int getName() { return name; } // inline in C++

In Java, all methods are defined inside the class itself. This does not make them
inline. Finding opportunities for inline replacement is the job of the Java virtual

machine. The just-in-time compiler watches for calls to methods that are short,
commonly called, and not overridden, and optimizes them away.

4.3.6 Benefits of Encapsulation

Finally, let’s look more closely at the rather simple getNane, getSalary, and getHireDay
methods.

public String getName()
{

return name;

}

public double getSalary()
{

return salary;

}

public LocalDate getHireDay()
{

return hireDay;

}

These are obvious examples of accessor methods. As they simply return the values
of instance fields, they are sometimes called field accessors.

Wouldn't it be easier to make the name, salary, and hireDay fields public, instead of
having separate accessor methods?

However, the name field is a read-only field. Once you set it in the constructor,
there is no method to change it. Thus, we have a guarantee that the name field will
never be corrupted.

Chapter 4 m Objects and Classes

The salary field is not read-only, but it can only be changed by the raiseSalary method.
In particular, should the value ever turn out wrong, only that method needs to
be debugged. Had the salary field been public, the culprit for messing up the value
could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance field.
Then you need to supply three items:

* Aprivate data field;
* Apublic field accessor method; and
* A public field mutator method.

This is a lot more tedious than supplying a single public data field, but there are
considerable benefits.

First, you can change the internal implementation without affecting any code
other than the methods of the class. For example, if the storage of the name is
changed to

String firstName;
String TastName;

then the getNane method can be changed to return

firstName + + TastName

This change is completely invisible to the remainder of the program.

Of course, the accessor and mutator methods may need to do a lot of work and
convert between the old and the new data representation. That leads us to our
second benefit: Mutator methods can perform error checking, whereas code that
simply assigns to a field may not go into the trouble. For example, a setSalary
method might check that the salary is never less than 0.

CAUTION: Be careful not to write accessor methods that return references to
mutable objects. In a previous edition of this book, we violated that rule in our
Employee class in which the getHireDay method returned an object of class Date:

class Employee

{

private Date hireDay;

public Date getHireDay()

{
return hireDay; // Bad

}

4.3 Defining Your Own Classes

Unlike the LocalDate class, which has no mutator methods, the Date class has a
mutator method, setTime, where you can set the number of milliseconds.

The fact that Date objects are mutable breaks encapsulation! Consider the
following rogue code:

Employee harry = . . .;

Date d = harry.getHireDay();

double tenYearsInMilliSeconds = 10 * 365.25 * 24 * 60 * 60 * 1000;
d.setTime(d.getTime() - (Tong) tenYearsInMilliSeconds);

// let's give Harry ten years of added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see
Figure 4.5). Applying mutator methods to d automatically changes the private
state of the employee object!

harry = | Employee

Date

Figure 45 Returning a reference to a mutable data field

If you need to return a reference to a mutable object, you should clone it first.
A clone is an exact copy of an object stored in a new location. We discuss cloning
in detail in Chapter 6. Here is the corrected code:

class Employee

{
public Date getHireDay()

{
return (Date) hireDay.clone(); // Ok
}

Chapter 4 m Objects and Classes

As a rule of thumb, always use clone whenever you need to return a copy of a
mutable field.

4.3.7 Class-Based Access Privileges

You know that a method can access the private data of the object on which it is
invoked. What many people find surprising is that a method can access the private
data of all objects of its class. For example, consider a method equals that compares
two employees.

class Employee

{

public boolean equals(Employee other)

{

}
}

A typical call is

return name.equals(other.name);

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also
accesses the private fields of boss. This is legal because hoss is an object of type
Employee, and a method of the Employee class is permitted to access the private fields
of any object of type Employee.

C++ NOTE: C++ has the same rule. A method can access the private features
of any object of its class, not just of the implicit parameter.

4.3.8 Private Methods

When implementing a class, we make all data fields private because public data
are dangerous. But what about the methods? While most methods are public,
private methods are useful in certain circumstances. Sometimes, you may wish
to break up the code for a computation into separate helper methods. Typically,
these helper methods should not be part of the public interface—they may be too
close to the current implementation or require a special protocol or calling order.
Such methods are best implemented as private.

4.3 Defining Your Own Classes

To implement a private method in Java, simply change the public keyword to
private.

By making a method private, you are under no obligation to keep it available if
you change your implementation. The method may well be harder to implement
or unnecessary if the data representation changes; this is irrelevant. The point is
that as long as the method is private, the designers of the class can be assured
that it is never used outside the other class, so they can simply drop it. If a method
is public, you cannot simply drop it because other code might rely on it.

4.39 Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the
object is constructed. That is, you must guarantee that the field value has been
set after the end of every constructor. Afterwards, the field may not be modified
again. For example, the nane field of the Employee class may be declared as final be-
cause it never changes after the object is constructed—there is no setNane method.

class Employee

private final String name;

}

The final modifier is particularly useful for fields whose type is primitive or an
immutable class. (A class is immutable if none of its methods ever mutate its objects.
For example, the String class is immutable.)

For mutable classes, the final modifier can be confusing. For example, consider a
field

private final StringBuilder evaluations;

that is initialized in the Employee constructor as

evaluations = new StringBuilder();

The final keyword merely means that the object reference stored in the evaluations
variable will never again refer to a different StringBuilder object. But the object can
be mutated:

pubTic void giveGoldStar()
{

evaluations.append(LocalDate.now() + ": Gold star!\n");

}

157

Chapter 4 m Objects and Classes

b4 Static Fields and Methods

In all sample programs that you have seen, the main method is tagged with the
static modifier. We are now ready to discuss the meaning of this modifier.

4.4.1 Static Fields

If you define a field as static, then there is only one such field per class. In contrast,
each object has its own copy of all instance fields. For example, let’s suppose we
want to assign a unique identification number to each employee. We add an
instance field id and a static field nextId to the Employee class:

class Employee

{

private static int nextId = 1;
private int id;

}

Every employee object now has its own id field, but there is only one nextld field
that is shared among all instances of the class. Let’s put it another way. If there
are 1,000 objects of the Employee class, then there are 1,000 instance fields id, one for
each object. But there is a single static field nextId. Even if there are no employee
objects, the static field nextId is present. It belongs to the class, not to any individual
object.

< NOTE: In some object-oriented programming languages, static fields are called
é class fields. The term “static” is a meaningless holdover from C++.

Let’s implement a simple method:

public void setld()
{

id = nextId;
nextId++;

}
Suppose you set the employee identification number for harry:
harry.setId();

Then, the id field of harry is set to the current value of the static field nextId, and
the value of the static field is incremented:

4.4 Static Fields and Methods

harry.id = Employee.nextld;
Employee.nextId++;

4.4.2 Static Constants

Static variables are quite rare. However, static constants are more common. For
example, the Math class defines a static constant:

public class Math
{

public static final double PT = 3.14150265358979323846;

}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field
of the Math class. That is, you would need an object of this class to access PI,
and every Math object would have its own copy of PI.

Another static constant that you have used many times is System.out. It is declared
in the Systen class as follows:

public class System

{

public static final PrintStream out = . . .;

}

As we mentioned several times, it is never a good idea to have public fields, be-
cause everyone can modify them. However, public constants (that is, final fields)
are fine. Since out has been declared as final, you cannot reassign another print
stream to it:

System.out = new PrintStrean(. . .); // Error--out is final

p NOTE: If you look at the System class, you will notice a method setQut that sets
System.out to a different stream. You may wonder how that method can change
the value of a final variable. However, the setQut method is a native method, not
implemented in the Java programming language. Native methods can bypass
the access control mechanisms of the Java language. This is a very unusual
workaround that you should not emulate in your programs.

Chapter 4 m Objects and Classes

443 Static Methods

Static methods are methods that do not operate on objects. For example, the pow
method of the Math class is a static method. The expression

Math.pow(x, a)

computes the power x®. It does not use any Math object to carry out its task. In
other words, it has no implicit parameter.

You can think of static methods as methods that don’t have a this parameter.
(In a nonstatic method, the this parameter refers to the implicit parameter of the
method—see Section 4.3.5, “Implicit and Explicit Parameters,” on p. 152.)

A static method of the Employee class cannot access the id instance field because it
does not operate on an object. However, a static method can access a static field.
Here is an example of such a static method:

public static int getNextId()
{

}
To call this method, you supply the name of the class:

return nextId; // returns static field

int n = Employee.getNextId();

Could you have omitted the keyword static for this method? Yes, but then you
would need to have an object reference of type Employee to invoke the method.

P NOTE: It is legal to use an object to call a static method. For example, if harry

is an Employee object, then you can call harry.getNextId() instead of
Employee.getNextId() . However, we find that notation confusing. The getNextId method
doesn’t look at harry at all to compute the result. We recommend that you use
class names, not objects, to invoke static methods.

Use static methods in two situations:

¢ When a method doesn’t need to access the object state because all needed
parameters are supplied as explicit parameters (example: Math.pow).

¢ When a method only needs to access static fields of the class (example:
Employee.getNextId).

4.4 Static Fields and Methods

@ C++ NOTE: Static fields and methods have the same functionality in Java and

C++. However, the syntax is slightly different. In C++, you use the :: operator
to access a static field or method outside its scope, such as Math::PI.

The term “static” has a curious history. At first, the keyword static was introduced
in C to denote local variables that don't go away when a block is exited. In that
context, the term “static” makes sense: The variable stays around and is still
there when the block is entered again. Then static got a second meaning in C,
to denote global variables and functions that cannot be accessed from other
files. The keyword static was simply reused, to avoid introducing a new keyword.
Finally, C++ reused the keyword for a third, unrelated, interpretation—to denote
variables and functions that belong to a class but not to any particular object of
the class. That is the same meaning the keyword has in Java.

444 Factory Methods

Here is another common use for static methods. Classes such as LocalDate and
NumberFormat use static factory methods that construct objects. You have already seen
the factory methods LocalDate.now and LocalDate.of. Here is how the Numberformat class
yields formatter objects for various styles:

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x = 0.1;

System.out.printIn(currencyFormatter.format(x)); // prints $0.10
System.out.printIn(percentFormatter.format(x)); // prints 10%

Why doesn’t the Nunberformat class use a constructor instead? There are two reasons:

You can’t give names to constructors. The constructor name is always the
same as the class name. But we want two different names to get the currency
instance and the percent instance.

When you use a constructor, you can’t vary the type of the constructed object.

But the factory methods actually return objects of the class DecimalFormat, a sub-
class that inherits from Nunberformat. (See Chapter 5 for more on inheritance.)

445 The main Method

Note that you can call static methods without having any objects. For example,
you never construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.

Chapter 4 m Objects and Classes

pubTic class Application

{

public static void main(String[] args)

{

// construct objects here

}
}

The main method does not operate on any objects. In fact, when a program starts,
there aren’t any objects yet. The static main method executes, and constructs the
objects that the program needs.

TIP: Every class can have a main method. That is a handy trick for unit testing
of classes. For example, you can add a main method to the Employee class:

class Employee

public Employee(String n, double s, int year, int month, int day)

{
name = n;
salary = s;
LocalDate hireDay = LocalDate.now(year, month, day);
}
public static void main(String[] args) // unit test
{
Employee e = new Employee("Romeo”, 50000, 2003, 3, 31);
e.raiseSalary(10);
System.out.printIn(e.getName() + " " + e.getSalary());

}
_

If you want to test the Employee class in isolation, simply execute
java Employee

If the Employee class is a part of a larger application, you start the application with
java Application

and the main method of the Employee class is never executed.

The program in Listing 4.3 contains a simple version of the Employee class with a
static field nextld and a static method getNextId. We fill an array with three Enployee
objects and then print the employee information. Finally, we print the next
available identification number, to demonstrate the static method.

4.4 Static Fields and Methods

Note that the Employee class also has a static main method for unit testing. Try

running both
java Employee

and

java StaticTest

to execute both main methods.

Listing 4.3 StaticTest/StaticTest.java

o

* This program demonstrates static methods.
* @version 1.01 2004-02-19
@author Cay Horstmann

1

2

3

4 *
s %/
6 public class StaticTest
7
8
9

{

public static void main(String[] args)

{
10 // fill the staff array with three Employee objects
11 Employee[] staff = new Employee[3];
12
13 staff[0] = new Employee("Tom", 40000);
14 staff[1] = new Employee("Dick", 60000);
15 staff{2] = new Employee("Harry", 65000);
16
7 // print out information about all Employee objects
18 for (Employee e : staff)
19
20 e.setld(;
21 System.out.printin("name=" + e.getName() + ",id=" + e.getId() + ",salary="
2 + e.getSalary());
23 }
24
25 int n = Employee.getNextId(); // calls static method
2 System.out.printIn("Next available id=" + n);
27 }
2%}

30 class Employee

i {

Er) private static int nextId = 1;
33

34 private String name;

35 private double salary;

(Continues)

Chapter 4 m Objects and Classes

Listing 4.3 (Continued)

36 private int id;

38 public Employee(String n, double s)
{

40 name = n;
4 salary = s;

) id = 0;

It} }

44

45 public String getName()
46 {

47 return name,

48 }

49

50 public double getSalary()
51 {

52 return salary;

53 }

55 public int getId()
{

57 return id;

58 }

) public void setId()

62 id = nextId; // set id to next available id

63 nextld++;

64 }

65

66 public static int getNextId()

67 {

68 return nextId; // returns static field

69 }

70

71 public static void main(String[] args) // unit test
n {

IE! Employee e = new Employee("Harry", 50000);

7 System.out.printin(e.getName() + " " + e.getSalary());
75

76 }

4.5 Method Parameters

Let us review the computer science terms that describe how parameters can be
passed to a method (or a function) in a programming language. The term call by

4.5 Method Parameters

value means that the method gets just the value that the caller provides. In contrast,
call by reference means that the method gets the location of the variable that the
caller provides. Thus, a method can modify the value stored in a variable passed
by reference but not in one passed by value. These “call by .. .” terms are standard
computer science terminology describing the behavior of method parameters in
various programming languages, not just Java. (There is also a call by name that
is mainly of historical interest, being employed in the Algol programming
language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means that the
method gets a copy of all parameter values. In particular, the method cannot
modify the contents of any parameter variables passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call,
the value of percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple
the value of a method parameter:

public static void tripleValue(double x) // doesn't work
{
X =3%x;

}
Let’s call this method:

double percent = 10;
triplevalue(percent);

However, this does not work. After the method call, the value of percent is still 10.
Here is what happens:

1. xisinitialized with a copy of the value of percent (that is, 10).
2. xis tripled—it is now 30. But percent is still 10 (see Figure 4.6).

3. The method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

* Primitive types (numbers, boolean values)

® Object references

Chapter 4 m Objects and Classes

) value copied

value tripled

Figure 4.6 Modifying a numeric parameter has no lasting effect.

You have seen that it is impossible for a method to change a primitive type pa-
rameter. The situation is different for object parameters. You can easily implement
a method that triples the salary of an employee:

public static void tripleSalary(Employee x) // works

{
x.raiseSalary(200);

}
When you call

harry = new Employee(. . .);
tripleSalary(harry);

then the following happens:

1. xisinitialized with a copy of the value of harry, that is, an object reference.

2. The raiseSalary method is applied to that object reference. The Enployee object
to which both x and harry refer gets its salary raised by 200 percent.

4.5 Method Parameters

3. The method ends, and the parameter variable x is no longer in use. Of course,
the object variable harry continues to refer to the object whose salary was
tripled (see Figure 4.7).

reference
/| copied /] salary tripled

Employee

Figure 4.7 Modifying an object parameter has a lasting effect.

As you have seen, it is easily possible—and in fact very common—to implement
methods that change the state of an object parameter. The reason is simple.
The method gets a copy of the object reference, and both the original and the copy
refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two mecha-
nisms for parameter passing: call by value and call by reference. Some program-
mers (and unfortunately even some book authors) claim that Java uses call by
reference for objects. That is false. As this is such a common misunderstanding,
it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two employee objects:

public static void swap(Employee x, Employee y) // doesn't work

{
Employee temp = x;
X =Y,
y = temp;

If Java used call by reference for objects, this method would work:

167

Chapter 4 m Objects and Classes

Employee a = new Employee("Alice", . . .);
Employee b = new Employee("Bob", . . .);
swap(a, b);

// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are
stored in the variables a and b. The x and y parameters of the swap method
are initialized with copies of these references. The method then proceeds to swap
these copies.

// x refers to Alice, y to Bob
Employee temp = x;

X =Y,

y = temp;

// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter
variables x and y are abandoned. The original variables a and b still refer to the
same objects as they did before the method call (see Figure 4.8).

references Employee
copied .
s So
N
‘x ‘s
N
Employee

references
swapped

Figure 4.8 Swapping object parameters has no lasting effect.

This demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

4.5 Method Parameters

Here is a summary of what you can and cannot do with method parameters
in Java:

* A method cannot modify a parameter of a primitive type (that is, numbers or
boolean values).

¢ A method can change the state of an object parameter.

* A method cannot make an object parameter refer to a new object.

The program in Listing 4.4 demonstrates these facts. The program first tries to
triple the value of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0
End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:
Before: salary=50000.0
End of method: salary=150000.0
After: salary=150000.0

After the method, the state of the object to which harry refers has changed. This is
possible because the method modified the state through a copy of the object
reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:

Before: a=Alice
Before: b=Bob

End of method: x=Bob
End of method: y=Alice
After: a=Alice

After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a
and b are not affected.

C++ NOTE: C++ has both call by value and call by reference. You tag reference

@ parameters with &. For example, you can easily implement methods void
tripleValue(doubled x) or void swap(Employeed x, Employeed y) that modify their reference
parameters.

170 Chapter 4 m Objects and Classes

Listing 4.4 ParanTest/ParanTest.java

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18

* This program demonstrates parameter passing in Java.
* @version 1.00 2000-01-27

J

* @author Cay Horstmann

public class ParamTest

{

public static void main(String[] args)

{

}

/-A-

* Test 1: Methods can't modify numeric parameters
¥/

System.out.printIn("Testing tripleValue:");

double percent = 10;

System.out.printin("Before: percent=" + percent);
triplevalue(percent);

System.out.printin("After: percent=" + percent);

/

Test 2: Methods can change the state of object parameters

EE

System.out.printIn("\nTesting tripleSalary:");

Employee harry = new Employee("Harry", 50000);
System.out.printIn("Before: salary=" + harry.getSalary());
tripleSalary(harry);
System.out.printn("After: salary='

/

+ harry.getSalary());

* Test 3: Methods can't attach new objects to object parameters

System.out.printIn("\nTesting swap:");

Employee a = new Employee("Alice", 70000);
Employee b = new Employee("Bob", 60000);
System.out.printIn("Before: a=" + a.getName());
System.out.printIn("Before: b=" + b.getName());
swap(a, b);

System.out.printIn("After: a=" + a.getName());
System.out.printIn("After: b=" + b.getName());

public static void tripleValue(double x) // doesn't work

{

}

X=13%x;
System.out.printIn("End of method: x=" + Xx);

4.6 Object Construction

47 public static void tripleSalary(Employee x) // works

48 {

49 x.raiseSalary(200);

50 System.out.printIn("End of method: salary=" + x.getSalary());
51 }

52

53 public static void swap(Employee x, Employee y)

54 {

55 Employee temp = x;

56 X=Y;

57 y = temp;

58 System.out.printIn("End of method: x=" + x.getName());
59 System.out.printIn("End of method: y=" + y.getName());
60 }

61}

63 class Employee // simplified Employee class

65 private String name;
66 private double salary;

68 public Employee(String n, double s)

69 {

70 name = n;

n salary = s;

n }

73

74 public String getName()
75 {

76 return name;

7 }

78

79 public double getSalary()
80 {

81 return salary;

82 }

8

84 public void raiseSalary(double byPercent)
85 {

86 double raise = salary * byPercent / 100;
87 salary += raise;

88 }

89}

4.6 Object Construction

You have seen how to write simple constructors that define the initial state of
your objects. However, since object construction is so important, Java offers quite

171

172

Chapter 4 m Objects and Classes

a variety of mechanisms for writing constructors. We go over these mechanisms
in the sections that follow.

4.6.1 Overloading

Some classes have more than one constructor. For example, you can construct an
empty StringBuilder object as

StringBuilder messages = new StringBuilder();

Alternatively, you can specify an initial string:

StringBuilder todoList = new StringBuilder("To do:\n");

This capability is called overloading. Overloading occurs if several methods have
the same name (in this case, the StringBuilder constructor method) but different
parameters. The compiler must sort out which method to call. It picks the correct
method by matching the parameter types in the headers of the various methods
with the types of the values used in the specific method call. A compile-time error
occurs if the compiler cannot match the parameters, either because there is no
match at all or because there there is not one that is better than all others. (The
process of finding a match is called overloading resolution.)

NOTE: Java allows you to overload any method—not just constructor methods.
Thus, to completely describe a method, you need to specify its name together
with its parameter types. This is called the signature of the method. For example,
the String class has four public methods called index0f. They have signatures

index0f(int)
index0f (int, int)
index0f (String)
index0f (String, int)

The return type is not part of the method signature. That is, you cannot have
two methods with the same names and parameter types but different return

types.

4.6.2 Default Field Initialization

If you don't set a field explicitly in a constructor, it is automatically set to a default
value: numbers to 0, boolean values to false, and object references to null. Some
people consider it poor programming practice to rely on the defaults. Certainly,

4.6 Object Construction

it makes it harder for someone to understand your code if fields are being
initialized invisibly.

p NOTE: This is an important difference between fields and local variables. You
é must always explicitly initialize local variables in a method. But in a class, if you
don't initialize a field, it is automatically initialized to a default (0, false, or null).

For example, consider the Enployee class. Suppose you don’t specify how to initialize
some of the fields in a constructor. By default, the salary field would be initialized
with 0 and the name and hireday fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, they would get a nul1 reference that they probably don’t expect:

LocalDate h = harry.getHireDay();
int year = h.getYear(); // throws exception if h is null

4.6.3 The Constructor with No Arguments

Many classes contain a constructor with no arguments that creates an object whose
state is set to an appropriate default. For example, here is a constructor with no
arguments for the Employee class:

public Employee()
{
name = "";
salary = 0;
hireDay = LocalDate.now();

}

If you write a class with no constructors whatsoever, then a no-argument con-
structor is provided for you. This constructor sets all the instance fields to their
default values. So, all numeric data contained in the instance fields would be 0,
all boolean values would be false, and all object variables would be set to null.

If a class supplies at least one constructor but does not supply a no-argument
constructor, it is illegal to construct objects without supplying arguments. For
example, our original Employee class in Listing 4.2 provided a single constructor:

Employee(String name, double salary, int y, int m, int d)
With that class, it was not legal to construct default employees. That is, the call
e = new Employee();

would have been an error.

173

174

Chapter 4 m Objects and Classes

CAUTION: Please keep in mind that you get a free no-argument constructor

0 only when your class has no other constructors. If you write your class with even
a single constructor of your own and you want the users of your class to have
the ability to create an instance by a call to

new ClassName()

then you must provide a no-argument constructor. Of course, if you are happy
with the default values for all fields, you can simply supply

public ClassName()
{
}

4.6.4 Explicit Field Initialization

By overloading the constructor methods in a class, you can build many ways to
set the initial state of the instance fields of your classes. It is always a good idea
to make sure that, regardless of the constructor call, every instance field is set to
something meaningful.

You can simply assign a value to any field in the class definition. For example:

class Employee

private String name = "";

}

This assignment is carried out before the constructor executes. This syntax is
particularly useful if all constructors of a class need to set a particular instance
field to the same value.

The initialization value doesn’t have to be a constant value. Here is an example
in which a field is initialized with a method call. Consider an Enployee class where
each employee has an id field. You can initialize it as follows:

class Employee

{
private static int nextId;
private int id = assignId();

private static int assignId()

{
int r = nextld;
nextId++;

4.6 Object Construction

return r;

}

fields must be set in a constructor. However, C++ has a special initializer list
syntax, such as

@ C++ NOTE: In C++, you cannot directly initialize instance fields of a class. All

Employee: :Employee(String n, double s, inty, int m, int d) // G4+
name(n),
salary(s),
hireDay(y, m, d)

{

}

C++ uses this special syntax to call field constructors. In Java, there is no need
for that because objects have no subobjects, only pointers to other objects.

4.65 Parameter Names

When you write very trivial constructors (and you’ll write a lot of them), it can
be somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee(String n, double s)
{

name = n;

salary = s;

}
However, the drawback is that you need to read the code to tell what the n and
s parameters mean.

Some programmers prefix each parameter with an “a”:

public Employee(String aName, double aSalary)
{

name = aName;
salary = aSalary;

}

That is quite neat. Any reader can immediately figure out the meaning of the
parameters.

Another commonly used trick relies on the fact that parameter variables shadow
instance fields with the same name. For example, if you call a parameter salary,

175

176

Chapter 4 m Objects and Classes

then salary refers to the parameter, not the instance field. But you can still access
the instance field as this.salary. Recall that this denotes the implicit parameter, that
is, the object being constructed. Here is an example:

public Employee(String name, double salary)

this.name = name;
this.salary = salary;

}

C++ NOTE: In C++, it is common to prefix instance fields with an underscore or
a fixed letter. (The letters m and x are common choices.) For example, the salary
field might be called _salary, mSalary, or xSalary. Java programmers don’t usually
do that.

4.6.6 Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However, this
keyword has a second meaning.

If the first statement of a constructor has the form this(. . .), then the constructor
calls another constructor of the same class. Here is a typical example:

public Employee(double s)

// calls Employee(String, double)
this("Employee #" + nextId, s);
nextId++;

}

When you call new Enployee(60000), the Employee(double) constructor calls the Employee(String,
double) constructor.

Using the this keyword in this manner is useful—you only need to write common
construction code once.

C++ NOTE: The this reference in Java is identical to the this pointer in C++.
However, in C++ it is not possible for one constructor to call another. If you want
to factor out common initialization code in C++, you must write a separate
method.

4.6 Object Construction 177

4.6.7 Initialization Blocks

You have already seen two ways to initialize a data field:

* By setting a value in a constructor

* By assigning a value in the declaration

There is a third mechanism in Java, called an initialization block. Class declarations
can contain arbitrary blocks of code. These blocks are executed whenever an object
of that class is constructed. For example:

class Employee

{

private static int nextId;

private int id;
private String name;
private double salary;

// object initialization block
{

id = nextId;

nextId++;

}

pubTic Employee(String n, double s)
{

name = n;

salary = s;

}

pubTic Employee()
{

name = "";
salary = 0;

}

}

In this example, the id field is initialized in the object initialization block, no
matter which constructor is used to construct an object. The initialization block
runs first, and then the body of the constructor is executed.

This mechanism is never necessary and is not common. It is usually more
straightforward to place the initialization code inside a constructor.

178

Chapter 4 m Objects and Classes

4 NOTE: It is legal to set fields in initialization blocks even if they are only defined
later in the class. However, to avoid circular definitions, it is not legal to read
from fields that are only initialized later. The exact rules are spelled out in section
8.3.2.3 of the Java Language Specification (http://docs.oracle.com/javase/specs).
The rules are complex enough to baffle the compiler implementors—early ver-
sions of Java implemented them with subtle errors. Therefore, we suggest that
you always place initialization blocks after the field definitions.

With so many ways of initializing data fields, it can be quite confusing to give all
possible pathways for the construction process. Here is what happens in detail
when a constructor is called:

1. All data fields are initialized to their default values (0, false, or null).

2. All field initializers and initialization blocks are executed, in the order in
which they occur in the class declaration.

3. If the first line of the constructor calls a second constructor, then the body of
the second constructor is executed.

4. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that
another programmer could easily understand it without having to be a language
lawyer. For example, it would be quite strange and somewhat error-prone to
have a class whose constructors depend on the order in which the data fields are
declared.

To initialize a static field, either supply an initial value or use a static initialization
block. You have already seen the first mechanism:

private static int nextId = I;

If the static fields of your class require complex initialization code, use a static
initialization block.

Place the code inside a block and tag it with the keyword static. Here is an example.
We want the employee ID numbers to start at a random integer less than 10,000.

// static initialization block
static

{
Random generator = new Random();
nextId = generator.nextInt(10000);
}

Static initialization occurs when the class is first loaded. Like instance fields,
static fields are 0, false, or null unless you explicitly set them to another value.

http://docs.oracle.com/javase/specs

4.6 Object Construction

All static field initializers and static initialization blocks are executed in the order
in which they occur in the class declaration.

p NOTE: Amazingly enough, up to JDK 6, it was possible to write a “Hello, World”
é program in Java without ever writing a main method.

public class Hello

{

static

{

}
}

When you invoked the class with java Hello, the class was loaded, the static ini-
tialization block printed “Hello, World’ and only then was a message displayed
that main is not defined. Since Java SE 7, the java program first checks that there
is a main method.

System.out.printIn("Hello, World");

The program in Listing 4.5 shows many of the features that we discussed in this
section:

¢ Opverloaded constructors

e A call to another constructor with this(...)

* Ano-argument constructor

* An object initialization block

® A static initialization block

e An instance field initialization

Listing 4.5 ConstructorTest/ConstructorTest.java

import java.util.*;

* This program demonstrates object construction.
* @version 1.01 2004-02-19

* @author Cay Horstmann
*/
public class ConstructorTest
{

10 public static void main(String[] args)

11 {

(Continues)

179

Chapter 4 m Objects and Classes

Listing 4.5 (Continued)

12 // fi1l the staff array with three Employee objects
13 Employee[] staff = new Employee[3];

14

15 staff[0] = new Employee("Harry", 40000);

16 staff[1] = new Employee(60000);

7 staff[2] = new Employee();

18

19 // print out information about all Employee objects
20 for (Employee e : staff)

2 System.out.printIn("name=" + e.getName() + ",id=" + e.getId() + ",salary="
2 + e.getSalary());

3 }

u }

26 class Employee

28 private static int nextId;

30 private int id;

3 private String name = ""; // instance field initialization

32 private double salary;

34 // static initialization block

35 static

36 {

37 Random generator = new Random();
38 // set nextId to a random number between 0 and 9999
39 nextId = generator.nextInt(10000);
40 }

41

) // object initialization block

It} {

4 id = nextId;

45 nextId++;

46 }

48 // three overloaded constructors
49 public Employee(String n, double s)

50 {

51 name = n;
52 salary = s;
53 }

55 public Employee(double s)

57 // calls the Employee(String, double) constructor
58 this("Employee #" + nextId, s);
59 }

4.6 Object Construction

// the default constructor
public Employee()
{

// name initialized to ""--see above
// salary not explicitly set--initialized to 0
// id initialized in initialization block

}

public String getName()
{

}

return name;

public double getSalary()
{

}

return salary;

public int getld()
{

}

return id;

java.util.Random

Random ()
constructs a new random number generator.
int nextInt(int n)

returns a random number between 0 and n — 1.

4.6.8 Object Destruction and the finalize Method

Some object-oriented programming languages, notably C++, have explicit destruc-
tor methods for any cleanup code that may be needed when an object is no longer
used. The most common activity in a destructor is reclaiming the memory set
aside for objects. Since Java does automatic garbage collection, manual memory
reclamation is not needed, so Java does not support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a
handle to another object that uses system resources. In this case, it is important
that the resource be reclaimed and recycled when it is no longer needed.

Chapter 4 m Objects and Classes

You can add a finalize method to any class. The finalize method will be called before
the garbage collector sweeps away the object. In practice, do not rely on the finalize
method for recycling any resources that are in short supply—you simply cannot
know when this method will be called.

NOTE: The method call Systen.runFinalizersOnExit(true) guarantees that finalizer
methods are called before Java shuts down. However, this method is inherently
unsafe and has been deprecated. An alternative is to add “shutdown hooks”
with the method Runtime.addShutdownHook—see the APl documentation for details.

If a resource needs to be closed as soon as you have finished using it, you need
to manage it manually. Supply a close method that does the necessary cleanup,
and call it when you are done with the object. In Section 7.2.5, “The Try-with-
Resources Statement,” on p. 376, you will see how you can ensure that this method
is called automatically.

4.7 Packages

Java allows you to group classes in a collection called a package. Packages are
convenient for organizing your work and for separating your work from code
libraries provided by others.

The standard Java library is distributed over a number of packages, including
java.lang, java.util, java.net, and so on. The standard Java packages are examples of
hierarchical packages. Just as you have nested subdirectories on your hard disk,
you can organize packages by using levels of nesting. All standard Java packages
are inside the java and javax package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names.
Suppose two programmers come up with the bright idea of supplying an Enployee
class. As long as both of them place their class into different packages, there is
no conflict. In fact, to absolutely guarantee a unique package name, use an Internet
domain name (which is known to be unique) written in reverse. You then use
subpackages for different projects. For example, consider the domain horstmann. con.
When written in reverse order, it turns into the package con.horstmann. That package
can then be further subdivided into subpackages such as com.horstmann. corejava.

From the point of view of the compiler, there is absolutely no relationship between
nested packages. For example, the packages java.util and java.util.jar have nothing
to do with each other. Each is its own independent collection of classes.

4] Packages

4.7.1 Class Importation

A class can use all classes from its own package and all public classes from other
packages.

You can access the public classes in another package in two ways. The first is
simply to add the full package name in front of every class name. For example:

java.time.LocalDate today = java.time.LocalDate.now();

That is obviously tedious. A simpler, and more common, approach is to use the
import statement. The point of the import statement is to give you a shorthand to
refer to the classes in the package. Once you use import, you no longer have to give
the classes their full names.

You can import a specific class or the whole package. You place inport statements
at the top of your source files (but below any package statements). For example,
you can import all classes in the java.util package with the statement

import java.util.*;

Then you can use
LocalDate today = LocalDate.now();

without a package prefix. You can also import a specific class inside a package:
import java.time.LocalDate;

The java.tine.* syntax is less tedious. It has no negative effect on code size. How-
ever, if you import classes explicitly, the reader of your code knows exactly which
classes you use.

TIP: In Eclipse, you can select the menu option Source — Organize Imports.
Package statements such as import java.util.*; are automatically expanded into
a list of specific imports such as

import java.util.Arraylist;
import java.util.Date;

This is an extremely convenient feature.

However, note that you can only use the * notation to import a single package.
You cannot use import java.* or import java.*.* to import all packages with the java
prefix.

Most of the time, you just import the packages that you need, without worrying
too much about them. The only time that you need to pay attention to packages

Chapter 4 m Objects and Classes

is when you have a name conflict. For example, both the java.util and java.sql
packages have a Date class. Suppose you write a program that imports
both packages.

import java.util.*;
import java.sql.*;

If you now use the Date class, you get a compile-time error:
Date today; // Error--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this
problem by adding a specific import statement:

import java.util.*;

import java.sql.*;

import java.util.Date;
What if you really need both Date classes? Then you need to use the full package
name with every class name.

java.util.Date deadline = new java.util.Date();
java.sql.Date today = new java.sql.Date(...);

Locating classes in packages is an activity of the compiler. The bytecodes in class
files always use full package names to refer to other classes.

C++ NOTE: C++ programmers sometimes confuse import with #include. The two
@ have nothing in common. In C++, you must use #include to include the declarations
of external features because the C++ compiler does not look inside any files
except the one that it is compiling and its explicitly included header files. The
Java compiler will happily look inside other files provided you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly naming all
classes, such as java.util.Date. In C++, you cannot avoid the #include directives.

The only benefit of the import statement is convenience. You can refer to a class
by a name shorter than the full package name. For example, after an import
java.util.* (or import java.util.Date) statement, you can refer to the java.util.Date
class simply as Date.

In C++, the construction analogous to the package mechanism is the namespace
feature. Think of the package and import statements in Java as the analogs of the
namespace and using directives in C++.

4] Packages

4.7.2 Static Imports

A form of the import statement permits the importing of static methods and fields,
not just classes.

For example, if you add the directive
import static java.lang.System.*;

to the top of your source file, then you can use the static methods and fields of
the Systen class without the class name prefix:

out.printIn("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

You can also import a specific method or field:
import static java.lang.System.out;

In practice, it seems doubtful that many programmers will want to abbreviate
System.out or System.exit. The resulting code seems less clear. On the other hand,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

4.7.3 Addition of a Class into a Package

To place classes inside a package, you must put the name of the package at the
top of your source file, before the code that defines the classes in the package. For
example, the file Enployee.java in Listing 4.7 starts out like this:

package com.horstmann.corejava;

public class Employee

{
}

If you don’t put a package statement in the source file, then the classes in that source
file belong to the default package. The default package has no package name. Up
to now, all our example classes were located in the default package.

Place source files into a subdirectory that matches the full package name. For
example, all source files in the con.horstmann.corejava package should be in a subdirec-
tory com/horstmann/corejava (com\horstmann\corejava on Windows). The compiler places the
class files into the same directory structure.

Chapter 4 m Objects and Classes

The program in Listings 4.6 and 4.7 is distributed over two packages: The PackageTest
class belongs to the default package, and the Employee class belongs to the
com. horstmann. corejava package. Therefore, the Employee.java file must be in a subdirectory
con/horstmann/corejava. In other words, the directory structure is as follows:

. (base directory)
PackageTest.java
E PackageTest.class
com/
[horstmann/
L corejava/

': Employee.java
EmpTloyee.class

To compile this program, simply change to the base directory and run the
command

javac PackageTest.java

The compiler automatically finds the file con/horstmann/corejava/Employee.java and
compiles it.

Let’s look at a more realistic example, in which we don’t use the default package
but have classes distributed over several packages (com.horstmann.corejava and
com.mycompany).

. (base directory)
[com/
horstmann/
L corejava/
': Employee.java
EmpTloyee.class
mycompany/
': Payrol1App.java
PayrollApp.class

In this situation, you still must compile and run classes from the base
directory—that is, the directory containing the con directory:

javac com/mycompany/PayrollApp.java
java com.mycompany.PayrollApp

Note again that the compiler operates on files (with file separators and an extension
.java), whereas the Java interpreter loads a class (with dot separators).

4] Packages

6 TIP: Starting with the next chapter, we will use packages for the source code.

That way, you can make an IDE project for each chapter instead of each section.

0 CAUTION: The compiler does not check the directory structure when it compiles

source files. For example, suppose you have a source file that starts with the
directive

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory com/mycompany.
The source file will compile without errors if it doesn’t depend on other packages.
However, the resulting program will not run unless you first move all class files
to the right place. The virtual machine won't find the classes if the packages
don’'t match the directories.

Listing 4.6 PackageTest/PackageTest.java

import com.horstmann.corejava.*;
// the Employee class is defined in that package

import static java.lang.System.*;

¥
* This program demonstrates the use of packages.
* @version 1.11 2004-02-19
* @author Cay Horstmann
*/
public class PackageTest
{
public static void main(String[] args)
{
// because of the import statement, we don't have to use
// com.horstmann.corejava.Employee here
Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

harry.raiseSalary(5);

// because of the static import statement, we don't have to use System.out here

out.printIn("name=" + harry.getName() + ",salary=" + harry.getSalary());

187

§:1:] Chapter 4 m Objects and Classes

Listing 4.7 PackageTest/com/horstmann/corejava/Employee. java

package com.horstmann.corejava;
// the classes in this file are part of this package
import java.time.*;

// import statements come after the package statement

© o o~ o o e W oo

10 * @version 1.11 2015-05-08
1 ¥ @author Cay Horstmann

n ¥

13 public class Employee

1 {

15 private String name;

16 private double salary;

7 private LocalDate hireDay;

18

19 public Employee(String name, double salary, int year, int month, int day)

2 {

21 this.name = name;

2 this.salary = salary;

23 hireDay = LocalDate.of (year, month, day);
21 }

2 public String getName()

28 return name;

29 }

30

31 public double getSalary()

32 {

3 return salary;

34 }

35

3 public LocalDate getHireDay()

37 {

38 return hireDay;

39 }

40

a public void raiseSalary(double byPercent)
2 {

43 double raise = salary * byPercent / 100;
4 salary += raise;

45 }

4] Packages

4.7.4 Package Scope

You have already encountered the access modifiers public and private. Features
tagged as public can be used by any class. Private features can be used only by the
class that defines them. If you don’t specify either public or private, the feature (that
is, the class, method, or variable) can be accessed by all methods in the same
package.

Consider the program in Listing 4.2. The Employee class was not defined as a public
class. Therefore, only the other classes (such as EmployeeTest) in the same pack-
age—the default package in this case—can access it. For classes, this is a reasonable
default. However, for variables, this was an unfortunate choice. Variables must
explicitly be marked private, or they will default to being package visible. This, of
course, breaks encapsulation. The problem is that it is awfully easy to forget to
type the private keyword. Here is an example from the Window class in the java.aut
package, which is part of the source code supplied with the JDK:

public class Window extends Container

{

String warningString;

}

Note that the warningString variable is not private! That means the methods of all
classes in the java.ant package can access this variable and set it to whatever they
like (such as "Trust me!"). Actually, the only methods that access this variable are
in the Window class, so it would have been entirely appropriate to make the variable
private. We suspect that the programmer typed the code in a hurry and simply
forgot the private modifier. (We won’t mention the programmer’s name to protect
the guilty—you can look into the source file yourself.)

P NOTE: Amazingly enough, this problem has never been fixed, even though we
have pointed it out in nine editions of this book—apparently the library implemen-
tors don't read Core Java. Not only that—new fields have been added to the
class over time, and about half of them aren’t private either.

Is this really a problem? It depends. By default, packages are not closed entities.
That is, anyone can add more classes to a package. Of course, hostile or clueless
programmers can then add code that modifies variables with package visibility.
For example, in early versions of Java, it was an easy matter to smuggle another
class into the java.ant package. Simply start out the class with

package java.awt;

Chapter 4 m Objects and Classes

Then, place the resulting class file inside a subdirectory java/awt somewhere on
the class path, and you have gained access to the internals of the java.awt package.
Through this subterfuge, it was possible to set the warning string (see Figure 4.9).

[
o1 e
Sl ECEI (Bl (s
gl (e]
G o
[Trust me!

Figure 4.9 Changing the warning string in an applet window

Starting with version 1.2, the JDK implementors rigged the class loader to explic-
itly disallow loading of user-defined classes whose package name starts with
"java.". Of course, your own classes won't benefit from that protection. Instead,
you can use another mechanism, package sealing, to address the issue of promiscu-
ous package access. If you seal a package, no further classes can be added to it.
You will see in Chapter 9 how you can produce a JAR file that contains sealed
packages.

4.8 The Class Path

As you have seen, classes are stored in subdirectories of the file system. The path
to the class must match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains
multiple class files and subdirectories in a compressed format, saving space and
improving performance. When you use a third-party library in your programs,
you will usually be given one or more JAR files to include. The JDK also supplies
anumber of JAR files, such as the file jre/1ib/rt.jar that contains thousands of library
classes. You will see in Chapter 9 how to create your own JAR files.

4.8 The Class Path

TIP: JAR files use the ZIP format to organize files and subdirectories. You can
use any ZIP utility to peek inside rt.jar and other JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory, for example, /home/user/classdir. Note
that this directory is the base directory for the package tree. If you add the
class com.horstmann.corejava.Employee, then the Employee.class file must be located in
the subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory, for example, /home/user/archives.

3. Set the class path. The class path is the collection of all locations that can
contain class files.

In UNIX, the elements on the class path are separated by colons:
/home/user/classdir:.:/home/user/archives/archive.jar

In Windows, they are separated by semicolons:
c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

e The base directory /home/user/classdir or c:\classdir;

® The current directory (.); and

e The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar.

Starting with Java SE 6, you can specify a wildcard for a JAR file directory, like this:
/home/user/classdir:.:/home/user/archives/'*'

or
c:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in this
class path.

The runtime library files (rt.jar and the other JAR files in the jre/1ib and jre/1ib/ext
directories) are always searched for classes; don’t include them explicitly in the
class path.

Chapter 4 m Objects and Classes

the java virtual machine launcher only looks into the current directory if the “.
directory is on the class path. If you have no class path set, this is not a prob-
lem—the default class path consists of the “.” directory. But if you have set the
class path and forgot to include the “.” directory, your programs will compile
without error, but they won'’t run.

0 CAUTION: The javac compiler always looks for files in the current directory, but

The class path lists all directories and archive files that are starting points for
locating classes. Let’s consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.
corejava.Employee class. It first looks in the system class files that are stored in archives
in the jre/lib and jre/1ib/ext directories. It won't find the class file there, so it turns
to the class path. It then looks for the following files:

e /home/user/classdir/com/horstmann/corejava/Employee.class
e com/horstmann/corejava/Employee.class starting from the current directory

e com/horstmann/corejava/Employee.class inside /home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine. If
you refer to a class without specifying its package, the compiler first needs to find
out the package that contains the class. It consults all import directives as possible
sources for the class. For example, suppose the source file contains directives

import java.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find
java.lang.Employee (because the java.lang package is always imported by default),
java.util.Employee, com.horstmann.corejava.Employee, and Employee in the current package. It
searches for each of these classes in all of the locations of the class path. It is a
compile-time error if more than one class is found. (Classes must be unique, so
the order of the import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the source
is newer than the class file. If so, the source file is recompiled automatically. Recall
that you can import only public classes from other packages. A source file can
only contain one public class, and the names of the file and the public class must
match. Therefore, the compiler can easily locate source files for public classes.
However, you can import nonpublic classes from the current package. These
classes may be defined in source files with different names. If you import a class

4.8 The Class Path

from the current package, the compiler searches all source files of the current
package to see which one defines the class.

4.8.1 Setting the Class Path
It is best to specify the class path with the -classpath (or -cp) option:
java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg
or
java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

The entire command must be typed onto a single line. It is a good idea to place
such a long command line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An
alternate approach is the C(LASSPATH environment variable. The details depend
on your shell. With the Bourne Again shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar
With the Windows shell, use
set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

CAUTION: Some people recommend to set the CLASSPATH environment variable

o permanently. This is generally a bad idea. People forget the global setting, and
are surprised when their classes are not loaded properly. A particularly repre-
hensible example is Apple’s QuickTime installer in Windows. For several years,
it globally set CLASSPATH to point to a JAR file it needed, but did not include the
current directory in the classpath. As a result, countless Java programmers were
driven to distraction when their programs compiled but failed to run.

CAUTION: Some people recommend to bypass the class path altogether, by
o dropping all JAR files into the jre/Tib/ext directory. That is truly bad advice, for
two reasons. Archives that manually load other classes do not work correctly
when they are placed in the extension directory. (See Volume Il, Chapter 9 for
more information on class loaders.) Moreover, programmers have a tendency
to forget about the files they placed there months ago. Then, they scratch their
heads when the class loader seems to ignore their carefully crafted class path
because it is actually loading long-forgotten classes from the extension directory.

Chapter 4 m Objects and Classes

4.9 Documentation Comments

The JDK contains a very useful tool, called javadoc, that generates HTML documen-
tation from your source files. In fact, the online API documentation that we de-
scribed in Chapter 3 is simply the result of running javadoc on the source code of
the standard Java library.

If you add comments that start with the special delimiter /** to your source code,
you too can easily produce professional-looking documentation. This is a very
nice approach because it lets you keep your code and documentation in one place.
If you put your documentation into a separate file, then, as you probably know,
the code and comments tend to diverge over time. When documentation comments
are in the same file as the source code, it is an easy matter to update both and run
javadoc again.

49.1 Comment Insertion

The javadoc utility extracts information for the following items:

e Packages
¢ Public classes and interfaces
* Public and protected fields

e Public and protected constructors and methods
Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment
is placed immediately above the feature it describes. A comment starts with a /#*
and ends with a #/.

Each /# . . . */ documentation comment contains free-form text followed by tags.
A tag starts with an @, such as @author or @paran.

The first sentence of the free-form text should be a summary statement. The javadoc
utility automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as . . . for empha-
sis, . . . for strong emphasis, and even <ing . . .>toinclude animage.
You should, however, stay away from headings <hl> or rules <hr> because they
can interfere with the formatting of the document. To type monospaced code,
use {@code ... } instead of <code>...</code>—then you don’t have to worry about
escaping < characters inside the code.

4.9 Documentation Comments

p NOTE: If your comments contain links to other files such as images (for example,
diagrams or images of user interface components), place those files into a sub-
directory of the directory containing the source file, named doc-files. The javadoc
utility will copy the doc-files directories and their contents from the source direc-
tory to the documentation directory. You need to use the doc-files directory in
your link, for example .

49.2 Class Comments

The class comment must be placed after any import statements, directly before the
class definition.

Here is an example of a class comment:

* A {@code Card} object represents a playing card, such
* as "Queen of Hearts". A card has a suit (Diamond, Heart,

* Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
* 12 = Queen, 13 = King)
*/

public class Card

{

}

P NOTE: There is no need to add an * in front of every line. For example, the
é following comment is equally valid:

A <code>Card</code> object represents a playing card, such
as "Queen of Hearts". A card has a suit (Diamond, Heart,
Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
12 = Queen, 13 = King).

~.':/

However, most IDEs supply the asterisks automatically and rearrange them
when the line breaks change.

49.3 Method Comments

Each method comment must immediately precede the method that it describes.

In addition to the general-purpose tags, you can use the following tags:

Chapter 4 m Objects and Classes

® (param variable description

This tag adds an entry to the “parameters” section of the current method. The
description can span multiple lines and can use HTML tags. All @paran tags for
one method must be kept together.

® (@return description

This tag adds a “returns” section to the current method. The description can
span multiple lines and can use HTML tags.

e Qthrows class description

This tag adds a note that this method may throw an exception. Exceptions
are the topic of Chapter 10.

Here is an example of a method comment:

* Raises the salary of an employee.
* @param byPercent the percentage by which to raise the salary (e.g. 10 means 10%)
* @return the amount of the raise

*

public double raiseSalary(double byPercent)

{
double raise = salary * byPercent / 100;
salary += raise;
return raise;

}

49.4 Field Comments

You only need to document public fields—generally that means static constants.
For example:

/ ORA

* The "Hearts" card suit

*/

public static final int HEARTS = 1;
4.9.5 General Comments

The following tags can be used in class documentation comments:

® (Qauthor name

This tag makes an “author” entry. You can have multiple @author tags, one for
each author.

4.9 Documentation Comments

@version text

This tag makes a “version” entry. The text can be any description of the current
version.

The following tags can be used in all documentation comments:

@since text

This tag makes a “since” entry. The text can be any description of the version
that introduced this feature. For example, @since version 1.7.1.

@deprecated text

This tag adds a comment that the class, method, or variable should no longer
be used. The text should suggest a replacement. For example:

@deprecated Use <code>setVisible(true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to
external documents, with the @see and @link tags.

@see reference

This tag adds a hyperlink in the “see also” section. It can be used with both
classes and methods. Here, reference can be one of the following:

package. class#feature label
label
"text"

The first case is the most useful. You supply the name of a class, method, or
variable, and javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee
class. You can omit the name of the package, or both the package and class
names. Then, the feature will be located in the current package or class.

Note that you must use a #, not a period, to separate the class from the method
or variable name. The Java compiler itself is highly skilled in guessing the
various meanings of the period character as separator between packages,
subpackages, classes, inner classes, and methods and variables. But the javadoc
utility isn’t quite as clever, so you have to help it along.

If the @see tag is followed by a < character, then you need to specify a hyperlink.
You can link to any URL you like. For example:

@see The Core Java home page

197

Chapter 4 m Objects and Classes

In each of these cases, you can specify an optional label that will appear as the
link anchor. If you omit the label, the user will see the target code name or
URL as the anchor.

If the @see tag is followed by a " character, then the text is displayed in the “see
also” section. For example:

@see "Core Java 2 volume 2"

You can add multiple @see tags for one feature, but you must keep them all
together.

* If you like, you can place hyperlinks to other classes or methods anywhere
in any of your documentation comments. Insert a special tag of the form

{@1ink package. class#feature label}

anywhere in a comment. The feature description follows the same rules as
for the @see tag.

4.9.6 Package and Overview Comments

Place the class, method, and variable comments directly into the Java source files,
delimited by /** . . . */ documentation comments. However, to generate package
comments, you need to add a separate file in each package directory. You have
two choices:

1. Supply an HTML file named package.htnl. All text between the tags <body>. ..</body>
is extracted.

2. Supply a Java file named npackage-info.java. The file must contain an initial
Javadoc comment, delimited with /** and *#/, followed by a package statement.
It should contain no further code or comments.

You can also supply an overview comment for all source files. Place it in a file
called overview.htnl, located in the parent directory that contains all the source files.
All text between the tags <body>...</body> is extracted. This comment is displayed
when the user selects “Overview” from the navigation bar.

4.9.7 Comment Extraction

Here, docDirectory is the name of the directory where you want the HTML files to
go. Follow these steps:

4.9 Documentation Comments

1. Change to the directory that contains the source files you want to document.
If you have nested packages to document, such as con.horstmann.corejava, you
must be working in the directory that contains the subdirectory con. (This is
the directory that contains the overview.htnl file, if you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or, run
javadoc -d docDirectory nameOfPackage, nameOfPackage). ..

to document multiple packages. If your files are in the default package, run
instead

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, the HTML files are extracted to the current
directory. That can get messy, and we don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options. For
example, you can use the -author and -version options to include the @Gauthor and
Gversion tags in the documentation. (By default, they are omitted.) Another useful
option is -1ink, to include hyperlinks to standard classes. For example, if you use
the command

javadoc -Tlink http://docs.oracle.com/javase/8/docs/api *.java

all standard library classes are automatically linked to the documentation on the
Oracle web site.

If you use the -linksource option, each source file is converted to HTML (without
color coding, but with line numbers), and each class and method name turns into
a hyperlink to the source.

For additional options, we refer you to the online documentation of the javadoc
utility at http://docs.oracle.com/javase/8/ docs/technotes/guides/javadoc/.

P NOTE: If you need further customization—for example, to produce documentation
in a format other than HTML—you can supply your own doclet to generate the
output in any form you desire. Clearly, this is a specialized need; for details on
doclets, we refer you to the online documentation at http://docs.oracle.com/javase/
8/docs/technotes/quides/javadoc/doclet/overview. html.

http://docs.oracle.com/javase/8/ocs/technotes/guides/javadoc/
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/8/docs/api *.java

Chapter 4 m Objects and Classes

4.10 Class Design Hints

Without trying to be comprehensive or tedious, we want to end this chapter with
some hints that will make your classes more acceptable in well-mannered OOP
circles.

1.

Always keep data private.

This is first and foremost; doing anything else violates encapsulation. You
may need to write an accessor or mutator method occasionally, but you are
still better off keeping the instance fields private. Bitter experience shows
that the data representation may change, but how this data are used will
change much less frequently. When data are kept private, changes in their
representation will not affect the user of the class, and bugs are easier to
detect.

Always initialize data.

Java won't initialize local variables for you, but it will initialize instance fields
of objects. Don’t rely on the defaults, but initialize all variables explicitly,
either by supplying a default or by setting defaults in all constructors.

Don'’t use too many basic types in a class.

The idea is to replace multiple related uses of basic types with other classes.
This keeps your classes easier to understand and to change. For example,
replace the following instance fields in a Customer class:

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes
to addresses, such as the need to deal with international addresses.

Not all fields need individual field accessors and mutators.

You may need to get and set an employee’s salary. You certainly won't need
to change the hiring date once the object is constructed. And, quite often,
objects have instance fields that you don’t want others to get or set, such as
an array of state abbreviations in an Address class.

Break up classes that have too many responsibilities.

This hint is, of course, vague: “too many” is obviously in the eye of the be-
holder. However, if there is an obvious way to break one complicated class
into two classes that are conceptually simpler, seize the opportunity. (On the

4.10 Class Design Hints

other hand, don’t go overboard; ten classes, each with only one method, are
usually an overkill.)

Here is an example of a bad design:

public class CardDeck // bad design
{

private int[] value;
private int[] suit;

public CardDeck() { . . .}
public void shuffle() { . . .}
public int getTopValue() { . . .}
public int getTopSuit() { . . .}
public void draw() { . . . }

}

This class really implements two separate concepts: a deck of cards, with its
shuffle and draw methods, and a card, with the methods to inspect its value and
suit. It makes sense to introduce a (ard class that represents an individual
card. Now you have two classes, each with its own responsibilities:

public class CardDeck
{

private Card[] cards;

public CardDeck() { . . .}
public void shuffle() { . . .}
public Card getTop() { . . . }
public void draw() { . . . }

}

public class Card

{
private int value;
private int suit;

public Card(int aValue, int aSuit) { . . .}
public int getValue() { . . .}
public int getSuit() { . . .}

}
Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they repre-
sent, so should classes. (The standard library certainly contains some dubious
examples, such as the Date class that describes time.)

A good convention is that a class name should be a noun (0rder), or a noun
preceded by an adjective (RushOrder) or a gerund (an “-ing” word, like

Chapter 4 m Objects and Classes

BillingAddress). As for methods, follow the standard convention that accessor
methods begin with a lowercase get (getSalary) and mutator methods use a
lowercase set (setSalary).

7. Prefer immutable classes

The LocalDate class, and other classes from the java.tine package, are im-
mutable—no method can modify the state of an object. Instead of mutating
objects, methods such as plusbays return new objects with the modified state.

The problem with mutation is that it can happen concurrently when multiple
threads try to update an object at the same time. The results are unpredictable.
When classes are immutable, it is safe to share their objects among multiple
threads.

Therefore, it is a good idea to make classes immutable when you can. This
is particularly easy with classes that represent values, such as a string or a
point in time. Computations can simply yield new values instead of updating
existing ones.

Of course, not all classes should be immutable. It would be strange to have
the raiseSalary method return a new Employee object when an employee gets a
raise.

In this chapter, we covered the fundamentals of objects and classes that make
Java an “object-based” language. In order to be truly object oriented, a program-
ming language must also support inheritance and polymorphism. The Java support
for these features is the topic of the next chapter.

CHAPTER

Inheritance

In this chapter

e 5.1 Classes, Superclasses, and Subclasses, page 204

e 5.2 Object: The Cosmic Superclass, page 228

* 5.3 Generic Array Lists, page 244

* 5.4 Object Wrappers and Autoboxing, page 252

* 5.5 Methods with a Variable Number of Parameters, page 256
e 5.6 Enumeration Classes, page 258

* 5.7 Reflection, page 260

e 5.8 Design Hints for Inheritance, page 283

Chapter 4 introduced you to classes and objects. In this chapter, you will learn
about inheritance, another fundamental concept of object-oriented programming.
The idea behind inheritance is that you can create new classes that are built on
existing classes. When you inherit from an existing class, you reuse (or inherit)
its methods, and you can add new methods and fields to adapt your new class
to new situations. This technique is essential in Java programming.

This chapter also covers reflection, the ability to find out more about classes and
their properties in a running program. Reflection is a powerful feature, but it is
undeniably complex. Since reflection is of greater interest to tool builders than
to application programmers, you can probably glance over that part of the chapter
upon first reading and come back to it later.

203

Chapter 5 m Inheritance

5.1 Classes, Superclasses, and Subclasses

Let’s return to the Enployee class that we discussed in the previous chapter. Suppose
(alas) you work for a company where managers are treated differently from
other employees. Managers are, of course, just like employees in many respects.
Both employees and managers are paid a salary. However, while employees are
expected to complete their assigned tasks in return for receiving their salary,
managers get bonuses if they actually achieve what they are supposed to do. This
is the kind of situation that cries out for inheritance. Why? Well, you need to
define a new class, Manager, and add functionality. But you can retain some of
what you have already programmed in the Enployee class, and all the fields of the
original class can be preserved. More abstractly, there is an obvious “is-a” rela-
tionship between Manager and Enployee. Every manager is an employee: This “is—a”
relationship is the hallmark of inheritance.

p NOTE: In this chapter, we use the classic example of employees and managers,
but we must ask you to take this example with a grain of salt. In the real world,
an employee can become a manager, so you would want to model being a
manager as a role of an employee, not a subclass. In our example, however,
we assume the corporate world is populated by two kinds of people: those who
are forever employees, and those who have always been managers.

59.1.1 Defining Subclasses

Here is how you define a Manager class that inherits from the Employee class. Use the
Java keyword extends to denote inheritance.

public class Manager extends Employee

{
}

added methods and fields

C++ NOTE: Inheritance is similar in Java and C++. Java uses the extends keyword
instead of the : token. All inheritance in Java is public inheritance; there is no
analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from
an existing class. The existing class is called the superclass, base class, or parent class.
The new class is called the subclass, derived class, or child class. The terms superclass
and subclass are those most commonly used by Java programmers, although

5.1 Classes, Superclasses, and Subclasses

some programmers prefer the parent/child analogy, which also ties in nicely
with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its subclass or
contains more functionality. In fact, the opposite is true: Subclasses have more
functionality than their superclasses. For example, as you will see when we go
over the rest of the Manager class code, the Manager class encapsulates more data and
has more functionality than its superclass Employee.

NOTE: The prefixes super and sub come from the language of sets used in
theoretical computer science and mathematics. The set of all employees contains
the set of all managers, and thus is said to be a superset of the set of managers.
Or, to put it another way, the set of all managers is a subset of the set of all
employees.

Our Manager class has a new field to store the bonus, and a new method to set it:

public class Manager extends Employee

{

private double bonus;

public void setBonus(double bonus)

{

this.bonus = bonus;
}
}

There is nothing special about these methods and fields. If you have a Manager object,
you can simply apply the setBonus method.

Manager boss = . . .;
hoss. setBonus (5000);

Of course, if you have an Enployee object, you cannot apply the setBonus method—it
is not among the methods defined in the Employee class.

However, you can use methods such as getNane and getHireday with Manager objects.
Even though these methods are not explicitly defined in the Manager class, they are
automatically inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are taken from the superclass. Every
Manager object has four fields: name, salary, hireDay, and bonus.

When defining a subclass by extending its superclass, you only need to indicate
the differences between the subclass and the superclass. When designing classes,
you place the most general methods in the superclass and more specialized

Chapter 5 m Inheritance

methods in its subclasses. Factoring out common functionality by moving it to a
superclass is common in object-oriented programming.

5.1.2 Overriding Methods

Some of the superclass methods are not appropriate for the Manager subclass. In
particular, the getSalary method should return the sum of the base salary and the
bonus. You need to supply a new method to override the superclass method:

public class Manager extends Employee

{

;;ut;11:c double getSalary()
{

}...
}...

How can you implement this method? At first glance, it appears to be simple—just
return the sum of the salary and bonus fields:

public double getSalary()
{

return salary + bonus; // won't work

}

However, that won’t work. Recall that only the Enployee methods have direct access
to the private fields of the Employee class. This means that the getSalary method of
the Manager class cannot directly access the salary field. If the Manager methods want
to access those private fields, they have to do what every other method does—use
the public interface, in this case the public getSalary method of the Enployee class.

S0, let’s try again. You need to call getSalary instead of simply accessing the salary
field:

public double getSalary()

double baseSalary = getSalary(); // still won't work
return baseSalary + bonus;

}

The problem is that the call to getSalary simply calls itself, because the Manager class
has a getSalary method (namely, the method we are trying to implement). The
consequence is an infinite chain of calls to the same method, leading to a program
crash.

5.1 Classes, Superclasses, and Subclasses

We need to indicate that we want to call the getSalary method of the Employee super-
class, not the current class. You use the special keyword super for this purpose.
The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version of the
getSalary method for the Manager class:

pubTic double getSalary()
{

double baseSalary = super.getSalary();
return haseSalary + bonus;

}

y NOTE: Some people think of super as being analogous to the this reference.

é However, that analogy is not quite accurate: super is not a reference to an object.
For example, you cannot assign the value super to another object variable. In-
stead, super is a special keyword that directs the compiler to invoke the superclass
method.

As you saw, a subclass can add fields, and it can add methods or override the
methods of the superclass. However, inheritance can never take away any fields
or methods.

C++ NOTE: Java uses the keyword super to call a superclass method. In C++,

@ you would use the name of the superclass with the :: operator instead. For ex-
ample, the getSalary method of the Manager class would call Employee::getSalary
instead of super.getSalary.

9.1.3 Subclass Constructors
To complete our example, let us supply a constructor.

public Manager(String name, double salary, int year, int month, int day)
{

super(name, salary, year, month, day);

bonus = 0;

}

Here, the keyword super has a different meaning. The instruction

super(n, s, year, month, day);

y {174

Chapter 5 m Inheritance

is shorthand for “call the constructor of the Employee superclass with n, s, year, month,
and day as parameters.”

Since the Manager constructor cannot access the private fields of the Employee class, it
must initialize them through a constructor. The constructor is invoked with the
special super syntax. The call using super must be the first statement in the
constructor for the subclass.

If the subclass constructor does not call a superclass constructor explicitly, the
no-argument constructor of the superclass is invoked. If the superclass does not
have a no-argument constructor and the subclass constructor does not call another
superclass constructor explicitly, the Java compiler reports an error.

NOTE: Recall that the this keyword has two meanings: to denote a reference
to the implicit parameter and to call another constructor of the same class.
Likewise, the super keyword has two meanings: to invoke a superclass method
and to invoke a superclass constructor. When used to invoke constructors, the
this and super keywords are closely related. The constructor calls can only occur
as the first statement in another constructor. The constructor parameters are
either passed to another constructor of the same class (this) or a constructor of
the superclass (super).

C++ NOTE: In a C++ constructor, you do not call super, but you use the initializer
list syntax to construct the superclass. The Manager constructor looks like this
in C++:

Manager: :Manager(String name, double salary, int year, int month, int day) // C++
. Employee(name, salary, year, month, day)

{
}

bonus = 0;

After you redefine the getSalary method for Manager objects, managers will
automatically have the bonus added to their salaries.

Here’s an example of this at work. We make a new manager and set the manager’s
bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss. setBonus (5000) ;

We make an array of three employees:

Employee[] staff = new Employee[3];

5.1 Classes, Superclasses, and Subclasses

We populate the array with a mix of managers and employees:

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:

for (Employee e : staff)
System.out.printin(e.getName() +

+ e.getSalary());
This loop prints the following data:

Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects.
However, staff[0] is a Manager object whose getSalary method adds the bonus to the
base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is Enployee, but
the actual type of the object to which e refers can be either Enployee or Manager.

When e refers to an Employee object, the call e.getSalary() calls the getSalary method of
the Enployee class. However, when e refers to a Manager object, then the getSalary method
of the Manager class is called instead. The virtual machine knows about the actual
type of the object to which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple actual
types is called polymorphism. Automatically selecting the appropriate method at
runtime is called dynamic binding. We discuss both topics in more detail in this
chapter.

C++ NOTE: In C++, you need to declare a member function as virtual if you

@ want dynamic binding. In Java, dynamic binding is the default behavior; if you
do not want a method to be virtual, you tag it as final. (We discuss the final
keyword later in this chapter.)

Listing 5.1 contains a program that shows how the salary computation differs for
Employee (Listing 5.2) and Manager (Listing 5.3) objects.

m Chapter 5 m Inheritance

Listing 5.1 inheri tance/ManagerTest.java

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18

package inheritance;

J#

*

* This program demonstrates inheritance.
¥ @version 1.21 2004-02-21

J

* @author Cay Horstmann

public class ManagerTest

{

public static void main(String[] args)

{

// construct a Manager object
Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss. setBonus (5000);

Employee[] staff = new Employee[3];
// fi1l the staff array with Manager and Employee objects

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);

// print out information about all Employee objects
for (Employee e : staff)
System.out.printIn("name="

+ e.getName() + ",salary=" + e.getSalary());

Listing 5.2 inheri tance/Employee.java

package inheritance;

import java.time.*;

public class Employee

{

private String name;
private double salary;
private LocalDate hireDay;

public Employee(String name, double salary, int year, int month, int day)

{

}

this.name = name;
this.salary = salary;
hireDay = LocalDate.of(year, month, day);

5.1 Classes, Superclasses, and Subclasses

public String getName()
{

}

return name;

public double getSalary()
{

}

return salary;

public LocalDate getHireDay()
{

}

return hireDay;

public void raiseSalary(double byPercent)
{
double raise = salary * byPercent / 100;
salary += raise;

}

Listing 5.3 inheri tance/Manager.java

1 package inheritance;

© e~ o v a w o

public class Manager extends Employee

private double bonus;

/:H:

@param name the employee's name
@param salary the salary
@param year the hire year
@
@

%

"

param month the hire month
param day the hire day

%

*/

public Manager(String name, double salary, int year, int month, int day)

{
super(name, salary, year, month, day);
bonus = 0;

}

(Continues)

Chapter 5 m Inheritance

Listing 5.3 (Continued)

2 public double getSalary()

2 double baseSalary = super.getSalary();
3 return haseSalary + bonus;

u }

25

2 public void setBonus(double h)

27 {

28 bonus = b;

2 }

0 }

5.1.4 Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an
Executive class that extends Manager, for example. The collection of all classes extending
a common superclass is called an inheritance hierarchy, as shown in Figure 5.1. The
path from a particular class to its ancestors in the inheritance hierarchy is its
inheritance chain.

Employee

Manager Secretary Programmer

Executive

Figure 5.1 Employee inheritance hierarchy

5.1 Classes, Superclasses, and Subclasses

There is usually more than one chain of descent from a distant ancestor class.
You could form subclasses Programmer or Secretary that extend Employee, and they would
have nothing to do with the Manager class (or with each other). This process can
continue as long as is necessary.

C++ NOTE: In C++, a class can have multiple superclasses. Java does not
support multiple inheritance. For ways to recover much of the functionality of
multiple inheritance, see Section 6.1, “Interfaces,” on p. 288.

9.1.5 Polymorphism

A simple rule can help you decide whether or not inheritance is the right design
for your data. The “is—a” rule states that every object of the subclass is an object
of the superclass. For example, every manager is an employee. Thus, it makes
sense for the Manager class to be a subclass of the Employee class. Naturally, the opposite
is not true—not every employee is a manager.

2

Another way of formulating the “is—a” rule is the substitution principle. That
principle states that you can use a subclass object whenever the program expects
a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable
of type Employee can refer to an object of type Employee or to an object of any
subclass of the Employee class (such as Manager, Executive, Secretary, and so on).

We took advantage of this principle in Listing 5.1:

Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object. However, staff[0]
is considered to be only an Employee object by the compiler.

That means you can call
boss. setBonus(5000); // OK
but you can’t call

staff[0].setBonus(5000); // Error

Chapter 5 m Inheritance

The declared type of staff[0] is Enployee, and the setBonus method is not a method of
the Employee class.

However, you cannot assign a superclass reference to a subclass variable. For
example, it is not legal to make the assignment

Manager m = staff[i]; // Error

The reason is clear: Not all employees are managers. If this assignment were to
succeed and n were to refer to an Enployee object that is not a manager, then it would
later be possible to call m.setBonus(. . .) and a runtime error would occur.

CAUTION: In Java, arrays of subclass references can be converted to arrays
of superclass references without a cast. For example, consider this array of
managers:

Manager[] managers = new Manager[10];
It is legal to convert this array to an Employee[] array:
Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if managers[i] is a Manager, it is also an
Employee. But actually, something surprising is going on. Keep in mind that managers
and staff are references to the same array. Now consider the statement

staff[0] = new Employee("Harry Hacker", . . .);

The compiler will cheerfully allow this assignment. But staff[0] and managers[0]
are the same reference, so it looks as if we managed to smuggle a mere
employee into the management ranks. That would be very bad—calling
managers [0] .setBonus(1000) would try to access a nonexistent instance field and
would corrupt neighboring memory.

To make sure no such corruption can occur, all arrays remember the element
type with which they were created, and they monitor that only compatible refer-
ences are stored into them. For example, the array created as new Manager[10]
remembers that it is an array of managers. Attempting to store an Enmployee
reference causes an ArrayStoreException.

5.1.6 Understanding Method Calls

It is important to understand exactly how a method call is applied to an object.
Let’s say we call x.f(args), and the implicit parameter x is declared to be an
object of class (. Here is what happens:

5.1 Classes, Superclasses, and Subclasses

1. The compiler looks at the declared type of the object and the method name.
Note that there may be multiple methods, all with the same name, f, but
with different parameter types. For example, there may be a method f(int)
and a method f(String). The compiler enumerates all methods called f in the
class C and all accessible methods called f in the superclasses of C. (Private
methods of the superclass are not accessible.)

Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the arguments that are supplied
in the method call. If among all the methods called f there is a unique method
whose parameter types are a best match for the supplied arguments, that
method is chosen to be called. This process is called overloading resolution.
For example, in a call x.f("Hell0"), the compiler picks f(String) and not f(int).
The situation can get complex because of type conversions (int to double, Manager
to Employee, and so on). If the compiler cannot find any method with matching
parameter types or if multiple methods all match after applying conversions,
the compiler reports an error.

Now the compiler knows the name and parameter types of the method that
needs to be called.

p NOTE: Recall that the name and parameter type list for a method is called the
method’s signature. For example, f(int) and f(String) are two methods with
the same name but different signatures. If you define a method in a subclass
that has the same signature as a superclass method, you override the superclass
method.

The return type is not part of the signature. However, when you override a
method, you need to keep the return type compatible. A subclass may change
the return type to a subtype of the original type. For example, suppose the Employee
class has a method

public Employee getBuddy() { . . .}

A manager would never want to have a lowly employee as a buddy. To reflect
that fact, the Manager subclass can override this method as

public Manager getBuddy() { . . . } // OK to change return type

We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the compiler knows
exactly which method to call. (The final modifier is explained in the next
section.) This is called static binding. Otherwise, the method to be called

Chapter 5 m Inheritance

depends on the actual type of the implicit parameter, and dynamic binding
must be used at runtime. In our example, the compiler would generate an
instruction to call f(String) with dynamic binding.

When the program runs and uses dynamic binding to call a method, the
virtual machine must call the version of the method that is appropriate for
the actual type of the object to which x refers. Let’s say the actual type is D, a
subclass of C. If the class D defines a method f(String), that method is called.
If not, D’s superclass is searched for a method f(String), and so on.

It would be time consuming to carry out this search every time a method is
called. Therefore, the virtual machine precomputes for each class a method
table that lists all method signatures and the actual methods to be called.
When a method is actually called, the virtual machine simply makes a table
lookup. In our example, the virtual machine consults the method table for
the class D and looks up the method to call for f(String). That method may be
D.f(String) or X.f(String), where X is some superclass of D. There is one twist to
this scenario. If the call is super.f(paran), then the compiler consults the method
table of the superclass of the implicit parameter.

Let’s look at this process in detail in the call e.getSalary() in Listing 5.1. The declared
type of e is Employee. The Employee class has a single method, called getSalary, with no
method parameters. Therefore, in this case, we don’t worry about overloading
resolution.

The getSalary method is not private, static, or final, so it is dynamically bound. The
virtual machine produces method tables for the Employee and Manager classes.
The Employee table shows that all methods are defined in the Employee class itself:

Employee:

getName() -> Employee.getName()

getSalary() -> Employee.getSalary()

getHireDay() -> Employee.getHireDay()
raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the Enployee
class has a superclass Object from which it inherits a number of methods. We ignore
the Object methods for now.

The Manager method table is slightly different. Three methods are inherited, one
method is redefined, and one method is added.

Manager:

getName() -> Employee.getName()

getSalary() -> Manager.getSalary()

getHireDay() -> Employee.getHi reDay()
raiseSalary(double) -> Employee.raiseSalary(double)
setBonus(double) -> Manager.setBonus(double)

5.1 Classes, Superclasses, and Subclasses

At runtime, the call e.getSalary() is resolved as follows:

1. First, the virtual machine fetches the method table for the actual type of e.
That may be the table for Employee, Manager, or another subclass of Enployee.

2. Then, the virtual machine looks up the defining class for the getSalary()
signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: It makes programs extensible
without the need for modifying existing code. Suppose a new class Executive is
added and there is the possibility that the variable e refers to an object of that
class. The code containing the call e.getSalary() need not be recompiled. The
Executive.getSalary() method is called automatically if e happens to refer to an object
of type Executive.

CAUTION: When you override a method, the subclass method must be at least

0 as visible as the superclass method. In particular, if the superclass method is
public, the subclass method must also be declared public. It is a common error
to accidentally omit the public specifier for the subclass method. The compiler
then complains that you try to supply a more restrictive access privilege.

5.1.7 Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from forming a subclass from one of
your classes. Classes that cannot be extended are called final classes, and you use
the final modifier in the definition of the class to indicate this. For example, suppose
we want to prevent others from subclassing the Executive class. Simply declare the
class using the final modifier, as follows:

public final class Executive extends Manager

{
}

You can also make a specific method in a class final. If you do this, then no subclass
can override that method. (All methods in a final class are automatically final.)
For example:

public class Employee

{

public final String getName()
{

217

Chapter 5 m Inheritance

return name;

}

P NOTE: Recall that fields can also be declared as final. A final field cannot be
changed after the object has been constructed. However, if a class is declared
final, only the methods, not the fields, are automatically final.

There is only one good reason to make a method or class final: to make sure its
semantics cannot be changed in a subclass. For example, the getTine and setTime
methods of the (alendar class are final. This indicates that the designers of the Calendar
class have taken over responsibility for the conversion between the Date class and
the calendar state. No subclass should be allowed to mess up this arrangement.
Similarly, the String class is a final class. That means nobody can define a subclass
of String. In other words, if you have a String reference, you know it refers to a String
and nothing but a String.

Some programmers believe that you should declare all methods as final unless
you have a good reason to want polymorphism. In fact, in C++ and C#, methods
do not use polymorphism unless you specifically request it. That may be a bit
extreme, but we agree that it is a good idea to think carefully about final methods
and classes when you design a class hierarchy.

In the early days of Java, some programmers used the final keyword hoping to
avoid the overhead of dynamic binding. If a method is not overridden, and it is
short, then a compiler can optimize the method call away—a process called inlin-
ing. For example, inlining the call e.getNane() replaces it with the field access e.nane.
This is a worthwhile improvement—CPUs hate branching because it interferes
with their strategy of prefetching instructions while processing the current one.
However, if getNane can be overridden in another class, then the compiler cannot
inline it because it has no way of knowing what the overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better job
than a traditional compiler. It knows exactly which classes extend a given class,
and it can check whether any class actually overrides a given method. If a method
is short, frequently called, and not actually overridden, the just-in-time compiler
can inline the method. What happens if the virtual machine loads another subclass
that overrides an inlined method? Then the optimizer must undo the inlining.
That takes time, but it happens rarely.

5.1 Classes, Superclasses, and Subclasses

5.1.8 Casting

Recall from Chapter 3 that the process of forcing a conversion from one type to
another is called casting. The Java programming language has a special notation
for casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer,
you may need to convert an object reference from one class to another. To actually
make a cast of an object reference, use a syntax similar to what you use for casting
anumeric expression. Surround the target class name with parentheses and place
it before the object reference you want to cast. For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an object
in its full capacity after its actual type has been temporarily forgotten. For example,
in the ManagerTest class, the staff array had to be an array of Employee objects because
some of its elements were regular employees. We would need to cast the manage-
rial elements of the array back to Manager to access any of its new variables. (Note
that in the sample code for the first section, we made a special effort to avoid the
cast. We initialized the boss variable with a Manager object before storing it in
the array. We needed the correct type to set the bonus of the manager.)

As you know, in Java every variable has a type. The type describes the kind of
object the variable refers to and what it can do. For example, staff[i] refers to an
Employee object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a value
in a variable. If you assign a subclass reference to a superclass variable, you are
promising less, and the compiler will simply let you do it. If you assign a super-
class reference to a subclass variable, you are promising more. Then you must
use a cast so that your promise can be checked at runtime.

What happens if you try to cast down an inheritance chain and are “lying” about
what an object contains?

Manager boss = (Manager) staff[1]; // Error

Chapter 5 m Inheritance

When the program runs, the Java runtime system notices the broken promise and
generates a (lassCastException. If you do not catch the exception, your program ter-
minates. Thus, it is good programming practice to find out whether a cast will
succeed before attempting it. Simply use the instanceof operator. For example:

if (staff[1] instanceof Manager)
boss = (Manager) staff[1];

}

Finally, the compiler will not let you make a cast if there is no chance for the cast
to succeed. For example, the cast

String ¢ = (String) staff[1];
is a compile-time error because String is not a subclass of Employee.

To sum up:

* You can cast only within an inheritance hierarchy.

e Use instanceof to check before casting from a superclass to a subclass.

NOTE: The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That makes
sense: null refers to no object, so it certainly doesn't refer to an object of type C.

Actually, converting the type of an object by a cast is not usually a good idea. In
our example, you do not need to cast an Enployee object to a Manager object for most
purposes. The getSalary method will work correctly on both objects of both classes.
The dynamic binding that makes polymorphism work locates the correct method
automatically.

The only reason to make the cast is to use a method that is unique to managers,
such as setBonus. If for some reason you find yourself wanting to call setBonus on
Employee objects, ask yourself whether this is an indication of a design flaw in the
superclass. It may make sense to redesign the superclass and add a setBonus method.
Remember, it takes only one uncaught ClassCastException to terminate your program.
In general, it is best to minimize the use of casts and the instanceof operator.

5.1 Classes, Superclasses, and Subclasses

C++ NOTE: Java uses the cast syntax from the “bad old days” of C, but it works
like the safe dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[l]; // Java
is the same as
Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++

with one important difference. If the cast fails, it does not yield a null object but
throws an exception. In this sense, it is like a C++ cast of references. This is a
pain in the neck. In C++, you can take care of the type test and type conversion
in one operation.

Manager* boss = dynamic_cast<Manager®>(staff[1]); // C++
if (boss != NULL) . . .

In Java, you need to use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)

{
Manager boss = (Manager) staff[1];

5.1.9 Abstract Classes

As you move up the inheritance hierarchy, classes become more general and
probably more abstract. At some point, the ancestor class becomes so general that
you think of it more as a basis for other classes than as a class with specific in-
stances you want to use. Consider, for example, an extension of our Employee class
hierarchy. An employee is a person, and so is a student. Let us extend our
class hierarchy to include classes Person and Student. Figure 5.2 shows the inheritance
relationships between these classes.

Why bother with so high a level of abstraction? There are some attributes that
make sense for every person, such as name. Both students and employees have
names, and introducing a common superclass lets us factor out the getNane method
to a higher level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a brief
description of the person, such as

an employee with a salary of $50,000.00
a student majoring in computer science

Chapter 5 m Inheritance

Person

Employee Student

Figure 5.2 Inheritance diagram for Person and its subclasses

It is easy to implement this method for the Employee and Student classes. But what
information can you provide in the Person class? The Person class knows nothing
about the person except the name. Of course, you could implement
Person.getDescription() to return an empty string. But there is a better way. If you use
the abstract keyword, you do not need to implement the method at all.

public abstract String getDescription();
// no implementation required

For added clarity, a class with one or more abstract methods must itself be declared
abstract.

public abstract class Person

{

public abstract String getDescription();
}

In addition to abstract methods, abstract classes can have fields and concrete
methods. For example, the Person class stores the name of the person and has a
concrete method that returns it.

public abstract class Person

{

private String name;

5.1 Classes, Superclasses, and Subclasses

public Person(String name)

{
this.name = name;
}
public abstract String getDescription();
public String getName()

return name;

TIP: Some programmers don't realize that abstract classes can have concrete
methods. You should always move common fields and methods (whether abstract
or not) to the superclass (whether abstract or not).

Abstract methods act as placeholders for methods that are implemented in the
subclasses. When you extend an abstract class, you have two choices. You can
leave some or all of the abstract methods undefined; then you must tag the subclass
as abstract as well. Or you can define all methods, and the subclass is no longer
abstract.

For example, we will define a Student class that extends the abstract Person class and
implements the getDescription method. None of the methods of the Student class are
abstract, so it does not need to be declared as an abstract class.

A class can even be declared as abstract though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no
objects of that class can be created. For example, the expression

new Person("Vince Vu")
is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable
must refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of the
nonabstract subclass Student.

Chapter 5 m Inheritance

C++ NOTE: In C++, an abstract method is called a pure virtual function and is
tagged with a trailing = 0, such as in

class Person // C++

{
public:
virtual string getDescription() = 0;

b

A C++ class is abstract if it has at least one pure virtual function. In C++, there
is no special keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract class Person:

public class Student extends Person

{

private String major;

public Student(String name, String major)
{

super(name);
this.major = major;

}

public String getDescription()

return "a student majoring in " + major;

}
}

The Student class defines the getDescription method. Therefore, all methods in the
Student class are concrete, and the class is no longer an abstract class.

The program shown in Listing 5.4 defines the abstract superclass Person (Listing 5.5)
and two concrete subclasses, Employee (Listing 5.6) and Student (Listing 5.7). We
fill an array of Person references with employee and student objects:

Person[] people = new Person(2];
people[0] = new Employee(. . .);
people[1] = new Student(. . .);

We then print the names and descriptions of these objects:

for (Person p : people)
System.out.printin(p.getName() + ", " + p.getDescription());

5.1 Classes, Superclasses, and Subclasses

Some people are baffled by the call

p.getDescription()

Isn’t this a call to an undefined method? Keep in mind that the variable p never
refers to a Person object because it is impossible to construct an object of the abstract
Person class. The variable p always refers to an object of a concrete subclass such
as Employee or Student. For these objects, the getDescription method is defined.

Could you have omitted the abstract method altogether from the Person superclass,
simply defining the getDescription methods in the Employee and Student subclasses? If
you did that, you wouldn’t have been able to invoke the getDescription method on
the variable p. The compiler ensures that you invoke only methods that are
declared in the class.

Abstract methods are an important concept in the Java programming language.
You will encounter them most commonly inside interfaces. For more information
about interfaces, turn to Chapter 6.

Listing 5.4 abstractClasses/PersonTest.java

package abstractClasses;

1

2

4 * This program demonstrates abstract classes.
s % @version 1.01 2004-02-21

¢ * @author Cay Horstmann

7

8

9

*/
public class PersonTest
{
10 public static void main(String[] args)
11 {
12 Person[] people = new Person[2];
13
1 // fill the people array with Student and Employee objects
15 people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
16 people[1] = new Student("Maria Morris", "computer science");
17
18 // print out names and descriptions of all Person objects
19 for (Person p : people)
2 System.out.printin(p.getName() + ", " + p.getDescription());
21 }

m Chapter 5 m Inheritance

Listing 5.5 abstractClasses/Person.java

1 package abstractClasses;

2

3 public abstract class Person
¢ {

5 public abstract String getDescription();
6 private String name;

7

8 pubTic Person(String name)
CH

10 this.name = nanme;

11 }

12

3 public String getName()

14 {

15 return name;

16 }

17}

Listing 5.6 abstractClasses/Employee.java

1 package abstractClasses;

2

3 import java.time.*;

4

s public class Employee extends Person
6 {

7 private double salary;

8 private LocalDate hireDay;

9

10 public Employee(String name, double salary, int year, int month, int day)
11 {

n super(name) ;

13 this.salary = salary;

14 hireDay = LocalDate.of(year, month, day);
15 }

16

7 public double getSalary()

18 {

19 return salary;

20 }

21

2 public LocalDate getHireDay()

23 {

2 return hireDay;

25 }

5.1 Classes, Superclasses, and Subclasses

3}

public String getDescription()
{

}

return String.format("an employee with a salary of $%.2f", salary);

public void raiseSalary(double byPercent)
{
double raise = salary * byPercent / 100;
salary += raise;

}

Listing 5.7 abstractClasses/Student.java

{

package abstractClasses;

public class Student extends Person

private String major;

/#*
* @param nama the student's name
* @param major the student's major
*k/
public Student(String name, String major)
{
// pass n to superclass constructor
super(name);
this.major = major;

}

public String getDescription()
{

}

return "a student majoring in " + major;

5.1.10 Protected Access

As you know, fields in a class are best tagged as private, and methods are usually
tagged as public. Any features declared private won't be visible to other classes. As
we said at the beginning of this chapter, this is also true for subclasses: A subclass
cannot access the private fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only
or, less commonly, to allow subclass methods to access a superclass field. In that
case, you declare a class feature as protected. For example, if the superclass Enployee

227

Chapter 5 m Inheritance

declares the hireDay field as protected instead of private, then the Manager methods can
access it directly.

However, the Manager class methods can peek inside the hireDay field of Manager objects
only, not of other Employee objects. This restriction is made so that you can’t abuse
the protected mechanism by forming subclasses just to gain access to the protected
fields.

In practice, use protected fields with caution. Suppose your class is used by other
programmers and you designed it with protected fields. Unknown to you,
other programmers may inherit classes from your class and start accessing your
protected fields. In this case, you can no longer change the implementation of
your class without upsetting those programmers. That is against the spirit of
OOP, which encourages data encapsulation.

Protected methods make more sense. A class may declare a method as protected if
it is tricky to use. This indicates that the subclasses (which, presumably, know
their ancestor well) can be trusted to use the method correctly, but other classes
cannot.

A good example of this kind of method is the clone method of the Object class—see
Chapter 6 for more details.

C++ NOTE: As it happens, protected features in Java are visible to all subclasses

@ as well as to all other classes in the same package. This is slightly different from
the C++ meaning of protected, and it makes the notion of protected in Java even
less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

Visible to the class only (private).
Visible to the world (public).
Visible to the package and all subclasses (protected).

=N

Visible to the package—the (unfortunate) default. No modifiers are needed.

5.2 Object: The Cosmic Superclass

The Object class is the ultimate ancestor—every class in Java extends Object.
However, you never have to write

public class Employee extends Object

5.2 Object: The Cosmic Superclass

The ultimate superclass Object is taken for granted if no superclass is explicitly
mentioned. Since every class in Java extends Object, it is important to be familiar
with the services provided by the Object class. We go over the basic ones in this
chapter; consult the later chapters or view the online documentation for what
is not covered here. (Several methods of Object come up only when dealing with
concurrency—see Chapter 14 for more on threads.)

You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for arbitrary
values. To do anything specific with the value, you need to have some knowledge
about the original type and apply a cast:

Employee e = (Employee) obj;

In Java, only the values of primitive types (numbers, characters, and boolean values)
are not objects.

All array types, no matter whether they are arrays of objects or arrays of primitive
types, are class types that extend the Object class.

Employee[] staff = new Employee[10];
obj = staff; // OK
obj = new int[10]; // OK

C++ NOTE: In C++, there is no cosmic root class. However, every pointer can
be converted to a void* pointer.

5.2.1 The equals Method

The equals method in the Object class tests whether one object is considered equal
to another. The equals method, as implemented in the Object class, determines
whether two object references are identical. This is a pretty reasonable default—if
two objects are identical, they should certainly be equal. For quite a few classes,
nothing else is required. For example, it makes little sense to compare two PrintStrean
objects for equality. However, you will often want to implement state-based
equality testing, in which two objects are considered equal when they have the
same state.

For example, let us consider two employees equal if they have the same name,
salary, and hire date. (In an actual employee database, it would be more sensible
to compare IDs instead. We use this example to demonstrate the mechanics of
implementing the equals method.)

Chapter 5 m Inheritance

public class Employee

{

public hoolean equals(Object otherObject)

{
// a quick test to see if the objects are identical
if (this == otherObject) return true;

// must return false if the explicit parameter is null
if (otherObject == null) return false;

// if the classes don't match, they can't be equal
if (getClass() != otherObject.getClass())
return false;

// now we know otherObject is a non-null Employee
Employee other = (Employee) otherObject;

// test whether the fields have identical values
return name.equals(other.name)
8& salary == other.salary
8& hireDay.equals(other.hireDay);
}
}

The getClass method returns the class of an object—we discuss this method in detail
later in this chapter. In our test, two objects can only be equal when they belong
to the same class.

TIP: To guard against the possibility that name or hireDay are null, use the

6 Objects.equals method. The call Objects.equals(a, b) returns true if both arguments
are null, false if only oneis nul1, and calls a.equals(b) otherwise. With that method,
the last statement of the Employee.equals method becomes

return Objects.equals(name, other.name)
8& salary == other.salary
8& Object.equals(hireDay, other.hireDay);

When you define the equals method for a subclass, first call equals on the superclass.
If that test doesn’t pass, then the objects can’t be equal. If the superclass fields are
equal, you are ready to compare the instance fields of the subclass.

public class Manager extends Employee

{

public boolean equals(Object otherObject)
{

5.2 Object: The Cosmic Superclass

if (Isuper.equals(otherObject)) return false;

// super.equals checked that this and otherObject belong to the same class
Manager other = (Manager) otherObject;

return honus == other.honus;

5.2.2 Equality Testing and Inheritance

How should the equals method behave if the implicit and explicit parameters don’t
belong to the same class? This has been an area of some controversy. In the pre-
ceding example, the equals method returns false if the classes don’t match exactly.
But many programmers use an instanceof test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherlbject can belong to a subclass. How-
ever, this approach can get you into trouble. Here is why. The Java Language
Specification requires that the equals method has the following properties:

It is reflexive: For any non-null reference x, x.equals(x) should return true.

2. Itis symmetric: For any references x and y, x.equals(y) should return true if and
only if y.equals(x) returns true.

3. It is transitive: For any references x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.

4. It is consistent: If the objects to which x and y refer haven’t changed, then
repeated calls to x.equals(y) return the same value.

5. For any non-null reference x, x.equals(nu11) should return false.

These rules are certainly reasonable. You wouldn’t want a library implementor
to ponder whether to call x.equals(y) or y.equals(x) when locating an element in a
data structure.

However, the symmetry rule has subtle consequences when the parameters belong
to different classes. Consider a call

e.equals(m)

where e is an Employee object and n is a Manager object, both of which happen to have
the same name, salary, and hire date. If Employee.equals uses an instanceof test, the call
returns true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return false or
to throw an exception.

Chapter 5 m Inheritance

That leaves the Manager class in a bind. Its equals method must be willing to compare
itself to any Employee, without taking manager-specific information into account!
All of a sudden, the instanceof test looks less attractive.

Some authors have gone on record that the get(lass test is wrong because it violates
the substitution principle. A commonly cited example is the equals method in the
AbstractSet class that tests whether two sets have the same elements. The AbstractSet
class has two concrete subclasses, TreeSet and HashSet, that use different algorithms
for locating set elements. You really want to be able to compare any two sets, no
matter how they are implemented.

However, the set example is rather specialized. It would make sense to declare
AbstractSet.equals as final, because nobody should redefine the semantics of set
equality. (The method is not actually final. This allows a subclass to implement
a more efficient algorithm for the equality test.)

The way we see it, there are two distinct scenarios:

e If subclasses can have their own notion of equality, then the symmetry
requirement forces you to use the getClass test.

¢ Ifthe notion of equality is fixed in the superclass, then you can use the instanceof
test and allow objects of different subclasses to be equal to one another.

In the example with employees and managers, we consider two objects to be
equal when they have matching fields. If we have two Manager objects with the
same name, salary, and hire date, but with different bonuses, we want them to
be different. Therefore, we used the get(lass test.

But suppose we used an employee ID for equality testing. This notion of equality
makes sense for all subclasses. Then we could use the instanceof test, and we should
have declared Employee.equals as final.

< NOTE: The standard Java library contains over 150 implementations of equals
methods, with a mishmash of using instanceof, calling getClass, catching a
(TassCastException, or doing nothing at all. Check out the APl documentation of
the java.sql.Timestamp class, where the implementors note with some embarrass-
ment that they have painted themselves in a corner. The Timestamp class inherits
from java.util.Date, whose equals method uses an instanceof test, and it is
impossible to override equals to be both symmetric and accurate.

5.2 Object: The Cosmic Superclass

Here is a recipe for writing the perfect equals method:

1.

Name the explicit parameter other0bject—later, you will need to cast it to
another variable that you should call other.

Test whether this happens to be identical to otherObject:
if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case. It
is much cheaper to check for identity than to compare the fields.

Test whether otherObject is null and return false if it is. This test is required.

if (otherObject == null) return false;

Compare the classes of this and otherObject. If the semantics of equals can change
in subclasses, use the get(lass test:

if (getClass() != otherObject.getClass()) return false;

If the same semantics holds for all subclasses, you can use an instanceof test:
if (!(otherObject instanceof ClassName)) return false;

Cast otherObject to a variable of your class type:

(TassName other = (ClassName) otherObject

Now compare the fields, as required by your notion of equality. Use == for
primitive type fields, Objects.equals for object fields. Return true if all fields
match, false otherwise.

return fieldl == other.fieldl
&& Objects.equals(field2, other.field2)
& .. .

If you redefine equals in a subclass, include a call to super.equals(other).

v

TIP: If you have fields of array type, you can use the static Arrays.equals method
to check that the corresponding array elements are equal.

Chapter 5 m Inheritance

CAUTION: Here is a common mistake when implementing the equals method.
Can you spot the problem?

public class Employee

{
public hoolean equals(Employee other)
{
return other != null
8& getClass() == other.getClass()
&& Objects.equals(name, other.name)
8& salary == other.salary
&& Objects.equals(hireDay, other.hireDay);
}
}

This method declares the explicit parameter type as Enployee. As a result, it does
not override the equals method of the Object class but defines a completely
unrelated method.

You can protect yourself against this type of error by tagging methods that are
intended to override superclass methods with @verride:

@0verride public boolean equals(Object other)

If you made a mistake and are defining a new method, the compiler reports an
error. For example, suppose you add the following declaration to the Employee
class:

@0verride public boolean equals(Employee other)

An error is reported because this method doesn’t override any method from the
Object superclass.

java.util.Arrays

static boolean equals(type[] a, type[] b)

returns true if the arrays have equal lengths and equal elements in corresponding
positions. The arrays can have component types Object, int, Tong, short, char, byte,
boolean, float, or double.

5.2 Object: The Cosmic Superclass

java.util.Objects

e static hoolean equals(Object a, Object bh)

returns true if a and b are both null, false if exactly one of them is null, and a.equals(b)
otherwise.

5.2.3 The hashCode Method

A hash code is an integer that is derived from an object. Hash codes should be
scrambled—if x and y are two distinct objects, there should be a high probability
that x.hashCode() and y.hashCode() are different. Table 5.1 lists a few examples of hash
codes that result from the hashCode method of the String class.

Table 5.1 Hash Codes Resulting from the hashCode Method

String Hash Code
Hello 69609650
Harry 69496448
Hacker -2141031506

The String class uses the following algorithm to compute the hash code:

int hash = 0;
for (int 1 =0; i < Tength(); i++)
hash = 31 * hash + charAt(i);

The hashCode method is defined in the Object class. Therefore, every object has a de-
fault hash code. That hash code is derived from the object’s memory address.
Consider this example:

String s = "0k";

StringBuilder sb = new StringBuilder(s);
System.out.printIn(s.hashCode() + " " + sh.hashCode());
String t = new String("0k");

StringBuilder tb = new StringBuilder(t);
System.out.printIn(t.hashCode() + " " + th.hashCode());

Table 5.2 shows the result.

Chapter 5 m Inheritance

Table 5.2 Hash Codes of Strings and String Builders

Object Hash Code
S 2556

sh 20526976

t 2556

th 20527144

Note that the strings s and t have the same hash code because, for strings, the
hash codes are derived from their contents. The string builders sb and tb have
different hash codes because no hashCode method has been defined for the StringBuilder
class and the default hashCode method in the 0Object class derives the hash code from
the object’s memory address.

If you redefine the equals method, you will also need to redefine the hashCode method
for objects that users might insert into a hash table. (We discuss hash tables in
Chapter 9.)

The hashCode method should return an integer (which can be negative). Just combine
the hash codes of the instance fields so that the hash codes for different objects
are likely to be widely scattered.

For example, here is a hashCode method for the Employee class:

public class Employee
{
public int hashCode()
{
return 7 * name.hashCode()
+ 11 * new Double(salary).hashCode()
+ 13 * hireDay.hashCode();

}

However, you can do better. First, use the null-safe method 0Objects.hashCode. It returns
0 if its argument is nu11 and the result of calling hash(ode on the argument otherwise.
Also, use the static Double.hashCode method to avoid creating a Double object:

public int hashCode()
{
return 7 * Objects.hashCode(name)
+ 11 * Double.hashCode(salary)
+ 13 * Objects.hashCode (hireDay);

5.2 Object: The Cosmic Superclass 237

Even better, when you need to combine multiple hash values, call Objects.hash with
all of them. It will call Objects.hashCode for each argument and combine the values.
Then the Enployee.hashCode method is simply

pubTic int hashCode()
{

return Objects.hash(name, salary, hireDay);

}

Your definitions of equals and hashCode must be compatible: If x.equals(y) is true, then
x.hashCode() must return the same value as y.hashCode(). For example, if you define
Employee.equals to compare employee IDs, then the hashCode method needs to hash the
IDs, not employee names or memory addresses.

TIP: If you have fields of an array type, you can use the static Arrays.hashCode
method to compute a hash code composed of the hash codes of the array
elements.

java.lang.Object

e int hashCode()

returns a hash code for this object. A hash code can be any integer, positive or
negative. Equal objects need to return identical hash codes.

java.util.Objects

e static int hash(Object... objects)
returns a hash code that is combined from the hash codes of all supplied objects.
e static int hashCode(Object a)

returns 0 if a is null or a.hashCode() otherwise.

java.lang. (Integer | Long |Short |Byte | Double | Float | Character |Boolean)

e static int hashCode((int |Tong |short | byte |double | float |char | boolean) value)

returns the hash code of the given value.

Chapter 5 m Inheritance

java.util.Arrays

e static int hashCode(type[] a)

computes the hash code of the array a, which can have component type Object, int,
Tong, short, char, byte, boolean, float, or double.

9.2.4 The toString Method

Another important method in Object is the toString method that returns a string
representing the value of this object. Here is a typical example. The toString method
of the Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, then
the field values enclosed in square brackets. Here is an implementation of the
toString method for the Employee class:

pubTic String toString()
{
return "Employee[name=" + name
+ ",salary=" + salary
+ ",hireDay=" + hireDay
+ l|] n ;
}
Actually, you can do a little better. Instead of hardwiring the class name into the
toString method, call getClass().getName() to obtain a string with the class name.

public String toString()
{
return getClass().getName()
+ "[name=" + name
+ " salary=" + salary
+ " hireDay=" + hireDay
N

}

Such toString method will also work for subclasses.

Of course, the subclass programmer should define its own toString method and
add the subclass fields. If the superclass uses getClass().getName(), then the subclass
can simply call super.toString(). For example, here is a toString method for the Manager
class:

5.2 Object: The Cosmic Superclass

public class Manager extends Employee

{

pubTic String toString()
{
return super.toString()
+ "[bonus=" + bonus
+1%
}
}

Now a Manager object is printed as
Manager(name=...,salary=...,hireDay=...] [bonus=...]

The toString method is ubiquitous for an important reason: Whenever an object is
concatenated with a string by the “+” operator, the Java compiler automatically
invokes the toString method to obtain a string representation of the object. For
example:

Point p = new Point(10, 20);
String message = "The current position is " + p;
// automatically invokes p.toString()

nates the empty string with the string representation of x that is exactly
x.toString() . Unlike toString, this statement even works if x is of primitive type.

d TIP: Instead of writing x.toString(), you can write "" + x. This statement concate-

If x is any object and you call
System.out.printIn(x);
then the println method simply calls x.toString() and prints the resulting string.

The Object class defines the toString method to print the class name and the hash
code of the object. For example, the call

System.out.printIn(System.out)
produces an output that looks like this:
java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStrean class didn’t bother to override
the toString method.

Chapter 5 m Inheritance

CAUTION: Annoyingly, arrays inherit the toString method from 0Object, with the
0 added twist that the array type is printed in an archaic format. For example,

int[] TuckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + TuckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.) The
remedy is to call the static Arrays.toString method instead. The code

String s = Arrays.toString(TuckyNumbers) ;
yields the string "2, 3, 5, 7, 11, 13]".

To correctly print multidimensional arrays (that is, arrays of arrays), use
Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the standard class
library define the toString method so that you can get useful information about
the state of an object. This is particularly useful in logging messages like this:

System.out.printIn("Current position = " + position);

As we explain in Chapter 7, an even better solution is to use an object of the Logger
class and call

Logger.global.info("Current position = " + position);

TIP: We strongly recommend that you add a toString method to each class that
you write. You, as well as other programmers who use your classes, will be
grateful for the logging support.

The program in Listing 5.8 implements the equals, hashCode, and toString methods for
the classes Employee (Listing 5.9) and Manager (Listing 5.10).

Listing 5.8 equals/FqualsTest.java

package equals;

1
2
3 /'.'\"A'

¢ * This program demonstrates the equals method.
5 % @version 1.12 2012-01-26

6 * @author Cay Horstmann

7 ¥
s public class EqualsTest
9 {

5.2 Object: The Cosmic Superclass

public static void main(String[] args)

{

Employee alicel = new Employee("Alice Adams", 75000, 1987, 12, 15);
Employee alice2 = alicel;

Employee alice3 = new Employee("Alice Adams", 75000, 1987, 12, 15);
Employee bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);

System.out.printIn("alicel == alice2: " + (alicel == alice2));

System.out.printIn("alicel == alice3: " + (alicel == alice3));

System.out.printIn("alicel.equals(alice3): " + alicel.equals(alice3));

System.out.printIn("alicel.equals(bob): " + alicel.equals(bob));
System.out.printIn("bob.toString(): " + bob);

Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss. setBonus(5000);

System.out.printIn("boss.toString(): " + boss);
System.out.printIn("carl.equals(boss): " + carl.equals(boss));
System.out.printIn("alicel.hashCode(): " + alicel.hashCode());
System.out.printIn("alice3.hashCode(): " + alice3.hashCode());
System.out.printIn("bob.hashCode(): " + hob.hashCode());
System.out.printIn("carl.hashCode(): " + carl.hashCode());

Listing 5.9 equals/Employee.java

package equals;

import java.time.*;
import java.util.Objects;

public class Employee

{

private String name;
private double salary;
private LocalDate hireDay;

public Employee(String name, double salary, int year, int month, int day)

{

}

this.name = name;
this.salary = salary;
hireDay = LocalDate.of (year, month, day);

(Continues)

Chapter 5 m Inheritance

Listing 5.9 (Continued)

19 public String getName()

21 return name,

2 }

3

u public double getSalary()

25 {

2 return salary;

27 }

28

2 public LocalDate getHireDay()

30 {

31 return hireDay;

7] }

33

34 public void raiseSalary(double byPercent)

35 {

36 double raise = salary * byPercent / 100;

37 salary += raise;

3 }

39

40 public boolean equals(Object otherObject)

1 {

) // a quick test to see if the objects are identical
E] if (this == otherObject) return true;

44

I // must return false if the explicit parameter is null
46 if (otherObject == null) return false;

47

48 // if the classes don't match, they can't be equal
49 if (getClass() != otherObject.getClass()) return false;
50

51 // now we know otherObject is a non-null Employee
52 Employee other = (Employee) otherObject;

53

54 // test whether the fields have identical values
55 return Objects.equals(name, other.name) && salary == other.salary
56 && Objects.equals(hireDay, other.hireDay);
57 }

58

59 public int hashCode()

) {

61 return Objects.hash(name, salary, hireDay);

62 }

5.2 Object: The Cosmic Superclass

64 public String toString()

65 {

66 return getClass().getName() + "[name=" + name + ",salary=" + salary + ", hireDay=" + hireDay
o RO

68 }

89 }

Listing 5.10 equals/Manager.java

1 package equals;
public class Manager extends Employee
{ private double bonus;
public Manager(String name, double salary, int year, int month, int day)
super(name, salary, year, month, day);
10 bonus = 0;

11 }

3 public double getSalary()

15 double baseSalary = super.getSalary();

16 return baseSalary + bonus;

17 }

18

19 public void setBonus(double bonus)

2 {

21 this.bonus = bonus;

2 }

23

u public hoolean equals(Object otherObject)

25 {

2 if (!super.equals(otherObject)) return false;

27 Manager other = (Manager) otherObject;

28 // super.equals checked that this and other belong to the same class
29 return bonus == other.bonus;

30 }

31

32 public int hashCode()

3 {

3 return super.hashCode() + 17 * new Double(bonus).hashCode();
35 }

36)] ;

3 public String toString()

38 {

39 return super.toString() + "[bonus=" + bonus + "1";
40 }

Chapter 5 m Inheritance

java.lang.0bject

e (lass get(lass()

returns a class object that contains information about the object. As you will see
later in this chapter, Java has a runtime representation for classes that is encapsulated
in the (lass class.

e hoolean equals(Object otherObject)

compares two objects for equality; returns true if the objects point to the same area
of memory, and false otherwise. You should override this method in your own
classes.

e String toString()

returns a string that represents the value of this object. You should override this
method in your own classes.

java.lang.Class

e String getName()
returns the name of this class.
e (lass getSuperclass()

returns the superclass of this class as a (1ass object.

5.3 Generic Array Lists

In many programming languages—in particular, in C++—you have to fix the
sizes of all arrays at compile time. Programmers hate this because it forces them
into uncomfortable trade-offs. How many employees will be in a department?
Surely no more than 100. What if there is a humongous department with 150
employees? Do we want to waste 90 entries for every department with just
10 employees?

In Java, the situation is much better. You can set the size of an array at runtime.

int actualSize = . . .;
Employee[] staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically
modifying arrays at runtime. Once you set the array size, you cannot change it
easily. Instead, in Java you can deal with this common situation by using another
Java class, called Arraylist. The Arraylist class is similar to an array, but it

5.3 Generic Array Lists

automatically adjusts its capacity as you add and remove elements, without any
additional code.

Arraylist is a generic class with a type parameter. To specify the type of the element
objects that the array list holds, you append a class name enclosed in angle
brackets, such as ArrayList<Employee>. You will see in Chapter 8 how to define your
own generic class, but you don’t need to know any of those technicalities to use
the Arraylist type.

Here we declare and construct an array list that holds Enployee objects:

ArrayList<Employee> staff = new ArrayList<Employee>();

It is a bit tedious that the type parameter Employee is used on both sides. As of Java
SE 7, you can omit the type parameter on the right-hand side:

ArrayList<Employee> staff = new Arraylist<>();

This is called the “diamond” syntax because the empty brackets <> resemble a
diamond. Use the diamond syntax together with the new operator. The compiler
checks what happens to the new value. If it is assigned to a variable, passed into
a method, or returned from a method, then the compiler checks the generic type
of the variable, parameter, or method. It then places that type into the <. In our
example, the new Arraylist<>() is assigned to a variable of type Arraylist<Employees.
Therefore, the generic type is Enployee.

p NOTE: Before Java SE 5.0, there were no generic classes. Instead, there was
a single Arraylist class, a one-size-fits-all collection that holds elements of type
Object. You can still use ArrayList without a <. . .> suffix. It is considered a “raw”
type, with the type parameter erased.

% NOTE: In even older versions of Java, programmers used the Vector class for
dynamic arrays. However, the Arraylist class is more efficient, and there is no
longer any good reason to use the Vector class.

Use the add method to add new elements to an array list. For example, here is how
you populate an array list with employee objects:

staff.add(new Employee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that array
will run out of space. This is where array lists work their magic: If you call add and
the internal array is full, the array list automatically creates a bigger array and
copies all the objects from the smaller to the bigger array.

Chapter 5 m Inheritance

If you already know, or have a good guess, how many elements you want to
store, call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls to add
will not involve any costly reallocation.

You can also pass an initial capacity to the Arraylist constructor:

Arraylist<Employee> staff = new ArrayList<>(100);

0 CAUTION: Allocating an array list as
new Arraylist<>(100) // capacity is 100
is not the same as allocating a new array as
new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and the
size of an array. If you allocate an array with 100 entries, then the array has
100 slots, ready for use. An array list with a capacity of 100 elements has the
potential of holding 100 elements (and, in fact, more than 100, at the cost of
additional reallocations)—but at the beginning, even after its initial construction,
an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For
example,

staff.size()

returns the current number of elements in the staff array list. This is the
equivalent of

a.length
for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can
call the trinToSize method. This method adjusts the size of the memory block to
use exactly as much storage space as is required to hold the current number of
elements. The garbage collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the block
again, which takes time. You should only use trinToSize when you are sure you
won’t add any more elements to the array list.

5.3 Generic Array Lists

C++ NOTE: The Arraylist class is similar to the C++ vector template. Both Arraylist
and vector are generic types. But the C++ vector template overloads the [] oper-
ator for convenient element access. Java does not have operator overloading,
so it must use explicit method calls instead. Moreover, C++ vectors are copied
by value. If a and b are two vectors, then the assignment a = b makes a into a
new vector with the same length as b, and all elements are copied from b to a.
The same assignment in Java makes both a and b refer to the same array list.

java.util.ArrayList<E>

Arraylist<E>()

constructs an empty array list.

Arraylist<E>(int initialCapacity)

constructs an empty array list with the specified capacity.

Parameters: initialCapacity the initial storage capacity of the array list
hoolean add(E obj)

appends an element at the end of the array list. Always returns true.
Parameters: obj the element to be added

int size()

returns the number of elements currently stored in the array list. (Of course, this is
never larger than the array list’s capacity.)

void ensureCapacity(int capacity)

ensures that the array list has the capacity to store the given number of elements
without reallocating its internal storage array.

Parameters: capacity the desired storage capacity
void trimToSize()

reduces the storage capacity of the array list to its current size.

9.3.1 Accessing Array List Elements

Unfortunately, nothing comes for free. The automatic growth convenience that
array lists give requires a more complicated syntax for accessing the elements.
The reason is that the ArrayList class is not a part of the Java programming language;
it is just a utility class programmed by someone and supplied in the standard
library.

Instead of the pleasant [] syntax to access or change the element of an array, you
use the get and set methods.

247

Chapter 5 m Inheritance

For example, to set the ith element, you use
staff.set(i, harry);

This is equivalent to
a[i] = harry;

for an array a. (As with arrays, the index values are zero based.)

CAUTION: Do not call Tist.set(i, x) until the size of the array list is larger than
0 i. For example, the following code is wrong:

ArrayList<Employee> Tist = new Arraylist<>(100); // capacity 100, size 0
Tist.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only to replace
a previously added element.

To get an array list element, use
Employee e = staff.get(i);
This is equivalent to

Employee e = a[i];

p NOTE: When there were no generic classes, the get method of the raw Arraylist
class had no choice but to return an Object. Consequently, callers of get had to
cast the returned value to the desired type:
Employee e = (Employee) staff.get(i);
The raw Arraylist is also a bit dangerous. Its add and set methods accept objects
of any type. A call
staff.set(i, "Harry Hacker");

compiles without so much as a warning, and you run into grief only when you
retrieve the object and try to cast it. If you use an Arraylist<Employee> instead, the
compiler will detect this error.

5.3 Generic Array Lists m

You can sometimes get the best of both worlds—flexible growth and convenient
element access—with the following trick. First, make an array list and add all
the elements:

ArrayList<X> Tist = new Arraylist<>();

while (. .)
{
X=. .
Tist.add(x);
}

When you are done, use the toArray method to copy the elements into an array:

X[] a = new X[list.size()];
Tist.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the add
method with an index parameter:

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new
entry. If the new size of the array list after the insertion exceeds the capacity, the
array list reallocates its storage array.

Similarly, you can remove an element from the middle of an array list:
Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is reduced
by one.

Inserting and removing elements is not terribly efficient. It is probably not worth
worrying about for small array lists. But if you store many elements and frequently
insert and remove in the middle of a collection, consider using a linked list instead.
We explain how to program with linked lists in Chapter 9.

You can use the “for each” loop to traverse the contents of an array list:

for (Employee e : staff)
do something with e

This loop has the same effect as

for (int 1 = 0; 1 < staff.size(); i++)
{

Employee e = staff.get(i);

do something with e

}

Chapter 5 m Inheritance

Listing 5.11 is a modification of the EmployeeTest program of Chapter 4. The Enployee(]
array is replaced by an ArraylList<Employee>. Note the following changes:

* You don’t have to specify the array size.
* You use add to add as many elements as you like.

* You use size() instead of length to count the number of elements.

¢ You use a.get(i) instead of a[i] to access an element.

Listing 5.11 arrayList/ArrayListTest.java

1 package arraylist;
import java.util.*;

3
4
6 * This program demonstrates the ArraylList class.
7 * @version 1.11 2012-01-26

§ * @author Cay Horstmann

9

J

10 public class ArraylistTest

1n {

n public static void main(String[] args)

13 {

14 // fi1l the staff array Tist with three Employee objects

15 ArrayList<Employee> staff = new Arraylist<>();

16

7 staff.add(new Employee("Carl Cracker", 75000, 1987, 12, 15));
18 staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));
19 staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));
20

2 // raise everyone's salary by 5%

2 for (Employee e : staff)

23 e.raiseSalary(5);

24

25 // print out information about all Employee objects

2% for (Employee e : staff)

27 System.out.printin("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
28 + e.getHireDay();

29 }

5.3 Generic Array Lists

java.util.ArrayList<E>

e void set(int index, E obj)
puts a value in the array list at the specified index, overwriting the previous contents.
Parameters: index the position (must be between 0 and size() - 1)
obj the new value
e [get(int index)
gets the value stored at a specified index.

Parameters: index the index of the element to get (must be between 0
and size() - 1)

e void add(int index, E obj)
shifts up elements to insert an element.
Parameters: index the insertion position (must be between 0 and size())
obj the new element
e [remove(int index)
removes an element and shifts down all elements above it. The removed element
is returned.

Parameters: index the position of the element to be removed (must be
between 0 and size() - 1)

5.3.2 Compatibility between Typed and Raw Array Lists

In your own code, you will always want to use type parameters for added
safety. In this section, you will see how to interoperate with legacy code that does
not use type parameters.

Suppose you have the following legacy class:

public class EmployeeDB

{
public void update(Arraylist Tist) { . . .}
public ArrayList find(String query) { . . .}
}

You can pass a typed array list to the update method without any casts.

Arraylist<Employee> staff = . . .;
employeeDB. update(staff);

The staff object is simply passed to the update method.

Chapter 5 m Inheritance

CAUTION: Even though you get no error or warning from the compiler, this call

0 is not completely safe. The update method might add elements into the array list
that are not of type Employee. When these elements are retrieved, an exception
occurs. This sounds scary, but if you think about it, the behavior is simply as it
was before generics were added to Java. The integrity of the virtual machine is
never jeopardized. In this situation, you do not lose security, but you also do not
benefit from the compile-time checks.

Conversely, when you assign a raw Arraylist to a typed one, you get a warning.

ArrayList<Employee> result = employeeDB.find(query); // yields warning

NOTE: To see the text of the warning, compile with the option -X1int:unchecked.

Using a cast does not make the warning go away:.

ArrayList<Employee> result = (ArrayList<Employee>) employeeDB.find(query);
// yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic types in
Java. For compatibility, the compiler translates all typed array lists into raw
ArrayList objects after checking that the type rules were not violated. In a running
program, all array lists are the same—there are no type parameters in the virtual
machine. Thus, the casts (ArrayList) and (ArrayList<Employee>) carry outidentical runtime
checks.

There isn’t much you can do about that situation. When you interact with legacy
code, study the compiler warnings and satisfy yourself that the warnings are not
serious.

Once you are satisfied, you can tag the variable that receives the cast with the
@SuppressWarnings("unchecked") annotation, like this:

@SuppressWarnings ("unchecked") ArraylList<Employee> result =
(ArrayList<Employee>) employeeDB.find(query); // yields another warning

9.4 Object Wrappers and Autoboxing

Occasionally, you need to convert a primitive type like int to an object. All prim-
itive types have class counterparts. For example, a class Integer corresponds to the
primitive type int. These kinds of classes are usually called wrappers. The wrapper

5.4 Object Wrappers and Autoboxing

classes have obvious names: Integer, Long, Float, Double, Short, Byte, Character, and Boolean.
(The first six inherit from the common superclass Number.) The wrapper classes are
immutable—you cannot change a wrapped value after the wrapper has been
constructed. They are also final, so you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type parameter inside
the angle brackets cannot be a primitive type. It is not possible to form an
Arraylist<int>. Here, the Integer wrapper class comes in. It is OK to declare an array
list of Integer objects.

Arraylist<Integer> Tist = new Arraylist<>();

CAUTION: An Arraylist<Integer> is far less efficient than an int[] array because

0 each value is separately wrapped inside an object. You would only want to use
this construct for small collections when programmer convenience is more
important than efficiency.

Fortunately, there is a useful feature that makes it easy to add an element of type
int to an Arraylist<Integer>. The call

Tist.add(3);
is automatically translated to

Tist.add(Integer.value0f(3));

This conversion is called autoboxing.

P NOTE: You might think that autowrapping would be more consistent, but the
é “boxing” metaphor was taken from C#.

Conversely, when you assign an Integer object to an int value, it is automatically
unboxed. That is, the compiler translates

int n = list.get(i);
into
int n = list.get(i).intValue();

Automatic boxing and unboxing even works with arithmetic expressions. For
example, you can apply the increment operator to a wrapper reference:

Integer n = 3;
N+

Chapter 5 m Inheritance

The compiler automatically inserts instructions to unbox the object, increment
the resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers
are one and the same. There is just one point in which they differ considerably:
identity. As you know, the == operator, applied to wrapper objects, only tests
whether the objects have identical memory locations. The following comparison
would therefore probably fail:

Integer a = 1000;
Integer b = 1000;
if @a==h) ...

However, a Java implementation may, if it chooses, wrap commonly occurring
values into identical objects, and thus the comparison might succeed. This ambi-
guity is not what you want. The remedy is to call the eguals method when
comparing wrapper objects.

p NOTE: The autoboxing specification requires that boolean, byte, char <= 127, short,
and int between -128 and 127 are wrapped into fixed objects. For example, if a
and b had been initialized with 100 in the preceding example, then the comparison
would have had to succeed.

There are a couple of other subtleties about autoboxing. First off, since
wrapper class references can be null, it is possible for autounboxing to throw a
NulTPointerException:

Integer n = null;
System.out.printin(2 * n); // Throws NullPointerException

Also, if you mix Integer and Double types in a conditional expression, then the Integer
value is unboxed, promoted to double, and boxed into a Double:

Integer n = 1;
Double x = 2.0;
System.out.printin(true ? n : x); // Prints 1.0

Finally, let us emphasize that boxing and unboxing is a courtesy of the compiler,
not the virtual machine. The compiler inserts the necessary calls when it generates
the bytecodes of a class. The virtual machine simply executes those bytecodes.

You will often see the number wrappers for another reason. The designers of Java
found the wrappers a convenient place to put certain basic methods, such as
those for converting strings of digits to numbers.

To convert a string to an integer, use the following statement:

5.4 Object Wrappers and Autoboxing

int x = Integer.parselnt(s);

This

has nothing to do with Integer objects—rparselnt is a static method. But the

Integer class was a good place to put it.

The API notes show some of the more important methods of the Integer class. The
other number classes implement corresponding methods.

o

CAUTION: Some people think that the wrapper classes can be used to implement
methods that can modify numeric parameters. However, that is not correct. Recall
from Chapter 4 that it is impossible to write a Java method that increments an
integer parameter because parameters to Java methods are always passed by
value.

public static void triple(int x) // won't work
{

x =3 *x; // modifies Tocal variable

}
Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) // won't work
{

}

The problem is that Integer objects are immutable: The information contained
inside the wrapper can’'t change. You cannot use these wrapper classes to create
a method that modifies numeric parameters.

If you do want to write a method to change numeric parameters, you can use
one of the holder types defined in the org.omg.CORBA package: IntHolder, BooleanHolder,
and so on. Each holder type has a public (!) field value through which you can
access the stored value.

public static void triple(IntHolder x)
{

x.value = 3 * x.value;

}

java.lang.Integer

int intValue()

returns the value of this Integer object as an int (overrides the intValue method in
the Number class).

(Continues)

m Chapter 5 m Inheritance

java.lang.Integer (Continued)

e static String toString(int i)
returns a new String object representing the number i in base 10.
e static String toString(int i, int radix)

lets you return a representation of the number i in the base specified by the radix
parameter.

e static int parseInt(String s)
e static int parseInt(String s, int radix)

returns the integer whose digits are contained in the string s. The string must
represent an integer in base 10 (for the first method) or in the base given by the radix
parameter (for the second method).

e static Integer valueOf(String s)
e static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer whose digits are contained in
the string s. The string must represent an integer in base 10 (for the first method)
or in the base given by the radix parameter (for the second method).

java.text.NumberFormat

o Number parse(String s)

returns the numeric value, assuming the specified String represents a number.

5.5 Methods with a Variable Number of Parameters

It is possible to provide methods that can be called with a variable number of
parameters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls
System.out.printf("%d", n);

and
System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two parameters and the
other has three.

The printf method is defined like this:

5.5 Methods with a Variable Number of Parameters 257

public class PrintStream

{
public PrintStream printf(String fmt, Object... args) { return format(fmt, args); }

}

Here, the ellipsis ... is part of the Java code. It denotes that the method can receive
an arbitrary number of objects (in addition to the fnt parameter).

The printf method actually receives two parameters: the format string and an
Object[] array that holds all other parameters. (If the caller supplies integers or
other primitive type values, autoboxing turns them into objects.) It now faces the
unenviable task of scanning the fut string and matching up the ith format specifier
with the value args[i].

In other words, for the implementor of printf, the Object... parameter type is exactly
the same as Object[].

The compiler needs to transform each call to printf, bundling the parameters into
an array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { new Integer(n), "widgets" });

You can define your own methods with variable parameters, and you can specify
any type for the parameters, even a primitive type. Here is a simple example: a
function that computes the maximum of a variable number of values.

public static double max(double... values)

double Targest = Double.NEGATIVE_INFINITY;
for (double v : values) if (v > Targest) Targest = v;
return largest;

}
Simply call the function like this:

double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function.

y NOTE: ltis legal to pass an array as the last parameter of a method with variable
parameters. For example:

System.out.printf("%d %s", new Object[] { new Integer(1), "widgets" });

Therefore, you can redefine an existing function whose last parameter is an array
to a method with variable parameters, without breaking any existing code. For
example, MessageFormat.format was enhanced in this way in Java SE 5.0. If you
like, you can even declare the main method as

public static void main(String... args)

Chapter 5 m Inheritance

5.6 Enumeration Classes

You saw in Chapter 3 how to define enumerated types. Here is a typical example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

The type defined by this declaration is actually a class. The class has exactly four
instances—it is not possible to construct new objects.

Therefore, you never need to use equals for values of enumerated types. Simply
use == to compare them.

You can, if you like, add constructors, methods, and fields to an enumerated type.
Of course, the constructors are only invoked when the enumerated constants are
constructed. Here is an example.

public enum Size
SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
private String abbreviation;

private Size(String abbreviation) { this.abbreviation = abbreviation; }
public String getAbbreviation() { return abbreviation; }
}

All enumerated types are subclasses of the class Enum. They inherit a number of
methods from that class. The most useful one is toString, which returns the name
of the enumerated constant. For example, Size.SMALL.toString() returns the string
"SMALL".

The converse of toString is the static value0f method. For example, the statement
Size s = Enum.valueOf(Size.class, "SMALL");
sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all values
of the enumeration. For example, the call

Size[] values = Size.values();
returns the array with elements Size.SWALL, Size.MEDIUM, Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the enun
declaration, counting from zero. For example, Size.MEDIUM.ordinal () returns 1.

5.6 Enumeration Classes m

The short program in Listing 5.12 demonstrates how to work with enumerated
types.

P NOTE: The Enum class has a type parameter that we have ignored for simplicity.
For example, the enumerated type Size actually extends Enum<Size>. The type
parameter is used in the compareTo method. (We discuss the compareTo method in
Chapter 6 and type parameters in Chapter 8.)

Listing 5.12 enums/EnunTest. java

package enums;

import java.util.#;

* This program demonstrates enumerated types.
@version 1.0 2004-05-24
@author Cay Horstmann

*
*

1
2
3
4
5 /*
6
7
8
9

5/
10 public class EnumTest
1n {
2 public static void main(String[] args)
3 {
14 Scanner in = new Scanner(System.in);
15 System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) "):
16 String input = in.next().toUpperCase();
7 Size size = Enum.valueOf(Size.class, input);
18 System.out.printIn("size=" + size);
19 System.out.printIn("abbreviation=" + size.getAbbreviation());
2 if (size == Size.EXTRA_LARGE)
21 System.out.printIn("Good job--you paid attention to the _.");
2 }
3}

25 enum Size

% {
27 SMALL("S"), MEDIUM("M™), LARGE("L"), EXTRA_LARGE("XL");

29 private Size(String abbreviation) { this.abbreviation = abbreviation; }
30 public String getAbbreviation() { return abbreviation; }

32 private String abbreviation;

Chapter 5 m Inheritance

java.lang.Enum<E>

e static Enum valueOf(Class enumClass, String name)
returns the enumerated constant of the given class with the given name.
e String toString()
returns the name of this enumerated constant.
e int ordinal()
returns the zero-based position of this enumerated constant in the enun declaration.
e int compareTo(E other)

returns a negative integer if this enumerated constant comes before other, zero if
this == other, and a positive integer otherwise. The ordering of the constants is given
by the enun declaration.

5.7 Reflection

The reflection library gives you a very rich and elaborate toolset to write programs
that manipulate Java code dynamically. This feature is heavily used in JavaBeans,
the component architecture for Java (see Volume II for more on JavaBeans). Using
reflection, Java can support tools like those to which users of Visual Basic have
grown accustomed. In particular, when new classes are added at design time or
runtime, rapid application development tools can dynamically inquire about the
capabilities of these classes.

A program that can analyze the capabilities of classes is called reflective. The
reflection mechanism is extremely powerful. As the next sections show, you can
use it to

¢ Analyze the capabilities of classes at runtime;

* Inspect objects at runtime—for example, to write a single toString method that
works for all classes;

¢ Implement generic array manipulation code; and

e Take advantage of Method objects that work just like function pointers in
languages such as C++.

Reflection is a powerful and complex mechanism; however, it is of interest
mainly to tool builders, not application programmers. If you are interested in
programming applications rather than tools for other Java programmers, you can
safely skip the remainder of this chapter and return to it later.

5.7 Reflection

5.7.1 The Class Class

While your program is running, the Java runtime system always maintains what
is called runtime type identification on all objects. This information keeps track of
the class to which each object belongs. Runtime type information is used by the
virtual machine to select the correct methods to execute.

However, you can also access this information by working with a special Java
class. The class that holds this information is called, somewhat confusingly, (lass.
The get(lass() method in the Object class returns an instance of (lass type.

Employee e;

é]zlisé 1 = e.getClass();

Just like an Employee object describes the properties of a particular employee, a (lass
object describes the properties of a particular class. Probably the most commonly
used method of (lass is getName. This returns the name of the class. For example,
the statement

System.out.printIn(e.getClass().getName() + + e.getName());
prints
Employee Harry Hacker
if e is an employee, or
Manager Harry Hacker
if e is a manager.

If the class is in a package, the package name is part of the class name:

Random generator = new Random();
(Tass c1 = generator.getClass();
String name = c1.getName(); // name is set to "java.util.Random"

You can obtain a (lass object corresponding to a class name by using the static
forName method.

String className = "java.util.Random";
(lass c1 = Class.forName(className);

Use this method if the class name is stored in a string that varies at runtime. This
works if className is the name of a class or interface. Otherwise, the forNane method
throws a checked exception. See Section 5.7.2, “ A Primer on Catching Exceptions,”
on p. 263 for how to supply an exception handler whenever you use this method.

Chapter 5 m Inheritance

classes that it needs. Each of those loaded classes loads the classes that it
needs, and so on. That can take a long time for a big application, frustrating the
user. You can give the users of your program an illusion of a faster start with
the following trick. Make sure the class containing the main method does not ex-
plicitly refer to other classes. In it, display a splash screen. Then manually force
the loading of other classes by calling (lass.forName.

d TIP: At startup, the class containing your main method is loaded. It loads all

A third method for obtaining an object of type (lass is a convenient shorthand. If
Tis any Java type (or the void keyword), then T.class is the matching class object.
For example:

(Tass c11 = Random.class; // if you import java.util.*;
(lass c12 = int.class;
(lass ¢13 = Double[].class;

Note that a (lass object really describes a type, which may or may not be a class.
For example, int is not a class, but int.class is nevertheless an object of type (lass.

< NOTE: The (lass class is actually a generic class. For example, Employee.class is
of type (lass<Employee>. We are not dwelling on this issue because it would further
complicate an already abstract concept. For most practical purposes, you can
ignore the type parameter and work with the raw (lass type. See Chapter 8 for
more information on this issue.

CAUTION: For historical reasons, the getName method returns somewhat strange
names for array types:

* Double[].class.getName() returns "[Ljava.lang.Double;".

e int[].class.getName() returns "[I".

The virtual machine manages a unique (lass object for each type. Therefore, you
can use the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

5.7 Reflection

Another example of a useful method is one that lets you create an instance of a
class on the fly. This method is called, naturally enough, newInstance(). For example,

e.getClass() .newInstance();

creates a new instance of the same class type as e. The newInstance method calls the
no-argument constructor to initialize the newly created object. An exception is
thrown if the class does not have a no-argument constructor.

A combination of forName and newInstance lets you create an object from a class name
stored in a string.

String s = "java.util.Random";
Object m = Class.forName(s) .newInstance();

P NOTE: If you need to provide parameters for the constructor of a class you want
é to create by name in this manner, you can’t use the above statements. Instead,
you must use the newInstance method in the Constructor class.

C++ NOTE: The newInstance method corresponds to the idiom of a virtual con-

@ structor in C++. However, virtual constructors in C++ are not a language feature
but just an idiom that needs to be supported by a specialized library. The (lass
class is similar to the type_info class in C++, and the get(lass method is equivalent
to the typeid operator. The Java (lass is quite a bit more versatile than type_info,
though. The C++ type_info can only reveal a string with the name of the type, not
create new objects of that type.

5.7.2 A Primer on Catching Exceptions

We cover exception handling fully in Chapter 7, but in the meantime you will
occasionally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.” Throwing
an exception is more flexible than terminating the program because you can
provide a handler that “catches” the exception and deals with it.

If you don’t provide a handler, the program still terminates and prints a message
to the console, giving the type of the exception. You may have already seen ex-
ception reports when you accidentally used a null reference or overstepped the
bounds of an array.

Chapter 5 m Inheritance

There are two kinds of exceptions: unchecked exceptions and checked exceptions.
With checked exceptions, the compiler checks that you provide a handler. How-
ever, many common exceptions, such as accessing a null reference, are unchecked.
The compiler does not check whether you provided a handler for these errors—af-
ter all, you should spend your mental energy on avoiding these mistakes rather
than coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The (lass.forNane method is
an example of a method that throws a checked exception. In Chapter 7, you will
see several exception handling strategies. For now, we just show you the simplest
handler implementation.

Place one or more statements that might throw checked exceptions inside a try
block. Then provide the handler code in the catch clause.

try
{

statements that might throw exceptions
catch (Exception e)

handler action

}

Here is an example:

try

{
String name = . . .; // get class name
(Tass c1 = Class.forName(name); // might throw exception
do something with cl

catch (Exception e)

e.printStackTrace();
}

If the class name doesn’t exist, the remainder of the code in the try block is skipped
and the program enters the catch clause. (Here, we print a stack trace by using the
printStackTrace method of the Throwable class. Throwable is the superclass of the Exception
class.) If none of the methods in the try block throws an exception, the handler
code in the catch clause is skipped.

You only need to supply an exception handler for checked exceptions. It is easy
to find out which methods throw checked exceptions—the compiler will complain
whenever you call a method that threatens to throw a checked exception and you
don’t supply a handler.

5.7 Reflection

java.lang.Class

o static Class forName(String className)
returns the (lass object representing the class with name className.
e (Object newInstance()

returns a new instance of this class.

java.lang.reflect.Constructor

e (Object newInstance(Object[] args)
constructs a new instance of the constructor’s declaring class.

Parameters: args the parameters supplied to the constructor. See
Section 5.7.6 for more information on how to supply
parameters.

java.lang.Throwable

e void printStackTrace()

prints the Throwable object and the stack trace to the standard error stream.

9.7.3 Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection mechanism
for letting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package describe
the fields, methods, and constructors of a class, respectively. All three classes
have a method called getName that returns the name of the item. The Field class has
a method getType that returns an object, again of type (lass, that describes the field
type. The Method and Constructor classes have methods to report the types of the pa-
rameters, and the Method class also reports the return type. All three of these classes
also have a method called getModifiers that returns an integer, with various bits
turned on and off, that describes the modifiers used, such as public and static. You
can then use the static methods in the Modifier class in the java.lang.reflect package
to analyze the integer that getModifiers returns. Use methods like isPublic, isPrivate,
or isFinal in the Modifier class to tell whether a method or constructor was public,
private, or final. All you have to do is have the appropriate method in the Modifier

Chapter 5 m Inheritance

class work on the integer that getModifiers returns. You can also use the Modifier.toString
method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return arrays
of the public fields, methods, and constructors that the class supports. This
includes public members of superclasses. The getDeclaredFields, getDeclaredethods, and
getDeclaredConstructors methods of the (lass class return arrays consisting of all fields,
methods, and constructors that are declared in the class. This includes private,
package, and protected members, but not members of superclasses.

Listing 5.13 shows you how to print out all information about a class. The program
prompts you for the name of a class and writes out the signatures of all methods
and constructors as well as the names of all instance fields of a class. For example,
if you enter

java.lang.Double
the program prints

public class java.lang.Double extends java.lang.Number
{

public java.lang.Double(java.lang.String);

public java.lang.Double(double);

public int hashCode();

public int compareTo(java.lang.Object);

public int compareTo(java.lang.Double);

public hoolean equals(java.lang.Object);

public java.lang.String toString();

public static java.lang.String toString(double);
public static java.lang.Double valueOf(java.lang.String);
public static boolean isNaN(double);

public boolean isNaN();

public static boolean isInfinite(double);

public hoolean isInfinite();

public hyte byteValue();

public short shortValue();

public int intValue();

public Tong TongValue();

public float floatValue();

public double doubleValue();

public static double parseDouble(java.lang.String);
public static native long doubleTolongBits(double);
public static native Tong doubleToRawLongBits(double);
public static native double TongBitsToDouble(Tong);

public static final double POSITIVE_INFINITY;
public static final double NEGATIVE_INFINITY;
public static final double NaN;

public static final double MAX_VALUE;

5.7 Reflection

public static final double MIN_VALUE;
public static final java.lang.Class TYPE;
private double value;

private static final long serialVersionUID;

}

What is remarkable about this program is that it can analyze any class that the
Java interpreter can load, not just the classes that were available when the program
was compiled. We will use this program in the next chapter to peek inside the
inner classes that the Java compiler generates automatically.

Listing 5.13 reflection/ReflectionTest.java

package reflection;

import java.util.*;
import java.lang.reflect.*;

/**

* This program uses reflection to print all features of a class.
* @version 1.1 2004-02-21

* @author Cay Horstmann

%

11 public class ReflectionTest

n {

13 public static void main(String[] args)

14 {

15 // read class name from command Tine args or user input

16 String name;

7 if (args.length > 0) name = args[0];

18 else

19 {

20 Scanner in = new Scanner(System.in);

21 System.out.printIn("Enter class name (e.g. java.util.Date): ");
2 name = in.next();

23 }

24

25 try

2 {

27 // print class name and superclass name (if != Object)

2 (lass c1 = Class.forName(name);

29 (lass supercl = cl.getSuperclass();

30 String modifiers = Modifier.toString(cl.getModifiers());

3 if (modifiers.length() > 0) System.out.print(modifiers + " ");
k) System.out.print("class " + name);

3 if (supercl != null & supercl != Object.class) System.out.print(" extends "
3 + supercl.getName()) ;

(Continues)

y1.74

Chapter 5 m Inheritance

Listing 5.13 (Continued)

36 System.out.print("\n{\n");

37 printConstructors(cl);

38 System.out.printIn();

39 printMethods(c1);

40 System.out.printIn();

n printFields(cl);

0 System.out.printIn("}");

It}

44 catch (ClassNotFoundException e)

I {

46 e.printStackTrace();

47 }

48 System.exit(0);

49 }

50

51 /7\‘:‘:

52 * Prints all constructors of a class

53 * @param c1 a class

54 */

55 public static void printConstructors(Class c1)

56 {

57 Constructor[] constructors = cl.getDeclaredConstructors();
58

59 for (Constructor ¢ : constructors)

60 {

61 String name = c.getName();

62 System.out.print(" ");

63 String modifiers = Modifier.toString(c.getModifiers());
64 if (modifiers.length() > 0) System.out.print(modifiers + " ");
65 System.out.print(name + "(");

66

67 // print parameter types

68 (Tass[] paramTypes = c.getParameterTypes();
69 for (int j = 0; j < paramTypes.length; j++)
70 {

71 if (5 > 0) System.out.print(", ");

n System.out.print(paranTypes(j].getName());
IE! }

7 System.out.printin(");");

75 }

76 }

77

7 /¥

7 * Prints all methods of a class

80 * @param c1 a class

81 */

5.7 Reflection

126 }

public static void printMethods(Class c1)

{

Method[] methods = c1.getDeclaredMethods();

for (Method m : methods)

{

sk

(Tass retType = m.getReturnType(Q);
String name = m.getName();

System.out.print(" ");
// print modifiers, return type and method name
String modifiers = Modifier.toString(m.getModifiers());

if (modifiers.length() > 0) System.out.print(modifiers + " ");

System.out.print(retType.getName() + + name + "(");
// print parameter types

(Tass[] paramTypes = m.getParameterTypes();

for (int j = 0; j < paramTypes.Tength; j++)

if (j > 0) System.out.print(", ");
System.out.print(paramTypes[j].getName());

}
System.out.printIn(");");

* Prints all fields of a class
* @param c1 a class

v‘:/

public static void printFields(Class c1)

{

Field[] fields = cl.getDeclaredFields();

for (Field f : fields)

{

(Tass type = f.getType();

String name = f.getName();

System.out.print(" ");

String modifiers = Modifier.toString(f.getModifiers());

if (modifiers.length() > 0) System.out.print(nodifiers + " ");

System.out.printIn(type.getName() + + name + ";");

270

Chapter 5 m Inheritance

java.lang.Class

Field[] getFields()
Field[] getDeclaredFields()

getFields returns an array containing Field objects for the public fields of this class
or its superclasses; getDeclaredField returns an array of Field objects for all fields of
this class. The methods return an array of length 0 if there are no such fields or if
the (lass object represents a primitive or array type.

Method[] getMethods()

Method[] getDeclaredMethods()

returns an array containing Method objects: getMethods returns public methods and
includes inherited methods; getDeclaredMethods returns all methods of this class or
interface but does not include inherited methods.

Constructor[] getConstructors()

Constructor[] getDeclaredConstructors()

returns an array containing Constructor objects that give you all the public constructors
(for getConstructors) or all constructors (for getDeclaredConstructors) of the class
represented by this (lass object.

java.lang.reflect.Field
java.lang.reflect.Method
java.lang.reflect.Constructor

(Tass getDeclaringClass()
returns the (lass object for the class that defines this constructor, method, or field.
(lass[] getExceptionTypes() (in Constructor and Method classes)

returns an array of (lass objects that represent the types of the exceptions thrown
by the method.

int getModifiers()

returns an integer that describes the modifiers of this constructor, method, or field.
Use the methods in the Modifier class to analyze the return value.

String getName()

returns a string that is the name of the constructor, method, or field.

(lass[] getParameterTypes() (in Constructor and Method classes)

returns an array of (1ass objects that represent the types of the parameters.
(Tass getReturnType() (in Method classes)

returns a (1ass object that represents the return type.

5.7 Reflection

java.lang.reflect.Modifier

e static String toString(int modifiers)
returns a string with the modifiers that correspond to the bits set in modifiers.

e static boolean isAbstract(int modifiers)
e static boolean isFinal(int modifiers)

e static boolean isInterface(int modifiers)
e static boolean isNative(int modifiers)

e static boolean isPrivate(int modifiers)
e static boolean isProtected(int modifiers)
e static boolean isPublic(int modifiers)

e static boolean isStatic(int modifiers)

e static boolean isStrict(int modifiers)

e static boolean isSynchronized(int modifiers)
e static boolean isVolatile(int modifiers)

tests the bit in the modifiers value that corresponds to the modifier in the method
name.

9.7.4 Using Reflection to Analyze Objects at Runtime

In the preceding section, we saw how we can find out the names and types of the
data fields of any object:

¢ Get the corresponding (lass object.
e Call getDeclaredFields on the (lass object.

In this section, we will go one step further and actually look at the contents of the
fields. Of course, it is easy to look at the contents of a specific field of an object
whose name and type are known when you write a program. But reflection lets
you look at fields of objects that were not known at compile time.

The key method to achieve this is the get method in the Field class. If f is an object
of type Field (for example, one obtained from getDeclaredFields) and obj is an
object of the class of which fis a field, then f.get(obj) returns an object whose value
is the current value of the field of obj. This is all a bit abstract, so let’s run through
an example.

Employee harry = new Employee("Harry Hacker", 35000, 10, 1, 1989);
(Tass c1 = harry.getClass();

// the class object representing Employee
Field f = cl.getDeclaredField("name");

// the name field of the Employee class

271

272

Chapter 5 m Inheritance

Object v = f.get(harry);
// the value of the name field of the harry object, i.e., the String object "Harry Hacker"

Actually, there is a problem with this code. Since the nane field is a private field,
the get method will throw an I1legalAccessException. You can only use get to get the
values of accessible fields. The security mechanism of Java lets you find out what
fields an object has, but it won’t let you read the values of those fields unless you
have access permission.

The default behavior of the reflection mechanism is to respect Java access control.
However, if a Java program is not controlled by a security manager that disallows
it, you can override access control. To do this, invoke the setAccessible method on
a Field, Method, or Constructor object. For example:

f.setAccessible(true); // now OK to call f.get(harry);

The setAccessible method is a method of the AccessibleObject class, the common super-
class of the Field, Method, and Constructor classes. This feature is provided for debug-
gers, persistent storage, and similar mechanisms. We use it for a generic toString
method later in this section.

There is another issue with the get method that we need to deal with. The name
field is a String, and so it is not a problem to return the value as an Object. But
suppose we want to look at the salary field. That is a double, and in Java, number
types are not objects. To handle this, you can either use the getDouble method of
the Field class, or you can call get, whereby the reflection mechanism automatically
wraps the field value into the appropriate wrapper class—in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets
the field represented by f of the object obj to the new value.

Listing 5.14 shows how to write a generic toString method that works for any class.
It uses getDeclaredFields to obtain all data fields. It then uses the setAccessible conve-
nience method to make all fields accessible. For each field, it obtains the name
and the value. Each value is turned into a string by recursively invoking toString.

The generic toString method needs to address a couple of complexities. Cycles of
references could cause an infinite recursion. Therefore, the ObjectAnalyzer keeps track
of objects that were already visited. Also, to peek inside arrays, you need a
different approach. You'll learn about the details in the next section.

You can use this toString method to peek inside any object. For example, the call

ArrayList<Integer> squares = new Arraylist<>();
for (int i =1; i <= 5; i++) squares.add(i * 1);
System.out.printin(new ObjectAnalyzer().toString(squares));

yields the printout

5.7 Reflection

java.util.Arraylist[elementData=class java.lang.Object[]{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9] [][],java.lang.Integer{value=16][][],
java.lang.Integer[value=25][]1[],null,null,null,null,null},size=5] [modCount=5]][]

You can use this generic toString method to implement the toString methods of your
own classes, like this:

pubTic String toString()

{
return new ObjectAnalyzer().toString(this);

}

This is a hassle-free method for supplying a toString method that you may find
useful in your own programs.

Listing 5.14 objectAnalyzer/ObjectAnalyzerTest.java

package objectAnalyzer;

import java.util.Arraylist;

1

2

3

4

5 /'k'.\'
¢ * This program uses reflection to spy on objects.
7

8

9

* @version 1.12 2012-01-26
* @author Cay Horstmann
*/
10 public class ObjectAnalyzerTest
1n {
2 public static void main(String[] args)
B {
14 Arraylist<Integer> squares = new Arraylist<>();
15 for (int i =1; 1 <=5; i+4)
16 squares.add(i * 1);
7 System.out.printIn(new ObjectAnalyzer().toString(squares));
18 }
19 }

Listing 5.15 objectAnalyzer/ObjectAnalyzer.java

package objectAnalyzer;

import java.lang.reflect.AccessibleObject;
import java.lang.reflect.Array;

import java.lang.reflect.Field;

import java.lang.reflect.Modifier;

import java.util.Arraylist;

R G N

(Continues)

273

Chapter 5 m Inheritance

Listing 5.15 (Continued)

9 public class ObjectAnalyzer

10 {

11 private Arraylist<Object> visited = new Arraylist<>();
12

13 /¥

14 * Converts an object to a string representation that 1ists all fields.
15 * @param obj an object

16 * @return a string with the object's class name and all field names and
7 * values

18 */

19 public String toString(Object obj)

2 {

21 if (obj == null) return "null";

2 if (visited.contains(obj)) return "...";

23 visited.add(obj);

2 (Tass c1 = obj.getClass();

2 if (c1 == String.class) return (String) obj;

2 if (cl.isArray())

27 {

28 String r = c1.getComponentType() + "[1{";

29 for (int 1 = 0; i < Array.getlLength(obj); i++)
30 {

31 if >0 r+=""

2 Object val = Array.get(obj, i);

3 if (c1.getComponentType().isPrimitive()) r += val;
34 else r += toString(val);

35 }

36 return r + "}";

37 }

38

39 String r = cl.getName();

40 // inspect the fields of this class and all superclasses
4 do

Q {

IE] r+="[";

4 Field[] fields = c1.getDeclaredFields();

45 AccessibleObject.setAccessible(fields, true);
46 // get the names and values of all fields

4 for (Field f : fields)

48 {

49 if (IModifier.isStatic(f.getModifiers()))
50 {

51 if (Ir.endsWith("[")) r+=",";

52 r += f.getName() + "=";

53 try

54 {

5.7 Reflection

55 (lass t = f.getType(Q);
56 Object val = f.get(obj);
57 if (t.isPrimitive()) r += val;
58 else r += toString(val);
59 }

60 catch (Exception e)

61

62 e.printStackTrace();

63 }

64 }

65 }

66 r+="1"

67 cl = cl.getSuperclass();

68 }

69 while (c1 != null);

70

7 return r;

7 }

1}

java.lang.reflect.AccessibleObject 1.2

o void setAccessible(boolean flag)

sets the accessibility flag for this reflection object. A value of true indicates that Java
language access checking is suppressed and that the private properties of the object
can be queried and set.

e hoolean isAccessible()
gets the value of the accessibility flag for this reflection object.
e static void setAccessible(AccessibleObject[] array, boolean flag)

is a convenience method to set the accessibility flag for an array of objects.

java.lang.Class 1.1

e Field getField(String name)
e Field[] getFields()

gets the public field with the given name, or an array of all fields.
e Field getDeclaredField(String name)
e Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an array of all
fields.

275

276

Chapter 5 m Inheritance

java.lang.reflect.Field

e (Object get(Object obj)
gets the value of the field described by this Field object in the object obj.
e void set(Object obj, Object newValue)
sets the field described by this Field object in the object obj to a new value.

9.7.5 Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create arrays dynami-
cally. This is used, for example, in the implementation of the copy0f method in the
Arrays class. Recall how this method can be used to grow an array that has
become full.

Employee[] a = new Employee[100];

// array is full

a = Arrays.copyOf(a, 2 * a.length);
How can one write such a generic method? It helps that an Employee[] array can be
converted to an Object[] array. That sounds promising. Here is a first attempt:

public static Object[] badCopyOf(Object[] a, int newLength) // not useful

{
Object[] newArray = new Object[newLength];
System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newLength));
return newArray;

}

However, there is a problem with actually using the resulting array. The type of
array that this code returns is an array of objects (Object[]) because we created
the array using the line of code

new Object[newlLength]

An array of objects cannot be cast to an array of employees (Enployee[]). The virtual
machine would generate a (lassCastException at runtime. The point is that, as we
mentioned earlier, a Java array remembers the type of its entries—that is, the
element type used in the new expression that created it. It is legal to cast an Enployee[]
temporarily to an Object[] array and then cast it back, but an array that started its
life as an Object[] array can never be cast into an Enployee[] array. To write this kind
of generic array code, we need to be able to make a new array of the same type as
the original array. For this, we need the methods of the Array class in the

5.7 Reflection

java.lang.reflect package. The key is the static newInstance method of the Array class
that constructs a new array. You must supply the type for the entries and the
desired length as parameters to this method.

Object newArray = Array.newInstance(componentType, newlLength);

To actually carry this out, we need to get the length and the component type of
the new array.

We obtain the length by calling Array.getLength(a). The static getlength method of the
Array class returns the length of an array. To get the component type of the new
array:

First, get the class object of a.
2. Confirm that it is indeed an array.

3. Use the getComponentType method of the (lass class (which is defined only for class
objects that represent arrays) to find the right type for the array.

Why is getlength a method of Array but getComponentType a method of (lass? We don’t
know—the distribution of the reflection methods seems a bit ad hoc at times.

Here’s the code:

public static Object goodCopyOf(Object a, int newLength)
{
(lass ¢l = a.getClass();
if (Icl.isArray()) return null;
(Tass componentType = cl.getComponentType();
int Tength = Array.getlength(a);
Object newArray = Array.newInstance(componentType, newlength);
System.arraycopy(a, 0, newArray, 0, Math.min(length, newLength));
return newArray;

}

Note that this copy0f method can be used to grow arrays of any type, notjust arrays
of objects.

.lnt[] a= {]-y 2! 3) 41 5};
a = (int[]) goodCopyOf(a, 10);

To make this possible, the parameter of goodCopy0f is declared to be of type Object,
not an array of objects (Object[]). The integer array type int[] can be converted to an
Object, but not to an array of objects!

Listing 5.16 shows both methods in action. Note that the cast of the return value
of badcopy0f will throw an exception.

277

278

Chapter 5 m Inheritance

Listing 5.16 arrays/Copy0fTest.java

© o o~ o o e W oo

13

package arrays;

import java.lang.reflect.*;
import java.util.®;

/**
* This program demonstrates the use of reflection for manipulating arrays.
¥ @version 1.2 2012-05-04
* @author Cay Horstmann
*/
public class CopyOfTest
{
public static void main(String[] args)
{
int[la={1,23}4
a = (int[]) goodCopyOf(a, 10);
System.out.printin(Arrays.toString(a));

String[] b = { "Tom", "Dick", "Harry" };
b = (String[]) goodCopyOf(b, 10);
System.out.printin(Arrays.toString(h));

System.out.printin("The following call will generate an exception.");
b = (String[]) badCopyOf(h, 10);
}

/*k
* This method attempts to grow an array by allocating a new array and copying all elements.
* @param a the array to grow
* @param newLength the new Tength
* @return a larger array that contains all elements of a. However, the returned array has
* type Object[], not the same type as a
t/
public static Object[] badCopyOf(Object[] a, int newLength) // not useful
{
Object[] newArray = new Object[newLength];
System.arraycopy(a, 0, newArray, 0, Math.min(a.length, newlLength));
return newArray;

}
/*k

* This method grows an array by allocating a new array of the same type and
* copying all elements.

* @param a the array to grow. This can be an object array or a primitive

* type array

* @return a larger array that contains all elements of a.

J

5.7 Reflection

4 public static Object goodCopyOf(Object a, int newLength)

49 {

50 (lass c1 = a.getClass();

51 if (Icl.isArray()) return null;

52 (lass componentType = c1.getComponentType();

53 int Tength = Array.getlength(a);

54 Object newArray = Array.newInstance(componentType, newlLength);

55 System.arraycopy(a, 0, newArray, 0, Math.min(length, newlength));
56 return newArray;

57 }

8}

java.lang.reflect.Array

static Object get(Object array, int index)
e static xxx getXxx(Object array, int index)

(xxx is one of the primitive types boolean, byte, char, double, float, int, Tong, or short.)
These methods return the value of the given array that is stored at the given index.
e static void set(Object array, int index, Object newValue)
e static setXxx(Object array, int index, xxx newValue)

(xxx is one of the primitive types boolean, byte, char, double, float, int, Tong, or short.)
These methods store a new value into the given array at the given index.

e static int getlength(Object array)
returns the length of the given array.

e static Object newInstance(Class componentType, int length)
e static Object newInstance(Class componentType, int[] Tengths)

returns a new array of the given component type with the given dimensions.

5.7.6 Invoking Arbitrary Methods

In C and C++, you can execute an arbitrary function through a function pointer.
On the surface, Java does not have method pointers—that is, ways of giving the
location of a method to another method, so that the second method can invoke
it later. In fact, the designers of Java have said that method pointers are dangerous
and error-prone, and that Java interfaces (discussed in the next chapter) are a su-
perior solution. However, the reflection mechanism allows you to call arbitrary
methods.

279

Chapter 5 m Inheritance

P NOTE: Among the nonstandard language extensions that Microsoft added to
its Java derivatives, J++ and C#, is another method pointer type, called a dele-
gate, that is different from the Method class that we discuss in this section. How-
ever, inner classes (which we will introduce in the next chapter) are a more
useful construct than delegates.

Recall that you can inspect a field of an object with the get method of the Field
class. Similarly, the Method class has an invoke method that lets you call the method
that is wrapped in the current Method object. The signature for the invoke method is

Object invoke(Object obj, Object... args)

The first parameter is the implicit parameter, and the remaining objects provide
the explicit parameters.

For a static method, the first parameter is ignored—you can set it to null.

For example, if nl represents the getNane method of the Employee class, the following
code shows how you can call it:

String n = (String) ml.invoke(harry);

If the return type is a primitive type, the invoke method will return the wrapper
type instead. For example, suppose that m2 represents the getSalary method of the
Employee class. Then, the returned object is actually a Double, and you must cast it
accordingly. Use automatic unboxing to turn it into a double:

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and
search through the returned array of Method objects until you find the method you
want. Or, you can call the getMethod method of the (lass class. This is similar to the
getField method that takes a string with the field name and returns a Field object.
However, there may be several methods with the same name, so you need to be
careful that you get the right one. For that reason, you must also supply the
parameter types of the desired method. The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getNane and raiseSalary
methods of the Employee class:

Method ml = Employee.class.getMethod("getName");
Method m2 = Employee.class.getMethod("raiseSalary", double.class);

Now that you have seen the rules for using Method objects, let’s put them to work.
Listing 5.17 is a program that prints a table of values for a mathematical function
such as Math.sqrt or Math.sin. The printout looks like this:

5.7 Reflection

public static native double java.lang.Math.sqrt(double)

1.0000 | 1.0000
2.0000 | 1.4142
3.0000 | L7321
40000 | 2.0000
5.0000 | 2.2361
6.0000 | 2.4495
7.0000 | 2.6458
8.0000 | 2.828¢4
9.0000 | 3.0000

10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function that
is being tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)

double y = (Double) f.invoke(null, x);
System.out.printf("%10.4f | %10.4f%n", x, y);

Here, f is an object of type Method. The first parameter of invoke is nul1 because we
are calling a static method.

To tabulate the Math.sqrt function, we set f to

Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single parameter
of type double.

Listing 5.17 shows the complete code of the generic tabulator and a couple of
test runs.

As this example clearly shows, you can do anything with Method objects that you
can do with function pointers in C (or delegates in C#). Just as in C, this style of
programming is usually quite inconvenient, and always error-prone. What hap-
pens if you invoke a method with the wrong parameters? The invoke method
throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That
means you must cast back and forth a lot. As a result, the compiler is deprived
of the chance to check your code, so errors surface only during testing, when they
are more tedious to find and fix. Moreover, code that uses reflection to get at
method pointers is significantly slower than code that simply calls methods
directly.

For that reason, we suggest that you use Method objects in your own programs
only when absolutely necessary. Using interfaces and, as of Java SE 8, lambda

Chapter 5 m Inheritance

expressions (the subject of the next chapter) is almost always a better idea. In
particular, we echo the developers of Java and suggest not using Method objects for
callback functions. Using interfaces for the callbacks leads to code that runs faster
and is a lot more maintainable.

Listing 5.17 methods/MethodTableTest.java

1 package methods;
2
3 import java.lang.reflect.*;

4

AL

6 * This program shows how to invoke methods through reflection.
7 * @version 1.2 2012-05-04

§ * @author Cay Horstmann

g ¥/

10 public class MethodTableTest

1n {

12 public static void main(String[] args) throws Exception

13 {

14 // get method pointers to the square and sqrt methods

15 Method square = MethodTahleTest.class.getMethod("square", double.class);
16 Method sqrt = Math.class.getMethod("sqrt", double.class);
17

18 // print tables of x- and y-values

19

20 printTable(1, 10, 10, square);

2 printTable(1, 10, 10, sqrt);

2 }

23

2 /w

25 * Returns the square of a number

2% * @param x a number

7 * @return x squared

28 */

29 public static double square(double x)

30 {

31 return x * x;

2 }

33

3 /w

3 * Prints a table with x- and y-values for a method

3 * @param from the Tower bound for the x-values

37 * @param to the upper bound for the x-values

38 * @aram n the number of rows in the table

39 * @param f a method with a double parameter and double return value

40 */

5.8 Design Hints for Inheritance

public static void printTable(double from, double to, int n, Method f)

{
// print out the method as table header
System.out.printIn(f);
double dx = (to - from) / (n - 1);
for (double x = from; x <= to; X += dx)
{
try
double y = (Double) f.invoke(null, x);
System.out.printf("%10.4f | %10.4f%n", x, y);
}
catch (Exception e)
{
e.printStackTrace();
}
}
}

java.lang.reflect.Method

public Object invoke(Object implicitParameter, Object[] explicitParameters)

invokes the method described by this object, passing the given parameters and
returning the value that the method returns. For static methods, pass null as the
implicit parameter. Pass primitive type values by using wrappers. Primitive type
return values must be unwrapped.

9.8 Design Hints for Inheritance

We want to end this chapter with some hints that we have found useful when
using inheritance.

1.

Place common operations and fields in the superclass.

This is why we put the name field into the Person class instead of replicating
it in the Employee and Student classes.

Don't use protected fields.

Some programmers think it is a good idea to define most instance fields as
protected, “just in case,” so that subclasses can access these fields if they need
to. However, the protected mechanism doesn’t give much protection, for two
reasons. First, the set of subclasses is unbounded—anyone can form a subclass

Chapter 5 m Inheritance

of your classes and then write code that directly accesses protected instance
fields, thereby breaking encapsulation. And second, in the Java programming
language, all classes in the same package have access to protected fields, whether
or not they are subclasses.

However, protected methods can be useful to indicate methods that are not
ready for general use and should be redefined in subclasses.

Use inheritance to model the “is—a” relationship.

Inheritance is a handy code-saver, but sometimes people overuse it. For ex-
ample, suppose we need a (ontractor class. Contractors have names and hire
dates, but they do not have salaries. Instead, they are paid by the hour, and
they do not stay around long enough to get a raise. There is the temptation
to form a subclass Contractor from Employee and add an hourlyWage field.

public class Contractor extends Employee

{
private double hourlyWage;

}

This is not a good idea, however, because now each contractor object has
both a salary and hourly wage field. It will cause you no end of grief when
you implement methods for printing paychecks or tax forms. You will end
up writing more code than you would have written by not inheriting in the
first place.

The contractor-employee relationship fails the “is—a” test. A contractor is not
a special case of an employee.

Don’t use inheritance unless all inherited methods make sense.

Suppose we want to write a Holiday class. Surely every holiday is a day, and
days can be expressed as instances of the GregorianCalendar class, so we can use
inheritance.

class Holiday extends GregorianCalendar { . . .}

Unfortunately, the set of holidays is not closed under the inherited operations.
One of the public methods of GregorianCalendar is add. And add can turn holidays
into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.

5.8 Design Hints for Inheritance

Note that this problem does not arise if you extend LocalDate. Because that
class is immutable, there is no method that could turn a holiday into a
nonholiday.

Don’t change the expected behavior when you override a method.

The substitution principle applies not just to syntax but, more importantly,
to behavior. When you override a method, you should not unreasonably
change its behavior. The compiler can’t help you—it cannot check whether
your redefinitions make sense. For example, you can “fix” the issue of the
add method in the Holiday class by redefining add, perhaps to do nothing, or to
throw an exception, or to move on to the next holiday.

However, such a fix violates the substitution principle. The sequence of
statements

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);

int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.printin(d2 - d1);

should have the expected behavior, no matter whether x is of type GregorianCalendar
or Holiday.

Of course, therein lies the rub. Reasonable and unreasonable people can argue
at length about what the expected behavior is. For example, some authors
argue that the substitution principle requires Manager.equals to ignore the bonus
field because Employee.equals ignores it. These discussions are pointless if they
occur in a vacuum. Ultimately, what matters is that you do not circumvent
the intent of the original design when you override methods in subclasses.

Use polymorphism, not type information.

Whenever you find code of the form

if (x is of type 1)
actiony(x);

else if (x is of type 2)
actiony(x) ;

think polymorphism.

Do action; and action, represent a common concept? If so, make the concept a
method of a common superclass or interface of both types. Then, you can
simply call

X.action();

and have the dynamic dispatch mechanism inherent in polymorphism launch
the correct action.

Chapter 5 m Inheritance

Code that uses polymorphic methods or interface implementations is much
easier to maintain and extend than code using multiple type tests.

7. Don’t overuse reflection.

The reflection mechanism lets you write programs with amazing generality,
by detecting fields and methods at runtime. This capability can be extremely
useful for systems programming, but it is usually not appropriate in applica-
tions. Reflection is fragile—with it, the compiler cannot help you find pro-
gramming errors. Any errors are found at runtime and result in exceptions.

You have now seen how Java supports the fundamentals of object-oriented pro-
gramming: classes, inheritance, and polymorphism. In the next chapter, we will
tackle two advanced topics that are very important for using Java effectively:
interfaces and lambda expressions.

CHAPTER

Interfaces, Lambda

Expressions, and Inner Classes

In this chapter

* 6.1 Interfaces, page 288

e 6.2 Examples of Interfaces, page 302
* 6.3 Lambda Expressions, page 314

* 6.4 Inner Classes, page 329

* 6.5 Proxies, page 350

You have now seen all the basic tools for object-oriented programming in Java.
This chapter shows you several advanced techniques that are commonly used.
Despite their less obvious nature, you will need to master them to complete your
Java tool chest.

The first technique, called interfaces, is a way of describing what classes should
do, without specifying how they should do it. A class can implement one or more
interfaces. You can then use objects of these implementing classes whenever
conformance to the interface is required. After we cover interfaces, we move on
to lambda expressions, a concise way for expressing a block of code that can be

287

288

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

executed at a later point in time. Using lambda expressions, you can express code
that uses callbacks or variable behavior in an elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are technically
somewhat complex—they are defined inside other classes, and their methods can
access the fields of the surrounding class. Inner classes are useful when you design
collections of cooperating classes.

This chapter concludes with a discussion of proxies, objects that implement arbi-
trary interfaces. A proxy is a very specialized construct that is useful for building
system-level tools. You can safely skip that section on first reading.

6.1 Interfaces

In the following sections, you will learn what Java interfaces are and how to use
them. You will also find out how interfaces have been made more powerful in
Java SE 8.

6.1.1 The Interface Concept

In the Java programming language, an interface is not a class but a set of
requirements for the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a partic-
ular interface, then I'll perform the service.” Let’s look at a concrete example. The
sort method of the Arrays class promises to sort an array of objects, but under
one condition: The objects must belong to classes that implement the Comparable
interface.

Here is what the Comparable interface looks like:

public interface Comparable

{
int compareTo(Object other);

}

This means that any class that implements the Comparable interface is required to
have a compareTo method, and the method must take an Object parameter and return
an integer.

6.1 Interfaces

P NOTE: As of Java SE 5.0, the Comparable interface has been enhanced to be a
é generic type.

public interface Comparable<T>

{
int compareTo(T other); // parameter has type T

}
For example, a class that implements Comparable<Employee> must supply a method
int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then the
compareTo method has a parameter of type Object, and you have to manually cast
that parameter of the compareTo method to the desired type. We will do just that
for a little while so that you don’t have to worry about two new concepts at the
same time.

All methods of an interface are automatically public. For that reason, it is not
necessary to supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface cannot spell out:
When calling x.compareTo(y), the compareTo method must actually be able to compare
the two objects and return an indication whether x or y is larger. The method is
supposed to return a negative number if x is smaller than y, zero if they are equal,
and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple
methods. As you will see later, interfaces can also define constants. What is more
important, however, is what interfaces cannot supply. Interfaces never have in-
stance fields. Before Java SE 8, methods were never implemented in interfaces.
(As you will see in Section 6.1.4, “Static Methods,” on p. 298 and Section 6.1.5,
“Default Methods,” on p. 298, it is now possible to supply simple methods in in-
terfaces. Of course, those methods cannot refer to instance fields—interfaces don’t
have any.)

Supplying instance fields and methods that operate on them is the job of the
classes that implement the interface. You can think of an interface as being similar
to an abstract class with no instance fields. However, there are some differences
between these two concepts—we look at them later in some detail.

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

Now suppose we want to use the sort method of the Arrays class to sort an array
of Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implenents keyword:

class Employee implements Comparable

Of course, now the Enployee class needs to supply the compareTo method. Let’s suppose
that we want to compare employees by their salary. Here is an implementation
of the compareTo method:

pubTic int compareTo(Object otherObject)

{
Employee other = (Employee) otherObject;
return Double.compare(salary, other.salary);

}

Here, we use the static Double.compare method that returns a negative if the first ar-
gument is less than the second argument, 0 if they are equal, and a positive value
otherwise.

CAUTION: In the interface declaration, the compareTo method was not declared

0 public because all methods in an interface are automatically public. However,
when implementing the interface, you must declare the method as public. Other-
wise, the compiler assumes that the method has package visibility—the default
for a class. The compiler then complains that you're trying to supply a more
restrictive access privilege.

We can do a little better by supplying a type parameter for the generic Comparable
interface:

class Employee implements Comparable<Employee>

public int compareTo(Employee other)

{

return Double.compare(salary, other.salary);

}

}
Note that the unsightly cast of the Object parameter has gone away.

6.1 Interfaces m

TIP: The compareTo method of the Comparable interface returns an integer. If the

6 objects are not equal, it does not matter what negative or positive value you re-
turn. This flexibility can be useful when you are comparing integer fields. For
example, suppose each employee has a unique integer id and you want to sort
by the employee ID number. Then you can simply return id - other.id. That value
will be some negative value if the first ID number is less than the other, 0 if they
are the same ID, and some positive value otherwise. However, there is one
caveat: The range of the integers must be small enough so that the subtraction
does not overflow. If you know that the IDs are not negative or that their absolute
value is at most (Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static
Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers. The
difference salary - other.salary can round to 0 if the salaries are close together
but not identical. The call Double.compare(x, y) simply returns -1if x < y or 1if x > y.

P NOTE: The documentation of the Comparable interface suggests that the compareTo
method should be compatible with the equals method. That s, x.compareTo(y) should
be zero exactly when x.equals(y). Most classes in the Java API that implement
Comparable follow this advice. A notable exception is BigDecimal. Consider x = new
BigDecimal ("1.0") and y = new BigDecimal ("1.00"). Then x.equals(y) is false because
the numbers differ in precision. But x.compareTo(y) is zero. Ideally, it shouldn’t be,
but there was no obvious way of deciding which one should come first.

Now you saw what a class must do to avail itself of the sorting service—it must
implement a compareTo method. That’s eminently reasonable. There needs to be
some way for the sort method to compare objects. But why can’t the Employee class
simply provide a compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed.
When making a method call, the compiler needs to be able to check that the
method actually exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0)
// rearrange a[i] and a[j]

}

The compiler must know that a[i] actually has a compareTo method. If a is an array
of Comparable objects, then the existence of the method is assured because every class
that implements the Comparable interface must supply the method.

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

P NOTE: You would expect that the sort method in the Arrays class is defined to
accept a Comparable[] array so that the compiler can complain if anyone ever calls
sort with an array whose element type doesn’timplement the Comparable interface.
Sadly, that is not the case. Instead, the sort method accepts an Object[] array
and uses a clumsy cast:

// Approach used in the standard Tibrary--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{

// rearrange a[i] and a[j]

}

If a[i] does not belong to a class that implements the Comparable interface, the
virtual machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class
Employee (Listing 6.2) for sorting an employee array.

Listing 6.1 interfaces/EmployeeSortTest.java

1 package interfaces;
2
3 import java.util.®;

4

AL

6 * This program demonstrates the use of the Comparable interface.
7 * @version 1.30 2004-02-27

§ * @author Cay Horstmann

g ¥/

10 public class EmployeeSortTest

1n {

2 public static void main(String[] args)

3 {

1 Employee[] staff = new Employee[3];

15

16 staff[0] = new Employee("Harry Hacker", 35000);

7 staff[1] = new Employee("Carl Cracker", 75000);

18 staff[2] = new Employee("Tony Tester", 38000);

19

20 Arrays.sort(staff);

21

2 // print out information about all Employee objects
PE! for (Employee e : staff)

u System.out.printIn("name=" + e.getName() + ",salary=" + e.getSalary());
2 }

6.1 Interfaces

Listing 6.2 interfaces/Employee.java

1 package interfaces;

2

3 public class Employee implements Comparable<Employee>

¢ |

private String name;
private double salary;

public Employee(String name, double salary)
{

this.name = name;

this.salary = salary;

}
public String getName()

return name;

}

public double getSalary()
{
return salary;

}

public void raiseSalary(double byPercent)
{
double raise = salary * byPercent / 100;
salary += raise;

}
/**

* Compares employees by salary
* @param other another Employee object
* @return a negative value if this employee has a Tower salary than
* otherObject, 0 if the salaries are the same, a positive value otherwise
*k/
public int compareTo(Employee other)
{
return Double.compare(salary, other.salary);

}

java. lang. Comparable<T>

int compareTo(T other)

compares this object with other and returns a negative integer if this object is less

than other, zero if they are equal, and a positive integer otherwise.

m Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

java.util.Arrays

e static void sort(Object[] a)

sorts the elements in the array a. All elements in the array must belong to classes
that implement the Comparable interface, and they must all be comparable to each
other.

java.lang.Integer

e static int compare(int x, int y)

returns a negative integer if x < y, zero if x and y are equal, and a positive integer
otherwise.

java.lang.Double

e static int compare(double x, double y)

returns a negative integer if x < y, zero if x and y are equal, and a positive integer
otherwise.

< NOTE: According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies that
x.compareTo(y) must throw an exception if y.compareTo(x) throws an exception.)”
Here, sgn is the sign of a number: sgn(n) is —1 if n is negative, 0 if n equals 0,
and 1 if n is positive. In plain English, if you flip the parameters of compareTo, the
sign (but not necessarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Since Manager extends Employee, it implements Comparable<Employee> and not
Comparable<Manager>. If Manager chooses to override compareTo, it must be prepared to
compare managers to employees. It can’t simply cast an employee to a manager:

class Manager extends Employee

{
public int compareTo(Employee other)
{
Manager otherManager = (Manager) other; // NO

.

6.1 Interfaces

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then
the call x.compareTo(y) doesn't throw an exception—it simply compares x and y
as employees. But the reverse, y.compareTo(x), throws a (lassCastException.

This is the same situation as with the equals method that we discussed in
Chapter 5, and the remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw
comparison of objects that belong to different classes. Each compareTo method
should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide
a single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular employees,
regardless of salary. What about other subclasses such as Executive and Secretary?
If you need to establish a pecking order, supply a method such as rank in the
Employee class. Have each subclass override rank, and implement a single compareTo
method that takes the rank values into account.

6.1.2 Properties of Interfaces

Interfaces are not classes. In particular, you can never use the new operator to
instantiate an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare
interface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the
interface:

x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you
can use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . .}

Just as you can build hierarchies of classes, you can extend interfaces. This allows
for multiple chains of interfaces that go from a greater degree of generality to a
greater degree of specialization. For example, suppose you had an interface called
Moveable.

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

public interface Moveable

{
}

Then, you could imagine an interface called Powered that extends it:

void move(double x, double y);

public interface Powered extends Moveable

double milesPerGallon();
}

Although you cannot put instance fields or static methods in an interface, you
can supply constants in them. For example:

public interface Powered extends Moveable

double milesPerGallon();
double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always public
static final.

p NOTE: It is legal to tag interface methods as public, and fields as public static
final. Some programmers do that, either out of habit or for greater clarity. How-
ever, the Java Language Specification recommends that the redundant keywords
not be supplied, and we follow that recommendation.

Some interfaces define just constants and no methods. For example, the standard
library contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,
and so on. Any class that chooses to implement the SwingConstants interface automat-
ically inherits these constants. Its methods can simply refer to NORTH rather than
the more cumbersome SwingConstants.NORTH. However, this use of interfaces seems
rather degenerate, and we do not recommend it.

While each class can have only one superclass, classes can implement multiple
interfaces. This gives you the maximum amount of flexibility in defining a class’s
behavior. For example, the Java programming language has an important interface
built into it, called Cloneable. (We will discuss this interface in detail in Section 6.2.3,
“Object Cloning,” on p. 306.) If your class implements Cloneable, the clone method
in the Object class will make an exact copy of your class’s objects. If you want both
cloneability and comparability, simply implement both interfaces. Use commas
to separate the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

6.1 Interfaces

6.1.3 Interfaces and Abstract Classes

If you read the section about abstract classes in Chapter 5, you may wonder why
the designers of the Java programming language bothered with introducing the
concept of interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?

public abstract int compareTo(Object other);
}

The Enployee class would then simply extend this abstract class and supply the
compareTo method:

class Employee extends Comparable // why not?

public int compareTo(Object other) { . . .}
1

There is, unfortunately, a major problem with using an abstract base class to ex-
press a generic property. A class can only extend a single class. Suppose the
Employee class already extends a different class, say, Person. Then it can’t extend a
second class.

class Employee extends Person, Comparable // Error
But each class can implement as many interfaces as it likes:
class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more
than one superclass. This feature is called multiple inheritance. The designers of
Java chose not to support multiple inheritance, because it makes the language
either very complex (as in C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while
avoiding the complexities and inefficiencies.

C++ NOTE: C++ has multiple inheritance and all the complications that come

@ with it, such as virtual base classes, dominance rules, and transverse pointer
casts. Few C++ programmers use multiple inheritance, and some say it should
never be used. Other programmers recommend using multiple inheritance only
for the “mix-in” style of inheritance. In the mix-in style, a primary base class de-
scribes the parent object, and additional base classes (the so-called mix-ins)
may supply auxiliary characteristics. That style is similar to a Java class with a
single superclass and additional interfaces.

297

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

6.1.4 Static Methods

As of Java SE 8, you are allowed to add static methods to interfaces. There was
never a technical reason why this should be outlawed. It simply seemed to be
against the spirit of interfaces as abstract specifications.

Up to now, it has been common to place static methods in companion classes. In
the standard library, you find pairs of interfaces and utility classes such as
Collection/ Collections or Path/ Paths.

Have a look at the Paths class. It only has a couple of factory methods. You can
construct a path to a file or directory from a sequence of strings, such as
Paths.get("jdk1.8.0", "jre", "bin"). In Java SE 8, one could have added this method to
the Path interface:

public interface Path

{
public static Path get(String first, String... more) {
return FileSystems.getDefault().getPath(first, more);
}

}

Then the Paths class is no longer necessary.

It is unlikely that the Java library will be refactored in this way, but when you
implement your own interfaces, there is no longer a reason to provide a separate
companion class for utility methods.

0.1.5 Default Methods

You can supply a default implementation for any interface method. You must tag
such a method with the defaylt modifier.

public interface Comparable<T>

{
default int compareTo(T other) { return 0; }
// By default, all elements are the same

}

Of course, that is not very useful since every realistic implementation of Comparable
would override this method. But there are other situations where default methods
can be useful. For example, as you will see in Chapter 11, if you want to be notified
when a mouse click happens, you are supposed to implement an interface that
has five methods:

6.1 Interfaces

public interface Mouselistener

{
void mouseClicked(MouseEvent event);
void mousePressed(MouseEvent event);
void mouseReleased(MouseEvent event);
void mouseEntered(MouseEvent event);
void mouseExited(MouseEvent event);

}

Most of the time, you only care about one or two of these event types. As of Java
SE 8, you can declare all of the methods as default methods that do nothing.

public interface Mouselistener

{
default void mouseClicked(MouseEvent event) {}
default void mousePressed(MouseEvent event) {}
default void mouseReleased(MouseEvent event) {}
default void mouseEntered(MouseEvent event) {}
default void mouseExited(MouseEvent event) {}

}

Then programmers who implement this interface only need to override the
listeners for the events they actually care about.

A default method can call other methods. For example, a (ollection interface can
define a convenience method

public interface Collection

{
int size(); // An abstract method
default boolean isEmpty()

{
return size() == 0;

}
o

Then a programmer implementing Collection doesn’t have to worry about
implementing an istmpty method.

D NOTE: In the Java API, you will find a number of interfaces with companion
classes that implement some or all of its methods, such as Collection/
AbstractCollection or MouseListener/MouseAdapter. With Java SE 8, this technique is
obsolete. Just implement the methods in the interface.

An important use for default methods is interface evolution. Consider for example
the Collection interface that has been a part of Java for many years. Suppose that a
long time ago, you provided a class

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

public class Bag implements Collection
Later, in Java SE 8, a strean method was added to the interface.

Suppose the strean method was not a default method. Then the Bag class no longer
compiles since it doesn’t implement the new method. Adding a nondefault method
to an interface is not source compatible.

But suppose you don’t recompile the class and simply use an old JAR file contain-
ing it. The class will still load, even with the missing method. Programs can still
construct Bag instances, and nothing bad will happen. (Adding a method to an
interface is binary compatible.) However, if a program calls the strean method on a
Bag instance, an AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will again
compile. And if the class is loaded without being recompiled and the strean method
is invoked on a Bag instance, the Collection.strean method is called.

6.1.6 Resolving Default Method Conflicts

What happens if the exact same method is defined as a default method in one
interface and then again as a method of a superclass or another interface? Lan-
guages such as Scala and C++ have complex rules for resolving such ambiguities.
Fortunately, the rules in Java are much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods
with the same name and parameter types are simply ignored.

2. Interfaces clash. If a superinterface provides a default method, and another
interface supplies a method with the same name and parameter types (default
or not), then you must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider another interface with a getName method:

interface Named

default String getName() { return getClass().getName() + "_" + hashCode(Q); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named

{
}

The class inherits two inconsistent getNane methods provided by the Person and Named
interfaces. Instead of choosing one over the other, the Java compiler reports an

6.1 Interfaces

error and leaves it up to the programmer to resolve the ambiguity. Simply provide
a getName method in the Student class. In that method, you can choose one of the two
conflicting methods, like this:

class Student implements Person, Named

{
public String getName() { return Person.super.getName(); }

}

Now assume that the Named interface does not provide a default implementation
for getName:

interface Named

{
String getName();

Can the Student class inherit the default method from the Person interface? This
might be reasonable, but the Java designers decided in favor of uniformity. It
doesn’t matter how two interfaces conflict. If at least one interface provides an
implementation, the compiler reports an error, and the programmer must resolve
the ambiguity.

p NOTE: Of course, if neither interface provides a default for a shared method,
then we are in the situation before Java SE 8, and there is no conflict. An imple-
menting class has two choices: implement the method, or leave it unimplemented.
In the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class
that extends a superclass and implements an interface, inheriting the same method
from both. For example, suppose that Person is a class and Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method from
the interface is simply ignored. In our example, Student inherits the getNane method
from Person, and it doesn’t make any difference whether the Named interface provides
a default for getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with Java SE 7. If you add default
methods to an interface, it has no effect on code that worked before there were
default methods.

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

CAUTION: You can never make a default method that redefines one of the

0 methods in the Object class. For example, you can't define a default method for
toString or equals, even though that might be attractive for interfaces such as List.
As a consequence of the “classes win” rule, such a method could never win
against Object.toString or Objects.equals.

6.2 Examples of Interfaces

In the next three sections, we give additional examples of interfaces so you can
see how they are used in practice.

6.2.1 Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern, you
specify the action that should occur whenever a particular event happens. For
example, you may want a particular action to occur when a button is clicked or
a menu item is selected. However, as you have not yet seen how to implement
user interfaces, we will consider a similar but simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program
contains a clock, you can ask to be notified every second so that you can update
the clock face.

When you construct a timer, you set the time interval and you tell it what it should
do whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages,
you supply the name of a function that the timer should call periodically. How-
ever, the classes in the Java standard library take an object-oriented approach.
You pass an object of some class. The timer then calls one of the methods on that
object. Passing an object is more flexible than passing a function because the object
can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that
you specify an object of a class that implements the ActionListener interface of the
java.ant.event package. Here is that interface:

public interface ActionListener

{

void actionPerformed(ActionEvent event);

}

The timer calls the actionPerforned method when the time interval has expired.

6.2 Examples of Interfaces

Suppose you want to print a message “At the tone, the time is . . .”, followed by
a beep, once every 10 seconds. You would define a class that implements the
ActionListener interface. You would then place whatever statements you want to
have executed inside the actionPerformed method.

class TimePrinter implements ActionlListener

public void actionPerformed(ActionEvent event)
{
System.out.printIn("At the tone, the time is " + new Date());
Toolkit.getDefaultToolkit().heep();
}
}

Note the Actiontvent parameter of the actionPerformed method. This parameter gives
information about the event, such as the source object that generated it—see
Chapter 11 for more information. However, detailed information about the event
is not important in this program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.

ActionListener Tistener = new TimePrinter();
Timer t = new Timer(10000, Tlistener);

The first parameter of the Timer constructor is the time interval that must elapse
between notifications, measured in milliseconds. We want to be notified every
10 seconds. The second parameter is the listener object.

Finally, you start the timer.

t.start();
Every 10 seconds, a message like

At the tone, the time is Wed Apr 13 23:29:08 PDT 2016
is displayed, followed by a beep.

Listing 6.3 puts the timer and its action listener to work. After the timer is started,
the program puts up a message dialog and waits for the user to click the OK
button to stop. While the program waits for the user, the current time is displayed
at 10-second intervals.

Be patient when running the program. The “Quit program?” dialog box appears
right away, but the first timer message is displayed after 10 seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to
importing javax.swing.* and java.util.*. This breaks the ambiguity between
javax.swing.Timer and java.util.Timer, an unrelated class for scheduling background
tasks.

m Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

Listing 6.3 timer/TimerTest.java

package timer;

@version 1.01 2015-05-12
@author Cay Horstmann

*/

import java.awt.*;

import java.awt.event.*;

10 import java.util.*;

11 import javax.swing.*;

12 import javax.swing.Timer;

13 // to resolve conflict with java.util.Timer

© o o~ o o B w oo

15 public class TimerTest

16 {

it public static void main(String[] args)

18 {

19 ActionListener Tlistener = new TimePrinter();
2

21 // construct a timer that calls the Tistener
2 // once every 10 seconds

23 Timer t = new Timer(10000, Tlistener);

21 t.start(;

25

2% J0ptionPane. showMessageDialog(null, "Quit program?");
7 Systenm.exit(0);

2 }

9}

31 class TimePrinter implements ActionListener

3 public void actionPerformed(ActionEvent event)

34 {

35 System.out.printin("At the tone, the time is " + new Date());
3 Toolkit.getDefaultTooTkit().heep();

37 }

¥}

javax.swing.JOptionPane

e static void showMessageDialog(Component parent, Object message)

displays a dialog box with a message prompt and an OK button. The dialog is
centered over the parent component. If parent is null, the dialog is centered on the
screen.

6.2 Examples of Interfaces

javax.swing.Timer

e Timer(int interval, ActionListener Tistener)

constructs a timer that notifies Tistener whenever interval milliseconds have elapsed.
e void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.
e void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on its listeners.

java.awt.Toolkit

e static Toolkit getDefaultToolkit()
gets the default toolkit. A toolkit contains information about the GUI environment.
e void beep()

emits a beep sound.

6.2.2 The Comparator Interface

In Section 6.1.1, “The Interface Concept,” on p. 288, you have seen how you can
sort an array of objects, provided they are instances of classes that implement the
Comparable interface. For example, you can sort an array of strings since the String
class implements Comparable<String>, and the String.compareTo method compares strings
in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary order.
We can’t have the String class implement the compareTo method in two ways—and
at any rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method
whose parameters are an array and a comparator—an instance of a class that
implements the Comparator interface.

public interface Comparator<T>

{
}

To compare strings by length, define a class that implements Comparator<String>:

int compare(T first, T second);

m Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

class LengthComparator implements Comparator<String>

{
public int compare(String first, String second) {
return first.length() - second.length();
}

}

To actually do the comparison, you need to make an instance:

Comparator<String> comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method is called on
the comparator object, not the string itself.

4 NOTE: Even though the LengthComparator object has no state, you still need to
é make an instance of it. You need the instance to call the compare method—it is
not a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 6.3, “Lambda Expressions,” on p. 314 how to use a Comparator
much more easily with a lambda expression.

6.2.3 Object Cloning

In this section, we discuss the (loneable interface that indicates that a class has
provided a safe clone method. Since cloning is not all that common, and the details
are quite technical, you may just want to glance at this material until you need it.

To understand what cloning means, recall what happens when you make a copy
of a variable holding an object reference. The original and the copy are references
to the same object (see Figure 6.1). This means a change to either variable also
affects the other.

Employee original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original
but whose state can diverge over time, use the clone method.

6.2 Examples of Interfaces

Copying
original = I' Emblovee]
copy =
Cloning
original = E\ Employee
('

Figure 6.1 Copying and cloning

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which
means that your code cannot simply call it. Only the Enployee class can clone Enployee
objects. There is a reason for this restriction. Think about the way in which the
Object class can implement clone. It knows nothing about the object at all, so it can
make only a field-by-field copy. If all data fields in the object are numbers or
other basic types, copying the fields is just fine. But if the object contains references
to subobjects, then copying the field gives you another reference to the same
subobiject, so the original and the cloned objects still share some information.

307

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

To visualize that, consider the Employee class that was introduced in Chapter 4.
Figure 6.2 shows what happens when you use the clone method of the Object class
to clone such an Employee object. As you can see, the default cloning operation is
“shallow”—it doesn’t clone objects that are referenced inside other objects. (The
figure shows a shared Date object. For reasons that will become clear shortly, this
example uses a version of the Employee class in which the hire day is represented
as a Date.)

original =

Employee String

name =
salary =| 50000.0 \

hireDay =

copy = Employee Date

name =

salary = [50000.0 /
hireDay =

o
(i

il

Figure 6.2 A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject shared between
the original and the shallow clone is immutable, then the sharing is safe. This cer-
tainly happens if the subobject belongs to an immutable class, such as String. Al-
ternatively, the subobject may simply remain constant throughout the lifetime of
the object, with no mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the
clone method to make a deep copy that clones the subobjects as well. In our example,
the hireDay field is a Date, which is mutable, so it too must be cloned. (For that reason,
this example uses a field of type Date, not LocalDate, to demonstrate the cloning
process. Had hireday been an instance of the immutable LocalDate class, no further
action would have been required.)

6.2 Examples of Interfaces

For every class, you need to decide whether

1. The default clone method is good enough;

2. The default clone method can be patched up by calling clone on the mutable
subobjects; and

3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second
option, a class must

1. Implement the Cloneable interface; and

2. Redefine the clone method with the public access modifier.

p NOTE: The clone method is declared protected in the Object class, so that your
code can't simply call anObject.clone(). But aren’t protected methods accessible
from any subclass, and isn't every class a subclass of Object? Fortunately, the
rules for protected access are more subtle (see Chapter 5). A subclass can call
a protected clone method only to clone its own objects. You must redefine clone
to be public to allow objects to be cloned by any method.

In this case, the appearance of the (loneable interface has nothing to do with the
normal use of interfaces. In particular, it does not specify the clone method—that
method is inherited from the Object class. The interface merely serves as a tag, in-
dicating that the class designer understands the cloning process. Objects are so
paranoid about cloning that they generate a checked exception if an object requests
cloning but does not implement that interface.

p NOTE: The (loneable interface is one of a handful of tagging interfaces that Java
provides. (Some programmers call them marker interfaces.) Recall that the
usual purpose of an interface such as Comparable is to ensure that a class imple-
ments a particular method or set of methods. A tagging interface has no methods;
its only purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

We recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you
still need to implement the Cloneable interface, redefine clone to be public, and call
super.clone(). Here is an example:

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

class Employee implements Cloneable

{
// raise visibility Tevel to public, change return type
public Employee clone() throws CloneNotSupportedException

return (Employee) super.clone();

}

p NOTE: Up to Java SE 1.4, the clone method always had return type Object.
é Nowadays, you can specify the correct return type for your clone methods. This
is an example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow copy
provided by Object.clone. It merely makes the method public. To make a deep
copy, you have to work harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable

{

public Employee clone() throws CloneNotSupportedException

{
// call Object.clone()
Employee cloned = (Employee) super.clone();

// clone mutable fields
cloned.hireDay = (Date) hireDay.clone();

return cloned;

}
}

The clone method of the Object class threatens to throw a CloneNotSupportedException—it
does that whenever clone is invoked on an object whose class does not implement
the Cloneable interface. Of course, the Enployee and Date classes implement the Cloneable
interface, so the exception won’t be thrown. However, the compiler does not
know that. Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

Would it be better to catch the exception instead?

6.2 Examples of Interfaces

pubTic Employee clone()
{

try

{

Employee cloned = (Employee) super.clone();

catch (CloneNotSupportedException e) { return null; }
// this won't happen, since we are Cloneable

}

This is appropriate for final classes. Otherwise, it is a good idea to leave the
throws specifier in place. That gives subclasses the option of throwing a
CToneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have
defined the clone method for the Employee class, anyone can use it to clone Manager
objects. Can the Enployee clone method do the job? It depends on the fields of the
Manager class. In our case, there is no problem because the bonus field has primitive
type. But Manager might have acquired fields that require a deep copy or are not
cloneable. There is no guarantee that the implementor of the subclass has fixed
clone to do the right thing. For that reason, the clone method is declared as protected
in the Object class. But you don’t have that luxury if you want users of your classes
to invoke clone.

Should you implement clone in your own classes? If your clients need to make
deep copies, then you probably should. Some authors feel that you should avoid
clone altogether and instead implement another method for the same purpose.
We agree that clone is rather awkward, but you'll run into the same issues if you
shift the responsibility to another method. At any rate, cloning is less common
than you may think. Less than 5 percent of the classes in the standard library
implement clone.

The program in Listing 6.4 clones an instance of the class Enployee (Listing 6.5),
then invokes two mutators. The raiseSalary method changes the value of the salary
field, whereas the setfiireday method changes the state of the hirebay field. Neither
mutation affects the original object because clone has been defined to make a
deep copy.

y NOTE: All array types have a clone method that is public, not protected. You can
use it to make a new array that contains copies of all elements. For example:

int[] TuckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = TuckyNumbers.clone();
cloned[5] = 12; // doesn't change TuckyNumbers[5]

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

4 NOTE: Chapter 2 of Volume Il shows an alternate mechanism for cloning objects,
é using the object serialization feature of Java. That mechanism is easy to
implement and safe, but not very efficient.

Listing 6.4 clone/CloneTest.java

package clone;

1
2
4 * This program demonstrates cloning.
5 % @version 1.10 2002-07-01

6 * @author Cay Horstmann

7

8

9

Wi
public class CloneTest
{
10 public static void main(String[] args)
11 {
it try
13 {
14 Employee original = new Employee("John Q. Public", 50000);
15 original.setHireDay (2000, 1, 1);
16 Employee copy = original.clone();
7 copy. raiseSalary(10);
18 copy. setHireDay (2002, 12, 31);
19 System.out.printIn("original=" + original);
2 System.out.printin("copy=" + copy);
21 }
2 catch (CloneNotSupportedException e)
23 {
2 e.printStackTrace();
2 }
2% }
w7}

Listing 6.5 clone/Employee.java

package clone;

import java.util.Date;
import java.util.GregorianCalendar;

public class Employee implements Cloneable

{

R Y- T SO VVE NN

6.2 Examples of Interfaces

private String name;
private double salary;
private Date hireDay;

public Employee(String name, double salary)
{

this.name = name;

this.salary = salary;

hireDay = new Date();

}

public Employee clone() throws CloneNotSupportedException

// call Object.clone()
Employee cloned = (Employee) super.clone();

// clone mutable fields
cloned.hireDay = (Date) hireDay.clone();

return cloned;

}

/**

Set the hire day to a given date.

* @param year the year of the hire day

* @param month the month of the hire day
* @param day the day of the hire day

*k/

public void setHireDay(int year, int month, int day)
{

Date newHireDay = new GregorianCalendar(year, month - 1, day).getTime();

// Example of instance field mutation
hireDay.setTime(newHireDay.getTime());
}

public void raiseSalary(double byPercent)
{
double raise = salary * byPercent / 100;
salary += raise;

}

public String toString()
{

return "Employee[name=" + name + ",salary='

}

+ salary + ",hireDay="

+ hireDay +

"

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

6.3 Lambda Expressions

Now you are ready to learn about lambda expressions, the most exciting change
to the Java language in many years. You will see how to use lambda expressions
for defining blocks of code with a concise syntax, and how to write code that
consumes lambda expressions.

6.3.1 Why Lambdas?

Alambda expression is a block of code that you can pass around so it can be exe-
cuted later, once or multiple times. Before getting into the syntax (or even the
curious name), let’s step back and observe where we have used such code blocks
in Java.

In Section 6.2.1, “Interfaces and Callbacks,” on p. 302, you saw how to do work
in timed intervals. Put the work into the actionPerformed method of an ActionListener:

class Worker implements ActionListener

public void actionPerformed(ActionEvent event)

{

// do some work
}
}

Then, when you want to repeatedly execute this code, you construct an instance
of the lorker class. You then submit the instance to a Timer object.

The key point is that the actionPerforned method contains code that you want to
execute later.

Or consider sorting with a custom comparator. If you want to sort strings by
length instead of the default dictionary order, you can pass a Comparator object to
the sort method:

class LengthComparator implements Comparator<String>

{
public int compare(String first, String second)
{
return first.length() - second.length();
}
}

Arrays.sort(strings, new LengthComparator());

The compare method isn’t called right away. Instead, the sort method keeps calling the
compare method, rearranging the elements if they are out of order, until the array
is sorted. You give the sort method a snippet of code needed to compare elements,

6.3 Lambda Expressions

and that code is integrated into the rest of the sorting logic, which you’d probably
not care to reimplement.

Both examples have something in common. A block of code was passed to
someone—a timer, or a sort method. That code block was called at some later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You couldn’t
just pass code blocks around. Java is an object-oriented language, so you had to
construct an object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java
designers have resisted adding this feature for a long time. After all, a great
strength of Java is its simplicity and consistency. A language can become an un-
maintainable mess if it includes every feature that yields marginally more concise
code. However, in those other languages it isn’t just easier to spawn a thread or
to register a button click handler; large swaths of their APIs are simpler, more
consistent, and more powerful. In Java, one could have written similar APIs that
take objects of classes implementing a particular function, but such APIs would
be unpleasant to use.

For some time now, the question was not whether to augment Java for functional
programming, but how to do it. It took several years of experimentation before
a design emerged that is a good fit for Java. In the next section, you will see how
you can work with blocks of code in Java SE 8.

6.3.2 The Syntax of Lambda Expressions

Consider again the sorting example from the preceding section. We pass code
that checks whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language,
and we must specify that as well:

(String first, String second)
-> first.Tength() - second.length()

You have just seen your first lambda expression. Such an expression is simply a
block of code, together with the specification of any variables that must be passed
to the code.

Why the name? Many years ago, before there were any computers, the logician
Alonzo Church wanted to formalize what it means for a mathematical function
to be effectively computable. (Curiously, there are functions that are known to
exist, but nobody knows how to compute their values.) He used the Greek letter

Chapter 6 m Interfaces, Lambda Expressions, and Inner Classes

lambda () to mark parameters. Had he known about the Java API, he would
have written

Afirst.Asecond.first.length() - second.length()

p NOTE: Why the letter A? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ~ accent to denote free
variables, which inspired Church to use an uppercase lambda A for parameters.
But in the end, he switched to the lowercase version. Ever since, an expression
with parameter variables has been called a lambda expression.

You have just seen one form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn’t fit
in a single expression, write it exactly like you would have written a method:
enclosed in {} and with explicit return statements. For example,

(String first, String second) ->

if (first.length() < second.length()) return -1;
else if (first.length() > second.length()) return 1;
else return 0;

}

If a lambda expression has no parameters, you still supply empty parentheses,
just as with a parameterless method:

(O -> { for (int i = 100; i >= 0; i--) System.out.printIn(i); }

If the parameter types of a lambda expression can be inferred, you can omit them.
For example,

Comparator<String> comp
= (first, second) // Same as (String first, String second)
-> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because the
lambda expression is assigned to a string comparator. (We will have a closer look
at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the
parentheses:

Actionlistener listener = event ->
System.out.printIn("The time is " + new Date()");
// Instead of (event) -> . . . or (ActionEvent event) -> . . .

You never specify the result type of a lambda expression. It is always