
www.allitebooks.com

http://www.allitebooks.org

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

CAY S. HORSTMANN
GARY CORNELL

VOLUME I-FUNDAMENTALS

EIGHTH EDITION

Sun Microsystems Press

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Sun Microsystems, Inc., has intellectual property rights relating to implementations of the technology described in this publication.
In particular, and without limitation, these intellectual property rights may include one or more VS. patents, foreign patents, or
pending applications. Sun, Sun Microsystems, the Sum logo, J2ME. Solaris, Java, Javadoc. Net Beans, and all Sun and Java based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed lor incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE. OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC., MAY MAKE IMPROVE
MENTS AND/OR CHANGES IN THE PRODUCTS) AND/OR THE PROCRAM(S) DESCRIBED IN THIS PUBLICATION AT
ANYTIME

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact U5 . Corporate and Government Sales, (800) 382-3419, corpsales@pear-
sontechgroup.com. For sales outside the United States please contact: International Sales, tatemational@pearsoned.com.

Visit us on the Web: www.prenhaIlprofessional.com

Library of Congress Cataloging-in-Publication Data

Horstmann. CayS.,1959-
Core Java. Volume I, Fundamentals / Cay S. Horstmann, Gary Cornell. —

8th ed.
p. cm.

Includes index.
ISBN 978-0-13-235476-9 (pbk.: alk. paper) I. lava (Computer program

language) I. Cornell, Gary. II. Title. III. Title: Fundamentals. IV.
Title: Core-Java fundamentals.

QA76.73.I3SH6753 2008
005.133-dc22

2007028843

Copyright© 2008 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.

All rights reserved.. Printed in the United States of America. This publication is protected by copyright, and permission must he
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likeivi.se. For information regardling permissions, write to: Pearson
Education, Inc.. Rights and Contracts Department. One Like Street, Upper Saddle River, NJ 07458.

ISBN-13: 978-0-13-235476-9
ISBN-10: 0-13-235476-4
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, September 2007

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface xix

Acknowledgments xxv

Chapter 1: An Introduction to Java 1
Java As a Programming Platform 2
The Java “White Paper” Buzzwords 2
Java Applets and the Internet 7
A Short History of Java 9
Common Misconceptions about Java 11

Chapter 2: The Java Programming Environment 15
Installing the Java Development Kit 16
Choosing a Development Environment 21
Using the Command-Line Tools 22
Using an Integrated Development Environment 25
Running a Graphical Application 28
Building and Running Applets 31

Chapter 3: Fundamental Programming Structures in Java 35
A Simple Java Program 36
Comments 39
Data Types 40
Variables 44
Operators 46
Strings 53
Input and Output 63
Control Flow 71
Big Numbers 88
Arrays 90

Chapter 4: Objects and Classes 105
Introduction to Object-Oriented Programming 106
Using Predefined Classes 111
Defining Your Own Classes 122
Static Fields and Methods 132
Method Parameters 138
Object Construction 144
Packages 15
The Class Path 160
Documentation Comments 162
Class Design Hints 167

Chapter 5: Inheritance 171
Classes, Superclasses, and Subclasses 172
Object: The Cosmic Superclass 192
Generic Array Lists 204

www.allitebooks.com

http://www.allitebooks.org

Object Wrappers and Autoboxing 211
Methods with a Variable Number of Parameters 214
Enumeration Classes 215
Reflection 217
Design Hints for Inheritance 238

Chapter 6: Interfaces and Inner Classes 241
Interfaces 242
Object Cloning 249
Interfaces and Callbacks 255
Inner Classes 258
Proxies 275

Chapter 7: Graphics Programming 281
Introducing Swing 282
Creating a Frame 285
Positioning a Frame 288
Displaying Information in a Component 294
Working with 2D Shapes 299
Using Color 307
Using Special Fonts for Text 310
Displaying Images 318

Chapter 8: Event Handling 323
Basics of Event Handling 324
Actions 342
Mouse Events 349
The AWT Event Hierarchy 357

Chapter 9: User Interface Components with Swing 361
Swing and the Model-View-Controller Design Pattern 362
Introduction to Layout Management 368
Text Input 377
Choice Components 385
Menus 406
Sophisticated Layout Management 424
Dialog Boxes 452

Chapter 10: Deploying Applications and Applets 493
JAR Files 494
Java Web Start 501
Applets 516
Storage of Application Preferences 539

Chapter 11: Exceptions, Logging, Assertions, and Debugging 551
Dealing with Errors 552
Catching Exceptions 559
Tips for Using Exceptions 568
Using Assertions 571
Logging 575
Debugging Tips 591
Using a Debugger 607

www.allitebooks.com

http://www.allitebooks.org

Chapter 12: Generic Programming 613
Why Generic Programming? 614
Definition of a Simple Generic Class 616
Generic Methods 618
Bounds for Type Variables 619
Generic Code and the Virtual Machine 621
Restrictions and Limitations 626
Inheritance Rules for Generic Types 630
Wildcard Types 632
Reflection and Generics 640

Chapter 13: Collections 649
Collection Interfaces 650
Concrete Collections 658
The Collections Framework 689
Algorithms 700
Legacy Collections 707

Chapter 14: Multithreading 715
What Are Threads? 716
Interrupting Threads 728
Thread States 730
Thread Properties 733
Synchronization 736
Blocking Queues 764
Thread-Safe Collections 771
Callables and Futures 774
Executors 778
Synchronizers 785
Threads and Swing 794

Appendix 809

www.allitebooks.com

http://www.allitebooks.org

To the Reader
In late 1995, the Java programming language buret onto the Internet scene and gained
instant celebrity status. The promise of Java technology was that it would become the
universal glue that connects users with information, whether that information comes
from web servers, databases, information providers, or any other imaginable source.
Indeed, Java is in a unique position to fulfill this promise. It is an extremely solidly engi
neered language that has gained acceptance by all major vendors, except for Microsoft.
Its built-in security and safety features are reassuring both to programmers and to the
users of Java programs. Java even has built-in support that makes advanced program
ming tasks, such as network programming, database connectivity, and multithreading,
straightforward.

Since 1995, Sun Microsystems has released seven major revisions of the Java Develop
ment Kit. Over the course of the last eleven years, the Application Programming Inter
face (API) has grown from about 200 to over 3,000 classes. The API now spans such
diverse areas as user interface constaiction, database management, internationaliza
tion, security, and XML processing.

The book you have in your hands is the first volume of the eighth edition of Core Java™.
With the publishing of each edition, the book followed the release of the Java Development
Kit as quickly as possible, and each time, we rewrote the book to take advantage of the
newest Java features. This edition has been updated to reflect the features of Java Standard
Edition (SE) 6.

As with the previous editions of this book, we still target serious programmers who want to put
jam to work on real projects. We think of you, our reader, as a programmer with a solid back
ground in a programming language other than Java, and we assume that you don't like books
filled with toy examples (such as toasters, zoo animals, or "nervous text"). You won't find any

xix

www.allitebooks.com

http://www.allitebooks.org

of these in this book. Our goal is to enable you to fully understand the Java language and
library, not to give you an illusion of understanding.

In this book you will find lots of sample code that demonstrates almost every' language
and library feature that we discuss. We keep the sample programs purposefully simple
to focus on the major points, but, for the most part, they aren't fake and they don't cut
corners. They should make good starting points for your own code.

We assume you are willing, even eager, to learn about all the advanced features that
Java puts at your disposal. For example, we give you a detailed treatment of:

• Object-oriented programming
• Reflection and proxies
• Interfaces and inner classes
• The event listener model
• Graphical user interface design with the Swing UI toolkit

• Exception handling
• Generic programming
• The collections framework
• Concurrency

With the explosive growth of the Java class library, a one-volume treatment of all the
features of Java that serious programmers need to know is no longer possible. Hence,
we decided to break up the book into two volumes. The first volume, which you hold in
your hands, concentrates on the fundamental concepts of the Java language, along with
the basics of user-interface programming. The second volume, Core Java, Volume II—
Advanced Features (forthcoming, ISBN: 978-0-13-235479-0), goes further into the enterprise
features and advanced user-interface programming. It includes detailed discussions of:

• Files and streams
• Distributed objects
• Databases
• Advanced GUI components
• Native methods
• XML processing
• Network programming
• Advanced graphics
• Internationalization
• lavaBeans

• Annotations

In this edition, we reshuffled the contents of the two volumes. In particular, multi
threading is now covered in Volume I because it has become so important, with Moore's
law coming to an end.

When writing a book, errors and inaccuracies are inevitable. We'd very much like to
know about them. But, of course, we'd prefer to learn about each of them only once.
We have put up a list of frequently asked questions, bugs fixes, and workarounds in a
web page at http://horstmann.coni/corejava. Strategically placed at the end of the errata page

Preface

www.allitebooks.com

http://horstmann.coni/corejava
http://www.allitebooks.org

(to encourage you to read through it first) is a form you can use to report bugs and sug-
gest improvements. Please don't be disappointed if we don't answer every query or if
we don' t got back to you immediately. We do read all e-mail and appreciate your input
to make future editions of this book clearer and more informative.

A T o u r o f T h i s B o o k
Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out to
do and to what extent they succeeded. Then, we give a short history of how Java
came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program exam-
ples for this book. Then we guide you through compiling and running three typical Java
programs, a console application, a graphical application, and an applet, using the plain
JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, this is smooth
sailing because the syntax for these language features is essentially the same as in C. If
you come from a non-C background such as Visual Basic, you will want to read this
chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming prac-
tice, and Java is completely object oriented. Chapter 4 introduces encapsulation, the first
of two fundamental building blocks of object orientation, and the Java language mecha-
nism to implement it, that is, classes and methods. In addition to the rules of the Java
language, we also give advice on sound OOP design. Finally, we cover the marvelous
javadoc tool that formats your code comments as a set of hyperlinked web pages. If you
are familiar with C++, then you can browse through this chapter quickly. Programmers
coming from a non-object-oriented background should expect to spend some time mas-
tering OOP concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces
the other, namely, inheritance. Inheritance lets you take an existing class and modify it
according to your needs. This is a fundamental technique for programming in Java. The
inheritance mechanism in Java is quite similar to that in C++. Once again, C++ pro-
grammers can focus on the differences between the languages.

Chapter 6 shows you how to use Java's notion of an interface. Interfaces let you go
beyond the simple inheritance model of Chapter 5. Mastering interfaces allows you to
have full access to the power of Java's completely object-oriented approach to program-
ming. We also cover a useful technical feature of Java called inner classes. Inner classes
help make your code cleaner and more concise.

In Chapter 7, we begin application programming in earnest. Every Java programmer
should know a bit about GUI programming, and this volume contains the basics. We
show how you can make windows, how to paint on them, how to draw with geometric
shapes, how to format text in multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract window
toolkit You'll see how to write the code that responds to events like mouse clicks or key
presses. Along the way you'll see how to handle basic GUI elements like buttons and
panels.

Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit allows you
to build a cross-platform graphical user interface. You'll learn all about the various
kinds of buttons, text components, borders, sliders, list boxes, menus, and dialog boxes.
However, some of the more advanced components are discussed in Volume II.

Chapter 10 shows you how to deploy your programs, either as applications or applets.
We describe how to package programs in JAR files, and how to deliver applications
over the Internet with the Java Web Start and applet mechanisms. Finally, we explain
how Java programs can store and retrieve configuration information once they have
been deployed.

Chapter 11 discusses exception handling, Java's robust mechanism to deal with the fact
that bad things can happen to good programs. Exceptions give you an efficient way of
separating the normal processing code from the error handling. Of course, even after
hardening your program by handling all exceptional conditions, it still might fail to
work as expected. In the second half of this chapter, we give you a large number of use
ful debugging tips. Finally, we guide you through a sample debugging session.

Chapter 12 gives an overview of generic programming, a major advance of Java SE 5.0.
Generic programming makes your programs easier to read and safer. We show you how
you can use strong typing and remove unsightly and unsafe casts, and how you can
deal with the complexities that arise from the need to stav compatible with older ver
sions of Java.

The topic of Chapter 13 is the collections framework of the Java platform. Whenever you
want to collect multiple objects and retrieve them later, you will want to use a collection
that is best suited for your circumstances, instead of just tossing the elements into an
array. This chapter shows you how to take advantage of the standard collections that are
prebuilt for your use.

Chapter 14 finishes the book, with a discussion on multithreading, which enables you to
program tasks to be done in parallel. (A thread is a flow of control within a program.)
We show you how to set up threads and how to deal with thread synchronization. Mul
tithreading has changed a great deal in Java SE 5.0, and we tell you all about the new
mechanisms.

The Appendix lists the reserved words of the Java language.

Convent ions
As is common in many computer books, we use monospace type to represent computer code.

Prefaсe

NOTE: Notes are tagged with "note" icons that look like this.

TIP: Tips are tagged with the 'lip" icon that look like this.

CAUTION: When there is danger ahead, we warn you with a "caution" icon.

www.allitebooks.com

http://www.allitebooks.org

Java comes with a large programming library or Application Programming Interface
(API). When using an API call for the first time, we add a short summary description
tagged with an API icon at the end of the section. These descriptions are a bit more
inform.il but, we hope, also a little more informative than those in the official on-line
API documentation. We now tag each API note with the version number in which the
feature was introduced, to help the readers who don't use the "bleeding edge" version
of Java.

Programs whose source code is on the Web are listed as examples, for instance

Sample Code
The web site for this book at http://horstmann.con1/core3ava contains all sample code from
the book, in compressed form. You can expand the file either with one of the familiar
unzipping programs or simply with the jar utility that is part of the Java Development
Kit. See Chapter 2 for more information about installing the Java Development Kit
and the sample code.

C++ NOTE: There are many C++ notes that explain the difference between Java and C++.
You can skip over them if you don't have a background in C++ or if you consider your experi-
ence with that language a bad dream of which you'd rather not be reminded.

Preface

Writing a book is always a monumental effort, and rewriting doesn't seem to be much
easier, especially with continuous change in Java technology. Making a book a reality
takes many dedicated people, and it is my great pleasure to acknowledge the contri
butions of the entire Core Java team.

A large number of individuals at Prentice Hall and Sun Microsystems Press provided valu
able assistance, but they managed to stay behind the scenes. I'd like them all to know how
much I appreciate their efforts. As always, my warm thanks go to my editor, Greg Doench
of Prentice Hall, for steering the book through the writing and production process, and for
allowing me to be blissfully unaware of the existence of all those folks behind the scenes. I
am grateful to Vanessa Moore for the excellent production support. My thanks also to my
coauthor of earlier editions, Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors and
made lots of thoughtful suggestions for improvement. I am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail
and saved me from many more embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Contributing Editor, C/C++
Users journal), Alec Beaton (PointBase, Inc.), Cliff Berg (iSavvix Corporation), Joshua Bloch
(Sun Microsystems), David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris
Crane (devXsolution), Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Ora
cle), David Geary (Sabrewaro), Brian Goetz (Principal Consultant, Quiotix Corp.), Angela
Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon, John Gray
(University of Hartford), Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins
University Applied Physics Lab), Vincent Hardy (Sun Microsystems), Dan Harkey (San Jose
State University), William Higgins(IBM), Vladimir Ivanovic (PointBase),Jerry Jackson
(ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra, Charlie Lai (Sun

XXV

Microsystems), Angelika Langer, Doug Langston, Hang Liu (McGill University), Mark
Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch (Lynch Associates),
Philip Milne (consultant), Mark Morrissoy (The Oregon Graduate Institute), Mahesh
Neelakanta (Florida Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart
Reges (University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders
(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and Brooks
College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems), Bradley A. Smith,
Steven Stelting (Sun Microsystems), Christopher Taylor, Luke Taylor (Valtech), George
Thiruvathukal, Kim Topley (author of Core JFC), Janet Traub, Paul Tyma (consultant), Peter
van der Linden (Sun Microsystems), and Burt Walsh.

Cay Horsttnann
San Francisco, 2007

Acknowledgments

ChapterChapter

1

AN INTRODUCTION
TO JAVA

▼ JAVA AS A PROGRAMMING PLATFORM

▼ THE JAVA “WHITE PAPER” BUZZWORDS

▼ JAVA APPLETS AND THE INTERNET

▼ A SHORT HISTORY OF JAVA

▼ COMMON MISCONCEPTIONS ABOUT JAVA

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java2

The first release of Java in 1996 generated an incredible amount of excitement, not
just in the computer press, but in mainstream media such as The New York Times, The
Washington Post, and Business Week. Java has the distinction of being the first and only
programming language that had a ten-minute story on National Public Radio. A
$100,000,000 venture capital fund was set up solely for products produced by use of a
specific computer language. It is rather amusing to revisit those heady times, and we
give you a brief history of Java in this chapter.

Java As a Programming Platform
In the first edition of this book, we had this to write about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good program-
ming language. There is no doubt that it is one of the better languages available to
serious programmers. We think it could potentially have been a great programming
language, but it is probably too late for that. Once a language is out in the field, the ugly
reality of compatibility with existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at Sun Micro-
systems who shall remain unnamed. But, in hindsight, our prognosis seems accurate.
Java has a lot of nice language features—we examine them in detail later in this chapter.
It has its share of warts, and newer additions to the language are not as elegant as the
original ones because of the ugly reality of compatibility.

But, as we already said in the first edition, Java was never just a language. There are lots
of programming languages out there, and few of them make much of a splash. Java is a
whole platform, with a huge library, containing lots of reusable code, and an execution
environment that provides services such as security, portability across operating sys-
tems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and comprehensible
semantics (i.e., not C++). Java fits the bill, as do dozens of other fine languages. Some
languages give you portability, garbage collection, and the like, but they don’t have
much of a library, forcing you to roll your own if you want fancy graphics or network-
ing or database access. Well, Java has everything—a good language, a high-quality exe-
cution environment, and a vast library. That combination is what makes Java an
irresistible proposition to so many programmers.

The Java “White Paper” Buzzwords
The authors of Java have written an influential White Paper that explains their design
goals and accomplishments. They also published a shorter summary that is organized
along the following 11 buzzwords:

Simple Portable
Object Oriented Interpreted
Network-Savvy High Performance
Robust Multithreaded
Secure Dynamic
Architecture Neutral

Chapter 1. An Introduction to Java

The Java “White Paper” Buzzwords 3

In this section, we will

• Summarize, with excerpts from the White Paper, what the Java designers say about
each buzzword; and

• Tell you what we think of each buzzword, based on our experiences with the cur-
rent version of Java.

NOTE: As we write this, the White Paper can be found at http://java.sun.com/docs/white/
langenv/. The summary with the 11 buzzwords is at http://java.sun.com/docs/overviews/java/
java-overview-1.html.

Simple
We wanted to build a system that could be programmed easily without a lot of eso-
teric training and which leveraged today’s standard practice. So even though we
found that C++ was unsuitable, we designed Java as closely to C++ as possible in
order to make the system more comprehensible. Java omits many rarely used, poorly
understood, confusing features of C++ that, in our experience, bring more grief
than benefit.

The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no
need for header files, pointer arithmetic (or even a pointer syntax), structures, unions,
operator overloading, virtual base classes, and so on. (See the C++ notes interspersed
throughout the text for more on the differences between Java and C++.) The designers
did not, however, attempt to fix all of the clumsy features of C++. For example, the syn-
tax of the switch statement is unchanged in Java. If you know C++, you will find the tran-
sition to the Java syntax easy.

If you are used to a visual programming environment (such as Visual Basic), you will
not find Java simple. There is much strange syntax (though it does not take long to get
the hang of it). More important, you must do a lot more programming in Java. The
beauty of Visual Basic is that its visual design environment almost automatically pro-
vides a lot of the infrastructure for an application. The equivalent functionality must be
programmed manually, usually with a fair bit of code, in Java. There are, however,
third-party development environments that provide “drag-and-drop”-style program
development.

Another aspect of being simple is being small. One of the goals of Java is to enable
the construction of software that can run stand-alone in small machines. The size of
the basic interpreter and class support is about 40K bytes; adding the basic stan-
dard libraries and thread support (essentially a self-contained microkernel) adds an
additional 175K.

This was a great achievement at the time. Of course, the library has since grown to huge
proportions. There is now a separate Java Micro Edition with a smaller library, suitable
for embedded devices.

Object Oriented
Simply stated, object-oriented design is a technique for programming that focuses
on the data (= objects) and on the interfaces to that object. To make an analogy with
carpentry, an “object-oriented” carpenter would be mostly concerned with the chair

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java4

he was building, and secondarily with the tools used to make it; a “non-object-
oriented” carpenter would think primarily of his tools. The object-oriented facilities
of Java are essentially those of C++.

Object orientation has proven its worth in the last 30 years, and it is inconceivable that a
modern programming language would not use it. Indeed, the object-oriented features of
Java are comparable to those of C++. The major difference between Java and C++ lies in
multiple inheritance, which Java has replaced with the simpler concept of interfaces,
and in the Java metaclass model (which we discuss in Chapter 5).

NOTE: If you have no experience with object-oriented programming languages, you will
want to carefully read Chapters 4 through 6. These chapters explain what object-oriented
programming is and why it is more useful for programming sophisticated projects than are
traditional, procedure-oriented languages like C or Basic.

Network-Savvy
Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net via
URLs with the same ease as when accessing a local file system.

We have found the networking capabilities of Java to be both strong and easy to use.
Anyone who has tried to do Internet programming using another language will revel in
how simple Java makes onerous tasks like opening a socket connection. (We cover net-
working in Volume II of this book.) The remote method invocation mechanism enables
communication between distributed objects (also covered in Volume II).

Robust
Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . . The single
biggest difference between Java and C/C++ is that Java has a pointer model that elim-
inates the possibility of overwriting memory and corrupting data.

This feature is also very useful. The Java compiler detects many problems that, in other
languages, would show up only at runtime. As for the second point, anyone who has
spent hours chasing memory corruption caused by a pointer bug will be very happy
with this feature of Java.

If you are coming from a language like Visual Basic that doesn’t explicitly use pointers,
you are probably wondering why this is so important. C programmers are not so lucky.
They need pointers to access strings, arrays, objects, and even files. In Visual Basic, you
do not use pointers for any of these entities, nor do you need to worry about memory
allocation for them. On the other hand, many data structures are difficult to implement
in a pointerless language. Java gives you the best of both worlds. You do not need point-
ers for everyday constructs like strings and arrays. You have the power of pointers if
you need it, for example, for linked lists. And you always have complete safety, because
you can never access a bad pointer, make memory allocation errors, or have to protect
against memory leaking away.

Chapter 1. An Introduction to Java

The Java “White Paper” Buzzwords 5

Secure
Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction of
virus-free, tamper-free systems.

In the first edition of Core Java we said: “Well, one should ‘never say never again,’” and
we turned out to be right. Not long after the first version of the Java Development Kit
was shipped, a group of security experts at Princeton University found subtle bugs in
the security features of Java 1.0. Sun Microsystems has encouraged research into Java
security, making publicly available the specification and implementation of the virtual
machine and the security libraries. They have fixed all known security bugs quickly. In
any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs
found so far have been very technical and few in number.

From the beginning, Java was designed to make certain kinds of attacks impossible,
among them:

• Overrunning the runtime stack—a common attack of worms and viruses
• Corrupting memory outside its own process space
• Reading or writing files without permission

A number of security features have been added to Java over time. Since version 1.1, Java
has the notion of digitally signed classes (see Volume II). With a signed class, you can be
sure who wrote it. Any time you trust the author of the class, the class can be allowed
more privileges on your machine.

NOTE: A competing code delivery mechanism from Microsoft based on its ActiveX technol-
ogy relies on digital signatures alone for security. Clearly this is not sufficient—as any user
of Microsoft’s own products can confirm, programs from well-known vendors do crash and
create damage. Java has a far stronger security model than that of ActiveX because it con-
trols the application as it runs and stops it from wreaking havoc.

Architecture Neutral
The compiler generates an architecture-neutral object file format—the compiled
code is executable on many processors, given the presence of the Java runtime sys-
tem. The Java compiler does this by generating bytecode instructions which have
nothing to do with a particular computer architecture. Rather, they are designed to
be both easy to interpret on any machine and easily translated into native machine
code on the fly.

This is not a new idea. More than 30 years ago, both Niklaus Wirth’s original implemen-
tation of Pascal and the UCSD Pascal system used the same technique.

Of course, interpreting bytecodes is necessarily slower than running machine instruc-
tions at full speed, so it isn’t clear that this is even a good idea. However, virtual
machines have the option of translating the most frequently executed bytecode
sequences into machine code, a process called just-in-time compilation. This strategy
has proven so effective that even Microsoft’s .NET platform relies on a virtual machine.

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java6

The virtual machine has other advantages. It increases security because the virtual
machine can check the behavior of instruction sequences. Some programs even produce
bytecodes on the fly, dynamically enhancing the capabilities of a running program.

Portable
Unlike C and C++, there are no “implementation-dependent” aspects of the specifi-
cation. The sizes of the primitive data types are specified, as is the behavior of arith-
metic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit
integer, a 32-bit integer, or any other size that the compiler vendor likes. The only
restriction is that the int type must have at least as many bytes as a short int and cannot
have more bytes than a long int. Having a fixed size for number types eliminates a major
porting headache. Binary data is stored and transmitted in a fixed format, eliminating
confusion about byte ordering. Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows,
and the Macintosh.

As anyone who has ever tried knows, it is an effort of heroic proportions to write a pro-
gram that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0
made the heroic effort, delivering a simple toolkit that mapped common user interface
elements to a number of platforms. Unfortunately, the result was a library that, with a
lot of work, could give barely acceptable results on different systems. (And there were
often different bugs on the different platform graphics implementations.) But it was a
start. There are many applications in which portability is more important than user
interface slickness, and these applications did benefit from early versions of Java. By
now, the user interface toolkit has been completely rewritten so that it no longer relies
on the host user interface. The result is far more consistent and, we think, more attrac-
tive than in earlier versions of Java.

Interpreted
The Java interpreter can execute Java bytecodes directly on any machine to which
the interpreter has been ported. Since linking is a more incremental and lightweight
process, the development process can be much more rapid and exploratory.

Incremental linking has advantages, but its benefit for the development process is
clearly overstated. Early Java development tools were, in fact, quite slow. Today, the
bytecodes are translated into machine code by the just-in-time compiler.

High Performance
While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the
application is running on.

In the early years of Java, many users disagreed with the statement that the perfor-
mance was “more than adequate.” Today, however, the just-in-time compilers have
become so good that they are competitive with traditional compilers and, in some cases,
even outperform them because they have more information available. For example, a
just-in-time compiler can monitor which code is executed frequently and optimize just

Chapter 1. An Introduction to Java

www.allitebooks.com

http://www.allitebooks.org

Java Applets and the Internet 7

that code for speed. A more sophisticated optimization is the elimination (or “inlining”)
of function calls. The just-in-time compiler knows which classes have been loaded. It
can use inlining when, based upon the currently loaded collection of classes, a particu-
lar function is never overridden, and it can undo that optimization later if necessary.

Multithreaded
[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

If you have ever tried to do multithreading in another language, you will be pleasantly
surprised at how easy it is in Java. Threads in Java also can take advantage of multi-
processor systems if the base operating system does so. On the downside, thread imple-
mentations on the major platforms differ widely, and Java makes no effort to be
platform independent in this regard. Only the code for calling multithreading remains
the same across machines; Java offloads the implementation of multithreading to the
underlying operating system or a thread library. Nonetheless, the ease of multithread-
ing is one of the main reasons why Java is such an appealing language for server-side
development.

Dynamic
In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new meth-
ods and instance variables without any effect on their clients. In Java, finding out
runtime type information is straightforward.

This is an important feature in those situations in which code needs to be added to a
running program. A prime example is code that is downloaded from the Internet to
run in a browser. In Java 1.0, finding out runtime type information was anything but
straightforward, but current versions of Java give the programmer full insight into both
the structure and behavior of its objects. This is extremely useful for systems that need
to analyze objects at runtime, such as Java GUI builders, smart debuggers, pluggable
components, and object databases.

NOTE: Shortly after the initial success of Java, Microsoft released a product called J++ with
a programming language and virtual machine that was almost identical to Java. At this point,
Microsoft is no longer supporting J++ and has instead introduced another language called
C# that also has many similarities with Java but runs on a different virtual machine. There is
even a J# for migrating J++ applications to the virtual machine used by C#. We do not cover
J++, C#, or J# in this book.

Java Applets and the Internet
The idea here is simple: Users will download Java bytecodes from the Internet and run
them on their own machines. Java programs that work on web pages are called applets.
To use an applet, you only need a Java-enabled web browser, which will execute the
bytecodes for you. You need not install any software. Because Sun licenses the Java
source code and insists that there be no changes in the language and standard library, a
Java applet should run on any browser that is advertised as Java-enabled. You get the
latest version of the program whenever you visit the web page containing the applet.

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java8

Most important, thanks to the security of the virtual machine, you need never worry
about attacks from hostile code.

When the user downloads an applet, it works much like embedding an image in a web
page. The applet becomes a part of the page, and the text flows around the space used
for the applet. The point is, the image is alive. It reacts to user commands, changes its
appearance, and sends data between the computer presenting the applet and the com-
puter serving it.

Figure 1–1 shows a good example of a dynamic web page that carries out sophisticated
calculations. The Jmol applet displays molecular structures. By using the mouse, you
can rotate and zoom each molecule to better understand its structure. This kind of direct
manipulation is not achievable with static web pages, but applets make it possible. (You
can find this applet at http://jmol.sourceforge.net.)

When applets first appeared, they created a huge amount of excitement. Many people
believe that the lure of applets was responsible for the astonishing popularity of Java.
However, the initial excitement soon turned into frustration. Various versions of
Netscape and Internet Explorer ran different versions of Java, some of which were seri-
ously outdated. This sorry situation made it increasingly difficult to develop applets
that took advantage of the most current Java version. Today, most web pages simply use
JavaScript or Flash when dynamic effects are desired in the browser. Java, on the other
hand, has become the most popular language for developing the server-side applica-
tions that produce web pages and carry out the backend logic.

Figure 1–1 The Jmol applet

Chapter 1. An Introduction to Java

A Short History of Java 9

A Short History of Java
This section gives a short history of Java’s evolution. It is based on various published
sources (most important, on an interview with Java’s creators in the July 1995 issue of
SunWorld’s on-line magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton and
Sun Fellow (and all-around computer wizard) James Gosling, wanted to design a small
computer language that could be used for consumer devices like cable TV switchboxes.
Because these devices do not have a lot of power or memory, the language had to be
small and generate very tight code. Also, because different manufacturers may choose
different central processing units (CPUs), it was important that the language not be tied
to any single architecture. The project was code-named “Green.”

The requirements for small, tight, and platform-neutral code led the team to resurrect
the model that some Pascal implementations tried in the early days of PCs. Niklaus
Wirth, the inventor of Pascal, had pioneered the design of a portable language that gen-
erated intermediate code for a hypothetical machine. (These are often called virtual
machines—hence, the Java virtual machine or JVM.) This intermediate code could then
be used on any machine that had the correct interpreter. The Green project engineers
used a virtual machine as well, so this solved their main problem.

The Sun people, however, come from a UNIX background, so they based their language
on C++ rather than Pascal. In particular, they made the language object oriented rather
than procedure oriented. But, as Gosling says in the interview, “All along, the language
was a tool, not the end.” Gosling decided to call his language “Oak” (presumably
because he liked the look of an oak tree that was right outside his window at Sun). The
people at Sun later realized that Oak was the name of an existing computer language, so
they changed the name to Java. This turned out to be an inspired choice.

In 1992, the Green project delivered its first product, called “*7.” It was an extremely
intelligent remote control. (It had the power of a SPARCstation in a box that was 6
inches by 4 inches by 4 inches.) Unfortunately, no one was interested in producing this
at Sun, and the Green people had to find other ways to market their technology. How-
ever, none of the standard consumer electronics companies were interested. The group
then bid on a project to design a cable TV box that could deal with new cable services
such as video on demand. They did not get the contract. (Amusingly, the company that
did was led by the same Jim Clark who started Netscape—a company that did much to
make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and half of
1994 looking for people to buy its technology—no one was found. (Patrick Naughton,
one of the founders of the group and the person who ended up doing most of the mar-
keting, claims to have accumulated 300,000 air miles in trying to sell the technology.)
First Person was dissolved in 1994.

While all of this was going on at Sun, the World Wide Web part of the Internet was
growing bigger and bigger. The key to the Web is the browser that translates the
hypertext page to the screen. In 1994, most people were using Mosaic, a noncommer-
cial web browser that came out of the supercomputing center at the University of Illi-
nois in 1993. (Mosaic was partially written by Marc Andreessen for $6.85 an hour as

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java10

an undergraduate student on a work-study project. He moved on to fame and fortune
as one of the cofounders and the chief of technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers real-
ized that “We could build a real cool browser. It was one of the few things in the client/
server mainstream that needed some of the weird things we’d done: architecture neu-
tral, real-time, reliable, secure—issues that weren’t terribly important in the workstation
world. So we built a browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and evolved
into the HotJava browser. The HotJava browser was written in Java to show off the
power of Java. But the builders also had in mind the power of what are now called
applets, so they made the browser capable of executing code inside web pages. This
“proof of technology” was shown at SunWorld ‘95 on May 23, 1995, and inspired the
Java craze that continues today.

Sun released the first version of Java in early 1996. People quickly realized that Java 1.0
was not going to cut it for serious application development. Sure, you could use Java 1.0
to make a nervous text applet that moved text randomly around in a canvas. But you
couldn’t even print in Java 1.0. To be blunt, Java 1.0 was not ready for prime time. Its
successor, version 1.1, filled in the most obvious gaps, greatly improved the reflection
capability, and added a new event model for GUI programming. It was still rather
limited, though.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2,
which replaced the early toylike GUI and graphics toolkits with sophisticated and scal-
able versions that come a lot closer to the promise of “Write Once, Run Anywhere”™
than its predecessors. Three days after (!) its release in December 1998, Sun’s marketing
department changed the name to the catchy Java 2 Standard Edition Software Development
Kit Version 1.2.

Besides the Standard Edition, two other editions were introduced: the Micro Edition for
embedded devices such as cell phones, and the Enterprise Edition for server-side pro-
cessing. This book focuses on the Standard Edition.

Versions 1.3 and 1.4 of the Standard Edition are incremental improvements over the ini-
tial Java 2 release, with an ever-growing standard library, increased performance, and,
of course, quite a few bug fixes. During this time, much of the initial hype about Java
applets and client-side applications abated, but Java became the platform of choice for
server-side applications.

Version 5.0 is the first release since version 1.1 that updates the Java language in signifi-
cant ways. (This version was originally numbered 1.5, but the version number jumped
to 5.0 at the 2004 JavaOne conference.) After many years of research, generic types
(which are roughly comparable to C++ templates) have been added—the challenge was
to add this feature without requiring changes in the virtual machine. Several other use-
ful language features were inspired by C#: a “for each” loop, autoboxing, and metadata.
Language changes are always a source of compatibility pain, but several of these new lan-
guage features are so seductive that we think that programmers will embrace them
eagerly.

Chapter 1. An Introduction to Java

Common Misconceptions about Java 11

Version 6 (without the .0 suffix) was released at the end of 2006. Again, there are no lan-
guage changes but additional performance improvements and library enhancements.

Table 1–1 shows the evolution of the Java language and library. As you can see, the size
of the application programming interface (API) has grown tremendously.

Common Misconceptions about Java
We close this chapter with a list of some common misconceptions about Java, along with
commentary.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a web
page. They have nothing in common except that there are HTML extensions for placing
Java applets on a web page.

I use XML, so I don’t need Java.

Java is a programming language; XML is a way to describe data. You can process XML
data with any programming language, but the Java API contains excellent support for
XML processing. In addition, many important third-party XML tools are implemented
in Java. See Volume II for more information.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to distinguish
between how easy it is to write toy programs and how hard it is to do serious work.
Also, consider that only four chapters in this book discuss the Java language. The
remaining chapters of both volumes show how to put the language to work, using the
Java libraries. The Java libraries contain thousands of classes and interfaces, and tens of
thousands of functions. Luckily, you do not need to know every one of them, but you do
need to know surprisingly many to use Java for anything realistic.

Table 1–1 Evolution of the Java Language

Version Year New Language Features
Number of Classes
and Interfaces

1.0 1996 The language itself 211

1.1 1997 Inner classes 477

1.2 1998 None 1,524

1.3 2000 None 1,840

1.4 2004 Assertions 2,723

5.0 2004 Generic classes, “for each” loop,
varargs, autoboxing, metadata,
enumerations, static import

3,279

6 2006 None 3,777

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java12

Java will become a universal programming language for all platforms.

This is possible, in theory, and it is certainly the case that every vendor but Microsoft
seems to want this to happen. However, many applications, already working perfectly
well on desktops, would not work well on other devices or inside a browser. Also, these
applications have been written to take advantage of the speed of the processor and the
native user interface library and have been ported to all the important platforms any-
way. Among these kinds of applications are word processors, photo editors, and web
browsers. They are typically written in C or C++, and we see no benefit to the end user
in rewriting them in Java.

Java is just another programming language.

Java is a nice programming language; most programmers prefer it over C, C++, or C#.
But there have been hundreds of nice programming languages that never gained wide-
spread popularity, whereas languages with obvious flaws, such as C++ and Visual
Basic, have been wildly successful.

Why? The success of a programming language is determined far more by the utility of
the support system surrounding it than by the elegance of its syntax. Are there useful,
convenient, and standard libraries for the features that you need to implement? Are
there tool vendors that build great programming and debugging environments? Does
the language and the toolset integrate with the rest of the computing infrastructure?
Java is successful because its class libraries let you easily do things that were hard
before, such as networking and multithreading. The fact that Java reduces pointer errors
is a bonus and so programmers seem to be more productive with Java, but these factors
are not the source of its success.

Now that C# is available, Java is obsolete.

C# took many good ideas from Java, such as a clean programming language, a virtual
machine, and garbage collection. But for whatever reasons, C# also left some good stuff
behind, in particular security and platform independence. If you are tied to Windows,
C# makes a lot of sense. But judging by the job ads, Java is still the language of choice
for a majority of developers.

Java is proprietary, and it should therefore be avoided.

Sun Microsystems licenses Java to distributors and end users. Although Sun has ulti-
mate control over Java through the “Java Community Process,” they have involved
many other companies in the development of language revisions and the design of new
libraries. Source code for the virtual machine and the libraries has always been freely
available, but only for inspection, not for modification and redistribution. Up to this
point, Java has been “closed source, but playing nice.”

This situation changed dramatically in 2007, when Sun announced that future versions
of Java will be available under the General Public License, the same open source license
that is used by Linux. It remains to be seen how Sun will manage the governance of Java
in the future, but there is no question that the open sourcing of Java has been a very cou-
rageous move that will extend the life of Java by many years.

Java is interpreted, so it is too slow for serious applications.

In the early days of Java, the language was interpreted. Nowadays, except on “micro”
platforms such as cell phones, the Java virtual machine uses a just-in-time compiler. The

Chapter 1. An Introduction to Java

Common Misconceptions about Java 13

“hot spots” of your code will run just as fast in Java as they would in C++, and in some
cases, they will run faster.

Java does have some additional overhead over C++. Virtual machine startup time is
slow, and Java GUIs are slower than their native counterparts because they are painted
in a platform-independent manner.

People have complained for years that Java applications are too slow. However, today’s
computers are much faster than they were when these complaints started. A slow Java
program will still run quite a bit better than those blazingly fast C++ programs did a
few years ago. At this point, these complaints sound like sour grapes, and some detrac-
tors have instead started to complain that Java user interfaces are ugly rather than slow.

All Java programs run inside a web page.

All Java applets run inside a web browser. That is the definition of an applet—a Java pro-
gram running inside a browser. But most Java programs are stand-alone applications
that run outside of a web browser. In fact, many Java programs run on web servers and
produce the code for web pages.

Most of the programs in this book are stand-alone programs. Sure, applets can be fun.
But stand-alone Java programs are more important and more useful in practice.

Java programs are a major security risk.

In the early days of Java, there were some well-publicized reports of failures in the Java
security system. Most failures were in the implementation of Java in a specific browser.
Researchers viewed it as a challenge to try to find chinks in the Java armor and to defy
the strength and sophistication of the applet security model. The technical failures that
they found have all been quickly corrected, and to our knowledge, no actual systems
were ever compromised. To keep this in perspective, consider the literally millions of
virus attacks in Windows executable files and Word macros that cause real grief but sur-
prisingly little criticism of the weaknesses of the attacked platform. Also, the ActiveX
mechanism in Internet Explorer would be a fertile ground for abuse, but it is so boringly
obvious how to circumvent it that few researchers have bothered to publicize their
findings.

Some system administrators have even deactivated Java in company browsers, while
continuing to permit their users to download executable files, ActiveX controls, and
Word documents. That is pretty ridiculous—currently, the risk of being attacked by hos-
tile Java applets is perhaps comparable to the risk of dying from a plane crash; the risk
of being infected by opening Word documents is comparable to the risk of dying while
crossing a busy freeway on foot.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside web pages, was invented by
Netscape and originally called LiveScript. JavaScript has a syntax that is reminiscent of
Java, but otherwise there are no relationships (except for the name, of course). A subset
of JavaScript is standardized as ECMA-262. JavaScript is more tightly integrated with
browsers than Java applets are. In particular, a JavaScript program can modify the docu-
ment that is being displayed, whereas an applet can only control the appearance of a
limited area.

Chapter 1. An Introduction to Java

Chapter 1 ■ An Introduction to Java14

With Java, I can replace my computer with a $500 “Internet appliance.”

When Java was first released, some people bet big that this was going to happen. Ever
since the first edition of this book, we have believed it is absurd to think that home users
are going to give up a powerful and convenient desktop for a limited machine with no
local storage. We found the Java-powered network computer a plausible option for a
“zero administration initiative” to cut the costs of computer ownership in a business,
but even that has not happened in a big way.

On the other hand, Java has become widely distributed on cell phones. We must confess
that we haven’t yet seen a must-have Java application running on cell phones, but the
usual fare of games and screen savers seems to be selling well in many markets.

TIP: For answers to common Java questions, turn to one of the Java FAQ (frequently asked
question) lists on the Web—see http://www.apl.jhu.edu/~hall/java/FAQs-and-Tutorials.html.

Chapter 1. An Introduction to Java

ChapterChapter

15

THE JAVA
PROGRAMMING
ENVIRONMENT

▼ INSTALLING THE JAVA DEVELOPMENT KIT

▼ CHOOSING A DEVELOPMENT ENVIRONMENT

▼ USING THE COMMAND-LINE TOOLS

▼ USING AN INTEGRATED DEVELOPMENT ENVIRONMENT

▼ RUNNING A GRAPHICAL APPLICATION

▼ BUILDING AND RUNNING APPLETS

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment16

In this chapter, you will learn how to install the Java Development Kit (JDK) and
how to compile and run various types of programs: console programs, graphical appli-
cations, and applets. You run the JDK tools by typing commands in a shell window.
However, many programmers prefer the comfort of an integrated development envi-
ronment. We show you how to use a freely available development environment to
compile and run Java programs. Although easier to learn, integrated development envi-
ronments can be resource-hungry and tedious to use for small programs. As a middle
ground, we show you how to use a text editor that can call the Java compiler and run
Java programs. Once you have mastered the techniques in this chapter and picked your
development tools, you are ready to move on to Chapter 3, where you will begin explor-
ing the Java programming language.

Installing the Java Development Kit
The most complete and up-to-date versions of the Java Development Kit (JDK) are
available from Sun Microsystems for Solaris, Linux, and Windows. Versions in various
states of development exist for the Macintosh and many other platforms, but those ver-
sions are licensed and distributed by the vendors of those platforms.

NOTE: Some Linux distributions have prepackaged versions of the JDK. For example, on
Ubuntu, you can install the JDK by simply installing the sun-java6-jdk package with apt-get or
the Synaptic GUI.

Downloading the JDK
To download the Java Development Kit, you will need to navigate the Sun web site and
decipher an amazing amount of jargon before you can get the software that you need.
See Table 2–1 for a summary.

You already saw the abbreviation JDK for Java Development Kit. Somewhat confus-
ingly, versions 1.2 through 1.4 of the kit were known as the Java SDK (Software Devel-
opment Kit). You will still find occasional references to the old term. There is also a Java
Runtime Environment (JRE) that contains the virtual machine but not the compiler. That
is not what you want as a developer. It is intended for end users who have no need for
the compiler.

Next, you’ll see the term Java SE everywhere. That is the Java Standard Edition, in con-
trast to Java EE (Enterprise Edition) and Java ME (Micro Edition).

You will occasionally run into the term Java 2 that was coined in 1998 when the market-
ing folks at Sun felt that a fractional version number increment did not properly com-
municate the momentous advances of JDK 1.2. However, because they had that insight
only after the release, they decided to keep the version number 1.2 for the development
kit. Subsequent releases were numbered 1.3, 1.4, and 5.0. The platform, however, was
renamed from Java to Java 2. Thus, we had Java 2 Standard Edition Software Develop-
ment Kit Version 5.0, or J2SE SDK 5.0.

For engineers, all of this was a bit confusing, but that’s why we never made it into mar-
keting. Mercifully, in 2006, sanity prevailed. The useless Java 2 moniker was dropped
and the current version of the Java Standard Edition was called Java SE 6. You will still
see occasional references to versions 1.5 and 1.6—these are just synonyms for versions
5.0 and 6.

Chapter 2. The Java Programming Environment

www.allitebooks.com

http://www.allitebooks.org

Installing the Java Development Kit 17

Finally, when Sun makes a minor version change to fix urgent issues, it refers to the
change as an update. For example, the first update of the development kit for Java SE 6
is officially called JDK 6u1 and has the internal version number 1.6.0_01.

If you use Solaris, Linux, or Windows, point your browser to http://java.sun.com/javase to
download the JDK. Look for version 6 or later and pick your platform. Don’t worry if the
software is called an “update.” The update bundles contain the most current version of
the whole JDK.

Sometimes, Sun makes available bundles that contain both the Java Development Kit
and an integrated development environment. That integrated environment has, at dif-
ferent times of its life, been named Forte, Sun ONE Studio, Sun Java Studio, and Net-
beans. We do not know what the eager beavers in marketing will call it when you
approach the Sun web site. We suggest that you install only the Java Development Kit at
this time. If you later decide to use Sun’s integrated development environment, simply
download it from http://netbeans.org.

After downloading the JDK, follow the platform-dependent installation directions. At
the time of this writing, they are available at http://java.sun.com/javase/6/webnotes/install/
index.html.

Only the installation and compilation instructions for Java are system dependent. Once
you get Java up and running, everything else in this book should apply to you. System
independence is a major benefit of Java.

Table 2–1 Java Jargon

Name Acronym Explanation

Java Development Kit JDK The software for programmers who want
to write Java programs

Java Runtime Environment JRE The software for consumers who want to
run Java programs

Standard Edition SE The Java platform for use on desktops and
simple server applications

Enterprise Edition EE The Java platform for complex server
applications

Micro Edition ME The Java platform for use on cell phones
and other small devices

Java 2 J2 An outdated term that described Java
versions from 1998 until 2006

Software Development Kit SDK An outdated term that described the JDK
from 1998 until 2006

Update u Sun’s term for a bug fix release

NetBeans — Sun’s integrated development environment

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment18

NOTE: The setup procedure offers a default for the installation directory that contains the
JDK version number, such as jdk1.6.0. This sounds like a bother, but we have come to
appreciate the version number—it makes it easier to install a new JDK release for testing.

Under Windows, we strongly recommend that you do not accept a default location with
spaces in the path name, such as c:\Program Files\jdk1.6.0. Just take out the Program Files
part of the path name.

In this book, we refer to the installation directory as jdk. For example, when we refer to the
jdk/bin directory, we mean the directory with a name such as /usr/local/jdk1.6.0/bin or
c:\jdk1.6.0\bin.

Setting the Execution Path
After you are done installing the JDK, you need to carry out one additional step: Add
the jdk/bin directory to the execution path, the list of directories that the operating sys-
tem traverses to locate executable files. Directions for this step also vary among operat-
ing systems.

• In UNIX (including Solaris and Linux), the procedure for editing the execution path
depends on the shell that you are using. If you use the C shell (which is the Solaris
default), then add a line such as the following to the end of your ~/.cshrc file:

set path=(/usr/local/jdk/bin $path)

If you use the Bourne Again shell (which is the Linux default), then add a line such
as the following to the end of your ~/.bashrc or ~/.bash_profile file:

export PATH=/usr/local/jdk/bin:$PATH

• Under Windows, log in as administrator. Start the Control Panel, switch to Classic
View, and select the System icon. In Windows NT/2000/XP, you immediately get the
system properties dialog. In Vista, you need to select Advanced System Settings (see
Figure 2–1). In the system properties dialog, click the Advanced tab, then click on the
Environment button. Scroll through the System Variables window until you find a
variable named Path. Click the Edit button (see Figure 2–2). Add the jdk\bin directory
to the beginning of the path, using a semicolon to separate the new entry, like this:

c:\jdk\bin;other stuff

Save your settings. Any new console windows that you start have the correct path.

Here is how you test whether you did it right: Start a shell window. Type the line
java -version

and press the ENTER key. You should get a display such as this one:
java version "1.6.0_01"
Java(TM) SE Runtime Environment (build 1.6.0_01-b06)
Java HotSpot(TM) Client VM (build 1.6.0_01-b06, mixed mode, sharing)

If instead you get a message such as “java: command not found” or “The name specified
is not recognized as an internal or external command, operable program or batch file”,
then you need to go back and double-check your installation.

Chapter 2. The Java Programming Environment

Installing the Java Development Kit 19

Figure 2–1 Launching the system properties dialog in Windows Vista

Figure 2–2 Setting the Path environment variable in Windows Vista

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment20

NOTE: In Windows, follow these instructions to open a shell window. If you use Windows NT/
2000/XP, select the “Run” option from the Start menu and type cmd. In Vista, simply type cmd
into the “Start Search” field in the Start menu. Press ENTER, and a shell window appears.

If you’ve never seen one of these, we suggest that you work through a tutorial that teaches
the basics about the command line. Many computer science departments have tutorials on
the Web, such as http://www.cs.sjsu.edu/faculty/horstman/CS46A/windows/tutorial.html.

Installing the Library Source and Documentation
The library source files are delivered in the JDK as a compressed file src.zip, and you
must unpack that file to get access to the source code. We highly recommend that you
do that. Simply do the following:

1. Make sure the JDK is installed and that the jdk/bin directory is on the execution path.
2. Open a shell window.
3. Change to the jdk directory (e.g., cd /usr/local/jdk1.6.0 or cd c:\jdk1.6.0).
4. Make a subdirectory src

mkdir src
cd src

5. Execute the command
jar xvf ../src.zip

(or jar xvf ..\src.zip on Windows)

TIP: The src.zip file contains the source code for all public libraries. To obtain even more
source (for the compiler, the virtual machine, the native methods, and the private helper
classes), go to http://download.java.net/jdk6.

The documentation is contained in a compressed file that is separate from the JDK.
You can download the documentation from http://java.sun.com/javase/downloads. Simply
follow these steps:

1. Make sure the JDK is installed and that the jdk/bin directory is on the execution path.
2. Download the documentation zip file and move it into the jdk directory. The file is

called jdk-version-doc.zip, where version is something like 6.
3. Open a shell window.
4. Change to the jdk directory.
5. Execute the command

jar xvf jdk-version-doc.zip

where version is the appropriate version number.

Installing the Core Java Program Examples
You should also install the Core Java program examples. You can download them from
http://horstmann.com/corejava. The programs are packaged into a zip file corejava.zip. You
should unzip them into a separate directory—we recommend you call it CoreJavaBook.
Here are the steps:

Chapter 2. The Java Programming Environment

Choosing a Development Environment 21

1. Make sure the JDK is installed and the jdk/bin directory is on the execution path.
2. Make a directory CoreJavaBook.
3. Download the corejava.zip file to that directory.
4. Open a shell window.
5. Change to the CoreJavaBook directory.
6. Execute the command

jar xvf corejava.zip

Navigating the Java Directories
In your explorations of Java, you will occasionally want to peek inside the Java source
files. And, of course, you will need to work extensively with the library documentation.
Table 2–2 shows the JDK directory tree.

The two most useful subdirectories for learning Java are docs and src. The docs directory
contains the Java library documentation in HTML format. You can view it with any web
browser, such as Netscape.

TIP: Set a bookmark in your browser to the file docs/api/index.html. You will be referring to
this page a lot as you explore the Java platform.

The src directory contains the source code for the public part of the Java libraries. As you
become more comfortable with Java, you may find yourself in situations for which this
book and the on-line information do not provide what you need to know. At this point,
the source code for Java is a good place to begin digging. It is reassuring to know that
you can always dig into the source to find out what a library function really does. For
example, if you are curious about the inner workings of the System class, you can look
inside src/java/lang/System.java.

Choosing a Development Environment
If your programming experience comes from using Microsoft Visual Studio, you are
accustomed to a development environment with a built-in text editor and menus to

Table 2–2 Java Directory Tree

Directory
Structure Description

jdk (The name may be different, for example, jdk5.0)

bin The compiler and tools

demo Look here for demos

docs Library documentation in HTML format (after expansion of j2sdkversion-doc.zip)

include Files for compiling native methods (see Volume II)

jre Java runtime environment files

lib Library files

src The library source (after expanding src.zip)

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment22

compile and launch a program along with an integrated debugger. The basic JDK con-
tains nothing even remotely similar. You do everything by typing in commands in a shell
window. This sounds cumbersome, but it is nevertheless an essential skill. When you
first install Java, you will want to troubleshoot your installation before you install a
development environment. Moreover, by executing the basic steps yourself, you gain a
better understanding of what the development environment does behind your back.

However, after you have mastered the basic steps of compiling and running Java pro-
grams, you will want to use a professional development environment. In the last
decade, these environments have become so powerful and convenient that it simply
doesn’t make much sense to labor on without them. Two excellent choices are the freely
available Eclipse and NetBeans programs. In this chapter, we show you how to get
started with Eclipse since it is still a bit slicker than NetBeans, although NetBeans is
catching up fast. Of course, if you prefer a different development environment, you can
certainly use it with this book.

In the past, we recommended the use of a text editor such as Emacs, JEdit, or TextPad
for simple programs. We no longer make this recommendation because the integrated
devlopment environments are now so fast and convenient.

In sum, we think that you should know how to use the basic JDK tools, and then you
should become comfortable with an integrated development environment.

Using the Command-Line Tools
Let us get started the hard way: compiling and launching a Java program from the
command line.

1. Open a shell window.
2. Go to the CoreJavaBook/v1ch02/Welcome directory. (The CoreJavaBook directory is the direc-

tory into which you installed the source code for the book examples, as explained in
the section “Installing the Core Java Program Examples” on page 20.)

3. Enter the following commands:
javac Welcome.java
java Welcome

You should see the output shown in Figure 2–3 in the shell window.

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file Welcome.java
into the file Welcome.class. The java program launches the Java virtual machine. It executes
the bytecodes that the compiler placed in the class file.

NOTE: If you got an error message complaining about the line

for (String g : greeting)

then you probably use an older version of the Java compiler. Java SE 5.0 introduced a num-
ber of very desirable features to the Java programming language, and we take advantage of
them in this book.

If you are using an older version of Java, you need to rewrite the loop as follows:

for (int i = 0; i < greeting.length; i++)
 System.out.println(greeting[i]);

Chapter 2. The Java Programming Environment

Using the Command-Line Tools 23

Figure 2–3 Compiling and running Welcome.java

The Welcome program is extremely simple. It merely prints a message to the console. You
may enjoy looking inside the program shown in Listing 2–1 (we explain how it works in
the next chapter).

Listing 2–1 Welcome.java

1. /**
2. * This program displays a greeting from the authors.
3. * @version 1.20 2004-02-28
4. * @author Cay Horstmann
5. */
6. public class Welcome
7. {
8. public static void main(String[] args)
9. {

10. String[] greeting = new String[3];
11. greeting[0] = "Welcome to Core Java";
12. greeting[1] = "by Cay Horstmann";
13. greeting[2] = "and Gary Cornell";
14.

15. for (String g : greeting)
16. System.out.println(g);
17. }
18. }

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment24

Troubleshooting Hints
In the age of visual development environments, many programmers are unfamiliar with
running programs in a shell window. Any number of things can go wrong, leading to
frustrating results.

Pay attention to the following points:

• If you type in the program by hand, make sure you pay attention to uppercase and
lowercase letters. In particular, the class name is Welcome and not welcome or WELCOME.

• The compiler requires a file name (Welcome.java). When you run the program, you
specify a class name (Welcome) without a .java or .class extension.

• If you get a message such as “Bad command or file name” or “javac: command not
found”, then go back and double-check your installation, in particular the execution
path setting.

• If javac reports an error “cannot read: Welcome.java”, then you should check
whether that file is present in the directory.
Under UNIX, check that you used the correct capitalization for Welcome.java. Under
Windows, use the dir shell command, not the graphical Explorer tool. Some text
editors (in particular Notepad) insist on adding an extension .txt after every file. If
you use Notepad to edit Welcome.java, then it actually saves it as Welcome.java.txt. Under
the default Windows settings, Explorer conspires with Notepad and hides the .txt
extension because it belongs to a “known file type.” In that case, you need to
rename the file, using the ren shell command, or save it again, placing quotes around
the file name: "Welcome.java".

• If you launch your program and get an error message complaining about a
java.lang.NoClassDefFoundError, then carefully check the name of the offending class.
If you get a complaint about welcome (with a lowercase w), then you should reissue
the java Welcome command with an uppercase W. As always, case matters in Java.
If you get a complaint about Welcome/java, then you accidentally typed java Welcome.java.
Reissue the command as java Welcome.

• If you typed java Welcome and the virtual machine can’t find the Welcome class, then
check if someone has set the CLASSPATH environment variable on your system. (It is
usually not a good idea to set this variable globally, but some poorly written soft-
ware installers in Windows do just that.) You can temporarily unset the CLASSPATH
environment variable in the current shell window by typing

set CLASSPATH=

This command works on Windows and UNIX/Linux with the C shell. On UNIX/
Linux with the Bourne/bash shell, use

export CLASSPATH=

• If you get an error message about a new language construct, make sure that your
compiler supports Java SE 5.0.

• If you have too many errors in your program, then all the error messages fly by very
quickly. The compiler sends the error messages to the standard error stream, so it’s a
bit tricky to capture them if they fill more than the window can display.
Use the 2> shell operator to redirect the errors to a file:

javac MyProg.java 2> errors.txt

Chapter 2. The Java Programming Environment

Using an Integrated Development Environment 25

TIP: The excellent tutorial at http://java.sun.com/docs/books/tutorial/getStarted/cupojava/
goes into much greater detail about the “gotchas” that beginners can run into.

Using an Integrated Development Environment
In this section, we show you how to compile a program with Eclipse, an integrated
development environment that is freely available from http://eclipse.org. Eclipse is
written in Java, but because it uses a nonstandard windowing library, it is not quite
as portable as Java itself. Nevertheless, versions exist for Linux, Mac OS X, Solaris,
and Windows.

There are other popular IDEs, but currently, Eclipse is the most commonly used. Here
are the steps to get started:

1. After starting Eclipse, select File -> New Project from the menu.
2. Select “Java Project” from the wizard dialog (see Figure 2–4). These screen shots

were taken with Eclipse 3.2. Don’t worry if your version of Eclipse looks slightly
different.

Figure 2–4 New Project dialog in Eclipse

3. Click the “Next” button. Supply the project name “Welcome” and type in the full
path name of the directory that contains Welcome.java (see Figure 2–5).

4. Be sure to uncheck the option labeled “Create project in workspace”.
5. Click the “Finish” button. The project is now created.

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment26

Figure 2–5 Configuring an Eclipse project

6. Click on the triangle in the left pane next to the project window to open it, and then
click on the triangle next to “Default package”. Double-click on Welcome.java. You
should now see a window with the program code (see Figure 2–6).

Figure 2–6 Editing a source file with Eclipse

Chapter 2. The Java Programming Environment

Using an Integrated Development Environment 27

7. With the right mouse button, click on the project name (Welcome) in the leftmost
pane. Select Run -> Run As -> Java Application. An output window appears at the
bottom of the window. The program output is displayed in the output window (see
Figure 2–7).

Figure 2–7 Running a program in Eclipse

Locating Compilation Errors
Presumably, this program did not have typos or bugs. (It was only a few lines of code,
after all.) Let us suppose, for the sake of argument, that your code occasionally contains
a typo (perhaps even a syntax error). Try it out—ruin our file, for example, by changing
the capitalization of String as follows:

public static void main(string[] args)

Now, run the compiler again. You will get an error message that complains about an
unknown string type (see Figure 2–8). Simply click on the error message. The cursor
moves to the matching line in the edit window, where you can correct your error. This
behavior allows you to fix your errors quickly.

TIP: Often, an Eclipse error report is accompanied by a lightbulb icon. Click on the lightbulb
to get a list of suggested fixes.

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment28

Figure 2–8 Error messages in Eclipse

These instructions should give you a taste of working in an integrated environment. We
discuss the Eclipse debugger in Chapter 11.

Running a Graphical Application
The Welcome program was not terribly exciting. Next, we will demonstrate a graphical
application. This program is a simple image file viewer that just loads and displays an
image. Again, let us first compile and run it from the command line.

1. Open a shell window.
2. Change to the directory CoreJavaBook/v1ch02/ImageViewer.
3. Enter the following:

javac ImageViewer.java
java ImageViewer

A new program window pops up with our ImageViewer application (see Figure 2–9).

Now, select File -> Open and look for an image file to open. (We supplied a couple of
sample files in the same directory.)

To close the program, click on the Close box in the title bar or pull down the system
menu and close the program. (To compile and run this program inside a text editor or an
integrated development environment, do the same as before. For example, for Emacs,
choose JDE -> Compile, then choose JDE -> Run App.)

Chapter 2. The Java Programming Environment

Running a Graphical Application 29

Figure 2–9 Running the ImageViewer application

We hope that you find this program interesting and useful. Have a quick look at the
source code. The program is substantially longer than the first program, but it is not ter-
ribly complex if you consider how much code it would take in C or C++ to write a simi-
lar application. In Visual Basic, of course, it is easy to write or, rather, drag and drop,
such a program. The JDK does not have a visual interface builder, so you need to write
code for everything, as shown in Listing 2–2. You learn how to write graphical pro-
grams like this in Chapters 7 through 9.

Listing 2–2 ImageViewer.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import java.io.*;
4. import javax.swing.*;
5.

6. /**
7. * A program for viewing images.
8. * @version 1.22 2007-05-21
9. * @author Cay Horstmann

10. */
11. public class ImageViewer
12. {
13. public static void main(String[] args)
14. {
15. EventQueue.invokeLater(new Runnable()
16. {
17. public void run()
18. {

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment30

19. JFrame frame = new ImageViewerFrame();
20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);
22. }
23. });
24. }
25. }
26.

27. /**
28. * A frame with a label to show an image.
29. */
30. class ImageViewerFrame extends JFrame
31. {
32. public ImageViewerFrame()
33. {
34. setTitle("ImageViewer");
35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
36.

37. // use a label to display the images
38. label = new JLabel();
39. add(label);
40.

41. // set up the file chooser
42. chooser = new JFileChooser();
43. chooser.setCurrentDirectory(new File("."));
44.

45. // set up the menu bar
46. JMenuBar menuBar = new JMenuBar();
47. setJMenuBar(menuBar);
48.

49. JMenu menu = new JMenu("File");
50. menuBar.add(menu);
51.

52. JMenuItem openItem = new JMenuItem("Open");
53. menu.add(openItem);
54. openItem.addActionListener(new ActionListener()
55. {
56. public void actionPerformed(ActionEvent event)
57. {
58. // show file chooser dialog
59. int result = chooser.showOpenDialog(null);
60.

61. // if file selected, set it as icon of the label
62. if (result == JFileChooser.APPROVE_OPTION)
63. {
64. String name = chooser.getSelectedFile().getPath();
65. label.setIcon(new ImageIcon(name));
66. }
67. }
68. });

Listing 2–2 ImageViewer.java (continued)

Chapter 2. The Java Programming Environment

Building and Running Applets 31

Building and Running Applets
The first two programs presented in this book are Java applications, stand-alone pro-
grams like any native programs. On the other hand, as we mentioned in the last chapter,
most of the hype about Java comes from its ability to run applets inside a web browser.
We want to show you how to build and run an applet from the command line. Then we
will load the applet into the applet viewer that comes with the JDK. Finally, we will dis-
play it in a web browser.

First, open a shell window and go to the directory CoreJavaBook/v1ch02/WelcomeApplet, then
enter the following commands:

javac WelcomeApplet.java
appletviewer WelcomeApplet.html

Figure 2–10 shows what you see in the applet viewer window.

Figure 2–10 WelcomeApplet applet as viewed by the applet viewer

The first command is the now-familiar command to invoke the Java compiler. This com-
piles the WelcomeApplet.java source into the bytecode file WelcomeApplet.class.

69. JMenuItem exitItem = new JMenuItem("Exit");
70. menu.add(exitItem);
71. exitItem.addActionListener(new ActionListener()
72. {
73. public void actionPerformed(ActionEvent event)
74. {
75. System.exit(0);
76. }
77. });
78. }
79.

80. private JLabel label;
81. private JFileChooser chooser;
82. private static final int DEFAULT_WIDTH = 300;
83. private static final int DEFAULT_HEIGHT = 400;
84. }

Listing 2–2 ImageViewer.java (continued)

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment32

This time, however, you do not run the java program. You invoke the appletviewer program
instead. This program is a special tool included with the JDK that lets you quickly test an
applet. You need to give this program an HTML file name, rather than the name of a Java
class file. The contents of the WelcomeApplet.html file are shown below in Listing 2–3.

If you are familiar with HTML, you will notice some standard HTML instructions
and the applet tag, telling the applet viewer to load the applet whose code is stored in
WelcomeApplet.class. The applet viewer ignores all HTML tags except for the applet tag.

Unfortunately, the browser situation is a bit messy.

• Firefox supports Java on Windows, Linux, and Mac OS X. To experiment with
applets, just download the latest version, visit http://java.com, and use the version
checker to see whether you need to install the Java Plug-in.

• Some versions of Internet Explorer have no support for Java at all. Others only sup-
port the very outdated Microsoft Java Virtual Machine. If you run Internet Explorer,
go to http://java.com and install the Java Plug-in.

• If you have a Macintosh running OS X, then Safari is integrated with the Macintosh
Java implementation, which supports Java SE 5.0 at the time of this writing.

Provided you have a browser that supports a modern version of Java, you can try load-
ing the applet inside the browser.

1. Start your browser.
2. Select File -> Open File (or the equivalent).
3. Go to the CoreJavaBook/v1ch02/WelcomeApplet directory. You should see the Welcome-

Applet.html file in the file dialog. Load the file.
4. Your browser now loads the applet, including the surrounding text. It will look

something like Figure 2–11.

Listing 2–3 WelcomeApplet.html

1. <html>
2. <head>
3. <title>WelcomeApplet</title>
4. </head>
5. <body>
6. <hr/>
7. <p>
8. This applet is from the book
9. Core Java

10. by Cay Horstmann and Gary Cornell,
11. published by Sun Microsystems Press.
12. </p>
13. <applet code="WelcomeApplet.class" width="400" height="200">
14. <param name="greeting" value ="Welcome to Core Java!"/>
15. </applet>
16. <hr/>
17. <p>The source.</p>
18. </body>
19. </html>

Chapter 2. The Java Programming Environment

Building and Running Applets 33

You can see that this application is actually alive and willing to interact with the Inter-
net. Click on the Cay Horstmann button. The applet directs the browser to display Cay’s
web page. Click on the Gary Cornell button. The applet directs the browser to pop up a
mail window, with Gary’s e-mail address already filled in.

Figure 2–11 Running the WelcomeApplet applet in a browser

Notice that neither of these two buttons works in the applet viewer. The applet viewer
has no capabilities to send mail or display a web page, so it ignores your requests. The
applet viewer is good for testing applets in isolation, but you need to put applets inside
a browser to see how they interact with the browser and the Internet.

TIP: You can also run applets from inside your editor or integrated development environ-
ment. In Emacs, select JDE -> Run Applet from the menu. In Eclipse, use the Run -> Run as
-> Java Applet menu option.

Finally, the code for the applet is shown in Listing 2–4. At this point, do not give it more
than a glance. We come back to writing applets in Chapter 10.

Listing 2–4 WelcomeApplet.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.net.*;
4. import javax.swing.*;
5.

6. /**
7. * This applet displays a greeting from the authors.
8. * @version 1.22 2007-04-08
9. * @author Cay Horstmann

10. */

Chapter 2. The Java Programming Environment

Chapter 2 ■ The Java Programming Environment34

In this chapter, you learned about the mechanics of compiling and running Java pro-
grams. You are now ready to move on to Chapter 3, where you will start learning the
Java language.

11. public class WelcomeApplet extends JApplet
12. {
13. public void init()
14. {
15. EventQueue.invokeLater(new Runnable()
16. {
17. public void run()
18. {
19. setLayout(new BorderLayout());
20.

21. JLabel label = new JLabel(getParameter("greeting"), SwingConstants.CENTER);
22. label.setFont(new Font("Serif", Font.BOLD, 18));
23. add(label, BorderLayout.CENTER);
24.

25. JPanel panel = new JPanel();
26.

27. JButton cayButton = new JButton("Cay Horstmann");
28. cayButton.addActionListener(makeAction("http://www.horstmann.com"));
29. panel.add(cayButton);
30.

31. JButton garyButton = new JButton("Gary Cornell");
32. garyButton.addActionListener(makeAction("mailto:gary_cornell@apress.com"));
33. panel.add(garyButton);
34.

35. add(panel, BorderLayout.SOUTH);
36. }
37. });
38. }
39.

40. private ActionListener makeAction(final String urlString)
41. {
42. return new ActionListener()
43. {
44. public void actionPerformed(ActionEvent event)
45. {
46. try
47. {
48. getAppletContext().showDocument(new URL(urlString));
49. }
50. catch (MalformedURLException e)
51. {
52. e.printStackTrace();
53. }
54. }
55. };
56. }
57. }

Listing 2–4 WelcomeApplet.java (continued)

Chapter 2. The Java Programming Environment

ChapterChapter

35

FUNDAMENTAL
PROGRAMMING
STRUCTURES IN JAVA

▼ A SIMPLE JAVA PROGRAM

▼ COMMENTS

▼ DATA TYPES

▼ VARIABLES

▼ OPERATORS

▼ STRINGS

▼ INPUT AND OUTPUT

▼ CONTROL FLOW

▼ BIG NUMBERS

▼ ARRAYS

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java36

At this point, we are assuming that you successfully installed the JDK and were
able to run the sample programs that we showed you in Chapter 2. It’s time to start pro-
gramming. This chapter shows you how the basic programming concepts such as data
types, branches, and loops are implemented in Java.

Unfortunately, in Java you can’t easily write a program that uses a GUI—you need to
learn a fair amount of machinery to put up windows, add text boxes and buttons that
respond to them, and so on. Because introducing the techniques needed to write GUI-
based Java programs would take us too far away from our goal of introducing the basic
programming concepts, the sample programs in this chapter are “toy” programs,
designed to illustrate a concept. All these examples simply use a shell window for input
and output.

Finally, if you are an experienced C++ programmer, you can get away with just skim-
ming this chapter: Concentrate on the C/C++ notes that are interspersed throughout the
text. Programmers coming from another background, such as Visual Basic, will find
most of the concepts familiar, but all of the syntax very different—you should read this
chapter very carefully.

A Simple Java Program
Let’s look more closely at about the simplest Java program you can have—one that sim-
ply prints a message to the console window:

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("We will not use 'Hello, World!'");
 }
}

It is worth spending all the time that you need to become comfortable with the frame-
work of this sample; the pieces will recur in all applications. First and foremost, Java is
case sensitive. If you made any mistakes in capitalization (such as typing Main instead of
main), the program will not run.

Now let’s look at this source code line by line. The keyword public is called an access
modifier; these modifiers control the level of access other parts of a program have to this
code. We have more to say about access modifiers in Chapter 5. The keyword class
reminds you that everything in a Java program lives inside a class. Although we spend
a lot more time on classes in the next chapter, for now think of a class as a container for
the program logic that defines the behavior of an application. As mentioned in Chapter
1, classes are the building blocks with which all Java applications and applets are built.
Everything in a Java program must be inside a class.

Following the keyword class is the name of the class. The rules for class names in Java
are quite generous. Names must begin with a letter, and after that, they can have any
combination of letters and digits. The length is essentially unlimited. You cannot use a
Java reserved word (such as public or class) for a class name. (See the Appendix for a list
of reserved words.)

Chapter 3. Fundamental Programming Structures in Java

www.allitebooks.com

http://www.allitebooks.org

A Simple Java Program 37

The standard naming convention (which we follow in the name FirstSample) is that
class names are nouns that start with an uppercase letter. If a name consists of multi-
ple words, use an initial uppercase letter in each of the words. (This use of uppercase
letters in the middle of a word is sometimes called “camel case” or, self-referentially,
“CamelCase.”)

You need to make the file name for the source code the same as the name of the public
class, with the extension .java appended. Thus, you must store this code in a file called
FirstSample.java. (Again, case is important—don’t use firstsample.java.)

If you have named the file correctly and not made any typos in the source code, then
when you compile this source code, you end up with a file containing the bytecodes for
this class. The Java compiler automatically names the bytecode file FirstSample.class and
stores it in the same directory as the source file. Finally, launch the program by issuing
the following command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply dis-
plays the string We will not use 'Hello, World!' on the console.

When you use
java ClassName

to run a compiled program, the Java virtual machine always starts execution with the
code in the main method in the class you indicate. (The term “method” is Java-speak for a
function.) Thus, you must have a main method in the source file for your class for your
code to execute. You can, of course, add your own methods to a class and call them from
the main method. (We cover writing your own methods in the next chapter.)

NOTE: According to the Java Language Specification, the main method must be declared public.
(The Java Language Specification is the official document that describes the Java language. You
can view or download it from http://java.sun.com/docs/books/jls.)

However, several versions of the Java launcher were willing to execute Java programs even
when the main method was not public. A programmer filed a bug report. To see it, visit the
site http://bugs.sun.com/bugdatabase/index.jsp and enter the bug identification number
4252539. That bug was marked as “closed, will not be fixed.” A Sun engineer added an
explanation that the Java Virtual Machine Specification (at http://java.sun.com/docs/books/
vmspec) does not mandate that main is public and that “fixing it will cause potential troubles.”
Fortunately, sanity finally prevailed. The Java launcher in Java SE 1.4 and beyond enforces
that the main method is public.

There are a couple of interesting aspects about this story. On the one hand, it is frustrating
to have quality assurance engineers, who are often overworked and not always experts in
the fine points of Java, make questionable decisions about bug reports. On the other hand,
it is remarkable that Sun puts the bug reports and their resolutions onto the Web, for anyone
to scrutinize. The “bug parade” is a very useful resource for programmers. You can even
vote for your favorite bug. Bugs with lots of votes have a high chance of being fixed in the
next JDK release.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java38

Notice the braces { } in the source code. In Java, as in C/C++, braces delineate the parts
(usually called blocks) in your program. In Java, the code for any method must be started
by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We use a style
that lines up matching braces. Because whitespace is irrelevant to the Java compiler, you
can use whatever brace style you like. We will have more to say about the use of braces
when we talk about the various kinds of loops.

For now, don’t worry about the keywords static void—just think of them as part of what
you need to get a Java program to compile. By the end of Chapter 4, you will under-
stand this incantation completely. The point to remember for now is that every Java
application must have a main method that is declared in the following way:

public class ClassName
{
 public static void main(String[] args)
 {
 program statements
 }
}

C++ NOTE: As a C++ programmer, you know what a class is. Java classes are similar to
C++ classes, but there are a few differences that can trap you. For example, in Java all func-
tions are methods of some class. (The standard terminology refers to them as methods, not
member functions.) Thus, in Java you must have a shell class for the main method. You may
also be familiar with the idea of static member functions in C++. These are member func-
tions defined inside a class that do not operate on objects. The main method in Java is
always static. Finally, as in C/C++, the void keyword indicates that this method does not
return a value. Unlike C/C++, the main method does not return an “exit code” to the operating
system. If the main method exits normally, the Java program has the exit code 0, indicating
successful completion. To terminate the program with a different exit code, use the
System.exit method.

Next, turn your attention to this fragment:
{
 System.out.println("We will not use 'Hello, World!'");
}

Braces mark the beginning and end of the body of the method. This method has only one
statement in it. As with most programming languages, you can think of Java statements
as being the sentences of the language. In Java, every statement must end with a semico-
lon. In particular, carriage returns do not mark the end of a statement, so statements can
span multiple lines if need be.

The body of the main method contains a statement that outputs a single line of text to
the console.

Here, we are using the System.out object and calling its println method. Notice the peri-
ods used to invoke a method. Java uses the general syntax

object.method(parameters)

for its equivalent of function calls.

Chapter 3. Fundamental Programming Structures in Java

Comments 39

In this case, we are calling the println method and passing it a string parameter. The
method displays the string parameter on the console. It then terminates the output line
so that each call to println displays its output on a new line. Notice that Java, like C/C++,
uses double quotes to delimit strings. (You can find more information about strings later
in this chapter.)

Methods in Java, like functions in any programming language, can use zero, one, or
more parameters (some programmers call them arguments). Even if a method takes no
parameters, you must still use empty parentheses. For example, a variant of the println
method with no parameters just prints a blank line. You invoke it with the call

System.out.println();

NOTE: System.out also has a print method that doesn’t add a new line character to the
output. For example, System.out.print("Hello") prints Hello without a new line. The next
output appears immediately after the letter o.

Comments
Comments in Java, like comments in most programming languages, do not show up in
the executable program. Thus, you can add as many comments as needed without fear
of bloating the code. Java has three ways of marking comments. The most common
method is a //. You use this for a comment that will run from the // to the end of the line.

System.out.println("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //. Or you can use
the /* and */ comment delimiters that let you block off a longer comment. This is shown
in Listing 3–1.

Finally, a third kind of comment can be used to generate documentation automati-
cally. This comment uses a /** to start and a */ to end. For more on this type of com-
ment and on automatic documentation generation, see Chapter 4.

Listing 3–1 FirstSample.java

1. /**
2. * This is the first sample program in Core Java Chapter 3
3. * @version 1.01 1997-03-22
4. * @author Gary Cornell
5. */
6. public class FirstSample
7. {
8. public static void main(String[] args)
9. {

10. System.out.println("We will not use 'Hello, World!'");
11. }
12. }

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java40

CAUTION: /* */ comments do not nest in Java. That is, you cannot deactivate code simply by
surrounding it with /* and */ because the code that you want to deactivate might itself contain
a */ delimiter.

Data Types
Java is a strongly typed language. This means that every variable must have a declared
type. There are eight primitive types in Java. Four of them are integer types; two are
floating-point number types; one is the character type char, used for code units in the
Unicode encoding scheme (see the section “The char Type” on page 42); and one is a
boolean type for truth values.

NOTE: Java has an arbitrary precision arithmetic package. However, “big numbers,” as they
are called, are Java objects and not a new Java type. You see how to use them later in this
chapter.

Integer Types
The integer types are for numbers without fractional parts. Negative values are allowed.
Java provides the four integer types shown in Table 3–1.

In most situations, the int type is the most practical. If you want to represent the
number of inhabitants of our planet, you’ll need to resort to a long. The byte and short
types are mainly intended for specialized applications, such as low-level file han-
dling, or for large arrays when storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on which you
will be running the Java code. This alleviates a major pain for the programmer who
wants to move software from one platform to another, or even between operating sys-
tems on the same platform. In contrast, C and C++ programs use the most efficient inte-
ger type for each processor. As a result, a C program that runs well on a 32-bit processor
may exhibit integer overflow on a 16-bit system. Because Java programs must run with
the same results on all machines, the ranges for the various types are fixed.

Long integer numbers have a suffix L (for example, 4000000000L). Hexadecimal numbers
have a prefix 0x (for example, 0xCAFE). Octal numbers have a prefix 0. For example, 010 is 8.
Naturally, this can be confusing, and we recommend against the use of octal constants.

Table 3–1 Java Integer Types

Type Storage Requirement Range (Inclusive)

int 4 bytes –2,147,483,648 to 2,147,483, 647 (just over 2 billion)

short 2 bytes –32,768 to 32,767

long 8 bytes –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

byte 1 byte –128 to 127

Chapter 3. Fundamental Programming Structures in Java

Data Types 41

C++ NOTE: In C and C++, int denotes the integer type that depends on the target machine.
On a 16-bit processor, like the 8086, integers are 2 bytes. On a 32-bit processor like the Sun
SPARC, they are 4-byte quantities. On an Intel Pentium, the integer type of C and C++
depends on the operating system: For DOS and Windows 3.1, integers are 2 bytes. When
32-bit mode is used for Windows programs, integers are 4 bytes. In Java, the sizes of all
numeric types are platform independent.

Note that Java does not have any unsigned types.

Floating-Point Types
The floating-point types denote numbers with fractional parts. The two floating-point
types are shown in Table 3–2.

The name double refers to the fact that these numbers have twice the precision of the
float type. (Some people call these double-precision numbers.) Here, the type to
choose in most applications is double. The limited precision of float is simply not
sufficient for many situations. Seven significant (decimal) digits may be enough to
precisely express your annual salary in dollars and cents, but it won’t be enough for
your company president’s salary. The only reasons to use float are in the rare situa-
tions in which the slightly faster processing of single-precision numbers is impor-
tant or when you need to store a large number of them.

Numbers of type float have a suffix F (for example, 3.402F). Floating-point numbers
without an F suffix (such as 3.402) are always considered to be of type double. You can
optionally supply the D suffix (for example, 3.402D).

NOTE: As of Java SE 5.0, you can specify floating-point numbers in hexadecimal! For exam-
ple, 0.125 = 2-3 can be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an e, to
denote the exponent. Note that the mantissa is written in hexadecimal and the exponent in
decimal. The base of the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular, there
are three special floating-point values to denote overflows and errors:

• Positive infinity
• Negative infinity
• NaN (not a number)

Table 3–2 Floating-Point Types

Type Storage Requirement Range

float 4 bytes approximately ±3.40282347E+38F
(6–7 significant decimal digits)

double 8 bytes approximately ±1.79769313486231570E+308
(15 significant decimal digits)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java42

For example, the result of dividing a positive number by 0 is positive infinity. Comput-
ing 0/0 or the square root of a negative number yields NaN.

NOTE: The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and Double.NaN (as
well as corresponding Float constants) represent these special values, but they are rarely
used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number” values are consid-
ered distinct. However, you can use the Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

CAUTION: Floating-point numbers are not suitable for financial calculation in which
roundoff errors cannot be tolerated. For example, the command System.out.println(2.0 -
1.1) prints 0.8999999999999999, not 0.9 as you would expect. Such roundoff errors are
caused by the fact that floating-point numbers are represented in the binary number
system. There is no precise binary representation of the fraction 1/10, just as there is no
accurate representation of the fraction 1/3 in the decimal system. If you need precise
numerical computations without roundoff errors, use the BigDecimal class, which is intro-
duced later in this chapter.

The char Type
The char type is used to describe individual characters. Most commonly, these will be
character constants. For example, 'A' is a character constant with value 65. It is different
from "A", a string containing a single character. Unicode code units can be expressed as
hexadecimal values that run from \u0000 to \uFFFF. For example, \u2122 is the trademark
symbol (™) and \u03C0 is the Greek letter pi (π).

Besides the \u escape sequences that indicate the encoding of Unicode code units, there
are several escape sequences for special characters, as shown in Table 3–3. You can use
these escape sequences inside quoted character constants and strings, such as '\u2122' or
"Hello\n". The \u escape sequence (but none of the other escape sequences) can even be
used outside quoted character constants and strings. For example,

public static void main(String\u005B\u005D args)

is perfectly legal—\u005B and \u005D are the encodings for [and].

Table 3–3 Escape Sequences for Special Characters

Escape Sequence Name Unicode Value

\b Backspace \u0008

\t Tab \u0009

\n Linefeed \u000a

\r Carriage return \u000d

Chapter 3. Fundamental Programming Structures in Java

Data Types 43

To fully understand the char type, you have to know about the Unicode encoding
scheme. Unicode was invented to overcome the limitations of traditional character
encoding schemes. Before Unicode, there were many different standards: ASCII in the
United States, ISO 8859-1 for Western European languages, KOI-8 for Russian, GB18030
and BIG-5 for Chinese, and so on. This causes two problems. A particular code value
corresponds to different letters in the various encoding schemes. Moreover, the encod-
ings for languages with large character sets have variable length: Some common charac-
ters are encoded as single bytes, others require two or more bytes.

Unicode was designed to solve these problems. When the unification effort started in
the 1980s, a fixed 2-byte width code was more than sufficient to encode all characters
used in all languages in the world, with room to spare for future expansion—or so
everyone thought at the time. In 1991, Unicode 1.0 was released, using slightly less than
half of the available 65,536 code values. Java was designed from the ground up to use
16-bit Unicode characters, which was a major advance over other programming lan-
guages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond 65,536 charac-
ters, primarily due to the addition of a very large set of ideographs used for Chinese,
Japanese, and Korean. Now, the 16-bit char type is insufficient to describe all Unicode
characters.

We need a bit of terminology to explain how this problem is resolved in Java, begin-
ning with Java SE 5.0. A code point is a code value that is associated with a character in
an encoding scheme. In the Unicode standard, code points are written in hexadecimal
and prefixed with U+, such as U+0041 for the code point of the letter A. Unicode has
code points that are grouped into 17 code planes. The first code plane, called the basic
multilingual plane, consists of the “classic” Unicode characters with code points U+0000
to U+FFFF. Sixteen additional planes, with code points U+10000 to U+10FFFF, hold the
supplementary characters.

The UTF-16 encoding is a method of representing all Unicode code points in a variable-
length code. The characters in the basic multilingual plane are represented as 16-bit
values, called code units. The supplementary characters are encoded as consecutive
pairs of code units. Each of the values in such an encoding pair falls into a range of
2048 unused values of the basic multilingual plane, called the surrogates area (U+D800
to U+DBFF for the first code unit, U+DC00 to U+DFFF for the second code unit). This
is rather clever, because you can immediately tell whether a code unit encodes a single
character or whether it is the first or second part of a supplementary character. For
example, the mathematical symbol for the set of integers � has code point U+1D56B

\" Double quote \u0022

\' Single quote \u0027

\\ Backslash \u005c

Table 3–3 Escape Sequences for Special Characters (continued)

Escape Sequence Name Unicode Value

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java44

and is encoded by the two code units U+D835 and U+DD6B. (See http://en.wikipedia.org/
wiki/UTF-16 for a description of the encoding algorithm.)

In Java, the char type describes a code unit in the UTF-16 encoding.

Our strong recommendation is not to use the char type in your programs unless you are
actually manipulating UTF-16 code units. You are almost always better off treating
strings (which we will discuss in the section “Strings” on page 53) as abstract data types.

The boolean Type
The boolean type has two values, false and true. It is used for evaluating logical condi-
tions. You cannot convert between integers and boolean values.

C++ NOTE: In C++, numbers and even pointers can be used in place of boolean values. The
value 0 is equivalent to the bool value false, and a non-zero value is equivalent to true. This
is not the case in Java. Thus, Java programmers are shielded from accidents such as

if (x = 0) // oops...meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java, the test does not
compile because the integer expression x = 0 cannot be converted to a boolean value.

Variables
In Java, every variable has a type. You declare a variable by placing the type first, fol-
lowed by the name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary because
a declaration is a complete Java statement.

A variable name must begin with a letter and must be a sequence of letters or digits. Note
that the terms “letter” and “digit” are much broader in Java than in most languages. A letter
is defined as 'A'–'Z', 'a'–'z', '_', or any Unicode character that denotes a letter in a language.
For example, German users can use umlauts such as 'ä' in variable names; Greek speakers
could use a π. Similarly, digits are '0'–'9' and any Unicode characters that denote a digit in
a language. Symbols like '+' or '©' cannot be used inside variable names, nor can spaces.
All characters in the name of a variable are significant and case is also significant. The length of
a variable name is essentially unlimited.

TIP: If you are really curious as to what Unicode characters are “letters” as far as Java is
concerned, you can use the isJavaIdentifierStart and isJavaIdentifierPart methods in the
Character class to check.

You also cannot use a Java reserved word for a variable name. (See the Appendix for a
list of reserved words.)

Chapter 3. Fundamental Programming Structures in Java

Variables 45

You can have multiple declarations on a single line:
int i, j; // both are integers

However, we don’t recommend this style. If you declare each variable separately, your
programs are easier to read.

NOTE: As you saw, names are case sensitive, for example, hireday and hireDay are two sep-
arate names. In general, you should not have two names that only differ in their letter case.
However, sometimes it is difficult to come up with a good name for a variable. Many pro-
grammers then give the variable the same name of the type, such as

Box box; // ok--Box is the type and box is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

Initializing Variables
After you declare a variable, you must explicitly initialize it by means of an assignment
statement—you can never use the values of uninitialized variables. For example, the
Java compiler flags the following sequence of statements as an error:

int vacationDays;
System.out.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on the left, an
equal sign (=), and then some Java expression that has an appropriate value on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:
int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For example, the fol-
lowing is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // ok to declare a variable here

In Java, it is considered good style to declare variables as closely as possible to the point
where they are first used.

C++ NOTE: C and C++ distinguish between the declaration and definition of variables. For
example,

int i = 10;
is a definition, whereas

extern int i;

is a declaration. In Java, no declarations are separate from definitions.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java46

Constants
In Java, you use the keyword final to denote a constant. For example:

public class Constants
{
 public static void main(String[] args)
 {
 final double CM_PER_INCH = 2.54;
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }
}

The keyword final indicates that you can assign to the variable once, and then its value
is set once and for all. It is customary to name constants in all uppercase.

It is probably more common in Java to want a constant that is available to multiple
methods inside a single class. These are usually called class constants. You set up a class
constant with the keywords static final. Here is an example of using a class constant:

public class Constants2
{
 public static void main(String[] args)
 {
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeters: "
 + paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
 }

 public static final double CM_PER_INCH = 2.54;
}

Note that the definition of the class constant appears outside themain method. Thus, the
constant can also be used in other methods of the same class. Furthermore, if (as in our
example) the constant is declared public, methods of other classes can also use the con-
stant—in our example, as Constants2.CM_PER_INCH.

C++ NOTE: const is a reserved Java keyword, but it is not currently used for anything. You
must use final for a constant.

Operators
The usual arithmetic operators + – * / are used in Java for addition, subtraction, multi-
plication, and division. The / operator denotes integer division if both arguments are
integers, and floating-point division otherwise. Integer remainder (sometimes called
modulus) is denoted by %. For example, 15 / 2 is 7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division
by 0 yields an infinite or NaN result.

Chapter 3. Fundamental Programming Structures in Java

Operators 47

There is a convenient shortcut for using binary arithmetic operators in an assignment.
For example,

x += 4;

is equivalent to
x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

NOTE: One of the stated goals of the Java programming language is portability. A computa-
tion should yield the same results no matter which virtual machine executes it. For arith-
metic computations with floating-point numbers, it is surprisingly difficult to achieve this
portability. The double type uses 64 bits to store a numeric value, but some processors use
80-bit floating-point registers. These registers yield added precision in intermediate steps of
a computation. For example, consider the following computation:

double w = x * y / z;

Many Intel processors compute x * y and leave the result in an 80-bit register, then divide by
z, and finally truncate the result back to 64 bits. That can yield a more accurate result, and it
can avoid exponent overflow. But the result may be different than a computation that uses
64 bits throughout. For that reason, the initial specification of the Java virtual machine man-
dated that all intermediate computations must be truncated. The numeric community hated
it. Not only can the truncated computations cause overflow, they are actually slower than the
more precise computations because the truncation operations take time. For that reason,
the Java programming language was updated to recognize the conflicting demands for opti-
mum performance and perfect reproducibility. By default, virtual machine designers are now
permitted to use extended precision for intermediate computations. However, methods
tagged with the strictfp keyword must use strict floating-point operations that yield repro-
ducible results. For example, you can tag main as

public static strictfp void main(String[] args)

Then all instructions inside the main method use strict floating-point computations. If you tag
a class as strictfp, then all of its methods use strict floating-point computations.

The gory details are very much tied to the behavior of the Intel processors. In default mode,
intermediate results are allowed to use an extended exponent, but not an extended mantissa.
(The Intel chips support truncation of the mantissa without loss of performance.) Therefore,
the only difference between default and strict mode is that strict computations may overflow
when default computations don’t.

If your eyes glazed over when reading this note, don’t worry. Floating-point overflow isn’t a
problem that one encounters for most common programs. We don’t use the strictfp key-
word in this book.

Increment and Decrement Operators
Programmers, of course, know that one of the most common operations with a numeric
variable is to add or subtract 1. Java, following in the footsteps of C and C++, has both
increment and decrement operators: n++ adds 1 to the current value of the variable n, and
n-- subtracts 1 from it. For example, the code

int n = 12;
n++;

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java48

changes n to 13. Because these operators change the value of a variable, they cannot be
applied to numbers themselves. For example, 4++ is not a legal statement.

There are actually two forms of these operators; you have seen the “postfix” form of the
operator that is placed after the operand. There is also a prefix form, ++n. Both change the
value of the variable by 1. The difference between the two only appears when they are
used inside expressions. The prefix form does the addition first; the postfix form evalu-
ates to the old value of the variable.

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside other expressions because this often leads to con-
fusing code and annoying bugs.

(Of course, while it is true that the ++ operator gives the C++ language its name, it also
led to the first joke about the language. C++ haters point out that even the name of the
language contains a bug: “After all, it should really be called ++C, because we only
want to use a language after it has been improved.”)

Relational and boolean Operators
Java has the full complement of relational operators. To test for equality you use a dou-
ble equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of
3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >=
(greater than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the logical “or”
operator. As you can easily remember from the != operator, the exclamation point ! is the
logical negation operator. The && and || operators are evaluated in “short circuit” fash-
ion. The second argument is not evaluated if the first argument already determines the
value. If you combine two expressions with the && operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false, then it is
impossible for the result to be true. Thus, the value for the second expression is not
calculated. This behavior can be exploited to avoid errors. For example, in the
expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if x is
zero, and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if the first expres-
sion is true, without evaluation of the second expression.

Chapter 3. Fundamental Programming Structures in Java

Operators 49

Finally, Java supports the ternary ?: operator that is occasionally useful. The expression
condition ? expression1 : expression2

evaluates to the first expression if the condition is true, to the second expression other-
wise. For example,

x < y ? x : y

gives the smaller of x and y.

Bitwise Operators
When working with any of the integer types, you have operators that can work
directly with the bits that make up the integers. This means that you can use mask-
ing techniques to get at individual bits in a number. The bitwise operators are

& (“and”) | (“or”) ^ (“xor”) ~ (“not”)

These operators work on bit patterns. For example, if n is an integer variable, then
int fourthBitFromRight = (n & 8) / 8;

gives you a 1 if the fourth bit from the right in the binary representation of n is 1, and 0 if
not. Using & with the appropriate power of 2 lets you mask out all but a single bit.

NOTE: When applied to boolean values, the & and | operators yield a boolean value. These
operators are similar to the && and || operators, except that the & and | operators are not
evaluated in “short circuit” fashion. That is, both arguments are first evaluated before the
result is computed.

There are also >> and << operators, which shift a bit pattern to the right or left. These
operators are often convenient when you need to build up bit patterns to do bit
masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, whereas >> extends the sign bit into the
top bits. There is no <<< operator.

CAUTION: The right-hand side argument of the shift operators is reduced modulo 32
(unless the left-hand side is a long, in which case the right-hand side is reduced modulo 64).
For example, the value of 1 << 35 is the same as 1 << 3 or 8.

C++ NOTE: In C/C++, there is no guarantee as to whether >> performs an arithmetic shift
(extending the sign bit) or a logical shift (filling in with zeroes). Implementors are free to
choose whatever is more efficient. That means the C/C++ >> operator is really only defined
for non-negative numbers. Java removes that ambiguity.

Mathematical Functions and Constants
The Math class contains an assortment of mathematical functions that you may occasion-
ally need, depending on the kind of programming that you do.

To take the square root of a number, you use the sqrt method:

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java50

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

NOTE: There is a subtle difference between the println method and the sqrt method. The
println method operates on an object, System.out, defined in the System class. But the sqrt
method in the Math class does not operate on any object. Such a method is called a static
method. You can learn more about static methods in Chapter 4.

The Java programming language has no operator for raising a quantity to a power: You
must use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method has parameters that are both of
type double, and it returns a double as well.
The Math class supplies the usual trigonometric functions

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function and its inverse, the natural log:
Math.exp
Math.log

Finally, two constants denote the closest possible approximations to the mathematical
constants π and e:

Math.PI
Math.E

TIP: Starting with Java SE 5.0, you can avoid the Math prefix for the mathematical methods
and constants by adding the following line to the top of your source file:

import static java.lang.Math.*;

For example:

System.out.println("The square root of \u03C0 is " + sqrt(PI));

We discuss static imports in Chapter 4.

NOTE: The functions in the Math class use the routines in the computer’s floating-point
unit for fastest performance. If completely predictable results are more important than
fast performance, use the StrictMath class instead. It implements the algorithms from the
“Freely Distributable Math Library” fdlibm, guaranteeing identical results on all platforms.
See http://www.netlib.org/fdlibm/index.html for the source of these algorithms. (Whenever
fdlibm provides more than one definition for a function, the StrictMath class follows the
IEEE 754 version whose name starts with an “e”.)

Chapter 3. Fundamental Programming Structures in Java

Operators 51

Conversions between Numeric Types
It is often necessary to convert from one numeric type to another. Figure 3–1 shows the
legal conversions.

Figure 3–1 Legal conversions between numeric types

The six solid arrows in Figure 3–1 denote conversions without information loss. The
three dotted arrows denote conversions that may lose precision. For example, a large
integer such as 123456789 has more digits than the float type can represent. When the
integer is converted to a float, the resulting value has the correct magnitude but it loses
some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

When two values with a binary operator (such as n + f where n is an integer and f is a
floating-point value) are combined, both operands are converted to a common type
before the operation is carried out.

• If either of the operands is of type double, the other one will be converted to a double.
• Otherwise, if either of the operands is of type float, the other one will be converted

to a float.
• Otherwise, if either of the operands is of type long, the other one will be converted

to a long.
• Otherwise, both operands will be converted to an int.

Casts
In the preceding section, you saw that int values are automatically converted to double
values when necessary. On the other hand, there are obviously times when you want to
consider a double as an integer. Numeric conversions are possible in Java, but of course
information may be lost. Conversions in which loss of information is possible are done
by means of casts. The syntax for casting is to give the target type in parentheses, fol-
lowed by the variable name. For example:

byte short

double

int long

char

float

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java52

double x = 9.997;
int nx = (int) x;

Then, the variable nx has the value 9 because casting a floating-point value to an integer
discards the fractional part.

If you want to round a floating-point number to the nearest integer (which is the more use-
ful operation in most cases), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when you
call round. The reason is that the return value of the round method is a long, and a long
can only be assigned to an int with an explicit cast because there is the possibility
of information loss.

CAUTION: If you try to cast a number of one type to another that is out of the range for the
target type, the result will be a truncated number that has a different value. For example,
(byte) 300 is actually 44.

C++ NOTE: You cannot cast between boolean values and any numeric type. This convention
prevents common errors. In the rare case that you want to convert a boolean value to a num-
ber, you can use a conditional expression such as b ? 1 : 0.

Parentheses and Operator Hierarchy
Table 3–4 on the following page shows the precedence of operators. If no parentheses
are used, operations are performed in the hierarchical order indicated. Operators on the
same level are processed from left to right, except for those that are right associative, as
indicated in the table. For example, because && has a higher precedence than ||, the
expression

a && b || c

means
(a && b) || c

Because += associates right to left, the expression
a += b += c

means
a += (b += c)

That is, the value of b += c (which is the value of b after the addition) is added to a.

C++ NOTE: Unlike C or C++, Java does not have a comma operator. However, you can use
a comma-separated list of expressions in the first and third slot of a for statement.

Chapter 3. Fundamental Programming Structures in Java

Strings 53

Enumerated Types
Sometimes, a variable should only hold a restricted set of values. For example, you may
sell clothes or pizza in four sizes: small, medium, large, and extra large. Of course, you
could encode these sizes as integers 1, 2, 3, 4, or characters S, M, L, and X. But that is an
error-prone setup. It is too easy for a variable to hold a wrong value (such as 0 or m).

Starting with Java SE 5.0, you can define your own enumerated type whenever such a sit-
uation arises. An enumerated type has a finite number of named values. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:
Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type declaration or
the special value null that indicates that the variable is not set to any value at all.

We discuss enumerated types in greater detail in Chapter 5.

Strings
Conceptually, Java strings are sequences of Unicode characters. For example, the string
"Java\u2122" consists of the five Unicode characters J, a, v, a, and ™. Java does not have a
built-in string type. Instead, the standard Java library contains a predefined class called,
naturally enough, String. Each quoted string is an instance of the String class:

Table 3–4 Operator Precedence

Operators Associativity

[] . () (method call) Left to right

! ~ ++ -- + (unary) – (unary) () (cast) new Right to left

* / % Left to right

+ - Left to right

<< >> >>> Left to right

< <= > >= instanceof Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java54

String e = ""; // an empty string
String greeting = "Hello";

Substrings
You extract a substring from a larger string with the substring method of the String class.
For example,

String greeting = "Hello";
String s = greeting.substring(0, 3);

creates a string consisting of the characters "Hel".

The second parameter of substring is the first position that you do not want to copy.
In our case, we want to copy positions 0, 1, and 2 (from position 0 to position 2
inclusive). As substring counts it, this means from position 0 inclusive to position 3
exclusive.

There is one advantage to the way substring works: Computing the length of the sub-
string is easy. The string s.substring(a, b) always has length b - a. For example, the
substring "Hel" has length 3 – 0 = 3.

Concatenation
Java, like most programming languages, allows you to use the + sign to join (concate-
nate) two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string "Expletivedeleted". (Note the lack
of a space between the words: The + sign joins two strings in the order received, exactly
as they are given.)

When you concatenate a string with a value that is not a string, the latter is converted
to a string. (As you will see in Chapter 5, every Java object can be converted to a string.)
For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,
System.out.println("The answer is " + answer);

is perfectly acceptable and will print what one would want (and with the correct spac-
ing because of the space after the word is).

Strings Are Immutable
The String class gives no methods that let you change a character in an existing string. If
you want to turn greeting into "Help!", you cannot directly change the last positions of greet-
ing into 'p' and '!'. If you are a C programmer, this will make you feel pretty helpless.
How are you going to modify the string? In Java, it is quite easy: Concatenate the sub-
string that you want to keep with the characters that you want to replace.

greeting = greeting.substring(0, 3) + "p!";

This declaration changes the current value of the greeting variable to "Help!".

Chapter 3. Fundamental Programming Structures in Java

Strings 55

Because you cannot change the individual characters in a Java string, the documenta-
tion refers to the objects of the String class as being immutable. Just as the number 3 is
always 3, the string "Hello" will always contain the code unit sequence describing the
characters H, e, l, l, o. You cannot change these values. You can, as you just saw how-
ever, change the contents of the string variable greeting and make it refer to a different
string, just as you can make a numeric variable currently holding the value 3 hold the
value 4.

Isn’t that a lot less efficient? It would seem simpler to change the code units than to
build up a whole new string from scratch. Well, yes and no. Indeed, it isn’t efficient to
generate a new string that holds the concatenation of "Hel" and "p!". But immutable
strings have one great advantage: the compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a common pool.
String variables then point to locations in the pool. If you copy a string variable, both the
original and the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs the ineffi-
ciency of string editing by extracting substrings and concatenating. Look at your own
programs; we suspect that most of the time, you don’t change strings—you just com-
pare them. (There is one common exception—assembling strings from individual char-
acters or shorter strings that come from the keyboard or a file. For these situations, Java
provides a separate class that we describe in the section “Building Strings” on page 62.)

C++ NOTE: C programmers generally are bewildered when they see Java strings for the first
time because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is the wrong analogy: A Java string is roughly analogous to a char* pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does roughly the following:

char* temp = malloc(6);
strncpy(temp, greeting, 3);
strncpy(temp + 3, "p!", 3);
greeting = temp;

Sure, now greeting points to the string "Help!". And even the most hardened C programmer
must admit that the Java syntax is more pleasant than a sequence of strncpy calls. But what
if we make another assignment to greeting?

greeting = "Howdy";

Don’t we have a memory leak? After all, the original string was allocated on the heap. For-
tunately, Java does automatic garbage collection. If a block of memory is no longer
needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI C++, you will be much
more comfortable with the Java String type. C++ string objects also perform automatic alloca-
tion and deallocation of memory. The memory management is performed explicitly by construc-
tors, assignment operators, and destructors. However, C++ strings are mutable—you can
modify individual characters in a string.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java56

Testing Strings for Equality
To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can be string
variables or string constants. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the upper/lower-
case letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only determines
whether or not the strings are stored in the same location. Sure, if strings are in the same
location, they must be equal. But it is entirely possible to store multiple copies of identi-
cal strings in different places.

String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello") . . .
 // probably true
if (greeting.substring(0, 3) == "Hel") . . .
 // probably false

If the virtual machine would always arrange for equal strings to be shared, then you could
use the == operator for testing equality. But only string constants are shared, not strings that
are the result of operations like + or substring. Therefore, never use == to compare strings lest
you end up with a program with the worst kind of bug—an intermittent one that seems to
occur randomly.

C++ NOTE: If you are used to the C++ string class, you have to be particularly careful
about equality testing. The C++ string class does overload the == operator to test for
equality of the string contents. It is perhaps unfortunate that Java goes out of its way to
give strings the same “look and feel” as numeric values but then makes strings behave like
pointers for equality testing. The language designers could have redefined == for strings,
just as they made a special arrangement for +. Oh well, every language has its share of
inconsistencies.

C programmers never use == to compare strings but use strcmp instead. The Java method
compareTo is the exact analog to strcmp. You can use

if (greeting.compareTo("Hello") == 0) . . .

but it seems clearer to use equals instead.

Code Points and Code Units
Java strings are implemented as sequences of char values. As we discussed in the section
“The char Type” on page 42, the char data type is a code unit for representing Unicode
code points in the UTF-16 encoding. The most commonly used Unicode characters can
be represented with a single code unit. The supplementary characters require a pair of
code units.

Chapter 3. Fundamental Programming Structures in Java

Strings 57

The length method yields the number of code units required for a given string in the
UTF-16 encoding. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5.

To get the true length, that is, the number of code points, call
int cpCount = greeting.codePointCount(0, greeting.length());

The call s.charAt(n) returns the code unit at position n, where n is between 0 and s.length() – 1.
For example:

char first = greeting.charAt(0); // first is 'H'
char last = greeting.charAt(4); // last is 'o'

To get at the ith code point, use the statements
int index = greeting.offsetByCodePoints(0, i);
int cp = greeting.codePointAt(index);

NOTE: Java counts the code units in strings in a peculiar fashion: the first code unit in a string
has position 0. This convention originated in C, where there was a technical reason for count-
ing positions starting at 0. That reason has long gone away and only the nuisance remains.
However, so many programmers are used to this convention that the Java designers decided
to keep it.

Why are we making a fuss about code units? Consider the sentence
� is the set of integers

The � character requires two code units in the UTF-16 encoding. Calling
char ch = sentence.charAt(1)

doesn’t return a space but the second code unit of �. To avoid this problem, you should
not use the char type. It is too low-level.

If your code traverses a string, and you want to look at each code point in turn, use
these statements:

int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i += 2;
else i++;

Fortunately, the codePointAt method can tell whether a code unit is the first or second half
of a supplementary character, and it returns the right result either way. That is, you can
move backwards with the following statements:

i--;
int cp = sentence.codePointAt(i);
if (Character.isSupplementaryCodePoint(cp)) i--;

The String API
The String class in Java contains more than 50 methods. A surprisingly large number of
them are sufficiently useful so that we can imagine using them frequently. The follow-
ing API note summarizes the ones we found most useful.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java58

NOTE: You will find these API notes throughout the book to help you understand the Java
Application Programming Interface (API). Each API note starts with the name of a class
such as java.lang.String—the significance of the so-called package name java.lang is
explained in Chapter 4. The class name is followed by the names, explanations, and param-
eter descriptions of one or more methods.

We typically do not list all methods of a particular class but instead select those that are
most commonly used, and describe them in a concise form. For a full listing, consult the on-
line documentation (see “Reading the On-Line API Documentation” on page 59).

We also list the version number in which a particular class was introduced. If a method has
been added later, it has a separate version number.

• char charAt(int index)
returns the code unit at the specified location. You probably don’t want to call this
method unless you are interested in low-level code units.

• int codePointAt(int index) 5.0
returns the code point that starts or ends at the specified location.

• int offsetByCodePoints(int startIndex, int cpCount) 5.0
returns the index of the code point that is cpCount code points away from the code
point at startIndex.

• int compareTo(String other)
returns a negative value if the string comes before other in dictionary order, a
positive value if the string comes after other in dictionary order, or 0 if the strings
are equal.

• boolean endsWith(String suffix)
returns true if the string ends with suffix.

• boolean equals(Object other)
returns true if the string equals other.

• boolean equalsIgnoreCase(String other)
returns true if the string equals other, except for upper/lowercase distinction.

• int indexOf(String str)
• int indexOf(String str, int fromIndex)
• int indexOf(int cp)
• int indexOf(int cp, int fromIndex)

returns the start of the first substring equal to the string str or the code point cp,
starting at index 0 or at fromIndex, or –1 if str does not occur in this string.

• int lastIndexOf(String str)
• int lastIndexOf(String str, int fromIndex)
• int lastindexOf(int cp)
• int lastindexOf(int cp, int fromIndex)

returns the start of the last substring equal to the string str or the code point cp,
starting at the end of the string or at fromIndex.

java.lang.String 1.0

Chapter 3. Fundamental Programming Structures in Java

Strings 59

• int length()
returns the length of the string.

• int codePointCount(int startIndex, int endIndex) 5.0
returns the number of code points between startIndex and endIndex - 1. Unpaired
surrogates are counted as code points.

• String replace(CharSequence oldString, CharSequence newString)
returns a new string that is obtained by replacing all substrings matching oldString
in the string with the string newString. You can supply String or StringBuilder objects
for the CharSequence parameters.

• boolean startsWith(String prefix)
returns true if the string begins with prefix.

• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

returns a new string consisting of all code units from beginIndex until the end of the
string or until endIndex - 1.

• String toLowerCase()
returns a new string containing all characters in the original string, with
uppercase characters converted to lowercase.

• String toUpperCase()
returns a new string containing all characters in the original string, with
lowercase characters converted to uppercase.

• String trim()
returns a new string by eliminating all leading and trailing spaces in the original
string.

Reading the On-Line API Documentation
As you just saw, the String class has lots of methods. Furthermore, there are thousands of
classes in the standard libraries, with many more methods. It is plainly impossible to
remember all useful classes and methods. Therefore, it is essential that you become
familiar with the on-line API documentation that lets you look up all classes and meth-
ods in the standard library. The API documentation is part of the JDK. It is in HTML for-
mat. Point your web browser to the docs/api/index.html subdirectory of your JDK
installation. You will see a screen like that in Figure 3–2.

The screen is organized into three frames. A small frame on the top left shows all avail-
able packages. Below it, a larger frame lists all classes. Click on any class name, and the
API documentation for the class is displayed in the large frame to the right (see Figure
3–3). For example, to get more information on the methods of the String class, scroll the
second frame until you see the String link, then click on it.

Then scroll the frame on the right until you reach a summary of all methods, sorted in
alphabetical order (see Figure 3–4). Click on any method name for a detailed description
of that method (see Figure 3–5). For example, if you click on the compareToIgnoreCase link,
you get the description of the compareToIgnoreCase method.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java60

Figure 3–2 The three panes of the API documentation

Figure 3–3 Class description for the String class

Chapter 3. Fundamental Programming Structures in Java

Strings 61

Figure 3–4 Method summary of the String class

Figure 3–5 Detailed description of a String method

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java62

TIP: Bookmark the docs/api/index.html page in your browser right now.

Building Strings
Occasionally, you need to build up strings from shorter strings, such as keystrokes or
words from a file. It would be inefficient to use string concatenation for this purpose.
Every time you concatenate strings, a new String object is constructed. This is time con-
suming and it wastes memory. Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces. First, construct
an empty string builder:

StringBuilder builder = new StringBuilder();

(We discuss constructors and the new operator in detail in Chapter 4.)

Each time you need to add another part, call the append method.
builder.append(ch); // appends a single character
builder.append(str); // appends a string

When you are done building the string, call the toString method. You will get a String
object with the character sequence contained in the builder.

String completedString = builder.toString();

NOTE: The StringBuilder class was introduced in JDK 5.0. Its predecessor, StringBuffer, is
slightly less efficient, but it allows multiple threads to add or remove characters. If all string
editing happens in a single thread (which is usually the case), you should use StringBuilder
instead. The APIs of both classes are identical.

The following API notes contain the most important methods for the StringBuilder class.

• StringBuilder()
constructs an empty string builder.

• int length()
returns the number of code units of the builder or buffer.

• StringBuilder append(String str)
appends a string and returns this.

• StringBuilder append(char c)
appends a code unit and returns this.

• StringBuilder appendCodePoint(int cp)
appends a code point, converting it into one or two code units, and returns this.

• void setCharAt(int i, char c)
sets the ith code unit to c.

• StringBuilder insert(int offset, String str)
inserts a string at position offset and returns this.

java.lang.StringBuilder 5.0

Chapter 3. Fundamental Programming Structures in Java

Input and Output 63

• StringBuilder insert(int offset, char c)
inserts a code unit at position offset and returns this.

• StringBuilder delete(int startIndex, int endIndex)
deletes the code units with offsets startIndex to endIndex - 1 and returns this.

• String toString()
returns a string with the same data as the builder or buffer contents.

Input and Output
To make our example programs more interesting, we want to accept input and properly
format the program output. Of course, modern programs use a GUI for collecting user
input. However, programming such an interface requires more tools and techniques
than we have at our disposal at this time. Because the first order of business is to
become more familiar with the Java programming language, we make do with the hum-
ble console for input and output for now. GUI programming is covered in Chapters 7
through 9.

Reading Input
You saw that it is easy to print output to the “standard output stream” (that is, the con-
sole window) just by calling System.out.println. Reading from the “standard input stream”
System.in isn’t quite as simple. To read console input, you first construct a Scanner that is
attached to System.in:

Scanner in = new Scanner(System.in);

(We discuss constructors and the new operator in detail in Chapter 4.)

Now you use the various methods of the Scanner class to read input. For example, the
nextLine method reads a line of input.

System.out.print("What is your name? ");
String name = in.nextLine();

Here, we use the nextLine method because the input might contain spaces. To read a sin-
gle word (delimited by whitespace), call

String firstName = in.next();

To read an integer, use the nextInt method.
System.out.print("How old are you? ");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

The program in Listing 3–2 asks for the user’s name and age and then prints a message like
Hello, Cay. Next year, you'll be 46

Finally, note the line
import java.util.*;

at the beginning of the program. The Scanner class is defined in the java.util package.
Whenever you use a class that is not defined in the basic java.lang package, you need
to use an import directive. We look at packages and import directives in more detail in
Chapter 4.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java64

NOTE: The Scanner class is not suitable for reading a password from a console since the
input is plainly visible to anyone. Java SE 6 introduces a Console class specifically for this
purpose. To read a password, use the following code:

Console cons = System.console();
String username = cons.readLine("User name: ");
char[] passwd = cons.readPassword("Password: ");

For security reasons, the password is returned in an array of characters rather than a string.
After you are done processing the password, you should immediately overwrite the array
elements with a filler value. (Array processing is discussed later in this chapter.)

Input processing with a Console object is not as convenient as with a Scanner. You can only
read a line of input at a time. There are no methods for reading individual words or numbers.

• Scanner(InputStream in)
constructs a Scanner object from the given input stream.

• String nextLine()
reads the next line of input.

Listing 3–2 InputTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates console input.
5. * @version 1.10 2004-02-10
6. * @author Cay Horstmann
7. */
8. public class InputTest
9. {

10. public static void main(String[] args)
11. {
12. Scanner in = new Scanner(System.in);
13.

14. // get first input
15. System.out.print("What is your name? ");
16. String name = in.nextLine();
17.

18. // get second input
19. System.out.print("How old are you? ");
20. int age = in.nextInt();
21.

22. // display output on console
23. System.out.println("Hello, " + name + ". Next year, you'll be " + (age + 1));
24. }
25. }

java.util.Scanner 5.0

Chapter 3. Fundamental Programming Structures in Java

Input and Output 65

• String next()
reads the next word of input (delimited by whitespace).

• int nextInt()
• double nextDouble()

reads and converts the next character sequence that represents an integer or
floating-point number.

• boolean hasNext()
tests whether there is another word in the input.

• boolean hasNextInt()
• boolean hasNextDouble()

tests whether the next character sequence represents an integer or floating-point
number.

• static Console console() 6
returns a Console object for interacting with the user through a console window if
such an interaction is possible, null otherwise. A Console object is available for any
program that is launched in a console window. Otherwise, the availability is
system-dependent.

• static char[] readPassword(String prompt, Object... args)
• static String readLine(String prompt, Object... args)

displays the prompt and reads the user input until the end of the input line. The
args parameters can be used to supply formatting arguments, as described in the
next section.

Formatting Output
You can print a number x to the console with the statement System.out.print(x). That com-
mand will print x with the maximum number of non-zero digits for that type. For example,

double x = 10000.0 / 3.0;
System.out.print(x);

prints
3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

In early versions of Java, formatting numbers was a bit of a hassle. Fortunately, Java SE
5.0 brought back the venerable printf method from the C library. For example, the call

System.out.printf("%8.2f", x);

prints x with a field width of 8 characters and a precision of 2 characters. That is, the print-
out contains a leading space and the seven characters

3333.33

You can supply multiple parameters to printf. For example:
System.out.printf("Hello, %s. Next year, you'll be %d", name, age);

java.lang.System 1.0

java.io.Console 6

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java66

Each of the format specifiers that start with a % character is replaced with the correspond-
ing argument. The conversion character that ends a format specifier indicates the type of
the value to be formatted: f is a floating-point number, s a string, and d a decimal integer.
Table 3–5 shows all conversion characters.

In addition, you can specify flags that control the appearance of the formatted output.
Table 3–6 shows all flags. For example, the comma flag adds group separators. That is,

System.out.printf("%,.2f", 10000.0 / 3.0);

prints
3,333.33

You can use multiple flags, for example, "%,(.2f", to use group separators and enclose
negative numbers in parentheses.

NOTE: You can use the s conversion to format arbitrary objects. If an arbitrary object imple-
ments the Formattable interface, the object’s formatTo method is invoked. Otherwise, the
toString method is invoked to turn the object into a string. We discuss the toString method in
Chapter 5 and interfaces in Chapter 6.

Table 3–5 Conversions for printf

Conversion
Character Type Example

d Decimal integer 159

x Hexadecimal integer 9f

o Octal integer 237

f Fixed-point floating-point 15.9

e Exponential floating-point 1.59e+01

g General floating-point (the shorter of e and f) —

a Hexadecimal floating-point 0x1.fccdp3

s String Hello

c Character H

b boolean true

h Hash code 42628b2

tx Date and time See Table 3–7

% The percent symbol %

n The platform-dependent line separator —

Chapter 3. Fundamental Programming Structures in Java

Input and Output 67

You can use the static String.format method to create a formatted string without printing
it:

String message = String.format("Hello, %s. Next year, you'll be %d", name, age);

Although we do not describe the Date type in detail until Chapter 4, we do, in the interest
of completeness, briefly discuss the date and time formatting options of the printf
method. You use a two-letter format, starting with t and ending in one of the letters of
Table 3–7. For example,

System.out.printf("%tc", new Date());

prints the current date and time in the format
Mon Feb 09 18:05:19 PST 2004

Table 3–6 Flags for printf

Flag Purpose Example

+ Prints sign for positive and negative numbers +3333.33

space Adds a space before positive numbers | 3333.33|

0 Adds leading zeroes 003333.33

- Left-justifies field |3333.33 |

(Encloses negative number in parentheses (3333.33)

, Adds group separators 3,333.33

(for f format) Always includes a decimal point 3,333.

(for x or o format) Adds 0x or 0 prefix 0xcafe

$ Specifies the index of the argument to be formatted;
for example, %1$d %1$x prints the first argument in
decimal and hexadecimal

159 9F

< Formats the same value as the previous specification;
for example, %d %<x prints the same number in decimal
and hexadecimal

159 9F

Table 3–7 Date and Time Conversion Characters

Conversion
Character Type Example

c Complete date and time Mon Feb 09
18:05:19 PST
2004

F ISO 8601 date 2004-02-09

D U.S. formatted date (month/day/year) 02/09/2004

T 24-hour time 18:05:19

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java68

r 12-hour time 06:05:19 pm

R 24-hour time, no seconds 18:05

Y Four-digit year (with leading zeroes) 2004

y Last two digits of the year (with leading zeroes) 04

C First two digits of the year (with leading zeroes) 20

B Full month name February

b or h Abbreviated month name Feb

m Two-digit month (with leading zeroes) 02

d Two-digit day (with leading zeroes) 09

e Two-digit day (without leading zeroes) 9

A Full weekday name Monday

a Abbreviated weekday name Mon

j Three-digit day of year (with leading zeroes), between 001
and 366

069

H Two-digit hour (with leading zeroes), between 00 and 23 18

k Two-digit hour (without leading zeroes), between 0 and 23 18

I Two-digit hour (with leading zeroes), between 01 and 12 06

l Two-digit hour (without leading zeroes), between 1 and 12 6

M Two-digit minutes (with leading zeroes) 05

S Two-digit seconds (with leading zeroes) 19

L Three-digit milliseconds (with leading zeroes) 047

N Nine-digit nanoseconds (with leading zeroes) 047000000

P Uppercase morning or afternoon marker PM

p Lowercase morning or afternoon marker pm

z RFC 822 numeric offset from GMT -0800

Z Time zone PST

s Seconds since 1970-01-01 00:00:00 GMT 1078884319

Q Milliseconds since 1970-01-01 00:00:00 GMT 1078884319047

Table 3–7 Date and Time Conversion Characters (continued)

Conversion
Character Type Example

Chapter 3. Fundamental Programming Structures in Java

Input and Output 69

As you can see in Table 3–7, some of the formats yield only a part of a given date, for
example, just the day or just the month. It would be a bit silly if you had to supply the
date multiple times to format each part. For that reason, a format string can indicate the
index of the argument to be formatted. The index must immediately follow the %, and it
must be terminated by a $. For example,

System.out.printf("%1$s %2$tB %2$te, %2$tY", "Due date:", new Date());

prints
Due date: February 9, 2004

Alternatively, you can use the < flag. It indicates that the same argument as in the pre-
ceding format specification should be used again. That is, the statement

System.out.printf("%s %tB %<te, %<tY", "Due date:", new Date());

yields the same output as the preceding statement.

CAUTION: Argument index values start with 1, not with 0: %1$... formats the first argument.
This avoids confusion with the 0 flag.

You have now seen all features of the printf method. Figure 3–6 shows a syntax diagram
for format specifiers.

NOTE: A number of the formatting rules are locale specific. For example, in Germany, the
decimal separator is a period, not a comma, and Monday is formatted as Montag. You will
see in Volume II how to control the international behavior of your applications.

File Input and Output
To read from a file, construct a Scanner object from a File object, like this:

Scanner in = new Scanner(new File("myfile.txt"));

If the file name contains backslashes, remember to escape each of them with an addi-
tional backslash: "c:\\mydirectory\\myfile.txt".

Figure 3–6 Format specifier syntax

format-specifier:

conversion
character

conversion
character

precisionwidthflagargument
index

%

$

t

.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java70

Now you can read from the file, using any of the Scanner methods that we already
described.

To write to a file, construct a PrintWriter object. In the constructor, simply supply the file
name:

PrintWriter out = new PrintWriter("myfile.txt");

If the file does not exist, you can simply use the print, println, and printf commands as
you did when printing to System.out.

CAUTION: You can construct a Scanner with a string parameter, but the scanner interprets
the string as data, not a file name. For example, if you call

Scanner in = new Scanner("myfile.txt"); // ERROR?

then the scanner will see ten characters of data: 'm', 'y', 'f', and so on. That is probably not
what was intended in this case.

NOTE: When you specify a relative file name, such as "myfile.txt", "mydirectory/myfile.txt",
or "../myfile.txt", the file is located relative to the directory in which the Java virtual
machine was started. If you launched your program from a command shell, by executing

java MyProg

then the starting directory is the current directory of the command shell. However, if you use
an integrated development environment, the starting directory is controlled by the IDE. You
can find the directory location with this call:

String dir = System.getProperty("user.dir");

If you run into grief with locating files, consider using absolute path names such as
"c:\\mydirectory\\myfile.txt" or "/home/me/mydirectory/myfile.txt".

As you just saw, you can access files just as easily as you can use System.in and System.out.
There is just one catch: If you construct a Scanner with a file that does not exist or a Print-
Writer with a file name that cannot be created, an exception occurs. The Java compiler
considers these exceptions to be more serious than a “divide by zero” exception, for
example. In Chapter 11, you will learn various ways for handing exceptions. For now,
you should simply tell the compiler that you are aware of the possibility of a “file not
found” exception. You do this by tagging the main method with a throws clause, like this:

public static void main(String[] args) throws FileNotFoundException
{
 Scanner in = new Scanner(new File("myfile.txt"));
 . . .
}

You have now seen how to read and write files that contain textual data. For more
advanced topics, such as dealing with different character encodings, processing binary
data, reading directories, and writing zip files, please turn to Chapter 1 of Volume II.

Chapter 3. Fundamental Programming Structures in Java

Control Flow 71

NOTE: When you launch a program from a command shell, you can use the redirection syn-
tax of your shell and attach any file to System.in and System.out:

java MyProg < myfile.txt > output.txt

Then, you need not worry about handling the FileNotFoundException.

• Scanner(File f)
constructs a Scanner that reads data from the given file.

• Scanner(String data)
constructs a Scanner that reads data from the given string.

• PrintWriter(File f)
constructs a PrintWriter that writes data to the given file.

• PrintWriter(String fileName)
constructs a PrintWriter that writes data to the file with the given file name.

• File(String fileName)
constructs a File object that describes a file with the given name. Note that the file
need not currently exist.

Control Flow
Java, like any programming language, supports both conditional statements and loops
to determine control flow. We start with the conditional statements and then move on to
loops. We end with the somewhat cumbersome switch statement that you can use when
you have to test for many values of a single expression.

C++ NOTE: The Java control flow constructs are identical to those in C and C++, with a few
exceptions. There is no goto, but there is a “labeled” version of break that you can use to break
out of a nested loop (where you perhaps would have used a goto in C). Finally! Java SE 5.0
added a variant of the for loop that has no analog in C or C++. It is similar to the foreach loop
in C#.

Block Scope
Before we get into the actual control structures, you need to know more about blocks.

A block or compound statement is any number of simple Java statements that are sur-
rounded by a pair of braces. Blocks define the scope of your variables. Blocks can be
nested inside another block. Here is a block that is nested inside the block of the main
method.

java.util.Scanner 5.0

java.io.PrintWriter 1.1

java.io.File 1.0

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java72

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 . . .
 } // k is only defined up to here
}

However, you may not declare identically named variables in two nested blocks. For
example, the following is an error and will not compile:

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 int n; // error--can't redefine n in inner block
 . . .
 }
}

C++ NOTE: In C++, it is possible to redefine a variable inside a nested block. The inner def-
inition then shadows the outer one. This can be a source of programming errors; hence,
Java does not allow it.

Conditional Statements
The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute multiple
statements when a single condition is true. In this case, you use a block statement that
takes the form

{
 statement1
 statement2
 . . .
}

For example:
if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}

In this code all the statements surrounded by the braces will be executed when yourSales
is greater than or equal to target (see Figure 3–7).

Chapter 3. Fundamental Programming Structures in Java

Control Flow 73

Figure 3–7 Flowchart for the if statement

NOTE: A block (sometimes called a compound statement) allows you to have more
than one (simple) statement in any Java programming structure that might otherwise
have a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3–8):
if (condition) statement1 else statement2

For example:
if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100 + 0.01 * (yourSales - target);
}
else
{
 performance = "Unsatisfactory";
 bonus = 0;
}

yourSales target
NO

YES

bonus=100

performance
=“Satisfactory”

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java74

Figure 3–8 Flowchart for the if/else statement

The else part is always optional. An else groups with the closest if. Thus, in the statement
if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to clarify this
code:

if (x <= 0) { if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3–9). For example:
if (yourSales >= 2 * target)
{
 performance = "Excellent";
 bonus = 1000;
}
else if (yourSales >= 1.5 * target)
{
 performance = "Fine";
 bonus = 500;
}
else if (yourSales >= target)

YES

performance
=“Unsatisfactory”

bonus=0

performance
=“Satisfactory”

bonus=
100+0.01*

(yourSales–target)

yourSales target
NO

Chapter 3. Fundamental Programming Structures in Java

Control Flow 75

{
 performance = "Satisfactory";
 bonus = 100;
}
else
{
 System.out.println("You're fired");
}

Figure 3–9 Flowchart for the if/else if (multiple branches)

bonus=100
performance

=“Satisfactory”

YES

YES

NO

NO

NO

YES

yourSales 2*target

yourSales 1.5*target

yourSales target

performance
=“Fine”

performance
=“Excellent”

bonus=500

bonus=1000

Print
“You’re fired”

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java76

Loops
The while loop executes a statement (which may be a block statement) while a condi-
tion is true. The general form is

while (condition) statement

The while loop will never execute if the condition is false at the outset (see Figure 3–10).

Figure 3–10 Flowchart for the while statement

NO

YES

Print years

update
balance

balance < goal

years++

Chapter 3. Fundamental Programming Structures in Java

www.allitebooks.com

http://www.allitebooks.org

Control Flow 77

The program in Listing 3–3 determines how long it will take to save a specific amount of
money for your well-earned retirement, assuming that you deposit the same amount of
money per year and that the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently
accumulated in the body of the loop until the total exceeds the targeted amount.

while (balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
}
System.out.println(years + " years.");

(Don’t rely on this program to plan for your retirement. We left out a few niceties
such as inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block may never be exe-
cuted. If you want to make sure a block is executed at least once, you will need to
move the test to the bottom. You do that with the do/while loop. Its syntax looks like
this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then tests
the condition. It then repeats the statement and retests the condition, and so on.
The code in Listing 3–4 computes the new balance in your retirement account and
then asks if you are ready to retire:

do
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 year++;
 // print current balance
 . . .
 // ask if ready to retire and get input
 . . .
}
while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3–11). This program is a
good example of a loop that needs to be entered at least once, because the user needs to
see the balance before deciding whether it is sufficient for retirement.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java78

Figure 3–11 Flowchart for the do/while statement

Listing 3–3 Retirement.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates a <code>while</code> loop.
5. * @version 1.20 2004-02-10
6. * @author Cay Horstmann
7. */

update
balance

YES

NO

print balance
ask “Ready
to retire?

(Y/N)”

read
input

input=“N”

Chapter 3. Fundamental Programming Structures in Java

Control Flow 79

8. public class Retirement
9. {

10. public static void main(String[] args)
11. {
12. // read inputs
13. Scanner in = new Scanner(System.in);
14.

15. System.out.print("How much money do you need to retire? ");
16. double goal = in.nextDouble();
17.

18. System.out.print("How much money will you contribute every year? ");
19. double payment = in.nextDouble();
20.

21. System.out.print("Interest rate in %: ");
22. double interestRate = in.nextDouble();
23.

24. double balance = 0;
25. int years = 0;
26.

27. // update account balance while goal isn't reached
28. while (balance < goal)
29. {
30. // add this year's payment and interest
31. balance += payment;
32. double interest = balance * interestRate / 100;
33. balance += interest;
34. years++;
35. }
36.

37. System.out.println("You can retire in " + years + " years.");
38. }
39. }

Listing 3–4 Retirement2.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates a <code>do/while</code> loop.
5. * @version 1.20 2004-02-10
6. * @author Cay Horstmann
7. */
8. public class Retirement2
9. {

Listing 3–3 Retirement.java (continued)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java80

Determinate Loops
The for loop is a general construct to support iteration that is controlled by a counter or
similar variable that is updated after every iteration. As Figure 3–12 shows, the follow-
ing loop prints the numbers from 1 to 10 on the screen.

for (int i = 1; i <= 10; i++)
 System.out.println(i);

The first slot of the for statement usually holds the counter initialization. The second slot
gives the condition that will be tested before each new pass through the loop, and the
third slot explains how to update the counter.

10. public static void main(String[] args)
11. {
12. Scanner in = new Scanner(System.in);
13.

14. System.out.print("How much money will you contribute every year? ");
15. double payment = in.nextDouble();
16.

17. System.out.print("Interest rate in %: ");
18. double interestRate = in.nextDouble();
19.

20. double balance = 0;
21. int year = 0;
22.

23. String input;
24.

25. // update account balance while user isn't ready to retire
26. do
27. {
28. // add this year's payment and interest
29. balance += payment;
30. double interest = balance * interestRate / 100;
31. balance += interest;
32.

33. year++;
34.

35. // print current balance
36. System.out.printf("After year %d, your balance is %,.2f%n", year, balance);
37.

38. // ask if ready to retire and get input
39. System.out.print("Ready to retire? (Y/N) ");
40. input = in.next();
41. }
42. while (input.equals("N"));
43. }
44. }

Listing 3–4 Retirement2.java (continued)

Chapter 3. Fundamental Programming Structures in Java

Control Flow 81

Although Java, like C++, allows almost any expression in the various slots of a for loop,
it is an unwritten rule of good taste that the three slots of a for statement should only ini-
tialize, test, and update the same counter variable. One can write very obscure loops by
disregarding this rule.

Figure 3–12 Flowchart for the for statement

Even within the bounds of good taste, much is possible. For example, you can have
loops that count down:

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);
System.out.println("Blastoff!");

Print i

YES

i = 1

NO

i + +

i 10

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java82

CAUTION: Be careful about testing for equality of floating-point numbers in loops. A for loop
that looks like

for (double x = 0; x != 10; x += 0.1) . . .

may never end. Because of roundoff errors, the final value may not be reached
exactly. For example, in the loop above, x jumps from 9.99999999999998 to
10.09999999999998 because there is no exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that vari-
able extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++)
{
 . . .
}
// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use the value of
that variable outside the loop. Therefore, if you wish to use the final value of a loop
counter outside the for loop, be sure to declare it outside the loop header!

int i;
for (i = 1; i <= 10; i++)
{
 . . .
}
// i still defined here

On the other hand, you can define variables with the same name in separate for loops:
for (int i = 1; i <= 10; i++)
{
 . . .
}
. . .
for (int i = 11; i <= 20; i++) // ok to define another variable named i
{
 . . .
}

A for loop is merely a convenient shortcut for a while loop. For example,
for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);

can be rewritten as
int i = 10;
while (i > 0)
{
 System.out.println("Counting down . . . " + i);
 i--;
}

Listing 3–5 shows a typical example of a for loop.

Chapter 3. Fundamental Programming Structures in Java

Control Flow 83

The program computes the odds on winning a lottery. For example, if you must pick 6
numbers from the numbers 1 to 50 to win, then there are (50 × 49 × 48 × 47 × 46 × 45)/
(1 × 2 × 3 × 4 × 5 × 6) possible outcomes, so your chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

possible outcomes. The following for loop computes this value:
int lotteryOdds = 1;
for (int i = 1; i <= k; i++)
 lotteryOdds = lotteryOdds * (n - i + 1) / i;

NOTE: See “The ‘for each’ Loop” on page 91 for a description of the “generalized for loop”
(also called “for each” loop) that was added to the Java language in Java SE 5.0.

Listing 3–5 LotteryOdds.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates a <code>for</code> loop.
5. * @version 1.20 2004-02-10
6. * @author Cay Horstmann
7. */
8. public class LotteryOdds
9. {

10. public static void main(String[] args)
11. {
12. Scanner in = new Scanner(System.in);
13.

14. System.out.print("How many numbers do you need to draw? ");
15. int k = in.nextInt();
16.

17. System.out.print("What is the highest number you can draw? ");
18. int n = in.nextInt();
19.

20. /*
21. * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
22. */
23.

24. int lotteryOdds = 1;
25. for (int i = 1; i <= k; i++)
26. lotteryOdds = lotteryOdds * (n - i + 1) / i;
27.

28. System.out.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");
29. }
30. }

n n 1–() n 2–() … n k– 1+()××××
1 2 3 … k××××

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java84

Multiple Selections—The switch Statement
The if/else construct can be cumbersome when you have to deal with multiple selec-
tions with many alternatives. Java has a switch statement that is exactly like the switch
statement in C and C++, warts and all.

For example, if you set up a menuing system with four alternatives like that in Figure
3–13, you could use code that looks like this:

Scanner in = new Scanner(System.in);
System.out.print("Select an option (1, 2, 3, 4) ");
int choice = in.nextInt();
switch (choice)
{
 case 1:
 . . .
 break;
 case 2:
 . . .
 break;
 case 3:
 . . .
 break;
 case 4:
 . . .
 break;
 default:
 // bad input
 . . .
 break;
}

Execution starts at the case label that matches the value on which the selection is per-
formed and continues until the next break or the end of the switch. If none of the case
labels match, then the default clause is executed, if it is present.

CAUTION: It is possible for multiple alternatives to be triggered. If you forget to add a break
at the end of an alternative, then execution falls through to the next alternative! This behav-
ior is plainly dangerous and a common cause for errors. For that reason, we never use the
switch statement in our programs.

The case labels must be integers or enumerated constants. You cannot test strings. For
example, the following is an error:

String input = . . .;
switch (input) // ERROR
{
 case "A": // ERROR
 . . .
 break;
 . . .
}

Chapter 3. Fundamental Programming Structures in Java

Control Flow 85

Figure 3–13 Flowchart for the switch statement

YES

YES

YES

. . .

. . .

. . . YES
choice = 1

NO

choice = 2

NO

choice = 3

NO

choice = 4

NO

(default)

bad input

. . .

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java86

When you use the switch statement with enumerated constants, you need not supply
the name of the enumeration in each label—it is deduced from the switch value. For
example:

Size sz = . . .;
switch (sz)
{
 case SMALL: // no need to use Size.SMALL
 . . .
 break;
 . . .
}

Statements That Break Control Flow
Although the designers of Java kept the goto as a reserved word, they decided not to
include it in the language. In general, goto statements are considered poor style. Some
programmers feel the anti-goto forces have gone too far (see, for example, the famous
article of Donald Knuth called “Structured Programming with goto statements”). They
argue that unrestricted use of goto is error prone but that an occasional jump out of a loop
is beneficial. The Java designers agreed and even added a new statement, the labeled
break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement that you use
to exit a switch can also be used to break out of a loop. For example:

while (years <= 100)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance >= goal) break;
 years++;
}

Now the loop is exited if either years > 100 occurs at the top of the loop or balance >= goal
occurs in the middle of the loop. Of course, you could have computed the same value
for years without a break, like this:

while (years <= 100 && balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance < goal)
 years++;
}

But note that the test balance < goal is repeated twice in this version. To avoid this
repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of multiple
nested loops. Occasionally something weird happens inside a deeply nested loop. In
that case, you may want to break completely out of all the nested loops. It is inconve-
nient to program that simply by adding extra conditions to the various loop tests.

Chapter 3. Fundamental Programming Structures in Java

Control Flow 87

Here’s an example that shows the break statement at work. Notice that the label must
precede the outermost loop out of which you want to break. It also must be followed by
a colon.

Scanner in = new Scanner(System.in);
int n;
read_data:
while (. . .) // this loop statement is tagged with the label
{
 . . .
 for (. . .) // this inner loop is not labeled
 {
 System.out.print("Enter a number >= 0: ");
 n = in.nextInt();
 if (n < 0) // should never happen—can't go on
 break read_data;
 // break out of read_data loop
 . . .
 }
}
// this statement is executed immediately after the labeled break
if (n < 0) // check for bad situation
{
 // deal with bad situation
}
else
{
 // carry out normal processing
}

If there was a bad input, the labeled break moves past the end of the labeled block. As
with any use of the break statement, you then need to test whether the loop exited nor-
mally or as a result of a break.

NOTE: Curiously, you can apply a label to any statement, even an if statement or a block
statement, like this:

label:
{
 . . .
 if (condition) break label; // exits block
 . . .
}
// jumps here when the break statement executes

Thus, if you are lusting after a goto and if you can place a block that ends just before the place
to which you want to jump, you can use a break statement! Naturally, we don’t recommend this
approach. Note, however, that you can only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks the regular flow
of control. The continue statement transfers control to the header of the innermost enclos-
ing loop. Here is an example:

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java88

Scanner in = new Scanner(System.in);
while (sum < goal)
{
 System.out.print("Enter a number: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps immediately to the loop header, skipping the
remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the for loop.
For example, consider this loop:

for (count = 1; count <= 100; count++)
{
 System.out.print("Enter a number, -1 to quit: ");
 n = in.nextInt();
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps to the count++ statement.
There is also a labeled form of the continue statement that jumps to the header of the loop
with the matching label.

TIP: Many programmers find the break and continue statements confusing. These state-
ments are entirely optional—you can always express the same logic without them. In this
book, we never use break or continue.

Big Numbers
If the precision of the basic integer and floating-point types is not sufficient, you can
turn to a couple of handy classes in the java.math package: BigInteger and BigDecimal. These
are classes for manipulating numbers with an arbitrarily long sequence of digits. The
BigInteger class implements arbitrary precision integer arithmetic, and BigDecimal does the
same for floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big number:
BigInteger a = BigInteger.valueOf(100);

Unfortunately, you cannot use the familiar mathematical operators such as + and * to
combine big numbers. Instead, you must use methods such as add and multiply in the big
number classes.

BigInteger c = a.add(b); // c = a + b
BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); // d = c * (b + 2)

C++ NOTE: Unlike C++, Java has no programmable operator overloading. There was no way
for the programmer of the BigInteger class to redefine the + and * operators to give the add and
multiply operations of the BigInteger classes. The language designers did overload the + oper-
ator to denote concatenation of strings. They chose not to overload other operators, and they
did not give Java programmers the opportunity to overload operators in their own classes.

Chapter 3. Fundamental Programming Structures in Java

Big Numbers 89

Listing 3–6 shows a modification of the lottery odds program of Listing 3–5, updated to
work with big numbers. For example, if you are invited to participate in a lottery in
which you need to pick 60 numbers out of a possible 490 numbers, then this program
will tell you that your odds are 1 in 7163958434619955574151162225400929334117176
12789263493493351 013459481104668848. Good luck!

The program in Listing 3–5 computed the statement
lotteryOdds = lotteryOdds * (n - i + 1) / i;

When big numbers are used, the equivalent statement becomes
lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(BigInteger.valueOf(i));

Listing 3–6 BigIntegerTest.java

1. import java.math.*;
2. import java.util.*;
3.

4. /**
5. * This program uses big numbers to compute the odds of winning the grand prize in a lottery.
6. * @version 1.20 2004-02-10
7. * @author Cay Horstmann
8. */
9. public class BigIntegerTest

10. {
11. public static void main(String[] args)
12. {
13. Scanner in = new Scanner(System.in);
14.

15. System.out.print("How many numbers do you need to draw? ");
16. int k = in.nextInt();
17.

18. System.out.print("What is the highest number you can draw? ");
19. int n = in.nextInt();
20.

21. /*
22. * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
23. */
24.

25. BigInteger lotteryOdds = BigInteger.valueOf(1);
26.

27. for (int i = 1; i <= k; i++)
28. lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1)).divide(
29. BigInteger.valueOf(i));
30.

31. System.out.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");
32. }
33. }

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java90

• BigInteger add(BigInteger other)
• BigInteger subtract(BigInteger other)
• BigInteger multiply(BigInteger other)
• BigInteger divide(BigInteger other)
• BigInteger mod(BigInteger other)

returns the sum, difference, product, quotient, and remainder of this big integer and
other.

• int compareTo(BigInteger other)
returns 0 if this big integer equals other, a negative result if this big integer is less
than other, and a positive result otherwise.

• static BigInteger valueOf(long x)
returns a big integer whose value equals x.

• BigDecimal add(BigDecimal other)
• BigDecimal subtract(BigDecimal other)
• BigDecimal multiply(BigDecimal other)
• BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

returns the sum, difference, product, or quotient of this big decimal and other.
To compute the quotient, you must supply a rounding mode. The mode
RoundingMode.HALF_UP is the rounding mode that you learned in school (i.e., round
down digits 0 . . . 4, round up digits 5 . . . 9). It is appropriate for routine
calculations. See the API documentation for other rounding modes.

• int compareTo(BigDecimal other)
returns 0 if this big decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

• static BigDecimal valueOf(long x)
• static BigDecimal valueOf(long x, int scale)

returns a big decimal whose value equals x or x /10scale.

Arrays
An array is a data structure that stores a collection of values of the same type. You access
each individual value through an integer index. For example, if a is an array of integers,
then a[i] is the ith integer in the array.

You declare an array variable by specifying the array type—which is the element type
followed by []—and the array variable name. For example, here is the declaration of an
array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a with an
actual array. You use the new operator to create the array.

int[] a = new int[100];

This statement sets up an array that can hold 100 integers.

java.math.BigInteger 1.1

java.math.BigDecimal 1.1

Chapter 3. Fundamental Programming Structures in Java

Arrays 91

NOTE: You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly separates the type int[]
(integer array) from the variable name.

The array entries are numbered from 0 to 99 (and not 1 to 100). Once the array is created,
you can fill the entries in an array, for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
 a[i] = i; // fills the array with 0 to 99

CAUTION: If you construct an array with 100 elements and then try to access the element
a[100] (or any other index outside the range 0 . . . 99), then your program will terminate with
an “array index out of bounds” exception.

To find the number of elements of an array, use array.length. For example:
for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

Once you create an array, you cannot change its size (although you can, of course,
change an individual array element). If you frequently need to expand the size of an
array while a program is running, you should use a different data structure called an
array list. (See Chapter 5 for more on array lists.)

The “for each” Loop
Java SE 5.0 introduced a powerful looping construct that allows you to loop through
each element in an array (as well as other collections of elements) without having to
fuss with index values.

The enhanced for loop
for (variable : collection) statement

sets the given variable to each element of the collection and then executes the statement
(which, of course, may be a block). The collection expression must be an array or an object
of a class that implements the Iterable interface, such as ArrayList. We discuss array lists in
Chapter 5 and the Iterable interface in Chapter 2 of Volume II.

For example,
for (int element : a)
 System.out.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a”. The designers of the Java language
considered using keywords such as foreach and in. But this loop was a late addition to
the Java language, and in the end nobody wanted to break old code that already con-
tains methods or variables with the same names (such as System.in).

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java92

Of course, you could achieve the same effect with a traditional for loop:
for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

However, the “for each” loop is more concise and less error prone. (You don’t have to
worry about those pesky start and end index values.)

NOTE: The loop variable of the “for each” loop traverses the elements of the array, not the
index values.

The “for each” loop is a pleasant improvement over the traditional loop if you need to
process all elements in a collection. However, there are still plenty of opportunities to
use the traditional for loop. For example, you may not want to traverse the entire collec-
tion, or you may need the index value inside the loop.

TIP: There is an even easier way to print all values of an array, using the toString method of
the Arrays class. The call Arrays.toString(a) returns a string containing the array elements,
enclosed in brackets and separated by commas, such as "[2, 3, 5, 7, 11, 13]". To print the
array, simply call

System.out.println(Arrays.toString(a));

Array Initializers and Anonymous Arrays
Java has a shorthand to create an array object and supply initial values at the same time.
Here’s an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not call new when you use this syntax.

You can even initialize an anonymous array:
new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces. It
counts the number of initial values and sets the array size accordingly. You can use this
syntax to reinitialize an array without creating a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for
int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE: It is legal to have arrays of length 0. Such an array can be useful if you write a
method that computes an array result and the result happens to be empty. You construct an
array of length 0 as

new elementType[0]

Note that an array of length 0 is not the same as null. (See Chapter 4 for more information
about null.)

Chapter 3. Fundamental Programming Structures in Java

Arrays 93

Array Copying
You can copy one array variable into another, but then both variables refer to the same
array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3–14 shows the result. If you actually want to copy all values of one array into a
new array, you use the copyTo method in the Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, luckyNumbers.length);

The second parameter is the length of the new array. A common use of this method is to
increase the size of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 * luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false if the array
contains boolean values. Conversely, if the length is less than the length of the original
array, only the initial values are copied.

NOTE: Prior to Java SE 6, the arraycopy method in the System class was used to copy ele-
ments from one array to another. The syntax for this call is

System.arraycopy(from, fromIndex, to, toIndex, count);

The to array must have sufficient space to hold the copied elements.

Figure 3–14 Copying an array variable

For example, the following statements, whose result is illustrated in Figure 3–15, set up
two arrays and then copy the last four entries of the first array to the second array. The
copy starts at position 2 in the source array and copies four entries, starting at position 3
of the target.

int[] smallPrimes = {2, 3, 5, 7, 11, 13};
int[] luckyNumbers = {1001, 1002, 1003, 1004, 1005, 1006, 1007};
System.arraycopy(smallPrimes, 2, luckyNumbers, 3, 4);
for (int i = 0; i < luckyNumbers.length; i++)
 System.out.println(i + ": " + luckyNumbers[i]);

smallPrimes =

luckyNumbers =

2

3

5
7

11

12

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java94

The output is
0: 1001
1: 1002
2: 1003
3: 5
4: 7
5: 11
6: 13

Figure 3–15 Copying values between arrays

C++ NOTE: A Java array is quite different from a C++ array on the stack. It is, however,
essentially the same as a pointer to an array allocated on the heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking. Furthermore, there is no
pointer arithmetic—you can’t increment a to point to the next element in the array.

smallPrimes =

luckyNumbers =

2

3
5

7

11

13

1001
1002

1003

5

7

11

13

Chapter 3. Fundamental Programming Structures in Java

Arrays 95

Command-Line Parameters
You have already seen one example of Java arrays repeated quite a few times. Every
Java program has a main method with a String[] args parameter. This parameter indicates
that the main method receives an array of strings, namely, the arguments specified on the
command line.

For example, consider this program:
public class Message
{
 public static void main(String[] args)
 {
 if (args[0].equals("-h"))
 System.out.print("Hello,");
 else if (args[0].equals("-g"))
 System.out.print("Goodbye,");
 // print the other command-line arguments
 for (int i = 1; i < args.length; i++)
 System.out.print(" " + args[i]);
 System.out.println("!");
 }
}

If the program is called as
java Message -g cruel world

then the args array has the following contents:
args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message
Goodbye, cruel world!

C++ NOTE: In the main method of a Java program, the name of the program is not stored in
the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message" or "java".

Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays class:

int[] a = new int[10000];
. . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to be very
efficient on most data sets. The Arrays class provides several other convenience methods
for arrays that are included in the API notes at the end of this section.

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java96

The program in Listing 3–7 puts arrays to work. This program draws a random combi-
nation of numbers for a lottery game. For example, if you play a “choose 6 numbers
from 49” lottery, then the program might print this:

Bet the following combination. It'll make you rich!
 4
 7
 8
 19
 30
 44

To select such a random set of numbers, we first fill an array numbers with the values 1, 2,
. . . , n:

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
 numbers[i] = i + 1;

A second array holds the numbers to be drawn:
int[] result = new int[k];

Now we draw k numbers. The Math.random method returns a random floating-point num-
ber that is between 0 (inclusive) and 1 (exclusive). By multiplying the result with n, we
obtain a random number between 0 and n – 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r + 1, but as
you’ll see presently, the contents of the numbers array are changed after each draw.

result[i] = numbers[r];

Now we must be sure never to draw that number again—all lottery numbers must be
distinct. Therefore, we overwrite numbers[r] with the last number in the array and reduce
n by 1.

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index points
into an array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing output:
Arrays.sort(result);
for (int r : result)
 System.out.println(r);

Listing 3–7 LotteryDrawing.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates array manipulation.
5. * @version 1.20 2004-02-10
6. * @author Cay Horstmann
7. */

Chapter 3. Fundamental Programming Structures in Java

Arrays 97

• static String toString(type[] a) 5.0
returns a string with the elements of a, enclosed in brackets and delimited by
commas.

8. public class LotteryDrawing
9. {

10. public static void main(String[] args)
11. {
12. Scanner in = new Scanner(System.in);
13.

14. System.out.print("How many numbers do you need to draw? ");
15. int k = in.nextInt();
16.

17. System.out.print("What is the highest number you can draw? ");
18. int n = in.nextInt();
19.

20. // fill an array with numbers 1 2 3 . . . n
21. int[] numbers = new int[n];
22. for (int i = 0; i < numbers.length; i++)
23. numbers[i] = i + 1;
24.

25. // draw k numbers and put them into a second array
26. int[] result = new int[k];
27. for (int i = 0; i < result.length; i++)
28. {
29. // make a random index between 0 and n - 1
30. int r = (int) (Math.random() * n);
31.

32. // pick the element at the random location
33. result[i] = numbers[r];
34.

35. // move the last element into the random location
36. numbers[r] = numbers[n - 1];
37. n--;
38. }
39.

40. // print the sorted array
41. Arrays.sort(result);
42. System.out.println("Bet the following combination. It'll make you rich!");
43. for (int r : result)
44. System.out.println(r);
45. }
46. }

java.util.Arrays 1.2

Parameters: a an array of type int, long, short, char, byte, boolean, float,
or double.

Listing 3–7 LotteryDrawing.java (continued)

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java98

• static type copyOf(type[] a, int length) 6
• static type copyOf(type[] a, int start, int end) 6

returns an array of the same type as a, of length either length or end - start, filled
with the values of a.

• static void sort(type[] a)
sorts the array, using a tuned QuickSort algorithm.

• static int binarySearch(type[] a, type v)
• static int binarySearch(type[] a, int start, int end type v) 6

uses the binary search algorithm to search for the value v. If it is found, its index is
returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

• static void fill(type[] a, type v)
sets all elements of the array to v.

• static boolean equals(type[] a, type[] b)
returns true if the arrays have the same length, and if the elements in
corresponding indexes match.

Parameters: a an array of type int, long, short, char, byte, boolean, float,
or double.

start the starting index (inclusive).

end the ending index (exclusive). May be larger than
a.length , in which case the result is padded with 0 or
false values.

length the length of the copy. If length is larger than a.length ,
the result is padded with 0 or false values. Other-
wise, only the initial length values are copied.

Parameters: a an array of type int, long, short, char, byte, float, or
double.

Parameters: a a sorted array of type int, long, short, char, byte, float,
or double.

start the starting index (inclusive).

end the ending index (exclusive).

v a value of the same type as the elements of a.

Parameters: a an array of type int, long, short, char, byte, boolean, float,
or double.

v a value of the same type as the elements of a.

Parameters: a, b arrays of type int, long, short, char, byte, boolean, float,
or double.

Chapter 3. Fundamental Programming Structures in Java

Arrays 99

• static void arraycopy(Object from, int fromIndex, Object to, int toIndex, int count)
copies elements from the first array to the second array.

Multidimensional Arrays
Multidimensional arrays use more than one index to access array elements. They are
used for tables and other more complex arrangements. You can safely skip this section
until you have a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an investment of
$10,000 will grow under different interest rate scenarios in which interest is paid annu-
ally and reinvested. Table 3–8 illustrates this scenario.

You can store this information in a two-dimensional array (or matrix), which we call
balances.

Declaring a two-dimensional array in Java is simple enough. For example:
double[][] balances;

java.lang.System 1.1

Parameters: from an array of any type (Chapter 5 explains why this is
a parameter of type Object).

fromIndex the starting index from which to copy elements.
to an array of the same type as from.
toIndex the starting index to which to copy elements.
count the number of elements to copy.

Table 3–8 Growth of an Investment at Different Interest Rates

10% 11% 12% 13% 14% 15%

10,000.00 10,000.00 10,000.00 10,000.00 10,000.00 10,000.00

11,000.00 11,100.00 11,200.00 11,300.00 11,400.00 11,500.00

12,100.00 12,321.00 12,544.00 12,769.00 12,996.00 13,225.00

13,310.00 13,676.31 14,049.28 14,428.97 14,815.44 15,208.75

14,641.00 15,180.70 15,735.19 16,304.74 16,889.60 17,490.06

16,105.10 16,850.58 17,623.42 18,424.35 19,254.15 20,113.57

17,715.61 18,704.15 19,738.23 20,819.52 21,949.73 23,130.61

19,487.17 20,761.60 22,106.81 23,526.05 25,022.69 26,600.20

21,435.89 23,045.38 24,759.63 26,584.44 28,525.86 30,590.23

23,579.48 25,580.37 27,730.79 30,040.42 32,519.49 35,178.76

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java100

As always, you cannot use the array until you initialize it with a call to new. In this case,
you can do the initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notion for ini-
tializing multidimensional arrays without needing a call to new. For example:

int[][] magicSquare =
 {
 {16, 3, 2, 13},
 {5, 10, 11, 8},
 {9, 6, 7, 12},
 {4, 15, 14, 1}
 };

Once the array is initialized, you can access individual elements by supplying two
brackets, for example, balances[i][j].

The example program stores a one-dimensional array interest of interest rates and a two-
dimensional array balance of account balances, one for each year and interest rate. We ini-
tialize the first row of the array with the initial balance:

for (int j = 0; j < balance[0].length; j++)
 balances[0][j] = 10000;

Then we compute the other rows, as follows:
for (int i = 1; i < balances.length; i++)
{
 for (int j = 0; j < balances[i].length; j++)
 {
 double oldBalance = balances[i - 1][j];
 double interest = . . .;
 balances[i][j] = oldBalance + interest;
 }
}

Listing 3–8 shows the full program.

NOTE: A “for each” loop does not automatically loop through all entries in a two-dimensional
array. Instead, it loops through the rows, which are themselves one-dimensional arrays. To
visit all elements of a two-dimensional array a, nest two loops, like this:

for (double[] row : a)
 for (double value : row)
 do something with value

TIP: To print out a quick and dirty list of the elements of a two-dimensional array, call

System.out.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Chapter 3. Fundamental Programming Structures in Java

Arrays 101

Listing 3–8 CompoundInterest.java

1. /**
2. * This program shows how to store tabular data in a 2D array.
3. * @version 1.40 2004-02-10
4. * @author Cay Horstmann
5. */
6. public class CompoundInterest
7. {
8. public static void main(String[] args)
9. {

10. final double STARTRATE = 10;
11. final int NRATES = 6;
12. final int NYEARS = 10;
13.

14. // set interest rates to 10 . . . 15%
15. double[] interestRate = new double[NRATES];
16. for (int j = 0; j < interestRate.length; j++)
17. interestRate[j] = (STARTRATE + j) / 100.0;
18.

19. double[][] balances = new double[NYEARS][NRATES];
20.

21. // set initial balances to 10000
22. for (int j = 0; j < balances[0].length; j++)
23. balances[0][j] = 10000;
24.

25. // compute interest for future years
26. for (int i = 1; i < balances.length; i++)
27. {
28. for (int j = 0; j < balances[i].length; j++)
29. {
30. // get last year's balances from previous row
31. double oldBalance = balances[i - 1][j];
32.

33. // compute interest
34. double interest = oldBalance * interestRate[j];
35.

36. // compute this year's balances
37. balances[i][j] = oldBalance + interest;
38. }
39. }
40.

41. // print one row of interest rates
42. for (int j = 0; j < interestRate.length; j++)
43. System.out.printf("%9.0f%%", 100 * interestRate[j]);
44.

45. System.out.println();
46.

47. // print balance table
48. for (double[] row : balances)
49. {

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java102

Ragged Arrays
So far, what you have seen is not too different from other programming languages. But
there is actually something subtle going on behind the scenes that you can sometimes turn
to your advantage: Java has no multidimensional arrays at all, only one-dimensional
arrays. Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an array that contains
ten elements, each of which is an array of six floating-point numbers (see Figure 3–16).

Figure 3–16 A two-dimensional array

50. // print table row
51. for (double b : row)
52. System.out.printf("%10.2f", b);
53.

54. System.out.println();
55. }
56. }
57. }

Listing 3–8 CompoundInterest.java (continued)

balances = 10000.0

10000.0

10000.0

10000.0

10000.0

10000.0

11000.0
11100.0

11200.0

11300.0

11400.0

balances[1] =

balances[1][2] =

.

.

.

23579.48

25580.37

27730.79

30040.42

32519.49

35178.76

11500.0

Chapter 3. Fundamental Programming Structures in Java

Arrays 103

The expression balances[i] refers to the ith subarray, that is, the ith row of the table. It is
itself an array, and balances[i][j] refers to the jth entry of that array.

Because rows of arrays are individually accessible, you can actually swap them!
double[] temp = balances[i];
balances[i] = balances[i + 1];
balances[i + 1] = temp;

It is also easy to make “ragged” arrays, that is, arrays in which different rows have dif-
ferent lengths. Here is the standard example. Let us make an array in which the entry at
row i and column j equals the number of possible outcomes of a “choose j numbers
from i numbers” lottery.

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1

Because j can never be larger than i, the matrix is triangular. The ith row has i + 1
elements. (We allow choosing 0 elements; there is one way to make such a choice.) To
build this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows.
for (int n = 0; n <= NMAX; n++)
 odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way, provided
we do not overstep the bounds.

for (int n = 0; n < odds.length; n++)
 for (int k = 0; k < odds[n].length; k++)
 {
 // compute lotteryOdds
 . . .
 odds[n][k] = lotteryOdds;
 }

Listing 3–9 gives the complete program.

C++ NOTE: In C++, the Java declaration

double[][] balances = new double[10][6]; // Java

is not the same as

double balances[10][6]; // C++

or even

double (*balances)[6] = new double[10][6]; // C++

Instead, an array of 10 pointers is allocated:

double** balances = new double*[10]; // C++

Chapter 3. Fundamental Programming Structures in Java

Chapter 3 ■ Fundamental Programming Structures in Java104

Then, each element in the pointer array is filled with an array of 6 numbers:

for (i = 0; i < 10; i++)
 balances[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new double[10][6]. When you want
ragged arrays, you allocate the row arrays separately.

You have now seen the fundamental programming structures of the Java language. The
next chapter covers object-oriented programming in Java.

Listing 3–9 LotteryArray.java

1. /**
2. * This program demonstrates a triangular array.
3. * @version 1.20 2004-02-10
4. * @author Cay Horstmann
5. */
6. public class LotteryArray
7. {
8. public static void main(String[] args)
9. {

10. final int NMAX = 10;
11.

12. // allocate triangular array
13. int[][] odds = new int[NMAX + 1][];
14. for (int n = 0; n <= NMAX; n++)
15. odds[n] = new int[n + 1];
16.

17. // fill triangular array
18. for (int n = 0; n < odds.length; n++)
19. for (int k = 0; k < odds[n].length; k++)
20. {
21. /*
22. * compute binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
23. */
24. int lotteryOdds = 1;
25. for (int i = 1; i <= k; i++)
26. lotteryOdds = lotteryOdds * (n - i + 1) / i;
27.

28. odds[n][k] = lotteryOdds;
29. }
30.

31. // print triangular array
32. for (int[] row : odds)
33. {
34. for (int odd : row)
35. System.out.printf("%4d", odd);
36. System.out.println();
37. }
38. }
39. }

Chapter 3. Fundamental Programming Structures in Java

ChapterChapter

105

OBJECTS AND CLASSES

▼ INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

▼ USING PREDEFINED CLASSES

▼ DEFINING YOUR OWN CLASSES

▼ STATIC FIELDS AND METHODS

▼ METHOD PARAMETERS

▼ OBJECT CONSTRUCTION

▼ PACKAGES

▼ THE CLASS PATH

▼ DOCUMENTATION COMMENTS

▼ CLASS DESIGN HINTS

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes106

In this chapter, we

• Introduce you to object-oriented programming;
• Show you how you can create objects that belong to classes in the standard Java

library; and
• Show you how to write your own classes.

If you do not have a background in object-oriented programming, you will want to read
this chapter carefully. Thinking about object-oriented programming requires a different
way of thinking than for procedural languages. The transition is not always easy, but
you do need some familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, presents
familiar information; however, there are enough differences between the two languages
that you should read the later sections of this chapter carefully. You’ll find the C++ notes
helpful for making the transition.

Introduction to Object-Oriented Programming
Object-oriented programming (or OOP for short) is the dominant programming para-
digm these days, having replaced the “structured,” procedural programming tech-
niques that were developed in the 1970s. Java is totally object oriented, and you have to
be familiar with OOP to become productive with Java.

An object-oriented program is made of objects. Each object has a specific functionality
that is exposed to its users, and a hidden implementation. Many objects in your pro-
grams will be taken “off-the-shelf” from a library; others are custom designed. Whether
you build an object or buy it might depend on your budget or on time. But, basically, as
long as objects satisfy your specifications, you don’t care how the functionality was
implemented. In OOP, you don’t care how an object is implemented as long as it does
what you want.

Traditional structured programming consists of designing a set of procedures (or algo-
rithms) to solve a problem. After the procedures were determined, the traditional next
step was to find appropriate ways to store the data. This is why the designer of the Pas-
cal language, Niklaus Wirth, called his famous book on programming Algorithms + Data
Structures = Programs (Prentice Hall, 1975). Notice that in Wirth’s title, algorithms come
first, and data structures come second. This mimics the way programmers worked at
that time. First, they decided the procedures for manipulating the data; then, they
decided what structure to impose on the data to make the manipulations easier. OOP
reverses the order and puts data first, then looks at the algorithms that operate on the
data.

For small problems, the breakdown into procedures works very well. But objects are
more appropriate for larger problems. Consider a simple web browser. It might
require 2,000 procedures for its implementation, all of which manipulate a set of glo-
bal data. In the object-oriented style, there might be 100 classes with an average of 20
methods per class (see Figure 4–1). The latter structure is much easier for a program-
mer to grasp. It is also much easier to find bugs. Suppose the data of a particular
object is in an incorrect state. It is far easier to search for the culprit among the 20
methods that had access to that data item than among 2,000 procedures.

Chapter 4. Objects and Classes

Introduction to Object-Oriented Programming 107

Figure 4–1 Procedural vs. OO programming

Classes
A class is the template or blueprint from which objects are made. Thinking about classes
as cookie cutters. Objects are the cookies themselves. When you construct an object from
a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard Java
library supplies several thousand classes for such diverse purposes as user interface
design, dates and calendars, and network programming. Nonetheless, you still have to
create your own classes in Java to describe the objects of the problem domains of your
applications.

Encapsulation (sometimes called information hiding) is a key concept in working with
objects. Formally, encapsulation is nothing more than combining data and behavior in one
package and hiding the implementation details from the user of the object. The data in an
object are called its instance fields, and the procedures that operate on the data are called its
methods. A specific object that is an instance of a class will have specific values for its
instance fields. The set of those values is the current state of the object. Whenever you
invoke a method on an object, its state may change.

The key to making encapsulation work is to have methods never directly access instance
fields in a class other than their own. Programs should interact with object data only
through the object’s methods. Encapsulation is the way to give the object its “black box”
behavior, which is the key to reuse and reliability. This means a class may totally change
how it stores its data, but as long as it continues to use the same methods to manipulate
the data, no other object will know or care.

When you do start writing your own classes in Java, another tenet of OOP makes this
easier: classes can be built by extending other classes. Java, in fact, comes with a “cosmic

procedure

procedure

procedure

procedure

procedure

method

method

method

method

method

method

Global data

Object data

Object data

Object data

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes108

superclass” called Object. All other classes extend this class. You will see more about the
Object class in the next chapter.

When you extend an existing class, the new class has all the properties and methods of
the class that you extend. You supply new methods and data fields that apply to your
new class only. The concept of extending a class to obtain another class is called inherit-
ance. See the next chapter for details on inheritance.

Objects
To work with OOP, you should be able to identify three key characteristics of objects:

• The object’s behavior—What can you do with this object, or what methods can you
apply to it?

• The object’s state—How does the object react when you apply those methods?
• The object’s identity—How is the object distinguished from others that may have the

same behavior and state?

All objects that are instances of the same class share a family resemblance by supporting
the same behavior. The behavior of an object is defined by the methods that you can call.

Next, each object stores information about what it currently looks like. This is the
object’s state. An object’s state may change over time, but not spontaneously. A change
in the state of an object must be a consequence of method calls. (If the object state
changed without a method call on that object, someone broke encapsulation.)

However, the state of an object does not completely describe it, because each object has a
distinct identity. For example, in an order-processing system, two orders are distinct
even if they request identical items. Notice that the individual objects that are instances
of a class always differ in their identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can
influence its behavior. (If an order is “shipped” or “paid,” it may reject a method call
that asks it to add or remove items. Conversely, if an order is “empty,” that is, no items
have yet been ordered, it should not allow itself to be shipped.)

Identifying Classes
In a traditional procedural program, you start the process at the top, with the main func-
tion. When designing an object-oriented system, there is no “top,” and newcomers to
OOP often wonder where to begin. The answer is, you first find classes and then you
add methods to each class.

A simple rule of thumb in identifying classes is to look for nouns in the problem analy-
sis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of these nouns are

• Item
• Order
• Shipping address
• Payment
• Account

These nouns may lead to the classes Item, Order, and so on.

Chapter 4. Objects and Classes

Introduction to Object-Oriented Programming 109

Next, look for verbs. Items are added to orders. Orders are shipped or canceled. Payments
are applied to orders. With each verb, such as “add,” “ship,” “cancel,” and “apply,” you
identify the one object that has the major responsibility for carrying it out. For example,
when a new item is added to an order, the order object should be the one in charge
because it knows how it stores and sorts items. That is, add should be a method of the
Order class that takes an Item object as a parameter.

Of course, the “noun and verb” rule is only a rule of thumb, and only experience can
help you decide which nouns and verbs are the important ones when building your
classes.

Relationships between Classes
The most common relationships between classes are

• Dependence (“uses–a”)
• Aggregation (“has–a”)
• Inheritance (“is–a”)

The dependence, or “uses–a” relationship, is the most obvious and also the most general.
For example, the Order class uses the Account class because Order objects need to access
Account objects to check for credit status. But the Item class does not depend on the Account
class, because Item objects never need to worry about customer accounts. Thus, a class
depends on another class if its methods use or manipulate objects of that class.

Try to minimize the number of classes that depend on each other. The point is, if a class
A is unaware of the existence of a class B, it is also unconcerned about any changes to B!
(And this means that changes to B do not introduce bugs into A.) In software engineering
terminology, you want to minimize the coupling between classes.

The aggregation, or “has–a” relationship, is easy to understand because it is concrete; for
example, an Order object contains Item objects. Containment means that objects of class A
contain objects of class B.

NOTE: Some methodologists view the concept of aggregation with disdain and prefer to use
a more general “association” relationship. From the point of view of modeling, that is under-
standable. But for programmers, the “has–a” relationship makes a lot of sense. We like to
use aggregation for a second reason—the standard notation for associations is less clear.
See Table 4–1.

The inheritance, or “is–a” relationship, expresses a relationship between a more special
and a more general class. For example, a RushOrder class inherits from an Order class. The
specialized RushOrder class has special methods for priority handling and a different
method for computing shipping charges, but its other methods, such as adding items
and billing, are inherited from the Order class. In general, if class A extends class B, class A
inherits methods from class B but has more capabilities. (We describe inheritance more
fully in the next chapter, in which we discuss this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class
diagrams that describe the relationships between classes. You can see an example of such
a diagram in Figure 4–2. You draw classes as rectangles, and relationships as arrows
with various adornments. Table 4–1 shows the most common UML arrow styles.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes110

Figure 4–2 A class diagram

NOTE: A number of tools are available for drawing UML diagrams. Several vendors offer
high-powered (and high-priced) tools that aim to be the focal point of your development
process. Among them are Rational Rose (http://www.ibm.com/software/awdtools/developer/
rose) and Together (http://www.borland.com/us/products/together). Another choice is the open
source program ArgoUML (http://argouml.tigris.org). A commercially supported version is
available from GentleWare (http://gentleware.com). If you just want to draw a simple dia-
grams with a minimum of fuss, try out Violet (http://violet.sourceforge.net).

Table 4–1 UML Notation for Class Relationships

Relationship UML Connector

Inheritance

Interface inheritance

Dependency

Aggregation

Association

Directed association

Chapter 4. Objects and Classes

Using Predefined Classes 111

Using Predefined Classes
Because you can’t do anything in Java without classes, you have already seen several
classes at work. However, not all of these show off the typical features of object orienta-
tion. Take, for example, the Math class. You have seen that you can use methods of the Math
class, such as Math.random, without needing to know how they are implemented—all you
need to know is the name and parameters (if any). That is the point of encapsulation
and will certainly be true of all classes. But the Math class only encapsulates functionality;
it neither needs nor hides data. Because there is no data, you do not need to worry about
making objects and initializing their instance fields—there aren’t any!

In the next section, we look at a more typical class, the Date class. You will see how to
construct objects and call methods of this class.

Objects and Object Variables
To work with objects, you first construct them and specify their initial state. Then you
apply methods to the objects.

In the Java programming language, you use constructors to construct new instances. A
constructor is a special method whose purpose is to construct and initialize objects. Let
us look at an example. The standard Java library contains a Date class. Its objects describe
points in time, such as “December 31, 1999, 23:59:59 GMT”.

NOTE: You may be wondering: Why use classes to represent dates rather than (as in some
languages) a built-in type? For example, Visual Basic has a built-in date type and program-
mers can specify dates in the format #6/1/1995#. On the surface, this sounds convenient—
programmers can simply use the built-in date type rather than worrying about classes. But
actually, how suitable is the Visual Basic design? In some locales, dates are specified as
month/day/year, in others as day/month/year. Are the language designers really equipped
to foresee these kinds of issues? If they do a poor job, the language becomes an unpleas-
ant muddle, but unhappy programmers are powerless to do anything about it. With classes,
the design task is offloaded to a library designer. If the class is not perfect, other program-
mers can easily write their own classes to enhance or replace the system classes. (To
prove the point: The Java date library is a bit muddled, and a major redesign is underway;
see http://jcp.org/en/jsr/detail?id=310.)

Constructors always have the same name as the class name. Thus, the constructor for
the Date class is called Date. To construct a Date object, you combine the constructor with
the new operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current date and
time.

If you like, you can pass the object to a method:
System.out.println(new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the
methods of the Date class is the toString method. That method yields a string representation
of the date. Here is how you would apply the toString method to a newly constructed Date
object:

String s = new Date().toString();

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes112

In these two examples, the constructed object is used only once. Usually, you will want
to hang on to the objects that you construct so that you can keep using them. Simply
store the object in a variable:

Date birthday = new Date();

Figure 4–3 shows the object variable birthday that refers to the newly constructed object.

Figure 4–3 Creating a new object

There is an important difference between objects and object variables. For example,
the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type Date. It is important to
realize that the variable deadline is not an object and, in fact, does not yet even refer to an
object. You cannot use any Date methods on this variable at this time. The statement

s = deadline.toString(); // not yet

would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course, you can
initialize the variable with a newly constructed object:

deadline = new Date();

Or you can set the variable to refer to an existing object:
deadline = birthday;

Now both variables refer to the same object (see Figure 4–4).

It is important to realize that an object variable doesn’t actually contain an object. It only
refers to an object.

In Java, the value of any object variable is a reference to an object that is stored else-
where. The return value of the new operator is also a reference. A statement such as

Date deadline = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value is a ref-
erence to that newly created object. That reference is then stored in the deadline variable.

birthday = Date

Chapter 4. Objects and Classes

Using Predefined Classes 113

Figure 4–4 Object variables that refer to the same object

You can explicitly set an object variable to null to indicate that it currently refers to no
object.

deadline = null;
. . .
if (deadline != null)
 System.out.println(deadline);

If you apply a method to a variable that holds null, then a runtime error occurs.
birthday = null;
String s = birthday.toString(); // runtime error!

Variables are not automatically initialized to null. You must initialize them, either by
calling new or by setting them to null.

C++ NOTE: Many people mistakenly believe that Java object variables behave like C++ ref-
erences. But in C++ there are no null references, and references cannot be assigned. You
should think of Java object variables as analogous to object pointers in C++. For example,

Date birthday; // Java

is really the same as

Date* birthday; // C++

Once you make this association, everything falls into place. Of course, a Date* pointer isn’t
initialized until you initialize it with a call to new. The syntax is almost the same in C++ and
Java.

Date* birthday = new Date(); // C++

If you copy one variable to another, then both variables refer to the same date—they are
pointers to the same object. The equivalent of the Java null reference is the C++ NULL
pointer.

All Java objects live on the heap. When an object contains another object variable, that vari-
able still contains just a pointer to yet another heap object.

birthday = Date

birthday =

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes114

In C++, pointers make you nervous because they are so error prone. It is easy to create bad
pointers or to mess up memory management. In Java, these problems simply go away. If
you use an uninitialized pointer, the runtime system will reliably generate a runtime error
instead of producing random results. You don’t worry about memory management, because
the garbage collector takes care of it.

C++ makes quite an effort, with its support for copy constructors and assignment operators,
to allow the implementation of objects that copy themselves automatically. For example, a
copy of a linked list is a new linked list with the same contents but with an independent set of
links. This makes it possible to design classes with the same copy behavior as the built-in
types. In Java, you must use the clone method to get a complete copy of an object.

The GregorianCalendar Class of the Java Library
In the preceding examples, we used the Date class that is a part of the standard Java
library. An instance of the Date class has a state, namely a particular point in time.

Although you don’t need to know this when you use the Date class, the time is repre-
sented by the number of milliseconds (positive or negative) from a fixed point, the so-
called epoch, which is 00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal
Time, the scientific time standard that is, for practical purposes, the same as the more
familiar GMT or Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating dates. The designers of
the Java library take the point of view that a date description such as “December 31, 1999,
23:59:59” is an arbitrary convention, governed by a calendar. This particular description
follows the Gregorian calendar, which is the calendar used in most places of the world.
The same point in time would be described quite differently in the Chinese or Hebrew
lunar calendars, not to mention the calendar used by your customers from Mars.

NOTE: Throughout human history, civilizations grappled with the design of calendars that
attached names to dates and brought order to the solar and lunar cycles. For a fascinating
explanation of calendars around the world, from the French Revolutionary calendar to the
Mayan long count, see Calendrical Calculations, Second Edition by Nachum Dershowitz
and Edward M. Reingold (Cambridge University Press, 2001).

The library designers decided to separate the concerns of keeping time and attaching
names to points in time. Therefore, the standard Java library contains two separate
classes: the Date class, which represents a point in time, and the GregorianCalendar class,
which expresses dates in the familiar calendar notation. In fact, the GregorianCalendar class
extends a more generic Calendar class that describes the properties of calendars in gen-
eral. In theory, you can extend the Calendar class and implement the Chinese lunar calen-
dar or a Martian calendar. However, the standard library does not contain any calendar
implementations besides the Gregorian calendar.

Separating time measurement from calendars is good object-oriented design. In general,
it is a good idea to use separate classes to express different concepts.

The Date class has only a small number of methods that allow you to compare two points
in time. For example, the before and after methods tell you if one point in time comes
before or after another:

Chapter 4. Objects and Classes

Using Predefined Classes 115

if (today.before(birthday))
 System.out.println("Still time to shop for a gift.");

NOTE: Actually, the Date class has methods such as getDay, getMonth, and getYear, but these
methods are deprecated. A method is deprecated when a library designer realizes that the
method should have never been introduced in the first place.

These methods were a part of the Date class before the library designers realized that it
makes more sense to supply separate calendar classes. When the calendar classes were
introduced, the Date methods were tagged as deprecated. You can still use them in your pro-
grams, but you will get unsightly compiler warnings if you do. It is a good idea to stay away
from using deprecated methods because they may be removed in a future version of the
library.

The GregorianCalendar class has many more methods than the Date class. In particular, it has
several useful constructors. The expression

new GregorianCalendar()

constructs a new object that represents the date and time at which the object was con-
structed.

You can construct a calendar object for midnight on a specific date by supplying year,
month, and day:

new GregorianCalendar(1999, 11, 31)

Somewhat curiously, the months are counted from 0. Therefore, 11 is December. For
greater clarity, there are constants like Calendar.DECEMBER:

new GregorianCalendar(1999, Calendar.DECEMBER, 31)

You can also set the time:
new GregorianCalendar(1999, Calendar.DECEMBER, 31, 23, 59, 59)

Of course, you will usually want to store the constructed object in an object variable:
GregorianCalendar deadline = new GregorianCalendar(. . .);

The GregorianCalendar has encapsulated instance fields to maintain the date to which it is
set. Without looking at the source code, it is impossible to know the representation that
the class uses internally. But, of course, the point of encapsulation is that this doesn’t
matter. What matters are the methods that a class exposes.

Mutator and Accessor Methods
At this point, you are probably asking yourself: How do I get at the current day or
month or year for the date encapsulated in a specific GregorianCalendar object? And how
do I change the values if I am unhappy with them? You can find out how to carry out
these tasks by looking at the on-line documentation or the API notes at the end of this
section. We go over the most important methods in this section.

The job of a calendar is to compute attributes, such as the date, weekday, month, or
year, of a certain point in time. To query one of these settings, you use the get method
of the GregorianCalendar class. To select the item that you want to get, you pass a constant
defined in the Calendar class, such as Calendar.MONTH or Calendar.DAY_OF_WEEK:

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes116

GregorianCalendar now = new GregorianCalendar();
int month = now.get(Calendar.MONTH);
int weekday = now.get(Calendar.DAY_OF_WEEK);

The API notes list all the constants that you can use.

You change the state with a call to the set method:
deadline.set(Calendar.YEAR, 2001);
deadline.set(Calendar.MONTH, Calendar.APRIL);
deadline.set(Calendar.DAY_OF_MONTH, 15);

There is also a convenience method to set the year, month, and day with a single call:
deadline.set(2001, Calendar.APRIL, 15);

Finally, you can add a number of days, weeks, months, and so on, to a given calendar
object:

deadline.add(Calendar.MONTH, 3); // move deadline by 3 months

If you add a negative number, then the calendar is moved backwards.

There is a conceptual difference between the get method on the one hand and the set and
add methods on the other hand. The get method only looks up the state of the object and
reports on it. The set and add methods modify the state of the object. Methods that change
instance fields are called mutator methods, and those that only access instance fields with-
out modifying them are called accessor methods.

C++ NOTE: In C++, the const suffix denotes accessor methods. A method that is not
declared as const is assumed to be a mutator. However, in the Java programming language,
no special syntax distinguishes between accessors and mutators.

A common convention is to prefix accessor methods with the prefix get and mutator
methods with the prefix set. For example, the GregorianCalendar class has methods getTime
and setTime that get and set the point in time that a calendar object represents:

Date time = calendar.getTime();
calendar.setTime(time);

These methods are particularly useful for converting between the GregorianCalendar and Date
classes. Here is an example. Suppose you know the year, month, and day and you want to
make a Date object with those settings. Because the Date class knows nothing about calendars,
first construct a GregorianCalendar object and then call the getTime method to obtain a date:

GregorianCalendar calendar = new GregorianCalendar(year, month, day);
Date hireDay = calendar.getTime();

Conversely, if you want to find the year, month, or day of a Date object, you construct a
GregorianCalendar object, set the time, and then call the get method:

GregorianCalendar calendar = new GregorianCalendar();
calendar.setTime(hireDay);
int year = calendar.get(Calendar.YEAR);

We finish this section with a program that puts the GregorianCalendar class to work. The
program displays a calendar for the current month, like this:

Chapter 4. Objects and Classes

Using Predefined Classes 117

Sun Mon Tue Wed Thu Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19* 20 21 22
23 24 25 26 27 28 29
30 31

The current day is marked with an asterisk (*). As you can see, the program needs to
know how to compute the length of a month and the weekday of a given day.

Let us go through the key steps of the program. First, we construct a calendar object
that is initialized with the current date.

GregorianCalendar d = new GregorianCalendar();

We capture the current day and month by calling the get method twice.
int today = d.get(Calendar.DAY_OF_MONTH);
int month = d.get(Calendar.MONTH);

Then we set d to the first of the month and get the weekday of that date.
d.set(Calendar.DAY_OF_MONTH, 1);
int weekday = d.get(Calendar.DAY_OF_WEEK);

The variable weekday is set to Calendar.SUNDAY if the first day of the month is a Sunday, to Cal-
endar.MONDAY if it is a Monday, and so on. (These values are actually the integers 1, 2, . . . , 7,
but it is best not to write code that depends on that knowledge.)

Note that the first line of the calendar is indented, so that the first day of the month falls
on the appropriate weekday. This is a bit tricky since there are varying conventions
about the starting day of the week. In the United States, the week starts with Sunday
and ends with Saturday, whereas in Europe, the week starts with Monday and ends
with Sunday.

The Java virtual machine is aware of the locale of the current user. The locale describes
local formatting conventions, including the start of the week and the names of the
weekdays.

TIP: If you want to see the program output in a different locale, add a line such as the follow-
ing as the first line of the main method:

Locale.setDefault(Locale.ITALY);

The getFirstDayOfWeek method gets the starting weekday in the current locale. To deter-
mine the required indentation, we subtract 1 from the day of the calendar object until
we reach the first day of the week.

int firstDayOfWeek = d.getFirstDayOfWeek();
int indent = 0;
while (weekday != firstDayOfWeek)
{
 indent++;
 d.add(Calendar.DAY_OF_MONTH, -1);
 weekday = d.get(Calendar.DAY_OF_WEEK);
}

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes118

Next, we print the header with the weekday names. These are available from the class
DateFormatSymbols.

String [] weekdayNames = new DateFormatSymbols().getShortWeekdays();

The getShortWeekdays method returns a string with short weekday names in the user’s
language (such as "Sun", "Mon", and so on in English). The array is indexed by weekday
values. Here is the loop to print the header:

do
{
 System.out.printf("%4s", weekdayNames[weekday]);
 d.add(Calendar.DAY_OF_MONTH, 1);
 weekday = d.get(Calendar.DAY_OF_WEEK);
}
while (weekday != firstDayOfWeek);
System.out.println();

Now, we are ready to print the body of the calendar. We indent the first line and set the
date object back to the start of the month. We enter a loop in which d traverses the days
of the month.

In each iteration, we print the date value. If d is today, the date is marked with an *. If we
reach the beginning of each new week, we print a new line. Then, we advance d to the
next day:

d.add(Calendar.DAY_OF_MONTH, 1);

When do we stop? We don’t know whether the month has 31, 30, 29, or 28 days. Instead,
we keep iterating while d is still in the current month.

do
{
 . . .
}
while (d.get(Calendar.MONTH) == month);

Once d has moved into the next month, the program terminates.

Listing 4–1 shows the complete program.

As you can see, the GregorianCalendar class makes it possible to write a calendar program
that takes care of complexities such as weekdays and the varying month lengths. You
don’t need to know how the GregorianCalendar class computes months and weekdays. You
just use the interface of the class—the get, set, and add methods.

The point of this example program is to show you how you can use the interface of a class
to carry out fairly sophisticated tasks without having to know the implementation details.

Listing 4–1 CalendarTest.java

1. import java.text.DateFormatSymbols;
2. import java.util.*;
3.

4. /**
5. * @version 1.4 2007-04-07
6. * @author Cay Horstmann
7. */

Chapter 4. Objects and Classes

Using Predefined Classes 119

8.

9. public class CalendarTest
10. {
11. public static void main(String[] args)
12. {
13. // construct d as current date
14. GregorianCalendar d = new GregorianCalendar();
15.

16. int today = d.get(Calendar.DAY_OF_MONTH);
17. int month = d.get(Calendar.MONTH);
18.

19. // set d to start date of the month
20. d.set(Calendar.DAY_OF_MONTH, 1);
21.

22. int weekday = d.get(Calendar.DAY_OF_WEEK);
23.

24. // get first day of week (Sunday in the U.S.)
25. int firstDayOfWeek = d.getFirstDayOfWeek();
26.

27. // determine the required indentation for the first line
28. int indent = 0;
29. while (weekday != firstDayOfWeek)
30. {
31. indent++;
32. d.add(Calendar.DAY_OF_MONTH, -1);
33. weekday = d.get(Calendar.DAY_OF_WEEK);
34. }
35.

36. // print weekday names
37. String[] weekdayNames = new DateFormatSymbols().getShortWeekdays();
38. do
39. {
40. System.out.printf("%4s", weekdayNames[weekday]);
41. d.add(Calendar.DAY_OF_MONTH, 1);
42. weekday = d.get(Calendar.DAY_OF_WEEK);
43. }
44. while (weekday != firstDayOfWeek);
45. System.out.println();
46.

47. for (int i = 1; i <= indent; i++)
48. System.out.print(" ");
49.

50. d.set(Calendar.DAY_OF_MONTH, 1);
51. do
52. {
53. // print day
54. int day = d.get(Calendar.DAY_OF_MONTH);
55. System.out.printf("%3d", day);

Listing 4–1 CalendarTest.java (continued)

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes120

• GregorianCalendar()
constructs a calendar object that represents the current time in the default time
zone with the default locale.

• GregorianCalendar(int year, int month, int day)
• GregorianCalendar(int year, int month, int day, int hour, int minutes, int seconds)

constructs a Gregorian calendar with the given date and time.

• int get(int field)
gets the value of a particular field.

56.

57. // mark current day with *
58. if (day == today) System.out.print("*");
59. else System.out.print(" ");
60.

61. // advance d to the next day
62. d.add(Calendar.DAY_OF_MONTH, 1);
63. weekday = d.get(Calendar.DAY_OF_WEEK);
64.

65. // start a new line at the start of the week
66. if (weekday == firstDayOfWeek) System.out.println();
67. }
68. while (d.get(Calendar.MONTH) == month);
69. // the loop exits when d is day 1 of the next month
70.

71. // print final end of line if necessary
72. if (weekday != firstDayOfWeek) System.out.println();
73. }
74. }

java.util.GregorianCalendar 1.1

Parameters: year the year of the date

month the month of the date. This value is 0-based; for
example, 0 for January

day the day of the month

hour the hour (between 0 and 23)

minutes the minutes (between 0 and 59)

seconds the seconds (between 0 and 59)

Parameters: field one of Calendar.ERA, Calendar.YEAR, Calendar.MONTH,
Calendar.WEEK_OF_YEAR, Calendar.WEEK_OF_MONTH,
Calendar.DAY_OF_MONTH, Calendar.DAY_OF_YEAR,
Calendar.DAY_OF_WEEK, Calendar.DAY_OF_WEEK_IN_MONTH,
Calendar.AM_PM, Calendar.HOUR, Calendar.HOUR_OF_DAY,
Calendar.MINUTE, Calendar.SECOND, Calendar.MILLISECOND,
Calendar.ZONE_OFFSET, Calendar.DST_OFFSET

Listing 4–1 CalendarTest.java (continued)

Chapter 4. Objects and Classes

Using Predefined Classes 121

• void set(int field, int value)
sets the value of a particular field.

• void set(int year, int month, int day)
• void set(int year, int month, int day, int hour, int minutes, int seconds)

sets the fields to new values.

• void add(int field, int amount)
is a date arithmetic method. Adds the specified amount of time to the given
time field. For example, to add 7 days to the current calendar date, call
c.add(Calendar.DAY_OF_MONTH, 7).

• int getFirstDayOfWeek()
gets the first day of the week in the locale of the current user, for example,
Calendar.SUNDAY in the United States.

• void setTime(Date time)
sets this calendar to the given point in time.

• Date getTime()
gets the point in time that is represented by the current value of this calendar
object.

• String[] getShortWeekdays()
• String[] getShortMonths()
• String[] getWeekdays()
• String[] getMonths()

gets the names of the weekdays or months in the current locale. Uses Calendar
weekday and month constants as array index values.

Parameters: field one of the constants accepted by get

value the new value

Parameters: year the year of the date

month the month of the date. This value is 0-based; for
example, 0 for January

day the day of the month

hour the hour (between 0 and 23)

minutes the minutes (between 0 and 59)

seconds the seconds (between 0 and 59)

Parameters: field the field to modify (using one of the constants
documented in the get method)

amount the amount by which the field should be changed
(can be negative)

Parameters: time a point in time

java.text.DateFormatSymbols 1.1

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes122

Defining Your Own Classes
In Chapter 3, you started writing simple classes. However, all those classes had just a
single main method. Now the time has come to show you how to write the kind of “work-
horse classes” that are needed for more sophisticated applications. These classes typi-
cally do not have a main method. Instead, they have their own instance fields and
methods. To build a complete program, you combine several classes, one of which has a
main method.

An Employee Class
The simplest form for a class definition in Java is

class ClassName
{
 constructor1
 constructor2
 . . .
 method1
 method2
 . . .
 field1
 field2
 . . .
}

NOTE: We adopt the style that the methods for the class come first and the fields come at
the end. Perhaps this, in a small way, encourages the notion of looking at the interface first
and paying less attention to the implementation.

Consider the following, very simplified, version of an Employee class that might be used
by a business in writing a payroll system.

class Employee
{
 // constructor
 public Employee(String n, double s, int year, int month, int day)
 {
 name = n;
 salary = s;
 GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
 hireDay = calendar.getTime();
 }

 // a method
 public String getName()
 {
 return name;
 }

 // more methods
 . . .

Chapter 4. Objects and Classes

Defining Your Own Classes 123

 // instance fields

 private String name;
 private double salary;
 private Date hireDay;
}

We break down the implementation of this class in some detail in the sections that fol-
low. First, though, Listing 4–2 shows a program that shows the Employee class in action.

In the program, we construct an Employee array and fill it with three employee objects:
Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise each employee’s salary by
5%:

for (Employee e : staff)
 e.raiseSalary(5);

Finally, we print out information about each employee, by calling the getName, getSalary,
and getHireDay methods:

for (Employee e : staff)
 System.out.println("name=" + e.getName()
 + ",salary=" + e.getSalary()
 + ",hireDay=" + e.getHireDay());

Note that the example program consists of two classes: the Employee class and a class
EmployeeTest with the public access specifier. The main method with the instructions that we
just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java because the name of the file must match
the name of the public class. You can have only one public class in a source file, but you
can have any number of nonpublic classes.

Next, when you compile this source code, the compiler creates two class files in the
directory: EmployeeTest.class and Employee.class.

You start the program by giving the bytecode interpreter the name of the class that con-
tains the main method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the EmployeeTest
class. This code in turn constructs three new Employee objects and shows you their state.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes124

Listing 4–2 EmployeeTest.java

1. import java.util.*;
2.

3. /**
4. * This program tests the Employee class.
5. * @version 1.11 2004-02-19
6. * @author Cay Horstmann
7. */
8. public class EmployeeTest
9. {

10. public static void main(String[] args)
11. {
12. // fill the staff array with three Employee objects
13. Employee[] staff = new Employee[3];
14.

15. staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
16. staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
17. staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
18.

19. // raise everyone's salary by 5%
20. for (Employee e : staff)
21. e.raiseSalary(5);
22.

23. // print out information about all Employee objects
24. for (Employee e : staff)
25. System.out.println("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
26. + e.getHireDay());
27. }
28. }
29.

30. class Employee
31. {
32. public Employee(String n, double s, int year, int month, int day)
33. {
34. name = n;
35. salary = s;
36. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37. // GregorianCalendar uses 0 for January
38. hireDay = calendar.getTime();
39. }
40.

41. public String getName()
42. {
43. return name;
44. }
45.

46. public double getSalary()
47. {
48. return salary;
49. }

Chapter 4. Objects and Classes

Defining Your Own Classes 125

Use of Multiple Source Files
The program in Listing 4–2 has two classes in a single source file. Many programmers
prefer to put each class into its own source file. For example, you can place the Employee
class into a file Employee.java and the EmployeeTest class into EmployeeTest.java.

If you like this arrangement, then you have two choices for compiling the program. You
can invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files. Or, you can
simply type

javac EmployeeTest.java

You may find it surprising that the second choice works even though the Employee.java
file is never explicitly compiled. However, when the Java compiler sees the Employee
class being used inside EmployeeTest.java, it will look for a file named Employee.class. If it
does not find that file, it automatically searches for Employee.java and then compiles it.
Even more is true: if the time stamp of the version of Employee.java that it finds is newer
than that of the existing Employee.class file, the Java compiler will automatically recom-
pile the file.

NOTE: If you are familiar with the “make” facility of UNIX (or one of its Windows cousins
such as “nmake”), then you can think of the Java compiler as having the “make” functionality
already built in.

Dissecting the Employee Class
In the sections that follow, we want to dissect the Employee class. Let’s start with the meth-
ods in this class. As you can see by examining the source code, this class has one con-
structor and four methods:

50.

51. public Date getHireDay()
52. {
53. return hireDay;
54. }
55.

56. public void raiseSalary(double byPercent)
57. {
58. double raise = salary * byPercent / 100;
59. salary += raise;
60. }
61.

62. private String name;
63. private double salary;
64. private Date hireDay;
65. }

Listing 4–2 EmployeeTest.java (continued)

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes126

public Employee(String n, double s, int year, int month, int day)
public String getName()
public double getSalary()
public Date getHireDay()
public void raiseSalary(double byPercent)

All methods of this class are tagged as public. The keyword public means that any method
in any class can call the method. (The four possible access levels are covered in this and
the next chapter.)

Next, notice that three instance fields will hold the data we will manipulate inside an
instance of the Employee class.

private String name;
private double salary;
private Date hireDay;

The private keyword makes sure that the only methods that can access these instance fields
are the methods of the Employee class itself. No outside method can read or write to these
fields.

NOTE: You could use the public keyword with your instance fields, but it would be a very bad
idea. Having public data fields would allow any part of the program to read and modify the
instance fields. That completely ruins encapsulation. Any method of any class can modify
public fields—and, in our experience, some code usually will take advantage of that access
privilege when you least expect it. We strongly recommend that you always make your
instance fields private.

Finally, notice that two of the instance fields are themselves objects: the name and hireDay
fields are references to String and Date objects. This is quite usual: classes will often con-
tain instance fields of class type.

First Steps with Constructors
Let’s look at the constructor listed in our Employee class.

public Employee(String n, double s, int year, int month, int day)
{
 name = n;
 salary = s;
 GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
 hireDay = calendar.getTime();
}

As you can see, the name of the constructor is the same as the name of the class. This
constructor runs when you construct objects of the Employee class—giving the instance
fields the initial state you want them to have.

For example, when you create an instance of the Employee class with code like this:
new Employee("James Bond", 100000, 1950, 1, 1);

you have set the instance fields as follows:
name = "James Bond";
salary = 100000;
hireDay = January 1, 1950;

Chapter 4. Objects and Classes

Defining Your Own Classes 127

There is an important difference between constructors and other methods. A construc-
tor can only be called in conjunction with the new operator. You can’t apply a constructor
to an existing object to reset the instance fields. For example,

james.Employee("James Bond", 250000, 1950, 1, 1); // ERROR

is a compile-time error.

We have more to say about constructors later in this chapter. For now, keep the follow-
ing in mind:

• A constructor has the same name as the class.
• A class can have more than one constructor.
• A constructor can take zero, one, or more parameters.
• A constructor has no return value.
• A constructor is always called with the new operator.

C++ NOTE: Constructors work the same way in Java as they do in C++. But keep in mind
that all Java objects are constructed on the heap and that a constructor must be combined
with new. It is a common C++ programmer error to forget the new operator:

Employee number007("James Bond", 100000, 1950, 1, 1);
// C++, not Java

That works in C++ but does not work in Java.

CAUTION: Be careful not to introduce local variables with the same names as the instance
fields. For example, the following constructor will not set the salary:

public Employee(String n, double s, . . .)
{
 String name = n; // ERROR
 double salary = s; // ERROR
 . . .
}

The constructor declares local variables name and salary. These variables are only accessi-
ble inside the constructor. They shadow the instance fields with the same name. Some
programmers—such as the authors of this book—write this kind of code when they type
faster than they think, because their fingers are used to adding the data type. This is a
nasty error that can be hard to track down. You just have to be careful in all of your meth-
ods that you don’t use variable names that equal the names of instance fields.

Implicit and Explicit Parameters
Methods operate on objects and access their instance fields. For example, the method

public void raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
}

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes128

sets a new value for the salary instance field in the object on which this method is
invoked. Consider the call

number007.raiseSalary(5);

The effect is to increase the value of the number007.salary field by 5%. More specifically, the
call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the implicit param-
eter, is the object of type Employee that appears before the method name. The second param-
eter, the number inside the parentheses after the method name, is an explicit parameter.

As you can see, the explicit parameters are explicitly listed in the method declaration, for
example, double byPercent. The implicit parameter does not appear in the method declaration.

In every method, the keyword this refers to the implicit parameter. If you like, you can
write the raiseSalary method as follows:

public void raiseSalary(double byPercent)
{
 double raise = this.salary * byPercent / 100;
 this.salary += raise;
}

Some programmers prefer that style because it clearly distinguishes between instance
fields and local variables.

C++ NOTE: In C++, you generally define methods outside the class:

void Employee::raiseSalary(double byPercent) // C++, not Java
{
 . . .
}

If you define a method inside a class, then it is automatically an inline method.

class Employee
{
 . . .
 int getName() { return name; } // inline in C++
}

In the Java programming language, all methods are defined inside the class itself. This does
not make them inline. Finding opportunities for inline replacement is the job of the Java vir-
tual machine. The just-in-time compiler watches for calls to methods that are short, com-
monly called, and not overridden, and optimizes them away.

Chapter 4. Objects and Classes

Defining Your Own Classes 129

Benefits of Encapsulation
Finally, let’s look more closely at the rather simple getName, getSalary, and getHireDay
methods.

public String getName()
{
 return name;
}

public double getSalary()
{
 return salary;
}

public Date getHireDay()
{
 return hireDay;
}

These are obvious examples of accessor methods. Because they simply return the values
of instance fields, they are sometimes called field accessors.

Wouldn’t it be easier to simply make the name, salary, and hireDay fields public, instead of
having separate accessor methods?

The point is that the name field is a read-only field. Once you set it in the constructor,
there is no method to change it. Thus, we have a guarantee that the name field will
never be corrupted.

The salary field is not read-only, but it can only be changed by the raiseSalary method.
In particular, should the value ever be wrong, only that method needs to be
debugged. Had the salary field been public, the culprit for messing up the value
could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance field. Then
you need to supply three items:

• A private data field;
• A public field accessor method; and
• A public field mutator method.

This is a lot more tedious than supplying a single public data field, but there are consid-
erable benefits.

First, you can change the internal implementation without affecting any code other than
the methods of the class.

For example, if the storage of the name is changed to
String firstName;
String lastName;

then the getName method can be changed to return
firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes130

Of course, the accessor and mutator methods may need to do a lot of work and convert
between the old and the new data representation. But that leads us to our second bene-
fit: Mutator methods can perform error-checking, whereas code that simply assigns to a
field may not go to the trouble. For example, a setSalary method might check that the sal-
ary is never less than 0.

CAUTION: Be careful not to write accessor methods that return references to mutable objects.
We violated that rule in our Employee class in which the getHireDay method returns an object of
class Date:

class Employee
{
 . . .
 public Date getHireDay()
 {
 return hireDay;
 }
 . . .
 private Date hireDay;
}

This breaks the encapsulation! Consider the following rogue code:

Employee harry = . . .;
Date d = harry.getHireDay();
double tenYearsInMilliSeconds = 10 * 365.25 * 24 * 60 * 60 * 1000;
d.setTime(d.getTime() - (long) tenYearsInMilliSeconds);
// let's give Harry ten years added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see Figure 4–5).
Applying mutator methods to d automatically changes the private state of the employee
object!

If you need to return a reference to a mutable object, you should clone it first. A clone is an
exact copy of an object that is stored in a new location. We discuss cloning in detail in Chap-
ter 6. Here is the corrected code:

class Employee
{
 . . .
 public Date getHireDay()
 {
 return (Date) hireDay.clone();
 }
 . . .
}

As a rule of thumb, always use clone whenever you need to return a copy of a mutable data
field.

Chapter 4. Objects and Classes

Defining Your Own Classes 131

Figure 4–5 Returning a reference to a mutable data field

Class-Based Access Privileges
You know that a method can access the private data of the object on which it is invoked.
What many people find surprising is that a method can access the private data of all
objects of its class. For example, consider a method equals that compares two employees.

class Employee
{
 . . .
 boolean equals(Employee other)
 {
 return name.equals(other.name);
 }
}

A typical call is
if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also accesses the
private fields of boss. This is legal because boss is an object of type Employee, and a method of
the Employee class is permitted to access the private fields of any object of type Employee.

C++ NOTE: C++ has the same rule. A method can access the private features of any object
of its class, not just of the implicit parameter.

Date

harry =

d =

Employee

name =

salary =

hireDay =

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes132

Private Methods
When implementing a class, we make all data fields private because public data are
dangerous. But what about the methods? While most methods are public, private
methods are used in certain circumstances. Sometimes, you may wish to break up
the code for a computation into separate helper methods. Typically, these helper
methods should not become part of the public interface—they may be too close to
the current implementation or require a special protocol or calling order. Such meth-
ods are best implemented as private.

To implement a private method in Java, simply change the public keyword to private.

By making a method private, you are under no obligation to keep it available if you
change to another implementation. The method may well be harder to implement or
unnecessary if the data representation changes: this is irrelevant. The point is that as long
as the method is private, the designers of the class can be assured that it is never used
outside the other class operations and can simply drop it. If a method is public, you can-
not simply drop it because other code might rely on it.

Final Instance Fields
You can define an instance field as final. Such a field must be initialized when the object
is constructed. That is, it must be guaranteed that the field value has been set after the
end of every constructor. Afterwards, the field may not be modified again. For example,
the name field of the Employee class may be declared as final because it never changes after
the object is constructed—there is no setName method.

class Employee
{
 . . .
 private final String name;
}

The final modifier is particularly useful for fields whose type is primitive or an immuta-
ble class. (A class is immutable if none of its methods ever mutate its objects. For exam-
ple, the String class is immutable.) For mutable classes, the final modifier is likely to
confuse the reader. For example,

private final Date hiredate;

merely means that the object reference stored in the hiredate variable doesn’t get changed
after the object is constructed. That does not mean that the hiredate object is constant.
Any method is free to invoke the setTime mutator on the object to which hiredate refers.

Static Fields and Methods
In all sample programs that you have seen, the main method is tagged with the static
modifier. We are now ready to discuss the meaning of this modifier.

Static Fields
If you define a field as static, then there is only one such field per class. In contrast, each
object has its own copy of all instance fields. For example, let’s suppose we want to
assign a unique identification number to each employee. We add an instance field id and
a static field nextId to the Employee class:

class Employee
{

Chapter 4. Objects and Classes

Static Fields and Methods 133

 . . .
 private int id;
 private static int nextId = 1;
}

Every employee object now has its own id field, but there is only one nextId field that is
shared among all instances of the class. Let’s put it another way. If there are 1,000 objects
of the Employee class, then there are 1,000 instance fields id, one for each object. But there is
a single static field nextId. Even if there are no employee objects, the static field nextId is
present. It belongs to the class, not to any individual object.

NOTE: In most object-oriented programming languages, static fields are called class fields.
The term “static” is a meaningless holdover from C++.

Let’s implement a simple method:
public void setId()
{
 id = nextId;
 nextId++;
}

Suppose you set the employee identification number for harry:
harry.setId();

Then, the id field of harry is set to the current value of the static field nextId, and the value
of the static field is incremented:

harry.id = Employee.nextId;
Employee.nextId++;

Static Constants
Static variables are quite rare. However, static constants are more common. For exam-
ple, the Math class defines a static constant:

public class Math
{
 . . .
 public static final double PI = 3.14159265358979323846;
 . . .
}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field of the
Math class. That is, you would need an object of the Math class to access PI, and every Math
object would have its own copy of PI.

Another static constant that you have used many times is System.out. It is declared in the
System class as follows:

public class System
{
 . . .
 public static final PrintStream out = . . .;
 . . .
}

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes134

As we mentioned several times, it is never a good idea to have public fields, because
everyone can modify them. However, public constants (that is, final fields) are fine.
Because out has been declared as final, you cannot reassign another print stream to it:

System.out = new PrintStream(. . .); // ERROR--out is final

NOTE: If you look at the System class, you will notice a method setOut that lets you set
System.out to a different stream. You may wonder how that method can change the value of
a final variable. However, the setOut method is a native method, not implemented in the
Java programming language. Native methods can bypass the access control mechanisms
of the Java language. This is a very unusual workaround that you should not emulate in
your own programs.

Static Methods
Static methods are methods that do not operate on objects. For example, the pow method
of the Math class is a static method. The expression

Math.pow(x, a)

computes the power xa. It does not use any Math object to carry out its task. In other
words, it has no implicit parameter.

You can think of static methods as methods that don’t have a this parameter. (In a non-
static method, the this parameter refers to the implicit parameter of the method—see the
section “Implicit and Explicit Parameters” on page 127.)

Because static methods don’t operate on objects, you cannot access instance fields from
a static method. But static methods can access the static fields in their class. Here is an
example of such a static method:

public static int getNextId()
{
 return nextId; // returns static field
}

To call this method, you supply the name of the class:
int n = Employee.getNextId();

Could you have omitted the keyword static for this method? Yes, but then you would
need to have an object reference of type Employee to invoke the method.

NOTE: It is legal to use an object to call a static method. For example, if harry is an Employee
object, then you can call harry.getNextId() instead of Employee.getnextId(). However, we find
that notation confusing. The getNextId method doesn’t look at harry at all to compute the
result. We recommend that you use class names, not objects, to invoke static methods.

You use static methods in two situations:

• When a method doesn’t need to access the object state because all needed
parameters are supplied as explicit parameters (example: Math.pow)

• When a method only needs to access static fields of the class (example:
Employee.getNextId)

Chapter 4. Objects and Classes

Static Fields and Methods 135

C++ NOTE: Static fields and methods have the same functionality in Java and C++. How-
ever, the syntax is slightly different. In C++, you use the :: operator to access a static field or
method outside its scope, such as Math::PI.

The term “static” has a curious history. At first, the keyword static was introduced in C to
denote local variables that don’t go away when a block is exited. In that context, the term
“static” makes sense: the variable stays around and is still there when the block is entered
again. Then static got a second meaning in C, to denote global variables and functions that
cannot be accessed from other files. The keyword static was simply reused, to avoid intro-
ducing a new keyword. Finally, C++ reused the keyword for a third, unrelated, interpreta-
tion—to denote variables and functions that belong to a class but not to any particular object
of the class. That is the same meaning that the keyword has in Java.

Factory Methods
Here is another common use for static methods. The NumberFormat class uses factory meth-
ods that yield formatter objects for various styles.

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x = 0.1;
System.out.println(currencyFormatter.format(x)); // prints $0.10
System.out.println(percentFormatter.format(x)); // prints 10%

Why doesn’t the NumberFormat class use a constructor instead? There are two reasons:

• You can’t give names to constructors. The constructor name is always the same as
the class name. But we want two different names to get the currency instance and
the percent instance.

• When you use a constructor, you can’t vary the type of the constructed object. But
the factory methods actually return objects of the class DecimalFormat, a subclass that
inherits from NumberFormat. (See Chapter 5 for more on inheritance.)

The main Method
Note that you can call static methods without having any objects. For example, you
never construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.
public class Application
{
 public static void main(String[] args)
 {
 // construct objects here
 . . .
 }
}

The main method does not operate on any objects. In fact, when a program starts, there
aren’t any objects yet. The static main method executes, and constructs the objects that the
program needs.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes136

TIP: Every class can have a main method. That is a handy trick for unit testing of classes. For
example, you can add a main method to the Employee class:

class Employee
{
 public Employee(String n, double s, int year, int month, int day)
 {
 name = n;
 salary = s;
 GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
 hireDay = calendar.getTime();
 }
 . . .
 public static void main(String[] args) // unit test
 {
 Employee e = new Employee("Romeo", 50000, 2003, 3, 31);
 e.raiseSalary(10);
 System.out.println(e.getName() + " " + e.getSalary());
 }
 . . .
}

If you want to test the Employee class in isolation, you simply execute

java Employee

If the employee class is a part of a larger application, then you start the application with

java Application

and the main method of the Employee class is never executed.

The program in Listing 4–3 contains a simple version of the Employee class with a static field
nextId and a static method getNextId. We fill an array with three Employee objects and then print
the employee information. Finally, we print the next available identification number, to dem-
onstrate the static method.

Note that the Employee class also has a static main method for unit testing. Try running both
java Employee

and
java StaticTest

to execute both main methods.

Listing 4–3 StaticTest.java

1. /**
2. * This program demonstrates static methods.
3. * @version 1.01 2004-02-19
4. * @author Cay Horstmann
5. */
6. public class StaticTest
7. {
8. public static void main(String[] args)
9. {

Chapter 4. Objects and Classes

www.allitebooks.com

http://www.allitebooks.org

Static Fields and Methods 137

10. // fill the staff array with three Employee objects
11. Employee[] staff = new Employee[3];
12.

13. staff[0] = new Employee("Tom", 40000);
14. staff[1] = new Employee("Dick", 60000);
15. staff[2] = new Employee("Harry", 65000);
16.

17. // print out information about all Employee objects
18. for (Employee e : staff)
19. {
20. e.setId();
21. System.out.println("name=" + e.getName() + ",id=" + e.getId() + ",salary="
22. + e.getSalary());
23. }
24.

25. int n = Employee.getNextId(); // calls static method
26. System.out.println("Next available id=" + n);
27. }
28. }
29.

30. class Employee
31. {
32. public Employee(String n, double s)
33. {
34. name = n;
35. salary = s;
36. id = 0;
37. }
38.

39. public String getName()
40. {
41. return name;
42. }
43.

44. public double getSalary()
45. {
46. return salary;
47. }
48.

49. public int getId()
50. {
51. return id;
52. }
53.

54. public void setId()
55. {
56. id = nextId; // set id to next available id
57. nextId++;
58. }

Listing 4–3 StaticTest.java (continued)

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes138

Method Parameters
Let us review the computer science terms that describe how parameters can be passed to a
method (or a function) in a programming language. The term call by value means that the
method gets just the value that the caller provides. In contrast, call by reference means that
the method gets the location of the variable that the caller provides. Thus, a method can mod-
ify the value stored in a variable that is passed by reference but not in one that is passed by
value. These “call by . . . ” terms are standard computer science terminology that describe
the behavior of method parameters in various programming languages, not just Java. (In
fact, there is also a call by name that is mainly of historical interest, being employed in the
Algol programming language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means that the method
gets a copy of all parameter values. In particular, the method cannot modify the con-
tents of any parameter variables that are passed to it.

For example, consider the following call:
double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call, the
value of percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the
value of a method parameter:

public static void tripleValue(double x) // doesn't work
{
 x = 3 * x;
}

Let’s call this method:
double percent = 10;
tripleValue(percent);

59.

60. public static int getNextId()
61. {
62. return nextId; // returns static field
63. }
64.

65. public static void main(String[] args) // unit test
66. {
67. Employee e = new Employee("Harry", 50000);
68. System.out.println(e.getName() + " " + e.getSalary());
69. }
70.

71. private String name;
72. private double salary;
73. private int id;
74. private static int nextId = 1;
75. }

Listing 4–3 StaticTest.java (continued)

Chapter 4. Objects and Classes

Method Parameters 139

However, this does not work. After the method call, the value of percent is still 10. Here is
what happens:

1. x is initialized with a copy of the value of percent (that is, 10).
2. x is tripled—it is now 30. But percent is still 10 (see Figure 4–6).
3. The method ends, and the parameter variable x is no longer in use.

Figure 4–6 Modifying a numeric parameter has no lasting effect

There are, however, two kinds of method parameters:

• Primitive types (numbers, boolean values)
• Object references

You have seen that it is impossible for a method to change a primitive type parameter.
The situation is different for object parameters. You can easily implement a method that
triples the salary of an employee:

public static void tripleSalary(Employee x) // works
{
 x.raiseSalary(200);
}

percent =

x =

value copied

value tripled

10

30

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes140

When you call
harry = new Employee(. . .);
tripleSalary(harry);

then the following happens:

1. x is initialized with a copy of the value of harry, that is, an object reference.
2. The raiseSalary method is applied to that object reference. The Employee object to which

both x and harry refer gets its salary raised by 200 percent.
3. The method ends, and the parameter variable x is no longer in use. Of course, the

object variable harry continues to refer to the object whose salary was tripled (see
Figure 4–7).

Figure 4–7 Modifying an object parameter has a lasting effect

As you have seen, it is easily possible—and in fact very common—to implement meth-
ods that change the state of an object parameter. The reason is simple. The method gets a
copy of the object reference, and both the original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two methods for
parameter passing: call by value and call by reference. Some programmers (and unfortu-
nately even some book authors) claim that the Java programming language uses call by
reference for objects. However, that is false. Because this is such a common misunder-
standing, it is worth examining a counterexample in detail.

Let’s try to write a method that swaps two employee objects:
public static void swap(Employee x, Employee y) // doesn't work
{
 Employee temp = x;
 x = y;

harry =

x =

reference
copied salary tripled

Employee

Chapter 4. Objects and Classes

Method Parameters 141

 y = temp;
}

If the Java programming language used call by reference for objects, this method would
work:

Employee a = new Employee("Alice", . . .);
Employee b = new Employee("Bob", . . .);
swap(a, b);
// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are stored in
the variables a and b. The x and y parameters of the swap method are initialized with copies
of these references. The method then proceeds to swap these copies.

// x refers to Alice, y to Bob
Employee temp = x;
x = y;
y = temp;
// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter variables x
and y are abandoned. The original variables a and b still refer to the same objects as they
did before the method call (see Figure 4–8).

Figure 4–8 Swapping object parameters has no lasting effect

This discussion demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in the Java
programming language:

bob =

x =

alice =

y =

Employee

Employee

references
copied

references
swapped

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes142

• A method cannot modify a parameter of primitive type (that is, numbers or boolean
values).

• A method can change the state of an object parameter.
• A method cannot make an object parameter refer to a new object.

The program in Listing 4–4 demonstrates these facts. The program first tries to triple the
value of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0
End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:
Testing tripleSalary:
Before: salary=50000.0
End of method: salary=150000.0
After: salary=150000.0

After the method, the state of the object to which harry refers has changed. This is possi-
ble because the method modified the state through a copy of the object reference.

Finally, the program demonstrates the failure of the swap method:
Testing swap:
Before: a=Alice
Before: b=Bob
End of method: x=Bob
End of method: y=Alice
After: a=Alice
After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a and b
are not affected.

C++ NOTE: C++ has both call by value and call by reference. You tag reference parameters
with &. For example, you can easily implement methods void tripleValue(double& x) or
void swap(Employee& x, Employee& y) that modify their reference parameters.

Listing 4–4 ParamTest.java

1. /**
2. * This program demonstrates parameter passing in Java.
3. * @version 1.00 2000-01-27
4. * @author Cay Horstmann
5. */
6. public class ParamTest
7. {
8. public static void main(String[] args)
9. {

10. /*
11. * Test 1: Methods can't modify numeric parameters
12. */

Chapter 4. Objects and Classes

Method Parameters 143

13. System.out.println("Testing tripleValue:");
14. double percent = 10;
15. System.out.println("Before: percent=" + percent);
16. tripleValue(percent);
17. System.out.println("After: percent=" + percent);
18.

19. /*
20. * Test 2: Methods can change the state of object parameters
21. */
22. System.out.println("\nTesting tripleSalary:");
23. Employee harry = new Employee("Harry", 50000);
24. System.out.println("Before: salary=" + harry.getSalary());
25. tripleSalary(harry);
26. System.out.println("After: salary=" + harry.getSalary());
27.

28. /*
29. * Test 3: Methods can't attach new objects to object parameters
30. */
31. System.out.println("\nTesting swap:");
32. Employee a = new Employee("Alice", 70000);
33. Employee b = new Employee("Bob", 60000);
34. System.out.println("Before: a=" + a.getName());
35. System.out.println("Before: b=" + b.getName());
36. swap(a, b);
37. System.out.println("After: a=" + a.getName());
38. System.out.println("After: b=" + b.getName());
39. }
40.

41. public static void tripleValue(double x) // doesn't work
42. {
43. x = 3 * x;
44. System.out.println("End of method: x=" + x);
45. }
46.

47. public static void tripleSalary(Employee x) // works
48. {
49. x.raiseSalary(200);
50. System.out.println("End of method: salary=" + x.getSalary());
51. }
52.

53. public static void swap(Employee x, Employee y)
54. {
55. Employee temp = x;
56. x = y;
57. y = temp;
58. System.out.println("End of method: x=" + x.getName());
59. System.out.println("End of method: y=" + y.getName());
60. }
61. }

Listing 4–4 ParamTest.java (continued)

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes144

Object Construction
You have seen how to write simple constructors that define the initial state of your objects.
However, because object construction is so important, Java offers quite a variety of mecha-
nisms for writing constructors. We go over these mechanisms in the sections that follow.

Overloading
Recall that the GregorianCalendar class had more than one constructor. We could use

GregorianCalendar today = new GregorianCalendar();

or
GregorianCalendar deadline = new GregorianCalendar(2099, Calendar.DECEMBER, 31);

This capability is called overloading. Overloading occurs if several methods have the
same name (in this case, the GregorianCalendar constructor method) but different parame-
ters. The compiler must sort out which method to call. It picks the correct method by
matching the parameter types in the headers of the various methods with the types of
the values used in the specific method call. A compile-time error occurs if the compiler
cannot match the parameters or if more than one match is possible. (This process is
called overloading resolution.)

62.

63. class Employee // simplified Employee class
64. {
65. public Employee(String n, double s)
66. {
67. name = n;
68. salary = s;
69. }
70.

71. public String getName()
72. {
73. return name;
74. }
75.

76. public double getSalary()
77. {
78. return salary;
79. }
80.

81. public void raiseSalary(double byPercent)
82. {
83. double raise = salary * byPercent / 100;
84. salary += raise;
85. }
86.

87. private String name;
88. private double salary;
89. }

Listing 4–4 ParamTest.java (continued)

Chapter 4. Objects and Classes

Object Construction 145

NOTE: Java allows you to overload any method—not just constructor methods. Thus, to
completely describe a method, you need to specify the name of the method together with its
parameter types. This is called the signature of the method. For example, the String class
has four public methods called indexOf. They have signatures

indexOf(int)
indexOf(int, int)
indexOf(String)
indexOf(String, int)

The return type is not part of the method signature. That is, you cannot have two methods
with the same names and parameter types but different return types.

Default Field Initialization
If you don’t set a field explicitly in a constructor, it is automatically set to a default
value: numbers to 0, boolean values to false, and object references to null. But it is consid-
ered poor programming practice to rely on this. Certainly, it makes it harder for some-
one to understand your code if fields are being initialized invisibly.

NOTE: This is an important difference between fields and local variables. You must always
explicitly initialize local variables in a method. But if you don’t initialize a field in a class, it is
automatically initialized to a default (0, false, or null).

For example, consider the Employee class. Suppose you don’t specify how to initialize
some of the fields in a constructor. By default, the salary field would be initialized with 0
and the name and hireDay fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, then they would get a null reference that they probably don’t expect:

Date h = harry.getHireDay();
calendar.setTime(h); // throws exception if h is null

Default Constructors
A default constructor is a constructor with no parameters. For example, here is a default
constructor for the Employee class:

public Employee()
{
 name = "";
 salary = 0;
 hireDay = new Date();
}

If you write a class with no constructors whatsoever, then a default constructor is pro-
vided for you. This default constructor sets all the instance fields to their default values.
So, all numeric data contained in the instance fields would be 0, all boolean values would
be false, and all object variables would be set to null.

If a class supplies at least one constructor but does not supply a default constructor, it is
illegal to construct objects without construction parameters. For example, our original
Employee class in Listing 4–2 provided a single constructor:

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes146

Employee(String name, double salary, int y, int m, int d)

With that class, it was not legal to construct default employees. That is, the call
e = new Employee();

would have been an error.

CAUTION: Please keep in mind that you get a free default constructor only when your class
has no other constructors. If you write your class with even a single constructor of your own
and you want the users of your class to have the ability to create an instance by a call to

new ClassName()

then you must provide a default constructor (with no parameters). Of course, if you are
happy with the default values for all fields, you can simply supply

public ClassName()
{
}

Explicit Field Initialization
Because you can overload the constructor methods in a class, you can obviously build in
many ways to set the initial state of the instance fields of your classes. It is always a
good idea to make sure that, regardless of the constructor call, every instance field is set
to something meaningful.

You can simply assign a value to any field in the class definition. For example:
class Employee
{
 . . .
 private String name = "";
}

This assignment is carried out before the constructor executes. This syntax is particu-
larly useful if all constructors of a class need to set a particular instance field to the same
value.

The initialization value doesn’t have to be a constant value. Here is an example in which
a field is initialized with a method call. Consider an Employee class where each employee
has an id field. You can initialize it as follows:

class Employee
{
 . . .
 static int assignId()
 {
 int r = nextId;
 nextId++;
 return r;
 }
 . . .
 private int id = assignId();
}

Chapter 4. Objects and Classes

Object Construction 147

C++ NOTE: In C++, you cannot directly initialize instance fields of a class. All fields must be set
in a constructor. However, C++ has a special initializer list syntax, such as

Employee::Employee(String n, double s, int y, int m, int d) // C++
: name(n),
 salary(s),

hireDay(y, m, d)
{
}

C++ uses this special syntax to call field constructors. In Java, there is no need for it
because objects have no subobjects, only pointers to other objects.

Parameter Names
When you write very trivial constructors (and you’ll write a lot of them), then it can be
somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:
public Employee(String n, double s)
{
 name = n;
 salary = s;
}

However, the drawback is that you need to read the code to tell what the n and s
parameters mean.

Some programmers prefix each parameter with an “a”:
public Employee(String aName, double aSalary)
{
 name = aName;
 salary = aSalary;
}

That is quite neat. Any reader can immediately figure out the meaning of the parameters.

Another commonly used trick relies on the fact that parameter variables shadow instance
fields with the same name. For example, if you call a parameter salary, then salary refers to
the parameter, not the instance field. But you can still access the instance field as this.sal-
ary. Recall that this denotes the implicit parameter, that is, the object that is being con-
structed. Here is an example:

public Employee(String name, double salary)
{
 this.name = name;
 this.salary = salary;
}

C++ NOTE: In C++, it is common to prefix instance fields with an underscore or a fixed let-
ter. (The letters m and x are common choices.) For example, the salary field might be called
_salary, mSalary, or xSalary. Java programmers don’t usually do that.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes148

Calling Another Constructor
The keyword this refers to the implicit parameter of a method. However, the keyword
has a second meaning.

If the first statement of a constructor has the form this(. . .), then the constructor calls
another constructor of the same class. Here is a typical example:

public Employee(double s)
{
 // calls Employee(String, double)
 this("Employee #" + nextId, s);
 nextId++;
}

When you call new Employee(60000), then the Employee(double) constructor calls the
Employee(String, double) constructor.

Using the this keyword in this manner is useful—you only need to write common
construction code once.

C++ NOTE: The this reference in Java is identical to the this pointer in C++. However, in C++
it is not possible for one constructor to call another. If you want to factor out common initializa-
tion code in C++, you must write a separate method.

Initialization Blocks
You have already seen two ways to initialize a data field:

• By setting a value in a constructor
• By assigning a value in the declaration

There is actually a third mechanism in Java; it’s called an initialization block. Class decla-
rations can contain arbitrary blocks of code. These blocks are executed whenever an
object of that class is constructed. For example:

class Employee
{
 public Employee(String n, double s)
 {
 name = n;
 salary = s;
 }

 public Employee()
 {
 name = "";
 salary = 0;
 }
 . . .
 private static int nextId;

 private int id;
 private String name;
 private double salary;
 . . .

Chapter 4. Objects and Classes

Object Construction 149

 // object initialization block
 {
 id = nextId;
 nextId++;
 }
}

In this example, the id field is initialized in the object initialization block, no matter
which constructor is used to construct an object. The initialization block runs first, and
then the body of the constructor is executed.

This mechanism is never necessary and is not common. It usually is more straightfor-
ward to place the initialization code inside a constructor.

NOTE: It is legal to set fields in initialization blocks even though they are only defined later in the
class. Some versions of Sun’s Java compiler handled this case incorrectly (bug # 4459133).
This bug has been fixed in Java SE 1.4.1. However, to avoid circular definitions, it is not legal
to read from fields that are only initialized later. The exact rules are spelled out in section
8.3.2.3 of the Java Language Specification (http://java.sun.com/docs/books/jls). Because
the rules are complex enough to baffle the compiler implementors, we suggest that you
place initialization blocks after the field definitions.

With so many ways of initializing data fields, it can be quite confusing to give all possi-
ble pathways for the construction process. Here is what happens in detail when a con-
structor is called:

1. All data fields are initialized to their default value (0, false, or null).
2. All field initializers and initialization blocks are executed, in the order in which they

occur in the class declaration.
3. If the first line of the constructor calls a second constructor, then the body of the sec-

ond constructor is executed.
4. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that another
programmer could easily understand it without having to be a language lawyer. For
example, it would be quite strange and somewhat error prone to have a class whose
constructors depend on the order in which the data fields are declared.

You initialize a static field either by supplying an initial value or by using a static initial-
ization block. You have already seen the first mechanism:

static int nextId = 1;

If the static fields of your class require complex initialization code, use a static ini-
tialization block.

Place the code inside a block and tag it with the keyword static. Here is an example. We
want the employee ID numbers to start at a random integer less than 10,000.

// static initialization block
static
{
 Random generator = new Random();
 nextId = generator.nextInt(10000);
}

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes150

Static initialization occurs when the class is first loaded. Like instance fields, static fields
are 0, false, or null unless you explicitly set them to another value. All static field initial-
izers and static initialization blocks are executed in the order in which they occur in the
class declaration.

NOTE: Here is a Java trivia fact to amaze your fellow Java coders: You can write a “Hello,
World” program in Java without ever writing a main method.

public class Hello
{
 static
 {
 System.out.println("Hello, World");
 }
}

When you invoke the class with java Hello, the class is loaded, the static initialization block
prints “Hello, World,” and only then do you get an ugly error message that main is not
defined. You can avoid that blemish by calling System.exit(0) at the end of the static initializa-
tion block.

The program in Listing 4–5 shows many of the features that we discussed in this section:

• Overloaded constructors
• A call to another constructor with this(...)
• A default constructor
• An object initialization block
• A static initialization block
• An instance field initialization

Listing 4–5 ConstructorTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates object construction.
5. * @version 1.01 2004-02-19
6. * @author Cay Horstmann
7. */
8. public class ConstructorTest
9. {

10. public static void main(String[] args)
11. {
12. // fill the staff array with three Employee objects
13. Employee[] staff = new Employee[3];
14.

15. staff[0] = new Employee("Harry", 40000);
16. staff[1] = new Employee(60000);
17. staff[2] = new Employee();
18.

Chapter 4. Objects and Classes

Object Construction 151

19. // print out information about all Employee objects
20. for (Employee e : staff)
21. System.out.println("name=" + e.getName() + ",id=" + e.getId() + ",salary="
22. + e.getSalary());
23. }
24. }
25.

26. class Employee
27. {
28. // three overloaded constructors
29. public Employee(String n, double s)
30. {
31. name = n;
32. salary = s;
33. }
34.

35. public Employee(double s)
36. {
37. // calls the Employee(String, double) constructor
38. this("Employee #" + nextId, s);
39. }
40.

41. // the default constructor
42. public Employee()
43. {
44. // name initialized to ""--see below
45. // salary not explicitly set--initialized to 0
46. // id initialized in initialization block
47. }
48.

49. public String getName()
50. {
51. return name;
52. }
53.

54. public double getSalary()
55. {
56. return salary;
57. }
58.

59. public int getId()
60. {
61. return id;
62. }
63.

64. private static int nextId;
65.

66. private int id;
67. private String name = ""; // instance field initialization
68. private double salary;

Listing 4–5 ConstructorTest.java (continued)

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes152

• Random()
constructs a new random number generator.

• int nextInt(int n) 1.2
returns a random number between 0 and n – 1.

Object Destruction and the finalize Method
Some object-oriented programming languages, notably C++, have explicit destructor
methods for any cleanup code that may be needed when an object is no longer used.
The most common activity in a destructor is reclaiming the memory set aside for objects.
Because Java does automatic garbage collection, manual memory reclamation is not
needed and so Java does not support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a handle
to another object that uses system resources. In this case, it is important that the resource
be reclaimed and recycled when it is no longer needed.

You can add a finalize method to any class. The finalize method will be called before the
garbage collector sweeps away the object. In practice, do not rely on the finalize method for
recycling any resources that are in short supply—you simply cannot know when this
method will be called.

NOTE: The method call System.runFinalizersOnExit(true) guarantees that finalizer meth-
ods are called before Java shuts down. However, this method is inherently unsafe
and has been deprecated. An alternative is to add “shutdown hooks” with the method
Runtime.addShutdownHook—see the API documentation for details.

If a resource needs to be closed as soon as you have finished using it, you need to man-
age it manually. Supply a method such as dispose or close that you call to clean up what

69.

70. // static initialization block
71. static
72. {
73. Random generator = new Random();
74. // set nextId to a random number between 0 and 9999
75. nextId = generator.nextInt(10000);
76. }
77.

78. // object initialization block
79. {
80. id = nextId;
81. nextId++;
82. }
83. }

java.util.Random 1.0

Listing 4–5 ConstructorTest.java (continued)

Chapter 4. Objects and Classes

Packages 153

needs cleaning. Just as importantly, if a class you use has such a method, you need to
call it when you are done with the object.

Packages
Java allows you to group classes in a collection called a package. Packages are conve-
nient for organizing your work and for separating your work from code libraries
provided by others.

The standard Java library is distributed over a number of packages, including
java.lang, java.util, java.net, and so on. The standard Java packages are examples of
hierarchical packages. Just as you have nested subdirectories on your hard disk, you
can organize packages by using levels of nesting. All standard Java packages are
inside the java and javax package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names.
Suppose two programmers come up with the bright idea of supplying an Employee
class. As long as both of them place their class into different packages, there is no con-
flict. In fact, to absolutely guarantee a unique package name, Sun recommends that
you use your company’s Internet domain name (which is known to be unique) written
in reverse. You then use subpackages for different projects. For example, horstmann.com
is a domain that one of the authors registered. Written in reverse order, it turns into
the package com.horstmann. That package can then be further subdivided into subpack-
ages such as com.horstmann.corejava.

From the point of view of the compiler, there is absolutely no relationship between
nested packages. For example, the packages java.util and java.util.jar have nothing to
do with each other. Each is its own independent collection of classes.

Class Importation
A class can use all classes from its own package and all public classes from other packages.

You can access the public classes in another package in two ways. The first is simply to
add the full package name in front of every class name. For example:

java.util.Date today = new java.util.Date();

That is obviously tedious. The simpler, and more common, approach is to use the import
statement. The point of the import statement is simply to give you a shorthand to refer to the
classes in the package. Once you use import, you no longer have to give the classes their full
names.

You can import a specific class or the whole package. You place import statements at the
top of your source files (but below any package statements). For example, you can import
all classes in the java.util package with the statement

import java.util.*;

Then you can use
Date today = new Date();

without a package prefix. You can also import a specific class inside a package:
import java.util.Date;

The java.util.* syntax is less tedious. It has no negative effect on code size. However, if you
import classes explicitly, the reader of your code knows exactly which classes you use.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes154

TIP: In Eclipse, you can select the menu option Source -> Organize Imports. Package state-
ments such as import java.util.*; are automatically expanded into a list of specific imports
such as

import java.util.ArrayList;
import java.util.Date;

This is an extremely convenient feature.

However, note that you can only use the * notation to import a single package. You can-
not use import java.* or import java.*.* to import all packages with the java prefix.

Most of the time, you just import the packages that you need, without worrying too
much about them. The only time that you need to pay attention to packages is when you
have a name conflict. For example, both the java.util and java.sql packages have a Date
class. Suppose you write a program that imports both packages.

import java.util.*;
import java.sql.*;

If you now use the Date class, then you get a compile-time error:
Date today; // ERROR--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this problem
by adding a specific import statement:

import java.util.*;
import java.sql.*;
import java.util.Date;

What if you really need both Date classes? Then you need to use the full package name
with every class name.

java.util.Date deadline = new java.util.Date();
java.sql.Date today = new java.sql.Date(...);

Locating classes in packages is an activity of the compiler. The bytecodes in class files
always use full package names to refer to other classes.

C++ NOTE: C++ programmers usually confuse import with #include. The two have nothing in
common. In C++, you must use #include to include the declarations of external features
because the C++ compiler does not look inside any files except the one that it is compiling and
explicitly included header files. The Java compiler will happily look inside other files provided
you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly naming all classes, such
as java.util.Date. In C++, you cannot avoid the #include directives.

The only benefit of the import statement is convenience. You can refer to a class by a name
shorter than the full package name. For example, after an import java.util.* (or import
java.util.Date) statement, you can refer to the java.util.Date class simply as Date.

The analogous construction to the package mechanism in C++ is the namespace feature.
Think of the package and import statements in Java as the analogs of the namespace and using
directives in C++.

Chapter 4. Objects and Classes

Packages 155

Static Imports
Starting with Java SE 5.0, the import statement has been enhanced to permit the import-
ing of static methods and fields, not just classes.

For example, if you add the directive
import static java.lang.System.*;

to the top of your source file, then you can use static methods and fields of the System
class without the class name prefix:

out.println("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

You can also import a specific method or field:
import static java.lang.System.out;

In practice, it seems doubtful that many programmers will want to abbreviate System.out
or System.exit. The resulting code seems less clear. But there are two practical uses for
static imports.

• Mathematical functions: If you use a static import for the Math class, you can use
mathematical functions in a more natural way. For example,

sqrt(pow(x, 2) + pow(y, 2))

seems much clearer than
Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

• Cumbersome constants: If you use lots of constants with tedious names, you will
welcome static import. For example,

if (d.get(DAY_OF_WEEK) == MONDAY)

is easier on the eye than
if (d.get(Calendar.DAY_OF_WEEK) == Calendar.MONDAY)

Addition of a Class into a Package
To place classes inside a package, you must put the name of the package at the top of
your source file, before the code that defines the classes in the package. For example, the
file Employee.java in Listing 4–7 starts out like this:

package com.horstmann.corejava;

public class Employee
{
 . . .
}

If you don’t put a package statement in the source file, then the classes in that source file
belong to the default package. The default package has no package name. Up to now, all
our example classes were located in the default package.
You place source files into a subdirectory that matches the full package name. For exam-
ple, all source files in the package com.horstmann.corejava package should be in a subdirec-
tory com/horstmann/corejava (com\horstmann\corejava on Windows). The compiler places the
class files into the same directory structure.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes156

The program in Listings 4–6 and 4–7 is distributed over two packages: the PackageTest class
belongs to the default package and the Employee class belongs to the com.horstmann.corejava
package. Therefore, the Employee.java file must be contained in a subdirectory com/horstmann/
corejava. In other words, the directory structure is as follows:

To compile this program, simply change to the base directory and run the command
javac PackageTest.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and compiles
it.
Let’s look at a more realistic example, in which we don’t use the default package but
have classes distributed over several packages (com.horstmann.corejava and com.mycompany).

In this situation, you still must compile and run classes from the base directory, that is,
the directory containing the com directory:

javac com/mycompany/PayrollApp.java
java com.mycompany.PayrollApp

Note again that the compiler operates on files (with file separators and an extension
.java), whereas the Java interpreter loads a class (with dot separators).

CAUTION: The compiler does not check the directory structure when it compiles source
files. For example, suppose you have a source file that starts with the directive

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory com/mycompany. The source
file will compile without errors if it doesn’t depend on other packages. However, the resulting
program will not run. The virtual machine won’t find the resulting classes when you try to run
the program.

. (base directory)
PackageTest.java
PackageTest.class
com/

horstmann/
corejava/

Employee.java
Employee.class

. (base directory)
com/

horstmann/
corejava/

Employee.java
Employee.class

mycompany/
PayrollApp.java
PayrollApp.class

Chapter 4. Objects and Classes

Packages 157

Listing 4–6 PackageTest.java

1. import com.horstmann.corejava.*;
2. // the Employee class is defined in that package
3.

4. import static java.lang.System.*;
5.

6. /**
7. * This program demonstrates the use of packages.
8. * @author cay
9. * @version 1.11 2004-02-19

10. * @author Cay Horstmann
11. */
12. public class PackageTest
13. {
14. public static void main(String[] args)
15. {
16. // because of the import statement, we don't have to use com.horstmann.corejava.Employee here
17. Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
18.

19. harry.raiseSalary(5);
20.

21. // because of the static import statement, we don't have to use System.out here
22. out.println("name=" + harry.getName() + ",salary=" + harry.getSalary());
23. }
24. }

Listing 4–7 Employee.java

1. package com.horstmann.corejava;
2.

3. // the classes in this file are part of this package
4.

5. import java.util.*;
6.

7. // import statements come after the package statement
8.

9. /**
10. * @version 1.10 1999-12-18
11. * @author Cay Horstmann
12. */
13. public class Employee
14. {
15. public Employee(String n, double s, int year, int month, int day)
16. {
17. name = n;
18. salary = s;
19. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes158

Package Scope
You have already encountered the access modifiers public and private. Features tagged as
public can be used by any class. Private features can be used only by the class that
defines them. If you don’t specify either public or private, the feature (that is, the class,
method, or variable) can be accessed by all methods in the same package.

Consider the program in Listing 4–2 on page 124. The Employee class was not defined as a
public class. Therefore, only other classes in the same package—the default package in
this case—such as EmployeeTest can access it. For classes, this is a reasonable default. How-
ever, for variables, this default was an unfortunate choice. Variables must explicitly be
marked
private or they will default to being package visible. This, of course, breaks encapsula-
tion. The problem is that it is awfully easy to forget to type the private keyword. Here is
an example from the Window class in the java.awt package, which is part of the source code
supplied with the JDK:

20. // GregorianCalendar uses 0 for January
21. hireDay = calendar.getTime();
22. }
23.

24. public String getName()
25. {
26. return name;
27. }
28.

29. public double getSalary()
30. {
31. return salary;
32. }
33.

34. public Date getHireDay()
35. {
36. return hireDay;
37. }
38.

39. public void raiseSalary(double byPercent)
40. {
41. double raise = salary * byPercent / 100;
42. salary += raise;
43. }
44.

45. private String name;
46. private double salary;
47. private Date hireDay;
48. }

Listing 4–7 Employee.java (continued)

Chapter 4. Objects and Classes

Packages 159

public class Window extends Container
{
 String warningString;
 . . .
}

Note that the warningString variable is not private! That means the methods of all classes
in the java.awt package can access this variable and set it to whatever they like (such as
"Trust me!"). Actually, the only methods that access this variable are in the Window class, so
it would have been entirely appropriate to make the variable private. We suspect that
the programmer typed the code in a hurry and simply forgot the private modifier. (We
won’t mention the programmer’s name to protect the guilty—you can look into the
source file yourself.)

NOTE: Amazingly enough, this problem has never been fixed, even though we have pointed
it out in eight editions of this book—apparently the library implementors don’t read Core
Java. Not only that—new fields have been added to the class over time, and about half of
them aren’t private either.

Is this really a problem? It depends. By default, packages are not closed entities. That is,
anyone can add more classes to a package. Of course, hostile or clueless programmers
can then add code that modifies variables with package visibility. For example, in early
versions of the Java programming language, it was an easy matter to smuggle another
class into the java.awt package. Simply start out the class with

package java.awt;

Then, place the resulting class file inside a subdirectory java/awt somewhere on the class
path, and you have gained access to the internals of the java.awt package. Through this
subterfuge, it was possible to set the warning string (see Figure 4–9).

Figure 4–9 Changing the warning string in an applet window

Starting with version 1.2, the JDK implementors rigged the class loader to explicitly dis-
allow loading of user-defined classes whose package name starts with "java."! Of course,
your own classes won’t benefit from that protection. Instead, you can use another mech-
anism, package sealing, to address the issue of promiscuous package access. If you seal a
package, no further classes can be added to it. You will see in Chapter 10 how you can
produce a JAR file that contains sealed packages.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes160

The Class Path
As you have seen, classes are stored in subdirectories of the file system. The path to
the class must match the package name.

Class files can also be stored in a JAR (Java archive) file. A JAR file contains multiple
class files and subdirectories in a compressed format, saving space and improving per-
formance. When you use a third-party library in your programs, you will usually be
given one or more JAR files to include. The JDK also supplies a number of JAR files,
such as the file jre/lib/rt.jar that contains thousands of library classes. You will see in
Chapter 10 how to create your own JAR files.

TIP: JAR files use the ZIP format to organize files and subdirectories. You can use any ZIP
utility to peek inside rt.jar and other JAR files.

To share classes among programs, you need to do the following:

1. Place your class files inside a directory, for example, /home/user/classdir. Note
that this directory is the base directory for the package tree. If you add the class
com.horstmann.corejava.Employee, then the Employee.class file must be located in the
subdirectory /home/user/classdir/com/horstmann/corejava.

2. Place any JAR files inside a directory, for example, /home/user/archives.
3. Set the class path. The class path is the collection of all locations that can contain

class files.

On UNIX, the elements on the class path are separated by colons:
/home/user/classdir:.:/home/user/archives/archive.jar

On Windows, they are separated by semicolons:
c:\classdir;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains

• The base directory /home/user/classdir or c:\classdir;
• The current directory (.); and
• The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar.

Starting with Java SE 6, you can specify a wildcard for a JAR file directory, like this:
/home/user/classdir:.:/home/user/archives/'*'

or
c:\classdir;.;c:\archives*

In UNIX, the * must be escaped to prevent shell expansion.

All JAR files (but not .class files) in the archives directory are included in this class path.

The runtime library files (rt.jar and the other JAR files in the jre/lib and jre/lib/ext
directories) are always searched for classes; you don’t include them explicitly in the
class path.

Chapter 4. Objects and Classes

The Class Path 161

CAUTION: The javac compiler always looks for files in the current directory, but the java vir-
tual machine launcher only looks into the current directory if the “.” directory is on the class
path. If you have no class path set, this is not a problem—the default class path consists of
the “.” directory. But if you have set the class path and forgot to include the “.” directory, your
programs will compile without error, but they won’t run.

The class path lists all directories and archive files that are starting points for locating
classes. Let’s consider our sample class path:

/home/user/classdir:.:/home/user/archives/archive.jar

Suppose the virtual machine searches for the class file of the com.horstmann.corejava.Employee
class. It first looks in the system class files that are stored in archives in the jre/lib and
jre/lib/ext directories. It won’t find the class file there, so it turns to the class path. It then
looks for the following files:
• /home/user/classdir/com/horstmann/corejava/Employee.class

• com/horstmann/corejava/Employee.class starting from the current directory
• com/horstmann/corejava/Employee.class inside /home/user/archives/archive.jar

The compiler has a harder time locating files than does the virtual machine. If you refer
to a class without specifying its package, the compiler first needs to find out the package
that contains the class. It consults all import directives as possible sources for the class.
For example, suppose the source file contains directives

import java.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. The compiler then tries to find
java.lang.Employee (because the java.lang package is always imported by default),
java.util.Employee, com.horstmann.corejava.Employee, and Employee in the current package. It
searches for each of these classes in all of the locations of the class path. It is a compile-time
error if more than one class is found. (Because classes must be unique, the order of the
import statements doesn’t matter.)

The compiler goes one step further. It looks at the source files to see if the source is newer
than the class file. If so, the source file is recompiled automatically. Recall that you can
import only public classes from other packages. A source file can only contain one pub-
lic class, and the names of the file and the public class must match. Therefore, the com-
piler can easily locate source files for public classes. However, you can import nonpublic
classes from the current package. These classes may be defined in source files with dif-
ferent names. If you import a class from the current package, the compiler searches all
source files of the current package to see which one defines the class.

Setting the Class Path
It is best to specify the class path with the -classpath (or -cp) option:

java -classpath /home/user/classdir:.:/home/user/archives/archive.jar MyProg.java

or
java -classpath c:\classdir;.;c:\archives\archive.jar MyProg.java

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes162

The entire command must be typed onto a single line. It is a good idea to place such a
long command line into a shell script or a batch file.

Using the -classpath option is the preferred approach for setting the class path. An alter-
nate approach is the CLASSPATH environment variable. The details depend on your shell.
With the Bourne Again shell (bash), use the command

export CLASSPATH=/home/user/classdir:.:/home/user/archives/archive.jar

With the C shell, use the command
setenv CLASSPATH /home/user/classdir:.:/home/user/archives/archive.jar

With the Windows shell, use
set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

The class path is set until the shell exits.

CAUTION: Some people recommend to set the CLASSPATH environment variable permanently.
This is generally a bad idea. People forget the global setting, and then they are surprised
when their classes are not loaded properly. A particularly reprehensible example is Apple’s
QuickTime installer in Windows. It globally sets CLASSPATH to point to a JAR file that it needs,
but it does not include the current directory in the classpath. As a result, countless Java pro-
grammers have been driven to distraction when their programs compiled but failed to run.

CAUTION: Some people recommend to bypass the class path altogether, by dropping all
JAR files into the jre/lib/ext directory. That is truly bad advice, for two reasons. Archives
that manually load other classes do not work correctly when they are placed in the extension
directory. (See Volume II, Chapter 9 for more information on class loaders.) Moreover, pro-
grammers have a tendency to forget about the files they placed there months ago. Then,
they scratch their heads when the class loader seems to ignore their carefully crafted class
path, when it is actually loading long-forgotten classes from the extension directory.

Documentation Comments
The JDK contains a very useful tool, called javadoc, that generates HTML documentation
from your source files. In fact, the on-line API documentation that we described in Chap-
ter 3 is simply the result of running javadoc on the source code of the standard Java library.

If you add comments that start with the special delimiter /** to your source code, you
too can easily produce professional-looking documentation. This is a very nice scheme
because it lets you keep your code and documentation in one place. If you put your doc-
umentation into a separate file, then you probably know that the code and comments
tend to diverge over time. But because the documentation comments are in the same file
as the source code, it is an easy matter to update both and run javadoc again.

Comment Insertion
The javadoc utility extracts information for the following items:

• Packages
• Public classes and interfaces
• Public and protected methods
• Public and protected fields

Chapter 4. Objects and Classes

Documentation Comments 163

Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment is
placed immediately above the feature it describes. A comment starts with a /** and ends
with a */.

Each /** . . . */ documentation comment contains free-form text followed by tags. A tag
starts with an @, such as @author or @param.

The first sentence of the free-form text should be a summary statement. The javadoc utility
automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as ... for emphasis,
<code>...</code> for a monospaced “typewriter” font, ... for strong empha-
sis, and even to include an image. You should, however, stay away from headings
<h1> or rules <hr> because they can interfere with the formatting of the document.

NOTE: If your comments contain links to other files such as images (for example, dia-
grams or images of user interface components), place those files into a subdirectory of the
directory containing the source file named doc-files. The javadoc utility will copy the doc-
files directories and their contents from the source directory to the documentation direc-
tory. You need to use the doc-files directory in your link, such as <img src="doc-files/
uml.png" alt="UML diagram"/>.

Class Comments
The class comment must be placed after any import statements, directly before the class
definition.

Here is an example of a class comment:
/**
 * A <code>Card</code> object represents a playing card, such
 * as "Queen of Hearts". A card has a suit (Diamond, Heart,
 * Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 * 12 = Queen, 13 = King)
 */
public class Card
{
 . . .
}

NOTE: There is no need to add an * in front of every line. For example, the following com-
ment is equally valid:

/**
 A <code>Card</code> object represents a playing card, such
 as "Queen of Hearts". A card has a suit (Diamond, Heart,
 Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 12 = Queen, 13 = King).
*/

However, most IDEs supply the asterisks automatically and rearrange them when the line
breaks change.

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes164

Method Comments
Each method comment must immediately precede the method that it describes. In addi-
tion to the general-purpose tags, you can use the following tags:

• @param variable description

This tag adds an entry to the “parameters” section of the current method. The
description can span multiple lines and can use HTML tags. All @param tags for one
method must be kept together.

• @return description

This tag adds a “returns” section to the current method. The description can span
multiple lines and can use HTML tags.

• @throws class description

This tag adds a note that this method may throw an exception. Exceptions are the
topic of Chapter 11.

Here is an example of a method comment:
/**
 * Raises the salary of an employee.
 * @param byPercent the percentage by which to raise the salary (e.g. 10 = 10%)
 * @return the amount of the raise
 */
public double raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
 return raise;
}

Field Comments
You only need to document public fields—generally that means static constants. For
example:

/**
 * The "Hearts" card suit
 */
public static final int HEARTS = 1;

General Comments
The following tags can be used in class documentation comments:
• @author name

This tag makes an “author” entry. You can have multiple @author tags, one for each
author.

• @version text
This tag makes a “version” entry. The text can be any description of the current
version.

The following tags can be used in all documentation comments:
• @since text

This tag makes a “since” entry. The text can be any description of the version that
introduced this feature. For example, @since version 1.7.1

Chapter 4. Objects and Classes

Documentation Comments 165

• @deprecated text
This tag adds a comment that the class, method, or variable should no longer be
used. The text should suggest a replacement. For example:

@deprecated Use <code>setVisible(true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to exter-
nal documents, with the @see and @link tags.
• @see reference

This tag adds a hyperlink in the “see also” section. It can be used with both classes
and methods. Here, reference can be one of the following:

package.class#feature label
label
"text"

The first case is the most useful. You supply the name of a class, method, or variable,
and javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in the com.horstmann.corejava.Employee
class. You can omit the name of the package or both the package and class name.
Then, the feature will be located in the current package or class.

Note that you must use a #, not a period, to separate the class from the method or
variable name. The Java compiler itself is highly skilled in guessing the various
meanings of the period character, as separator between packages, subpackages,
classes, inner classes, and methods and variables. But the javadoc utility isn’t quite as
clever, and you have to help it along.

If the @see tag is followed by a < character, then you need to specify a hyperlink. You
can link to any URL you like. For example:

@see The Core Java home page

In each of these cases, you can specify an optional label that will appear as the link
anchor. If you omit the label, then the user will see the target code name or URL as
the anchor.

If the @see tag is followed by a " character, then the text is displayed in the “see also”
section. For example:

@see "Core Java 2 volume 2"

You can add multiple @see tags for one feature, but you must keep them all together.

• If you like, you can place hyperlinks to other classes or methods anywhere in any of
your documentation comments. You insert a special tag of the form

{@link package.class#feature label}

anywhere in a comment. The feature description follows the same rules as for the
@see tag.

Package and Overview Comments
You place class, method, and variable comments directly into the Java source files,
delimited by /** . . . */ documentation comments. However, to generate package com-
ments, you need to add a separate file in each package directory. You have two choices:

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes166

1. Supply an HTML file named package.html. All text between the tags <body>...</body> is
extracted.

2. Supply a Java file named package-info.java. The file must contain an initial Javadoc
comment, delimited with /** and */, followed by a package statement. It should con-
tain no further code or comments.

You can also supply an overview comment for all source files. Place it in a file called
overview.html, located in the parent directory that contains all the source files. All text
between the tags <body>...</body> is extracted. This comment is displayed when the user
selects “Overview” from the navigation bar.

Comment Extraction
Here, docDirectory is the name of the directory where you want the HTML files to go. Fol-
low these steps:

1. Change to the directory that contains the source files you want to document. If
you have nested packages to document, such as com.horstmann.corejava, you must be
working in the directory that contains the subdirectory com. (This is the directory
that contains the overview.html file if you supplied one.)

2. Run the command
javadoc -d docDirectory nameOfPackage

for a single package. Or run
javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages. If your files are in the default package, then instead
run

javadoc -d docDirectory *.java

If you omit the -d docDirectory option, then the HTML files are extracted to the current
directory. That can get messy, and we don’t recommend it.

The javadoc program can be fine-tuned by numerous command-line options. For
example, you can use the -author and -version options to include the @author and @version
tags in the documentation. (By default, they are omitted.) Another useful option is
-link, to include hyperlinks to standard classes. For example, if you use the command

javadoc -link http://java.sun.com/javase/6/docs/api *.java

all standard library classes are automatically linked to the documentation on the Sun
web site.

If you use the -linksource option, each source file is converted to HTML (without color
coding, but with line numbers), and each class and method name turns into a hyperlink
to the source.

For additional options, we refer you to the on-line documentation of the javadoc utility at
http://java.sun.com/javase/javadoc.

NOTE: If you require further customization, for example, to produce documentation in a format
other than HTML, you can supply your own doclet to generate the output in any form you desire.
Clearly, this is a specialized need, and we refer you to the on-line documentation for details on
doclets at http://java.sun.com/j2se/javadoc.

Chapter 4. Objects and Classes

Class Design Hints 167

TIP: A useful doclet is DocCheck at http://java.sun.com/j2se/javadoc/doccheck/. It scans a
set of source files for missing documentation comments.

Class Design Hints
Without trying to be comprehensive or tedious, we want to end this chapter with some
hints that may make your classes more acceptable in well-mannered OOP circles.

1. Always keep data private.
This is first and foremost: doing anything else violates encapsulation. You may
need to write an accessor or mutator method occasionally, but you are still better
off keeping the instance fields private. Bitter experience has shown that how the
data are represented may change, but how they are used will change much less
frequently. When data are kept private, changes in their representation do not
affect the user of the class, and bugs are easier to detect.

2. Always initialize data.
Java won’t initialize local variables for you, but it will initialize instance fields of
objects. Don’t rely on the defaults, but initialize the variables explicitly, either by
supplying a default or by setting defaults in all constructors.

3. Don’t use too many basic types in a class.
The idea is to replace multiple related uses of basic types with other classes. This
keeps your classes easier to understand and to change. For example, replace the fol-
lowing instance fields in a Customer class

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes to
addresses, such as the need to deal with international addresses.

4. Not all fields need individual field accessors and mutators.
You may need to get and set an employee’s salary. You certainly won’t need to
change the hiring date once the object is constructed. And, quite often, objects have
instance fields that you don’t want others to get or set, for example, an array of state
abbreviations in an Address class.

5. Use a standard form for class definitions.
We always list the contents of classes in the following order:

public features
package scope features
private features

Within each section, we list:
instance methods
static methods
instance fields
static fields

Chapter 4. Objects and Classes

Chapter 4 ■ Objects and Classes168

After all, the users of your class are more interested in the public interface than in
the details of the private implementation. And they are more interested in meth-
ods than in data.
However, there is no universal agreement on what is the best style. The Sun coding
style guide for the Java programming language recommends listing fields first and
then methods. Whatever style you use, the most important thing is to be consistent.

6. Break up classes that have too many responsibilities.
This hint is, of course, vague: “too many” is obviously in the eye of the beholder.
However, if there is an obvious way to make one complicated class into two classes
that are conceptually simpler, seize the opportunity. (On the other hand, don’t go
overboard; 10 classes, each with only one method, is usually overkill.)
Here is an example of a bad design.
public class CardDeck // bad design
{
 public CardDeck() { . . . }

public void shuffle() { . . . }
public int getTopValue() { . . . }

 public int getTopSuit() { . . . }
public void draw() { . . . }

 private int[] value;
 private int[] suit;
}

This class really implements two separate concepts: a deck of cards, with its shuffle
and draw methods, and a card, with the methods to inspect the value and suit of a
card. It makes sense to introduce a Card class that represents an individual card.
Now you have two classes, each with its own responsibilities:

public class CardDeck
{
 public CardDeck() { . . . }

public void shuffle() { . . . }
public Card getTop() { . . . }
public void draw() { . . . }

 private Card[] cards;
}

public class Card
{
 public Card(int aValue, int aSuit) { . . . }

public int getValue() { . . . }
 public int getSuit() { . . . }

 private int value;
 private int suit;
}

Chapter 4. Objects and Classes

Class Design Hints 169

7. Make the names of your classes and methods reflect their responsibilities.
Just as variables should have meaningful names that reflect what they represent, so
should classes. (The standard library certainly contains some dubious examples,
such as the Date class that describes time.)
A good convention is that a class name should be a noun (Order) or a noun preceded
by an adjective (RushOrder) or a gerund (an “-ing” word, like BillingAddress). As for
methods, follow the standard convention that accessor methods begin with a lower-
case get (getSalary), and that mutator methods use a lowercase set (setSalary).

In this chapter, we covered the fundamentals of objects and classes that make Java an
“object-based” language. In order to be truly object oriented, a programming language
must also support inheritance and polymorphism. The Java support for these features is
the topic of the next chapter.

Chapter 4. Objects and Classes

Chapter 4. Objects and Classes

ChapterChapter

171

INHERITANCE

▼ CLASSES, SUPERCLASSES, AND SUBCLASSES

▼ Object: THE COSMIC SUPERCLASS

▼ GENERIC ARRAY LISTS

▼ OBJECT WRAPPERS AND AUTOBOXING

▼ METHODS WITH A VARIABLE NUMBER OF PARAMETERS

▼ ENUMERATION CLASSES

▼ REFLECTION

▼ DESIGN HINTS FOR INHERITANCE

Chapter 5. Inheritance

Chapter 5 ■ Inheritance172

Chapter 4 introduced you to classes and objects. In this chapter, you learn about
inheritance, another fundamental concept of object-oriented programming. The idea
behind inheritance is that you can create new classes that are built on existing classes.
When you inherit from an existing class, you reuse (or inherit) its methods and fields
and you add new methods and fields to adapt your new class to new situations. This
technique is essential in Java programming.

As with the previous chapter, if you are coming from a procedure-oriented language
like C, Visual Basic, or COBOL, you will want to read this chapter carefully. For experi-
enced C++ programmers or those coming from another object-oriented language like
Smalltalk, this chapter will seem largely familiar, but there are many differences
between how inheritance is implemented in Java and how it is done in C++ or in other
object-oriented languages.

This chapter also covers reflection, the ability to find out more about classes and their
properties in a running program. Reflection is a powerful feature, but it is undeniably
complex. Because reflection is of greater interest to tool builders than to application pro-
grammers, you can probably glance over that part of the chapter upon first reading and
come back to it later.

Classes, Superclasses, and Subclasses
Let’s return to the Employee class that we discussed in the previous chapter. Suppose (alas)
you work for a company at which managers are treated differently from other employees.
Managers are, of course, just like employees in many respects. Both employees and man-
agers are paid a salary. However, while employees are expected to complete their
assigned tasks in return for receiving their salary, managers get bonuses if they actually
achieve what they are supposed to do. This is the kind of situation that cries out for
inheritance. Why? Well, you need to define a new class, Manager, and add functionality.
But you can retain some of what you have already programmed in the Employee class,
and all the fields of the original class can be preserved. More abstractly, there is an obvi-
ous “is–a” relationship between Manager and Employee. Every manager is an employee: This
“is–a” relationship is the hallmark of inheritance.

Here is how you define a Manager class that inherits from the Employee class. You use the
Java keyword extends to denote inheritance.

class Manager extends Employee
{
 added methods and fields
}

C++ NOTE: Inheritance is similar in Java and C++. Java uses the extends keyword instead of
the : token. All inheritance in Java is public inheritance; there is no analog to the C++ fea-
tures of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from an
existing class. The existing class is called the superclass, base class, or parent class. The new
class is called the subclass, derived class, or child class. The terms superclass and subclass
are those most commonly used by Java programmers, although some programmers pre-
fer the parent/child analogy, which also ties in nicely with the “inheritance” theme.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 173

The Employee class is a superclass, but not because it is superior to its subclass or contains
more functionality. In fact, the opposite is true: subclasses have more functionality than
their superclasses. For example, as you will see when we go over the rest of the Manager
class code, the Manager class encapsulates more data and has more functionality than its
superclass Employee.

NOTE: The prefixes super and sub come from the language of sets used in theoretical com-
puter science and mathematics. The set of all employees contains the set of all managers,
and this is described by saying it is a superset of the set of managers. Or, put it another way,
the set of all managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to set it:
class Manager extends Employee
{
 . . .

 public void setBonus(double b)
 {
 bonus = b;
 }

 private double bonus;
}

There is nothing special about these methods and fields. If you have a Manager object, you
can simply apply the setBonus method.

Manager boss = . . .;
boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus method—it is not
among the methods that are defined in the Employee class.

However, you can use methods such as getName and getHireDay with Manager objects. Even
though these methods are not explicitly defined in the Manager class, they are automati-
cally inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are inherited from the superclass. Every Manager
object has four fields: name, salary, hireDay, and bonus.

When defining a subclass by extending its superclass, you only need to indicate the
differences between the subclass and the superclass. When designing classes, you place
the most general methods into the superclass and more specialized methods in the sub-
class. Factoring out common functionality by moving it to a superclass is common in
object-oriented programming.

However, some of the superclass methods are not appropriate for the Manager subclass. In
particular, the getSalary method should return the sum of the base salary and the bonus.
You need to supply a new method to override the superclass method:

class Manager extends Employee
{
 . . .

Chapter 5. Inheritance

Chapter 5 ■ Inheritance174

 public double getSalary()
 {
 . . .
 }
 . . .
}

How can you implement this method? At first glance, it appears to be simple—just
return the sum of the salary and bonus fields:

public double getSalary()
{
 return salary + bonus; // won't work
}

However, that won’t work. The getSalary method of the Manager class has no direct access to the
private fields of the superclass. This means that the getSalary method of the Manager class cannot
directly access the salary field, even though every Manager object has a field called salary. Only
the methods of the Employee class have access to the private fields. If the Manager methods want
to access those private fields, they have to do what every other method does—use the public
interface, in this case, the public getSalary method of the Employee class.

So, let’s try this again. You need to call getSalary instead of simply accessing the salary field.
public double getSalary()
{
 double baseSalary = getSalary(); // still won't work
 return baseSalary + bonus;
}

The problem is that the call to getSalary simply calls itself, because the Manager class has a
getSalary method (namely, the method we are trying to implement). The consequence is
an infinite set of calls to the same method, leading to a program crash.

We need to indicate that we want to call the getSalary method of the Employee superclass,
not the current class. You use the special keyword super for this purpose. The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version of the getSalary
method for the Manager class:

public double getSalary()
{
 double baseSalary = super.getSalary();
 return baseSalary + bonus;
}

NOTE: Some people think of super as being analogous to the this reference. However, that
analogy is not quite accurate—super is not a reference to an object. For example, you cannot
assign the value super to another object variable. Instead, super is a special keyword that
directs the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add or override methods of the super-
class. However, inheritance can never take away any fields or methods.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 175

C++ NOTE: Java uses the keyword super to call a superclass method. In C++, you would use
the name of the superclass with the :: operator instead. For example, the getSalary method
of the Manager class would call Employee::getSalary instead of super.getSalary.

Finally, let us supply a constructor.
public Manager(String n, double s, int year, int month, int day)
{
 super(n, s, year, month, day);
 bonus = 0;
}

Here, the keyword super has a different meaning. The instruction
super(n, s, year, month, day);

is shorthand for “call the constructor of the Employee superclass with n, s, year, month, and day
as parameters.”

Because the Manager constructor cannot access the private fields of the Employee class, it
must initialize them through a constructor. The constructor is invoked with the special
super syntax. The call using super must be the first statement in the constructor for the
subclass.

If the subclass constructor does not call a superclass constructor explicitly, then the
default (no-parameter) constructor of the superclass is invoked. If the superclass has no
default constructor and the subclass constructor does not call another superclass con-
structor explicitly, then the Java compiler reports an error.

NOTE: Recall that the this keyword has two meanings: to denote a reference to the implicit
parameter and to call another constructor of the same class. Likewise, the super keyword
has two meanings: to invoke a superclass method and to invoke a superclass constructor.
When used to invoke constructors, the this and super keywords are closely related. The con-
structor calls can only occur as the first statement in another constructor. The construction
parameters are either passed to another constructor of the same class (this) or a construc-
tor of the superclass (super).

C++ NOTE: In a C++ constructor, you do not call super, but you use the initializer list syntax
to construct the superclass. The Manager constructor looks like this in C++:

Manager::Manager(String n, double s, int year, int month, int day) // C++
: Employee(n, s, year, month, day)
{
 bonus = 0;
}

Having redefined the getSalary method for Manager objects, managers will automatically
have the bonus added to their salaries.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance176

Here’s an example of this at work: we make a new manager and set the manager’s
bonus:

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss.setBonus(5000);

We make an array of three employees:
Employee[] staff = new Employee[3];

We populate the array with a mix of managers and employees:
staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

We print out everyone’s salary:
for (Employee e : staff)
 System.out.println(e.getName() + " " + e.getSalary());

This loop prints the following data:
Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects.
However, staff[0] is a Manager object and its getSalary method adds the bonus to the base
salary.

What is remarkable is that the call
e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is Employee, but the
actual type of the object to which e refers can be either Employee or Manager.

When e refers to an Employee object, then the call e.getSalary() calls the getSalary method
of the Employee class. However, when e refers to a Manager object, then the getSalary
method of the Manager class is called instead. The virtual machine knows about the
actual type of the object to which e refers, and therefore can invoke the correct
method.

The fact that an object variable (such as the variable e) can refer to multiple actual types
is called polymorphism. Automatically selecting the appropriate method at runtime is
called dynamic binding. We discuss both topics in more detail in this chapter.

C++ NOTE: In Java, you do not need to declare a method as virtual. Dynamic binding is the
default behavior. If you do not want a method to be virtual, you tag it as final. (We discuss
the final keyword later in this chapter.)

Listing 5–1 contains a program that shows how the salary computation differs for
Employee and Manager objects.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 177

Listing 5–1 ManagerTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates inheritance.
5. * @version 1.21 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class ManagerTest
9. {

10. public static void main(String[] args)
11. {
12. // construct a Manager object
13. Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
14. boss.setBonus(5000);
15.

16. Employee[] staff = new Employee[3];
17.

18. // fill the staff array with Manager and Employee objects
19.

20. staff[0] = boss;
21. staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
22. staff[2] = new Employee("Tommy Tester", 40000, 1990, 3, 15);
23.

24. // print out information about all Employee objects
25. for (Employee e : staff)
26. System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
27. }
28. }
29.

30. class Employee
31. {
32. public Employee(String n, double s, int year, int month, int day)
33. {
34. name = n;
35. salary = s;
36. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37. hireDay = calendar.getTime();
38. }
39.

40. public String getName()
41. {
42. return name;
43. }
44.

45. public double getSalary()
46. {
47. return salary;
48. }
49.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance178

50. public Date getHireDay()
51. {
52. return hireDay;
53. }
54.

55. public void raiseSalary(double byPercent)
56. {
57. double raise = salary * byPercent / 100;
58. salary += raise;
59. }
60.

61. private String name;
62. private double salary;
63. private Date hireDay;
64. }
65.

66. class Manager extends Employee
67. {
68. /**
69. * @param n the employee's name
70. * @param s the salary
71. * @param year the hire year
72. * @param month the hire month
73. * @param day the hire day
74. */
75. public Manager(String n, double s, int year, int month, int day)
76. {
77. super(n, s, year, month, day);
78. bonus = 0;
79. }
80.

81. public double getSalary()
82. {
83. double baseSalary = super.getSalary();
84. return baseSalary + bonus;
85. }
86.

87. public void setBonus(double b)
88. {
89. bonus = b;
90. }
91.

92. private double bonus;
93. }

Listing 5–1 ManagerTest.java (continued)

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 179

Inheritance Hierarchies
Inheritance need not stop at deriving one layer of classes. We could have an Executive
class that extends Manager, for example. The collection of all classes extending from a com-
mon superclass is called an inheritance hierarchy, as shown in Figure 5–1. The path from a
particular class to its ancestors in the inheritance hierarchy is its inheritance chain.

There is usually more than one chain of descent from a distant ancestor class. You
could form a subclass Programmer or Secretary that extends Employee, and they would have
nothing to do with the Manager class (or with each other). This process can continue as
long as is necessary.

C++ NOTE: Java does not support multiple inheritance. (For ways to recover much of the
functionality of multiple inheritance, see the section on Interfaces in the next chapter.)

Figure 5–1 Employee inheritance hierarchy

Polymorphism
A simple rule enables you to know whether or not inheritance is the right design for
your data. The “is–a” rule states that every object of the subclass is an object of the
superclass. For example, every manager is an employee. Thus, it makes sense for the
Manager class to be a subclass of the Employee class. Naturally, the opposite is not true—not
every employee is a manager.

Another way of formulating the “is–a” rule is the substitution principle. That principle states
that you can use a subclass object whenever the program expects a superclass object.

Manager Secretary Programmer

Executive

Employee

Chapter 5. Inheritance

Chapter 5 ■ Inheritance180

For example, you can assign a subclass object to a superclass variable.
Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable of type
Employee can refer to an object of type Employee or to an object of any subclass of the Employee
class (such as Manager, Executive, Secretary, and so on).

We took advantage of this principle in Listing 5–1:
Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object. However, staff[0] is
considered to be only an Employee object by the compiler.

That means, you can call
boss.setBonus(5000); // OK

but you can’t call
staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a method of the
Employee class.

However, you cannot assign a superclass reference to a subclass variable. For example,
it is not legal to make the assignment

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment were to succeed
and m were to refer to an Employee object that is not a manager, then it would later be pos-
sible to call m.setBonus(...) and a runtime error would occur.

CAUTION: In Java, arrays of subclass references can be converted to arrays of superclass
references without a cast. For example, consider this array of managers:

Manager[] managers = new Manager[10];

It is legal to convert this array to an Employee[] array:

Employee[] staff = managers; // OK

Sure, why not, you may think. After all, if manager[i] is a Manager, it is also an Employee. But
actually, something surprising is going on. Keep in mind that managers and staff are refer-
ences to the same array. Now consider the statement

staff[0] = new Employee("Harry Hacker", ...);

The compiler will cheerfully allow this assignment. But staff[0] and manager[0] are the same
reference, so it looks as if we managed to smuggle a mere employee into the management
ranks. That would be very bad—calling managers[0].setBonus(1000) would try to access a
nonexistent instance field and would corrupt neighboring memory.

To make sure no such corruption can occur, all arrays remember the element type with
which they were created, and they monitor that only compatible references are stored into
them. For example, the array created as new Manager[10] remembers that it is an array of
managers. Attempting to store an Employee reference causes an ArrayStoreException.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 181

Dynamic Binding
It is important to understand what happens when a method call is applied to an object.
Here are the details:

1. The compiler looks at the declared type of the object and the method name. Let’s say
we call x.f(param), and the implicit parameter x is declared to be an object of class C.
Note that there may be multiple methods, all with the same name, f, but with different
parameter types. For example, there may be a method f(int) and a method f(String).
The compiler enumerates all methods called f in the class C and all public methods
called f in the superclasses of C.
Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the parameters that are supplied in the
method call. If among all the methods called f there is a unique method whose
parameter types are a best match for the supplied parameters, then that method is
chosen to be called. This process is called overloading resolution. For example, in a call
x.f("Hello"), the compiler picks f(String) and not f(int). The situation can get complex
because of type conversions (int to double, Manager to Employee, and so on). If the com-
piler cannot find any method with matching parameter types or if multiple methods
all match after applying conversions, then the compiler reports an error.
Now the compiler knows the name and parameter types of the method that needs to
be called.

NOTE: Recall that the name and parameter type list for a method is called the method’s
signature. For example, f(int) and f(String) are two methods with the same name but dif-
ferent signatures. If you define a method in a subclass that has the same signature as a
superclass method, then you override that method.

The return type is not part of the signature. However, when you override a method, you need
to keep the return type compatible. Prior to Java SE 5.0, the return types had to be identical.
However, it is now legal for the subclass to change the return type of an overridden method
to a subtype of the original type. For example, suppose that the Employee class has a

public Employee getBuddy() { ... }

Then the Manager subclass can override this method as

public Manager getBuddy() { ... } // OK in Java SE 5.0

We say that the two getBuddy methods have covariant return types.

3. If the method is private, static, final, or a constructor, then the compiler knows exactly
which method to call. (The final modifier is explained in the next section.) This is
called static binding. Otherwise, the method to be called depends on the actual type of
the implicit parameter, and dynamic binding must be used at runtimeruntime. In our
example, the compiler would generate an instruction to call f(String) with dynamic
binding.

4. When the program runs and uses dynamic binding to call a method, then the virtual
machine must call the version of the method that is appropriate for the actual type of
the object to which x refers. Let’s say the actual type is D, a subclass of C. If the class D

Chapter 5. Inheritance

Chapter 5 ■ Inheritance182

defines a method f(String), that method is called. If not, D’s superclass is searched for
a method f(String), and so on.
It would be time consuming to carry out this search every time a method is called.
Therefore, the virtual machine precomputes for each class a method table that lists all
method signatures and the actual methods to be called. When a method is actually
called, the virtual machine simply makes a table lookup. In our example, the virtual
machine consults the method table for the class D and looks up the method to call for
f(String). That method may be D.f(String) or X.f(String), where X is some superclass of D.
There is one twist to this scenario. If the call is super.f(param), then the compiler con-
sults the method table of the superclass of the implicit parameter.

Let’s look at this process in detail in the call e.getSalary() in Listing 5–1. The declared type of
e is Employee. The Employee class has a single method, called getSalary, with no method parame-
ters. Therefore, in this case, we don’t worry about overloading resolution.

Because the getSalary method is not private, static, or final, it is dynamically bound. The
virtual machine produces method tables for the Employee and Manager classes. The Employee
table shows that all methods are defined in the Employee class itself:

Employee:
 getName() -> Employee.getName()
 getSalary() -> Employee.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn’t the whole story—as you will see later in this chapter, the Employee class
has a superclass Object from which it inherits a number of methods. We ignore the Object
methods for now.

The Manager method table is slightly different. Three methods are inherited, one method
is redefined, and one method is added.

Manager:
 getName() -> Employee.getName()
 getSalary() -> Manager.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)
 setBonus(double) -> Manager.setBonus(double)

At runtime, the call e.getSalary() is resolved as follows:
1. First, the virtual machine fetches the method table for the actual type of e. That may be

the table for Employee, Manager, or another subclass of Employee.
2. Then, the virtual machine looks up the defining class for the getSalary() signature.

Now it knows which method to call.
3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: it makes programs extensible without
the need for modifying existing code. Suppose a new class Executive is added and there is
the possibility that the variable e refers to an object of that class. The code containing the
call e.getSalary() need not be recompiled. The Executive.getSalary() method is called auto-
matically if e happens to refer to an object of type Executive.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 183

CAUTION: When you override a method, the subclass method must be at least as visible as
the superclass method. In particular, if the superclass method is public, then the subclass
method must also be declared as public. It is a common error to accidentally omit the public
specifier for the subclass method. The compiler then complains that you try to supply a weaker
access privilege.

Preventing Inheritance: Final Classes and Methods
Occasionally, you want to prevent someone from forming a subclass from one of your
classes. Classes that cannot be extended are called final classes, and you use the final
modifier in the definition of the class to indicate this. For example, let us suppose we
want to prevent others from subclassing the Executive class. Then, we simply declare the
class by using the final modifier as follows:

final class Executive extends Manager
{
 . . .
}

You can also make a specific method in a class final. If you do this, then no subclass can
override that method. (All methods in a final class are automatically final.) For example:

class Employee
{
 . . .
 public final String getName()
 {
 return name;
 }
 . . .
}

NOTE: Recall that fields can also be declared as final. A final field cannot be changed after
the object has been constructed. However, if a class is declared as final, only the methods,
not the fields, are automatically final.

There is only one good reason to make a method or class final: to make sure that the
semantics cannot be changed in a subclass. For example, the getTime and setTime methods
of the Calendar class are final. This indicates that the designers of the Calendar class have
taken over responsibility for the conversion between the Date class and the calendar
state. No subclass should be allowed to mess up this arrangement. Similarly, the String
class is a final class. That means nobody can define a subclass of String. In other words, if
you have a String reference, then you know it refers to a String and nothing but a String.

Some programmers believe that you should declare all methods as final unless you have
a good reason that you want polymorphism. In fact, in C++ and C#, methods do not use
polymorphism unless you specifically request it. That may be a bit extreme, but we
agree that it is a good idea to think carefully about final methods and classes when you
design a class hierarchy.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance184

In the early days of Java, some programmers used the final keyword in the hope of avoid-
ing the overhead of dynamic binding. If a method is not overridden, and it is short, then a
compiler can optimize the method call away—a process called inlining. For example, inlin-
ing the call e.getName() replaces it with the field access e.name. This is a worthwhile improve-
ment—CPUs hate branching because it interferes with their strategy of prefetching
instructions while processing the current one. However, if getName can be overridden in
another class, then the compiler cannot inline it because it has no way of knowing what the
overriding code may do.

Fortunately, the just-in-time compiler in the virtual machine can do a better job than a
traditional compiler. It knows exactly which classes extend a given class, and it can
check whether any class actually overrides a given method. If a method is short, fre-
quently called, and not actually overridden, the just-in-time compiler can inline the
method. What happens if the virtual machine loads another subclass that overrides an
inlined method? Then the optimizer must undo the inlining. That’s slow, but it happens
rarely.

C++ NOTE: In C++, a method is not dynamically bound by default, and you can tag it as
inline to have method calls replaced with the method source code. However, there is no
mechanism that would prevent a subclass from overriding a superclass method. In C++, you
can write classes from which no other class can derive, but doing so requires an obscure
trick, and there are few reasons to write such a class. (The obscure trick is left as an exer-
cise to the reader. Hint: Use a virtual base class.)

Casting
Recall from Chapter 3 that the process of forcing a conversion from one type to
another is called casting. The Java programming language has a special notation for
casts. For example,

double x = 3.405;
int nx = (int) x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer, you also
need to convert an object reference from one class to another. To actually make a cast of
an object reference, you use a syntax similar to what you use for casting a numeric
expression. Surround the target class name with parentheses and place it before the
object reference you want to cast. For example:

Manager boss = (Manager) staff[0];

There is only one reason why you would want to make a cast—to use an object in its full
capacity after its actual type has been temporarily forgotten. For example, in the ManagerTest
class, the staff array had to be an array of Employee objects because some of its entries were
regular employees. We would need to cast the managerial elements of the array back to
Manager to access any of its new variables. (Note that in the sample code for the first section,
we made a special effort to avoid the cast. We initialized the boss variable with a Manager
object before storing it in the array. We needed the correct type to set the bonus of the
manager.)

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 185

As you know, in Java every object variable has a type. The type describes the kind of
object the variable refers to and what it can do. For example, staff[i] refers to an Employee
object (so it can also refer to a Manager object).

The compiler checks that you do not promise too much when you store a value in a vari-
able. If you assign a subclass reference to a superclass variable, you are promising less,
and the compiler will simply let you do it. If you assign a superclass reference to a sub-
class variable, you are promising more. Then you must use a cast so that your promise
can be checked at runtimeruntime.

What happens if you try to cast down an inheritance chain and you are “lying” about
what an object contains?

Manager boss = (Manager) staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken promise and gener-
ates a ClassCastException. If you do not catch the exception, your program terminates.
Thus, it is good programming practice to find out whether a cast will succeed before
attempting it. Simply use the instanceof operator. For example:

if (staff[1] instanceof Manager)
{
 boss = (Manager) staff[1];
 . . .
}

Finally, the compiler will not let you make a cast if there is no chance for the cast to
succeed. For example, the cast

Date c = (Date) staff[1];

is a compile-time error because Date is not a subclass of Employee.

To sum up:

• You can cast only within an inheritance hierarchy.
• Use instanceof to check before casting from a superclass to a subclass.

NOTE: The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That makes sense.
Because null refers to no object, it certainly doesn’t refer to an object of type C.

Actually, converting the type of an object by performing a cast is not usually a good idea. In
our example, you do not need to cast an Employee object to a Manager object for most purposes.
The getSalary method will work correctly on both objects of both classes. The dynamic bind-
ing that makes polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to managers, such as
setBonus. If for some reason you find yourself wanting to call setBonus on Employee objects,
ask yourself whether this is an indication of a design flaw in the superclass. It may make
sense to redesign the superclass and add a setBonus method. Remember, it takes only one
uncaught ClassCastException to terminate your program. In general, it is best to minimize
the use of casts and the instanceof operator.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance186

C++ NOTE: Java uses the cast syntax from the “bad old days” of C, but it works like the safe
dynamic_cast operation of C++. For example,

Manager boss = (Manager) staff[1]; // Java

is the same as

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++

with one important difference. If the cast fails, it does not yield a null object but throws an
exception. In this sense, it is like a C++ cast of references. This is a pain in the neck. In C++,
you can take care of the type test and type conversion in one operation.

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++
if (boss != NULL) . . .

In Java, you use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)
{
 Manager boss = (Manager) staff[1];
 . . .
}

Abstract Classes
As you move up the inheritance hierarchy, classes become more general and probably
more abstract. At some point, the ancestor class becomes so general that you think of it
more as a basis for other classes than as a class with specific instances you want to use.
Consider, for example, an extension of our Employee class hierarchy. An employee is a per-
son, and so is a student. Let us extend our class hierarchy to include classes Person and
Student. Figure 5–2 shows the inheritance relationships between these classes.

Figure 5–2 Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes that make
sense for every person, such as the name. Both students and employees have names,

Employee Student

Person

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 187

and introducing a common superclass lets us factor out the getName method to a higher
level in the inheritance hierarchy.

Now let’s add another method, getDescription, whose purpose is to return a brief descrip-
tion of the person, such as

an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and Student classes. But what informa-
tion can you provide in the Person class? The Person class knows nothing about the person
except the name. Of course, you could implement Person.getDescription() to return an
empty string. But there is a better way. If you use the abstract keyword, you do not need
to implement the method at all.

public abstract String getDescription();
 // no implementation required

For added clarity, a class with one or more abstract methods must itself be declared
abstract.

abstract class Person
{ . . .
 public abstract String getDescription();
}

In addition to abstract methods, abstract classes can have fields and concrete methods.
For example, the Person class stores the name of the person and has a concrete method
that returns it.

abstract class Person
{
 public Person(String n)
 {
 name = n;
 }

 public abstract String getDescription();

 public String getName()
 {
 return name;
 }

 private String name;
}

TIP: Some programmers don’t realize that abstract classes can have concrete methods. You
should always move common fields and methods (whether abstract or not) to the superclass
(whether abstract or not).

Abstract methods act as placeholders for methods that are implemented in the sub-
classes. When you extend an abstract class, you have two choices. You can leave some or
all of the abstract methods undefined. Then you must tag the subclass as abstract as
well. Or you can define all methods. Then the subclass is no longer abstract.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance188

For example, we will define a Student class that extends the abstract Person class and
implements the getDescription method. Because none of the methods of the Student class
are abstract, it does not need to be declared as an abstract class.

A class can even be declared as abstract even though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no
objects of that class can be created. For example, the expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable must
refer to an object of a nonabstract subclass. For example:

Person p = new Student("Vince Vu", "Economics");

Here p is a variable of the abstract type Person that refers to an instance of the nonabstract
subclass Student.

C++ NOTE: In C++, an abstract method is called a pure virtual function and is tagged with a
trailing = 0, such as in

class Person // C++
{
public:
 virtual string getDescription() = 0;
 . . .
};

A C++ class is abstract if it has at least one pure virtual function. In C++, there is no special
keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract Person class:
class Student extends Person
{
 public Student(String n, String m)
 {
 super(n);
 major = m;
 }

 public String getDescription()
 {
 return "a student majoring in " + major;
 }

 private String major;
}

The Student class defines the getDescription method. Therefore, all methods in the Student
class are concrete, and the class is no longer an abstract class.

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 189

The program shown in Listing 5–2 defines the abstract superclass Person and two
concrete subclasses, Employee and Student. We fill an array of Person references with
employee and student objects:

Person[] people = new Person[2];
people[0] = new Employee(. . .);
people[1] = new Student(. . .);

We then print the names and descriptions of these objects:
for (Person p : people)
 System.out.println(p.getName() + ", " + p.getDescription());

Some people are baffled by the call
p.getDescription()

Isn’t this call an undefined method? Keep in mind that the variable p never refers to a
Person object because it is impossible to construct an object of the abstract Person class. The
variable p always refers to an object of a concrete subclass such as Employee or Student. For
these objects, the getDescription method is defined.

Could you have omitted the abstract method altogether from the Person superclass and
simply defined the getDescription methods in the Employee and Student subclasses? If you
did that, then you wouldn’t have been able to invoke the getDescription method on the
variable p. The compiler ensures that you invoke only methods that are declared in the
class.

Abstract methods are an important concept in the Java programming language. You will
encounter them most commonly inside interfaces. For more information about inter-
faces, turn to Chapter 6.

Listing 5–2 PersonTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates abstract classes.
5. * @version 1.01 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class PersonTest
9. {

10. public static void main(String[] args)
11. {
12. Person[] people = new Person[2];
13.

14. // fill the people array with Student and Employee objects
15. people[0] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
16. people[1] = new Student("Maria Morris", "computer science");
17.

18. // print out names and descriptions of all Person objects
19. for (Person p : people)
20. System.out.println(p.getName() + ", " + p.getDescription());
21. }

Chapter 5. Inheritance

Chapter 5 ■ Inheritance190

22. }
23.

24. abstract class Person
25. {
26. public Person(String n)
27. {
28. name = n;
29. }
30.

31. public abstract String getDescription();
32.

33. public String getName()
34. {
35. return name;
36. }
37.

38. private String name;
39. }
40.

41. class Employee extends Person
42. {
43. public Employee(String n, double s, int year, int month, int day)
44. {
45. super(n);
46. salary = s;
47. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
48. hireDay = calendar.getTime();
49. }
50.

51. public double getSalary()
52. {
53. return salary;
54. }
55.

56. public Date getHireDay()
57. {
58. return hireDay;
59. }
60.

61. public String getDescription()
62. {
63. return String.format("an employee with a salary of $%.2f", salary);
64. }
65.

66. public void raiseSalary(double byPercent)
67. {
68. double raise = salary * byPercent / 100;
69. salary += raise;
70. }

Listing 5–2 PersonTest.java (continued)

Chapter 5. Inheritance

Classes, Superclasses, and Subclasses 191

Protected Access
As you know, fields in a class are best tagged as private, and methods are usually tagged
as public. Any features declared private won’t be visible to other classes. As we said at the
beginning of this chapter, this is also true for subclasses: a subclass cannot access the pri-
vate fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only or, less
commonly, to allow subclass methods to access a superclass field. In that case, you
declare a class feature as protected. For example, if the superclass Employee declares the
hireDay field as protected instead of private, then the Manager methods can access it directly.

However, the Manager class methods can peek inside the hireDay field of Manager objects only,
not of other Employee objects. This restriction is made so that you can’t abuse the protected
mechanism and form subclasses just to gain access to the protected fields.

In practice, use protected fields with caution. Suppose your class is used by other pro-
grammers and you designed it with protected fields. Unknown to you, other pro-
grammers may inherit classes from your class and then start accessing your protected
fields. In this case, you can no longer change the implementation of your class without
upsetting the other programmers. That is against the spirit of OOP, which encourages
data encapsulation.

71.

72. private double salary;
73. private Date hireDay;
74. }
75.

76. class Student extends Person
77. {
78. /**
79. * @param n the student's name
80. * @param m the student's major
81. */
82. public Student(String n, String m)
83. {
84. // pass n to superclass constructor
85. super(n);
86. major = m;
87. }
88.

89. public String getDescription()
90. {
91. return "a student majoring in " + major;
92. }
93.

94. private String major;
95. }

Listing 5–2 PersonTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance192

Protected methods make more sense. A class may declare a method as protected if it is
tricky to use. This indicates that the subclasses (which, presumably, know their ances-
tors well) can be trusted to use the method correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object class—see Chap-
ter 6 for more details.

C++ NOTE: As it happens, protected features in Java are visible to all subclasses as well as
to all other classes in the same package. This is slightly different from the C++ meaning of
protected, and it makes the notion of protected in Java even less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

1. Visible to the class only (private).
2. Visible to the world (public).
3. Visible to the package and all subclasses (protected).
4. Visible to the package—the (unfortunate) default. No modifiers are needed.

Object: The Cosmic Superclass
The Object class is the ultimate ancestor—every class in Java extends Object. However,
you never have to write

class Employee extends Object

The ultimate superclass Object is taken for granted if no superclass is explicitly men-
tioned. Because every class in Java extends Object, it is important to be familiar with the
services provided by the Object class. We go over the basic ones in this chapter and refer
you to later chapters or to the on-line documentation for what is not covered here. (Sev-
eral methods of Object come up only when dealing with threads—see Volume II for more
on threads.)

You can use a variable of type Object to refer to objects of any type:
Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for arbitrary values.
To do anything specific with the value, you need to have some knowledge about the
original type and then apply a cast:

Employee e = (Employee) obj;

In Java, only the primitive types (numbers, characters, and boolean values) are not objects.

All array types, no matter whether they are arrays of objects or arrays of primitive
types, are class types that extend the Object class.

Employee[] staff = new Employee[10];
obj = staff; // OK
obj = new int[10]; // OK

C++ NOTE: In C++, there is no cosmic root class. However, every pointer can be converted
to a void* pointer.

Chapter 5. Inheritance

Object: The Cosmic Superclass 193

The equals Method
The equals method in the Object class tests whether one object is considered equal to another.
The equals method, as implemented in the Object class, determines whether two object refer-
ences are identical. This is a pretty reasonable default—if two objects are identical, they
should certainly be equal. For quite a few classes, nothing else is required. For example, it
makes little sense to compare two PrintStream objects for equality. However, you will often
want to implement state-based equality testing, in which two objects are considered equal
when they have the same state.

For example, let us consider two employees equal if they have the same name, salary,
and hire date. (In an actual employee database, it would be more sensible to compare
IDs instead. We use this example to demonstrate the mechanics of implementing the
equals method.)

class Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 // a quick test to see if the objects are identical
 if (this == otherObject) return true;

 // must return false if the explicit parameter is null
 if (otherObject == null) return false;

 // if the classes don't match, they can't be equal
 if (getClass() != otherObject.getClass())
 return false;

 // now we know otherObject is a non-null Employee
 Employee other = (Employee) otherObject;

 // test whether the fields have identical values
 return name.equals(other.name)
 && salary == other.salary
 && hireDay.equals(other.hireDay);
 }
}

The getClass method returns the class of an object—we discuss this method in detail later
in this chapter. In our test, two objects can only be equal when they belong to the same
class.

When you define the equals method for a subclass, first call equals on the superclass. If that
test doesn’t pass, then the objects can’t be equal. If the superclass fields are equal, then you
are ready to compare the instance fields of the subclass.

class Manager extends Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 if (!super.equals(otherObject)) return false;

Chapter 5. Inheritance

Chapter 5 ■ Inheritance194

 // super.equals checked that this and otherObject belong to the same class
 Manager other = (Manager) otherObject;
 return bonus == other.bonus;
 }
}

Equality Testing and Inheritance
How should the equals method behave if the implicit and explicit parameters don’t
belong to the same class? This has been an area of some controversy. In the preceding
example, the equals method returns false if the classes don’t match exactly. But many pro-
grammers use an instanceof test instead:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a subclass. However, this
approach can get you into trouble. Here is why. The Java Language Specification
requires that the equals method has the following properties:

1. It is reflexive: For any non-null reference x, x.equals(x) should return true.
2. It is symmetric: For any references x and y, x.equals(y) should return true if and only if

y.equals(x) returns true.
3. It is transitive: For any references x, y, and z, if x.equals(y) returns true and y.equals(z)

returns true, then x.equals(z) should return true.
4. It is consistent: If the objects to which x and y refer haven’t changed, then repeated

calls to x.equals(y) return the same value.
5. For any non-null reference x, x.equals(null) should return false.

These rules are certainly reasonable. You wouldn’t want a library implementor to pon-
der whether to call x.equals(y) or y.equals(x) when locating an element in a data structure.

However, the symmetry rule has subtle consequences when the parameters belong to
different classes. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which happen to have the
same name, salary, and hire date. If Employee.equals uses an instanceof test, the call returns
true. But that means that the reverse call

m.equals(e)

also needs to return true—the symmetry rule does not allow it to return false or to throw
an exception.

That leaves the Manager class in a bind. Its equals method must be willing to compare itself
to any Employee, without taking manager-specific information into account! All of a sud-
den, the instanceof test looks less attractive!

Some authors have gone on record that the getClass test is wrong because it violates the
substitution principle. A commonly cited example is the equals method in the AbstractSet
class that tests whether two sets have the same elements. The AbstractSet class has two
concrete subclasses, TreeSet and HashSet, that use different algorithms for locating set ele-
ments. You really want to be able to compare any two sets, no matter how they are
implemented.

Chapter 5. Inheritance

Object: The Cosmic Superclass 195

However, the set example is rather specialized. It would make sense to declare Abstract-
Set.equals as final, because nobody should redefine the semantics of set equality. (The
method is not actually final. This allows a subclass to implement a more efficient algo-
rithm for the equality test.)

The way we see it, there are two distinct scenarios:

• If subclasses can have their own notion of equality, then the symmetry requirement
forces you to use the getClass test.

• If the notion of equality is fixed in the superclass, then you can use the instanceof test
and allow objects of different subclasses to be equal to another.

In the example of the employees and managers, we consider two objects to be equal
when they have matching fields. If we have two Manager objects with the same name, sal-
ary, and hire date, but with different bonuses, we want them to be different. Therefore,
we used the getClass test.

But suppose we used an employee ID for equality testing. This notion of equality makes
sense for all subclasses. Then we could use the instanceof test, and we should declare
Employee.equals as final.

NOTE: The standard Java library contains over 150 implementations of equals methods, with
a mishmash of using instanceof, calling getClass, catching a ClassCastException, or doing
nothing at all.

Here is a recipe for writing the perfect equals method:

1. Name the explicit parameter otherObject—later, you need to cast it to another variable
that you should call other.

2. Test whether this happens to be identical to otherObject:
if (this == otherObject) return true;

This statement is just an optimization. In practice, this is a common case. It is much
cheaper to check for identity than to compare the fields.

3. Test whether otherObject is null and return false if it is. This test is required.
if (otherObject == null) return false;

4. Compare the classes of this and otherObject. If the semantics of equals can change in
subclasses, use the getClass test:

if (getClass() != otherObject.getClass()) return false;

If the same semantics holds for all subclasses, you can use an instanceof test:
if (!(otherObject instanceof ClassName)) return false;

5. Cast otherObject to a variable of your class type:
ClassName other = (ClassName) otherObject

6. Now compare the fields, as required by your notion of equality. Use == for primitive
type fields, equals for object fields. Return true if all fields match, false otherwise.

return field1 == other.field1
 && field2.equals(other.field2)
 && . . .;

If you redefine equals in a subclass, include a call to super.equals(other).

Chapter 5. Inheritance

Chapter 5 ■ Inheritance196

TIP: If you have fields of array type, you can use the static Arrays.equals method to check
that corresponding array elements are equal.

CAUTION: Here is a common mistake when implementing the equals method. Can you spot
the problem?

public class Employee
{
 public boolean equals(Employee other)
 {
 return name.equals(other.name)
 && salary == other.salary
 && hireDay.equals(other.hireDay);
 }
 ...
}

This method declares the explicit parameter type as Employee. As a result, it does not over-
ride the equals method of the Object class but defines a completely unrelated method.

Starting with Java SE 5.0, you can protect yourself against this type of error by tagging
methods that are intended to override superclass methods with @Override:

@Override public boolean equals(Object other)

If you made a mistake and you are defining a new method, the compiler reports an error. For
example, suppose you add the following declaration to the Employee class:

@Override public boolean equals(Employee other)

An error is reported because this method doesn’t override any method from the Object
superclass.

• static boolean equals(type[] a, type[] b) 5.0
returns true if the arrays have equal lengths and equal elements in corresponding
positions. The arrays can have component types Object, int, long, short, char, byte,
boolean, float, or double.

The hashCode Method
A hash code is an integer that is derived from an object. Hash codes should be scram-
bled—if x and y are two distinct objects, there should be a high probability that x.hash-
Code() and y.hashCode() are different. Table 5–1 lists a few examples of hash codes that
result from the hashCode method of the String class.

The String class uses the following algorithm to compute the hash code:
int hash = 0;
for (int i = 0; i < length(); i++)
 hash = 31 * hash + charAt(i);

java.util.Arrays 1.2

Chapter 5. Inheritance

Object: The Cosmic Superclass 197

The hashCode method is defined in the Object class. Therefore, every object has a default
hash code. That hash code is derived from the object’s memory address. Consider this
example:

String s = "Ok";
StringBuilder sb = new StringBuilder(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
String t = new String("Ok");
StringBuilder tb = new StringBuilder(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

Table 5–2 shows the result.

Note that the strings s and t have the same hash code because, for strings, the hash
codes are derived from their contents. The string builders sb and tb have different hash
codes because no hashCode method has been defined for the StringBuilder class, and the
default hashCode method in the Object class derives the hash code from the object’s mem-
ory address.

If you redefine the equals method, you will also need to redefine the hashCode method for
objects that users might insert into a hash table. (We discuss hash tables in Chapter 2
of Volume II.)

The hashCode method should return an integer (which can be negative). Just combine the
hash codes of the instance fields so that the hash codes for different objects are likely to
be widely scattered.

For example, here is a hashCode method for the Employee class:
class Employee
{
 public int hashCode()
 {

Table 5–1 Hash Codes Resulting from the hashCode Function

String Hash Code

Hello 69609650

Harry 69496448

Hacker –2141031506

Table 5–2 Hash Codes of Strings and String Builders

Object Hash Code

s 2556

sb 20526976

t 2556

tb 20527144

Chapter 5. Inheritance

Chapter 5 ■ Inheritance198

 return 7 * name.hashCode()
 + 11 * new Double(salary).hashCode()
 + 13 * hireDay.hashCode();
 }
 . . .
}

Your definitions of equals and hashCode must be compatible: if x.equals(y) is true, then
x.hashCode() must be the same value as y.hashCode(). For example, if you define
Employee.equals to compare employee IDs, then the hashCode method needs to hash
the IDs, not employee names or memory addresses.

TIP: If you have fields of array type, you can use the static Arrays.hashCode method to com-
pute a hash code that is composed of the hash codes of the array elements.

• int hashCode()
returns a hash code for this object. A hash code can be any integer, positive or
negative. Equal objects need to return identical hash codes.

• static int hashCode(type[] a) 5.0
computes the hash code of the array a, which can have component type Object, int,
long, short, char, byte, boolean, float, or double.

The toString Method
Another important method in Object is the toString method that returns a string repre-
senting the value of this object. Here is a typical example. The toString method of the
Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, followed by
the field values enclosed in square brackets. Here is an implementation of the toString
method for the Employee class:

public String toString()
{
 return "Employee[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

Actually, you can do a little better. Rather than hardwiring the class name into the
toString method, call getClass().getName() to obtain a string with the class name.

public String toString()
{
 return getClass().getName()

java.lang.Object 1.0

java.util.Arrays 1.2

Chapter 5. Inheritance

Object: The Cosmic Superclass 199

 + "[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

The toString method then also works for subclasses.

Of course, the subclass programmer should define its own toString method and add the
subclass fields. If the superclass uses getClass().getName(), then the subclass can simply
call super.toString(). For example, here is a toString method for the Manager class:

class Manager extends Employee
{
 . . .
 public String toString()
 {
 return super.toString()
 + "[bonus=" + bonus
 + "]";
 }
}

Now a Manager object is printed as
Manager[name=...,salary=...,hireDay=...][bonus=...]

The toString method is ubiquitous for an important reason: whenever an object is concat-
enated with a string by the “+” operator, the Java compiler automatically invokes the
toString method to obtain a string representation of the object. For example:

Point p = new Point(10, 20);
String message = "The current position is " + p;
 // automatically invokes p.toString()

TIP: Instead of writing x.toString(), you can write "" + x. This statement concatenates the
empty string with the string representation of x that is exactly x.toString(). Unlike toString,
this statement even works if x is of primitive type.

If x is any object and you call
System.out.println(x);

then the println method simply calls x.toString() and prints the resulting string.

The Object class defines the toString method to print the class name and the hash code of
the object. For example, the call

System.out.println(System.out)

produces an output that looks like this:
java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn’t bother to override the
toString method.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance200

CAUTION: Annoyingly, arrays inherit the toString method from Object, with the added twist
that the array type is printed in an archaic format. For example,

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
String s = "" + luckyNumbers;

yields the string "[I@1a46e30". (The prefix [I denotes an array of integers.) The remedy is to
call the static Arrays.toString method instead. The code

String s = Arrays.toString(luckyNumbers);

yields the string "[2, 3, 5, 7, 11, 13]".

To correctly print multidimensional arrays (that is, arrays of arrays), use Arrays.deepToString.

The toString method is a great tool for logging. Many classes in the standard class library
define the toString method so that you can get useful information about the state of an
object. This is particularly useful in logging messages like this:

System.out.println("Current position = " + position);

As we explain in Chapter 11, an even better solution is
Logger.global.info("Current position = " + position);

TIP: We strongly recommend that you add a toString method to each class that you write.
You, as well as other programmers who use your classes, will be grateful for the logging
support.

The program in Listing 5–3 implements the equals, hashCode, and toString methods for the
Employee and Manager classes.

Listing 5–3 EqualsTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the equals method.
5. * @version 1.11 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class EqualsTest
9. {

10. public static void main(String[] args)
11. {
12. Employee alice1 = new Employee("Alice Adams", 75000, 1987, 12, 15);
13. Employee alice2 = alice1;
14. Employee alice3 = new Employee("Alice Adams", 75000, 1987, 12, 15);
15. Employee bob = new Employee("Bob Brandson", 50000, 1989, 10, 1);
16.

17. System.out.println("alice1 == alice2: " + (alice1 == alice2));
18.

Chapter 5. Inheritance

Object: The Cosmic Superclass 201

19. System.out.println("alice1 == alice3: " + (alice1 == alice3));
20.

21. System.out.println("alice1.equals(alice3): " + alice1.equals(alice3));
22.

23. System.out.println("alice1.equals(bob): " + alice1.equals(bob));
24.

25. System.out.println("bob.toString(): " + bob);
26.

27. Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
28. Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
29. boss.setBonus(5000);
30. System.out.println("boss.toString(): " + boss);
31. System.out.println("carl.equals(boss): " + carl.equals(boss));
32. System.out.println("alice1.hashCode(): " + alice1.hashCode());
33. System.out.println("alice3.hashCode(): " + alice3.hashCode());
34. System.out.println("bob.hashCode(): " + bob.hashCode());
35. System.out.println("carl.hashCode(): " + carl.hashCode());
36. }
37. }
38.

39. class Employee
40. {
41. public Employee(String n, double s, int year, int month, int day)
42. {
43. name = n;
44. salary = s;
45. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
46. hireDay = calendar.getTime();
47. }
48.

49. public String getName()
50. {
51. return name;
52. }
53.

54. public double getSalary()
55. {
56. return salary;
57. }
58.

59. public Date getHireDay()
60. {
61. return hireDay;
62. }
63.

64. public void raiseSalary(double byPercent)
65. {
66. double raise = salary * byPercent / 100;
67. salary += raise;
68. }

Listing 5–3 EqualsTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance202

69.

70. public boolean equals(Object otherObject)
71. {
72. // a quick test to see if the objects are identical
73. if (this == otherObject) return true;
74.

75. // must return false if the explicit parameter is null
76. if (otherObject == null) return false;
77.

78. // if the classes don't match, they can't be equal
79. if (getClass() != otherObject.getClass()) return false;
80.

81. // now we know otherObject is a non-null Employee
82. Employee other = (Employee) otherObject;
83.

84. // test whether the fields have identical values
85. return name.equals(other.name) && salary == other.salary && hireDay.equals(other.hireDay);
86. }
87.

88. public int hashCode()
89. {
90. return 7 * name.hashCode() + 11 * new Double(salary).hashCode() + 13 * hireDay.hashCode();
91. }
92.

93. public String toString()
94. {
95. return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay
96. + "]";
97. }
98.

99. private String name;
100. private double salary;
101. private Date hireDay;
102. }
103.

104. class Manager extends Employee
105. {
106. public Manager(String n, double s, int year, int month, int day)
107. {
108. super(n, s, year, month, day);
109. bonus = 0;
110. }
111.

112. public double getSalary()
113. {
114. double baseSalary = super.getSalary();
115. return baseSalary + bonus;
116. }
117.

Listing 5–3 EqualsTest.java (continued)

Chapter 5. Inheritance

Object: The Cosmic Superclass 203

• Class getClass()
returns a class object that contains information about the object. As you see later
in this chapter, Java has a runtime representation for classes that is encapsulated
in the Class class.

• boolean equals(Object otherObject)
compares two objects for equality; returns true if the objects point to the same area
of memory, and false otherwise. You should override this method in your own
classes.

• String toString()
returns a string that represents the value of this object. You should override this
method in your own classes.

• Object clone()
creates a clone of the object. The Java runtime system allocates memory for the
new instance and copies the memory allocated for the current object.

118.

119. public void setBonus(double b)
120. {
121. bonus = b;
122. }
123.

124. public boolean equals(Object otherObject)
125. {
126. if (!super.equals(otherObject)) return false;
127. Manager other = (Manager) otherObject;
128. // super.equals checked that this and other belong to the same class
129. return bonus == other.bonus;
130. }
131.

132. public int hashCode()
133. {
134. return super.hashCode() + 17 * new Double(bonus).hashCode();
135. }
136.

137. public String toString()
138. {
139. return super.toString() + "[bonus=" + bonus + "]";
140. }
141.

142. private double bonus;
143. }

java.lang.Object 1.0

Listing 5–3 EqualsTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance204

NOTE: Cloning an object is important, but it also turns out to be a fairly subtle process filled
with potential pitfalls for the unwary. We will have a lot more to say about the clone method in
Chapter 6.

• String getName()
returns the name of this class.

• Class getSuperclass()
returns the superclass of this class as a Class object.

Generic Array Lists
In many programming languages—in particular, in C—you have to fix the sizes of all
arrays at compile time. Programmers hate this because it forces them into uncomfort-
able trade-offs. How many employees will be in a department? Surely no more than 100.
What if there is a humongous department with 150 employees? Do we want to waste 90
entries for every department with just 10 employees?

In Java, the situation is much better. You can set the size of an array at runtime.
int actualSize = . . .;
Employee[] staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically modifying
arrays at runtime. Once you set the array size, you cannot change it easily. Instead, the
easiest way in Java to deal with this common situation is to use another Java class, called
ArrayList. The ArrayList class is similar to an array, but it automatically adjusts its capacity
as you add and remove elements, without your needing to write any code.

As of Java SE 5.0, ArrayList is a generic class with a type parameter. To specify the type of the
element objects that the array list holds, you append a class name enclosed in angle brack-
ets, such as ArrayList<Employee>. You will see in Chapter 13 how to define your own generic
class, but you don’t need to know any of those technicalities to use the ArrayList type.

Here we declare and construct an array list that holds Employee objects:
ArrayList<Employee> staff = new ArrayList<Employee>();

NOTE: Before Java SE 5.0, there were no generic classes. Instead, there was a single
ArrayList class, a “one size fits all” collection that holds elements of type Object. If you must
use an older version of Java, simply drop all <...> suffixes. You can still use ArrayList without
a <...> suffix in Java SE 5.0 and beyond. It is considered a “raw” type, with the type param-
eter erased.

NOTE: In even older versions of the Java programming language, programmers used the
Vector class for dynamic arrays. However, the ArrayList class is more efficient, and there is
no longer any good reason to use the Vector class.

java.lang.Class 1.0

Chapter 5. Inheritance

Generic Array Lists 205

You use the add method to add new elements to an array list. For example, here is how
you populate an array list with employee objects:

staff.add(new Employee("Harry Hacker", . . .));
staff.add(new Employee("Tony Tester", . . .));

The array list manages an internal array of object references. Eventually, that array will
run out of space. This is where array lists work their magic: If you call add and the inter-
nal array is full, the array list automatically creates a bigger array and copies all the
objects from the smaller to the bigger array.

If you already know, or have a good guess, how many elements you want to store, then
call the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then, the first 100 calls to add do not
involve any costly reallocation.

You can also pass an initial capacity to the ArrayList constructor:
ArrayList<Employee> staff = new ArrayList<Employee>(100);

CAUTION: Allocating an array list as

new ArrayList<Employee>(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list and the size of an
array. If you allocate an array with 100 entries, then the array has 100 slots, ready for use.
An array list with a capacity of 100 elements has the potential of holding 100 elements (and,
in fact, more than 100, at the cost of additional reallocations); but at the beginning, even
after its initial construction, an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For example,
staff.size()

returns the current number of elements in the staff array list. This is the equivalent of
a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can call the
trimToSize method. This method adjusts the size of the memory block to use exactly as
much storage space as is required to hold the current number of elements. The garbage
collector will reclaim any excess memory.

Once you trim the size of an array list, adding new elements will move the block again,
which takes time. You should only use trimToSize when you are sure you won’t add any
more elements to the array list.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance206

C++ NOTE: The ArrayList class is similar to the C++ vector template. Both ArrayList and
vector are generic types. But the C++ vector template overloads the [] operator for conve-
nient element access. Because Java does not have operator overloading, it must use explicit
method calls instead. Moreover, C++ vectors are copied by value. If a and b are two vectors,
then the assignment a = b makes a into a new vector with the same length as b, and all
elements are copied from b to a. The same assignment in Java makes both a and b refer to
the same array list.

• ArrayList<T>()
constructs an empty array list.

• ArrayList<T>(int initialCapacity)
constructs an empty array list with the specified capacity.

• boolean add(T obj)
appends an element at the end of the array list. Always returns true.

• int size()
returns the number of elements currently stored in the array list. (Of course, this is
never larger than the array list’s capacity.)

• void ensureCapacity(int capacity)
ensures that the array list has the capacity to store the given number of elements
without reallocating its internal storage array.

• void trimToSize()
reduces the storage capacity of the array list to its current size.

Accessing Array List Elements
Unfortunately, nothing comes for free. The automatic growth convenience that array
lists give requires a more complicated syntax for accessing the elements. The reason is
that the ArrayList class is not a part of the Java programming language; it is just a utility
class programmed by someone and supplied in the standard library.

Instead of using the pleasant [] syntax to access or change the element of an array, you
use the get and set methods.

For example, to set the ith element, you use
staff.set(i, harry);

This is equivalent to
a[i] = harry;

for an array a. (As with arrays, the index values are zero-based.)

java.util.ArrayList<T> 1.2

Parameters: initialCapacity the initial storage capacity of the array list

Parameters: obj the element to be added

Parameters: capacity the desired storage capacity

Chapter 5. Inheritance

Generic Array Lists 207

CAUTION: Do not call list.set(i, x) until the size of the array list is larger than i. For exam-
ple, the following code is wrong:

ArrayList<Employee> list = new ArrayList<Employee>(100); // capacity 100, size 0
list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only to replace a previously
added element.

To get an array list element, use
Employee e = staff.get(i);

This is equivalent to
Employee e = a[i];

NOTE: Before Java SE 5.0, there were no generic classes, and the get method of the raw
ArrayList class had no choice but to return an Object. Consequently, callers of get had to
cast the returned value to the desired type:

Employee e = (Employee) staff.get(i);

The raw ArrayList is also a bit dangerous. Its add and set methods accept objects of any
type. A call

staff.set(i, new Date());

compiles without so much as a warning, and you run into grief only when you retrieve the
object and try to cast it. If you use an ArrayList<Employee> instead, the compiler will detect
this error.

You can sometimes get the best of both worlds—flexible growth and convenient ele-
ment access—with the following trick. First, make an array list and add all the elements:

ArrayList<X> list = new ArrayList<X>();
while (. . .)
{
 x = . . .;
 list.add(x);
}

When you are done, use the toArray method to copy the elements into an array:
X[] a = new X[list.size()];
list.toArray(a);

Sometimes, you need to add elements in the middle of an array list. Use the add method
with an index parameter:

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new entry. If
the new size of the array list after the insertion exceeds the capacity, then the array list
reallocates its storage array.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance208

Similarly, you can remove an element from the middle of an array list:
Employee e = staff.remove(n);

The elements located above it are copied down, and the size of the array is reduced by
one.

Inserting and removing elements is not terribly efficient. It is probably not worth worry-
ing about for small array lists. But if you store many elements and frequently insert and
remove in the middle of a collection, consider using a linked list instead. We explain
how to program with linked lists in Chapter 13.

As of Java SE 5.0, you can use the “for each” loop to traverse the contents of an array list:
for (Employee e : staff)
 do something with e

This loop has the same effect as
for (int i = 0; i < staff.size(); i++)
{
 Employee e = staff.get(i);
 do something with e
}

Listing 5–4 is a modification of the EmployeeTest program of Chapter 4. The Employee[] array
is replaced by an ArrayList<Employee>. Note the following changes:

• You don’t have to specify the array size.
• You use add to add as many elements as you like.
• You use size() instead of length to count the number of elements.
• You use a.get(i) instead of a[i] to access an element.

Listing 5–4 ArrayListTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the ArrayList class.
5. * @version 1.1 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class ArrayListTest
9. {

10. public static void main(String[] args)
11. {
12. // fill the staff array list with three Employee objects
13. ArrayList<Employee> staff = new ArrayList<Employee>();
14.

15. staff.add(new Employee("Carl Cracker", 75000, 1987, 12, 15));
16. staff.add(new Employee("Harry Hacker", 50000, 1989, 10, 1));
17. staff.add(new Employee("Tony Tester", 40000, 1990, 3, 15));
18.

Chapter 5. Inheritance

Generic Array Lists 209

19. // raise everyone's salary by 5%
20. for (Employee e : staff)
21. e.raiseSalary(5);
22.

23. // print out information about all Employee objects
24. for (Employee e : staff)
25. System.out.println("name=" + e.getName() + ",salary=" + e.getSalary() + ",hireDay="
26. + e.getHireDay());
27. }
28. }
29.

30. class Employee
31. {
32. public Employee(String n, double s, int year, int month, int day)
33. {
34. name = n;
35. salary = s;
36. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
37. hireDay = calendar.getTime();
38. }
39.

40. public String getName()
41. {
42. return name;
43. }
44.

45. public double getSalary()
46. {
47. return salary;
48. }
49.

50. public Date getHireDay()
51. {
52. return hireDay;
53. }
54.

55. public void raiseSalary(double byPercent)
56. {
57. double raise = salary * byPercent / 100;
58. salary += raise;
59. }
60.

61. private String name;
62. private double salary;
63. private Date hireDay;
64. }

Listing 5–4 ArrayListTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance210

• void set(int index, T obj)
puts a value in the array list at the specified index, overwriting the previous
contents.

• T get(int index)
gets the value stored at a specified index.

• void add(int index, T obj)
shifts up elements to insert an element.

• T remove(int index)
removes an element and shifts down all elements above it. The removed element
is returned.

Compatibility between Typed and Raw Array Lists
When you write new code with Java SE 5.0 and beyond, you should use type parame-
ters, such as ArrayList<Employee>, for array lists. However, you may need to interoperate
with existing code that uses the raw ArrayList type.

Suppose that you have the following legacy class:
public class EmployeeDB
{
 public void update(ArrayList list) { ... }
 public ArrayList find(String query) { ... }
}

You can pass a typed array list to the update method without any casts.
ArrayList<Employee> staff = ...;
employeeDB.update(staff);

The staff object is simply passed to the update method.

CAUTION: Even though you get no error or warning from the compiler, this call is not com-
pletely safe. The update method might add elements into the array list that are not of type
Employee. When these elements are retrieved, an exception occurs. This sounds scary, but if
you think about it, the behavior is simply as it was before Java SE 5.0. The integrity of the
virtual machine is never jeopardized. In this situation, you do not lose security, but you also
do not benefit from the compile-time checks.

java.util.ArrayList<T> 1.2

Parameters: index the position (must be between 0 and size() - 1)

obj the new value

Parameters: index the index of the element to get (must be between 0 and
size() - 1)

Parameters: index the insertion position (must be between 0 and size())

obj the new element

Parameters: index the position of the element to be removed (must be
between 0 and size() - 1)

Chapter 5. Inheritance

Object Wrappers and Autoboxing 211

Conversely, when you assign a raw ArrayList to a typed one, you get a warning.
ArrayList<Employee> result = employeeDB.find(query); // yields warning

NOTE: To see the text of the warning, compile with the option -Xlint:unchecked.

Using a cast does not make the warning go away.
ArrayList<Employee> result = (ArrayList<Employee>)
 employeeDB.find(query); // yields another warning

Instead, you get a different warning, telling you that the cast is misleading.

This is the consequence of a somewhat unfortunate limitation of generic types in Java.
For compatibility, the compiler translates all typed array lists into raw ArrayList objects
after checking that the type rules were not violated. In a running program, all array lists
are the same—there are no type parameters in the virtual machine. Thus, the casts
(ArrayList) and (ArrayList<Employee>) carry out identical runtime checks.

There isn’t much you can do about that situation. When you interact with legacy code,
study the compiler warnings and satisfy yourself that the warnings are not serious.

Object Wrappers and Autoboxing
Occasionally, you need to convert a primitive type like int to an object. All primitive types
have class counterparts. For example, a class Integer corresponds to the primitive type int.
These kinds of classes are usually called wrappers. The wrapper classes have obvious
names: Integer, Long, Float, Double, Short, Byte, Character, Void, and Boolean. (The first six inherit
from the common superclass Number.) The wrapper classes are immutable—you cannot
change a wrapped value after the wrapper has been constructed. They are also final, so
you cannot subclass them.

Suppose we want an array list of integers. Unfortunately, the type parameter inside the
angle brackets cannot be a primitive type. It is not possible to form an ArrayList<int>.
Here, the Integer wrapper class comes in. It is ok to declare an array list of Integer objects.

ArrayList<Integer> list = new ArrayList<Integer>();

CAUTION: An ArrayList<Integer> is far less efficient than an int[] array because each value
is separately wrapped inside an object. You would only want to use this construct for small
collections when programmer convenience is more important than efficiency.

Another Java SE 5.0 innovation makes it easy to add and get array elements. The call
list.add(3);

is automatically translated to
list.add(new Integer(3));

This conversion is called autoboxing.

NOTE: You might think that autowrapping would be more consistent, but the “boxing” meta-
phor was taken from C#.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance212

Conversely, when you assign an Integer object to an int value, it is automatically
unboxed. That is, the compiler translates

int n = list.get(i);

into
int n = list.get(i).intValue();

Automatic boxing and unboxing even works with arithmetic expressions. For example,
you can apply the increment operator to a wrapper reference:

Integer n = 3;
n++;

The compiler automatically inserts instructions to unbox the object, increment the
resulting value, and box it back.

In most cases, you get the illusion that the primitive types and their wrappers are one
and the same. There is just one point in which they differ considerably: identity. As you
know, the == operator, applied to wrapper objects, only tests whether the objects have
identical memory locations. The following comparison would therefore probably fail:

Integer a = 1000;
Integer b = 1000;
if (a == b) ...

However, a Java implementation may, if it chooses, wrap commonly occurring values
into identical objects, and thus the comparison might succeed. This ambiguity is not
what you want. The remedy is to call the equals method when comparing wrapper
objects.

NOTE: The autoboxing specification requires that boolean, byte, char � 127, and short and
int between –128 and 127 are wrapped into fixed objects. For example, if a and b had been
initialized with 100 in the preceding example, then the comparison would have had to
succeed.

Finally, let us emphasize that boxing and unboxing is a courtesy of the compiler, not the
virtual machine. The compiler inserts the necessary calls when it generates the byte-
codes of a class. The virtual machine simply executes those bytecodes.

You will often see the number wrappers for another reason. The designers of Java found
the wrappers a convenient place to put certain basic methods, like the ones for convert-
ing strings of digits to numbers.

To convert a string to an integer, you use the following statement:
int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method. But the Integer
class was a good place to put it.

The API notes show some of the more important methods of the Integer class. The other
number classes implement corresponding methods.

Chapter 5. Inheritance

Object Wrappers and Autoboxing 213

CAUTION: Some people think that the wrapper classes can be used to implement methods
that can modify numeric parameters. However, that is not correct. Recall from Chapter 4 that
it is impossible to write a Java method that increments an integer parameter because
parameters to Java methods are always passed by value.

public static void triple(int x) // won't work
{
 x = 3 * x; // modifies local variable
}

Could we overcome this by using an Integer instead of an int?

public static void triple(Integer x) // won't work
{
 ...
}

The problem is that Integer objects are immutable: the information contained inside the
wrapper can’t change. You cannot use these wrapper classes to create a method that modi-
fies numeric parameters.

If you do want to write a method to change numeric parameters, you can use one of the
holder types defined in the org.omg.CORBA package. There are types IntHolder, BooleanHolder,
and so on. Each holder type has a public (!) field value through which you can access the
stored value.

public static void triple(IntHolder x)
{
 x.value = 3 * x.value;
}

• int intValue()
returns the value of this Integer object as an int (overrides the intValue method in
the Number class).

• static String toString(int i)
returns a new String object representing the number i in base 10.

• static String toString(int i, int radix)
lets you return a representation of the number i in the base specified by the radix
parameter.

• static int parseInt(String s)
• static int parseInt(String s, int radix)

returns the integer whose digits are contained in the string s. The string must
represent an integer in base 10 (for the first method) or in the base given by the
radix parameter (for the second method).

• static Integer valueOf(String s)
• static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer whose digits are contained in
the string s. The string must represent an integer in base 10 (for the first method)
or in the base given by the radix parameter (for the second method).

java.lang.Integer 1.0

Chapter 5. Inheritance

Chapter 5 ■ Inheritance214

• Number parse(String s)
returns the numeric value, assuming the specified String represents a number.

Methods with a Variable Number of Parameters
Before Java SE 5.0, every Java method had a fixed number of parameters. However, it is
now possible to provide methods that can be called with a variable number of parame-
ters. (These are sometimes called “varargs” methods.)

You have already seen such a method: printf. For example, the calls
System.out.printf("%d", n);

and
System.out.printf("%d %s", n, "widgets");

both call the same method, even though one call has two parameters and the other has
three.

The printf method is defined like this:
public class PrintStream
{
 public PrintStream printf(String fmt, Object... args) { return format(fmt, args); }
}

Here, the ellipsis ... is a part of the Java code. It denotes that the method can receive an
arbitrary number of objects (in addition to the fmt parameter).

The printf method actually receives two parameters, the format string, and an Object[]
array that holds all other parameters. (If the caller supplies integers or other primitive
type values, autoboxing turns them into objects.) It now has the unenviable task of scan-
ning the fmt string and matching up the ith format specifier with the value args[i].

In other words, for the implementor of printf, the Object... parameter type is exactly the
same as Object[].

The compiler needs to transform each call to printf, bundling the parameters into an
array and autoboxing as necessary:

System.out.printf("%d %s", new Object[] { new Integer(n), "widgets" });

You can define your own methods with variable parameters, and you can specify any
type for the parameters, even a primitive type. Here is a simple example: a function that
computes the maximum of a variable number of values.

public static double max(double... values)
{
 double largest = Double.MIN_VALUE;
 for (double v : values) if (v > largest) largest = v;
 return largest;
}

Simply call the function like this:
double m = max(3.1, 40.4, -5);

The compiler passes a new double[] { 3.1, 40.4, -5 } to the max function.

java.text.NumberFormat 1.1

Chapter 5. Inheritance

Enumeration Classes 215

NOTE: It is legal to pass an array as the last parameter of a method with variable parame-
ters. For example:

System.out.printf("%d %s", new Object[] { new Integer(1), "widgets" });

Therefore, you can redefine an existing function whose last parameter is an array to a
method with variable parameters, without breaking any existing code. For example, Message-
Format.format was enhanced in this way in Java SE 5.0. If you like, you can even declare the
main method as

public static void main(String... args)

Enumeration Classes
You saw in Chapter 3 how to define enumerated types in Java SE 5.0 and beyond. Here
is a typical example:

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

The type defined by this declaration is actually a class. The class has exactly four
instances—it is not possible to construct new objects.

Therefore, you never need to use equals for values of enumerated types. Simply use == to
compare them.

You can, if you like, add constructors, methods, and fields to an enumerated type. Of
course, the constructors are only invoked when the enumerated constants are con-
structed. Here is an example.

enum Size
{
 SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");

 private Size(String abbreviation) { this.abbreviation = abbreviation; }
 public String getAbbreviation() { return abbreviation; }

 private String abbreviation;
}

All enumerated types are subclasses of the class Enum. They inherit a number of methods
from that class. The most useful one is toString, which returns the name of the enumer-
ated constant. For example, Size.SMALL.toString() returns the string "SMALL".

The converse of toString is the static valueOf method. For example, the statement
Size s = (Size) Enum.valueOf(Size.class, "SMALL");

sets s to Size.SMALL.

Each enumerated type has a static values method that returns an array of all values of the
enumeration. For example, the call

Size[] values = Size.values();

returns the array with elements Size.SMALL, Size.MEDIUM, Size.LARGE, and Size.EXTRA_LARGE.

The ordinal method yields the position of an enumerated constant in the enum declaration,
counting from zero. For example, Size.MEDIUM.ordinal() returns 1.

The short program in Listing 5–5 demonstrates how to work with enumerated types.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance216

NOTE: The Enum class has a type parameter that we have ignored for simplicity. For example,
the enumerated type Size actually extends Enum<Size>. The type parameter is used in the
compareTo method. (We discuss the compareTo method in Chapter 6 and type parameters in
Chapter 12.)

• static Enum valueOf(Class enumClass, String name)
returns the enumerated constant of the given class with the given name.

• String toString()
returns the name of this enumerated constant.

• int ordinal()
returns the zero-based position of this enumerated constant in the enum declaration.

Listing 5–5 EnumTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates enumerated types.
5. * @version 1.0 2004-05-24
6. * @author Cay Horstmann
7. */
8. public class EnumTest
9. {

10. public static void main(String[] args)
11. {
12. Scanner in = new Scanner(System.in);
13. System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");
14. String input = in.next().toUpperCase();
15. Size size = Enum.valueOf(Size.class, input);
16. System.out.println("size=" + size);
17. System.out.println("abbreviation=" + size.getAbbreviation());
18. if (size == Size.EXTRA_LARGE)
19. System.out.println("Good job--you paid attention to the _.");
20. }
21. }
22.

23. enum Size
24. {
25. SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
26.

27. private Size(String abbreviation) { this.abbreviation = abbreviation; }
28. public String getAbbreviation() { return abbreviation; }
29.

30. private String abbreviation;
31. }

java.lang.Enum<E> 5.0

Chapter 5. Inheritance

Reflection 217

• int compareTo(E other)
returns a negative integer if this enumerated constant comes before other, zero if
this == other, and a positive integer otherwise. The ordering of the constants is
given by the enum declaration.

Reflection
The reflection library gives you a very rich and elaborate toolset to write programs
that manipulate Java code dynamically. This feature is heavily used in JavaBeans, the
component architecture for Java (see Volume II for more on JavaBeans). Using reflec-
tion, Java can support tools like the ones to which users of Visual Basic have grown
accustomed. In particular, when new classes are added at design or runtime, rapid
application development tools can dynamically inquire about the capabilities of the
classes that were added.

A program that can analyze the capabilities of classes is called reflective. The reflection
mechanism is extremely powerful. As the next sections show, you can use it to

• Analyze the capabilities of classes at runtime;
• Inspect objects at runtime, for example, to write a single toString method that works

for all classes;
• Implement generic array manipulation code; and
• Take advantage of Method objects that work just like function pointers in languages

such as C++.

Reflection is a powerful and complex mechanism; however, it is of interest mainly to
tool builders, not application programmers. If you are interested in programming appli-
cations rather than tools for other Java programmers, you can safely skip the remainder
of this chapter and return to it later.

The Class Class
While your program is running, the Java runtime system always maintains what is
called runtime type identification on all objects. This information keeps track of the class
to which each object belongs. Runtime type information is used by the virtual machine
to select the correct methods to execute.

However, you can also access this information by working with a special Java class. The
class that holds this information is called, somewhat confusingly, Class. The getClass()
method in the Object class returns an instance of Class type.

Employee e;
. . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a Class object
describes the properties of a particular class. Probably the most commonly used method
of Class is getName. This returns the name of the class. For example, the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints
Employee Harry Hacker

if e is an employee, or
Manager Harry Hacker

Chapter 5. Inheritance

Chapter 5 ■ Inheritance218

if e is a manager.

If the class is in a package, the package name is part of the class name:
Date d = new Date();
Class cl = d.getClass();
String name = cl.getName(); // name is set to "java.util.Date"

You can obtain a Class object corresponding to a class name by using the static forName
method.

String className = "java.util.Date";
Class cl = Class.forName(className);

You would use this method if the class name is stored in a string that varies at runtim-
eruntime. This works if className is the name of a class or interface. Otherwise, the forName
method throws a checked exception. See the section “A Primer on Catching Exceptions”
on page 219 to see how to supply an exception handler whenever you use this method.

TIP: At startup, the class containing your main method is loaded. It loads all classes that it
needs. Each of those loaded classes loads the classes that it needs, and so on. That can
take a long time for a big application, frustrating the user. You can give users of your pro-
gram the illusion of a faster start with the following trick. Make sure that the class containing
the main method does not explicitly refer to other classes. First display a splash screen. Then
manually force the loading of other classes by calling Class.forName.

A third method for obtaining an object of type Class is a convenient shorthand. If T is any
Java type, then T.class is the matching class object. For example:

Class cl1 = Date.class; // if you import java.util.*;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a class. For
example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE: As of Java SE 5.0, the Class class is parameterized. For example, Employee.class is of
type Class<Employee>. We are not dwelling on this issue because it would further complicate
an already abstract concept. For most practical purposes, you can ignore the type parame-
ter and work with the raw Class type. See Chapter 13 for more information on this issue.

CAUTION: For historical reasons, the getName method returns somewhat strange names for
array types:

• Double[].class.getName() returns "[Ljava.lang.Double;"
• int[].class.getName() returns "[I"

The virtual machine manages a unique Class object for each type. Therefore, you can use
the == operator to compare class objects. For example:

if (e.getClass() == Employee.class) . . .

Chapter 5. Inheritance

Reflection 219

Another example of a useful method is one that lets you create an instance of a class on
the fly. This method is called, naturally enough, newInstance(). For example,

e.getClass().newInstance();

creates a new instance of the same class type as e. The newInstance method calls the default
constructor (the one that takes no parameters) to initialize the newly created object. An
exception is thrown if the class has no default constructor.

Using a combination of forName and newInstance lets you create an object from a class name
stored in a string.

String s = "java.util.Date";
Object m = Class.forName(s).newInstance();

NOTE: If you need to provide parameters for the constructor of a class you want to create by
name in this manner, then you can’t use statements like the preceding. Instead, you must
use the newInstance method in the Constructor class.

C++ NOTE: The newInstance method corresponds to the idiom of a virtual constructor in C++.
However, virtual constructors in C++ are not a language feature but just an idiom that needs
to be supported by a specialized library. The Class class is similar to the type_info class in
C++, and the getClass method is equivalent to the typeid operator. The Java Class is quite a
bit more versatile than type_info, though. The C++ type_info can only reveal a string with the
name of the type, not create new objects of that type.

A Primer on Catching Exceptions
We cover exception handling fully in Chapter 11, but in the meantime you will occasion-
ally encounter methods that threaten to throw exceptions.

When an error occurs at runtime, a program can “throw an exception.” Throwing an
exception is more flexible than terminating the program because you can provide a han-
dler that “catches” the exception and deals with it.

If you don’t provide a handler, the program still terminates and prints a message to the
console, giving the type of the exception. You may already have seen exception reports
when you accidentally used a null reference or overstepped the bounds of an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions. With
checked exceptions, the compiler checks that you provide a handler. However, many
common exceptions, such as accessing a null reference, are unchecked. The compiler
does not check whether you provide a handler for these errors—after all, you should
spend your mental energy on avoiding these mistakes rather than coding handlers for
them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The Class.forName method is an
example of a method that throws a checked exception. In Chapter 11, you will see sev-
eral exception handling strategies. For now, we just show you the simplest handler
implementation.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance220

Place one or more statements that might throw checked exceptions inside a try block.
Then provide the handler code in the catch clause.

try
{
 statements that might throw exceptions
}
catch(Exception e)
{
 handler action
}

Here is an example:
try
{
 String name = . . .; // get class name
 Class cl = Class.forName(name); // might throw exception
 . . . // do something with cl
}
catch(Exception e)
{
 e.printStackTrace();
}

If the class name doesn’t exist, the remainder of the code in the try block is skipped and
the program enters the catch clause. (Here, we print a stack trace by using the printStack-
Trace method of the Throwable class. Throwable is the superclass of the Exception class.) If none
of the methods in the try block throws an exception, the handler code in the catch clause
is skipped.

You only need to supply an exception handler for checked exceptions. It is easy to find
out which methods throw checked exceptions—the compiler will complain whenever
you call a method that threatens to throw a checked exception and you don’t supply a
handler.

• static Class forName(String className)
returns the Class object representing the class with name className.

• Object newInstance()
returns a new instance of this class.

• Object newInstance(Object[] args)
constructs a new instance of the constructor’s declaring class.

java.lang.Class 1.0

java.lang.reflect.Constructor 1.1

Parameters: args the parameters supplied to the constructor. See the
section on reflection for more information on how to
supply parameters.

Chapter 5. Inheritance

Reflection 221

• void printStackTrace()
prints the Throwable object and the stack trace to the standard error stream.

Using Reflection to Analyze the Capabilities of Classes
Here is a brief overview of the most important parts of the reflection mechanism for let-
ting you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package describe the
fields, methods, and constructors of a class, respectively. All three classes have a
method called getName that returns the name of the item. The Field class has a method
getType that returns an object, again of type Class, that describes the field type. The Method
and Constructor classes have methods to report the types of the parameters, and the
Method class also reports the return type. All three of these classes also have a method
called getModifiers that returns an integer, with various bits turned on and off, that
describes the modifiers used, such as public and static. You can then use the static
methods in the Modifier class in the java.lang.reflect package to analyze the integer that
getModifiers returns. Use methods like isPublic, isPrivate, or isFinal in the Modifier class to
tell whether a method or constructor was public, private, or final. All you have to do is
have the appropriate method in the Modifier class work on the integer that getModifiers
returns. You can also use the Modifier.toString method to print the modifiers.
The getFields, getMethods, and getConstructors methods of the Class class return arrays of the
public fields, methods, and constructors that the class supports. This includes public
members of superclasses. The getDeclaredFields, getDeclaredMethods, and getDeclaredConstruc-
tors methods of the Class class return arrays consisting of all fields, methods, and con-
structors that are declared in the class. This includes private and protected members,
but not members of superclasses.
Listing 5–6 shows you how to print out all information about a class. The program
prompts you for the name of a class and then writes out the signatures of all methods
and constructors as well as the names of all data fields of a class. For example, if you
enter

java.lang.Double

the program prints
public class java.lang.Double extends java.lang.Number
{
 public java.lang.Double(java.lang.String);
 public java.lang.Double(double);

 public int hashCode();
 public int compareTo(java.lang.Object);
 public int compareTo(java.lang.Double);
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public static java.lang.String toString(double);
 public static java.lang.Double valueOf(java.lang.String);
 public static boolean isNaN(double);
 public boolean isNaN();
 public static boolean isInfinite(double);
 public boolean isInfinite();

java.lang.Throwable 1.0

Chapter 5. Inheritance

Chapter 5 ■ Inheritance222

 public byte byteValue();
 public short shortValue();
 public int intValue();
 public long longValue();
 public float floatValue();
 public double doubleValue();
 public static double parseDouble(java.lang.String);
 public static native long doubleToLongBits(double);
 public static native long doubleToRawLongBits(double);
 public static native double longBitsToDouble(long);

 public static final double POSITIVE_INFINITY;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double MAX_VALUE;
 public static final double MIN_VALUE;
 public static final java.lang.Class TYPE;
 private double value;
 private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that the Java
interpreter can load, not just the classes that were available when the program was com-
piled. We use this program in the next chapter to peek inside the inner classes that the
Java compiler generates automatically.

Listing 5–6 ReflectionTest.java

1. import java.util.*;
2. import java.lang.reflect.*;
3.

4. /**
5. * This program uses reflection to print all features of a class.
6. * @version 1.1 2004-02-21
7. * @author Cay Horstmann
8. */
9. public class ReflectionTest

10. {
11. public static void main(String[] args)
12. {
13. // read class name from command line args or user input
14. String name;
15. if (args.length > 0) name = args[0];
16. else
17. {
18. Scanner in = new Scanner(System.in);
19. System.out.println("Enter class name (e.g. java.util.Date): ");
20. name = in.next();
21. }
22.

23. try
24. {

Chapter 5. Inheritance

Reflection 223

25. // print class name and superclass name (if != Object)
26. Class cl = Class.forName(name);
27. Class supercl = cl.getSuperclass();
28. String modifiers = Modifier.toString(cl.getModifiers());
29. if (modifiers.length() > 0) System.out.print(modifiers + " ");
30. System.out.print("class " + name);
31. if (supercl != null && supercl != Object.class) System.out.print(" extends "
32. + supercl.getName());
33.

34. System.out.print("\n{\n");
35. printConstructors(cl);
36. System.out.println();
37. printMethods(cl);
38. System.out.println();
39. printFields(cl);
40. System.out.println("}");
41. }
42. catch (ClassNotFoundException e)
43. {
44. e.printStackTrace();
45. }
46. System.exit(0);
47. }
48.

49. /**
50. * Prints all constructors of a class
51. * @param cl a class
52. */
53. public static void printConstructors(Class cl)
54. {
55. Constructor[] constructors = cl.getDeclaredConstructors();
56.

57. for (Constructor c : constructors)
58. {
59. String name = c.getName();
60. System.out.print(" ");
61. String modifiers = Modifier.toString(c.getModifiers());
62. if (modifiers.length() > 0) System.out.print(modifiers + " ");
63. System.out.print(name + "(");
64.

65. // print parameter types
66. Class[] paramTypes = c.getParameterTypes();
67. for (int j = 0; j < paramTypes.length; j++)
68. {
69. if (j > 0) System.out.print(", ");
70. System.out.print(paramTypes[j].getName());
71. }
72. System.out.println(");");
73. }

Listing 5–6 ReflectionTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance224

74. }
75.

76. /**
77. * Prints all methods of a class
78. * @param cl a class
79. */
80. public static void printMethods(Class cl)
81. {
82. Method[] methods = cl.getDeclaredMethods();
83.

84. for (Method m : methods)
85. {
86. Class retType = m.getReturnType();
87. String name = m.getName();
88.

89. System.out.print(" ");
90. // print modifiers, return type, and method name
91. String modifiers = Modifier.toString(m.getModifiers());
92. if (modifiers.length() > 0) System.out.print(modifiers + " ");
93. System.out.print(retType.getName() + " " + name + "(");
94.

95. // print parameter types
96. Class[] paramTypes = m.getParameterTypes();
97. for (int j = 0; j < paramTypes.length; j++)
98. {
99. if (j > 0) System.out.print(", ");

100. System.out.print(paramTypes[j].getName());
101. }
102. System.out.println(");");
103. }
104. }
105.

106. /**
107. * Prints all fields of a class
108. * @param cl a class
109. */
110. public static void printFields(Class cl)
111. {
112. Field[] fields = cl.getDeclaredFields();
113.

114. for (Field f : fields)
115. {
116. Class type = f.getType();
117. String name = f.getName();
118. System.out.print(" ");
119. String modifiers = Modifier.toString(f.getModifiers());
120. if (modifiers.length() > 0) System.out.print(modifiers + " ");
121. System.out.println(type.getName() + " " + name + ";");
122. }
123. }
124. }

Listing 5–6 ReflectionTest.java (continued)

Chapter 5. Inheritance

Reflection 225

• Field[] getFields() 1.1
• Field[] getDeclaredFields() 1.1

getFields returns an array containing Field objects for the public fields of this class
or its superclasses; getDeclaredField returns an array of Field objects for all fields of
this class. The methods return an array of length 0 if there are no such fields or if
the Class object represents a primitive or array type.

• Method[] getMethods() 1.1
• Method[] getDeclaredMethods() 1.1

returns an array containing Method objects: getMethods returns public methods and
includes inherited methods; getDeclaredMethods returns all methods of this class or
interface but does not include inherited methods.

• Constructor[] getConstructors() 1.1
• Constructor[] getDeclaredConstructors() 1.1

returns an array containing Constructor objects that give you all the public
constructors (for getConstructors) or all constructors (for getDeclaredConstructors) of the
class represented by this Class object.

• Class getDeclaringClass()
returns the Class object for the class that defines this constructor, method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes)
returns an array of Class objects that represent the types of the exceptions thrown
by the method.

• int getModifiers()
returns an integer that describes the modifiers of this constructor, method, or
field. Use the methods in the Modifier class to analyze the return value.

• String getName()
returns a string that is the name of the constructor, method, or field.

• Class[] getParameterTypes() (in Constructor and Method classes)
returns an array of Class objects that represent the types of the parameters.

• Class getReturnType() (in Method classes)
returns a Class object that represents the return type.

• static String toString(int modifiers)
returns a string with the modifiers that correspond to the bits set in modifiers.

java.lang.Class 1.0

java.lang.reflect.Field 1.1

java.lang.reflect.Method 1.1

java.lang.reflect.Constructor 1.1

java.lang.reflect.Modifier 1.1

Chapter 5. Inheritance

Chapter 5 ■ Inheritance226

• static boolean isAbstract(int modifiers)
• static boolean isFinal(int modifiers)
• static boolean isInterface(int modifiers)
• static boolean isNative(int modifiers)
• static boolean isPrivate(int modifiers)
• static boolean isProtected(int modifiers)
• static boolean isPublic(int modifiers)
• static boolean isStatic(int modifiers)
• static boolean isStrict(int modifiers)
• static boolean isSynchronized(int modifiers)
• static boolean isVolatile(int modifiers)

tests the bit in the modifiers value that corresponds to the modifier in the method
name.

Using Reflection to Analyze Objects at Runtime
In the preceding section, we saw how we can find out the names and types of the data
fields of any object:

• Get the corresponding Class object.
• Call getDeclaredFields on the Class object.

In this section, we go one step further and actually look at the contents of the data fields.
Of course, it is easy to look at the contents of a specific field of an object whose name
and type are known when you write a program. But reflection lets you look at fields of
objects that were not known at compile time.

The key method to achieve this examination is the get method in the Field class. If f is
an object of type Field (for example, one obtained from getDeclaredFields) and obj is an
object of the class of which f is a field, then f.get(obj) returns an object whose value
is the current value of the field of obj. This is all a bit abstract, so let’s run through an
example.

Employee harry = new Employee("Harry Hacker", 35000, 10, 1, 1989);
Class cl = harry.getClass();
 // the class object representing Employee
Field f = cl.getDeclaredField("name");
 // the name field of the Employee class
Object v = f.get(harry);
 // the value of the name field of the harry object
 // i.e., the String object "Harry Hacker"

Actually, there is a problem with this code. Because the name field is a private field,
the get method will throw an IllegalAccessException. You can only use the get method to
get the values of accessible fields. The security mechanism of Java lets you find out
what fields any object has, but it won’t let you read the values of those fields unless
you have access permission.

The default behavior of the reflection mechanism is to respect Java access control. How-
ever, if a Java program is not controlled by a security manager that disallows it, you can
override access control. To do this, invoke the setAccessible method on a Field, Method, or
Constructor object. For example:

f.setAccessible(true); // now OK to call f.get(harry);

Chapter 5. Inheritance

Reflection 227

The setAccessible method is a method of the AccessibleObject class, the common superclass of
the Field, Method, and Constructor classes. This feature is provided for debuggers, persistent
storage, and similar mechanisms. We use it for a generic toString method later in this section.

There is another issue with the get method that we need to deal with. The name field is a
String, and so it is not a problem to return the value as an Object. But suppose we want to
look at the salary field. That is a double, and in Java, number types are not objects. To han-
dle this, you can either use the getDouble method of the Field class, or you can call get,
whereby the reflection mechanism automatically wraps the field value into the appro-
priate wrapper class, in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets the
field represented by f of the object obj to the new value.

Listing 5–7 shows how to write a generic toString method that works for any class. It
uses getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience
method to make all fields accessible. For each field, it obtains the name and the value.
Listing 5–7 turns each value into a string by recursively invoking toString.

class ObjectAnalyzer
{
 public String toString(Object obj)
 {
 Class cl = obj.getClass();
 . . .
 String r = cl.getName();
 // inspect the fields of this class and all superclasses
 do
 {
 r += "[";
 Field[] fields = cl.getDeclaredFields();
 AccessibleObject.setAccessible(fields, true);
 // get the names and values of all fields
 for (Field f : fields)
 {
 if (!Modifier.isStatic(f.getModifiers()))
 {
 if (!r.endsWith("[")) r += ","
 r += f.getName() + "=";
 try
 {
 Object val = f.get(obj);
 r += toString(val);
 }
 catch (Exception e) { e.printStackTrace(); }
 }
 }
 r += "]";
 cl = cl.getSuperclass();
 }
 while (cl != null);
 return r;
 }
 . . .
}

Chapter 5. Inheritance

Chapter 5 ■ Inheritance228

The complete code in Listing 5–7 needs to address a couple of complexities. Cycles of
references could cause an infinite recursion. Therefore, the ObjectAnalyzer keeps track of
objects that were already visited. Also, to peek inside arrays, you need a different
approach. You’ll learn about the details in the next section.

You can use this toString method to peek inside any object. For example, the call
ArrayList<Integer> squares = new ArrayList<Integer>();
for (int i = 1; i <= 5; i++) squares.add(i * i);
System.out.println(new ObjectAnalyzer().toString(squares));

yields the printout
java.util.ArrayList[elementData=class java.lang.Object[]{java.lang.Integer[value=1][][],
java.lang.Integer[value=4][][],java.lang.Integer[value=9][][],java.lang.Integer[value=16][][],
java.lang.Integer[value=25][][],null,null,null,null,null},size=5][modCount=5][][]

You can use this generic toString method to implement the toString methods of your own
classes, like this:

public String toString()
{
 return new ObjectAnalyzer().toString(this);
}

This is a hassle-free method for supplying a toString method that you may find useful in
your own programs.

Listing 5–7 ObjectAnalyzerTest.java

1. import java.lang.reflect.*;
2. import java.util.*;
3.

4. /**
5. * This program uses reflection to spy on objects.
6. * @version 1.11 2004-02-21
7. * @author Cay Horstmann
8. */
9. public class ObjectAnalyzerTest

10. {
11. public static void main(String[] args)
12. {
13. ArrayList<Integer> squares = new ArrayList<Integer>();
14. for (int i = 1; i <= 5; i++)
15. squares.add(i * i);
16. System.out.println(new ObjectAnalyzer().toString(squares));
17. }
18. }
19.

20. class ObjectAnalyzer
21. {

Chapter 5. Inheritance

Reflection 229

22. /**
23. * Converts an object to a string representation that lists all fields.
24. * @param obj an object
25. * @return a string with the object's class name and all field names and
26. * values
27. */
28. public String toString(Object obj)
29. {
30. if (obj == null) return "null";
31. if (visited.contains(obj)) return "...";
32. visited.add(obj);
33. Class cl = obj.getClass();
34. if (cl == String.class) return (String) obj;
35. if (cl.isArray())
36. {
37. String r = cl.getComponentType() + "[]{";
38. for (int i = 0; i < Array.getLength(obj); i++)
39. {
40. if (i > 0) r += ",";
41. Object val = Array.get(obj, i);
42. if (cl.getComponentType().isPrimitive()) r += val;
43. else r += toString(val);
44. }
45. return r + "}";
46. }
47.

48. String r = cl.getName();
49. // inspect the fields of this class and all superclasses
50. do
51. {
52. r += "[";
53. Field[] fields = cl.getDeclaredFields();
54. AccessibleObject.setAccessible(fields, true);
55. // get the names and values of all fields
56. for (Field f : fields)
57. {
58. if (!Modifier.isStatic(f.getModifiers()))
59. {
60. if (!r.endsWith("[")) r += ",";
61. r += f.getName() + "=";
62. try
63. {
64. Class t = f.getType();
65. Object val = f.get(obj);
66. if (t.isPrimitive()) r += val;
67. else r += toString(val);
68. }
69. catch (Exception e)

Listing 5–7 ObjectAnalyzerTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance230

• void setAccessible(boolean flag)
sets the accessibility flag for this reflection object. A value of true indicates that
Java language access checking is suppressed and that the private properties of the
object can be queried and set.

• boolean isAccessible()
gets the value of the accessibility flag for this reflection object.

• static void setAccessible(AccessibleObject[] array, boolean flag)
is a convenience method to set the accessibility flag for an array of objects.

• Field getField(String name)
• Field[] getFields()

gets the public field with the given name, or an array of all fields.
• Field getDeclaredField(String name)
• Field[] getDeclaredFields()

gets the field that is declared in this class with the given name, or an array of all
fields.

• Object get(Object obj)
gets the value of the field described by this Field object in the object obj.

• void set(Object obj, Object newValue)
sets the field described by this Field object in the object obj to a new value.

70. {
71. e.printStackTrace();
72. }
73. }
74. }
75. r += "]";
76. cl = cl.getSuperclass();
77. }
78. while (cl != null);
79.

80. return r;
81. }
82.

83. private ArrayList<Object> visited = new ArrayList<Object>();
84. }

java.lang.reflect.AccessibleObject 1.2

java.lang.Class 1.1

java.lang.reflect.Field 1.1

Listing 5–7 ObjectAnalyzerTest.java (continued)

Chapter 5. Inheritance

Reflection 231

Using Reflection to Write Generic Array Code
The Array class in the java.lang.reflect package allows you to create arrays dynamically.
For example, when you use this feature with the arraycopy method from Chapter 3, you
can dynamically expand an existing array while preserving the current contents.

The problem we want to solve is pretty typical. Suppose you have an array of some type
that is full and you want to grow it. And suppose you are sick of writing the grow-and-
copy code by hand. You want to write a generic method to grow an array.

Employee[] a = new Employee[100];
. . .
// array is full
a = (Employee[]) arrayGrow(a);

How can we write such a generic method? It helps that an Employee[] array can be con-
verted to an Object[] array. That sounds promising. Here is a first attempt to write a
generic method. We simply grow the array by 10% + 10 elements (because the 10 per-
cent growth is not substantial enough for small arrays).

static Object[] badArrayGrow(Object[] a) // not useful
{
 int newLength = a.length * 11 / 10 + 10;
 Object[] newArray = new Object[newLength];
 System.arraycopy(a, 0, newArray, 0, a.length);
 return newArray;
}

However, there is a problem with actually using the resulting array. The type of array
that this code returns is an array of objects (Object[]) because we created the array using
the line of code

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). Java would gen-
erate a ClassCastException at runtime. The point is, as we mentioned earlier, that a Java
array remembers the type of its entries, that is, the element type used in the new expres-
sion that created it. It is legal to cast an Employee[] temporarily to an Object[] array and
then cast it back, but an array that started its life as an Object[] array can never be cast
into an Employee[] array. To write this kind of generic array code, we need to be able to
make a new array of the same type as the original array. For this, we need the methods of
the Array class in the java.lang.reflect package. The key is the static newInstance method of
the Array class that constructs a new array. You must supply the type for the entries and
the desired length as parameters to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and component type of the new array.

We obtain the length by calling Array.getLength(a). The static getLength method of the Array
class returns the length of any array. To get the component type of the new array:

1. First, get the class object of a.
2. Confirm that it is indeed an array.
3. Use the getComponentType method of the Class class (which is defined only for class

objects that represent arrays) to find the right type for the array.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance232

Why is getLength a method of Array but getComponentType a method of Class? We don’t know—
the distribution of the reflection methods seems a bit ad hoc at times.

Here’s the code:
static Object goodArrayGrow(Object a) // useful
{
 Class cl = a.getClass();
 if (!cl.isArray()) return null;
 Class componentType = cl.getComponentType();
 int length = Array.getLength(a);
 int newLength = length * 11 / 10 + 10;
 Object newArray = Array.newInstance(componentType, newLength);
 System.arraycopy(a, 0, newArray, 0, length);
 return newArray;
}

Note that this arrayGrow method can be used to grow arrays of any type, not just arrays
of objects.

int[] a = { 1, 2, 3, 4 };
a = (int[]) goodArrayGrow(a);

To make this possible, the parameter of goodArrayGrow is declared to be of type Object, not an
array of objects (Object[]). The integer array type int[] can be converted to an Object, but
not to an array of objects!

Listing 5–8 shows both array grow methods in action. Note that the cast of the return
value of badArrayGrow will throw an exception.

NOTE: We present this program to illustrate how to work with arrays through reflection. If
you just want to grow an array, use the copyOf method in the Arrays class.

Employee[] a = new Employee[100];
. . .
// array is full
a = Arrays.copyOf(a, a.length * 11 / 10 + 10);

Listing 5–8 ArrayGrowTest.java

1. import java.lang.reflect.*;
2.

3. /**
4. * This program demonstrates the use of reflection for manipulating arrays.
5. * @version 1.01 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class ArrayGrowTest
9. {

10. public static void main(String[] args)
11. {
12. int[] a = { 1, 2, 3 };
13. a = (int[]) goodArrayGrow(a);

Chapter 5. Inheritance

Reflection 233

14. arrayPrint(a);
15.

16. String[] b = { "Tom", "Dick", "Harry" };
17. b = (String[]) goodArrayGrow(b);
18. arrayPrint(b);
19.

20. System.out.println("The following call will generate an exception.");
21. b = (String[]) badArrayGrow(b);
22. }
23.

24. /**
25. * This method attempts to grow an array by allocating a new array and copying all elements.
26. * @param a the array to grow
27. * @return a larger array that contains all elements of a. However, the returned array has
28. * type Object[], not the same type as a
29. */
30. static Object[] badArrayGrow(Object[] a)
31. {
32. int newLength = a.length * 11 / 10 + 10;
33. Object[] newArray = new Object[newLength];
34. System.arraycopy(a, 0, newArray, 0, a.length);
35. return newArray;
36. }
37.

38. /**
39. * This method grows an array by allocating a new array of the same type and
40. * copying all elements.
41. * @param a the array to grow. This can be an object array or a primitive
42. * type array
43. * @return a larger array that contains all elements of a.
44. */
45. static Object goodArrayGrow(Object a)
46. {
47. Class cl = a.getClass();
48. if (!cl.isArray()) return null;
49. Class componentType = cl.getComponentType();
50. int length = Array.getLength(a);
51. int newLength = length * 11 / 10 + 10;
52.

53. Object newArray = Array.newInstance(componentType, newLength);
54. System.arraycopy(a, 0, newArray, 0, length);
55. return newArray;
56. }
57.

58. /**
59. * A convenience method to print all elements in an array
60. * @param a the array to print. It can be an object array or a primitive type array
61. */
62. static void arrayPrint(Object a)

Listing 5–8 ArrayGrowTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance234

• static Object get(Object array, int index)
• static xxx getXxx(Object array, int index)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, short.) These
methods return the value of the given array that is stored at the given index.

• static void set(Object array, int index, Object newValue)
• static setXxx(Object array, int index, xxx newValue)

(xxx is one of the primitive types boolean, byte, char, double, float, int, long, short.) These
methods store a new value into the given array at the given index.

• static int getLength(Object array)
returns the length of the given array.

• static Object newInstance(Class componentType, int length)
• static Object newInstance(Class componentType, int[] lengths)

returns a new array of the given component type with the given dimensions.

Method Pointers!
On the surface, Java does not have method pointers—ways of giving the location of a
method to another method so that the second method can invoke it later. In fact, the
designers of Java have said that method pointers are dangerous and error prone and
that Java interfaces (discussed in the next chapter) are a superior solution. However, as of
Java 1.1, it turns out that Java does have method pointers, as a (perhaps accidental) by-
product of the reflection package.

NOTE: Among the nonstandard language extensions that Microsoft added to its Java deriva-
tive J++ (and its successor, C#) is another method pointer type, called a delegate, that is dif-
ferent from the Method class that we discuss in this section. However, inner classes (which
we will introduce in the next chapter) are a more useful construct than delegates.

To see method pointers at work, recall that you can inspect a field of an object with the
get method of the Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature for the invoke
method is

63. {
64. Class cl = a.getClass();
65. if (!cl.isArray()) return;
66. Class componentType = cl.getComponentType();
67. int length = Array.getLength(a);
68. System.out.print(componentType.getName() + "[" + length + "] = { ");
69. for (int i = 0; i < Array.getLength(a); i++)
70. System.out.print(Array.get(a, i) + " ");
71. System.out.println("}");
72. }
73. }

java.lang.reflect.Array 1.1

Listing 5–8 ArrayGrowTest.java (continued)

Chapter 5. Inheritance

Reflection 235

Object invoke(Object obj, Object... args)

The first parameter is the implicit parameter, and the remaining objects provide the
explicit parameters. (Before Java SE 5.0, you had to pass an array of objects or null if the
method had no explicit parameters.)

For a static method, the first parameter is ignored—you can set it to null.

For example, if m1 represents the getName method of the Employee class, the following code
shows how you can call it:

String n = (String) m1.invoke(harry);

As with the get and set methods of the Field type, there’s a problem if the parameter or
return type is not a class but a primitive type. You either rely on autoboxing or, before
Java SE 5.0, wrap primitive types into their corresponding wrappers.

Conversely, if the return type is a primitive type, the invoke method will return the wrap-
per type instead. For example, suppose that m2 represents the getSalary method of the
Employee class. Then, the returned object is actually a Double, and you must cast it accord-
ingly. As of Java SE 5.0, automatic unboxing takes care of the rest.

double s = (Double) m2.invoke(harry);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and search
through the returned array of Method objects until you find the method that you want. Or,
you can call the getMethod method of the Class class. This is similar to the getField method
that takes a string with the field name and returns a Field object. However, there may be
several methods with the same name, so you need to be careful that you get the right
one. For that reason, you must also supply the parameter types of the desired method.
The signature of getMethod is

Method getMethod(String name, Class... parameterTypes)

For example, here is how you can get method pointers to the getName and raiseSalary meth-
ods of the Employee class:

Method m1 = Employee.class.getMethod("getName");
Method m2 = Employee.class.getMethod("raiseSalary", double.class);

(Before Java SE 5.0, you had to package the Class objects into an array or to supply null if
there were no parameters.)

Now that you have seen the rules for using Method objects, let’s put them to work. Listing
5–9 is a program that prints a table of values for a mathematical function such as
Math.sqrt or Math.sin. The printout looks like this:

public static native double java.lang.Math.sqrt(double)
 1.0000 | 1.0000
 2.0000 | 1.4142
 3.0000 | 1.7321
 4.0000 | 2.0000
 5.0000 | 2.2361
 6.0000 | 2.4495
 7.0000 | 2.6458
 8.0000 | 2.8284
 9.0000 | 3.0000
 10.0000 | 3.1623

Chapter 5. Inheritance

Chapter 5 ■ Inheritance236

The code for printing a table is, of course, independent of the actual function that is
being tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
 double y = (Double) f.invoke(null, x);
 System.out.printf("%10.4f | %10.4f%n", x, y);
}

Here, f is an object of type Method. The first parameter of invoke is null because we are call-
ing a static method.

To tabulate the Math.sqrt function, we set f to
Math.class.getMethod("sqrt", double.class)

That is the method of the Math class that has the name sqrt and a single parameter of type
double.

Listing 5–9 shows the complete code of the generic tabulator and a couple of test runs.

Listing 5–9 MethodPointerTest.java

1. import java.lang.reflect.*;
2.

3. /**
4. * This program shows how to invoke methods through reflection.
5. * @version 1.1 2004-02-21
6. * @author Cay Horstmann
7. */
8. public class MethodPointerTest
9. {

10. public static void main(String[] args) throws Exception
11. {
12. // get method pointers to the square and sqrt methods
13. Method square = MethodPointerTest.class.getMethod("square", double.class);
14. Method sqrt = Math.class.getMethod("sqrt", double.class);
15.

16. // print tables of x- and y-values
17.

18. printTable(1, 10, 10, square);
19. printTable(1, 10, 10, sqrt);
20. }
21.

22. /**
23. * Returns the square of a number
24. * @param x a number
25. * @return x squared
26. */
27. public static double square(double x)
28. {
29. return x * x;
30. }

Chapter 5. Inheritance

Reflection 237

As this example shows clearly, you can do anything with Method objects that you can do
with function pointers in C (or delegates in C#). Just as in C, this style of programming
is usually quite inconvenient and always error prone. What happens if you invoke a
method with the wrong parameters? The invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That
means you must cast back and forth a lot. As a result, the compiler is deprived of the
chance to check your code. Therefore, errors surface only during testing, when they are
more tedious to find and fix. Moreover, code that uses reflection to get at method point-
ers is significantly slower than code that simply calls methods directly.

For that reason, we suggest that you use Method objects in your own programs only when
absolutely necessary. Using interfaces and inner classes (the subject of the next chapter)
is almost always a better idea. In particular, we echo the developers of Java and suggest
not using Method objects for callback functions. Using interfaces for the callbacks (see the
next chapter as well) leads to code that runs faster and is a lot more maintainable.

31.

32. /**
33. * Prints a table with x- and y-values for a method
34. * @param from the lower bound for the x-values
35. * @param to the upper bound for the x-values
36. * @param n the number of rows in the table
37. * @param f a method with a double parameter and double return value
38. */
39. public static void printTable(double from, double to, int n, Method f)
40. {
41. // print out the method as table header
42. System.out.println(f);
43.

44. double dx = (to - from) / (n - 1);
45.

46. for (double x = from; x <= to; x += dx)
47. {
48. try
49. {
50. double y = (Double) f.invoke(null, x);
51. System.out.printf("%10.4f | %10.4f%n", x, y);
52. }
53. catch (Exception e)
54. {
55. e.printStackTrace();
56. }
57. }
58. }
59. }

Listing 5–9 MethodPointerTest.java (continued)

Chapter 5. Inheritance

Chapter 5 ■ Inheritance238

• public Object invoke(Object implicitParameter, Object[] explicitParameters)
invokes the method described by this object, passing the given parameters and
returning the value that the method returns. For static methods, pass null as the
implicit parameter. Pass primitive type values by using wrappers. Primitive type
return values must be unwrapped.

Design Hints for Inheritance
We want to end this chapter with some hints that we have found useful when using
inheritance.

1. Place common operations and fields in the superclass.
This is why we put the name field into the Person class rather than replicating it in the
Employee and Student classes.

2. Don’t use protected fields.
Some programmers think it is a good idea to define most instance fields as protected,
“just in case,” so that subclasses can access these fields if they need to. However, the
protected mechanism doesn’t give much protection, for two reasons. First, the set of
subclasses is unbounded—anyone can form a subclass of your classes and then
write code that directly accesses protected instance fields, thereby breaking encapsu-
lation. And second, in the Java programming language, all classes in the same pack-
age have access to protected fields, whether or not they are subclasses.
However, protected methods can be useful to indicate methods that are not ready
for general use and should be redefined in subclasses. The clone method is a good
example.

3. Use inheritance to model the “is–a” relationship.
Inheritance is a handy code-saver, and sometimes people overuse it. For example,
suppose we need a Contractor class. Contractors have names and hire dates, but they
do not have salaries. Instead, they are paid by the hour, and they do not stay around
long enough to get a raise. There is the temptation to form a subclass Contractor from
Employee and add an hourlyWage field.

class Contractor extends Employee
{ . . .
 private double hourlyWage;
}

This is not a good idea, however, because now each contractor object has both a sal-
ary and hourly wage field. It will cause you no end of grief when you implement
methods for printing paychecks or tax forms. You will end up writing more code
than you would have by not inheriting in the first place.
The contractor/employee relationship fails the “is–a” test. A contractor is not a spe-
cial case of an employee.

4. Don’t use inheritance unless all inherited methods make sense.
Suppose we want to write a Holiday class. Surely every holiday is a day, and days can
be expressed as instances of the GregorianCalendar class, so we can use inheritance.

class Holiday extends GregorianCalendar { . . . }

java.lang.reflect.Method 1.1

Chapter 5. Inheritance

Design Hints for Inheritance 239

Unfortunately, the set of holidays is not closed under the inherited operations. One of the
public methods of GregorianCalendar is add. And add can turn holidays into nonholidays:

Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

Therefore, inheritance is not appropriate in this example.
5. Don’t change the expected behavior when you override a method.

The substitution principle applies not just to syntax but, more important, to behav-
ior. When you override a method, you should not unreasonably change its behavior.
The compiler can’t help you—it cannot check whether your redefinitions make
sense. For example, you can “fix” the issue of the add method in the Holiday class by
redefining add, perhaps to do nothing, or to throw an exception, or to move on to the
next holiday.
However, such a fix violates the substitution principle. The sequence of statements

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.println(d2 - d1);

should have the expected behavior, no matter whether x is of type GregorianCalendar or
Holiday.
Of course, therein lies the rub. Reasonable and unreasonable people can argue
at length what the expected behavior is. For example, some authors argue that
the substitution principle requires Manager.equals to ignore the bonus field because
Employee.equals ignores it. These discussions are always pointless if they occur in a
vacuum. Ultimately, what matters is that you do not circumvent the intent of the
original design when you override methods in subclasses.

6. Use polymorphism, not type information.
Whenever you find code of the form

if (x is of type 1)
 action1(x);
else if (x is of type 2)
 action2(x);

think polymorphism.
Do action1 and action2 represent a common concept? If so, make the concept a method
of a common superclass or interface of both types. Then, you can simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism launch the
correct action.
Code using polymorphic methods or interface implementations is much easier to
maintain and extend than code that uses multiple type tests.

7. Don’t overuse reflection.
The reflection mechanism lets you write programs with amazing generality, by
detecting fields and methods at runtime. This capability can be extremely useful for
systems programming, but it is usually not appropriate in applications. Reflection is
fragile—the compiler cannot help you find programming errors. Any errors are
found at runtime and result in exceptions.

Chapter 5. Inheritance

Chapter 5 ■ Inheritance240

You have now seen how Java supports the fundamentals of object-oriented program-
ming: classes, inheritance, and polymorphism. In the next chapter, we will tackle two
advanced topics that are very important for using Java effectively: interfaces and inner
classes.

Chapter 5. Inheritance

ChapterChapter

241

INTERFACES AND
INNER CLASSES

▼ INTERFACES

▼ OBJECT CLONING

▼ INTERFACES AND CALLBACKS

▼ INNER CLASSES

▼ PROXIES

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes242

You have now seen all the basic tools for object-oriented programming in Java.
This chapter shows you several advanced techniques that are commonly used. Despite
their less obvious nature, you will need to master them to complete your Java tool chest.

The first, called an interface, is a way of describing what classes should do, without spec-
ifying how they should do it. A class can implement one or more interfaces. You can then
use objects of these implementing classes anytime that conformance to the interface is
required. After we cover interfaces, we take up cloning an object (or deep copying, as it
is sometimes called). A clone of an object is a new object that has the same state as the
original. In particular, you can modify the clone without affecting the original.

Next, we move on to the mechanism of inner classes. Inner classes are technically some-
what complex—they are defined inside other classes, and their methods can access the
fields of the surrounding class. Inner classes are useful when you design collections of
cooperating classes. In particular, inner classes enable you to write concise, professional-
looking code to handle GUI events.

This chapter concludes with a discussion of proxies, objects that implement arbitrary
interfaces. A proxy is a very specialized construct that is useful for building system-
level tools. You can safely skip that section on first reading.

Interfaces
In the Java programming language, an interface is not a class but a set of requirements for
classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a particular
interface, then I’ll perform the service.” Let’s look at a concrete example. The sort
method of the Arrays class promises to sort an array of objects, but under one condition:
The objects must belong to classes that implement the Comparable interface.

Here is what the Comparable interface looks like:
public interface Comparable
{
 int compareTo(Object other);
}

This means that any class that implements the Comparable interface is required to have a
compareTo method, and the method must take an Object parameter and return an integer.

NOTE: As of Java SE 5.0, the Comparable interface has been enhanced to be a generic type.

public interface Comparable<T>
{
 int compareTo(T other); // parameter has type T
}

For example, a class that implements Comparable<Employee> must supply a method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter, but then you have to
manually cast the parameter of the compareTo method to the desired type.

All methods of an interface are automatically public. For that reason, it is not necessary to
supply the keyword public when declaring a method in an interface.

Chapter 6. Interfaces and Inner Classes

Interfaces 243

Of course, there is an additional requirement that the interface cannot spell out: When
calling x.compareTo(y), the compareTo method must actually be able to compare two objects
and return an indication whether x or y is larger. The method is supposed to return a
negative number if x is smaller than y, zero if they are equal, and a positive number
otherwise.

This particular interface has a single method. Some interfaces have more than one
method. As you will see later, interfaces can also define constants. What is more impor-
tant, however, is what interfaces cannot supply. Interfaces never have instance fields,
and the methods are never implemented in the interface. Supplying instance fields and
method implementations is the job of the classes that implement the interface. You can
think of an interface as being similar to an abstract class with no instance fields. How-
ever, there are some differences between these two concepts—we look at them later in
some detail.

Now suppose we want to use the sort method of the Arrays class to sort an array of
Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:
class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let’s suppose
that we want to compare employees by their salary. Here is a compareTo method that
returns –1 if the first employee’s salary is less than the second employee’s salary, 0 if
they are equal, and 1 otherwise.

public int compareTo(Object otherObject)
{
 Employee other = (Employee) otherObject;
 if (salary < other.salary) return -1;
 if (salary > other.salary) return 1;
 return 0;
}

CAUTION: In the interface declaration, the compareTo method was not declared public
because all methods in an interface are automatically public. However, when implementing
the interface, you must declare the method as public. Otherwise, the compiler assumes that
the method has package visibility—the default for a class. Then the compiler complains that
you try to supply a weaker access privilege.

As of Java SE 5.0, we can do a little better. We’ll decide to implement the Comparable<Employee>
interface type instead.

class Employee implements Comparable<Employee>
{
 public int compareTo(Employee other)
 {
 if (salary < other.salary) return -1;

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes244

 if (salary > other.salary) return 1;
 return 0;
 }
 . . .
}

Note that the unsightly cast of the Object parameter has gone away.

TIP: The compareTo method of the Comparable interface returns an integer. If the objects are not
equal, it does not matter what negative or positive value you return. This flexibility can be use-
ful when you are comparing integer fields. For example, suppose each employee has a unique
integer id and you want to sort by employee ID number. Then you can simply return id -
other.id. That value will be some negative value if the first ID number is less than the other, 0 if
they are the same ID, and some positive value otherwise. However, there is one caveat: The
range of the integers must be small enough that the subtraction does not overflow. If you know
that the IDs are not negative or that their absolute value is at most (Integer.MAX_VALUE - 1) / 2,
you are safe.

Of course, the subtraction trick doesn’t work for floating-point numbers. The difference
salary - other.salary can round to 0 if the salaries are close together but not identical.

Now you saw what a class must do to avail itself of the sorting service—it must imple-
ment a compareTo method. That’s eminently reasonable. There needs to be some way for
the sort method to compare objects. But why can’t the Employee class simply provide a
compareTo method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed. When
making a method call, the compiler needs to be able to check that the method actually
exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that a[i] actually has a compareTo method. If a is an array of Compa-
rable objects, then the existence of the method is assured because every class that imple-
ments the Comparable interface must supply the method.

NOTE: You would expect that the sort method in the Arrays class is defined to accept a
Comparable[] array so that the compiler can complain if anyone ever calls sort with an array
whose element type doesn’t implement the Comparable interface. Sadly, that is not the case.
Instead, the sort method accepts an Object[] array and uses a clumsy cast:

// from the standard library--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If a[i] does not belong to a class that implements the Comparable interface, then the virtual
machine throws an exception.

Chapter 6. Interfaces and Inner Classes

Interfaces 245

Listing 6–1 presents the full code for sorting an employee array.

Listing 6–1 EmployeeSortTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the use of the Comparable interface.
5. * @version 1.30 2004-02-27
6. * @author Cay Horstmann
7. */
8. public class EmployeeSortTest
9. {

10. public static void main(String[] args)
11. {
12. Employee[] staff = new Employee[3];
13.

14. staff[0] = new Employee("Harry Hacker", 35000);
15. staff[1] = new Employee("Carl Cracker", 75000);
16. staff[2] = new Employee("Tony Tester", 38000);
17.

18. Arrays.sort(staff);
19.

20. // print out information about all Employee objects
21. for (Employee e : staff)
22. System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
23. }
24. }
25.

26. class Employee implements Comparable<Employee>
27. {
28. public Employee(String n, double s)
29. {
30. name = n;
31. salary = s;
32. }
33.

34. public String getName()
35. {
36. return name;
37. }
38.

39. public double getSalary()
40. {
41. return salary;
42. }
43.

44. public void raiseSalary(double byPercent)
45. {
46. double raise = salary * byPercent / 100;
47. salary += raise;
48. }

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes246

• int compareTo(T other)
compares this object with other and returns a negative integer if this object is less
than other, zero if they are equal, and a positive integer otherwise.

• static void sort(Object[] a)
sorts the elements in the array a, using a tuned mergesort algorithm. All elements in
the array must belong to classes that implement the Comparable interface, and they
must all be comparable to each other.

NOTE: According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = –sgn(y.compareTo(x)) for all x and y. (This implies that x.comp-
areTo(y) must throw an exception if y.compareTo(x) throws an exception.)” Here, “sgn”
is the sign of a number: sgn(n) is –1 if n is negative, 0 if n equals 0, and 1 if n is pos-
itive. In plain English, if you flip the parameters of compareTo, the sign (but not neces-
sarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Because Manager extends Employee, it implements Comparable<Employee> and not Compara-
ble<Manager>. If Manager chooses to override compareTo, it must be prepared to compare
managers to employees. It can’t simply cast the employee to a manager:

class Manager extends Employee
{
 public int compareTo(Employee other)
 {
 Manager otherManager = (Manager) other; // NO

49.

50. /**
51. * Compares employees by salary
52. * @param other another Employee object
53. * @return a negative value if this employee has a lower salary than
54. * otherObject, 0 if the salaries are the same, a positive value otherwise
55. */
56. public int compareTo(Employee other)
57. {
58. if (salary < other.salary) return -1;
59. if (salary > other.salary) return 1;
60. return 0;
61. }
62.

63. private String name;
64. private double salary;
65. }

java.lang.Comparable<T> 1.0

java.util.Arrays 1.2

Listing 6–1 EmployeeSortTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Interfaces 247

 ...
 }
 ...
 }

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then the call
x.compareTo(y) doesn’t throw an exception—it simply compares x and y as employees. But
the reverse, y.compareTo(x), throws a ClassCastException.

This is the same situation as with the equals method that we discussed in Chapter 5, and the
remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw comparison of
objects that belong to different classes. Each compareTo method should start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide a single
compareTo method in the superclass and declare it as final.

For example, suppose that you want managers to be better than regular employees, regard-
less of the salary. What about other subclasses such as Executive and Secretary? If you need
to establish a pecking order, supply a method such as rank in the Employee class. Have each
subclass override rank, and implement a single compareTo method that takes the rank values
into account.

Properties of Interfaces
Interfaces are not classes. In particular, you can never use the new operator to instantiate
an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare
interface variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the interface:
x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you can
use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows for
multiple chains of interfaces that go from a greater degree of generality to a greater
degree of specialization. For example, suppose you had an interface called Moveable.

public interface Moveable
{
 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:
public interface Powered extends Moveable
{
 double milesPerGallon();
}

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes248

Although you cannot put instance fields or static methods in an interface, you can sup-
ply constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always
public static final.

NOTE: It is legal to tag interface methods as public, and fields as public static final. Some
programmers do that, either out of habit or for greater clarity. However, the Java Language
Specification recommends that the redundant keywords not be supplied, and we follow that
recommendation.

Some interfaces define just constants and no methods. For example, the standard
library contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL,
and so on. Any class that chooses to implement the SwingConstants interface automati-
cally inherits these constants. Its methods can simply refer to NORTH rather than the more
cumbersome SwingConstants.NORTH. However, this use of interfaces seems rather degener-
ate, and we do not recommend it.

While each class can have only one superclass, classes can implement multiple interfaces.
This gives you the maximum amount of flexibility in defining a class’s behavior. For
example, the Java programming language has an important interface built into it, called
Cloneable. (We discuss this interface in detail in the next section.) If your class implements
Cloneable, the clone method in the Object class will make an exact copy of your class’s objects.
Suppose, therefore, you want cloneability and comparability. Then you simply implement
both interfaces.

class Employee implements Cloneable, Comparable

Use commas to separate the interfaces that describe the characteristics that you want
to supply.

Interfaces and Abstract Classes
If you read the section about abstract classes in Chapter 5, you may wonder why the
designers of the Java programming language bothered with introducing the concept of
interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?
{
 public abstract int compareTo(Object other);
}

The Employee class would then simply extend this abstract class and supply the compareTo
method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

Chapter 6. Interfaces and Inner Classes

Object Cloning 249

There is, unfortunately, a major problem with using an abstract base class to express a
generic property. A class can only extend a single class. Suppose that the Employee class
already extends a different class, say, Person. Then it can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:
class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more than one
superclass. This feature is called multiple inheritance. The designers of Java chose not to
support multiple inheritance, because it makes the language either very complex (as in
C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while avoiding the
complexities and inefficiencies.

C++ NOTE: C++ has multiple inheritance and all the complications that come with it, such as
virtual base classes, dominance rules, and transverse pointer casts. Few C++ programmers
use multiple inheritance, and some say it should never be used. Other programmers recom-
mend using multiple inheritance only for “mix in” style inheritance. In the mix-in style, a pri-
mary base class describes the parent object, and additional base classes (the so-called
mix-ins) may supply auxiliary characteristics. That style is similar to a Java class with a sin-
gle base class and additional interfaces. However, in C++, mix-ins can add default behavior,
whereas Java interfaces cannot.

Object Cloning
When you make a copy of a variable, the original and the copy are references to the
same object. (See Figure 6–1.) This means a change to either variable also affects the
other.

Employee original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original but
whose state can diverge over time, then you use the clone method.

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which means
that your code cannot simply call it. Only the Employee class can clone Employee objects.
There is a reason for this restriction. Think about the way in which the Object class can
implement clone. It knows nothing about the object at all, so it can make only a field-by-
field copy. If all data fields in the object are numbers or other basic types, copying the
fields is just fine. But if the object contains references to subobjects, then copying the
field gives you another reference to the subobject, so the original and the cloned objects
still share some information.

To visualize that phenomenon, let’s consider the Employee class that was introduced in
Chapter 4. Figure 6–2 shows what happens when you use the clone method of the Object

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes250

class to clone such an Employee object. As you can see, the default cloning operation is
“shallow”—it doesn’t clone objects that are referenced inside other objects.

Does it matter if the copy is shallow? It depends. If the subobject that is shared between
the original and the shallow clone is immutable, then the sharing is safe. This certainly
happens if the subobject belongs to an immutable class, such as String. Alternatively, the
subobject may simply remain constant throughout the lifetime of the object, with no
mutators touching it and no methods yielding a reference to it.

Figure 6–1 Copying and cloning

original =

copy =

original =

copy =

Copying

Cloning

Employee

Employee

Employee

Chapter 6. Interfaces and Inner Classes

Object Cloning 251

Figure 6–2 A shallow copy

Quite frequently, however, subobjects are mutable, and you must redefine the clone
method to make a deep copy that clones the subobjects as well. In our example, the hireDay
field is a Date, which is mutable.

For every class, you need to decide whether

1. The default clone method is good enough;
2. The default clone method can be patched up by calling clone on the mutable subobjects; and
3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second option, a
class must

1. Implement the Cloneable interface; and
2. Redefine the clone method with the public access modifier.

NOTE: The clone method is declared protected in the Object class so that your code can’t sim-
ply call anObject.clone(). But aren’t protected methods accessible from any subclass, and isn’t
every class a subclass of Object? Fortunately, the rules for protected access are more subtle
(see Chapter 5). A subclass can call a protected clone method only to clone its own objects.
You must redefine clone to be public to allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the normal
use of interfaces. In particular, it does not specify the clone method—that method is
inherited from the Object class. The interface merely serves as a tag, indicating that the

Employee

Employee
original =

name =

50000.0salary =

hireDay =

copy =

name =

50000.0salary =

hireDay =

String

Date

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes252

class designer understands the cloning process. Objects are so paranoid about cloning
that they generate a checked exception if an object requests cloning but does not imple-
ment that interface.

NOTE: The Cloneable interface is one of a handful of tagging interfaces that Java provides.
(Some programmers call them marker interfaces.) Recall that the usual purpose of an
interface such as Comparable is to ensure that a class implements a particular method or
set of methods. A tagging interface has no methods; its only purpose is to allow the use of
instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

We recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you still need to
implement the Cloneable interface, redefine clone to be public, and call super.clone(). Here is
an example:

class Employee implements Cloneable
{
 // raise visibility level to public, change return type
 public Employee clone() throws CloneNotSupportedException
 {
 return (Employee) super.clone();
 }

 . . .

}

NOTE: Before Java SE 5.0, the clone method always had return type Object. The covariant
return types of Java SE 5.0 let you specify the correct return type for your clone methods.

The clone method that you just saw adds no functionality to the shallow copy provided
by Object.clone. It merely makes the method public. To make a deep copy, you have to
work harder and clone the mutable instance fields.

Here is an example of a clone method that creates a deep copy:
class Employee implements Cloneable
{
 . . .
 public Employee clone() throws CloneNotSupportedException
 {
 // call Object.clone()
 Employee cloned = (Employee) super.clone();

 // clone mutable fields
 cloned.hireDay = (Date) hireDay.clone()

 return cloned;
 }
}

Chapter 6. Interfaces and Inner Classes

Object Cloning 253

The clone method of the Object class threatens to throw a CloneNotSupportedException—it does
that whenever clone is invoked on an object whose class does not implement the Cloneable
interface. Of course, the Employee and Date class implements the Cloneable interface, so the
exception won’t be thrown. However, the compiler does not know that. Therefore, we
declared the exception:

public Employee clone() throws CloneNotSupportedException

Would it be better to catch the exception instead?
public Employee clone()
{
 try
 {
 return super.clone();
 }
 catch (CloneNotSupportedException e) { return null; }
 // this won't happen, since we are Cloneable
}

This is appropriate for final classes. Otherwise, it is a good idea to leave the throws speci-
fier in place. That gives subclasses the option of throwing a CloneNotSupportedException if
they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have defined
the clone method for the Employee class, anyone can use it to clone Manager objects. Can the
Employee clone method do the job? It depends on the fields of the Manager class. In our case,
there is no problem because the bonus field has primitive type. But Manager might have
acquired fields that require a deep copy or that are not cloneable. There is no guarantee
that the implementor of the subclass has fixed clone to do the right thing. For that reason,
the clone method is declared as protected in the Object class. But you don’t have that luxury
if you want users of your classes to invoke clone.

Should you implement clone in your own classes? If your clients need to make deep cop-
ies, then you probably should. Some authors feel that you should avoid clone altogether
and instead implement another method for the same purpose. We agree that clone is
rather awkward, but you’ll run into the same issues if you shift the responsibility to
another method. At any rate, cloning is less common than you may think. Less than 5
percent of the classes in the standard library implement clone.

The program in Listing 6–2 clones an Employee object, then invokes two mutators. The
raiseSalary method changes the value of the salary field, whereas the setHireDay method
changes the state of the hireDay field. Neither mutation affects the original object because
clone has been defined to make a deep copy.

NOTE: All array types have a clone method that is public, not protected. You can use it to
make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = (int[]) luckyNumbers.clone();
cloned[5] = 12; // doesn't change luckyNumbers[5]

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes254

NOTE: Chapter 1 of Volume II shows an alternate mechanism for cloning objects, using the
object serialization feature of Java. That mechanism is easy to implement and safe, but it is
not very efficient.

Listing 6–2 CloneTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates cloning.
5. * @version 1.10 2002-07-01
6. * @author Cay Horstmann
7. */
8. public class CloneTest
9. {

10. public static void main(String[] args)
11. {
12. try
13. {
14. Employee original = new Employee("John Q. Public", 50000);
15. original.setHireDay(2000, 1, 1);
16. Employee copy = original.clone();
17. copy.raiseSalary(10);
18. copy.setHireDay(2002, 12, 31);
19. System.out.println("original=" + original);
20. System.out.println("copy=" + copy);
21. }
22. catch (CloneNotSupportedException e)
23. {
24. e.printStackTrace();
25. }
26. }
27. }
28.

29. class Employee implements Cloneable
30. {
31. public Employee(String n, double s)
32. {
33. name = n;
34. salary = s;
35. hireDay = new Date();
36. }
37.

38. public Employee clone() throws CloneNotSupportedException
39. {
40. // call Object.clone()
41. Employee cloned = (Employee) super.clone();
42.

Chapter 6. Interfaces and Inner Classes

Interfaces and Callbacks 255

Interfaces and Callbacks
A common pattern in programming is the callback pattern. In this pattern, you want to
specify the action that should occur whenever a particular event happens. For example,
you may want a particular action to occur when a button is clicked or a menu item is
selected. However, because you have not yet seen how to implement user interfaces, we
consider a similar but simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program contains a
clock, then you can ask to be notified every second so that you can update the clock face.

When you construct a timer, you set the time interval and you tell it what it should do
whenever the time interval has elapsed.

43. // clone mutable fields
44. cloned.hireDay = (Date) hireDay.clone();
45.

46. return cloned;
47. }
48.

49. /**
50. * Set the hire day to a given date.
51. * @param year the year of the hire day
52. * @param month the month of the hire day
53. * @param day the day of the hire day
54. */
55. public void setHireDay(int year, int month, int day)
56. {
57. Date newHireDay = new GregorianCalendar(year, month - 1, day).getTime();
58.
59. // Example of instance field mutation
60. hireDay.setTime(newHireDay.getTime());
61. }
62.

63. public void raiseSalary(double byPercent)
64. {
65. double raise = salary * byPercent / 100;
66. salary += raise;
67. }
68.

69. public String toString()
70. {
71. return "Employee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";
72. }
73.

74. private String name;
75. private double salary;
76. private Date hireDay;
77. }

Listing 6–2 CloneTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes256

How do you tell the timer what it should do? In many programming languages, you
supply the name of a function that the timer should call periodically. However, the
classes in the Java standard library take an object-oriented approach. You pass an
object of some class. The timer then calls one of the methods on that object. Passing an
object is more flexible than passing a function because the object can carry additional
information.
Of course, the timer needs to know what method to call. The timer requires that you
specify an object of a class that implements the ActionListener interface of the java.awt.event
package. Here is that interface:

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

C++ NOTE: As you saw in Chapter 5, Java does have the equivalent of function pointers,
namely, Method objects. However, they are difficult to use, slower, and cannot be checked for
type safety at compile time. Whenever you would use a function pointer in C++, you should
consider using an interface in Java.

Suppose you want to print a message “At the tone, the time is . . .”, followed by a beep,
once every 10 seconds. You would define a class that implements the ActionListener inter-
face. You would then place whatever statements you want to have executed inside the
actionPerformed method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives infor-
mation about the event, such as the source object that generated it—see Chapter 8 for
more information. However, detailed information about the event is not important in
this program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.
ActionListener listener = new TimePrinter();
Timer t = new Timer(10000, listener);

The first parameter of the Timer constructor is the time interval that must elapse between
notifications, measured in milliseconds. We want to be notified every 10 seconds. The
second parameter is the listener object.

Finally, you start the timer.
t.start();

Chapter 6. Interfaces and Inner Classes

Interfaces and Callbacks 257

Every 10 seconds, a message like
At the tone, the time is Thu Apr 13 23:29:08 PDT 2000

is displayed, followed by a beep.

Listing 6–3 puts the timer and its action listener to work. After the timer is started,
the program puts up a message dialog and waits for the user to click the Ok button to
stop. While the program waits for the user, the current time is displayed in 10-second
intervals.

Be patient when running the program. The “Quit program?” dialog box appears right
away, but the first timer message is displayed after 10 seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to import-
ing javax.swing.* and java.util.*. This breaks the ambiguity between javax.swing.Timer and
java.util.Timer, an unrelated class for scheduling background tasks.

Listing 6–3 TimerTest.java

1. /**
2. @version 1.00 2000-04-13
3. @author Cay Horstmann
4. */
5.

6. import java.awt.*;
7. import java.awt.event.*;
8. import java.util.*;
9. import javax.swing.*;

10. import javax.swing.Timer;
11. // to resolve conflict with java.util.Timer
12.

13. public class TimerTest
14. {
15. public static void main(String[] args)
16. {
17. ActionListener listener = new TimePrinter();
18.

19. // construct a timer that calls the listener
20. // once every 10 seconds
21. Timer t = new Timer(10000, listener);
22. t.start();
23.

24. JOptionPane.showMessageDialog(null, "Quit program?");
25. System.exit(0);
26. }
27. }
28.

29. class TimePrinter implements ActionListener
30. {

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes258

• static void showMessageDialog(Component parent, Object message)
displays a dialog box with a message prompt and an OK button. The dialog is centered
over the parent component. If parent is null, the dialog is centered on the screen.

• Timer(int interval, ActionListener listener)
constructs a timer that notifies listener whenever interval milliseconds have elapsed.

• void start()
starts the timer. Once started, the timer calls actionPerformed on its listeners.

• void stop()
stops the timer. Once stopped, the timer no longer calls actionPerformed on its
listeners.

• static Toolkit getDefaultToolkit()
gets the default toolkit. A toolkit contains information about the GUI environment.

• void beep()
emits a beep sound.

Inner Classes
An inner class is a class that is defined inside another class. Why would you want to do
that? There are three reasons:

• Inner class methods can access the data from the scope in which they are defined—
including data that would otherwise be private.

• Inner classes can be hidden from other classes in the same package.
• Anonymous inner classes are handy when you want to define callbacks without writ-

ing a lot of code.

We will break up this rather complex topic into several steps.

• Starting on page 260, you will see a simple inner class that accesses an instance field
of its outer class.

• On page 263, we cover the special syntax rules for inner classes.

31. public void actionPerformed(ActionEvent event)
32. {
33. Date now = new Date();
34. System.out.println("At the tone, the time is " + now);
35. Toolkit.getDefaultToolkit().beep();
36. }
37. }

javax.swing.JOptionPane 1.2

javax.swing.Timer 1.2

javax.awt.Toolkit 1.0

Listing 6–3 TimerTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Inner Classes 259

• Starting on page 264, we peek inside inner classes to see how they are translated
into regular classes. Squeamish readers may want to skip that section.

• Starting on page 266, we discuss local inner classes that can access local variables of
the enclosing scope.

• Starting on page 269, we introduce anonymous inner classes and show how they are
commonly used to implement callbacks.

• Finally, starting on page 271, you will see how static inner classes can be used for
nested helper classes.

C++ NOTE: C++ has nested classes. A nested class is contained inside the scope of the
enclosing class. Here is a typical example: a linked list class defines a class to hold the
links, and a class to define an iterator position.

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 };
 . . .
private:
 class Link // a nested class
 {
 public:
 Link* next;
 int data;
 };
 . . .
};

The nesting is a relationship between classes, not objects. A LinkedList object does not have
subobjects of type Iterator or Link.

There are two benefits: name control and access control. Because the name Iterator is
nested inside the LinkedList class, it is externally known as LinkedList::Iterator and cannot
conflict with another class called Iterator. In Java, this benefit is not as important because
Java packages give the same kind of name control. Note that the Link class is in the private
part of the LinkedList class. It is completely hidden from all other code. For that reason, it is
safe to make its data fields public. They can be accessed by the methods of the LinkedList
class (which has a legitimate need to access them), and they are not visible elsewhere. In
Java, this kind of control was not possible until inner classes were introduced.

However, the Java inner classes have an additional feature that makes them richer and more
useful than nested classes in C++. An object that comes from an inner class has an implicit ref-
erence to the outer class object that instantiated it. Through this pointer, it gains access to the
total state of the outer object. You will see the details of the Java mechanism later in this chapter.

In Java, static inner classes do not have this added pointer. They are the Java analog to
nested classes in C++.

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes260

Use of an Inner Class to Access Object State
The syntax for inner classes is rather complex. For that reason, we use a simple but
somewhat artificial example to demonstrate the use of inner classes. We refactor the
TimerTest example and extract a TalkingClock class. A talking clock is constructed with two
parameters: the interval between announcements and a flag to turn beeps on or off.

public class TalkingClock
{
 public TalkingClock(int interval, boolean beep) { . . . }
 public void start() { . . . }

 private int interval;
 private boolean beep;

 public class TimePrinter implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note that the TimePrinter class is now located inside the TalkingClock class. This does not
mean that every TalkingClock has a TimePrinter instance field. As you will see, the TimePrinter
objects are constructed by methods of the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the actionPerformed method checks
the beep flag before emitting a beep.

private class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
}

Something surprising is going on. The TimePrinter class has no instance field or variable
named beep. Instead, beep refers to the field of the TalkingClock object that created this Time-
Printer. This is quite innovative. Traditionally, a method could refer to the data fields of the
object invoking the method. An inner class method gets to access both its own data fields
and those of the outer object creating it.

For this to work, an object of an inner class always gets an implicit reference to the object
that created it. (See Figure 6–3.)

This reference is invisible in the definition of the inner class. However, to illuminate the
concept, let us call the reference to the outer object outer. Then, the actionPerformed method
is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);

Chapter 6. Interfaces and Inner Classes

Inner Classes 261

 if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

The outer class reference is set in the constructor. The compiler modifies all inner class
constructors, adding a parameter for the outer class reference. Because the TimePrinter
class defines no constructors, the compiler synthesizes a default constructor, generating
code like this:

public TimePrinter(TalkingClock clock) // automatically generated code
{

outer = clock;
}

Figure 6–3 An inner class object has a reference to an outer class object

Again, please note, outer is not a Java keyword. We just use it to illustrate the mecha-
nism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler passes the this
reference to the current talking clock into the constructor:

ActionListener listener = new TimePrinter(this); // parameter automatically added

Listing 6–4 shows the complete program that tests the inner class. Have another look at
the access control. Had the TimePrinter class been a regular class, then it would have
needed to access the beep flag through a public method of the TalkingClock class. Using an
inner class is an improvement. There is no need to provide accessors that are of interest
only to one other class.

NOTE: We could have declared the TimePrinter class as private. Then only TalkingClock
methods would be able to construct TimePrinter objects. Only inner classes can be private.
Regular classes always have either package or public visibility.

TalkingClock

outer =

truebeep =

TimePrinter

1000interval =

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes262

Listing 6–4 InnerClassTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.util.*;
4. import javax.swing.*;
5. import javax.swing.Timer;
6.

7. /**
8. * This program demonstrates the use of inner classes.
9. * @version 1.10 2004-02-27

10. * @author Cay Horstmann
11. */
12. public class InnerClassTest
13. {
14. public static void main(String[] args)
15. {
16. TalkingClock clock = new TalkingClock(1000, true);
17. clock.start();
18.

19. // keep program running until user selects "Ok"
20. JOptionPane.showMessageDialog(null, "Quit program?");
21. System.exit(0);
22. }
23. }
24.

25. /**
26. * A clock that prints the time in regular intervals.
27. */
28. class TalkingClock
29. {
30. /**
31. * Constructs a talking clock
32. * @param interval the interval between messages (in milliseconds)
33. * @param beep true if the clock should beep
34. */
35. public TalkingClock(int interval, boolean beep)
36. {
37. this.interval = interval;
38. this.beep = beep;
39. }
40.

41. /**
42. * Starts the clock.
43. */
44. public void start()
45. {
46. ActionListener listener = new TimePrinter();
47. Timer t = new Timer(interval, listener);
48. t.start();
49. }

Chapter 6. Interfaces and Inner Classes

Inner Classes 263

Special Syntax Rules for Inner Classes
In the preceding section, we explained the outer class reference of an inner class by call-
ing it outer. Actually, the proper syntax for the outer reference is a bit more complex. The
expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed method
of the TimePrinter inner class as

public void actionPerformed(ActionEvent event)
{
 . . .
 if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();
}

Conversely, you can write the inner object constructor more explicitly, using the syntax
outerObject.new InnerClass(construction parameters)

For example:
ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object is set to the this
reference of the method that creates the inner class object. This is the most common case.
As always, the this. qualifier is redundant. However, it is also possible to set the outer
class reference to another object by explicitly naming it. For example, because TimePrinter
is a public inner class, you can construct a TimePrinter for any talking clock:

TalkingClock jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as
OuterClass.InnerClass

when it occurs outside the scope of the outer class.

50.

51. private int interval;
52. private boolean beep;
53.

54. public class TimePrinter implements ActionListener
55. {
56. public void actionPerformed(ActionEvent event)
57. {
58. Date now = new Date();
59. System.out.println("At the tone, the time is " + now);
60. if (beep) Toolkit.getDefaultToolkit().beep();
61. }
62. }
63. }

Listing 6–4 InnerClassTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes264

Are Inner Classes Useful? Actually Necessary? Secure?
When inner classes were added to the Java language in Java 1.1, many programmers
considered them a major new feature that was out of character with the Java philosophy
of being simpler than C++. The inner class syntax is undeniably complex. (It gets more
complex as we study anonymous inner classes later in this chapter.) It is not obvious
how inner classes interact with other features of the language, such as access control
and security.

By adding a feature that was elegant and interesting rather than needed, has Java
started down the road to ruin that has afflicted so many other languages?

While we won’t try to answer this question completely, it is worth noting that inner
classes are a phenomenon of the compiler, not the virtual machine. Inner classes are
translated into regular class files with $ (dollar signs) delimiting outer and inner class
names, and the virtual machine does not have any special knowledge about them.

For example, the TimePrinter class inside the TalkingClock class is translated to a class file
TalkingClock$TimePrinter.class. To see this at work, try the following experiment: run the
ReflectionTest program of Chapter 5, and give it the class TalkingClock$TimePrinter to reflect
upon. Alternatively, simply use the javap utility:

javap -private ClassName

NOTE: If you use UNIX, remember to escape the $ character if you supply the class name
on the command line. That is, run the ReflectionTest or javap program as

java ReflectionTest TalkingClock\$TimePrinter

or

javap -private TalkingClock\$TimePrinter

You will get the following printout:
public class TalkingClock$TimePrinter
{
 public TalkingClock$TimePrinter(TalkingClock);

 public void actionPerformed(java.awt.event.ActionEvent);

 final TalkingClock this$0;
}

You can plainly see that the compiler has generated an additional instance field, this$0,
for the reference to the outer class. (The name this$0 is synthesized by the compiler—you
cannot refer to it in your code.) You can also see the TalkingClock parameter for the con-
structor.

If the compiler can automatically do this transformation, couldn’t you simply program
the same mechanism by hand? Let’s try it. We would make TimePrinter a regular class,
outside the TalkingClock class. When constructing a TimePrinter object, we pass it the this
reference of the object that is creating it.

Chapter 6. Interfaces and Inner Classes

Inner Classes 265

class TalkingClock
{
 . . .

 public void start()
 {
 ActionListener listener = new TimePrinter(this);
 Timer t = new Timer(interval, listener);
 t.start();
 }
}

class TimePrinter implements ActionListener
{
 public TimePrinter(TalkingClock clock)
 {

 outer = clock;
 }
 . . .
 private TalkingClock outer;
 }

Now let us look at the actionPerformed method. It needs to access outer.beep.
 if (outer.beep) . . . // ERROR

Here we run into a problem. The inner class can access the private data of the outer
class, but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes because they have
more access privileges.

You may well wonder how inner classes manage to acquire those added access privi-
leges, because inner classes are translated to regular classes with funny names—the vir-
tual machine knows nothing at all about them. To solve this mystery, let’s again use the
ReflectionTest program to spy on the TalkingClock class:

class TalkingClock
{
 public TalkingClock(int, boolean);

 static boolean access$0(TalkingClock);
 public void start();

 private int interval;
 private boolean beep;
}

Notice the static access$0 method that the compiler added to the outer class. It returns the
beep field of the object that is passed as a parameter.

The inner class methods call that method. The statement
if (beep)

in the actionPerformed method of the TimePrinter class effectively makes the following call:
if (access$0(outer));

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes266

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke the
access$0 method to read the private beep field. Of course, access$0 is not a legal name for a
Java method. However, hackers who are familiar with the structure of class files can eas-
ily produce a class file with virtual machine instructions to call that method, for exam-
ple, by using a hex editor. Because the secret access methods have package visibility, the
attack code would need to be placed inside the same package as the class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to access
that data field through other classes that are added to the package of the outer class, but
to do so requires skill and determination. A programmer cannot accidentally obtain
access but must intentionally build or modify a class file for that purpose.

NOTE: The synthesized constructors and methods can get quite convoluted. (Skip this note
if you are squeamish.) Suppose we turn TimePrinter into a private inner class. There are no
private classes in the virtual machine, so the compiler produces the next best thing, a pack-
age-visible class with a private constructor

private TalkingClock$TimePrinter(TalkingClock);

Of course, nobody can call that constructor, so there is a second package-visible constructor

TalkingClock$TimePrinter(TalkingClock, TalkingClock$1);

that calls the first one.

The complier translates the constructor call in the start method of the TalkingClock class to

new TalkingClock$TimePrinter(this, null)

Local Inner Classes
If you look carefully at the code of the TalkingClock example, you will find that you need
the name of the type TimePrinter only once: when you create an object of that type in the
start method.

When you have a situation like this, you can define the class locally in a single method.
public void start()
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Local classes are never declared with an access specifier (that is, public or private). Their
scope is always restricted to the block in which they are declared.

Chapter 6. Interfaces and Inner Classes

Inner Classes 267

Local classes have a great advantage: they are completely hidden from the outside
world—not even other code in the TalkingClock class can access them. No method except
start has any knowledge of the TimePrinter class.

Accessing final Variables from Outer Methods
Local classes have another advantage over other inner classes. Not only can they access
the fields of their outer classes, they can even access local variables! However, those
local variables must be declared final. Here is a typical example. Let’s move the interval
and beep parameters from the TalkingClock constructor to the start method.

public void start(int interval, final boolean beep)
{
 class TimePrinter implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 }

 ActionListener listener = new TimePrinter();
 Timer t = new Timer(interval, listener);
 t.start();
}

Note that the TalkingClock class no longer needs to store a beep instance field. It simply
refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line
if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have access to the
value of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control more closely.

1. The start method is called.
2. The object variable listener is initialized by a call to the constructor of the inner class

TimePrinter.
3. The listener reference is passed to the Timer constructor, the timer is started, and the

start method exits. At this point, the beep parameter variable of the start method no
longer exists.

4. A second later, the actionPerformed method executes if (beep)

For the code in the actionPerformed method to work, the TimePrinter class must have
copied the beep field, as a local variable of the start method, before the beep parameter
value went away. That is indeed exactly what happens. In our example, the compiler
synthesizes the name TalkingClock$1TimePrinter for the local inner class. If you use the
ReflectionTest program again to spy on the TalkingClock$1TimePrinter class, you get the
following output:

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes268

class TalkingClock$1TimePrinter
{
 TalkingClock$1TimePrinter(TalkingClock, boolean);

 public void actionPerformed(java.awt.event.ActionEvent);

 final boolean val$beep;
 final TalkingClock this$0;
}

Note the boolean parameter to the constructor and the val$beep instance variable. When an
object is created, the value beep is passed into the constructor and stored in the val$beep
field. The compiler detects access of local variables, makes matching instance fields for
each one of them, and copies the local variables into the constructor so that the instance
fields can be initialized.

From the programmer’s point of view, local variable access is quite pleasant. It makes
your inner classes simpler by reducing the instance fields that you need to program
explicitly.

As we already mentioned, the methods of a local class can refer only to local variables
that are declared final. For that reason, the beep parameter was declared final in our
example. A local variable that is declared final cannot be modified after it has been ini-
tialized. Thus, it is guaranteed that the local variable and the copy that is made inside
the local class always have the same value.

NOTE: You have seen final variables used for constants, such as

public static final double SPEED_LIMIT = 55;

The final keyword can be applied to local variables, instance variables, and static variables.
In all cases it means the same thing: You can assign to this variable once after it has been
created. Afterwards, you cannot change the value—it is final.

However, you don’t have to initialize a final variable when you define it. For example, the
final parameter variable beep is initialized once after its creation, when the start method is
called. (If the method is called multiple times, each call has its own newly created beep
parameter.) The val$beep instance variable that you can see in the TalkingClock$1TimePrinter
inner class is set once, in the inner class constructor. A final variable that isn’t initialized
when it is defined is often called a blank final variable.

The final restriction is somewhat inconvenient. Suppose, for example, you want to
update a counter in the enclosing scope. Here, we want to count how often the compareTo
method is called during sorting.

int counter = 0;
Date[] dates = new Date[100];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {
 public int compareTo(Date other)
 {
 counter++; // ERROR

Chapter 6. Interfaces and Inner Classes

Inner Classes 269

 return super.compareTo(other);
 }
 };
Arrays.sort(dates);
System.out.println(counter + " comparisons.");

You can’t declare counter as final because you clearly need to update it. You can’t replace
it with an Integer because Integer objects are immutable. The remedy is to use an array of
length 1:

final int[] counter = new int[1];
for (int i = 0; i < dates.length; i++)
 dates[i] = new Date()
 {
 public int compareTo(Date other)
 {
 counter[0]++;
 return super.compareTo(other);
 }
 };

(The array variable is still declared as final, but that merely means that you can’t have it
refer to a different array. You are free to mutate the array elements.)

When inner classes were first invented, the prototype compiler automatically made this
transformation for all local variables that were modified in the inner class. However,
some programmers were fearful of having the compiler produce heap objects behind
their backs, and the final restriction was adopted instead. It is possible that a future ver-
sion of the Java language will revise this decision.

Anonymous Inner Classes
When using local inner classes, you can often go a step further. If you want to make only
a single object of this class, you don’t even need to give the class a name. Such a class is
called an anonymous inner class.

public void start(int interval, final boolean beep)
{
 ActionListener listener = new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 if (beep) Toolkit.getDefaultToolkit().beep();
 }
 };
 Timer t = new Timer(interval, listener);
 t.start();
}

This syntax is very cryptic indeed. What it means is this: Create a new object of a class
that implements the ActionListener interface, where the required method actionPerformed is
the one defined inside the braces { }.

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes270

In general, the syntax is
new SuperType(construction parameters)
 {
 inner class methods and data
 }

Here, SuperType can be an interface, such as ActionListener; then, the inner class imple-
ments that interface. Or SuperType can be a class; then, the inner class extends that class.

An anonymous inner class cannot have constructors because the name of a constructor
must be the same as the name of a class, and the class has no name. Instead, the con-
struction parameters are given to the superclass constructor. In particular, whenever an
inner class implements an interface, it cannot have any construction parameters. Never-
theless, you must supply a set of parentheses as in

new InterfaceType()
 {
 methods and data

 }

You have to look carefully to see the difference between the construction of a new object
of a class and the construction of an object of an anonymous inner class extending that
class.

Person queen = new Person("Mary");
 // a Person object
Person count = new Person("Dracula") { . . .};
 // an object of an inner class extending Person

If the closing parenthesis of the construction parameter list is followed by an opening
brace, then an anonymous inner class is being defined.

Are anonymous inner classes a great idea or are they a great way of writing obfuscated
code? Probably a bit of both. When the code for an inner class is short, just a few lines of
simple code, then anonymous inner classes can save typing time, but it is exactly time-
saving features like this that lead you down the slippery slope to “Obfuscated Java
Code Contests.”

Listing 6–5 contains the complete source code for the talking clock program with an
anonymous inner class. If you compare this program with Listing 6–4, you will find that
in this case the solution with the anonymous inner class is quite a bit shorter, and, hope-
fully, with a bit of practice, as easy to comprehend.

Listing 6–5 AnonymousInnerClassTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.util.*;
4. import javax.swing.*;
5. import javax.swing.Timer;
6.

Chapter 6. Interfaces and Inner Classes

Inner Classes 271

Static Inner Classes
Occasionally, you want to use an inner class simply to hide one class inside another, but
you don’t need the inner class to have a reference to the outer class object. You can sup-
press the generation of that reference by declaring the inner class static.

7. /**
8. * This program demonstrates anonymous inner classes.
9. * @version 1.10 2004-02-27

10. * @author Cay Horstmann
11. */
12. public class AnonymousInnerClassTest
13. {
14. public static void main(String[] args)
15. {
16. TalkingClock clock = new TalkingClock();
17. clock.start(1000, true);
18.

19. // keep program running until user selects "Ok"
20. JOptionPane.showMessageDialog(null, "Quit program?");
21. System.exit(0);
22. }
23. }
24.

25. /**
26. * A clock that prints the time in regular intervals.
27. */
28. class TalkingClock
29. {
30. /**
31. * Starts the clock.
32. * @param interval the interval between messages (in milliseconds)
33. * @param beep true if the clock should beep
34. */
35. public void start(int interval, final boolean beep)
36. {
37. ActionListener listener = new ActionListener()
38. {
39. public void actionPerformed(ActionEvent event)
40. {
41. Date now = new Date();
42. System.out.println("At the tone, the time is " + now);
43. if (beep) Toolkit.getDefaultToolkit().beep();
44. }
45. };
46. Timer t = new Timer(interval, listener);
47. t.start();
48. }
49. }

Listing 6–5 AnonymousInnerClassTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes272

Here is a typical example of where you would want to do this. Consider the task of
computing the minimum and maximum value in an array. Of course, you write one
method to compute the minimum and another method to compute the maximum.
When you call both methods, then the array is traversed twice. It would be more effi-
cient to traverse the array only once, computing both the minimum and the maximum
simultaneously.

double min = Double.MAX_VALUE;
double max = Double.MIN_VALUE;
for (double v : values)
{
 if (min > v) min = v;
 if (max < v) max = v;
}

However, the method must return two numbers. We can achieve that by defining a class
Pair that holds two values:

class Pair
{
 public Pair(double f, double s)
 {
 first = f;
 second = s;
 }
 public double getFirst() { return first; }
 public double getSecond() { return second; }

 private double first;
 private double second;
}

The minmax function can then return an object of type Pair.
class ArrayAlg
{
 public static Pair minmax(double[] values)
 {
 . . .
 return new Pair(min, max);
 }
}

The caller of the function uses the getFirst and getSecond methods to retrieve the answers:
Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large project, it is
quite possible that some other programmer had the same bright idea, except that the
other programmer made a Pair class that contains a pair of strings. We can solve this
potential name clash by making Pair a public inner class inside ArrayAlg. Then the class
will be known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

Chapter 6. Interfaces and Inner Classes

Inner Classes 273

However, unlike the inner classes that we used in previous examples, we do not want to
have a reference to any other object inside a Pair object. That reference can be suppressed
by declaring the inner class static:

class ArrayAlg
{
 public static class Pair
 {

 . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is exactly like any
other inner class, except that an object of a static inner class does not have a reference to
the outer class object that generated it. In our example, we must use a static inner class
because the inner class object is constructed inside a static method:

public static Pair minmax(double[] d)
{
 . . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have complained
that there was no implicit object of type ArrayAlg available to initialize the inner class
object.

NOTE: You use a static inner class whenever the inner class does not need to access an
outer class object. Some programmers use the term nested class to describe static inner
classes.

NOTE: Inner classes that are declared inside an interface are automatically static and
public.

Listing 6–6 contains the complete source code of the ArrayAlg class and the nested Pair
class.

Listing 6–6 StaticInnerClassTest.java

1. /**
2. * This program demonstrates the use of static inner classes.
3. * @version 1.01 2004-02-27
4. * @author Cay Horstmann
5. */
6. public class StaticInnerClassTest
7. {
8. public static void main(String[] args)
9. {

10. double[] d = new double[20];

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes274

11. for (int i = 0; i < d.length; i++)
12. d[i] = 100 * Math.random();
13. ArrayAlg.Pair p = ArrayAlg.minmax(d);
14. System.out.println("min = " + p.getFirst());
15. System.out.println("max = " + p.getSecond());
16. }
17. }
18.

19. class ArrayAlg
20. {
21. /**
22. * A pair of floating-point numbers
23. */
24. public static class Pair
25. {
26. /**
27. * Constructs a pair from two floating-point numbers
28. * @param f the first number
29. * @param s the second number
30. */
31. public Pair(double f, double s)
32. {
33. first = f;
34. second = s;
35. }
36.

37. /**
38. * Returns the first number of the pair
39. * @return the first number
40. */
41. public double getFirst()
42. {
43. return first;
44. }
45.

46. /**
47. * Returns the second number of the pair
48. * @return the second number
49. */
50. public double getSecond()
51. {
52. return second;
53. }
54.

55. private double first;
56. private double second;
57. }
58.

Listing 6–6 StaticInnerClassTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Proxies 275

Proxies
In the final section of this chapter, we discuss proxies, a feature that became available with
Java SE 1.3. You use a proxy to create at runtime new classes that implement a given set of
interfaces. Proxies are only necessary when you don’t yet know at compile time which
interfaces you need to implement. This is not a common situation for application pro-
grammers, and you should feel free to skip this section if you are not interested in
advanced wizardry. However, for certain system programming applications, the flexibil-
ity that proxies offer can be very important.

Suppose you want to construct an object of a class that implements one or more inter-
faces whose exact nature you may not know at compile time. This is a difficult problem.
To construct an actual class, you can simply use the newInstance method or use reflection
to find a constructor. But you can’t instantiate an interface. You need to define a new
class in a running program.

To overcome this problem, some programs generate code, place it into a file, invoke the
compiler, and then load the resulting class file. Naturally, this is slow, and it also
requires deployment of the compiler together with the program. The proxy mechanism
is a better solution. The proxy class can create brand-new classes at runtime. Such a
proxy class implements the interfaces that you specify. In particular, the proxy class has
the following methods:

• All methods required by the specified interfaces; and
• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must
supply an invocation handler. An invocation handler is an object of any class that imple-
ments the InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

59. /**
60. * Computes both the minimum and the maximum of an array
61. * @param values an array of floating-point numbers
62. * @return a pair whose first element is the minimum and whose second element
63. * is the maximum
64. */
65. public static Pair minmax(double[] values)
66. {
67. double min = Double.MAX_VALUE;
68. double max = Double.MIN_VALUE;
69. for (double v : values)
70. {
71. if (min > v) min = v;
72. if (max < v) max = v;
73. }
74. return new Pair(min, max);
75. }
76. }

Listing 6–6 StaticInnerClassTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes276

Whenever a method is called on the proxy object, the invoke method of the invocation
handler gets called, with the Method object and parameters of the original call. The invoca-
tion handler must then figure out how to handle the call.

To create a proxy object, you use the newProxyInstance method of the Proxy class. The
method has three parameters:

• A class loader. As part of the Java security model, different class loaders for system
classes, classes that are downloaded from the Internet, and so on, can be used. We
discuss class loaders in Chapter 9 of Volume II. For now, we specify null to use the
default class loader.

• An array of Class objects, one for each interface to be implemented.
• An invocation handler.
There are two remaining questions. How do we define the handler? And what can we do
with the resulting proxy object? The answers depend, of course, on the problem that we
want to solve with the proxy mechanism. Proxies can be used for many purposes, such as
• Routing method calls to remote servers;
• Associating user interface events with actions in a running program; and
• Tracing method calls for debugging purposes.
In our example program, we use proxies and invocation handlers to trace method calls.
We define a TraceHandler wrapper class that stores a wrapped object. Its invoke method
simply prints the name and parameters of the method to be called and then calls the
method with the wrapped object as the implicit parameter.

class TraceHandler implements InvocationHandler
{
 public TraceHandler(Object t)
 {
 target = t;
 }

 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {
 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }

 private Object target;
}

Here is how you construct a proxy object that causes the tracing behavior whenever one
of its methods is called:

Object value = . . .;
// construct wrapper
InvocationHandler handler = new TraceHandler(value);
// construct proxy for one or more interfaces
Class[] interfaces = new Class[] { Comparable.class };
Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

Chapter 6. Interfaces and Inner Classes

Proxies 277

Now, whenever a method from one of the interfaces is called on proxy, the method name
and parameters are printed out and the method is then invoked on value.
In the program shown in Listing 6–7, we use proxy objects to trace a binary search. We
fill an array with proxies to the integers 1 . . . 1000. Then we invoke the binarySearch
method of the Arrays class to search for a random integer in the array. Finally, we print
the matching element.

Object[] elements = new Object[1000];
// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = i + 1;
 elements[i] = Proxy.newInstance(. . .); // proxy for value;
}

// construct a random integer
Integer key = new Random().nextInt(elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0) System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a class
that is defined at runtime. (It has a name such as $Proxy0.) That class also implements the
Comparable interface. However, its compareTo method calls the invoke method of the proxy
object’s handler.

NOTE: As you saw earlier in this chapter, as of Java SE 5.0, the Integer class actually imple-
ments Comparable<Integer>. However, at runtime, all generic types are erased and the proxy
is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:
if (elements[i].compareTo(key) < 0) . . .

Because we filled the array with proxy objects, the compareTo calls call the invoke method of
the TraceHandler class. That method prints the method name and parameters and then
invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call
System.out.println(elements[result]);

The println method calls toString on the proxy object, and that call is also redirected to the
invocation handler.

Here is the complete trace of a program run:
500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes278

296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key by cutting the search
interval in half in every step. Note that the toString method is proxied even though it
does not belong to the Comparable interface—as you will see in the next section, certain
Object methods are always proxied.

Listing 6–7 ProxyTest.java

1. import java.lang.reflect.*;
2. import java.util.*;
3.

4. /**
5. * This program demonstrates the use of proxies.
6. * @version 1.00 2000-04-13
7. * @author Cay Horstmann
8. */
9. public class ProxyTest

10. {
11. public static void main(String[] args)
12. {
13. Object[] elements = new Object[1000];
14.

15. // fill elements with proxies for the integers 1 ... 1000
16. for (int i = 0; i < elements.length; i++)
17. {
18. Integer value = i + 1;
19. InvocationHandler handler = new TraceHandler(value);
20. Object proxy = Proxy.newProxyInstance(null, new Class[] { Comparable.class } , handler);
21. elements[i] = proxy;
22. }
23.

24. // construct a random integer
25. Integer key = new Random().nextInt(elements.length) + 1;
26.

27. // search for the key
28. int result = Arrays.binarySearch(elements, key);
29.

30. // print match if found
31. if (result >= 0) System.out.println(elements[result]);
32. }
33. }
34.

35. /**
36. * An invocation handler that prints out the method name and parameters, then
37. * invokes the original method
38. */
39. class TraceHandler implements InvocationHandler
40. {

Chapter 6. Interfaces and Inner Classes

Proxies 279

Properties of Proxy Classes
Now that you have seen proxy classes in action, we want to go over some of their prop-
erties. Remember that proxy classes are created on the fly in a running program. How-
ever, once they are created, they are regular classes, just like any other classes in the
virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance field—the
invocation handler, which is defined in the Proxy superclass. Any additional data that are
required to carry out the proxy objects’ tasks must be stored in the invocation handler.
For example, when we proxied Comparable objects in the program shown in Listing 6–7,
the TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.
Like all proxy methods, these methods simply call invoke on the invocation handler. The
other methods of the Object class (such as clone and getClass) are not redefined.

41. /**
42. * Constructs a TraceHandler
43. * @param t the implicit parameter of the method call
44. */
45. public TraceHandler(Object t)
46. {
47. target = t;
48. }
49.

50. public Object invoke(Object proxy, Method m, Object[] args) throws Throwable
51. {
52. // print implicit argument
53. System.out.print(target);
54. // print method name
55. System.out.print("." + m.getName() + "(");
56. // print explicit arguments
57. if (args != null)
58. {
59. for (int i = 0; i < args.length; i++)
60. {
61. System.out.print(args[i]);
62. if (i < args.length - 1) System.out.print(", ");
63. }
64. }
65. System.out.println(")");
66.

67. // invoke actual method
68. return m.invoke(target, args);
69. }
70.

71. private Object target;
72. }

Listing 6–7 ProxyTest.java (continued)

Chapter 6. Interfaces and Inner Classes

Chapter 6 ■ Interfaces and Inner Classes280

The names of proxy classes are not defined. The Proxy class in Sun’s virtual machine gen-
erates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces.
That is, if you call the newProxyInstance method twice with the same class loader and inter-
face array, then you get two objects of the same class. You can also obtain that class with
the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class implements
are public, then the proxy class does not belong to any particular package. Otherwise, all
non-public interfaces must belong to the same package, and then the proxy class also
belongs to that package.

You can test whether a particular Class object represents a proxy class by calling the
isProxyClass method of the Proxy class.

• Object invoke(Object proxy, Method method, Object[] args)
define this method to contain the action that you want carried out whenever a
method was invoked on the proxy object.

• static Class getProxyClass(ClassLoader loader, Class[] interfaces)
returns the proxy class that implements the given interfaces.

• static Object newProxyInstance(ClassLoader loader, Class[] interfaces, InvocationHandler
handler)
constructs a new instance of the proxy class that implements the given interfaces.
All methods call the invoke method of the given handler object.

• static boolean isProxyClass(Class c)
returns true if c is a proxy class.

This ends our final chapter on the fundamentals of the Java programming language.
Interfaces and inner classes are concepts that you will encounter frequently. However,
as we already mentioned, proxies are an advanced technique that is of interest mainly to
tool builders, not application programmers. You are now ready to go on to learn about
graphics and user interfaces, starting with Chapter 7.

java.lang.reflect.InvocationHandler 1.3

java.lang.reflect.Proxy 1.3

Chapter 6. Interfaces and Inner Classes

ChapterChapter

281

GRAPHICS
PROGRAMMING

▼ INTRODUCING SWING

▼ CREATING A FRAME

▼ POSITIONING A FRAME

▼ DISPLAYING INFORMATION IN A COMPONENT

▼ WORKING WITH 2D SHAPES

▼ USING COLOR

▼ USING SPECIAL FONTS FOR TEXT

▼ DISPLAYING IMAGES

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming282

To this point, you have seen only how to write programs that take input from the
keyboard, fuss with it, and then display the results on a console screen. This is not what
most users want now. Modern programs don’t work this way and neither do web pages.
This chapter starts you on the road to writing Java programs that use a graphical user
interface (GUI). In particular, you learn how to write programs that size and locate win-
dows on the screen, display text with multiple fonts in a window, display images, and
so on. This gives you a useful, valuable repertoire of skills that you will put to good use
in subsequent chapters as you write interesting programs.

The next two chapters show you how to process events, such as keystrokes and mouse
clicks, and how to add interface elements, such as menus and buttons, to your applica-
tions. When you finish these three chapters, you will know the essentials for writing
graphical applications. For more sophisticated graphics programming techniques, we
refer you to Volume II.

If, on the other hand, you intend to use Java for server-side programming only and are
not interested in writing GUI programming, you can safely skip these chapters.

Introducing Swing
When Java 1.0 was introduced, it contained a class library, which Sun called the Abstract
Window Toolkit (AWT), for basic GUI programming. The basic AWT library deals with
user interface elements by delegating their creation and behavior to the native GUI tool-
kit on each target platform (Windows, Solaris, Macintosh, and so on). For example, if
you used the original AWT to put a text box on a Java window, an underlying “peer”
text box actually handled the text input. The resulting program could then, in theory,
run on any of these platforms, with the “look and feel” of the target platform—hence
Sun’s trademarked slogan “Write Once, Run Anywhere.”

The peer-based approach worked well for simple applications, but it soon became appar-
ent that it was fiendishly difficult to write a high-quality portable graphics library that
depended on native user interface elements. User interface elements such as menus,
scrollbars, and text fields can have subtle differences in behavior on different platforms. It
was hard, therefore, to give users a consistent and predictable experience with this
approach. Moreover, some graphical environments (such as X11/Motif) do not have as
rich a collection of user interface components as does Windows or the Macintosh. This in
turn further limits a portable library based on peers to a “lowest common denominator”
approach. As a result, GUI applications built with the AWT simply did not look as nice as
native Windows or Macintosh applications, nor did they have the kind of functionality
that users of those platforms had come to expect. More depressingly, there were different
bugs in the AWT user interface library on the different platforms. Developers complained
that they needed to test their applications on each platform, a practice derisively called
“write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet Foundation Classes)
that used an entirely different approach. User interface elements, such as buttons, menus,
and so on, were painted onto blank windows. The only functionality required from the
underlying windowing system was a way to put up windows and to paint on the win-
dow. Thus, Netscape’s IFC widgets looked and behaved the same no matter which plat-
form the program ran on. Sun worked with Netscape to perfect this approach, creating a
user interface library with the code name “Swing.” Swing was available as an extension
to Java 1.1 and became a part of the standard library in Java SE 1.2.

Chapter 7. Graphics Programming

Introducing Swing 283

Since, as Duke Ellington said, “It Don’t Mean a Thing If It Ain’t Got That Swing,” Swing is
now the official name for the non-peer-based GUI toolkit. Swing is part of the Java Foun-
dation Classes (JFC). The full JFC is vast and contains far more than the Swing GUI toolkit.
JFC features not only include the Swing components but also an accessibility API, a 2D
API, and a drag-and-drop API.

NOTE: Swing is not a complete replacement for the AWT—it is built on top of the AWT architec-
ture. Swing simply gives you more capable user interface components. You use the foundations
of the AWT, in particular, event handling, whenever you write a Swing program. From now on, we
say “Swing” when we mean the “painted” user interface classes, and we say “AWT” when we
mean the underlying mechanisms of the windowing toolkit, such as event handling.

Of course, Swing-based user interface elements will be somewhat slower to appear on
the user’s screen than the peer-based components used by the AWT. Our experience is
that on any reasonably modern machine, the speed difference shouldn’t be a problem.
On the other hand, the reasons to choose Swing are overwhelming:

• Swing has a rich and convenient set of user interface elements.
• Swing has few dependencies on the underlying platform; it is therefore less prone to

platform-specific bugs.
• Swing gives a consistent user experience across platforms.

Still, the third plus is also a potential drawback: If the user interface elements look the
same on all platforms, then they will look different from the native controls and thus
users will be less familiar with them.

Swing solves this problem in a very elegant way. Programmers writing Swing programs
can give the program a specific “look and feel.” For example, Figures 7–1 and 7–2 show
the same program running with the Windows and the GTK look and feel.

Figure 7–1 The Windows look and feel of Swing

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming284

Furthermore, Sun developed a platform-independent look and feel that was called
“Metal” until the marketing folks renamed it as the “Java look and feel.” However, most
programmers continue to use the term “Metal,” and we will do the same in this book.

Figure 7–2 The GTK look and feel of Swing

Some people criticized Metal as being stodgy, and the look was freshened up for the
Java SE 5.0 release (see Figure 7–3). Now the Metal look supports multiple themes—
minor variations in colors and fonts. The default theme is called “Ocean.”

Figure 7–3 The Ocean theme of the Metal look and feel

In Java SE 6, Sun improved the support for the native look and feel for Windows and
GTK. A Swing application will now pick up color scheme customizations and faithfully
render the throbbing buttons and scrollbars that have become fashionable.

Chapter 7. Graphics Programming

Creating a Frame 285

Some users prefer that their Java applications use the native look and feel of their plat-
forms, others like Metal or a third-party look and feel. As you will see in Chapter 8, it is
very easy to let your users choose their favorite look and feel

NOTE: Although we won’t have space in this book to tell you how to do it, Java programmers
can extend an existing look and feel or even design a totally new look and feel. This is a
tedious process that involves specifying how each Swing component is painted. Some
developers have done just that, especially when porting Java to nontraditional platforms
such as kiosk terminals or handheld devices. See http://www.javootoo.com for a collection of
interesting look-and-feel implementations.

Java SE 5.0 introduced a look and feel, called Synth, that makes this process easier. In
Synth, you can define a new look and feel by providing image files and XML descriptors,
without doing any programming.

NOTE: Most Java user interface programming is nowadays done in Swing, with one notable
exception. The Eclipse integrated development environment uses a graphics toolkit called
SWT that is similar to the AWT, mapping to native components on various platforms. You
can find articles describing SWT at http://www.eclipse.org/articles/.

If you have programmed Microsoft Windows applications with Visual Basic or C#, you
know about the ease of use that comes with the graphical layout tools and resource editors
these products provide. These tools let you design the visual appearance of your applica-
tion, and then they generate much (often all) of the GUI code for you. GUI builders are avail-
able for Java programming, but we feel that in order to use these tools effectively, you
should know how to build a user interface manually. The remainder of this chapter tells you
the basics about displaying a window and painting its contents.

Creating a Frame
A top-level window (that is, a window that is not contained inside another window) is
called a frame in Java. The AWT library has a class, called Frame, for this top level. The
Swing version of this class is called JFrame and extends the Frame class. The JFrame is one of
the few Swing components that is not painted on a canvas. Thus, the decorations (but-
tons, title bar, icons, and so on) are drawn by the user’s windowing system, not by
Swing.

CAUTION: Most Swing component classes start with a “J”: JButton, JFrame, and so on. There
are classes such as Button and Frame, but they are AWT components. If you accidentally omit
a “J”, your program may still compile and run, but the mixture of Swing and AWT compo-
nents can lead to visual and behavioral inconsistencies.

In this section, we go over the most common methods for working with a Swing JFrame.
Listing 7–1 lists a simple program that displays an empty frame on the screen, as illus-
trated in Figure 7–4.

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming286

Figure 7–4 The simplest visible frame

Let’s work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package name javax indicates a
Java extension package, not a core package. For historical reasons, Swing is considered an
extension. However, it is present in every Java SE implementation since version 1.2.

By default, a frame has a rather useless size of 0 × 0 pixels. We define a subclass Simple-
Frame whose constructor sets the size to 300 × 200 pixels. This is the only difference
between a SimpleFrame and a JFrame.

Listing 7–1 SimpleFrameTest.java

1. import javax.swing.*;
2.

3. /**
4. * @version 1.32 2007-06-12
5. * @author Cay Horstmann
6. */
7. public class SimpleFrameTest
8. {
9. public static void main(String[] args)

10. {
11. SimpleFrame frame = new SimpleFrame();
12. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13. frame.setVisible(true);
14. }
15. }
16.

17. class SimpleFrame extends JFrame
18. {
19. public SimpleFrame()
20. {
21. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
22. }
23.

24. public static final int DEFAULT_WIDTH = 300;
25. public static final int DEFAULT_HEIGHT = 200;
26. }

Chapter 7. Graphics Programming

Creating a Frame 287

In the main method of the SimpleFrameTest class, we construct a SimpleFrame object and make it
visible.

There are two technical issues that we need to address in every Swing program.

First, all Swing components must be configured from the event dispatch thread, the thread
of control that passes events such as mouse clicks and keystrokes to the user interface
components. The following code fragment is used to execute statements in the event
dispatch thread:

EventQueue.invokeLater(new Runnable()
 {
 public void run()
 {
 statements
 }
 });

We discuss the details in Chapter 14. For now, you should simply consider it a magic
incantation that is used to start a Swing program.

NOTE: You will see many Swing programs that do not initialize the user interface in the
event dispatch thread. It used to be perfectly acceptable to carry out the initialization in the
main thread. Sadly, as Swing components got more complex, the programmers at Sun were
no longer able to guarantee the safety of that approach. The probability of an error is
extremely low, but you would not want to be one of the unlucky few who encounter an inter-
mittent problem. It is better to do the right thing, even if the code looks rather mysterious.

Next, we define what should happen when the user closes the application’s frame. For
this particular program, we want the program to exit. To select this behavior, we use the
statement

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to exit just
because the user closes one of the frames. By default, a frame is hidden when the user
closes it, but the program does not terminate. (It might have been nice if the program
terminated after the last frame became invisible, but that is not how Swing works.)

Simply constructing a frame does not automatically display it. Frames start their life invis-
ible. That gives the programmer the chance to add components into the frame before
showing it for the first time. To show the frame, the main method calls the setVisible method
of the frame.

NOTE: Before Java SE 5.0, it was possible to use the show method that the JFrame class inher-
its from the superclass Window. The Window class has a superclass Component that also has a
show method. The Component.show method was deprecated in Java SE 1.2. You are supposed
to call setVisible(true) instead if you want to show a component. However, until Java SE 1.4,
the Window.show method was not deprecated. In fact, it was quite useful, making the window
visible and bringing it to the front. Sadly, that benefit was lost on the deprecation police, and
Java SE 5.0 deprecated the show method for windows as well.

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming288

After scheduling the initialization statements, the main method exits. Note that exiting
main does not terminate the program, just the main thread. The event dispatch thread
keeps the program alive until it is terminated, either by closing the frame or by calling
the System.exit method.

The running program is shown in Figure 7–4 on page 286—it is a truly boring top-level
window. As you can see in the figure, the title bar and surrounding decorations, such as
resize corners, are drawn by the operating system and not the Swing library. If you run
the same program in Windows, GTK, or the Mac, the frame decorations are different.
The Swing library draws everything inside the frame. In this program, it just fills the
frame with a default background color.

NOTE: As of Java SE 1.4, you can turn off all frame decorations by calling
frame.setUndecorated(true).

Positioning a Frame
The JFrame class itself has only a few methods for changing how frames look. Of course,
through the magic of inheritance, most of the methods for working with the size and position
of a frame come from the various superclasses of JFrame. Here are some of the most important
methods:

• The setLocation and setBounds methods for setting the position of the frame
• The setIconImage method, which tells the windowing system which icon to display in

the title bar, task switcher window, and so on
• The setTitle method for changing the text in the title bar
• The setResizable method, which takes a boolean to determine if a frame will be resize-

able by the user

Figure 7–5 illustrates the inheritance hierarchy for the JFrame class.

TIP: The API notes for this section give what we think are the most important methods for
giving frames the proper look and feel. Some of these methods are defined in the JFrame
class. Others come from the various superclasses of JFrame. At some point, you may need to
search the API docs to see if there are methods for some special purpose. Unfortunately,
that is a bit tedious to do with inherited methods. For example, the toFront method is applica-
ble to objects of type JFrame, but because it is simply inherited from the Window class, the
JFrame documentation doesn’t explain it. If you feel that there should be a method to do
something and it isn’t explained in the documentation for the class you are working with, try
looking at the API documentation for the methods of the superclasses of that class. The top
of each API page has hyperlinks to the superclasses, and inherited methods are listed
below the method summary for the new and overridden methods.

As the API notes indicate, the Component class (which is the ancestor of all GUI objects)
and the Window class (which is the superclass of the Frame class) are where you need to look
to find the methods to resize and reshape frames. For example, the setLocation method in
the Component class is one way to reposition a component. If you make the call

setLocation(x, y)

Chapter 7. Graphics Programming

Positioning a Frame 289

the top-left corner is located x pixels across and y pixels down, where (0, 0) is the top-left
corner of the screen. Similarly, the setBounds method in Component lets you resize and relo-
cate a component (in particular, a JFrame) in one step, as

setBounds(x, y, width, height)

Figure 7–5 Inheritance hierarchy for the frame and component classes in
 AWT and Swing

Object

Window

JPanel Frame

JFrame

Container

Component

JComponent

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming290

Alternatively, you can give the windowing system control on window placement. If you
call

setLoationByPlatform(true);

before displaying the window, the windowing system picks the location (but not the
size), typically with a slight offset from the last window.

NOTE: For a frame, the coordinates of the setLocation and setBounds are taken relative to the
whole screen. As you will see in Chapter 9, for other components inside a container, the
measurements are taken relative to the container.

Frame Properties
Many methods of component classes come in getter/setter pairs, such as the following
methods of the Frame class:

public String getTitle()
public void setTitle(String title)

Such a getter/setter pair is called a property. A property has a name and a type. The
name is obtained by changing the first letter after the get or set to lowercase. For exam-
ple, the Frame class has a property with name title and type String.

Conceptually, title is a property of the frame. When we set the property, we expect that
the title changes on the user’s screen. When we get the property, we expect that we get
back the value that we set.

We do not know (or care) how the Frame class implements this property. Perhaps it sim-
ply uses its peer frame to store the title. Perhaps it has an instance field

private String title; // not required for property

If the class does have a matching instance field, we don’t know (or care) how the getter
and setter methods are implemented. Perhaps they just read and write the instance
field. Perhaps they do more, such as notifying the windowing system whenever the title
changes.

There is one exception to the get/set convention: For properties of type boolean, the get-
ter starts with is. For example, the following two methods define the locationByPlatform
property:

public boolean isLocationByPlatform()
public void setLocationByPlatform(boolean b)

We will look at properties in much greater detail in Chapter 8 of Volume II.

NOTE: Many programming languages, in particular, Visual Basic and C#, have built-in sup-
port for properties. It is possible that a future version of Java will also have a language con-
struct for properties.

Determining a Good Frame Size
Remember: if you don’t explicitly size a frame, all frames will default to being 0 by 0
pixels. To keep our example programs simple, we resize the frames to a size that we
hope works acceptably on most displays. However, in a professional application,

Chapter 7. Graphics Programming

Positioning a Frame 291

you should check the resolution of the user’s screen and write code that resizes the
frames accordingly: a window that looks nice on a laptop screen will look like a
postage stamp on a high-resolution screen.

To find out the screen size, use the following steps. Call the static getDefaultToolkit
method of the Toolkit class to get the Toolkit object. (The Toolkit class is a dumping ground
for a variety of methods that interface with the native windowing system.) Then call the
getScreenSize method, which returns the screen size as a Dimension object. A Dimension object
simultaneously stores a width and a height, in public (!) instance variables width and
height. Here is the code:

Toolkit kit = Toolkit.getDefaultToolkit();
Dimension screenSize = kit.getScreenSize();
int screenWidth = screenSize.width;
int screenHeight = screenSize.height;

We use 50% of these values for the frame size, and tell the windowing system to
position the frame:

setSize(screenWidth / 2, screenHeight / 2);
setLocationByPlatform(true);

We also supply an icon. Because the representation of images is also system depen-
dent, we again use the toolkit to load an image. Then, we set the image as the icon
for the frame:

Image img = kit.getImage("icon.gif");
setIconImage(img);

Depending on your operating system, you can see the icon in various places. For exam-
ple, in Windows, the icon is displayed in the top-left corner of the window, and you can
see it in the list of active tasks when you press ALT+TAB.

Listing 7–2 is the complete program. When you run the program, pay attention to the
“Core Java” icon.

Here are a few additional tips for dealing with frames:

• If your frame contains only standard components such as buttons and text fields,
you can simply call the pack method to set the frame size. The frame will be set to the
smallest size that contains all components. It is quite common to set the main frame
of a program to the maximum size. As of Java SE 1.4, you can simply maximize a
frame by calling

frame.setExtendedState(Frame.MAXIMIZED_BOTH);

• It is also a good idea to remember how the user positions and sizes the frame of
your application and restore those bounds when you start the application again.
You will see in Chapter 10 how to use the Preferences API for this purpose.

• If you write an application that takes advantage of multiple display screens, use the
GraphicsEnvironment and GraphicsDevice classes to find the dimensions of the display
screens.

• The GraphicsDevice class also lets you execute your application in full-screen mode.

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming292

Listing 7–2 SizedFrameTest.java

1. import java.awt.*;
2.

3. import javax.swing.*;
4.

5. /**
6. * @version 1.32 2007-04-14
7. * @author Cay Horstmann
8. */
9. public class SizedFrameTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. SizedFrame frame = new SizedFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. class SizedFrame extends JFrame
26. {
27. public SizedFrame()
28. {
29. // get screen dimensions
30.

31. Toolkit kit = Toolkit.getDefaultToolkit();
32. Dimension screenSize = kit.getScreenSize();
33. int screenHeight = screenSize.height;
34. int screenWidth = screenSize.width;
35.

36. // set frame width, height and let platform pick screen location
37.

38. setSize(screenWidth / 2, screenHeight / 2);
39. setLocationByPlatform(true);
40.

41. // set frame icon and title
42.

43. Image img = kit.getImage("icon.gif");
44. setIconImage(img);
45. setTitle("SizedFrame");
46. }
47. }

Chapter 7. Graphics Programming

Positioning a Frame 293

• boolean isVisible()
• void setVisible(boolean b)

gets or sets the visible property. Components are initially visible, with the
exception of top-level components such as JFrame.

• void setSize(int width, int height) 1.1
resizes the component to the specified width and height.

• void setLocation(int x, int y) 1.1
moves the component to a new location. The x- and y-coordinates use the
coordinates of the container if the component is not a top-level component, or the
coordinates of the screen if the component is top level (for example, a JFrame).

• void setBounds(int x, int y, int width, int height) 1.1
moves and resizes this component.

• Dimension getSize() 1.1
• void setSize(Dimension d) 1.1

gets or sets the size property of this component.

• void toFront()
shows this window on top of any other windows.

• void toBack()
moves this window to the back of the stack of windows on the desktop and
rearranges all other visible windows accordingly.

• boolean isLocationByPlatform() 5.0
• void setLocationByPlatform(boolean b) 5.0

gets or sets the locationByPlatform property. When the property is set before this
window is displayed, the platform picks a suitable location.

• boolean isResizable()
• void setResizable(boolean b)

gets or sets the resizable property. When the property is set, the user can resize the
frame.

• String getTitle()
• void setTitle(String s)

gets or sets the title property that determines the text in the title bar for the frame.
• Image getIconImage()
• void setIconImage(Image image)

gets or sets the iconImage property that determines the icon for the frame. The
windowing system may display the icon as part of the frame decoration or in
other locations.

java.awt.Component 1.0

java.awt.Window 1.0

java.awt.Frame 1.0

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming294

• boolean isUndecorated() 1.4
• void setUndecorated(boolean b) 1.4

gets or sets the undecorated property. When the property is set, the frame is
displayed without decorations such as a title bar or close button. This method
must be called before the frame is displayed.

• int getExtendedState() 1.4
• void setExtendedState(int state) 1.4

gets or sets the extended window state. The state is one of
Frame.NORMAL
Frame.ICONIFIED
Frame.MAXIMIZED_HORIZ
Frame.MAXIMIZED_VERT
Frame.MAXIMIZED_BOTH

• static Toolkit getDefaultToolkit()
returns the default toolkit.

• Dimension getScreenSize()
gets the size of the user’s screen.

• Image getImage(String filename)
loads an image from the file with name filename.

Displaying Information in a Component
In this section, we show you how to display information inside a frame. For example,
rather than displaying “Not a Hello, World program” in text mode in a console window
as we did in Chapter 3, we display the message in a frame, as shown in Figure 7–6.

Figure 7–6 A frame that displays information

You could draw the message string directly onto a frame, but that is not considered
good programming practice. In Java, frames are really designed to be containers for
components such as a menu bar and other user interface elements. You normally draw
on another component which you add to the frame.

The structure of a JFrame is surprisingly complex. Look at Figure 7–7, which shows the
makeup of a JFrame. As you can see, four panes are layered in a JFrame. The root pane, lay-
ered pane, and glass pane are of no interest to us; they are required to organize the
menu bar and content pane and to implement the look and feel. The part that most con-

java.awt.Toolkit 1.0

Chapter 7. Graphics Programming

Displaying Information in a Component 295

cerns Swing programmers is the content pane. When designing a frame, you add compo-
nents into the content pane, using code such as the following:

Container contentPane = frame.getContentPane();
Component c = . . .;
contentPane.add(c);

Up to Java SE 1.4, the add method of the JFrame class was defined to throw an exception
with the message “Do not use JFrame.add(). Use JFrame.getContentPane().add() instead.” As of
Java SE 5.0, the JFrame.add method has given up trying to reeducate programmers, and it
simply calls add on the content pane.

Thus, as of Java SE 5.0, you can simply use the call
frame.add(c);

Figure 7–7 Internal structure of a JFrame

In our case, we want to add a single component to the frame onto which we will draw
our message. To draw on a component, you define a class that extends JComponent and
override the paintComponent method in that class.

The paintComponent method takes one parameter of type Graphics. A Graphics object
remembers a collection of settings for drawing images and text, such as the font you
set or the current color. All drawing in Java must go through a Graphics object. It has
methods that draw patterns, images, and text.

Title

frame

root pane

layered pane

menu bar (optional)

content pane

glass pane

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming296

NOTE: The Graphics parameter is similar to a device context in Windows or a graphics
context in X11 programming.

Here’s how to make a component onto which you can draw:
class MyComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 code for drawing
 }
}

Each time a window needs to be redrawn, no matter what the reason, the event han-
dler notifies the component. This causes the paintComponent methods of all components
to be executed.
Never call the paintComponent method yourself. It is called automatically whenever a part
of your application needs to be redrawn, and you should not interfere with this auto-
matic process.
What sorts of actions trigger this automatic response? For example, painting occurs
because the user increased the size of the window or minimized and then restored
the window. If the user popped up another window and it covered an existing win-
dow and then made the overlaid window disappear, the application window that
was covered is now corrupted and will need to be repainted. (The graphics system
does not save the pixels underneath.) And, of course, when the window is displayed
for the first time, it needs to process the code that specifies how and where it should
draw the initial elements.

TIP: If you need to force repainting of the screen, call the repaint method instead of
paintComponent. The repaint method will cause paintComponent to be called for all compo-
nents, with a properly configured Graphics object.

As you saw in the code fragment above, the paintComponent method takes a single param-
eter of type Graphics. Measurement on a Graphics object for screen display is done in pix-
els. The (0, 0) coordinate denotes the top-left corner of the component on whose
surface you are drawing.
Displaying text is considered a special kind of drawing. The Graphics class has a drawString
method that has the following syntax:

g.drawString(text, x, y)

In our case, we want to draw the string "Not a Hello, World Program" in our original win-
dow, roughly one-quarter of the way across and halfway down. Although we don’t
yet know how to measure the size of the string, we’ll start the string at coordinates
(75, 100). This means the first character in the string will start at a position 75 pixels to
the right and 100 pixels down. (Actually, it is the baseline for the text that is 100 pixels
down—see page 313 for more on how text is measured.) Thus, our paintComponent
method looks like this:

Chapter 7. Graphics Programming

Displaying Information in a Component 297

class NotHelloWorldComponent extends JComponent
{
 public void paintComponent(Graphics g)
 {
 g.drawString("Not a Hello, World program", MESSAGE_X, MESSAGE_Y);
 }

 public static final int MESSAGE_X = 75;
 public static final int MESSAGE_Y = 100;
}

Listing 7–3 shows the complete code.

NOTE: Instead of extending JComponent, some programmers prefer to extend the JPanel
class. A JPanel is intended to be a container that can contain other components, but it is
also possible to paint on it. There is just one difference. A panel is opaque, which means
that it is responsible for painting all pixels within its bounds. The easiest way to achieve
that is to paint the panel with the background color, by calling super.paintComponent in the
paintComponent method of each panel subclass:

class NotHelloWorldPanel extends JPanel
{
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);

 . . . // code for drawing will go here
 }
}

Listing 7–3 NotHelloWorld.java

1. import javax.swing.*;
2. import java.awt.*;
3.

4. /**
5. * @version 1.32 2007-06-12
6. * @author Cay Horstmann
7. */
8. public class NotHelloWorld
9. {

10. public static void main(String[] args)
11. {
12. EventQueue.invokeLater(new Runnable()
13. {
14. public void run()
15. {
16. NotHelloWorldFrame frame = new NotHelloWorldFrame();
17. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18. frame.setVisible(true);
19. }

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming298

• Container getContentPane()
returns the content pane object for this JFrame.

• Component add(Component c)
adds and returns the given component to the content pane of this frame. (Before
Java SE 5.0, this method threw an exception.)

20. });
21. }
22. }
23.

24. /**
25. * A frame that contains a message panel
26. */
27. class NotHelloWorldFrame extends JFrame
28. {
29. public NotHelloWorldFrame()
30. {
31. setTitle("NotHelloWorld");
32. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
33.

34. // add panel to frame
35.

36. NotHelloWorldPanel panel = new NotHelloWorldPanel();
37. add(panel);
38. }
39.

40. public static final int DEFAULT_WIDTH = 300;
41. public static final int DEFAULT_HEIGHT = 200;
42. }
43.

44. /**
45. * A panel that displays a message.
46. */
47. class NotHelloWorldPanel extends JPanel
48. {
49. public void paintComponent(Graphics g)
50. {
51. g.drawString("Not a Hello, World program", MESSAGE_X, MESSAGE_Y);
52. }
53.

54. public static final int MESSAGE_X = 75;
55. public static final int MESSAGE_Y = 100;
56. }
57.

javax.swing.JFrame 1.2

Listing 7–3 NotHelloWorld.java (continued)

Chapter 7. Graphics Programming

Working with 2D Shapes 299

• void repaint()
causes a repaint of the component “as soon as possible.”

• public void repaint(int x, int y, int width, int height)
causes a repaint of a part of the component “as soon as possible.”

• void paintComponent(Graphics g)
overrides this method to describe how your component needs to be painted.

Working with 2D Shapes
Starting with Java 1.0, the Graphics class had methods to draw lines, rectangles, ellipses,
and so on. But those drawing operations are very limited. For example, you cannot vary
the line thickness and you cannot rotate the shapes.

Java SE 1.2 introduced the Java 2D library, which implements a powerful set of graphical
operations. In this chapter, we only look at the basics of the Java 2D library—see the
Advanced AWT chapter in Volume II for more information on the advanced features.

To draw shapes in the Java 2D library, you need to obtain an object of the Graphics2D
class. This class is a subclass of the Graphics class. Ever since Java SE 2, methods such
as paintComponent automatically receive an object of the Graphics2D class. Simply use a
cast, as follows:

public void paintComponent(Graphics g)
{
 Graphics2D g2 = (Graphics2D) g;
 . . .
}

The Java 2D library organizes geometric shapes in an object-oriented fashion. In particu-
lar, there are classes to represent lines, rectangles, and ellipses:

Line2D
Rectangle2D
Ellipse2D

These classes all implement the Shape interface.

NOTE: The Java 2D library supports more complex shapes—in particular, arcs, quadratic
and cubic curves, and general paths. See Chapter 7 of Volume II for more information.

To draw a shape, you first create an object of a class that implements the Shape interface
and then call the draw method of the Graphics2D class. For example:

Rectangle2D rect = . . .;
g2.draw(rect);

java.awt.Component 1.0

javax.swing.JComponent 1.2

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming300

NOTE: Before the Java 2D library appeared, programmers used methods of the Graphics
class such as drawRectangle to draw shapes. Superficially, the old-style method calls look a
bit simpler. However, by using the Java 2D library, you keep your options open—you can
later enhance your drawings with some of the many tools that the Java 2D library supplies.

Using the Java 2D shape classes introduces some complexity. Unlike the 1.0 draw
methods, which used integer pixel coordinates, the Java 2D shapes use floating-
point coordinates. In many cases, that is a great convenience because it allows you
to specify your shapes in coordinates that are meaningful to you (such as millime-
ters or inches) and then translate to pixels. The Java 2D library uses single-precision
float quantities for many of its internal floating-point calculations. Single precision is
sufficient—after all, the ultimate purpose of the geometric computations is to set
pixels on the screen or printer. As long as any roundoff errors stay within one pixel,
the visual outcome is not affected. Furthermore, float computations are faster on
some platforms, and float values require half the storage of double values.

However, manipulating float values is sometimes inconvenient for the programmer
because the Java programming language is adamant about requiring casts when
converting double values into float values. For example, consider the following statement:

float f = 1.2; // Error

This statement does not compile because the constant 1.2 has type double, and the com-
piler is nervous about loss of precision. The remedy is to add an F suffix to the floating-
point constant:

float f = 1.2F; // Ok

Now consider this statement:
Rectangle2D r = . . .
float f = r.getWidth(); // Error

This statement does not compile either, for the same reason. The getWidth method returns
a double. This time, the remedy is to provide a cast:

float f = (float) r.getWidth(); // Ok

Because the suffixes and casts are a bit of a pain, the designers of the 2D library decided
to supply two versions of each shape class: one with float coordinates for frugal program-
mers, and one with double coordinates for the lazy ones. (In this book, we fall into the sec-
ond camp and use double coordinates whenever we can.)

The library designers chose a curious, and initially confusing, method for packaging
these choices. Consider the Rectangle2D class. This is an abstract class with two concrete
subclasses, which are also static inner classes:

Rectangle2D.Float
Rectangle2D.Double

Figure 7–8 shows the inheritance diagram.

Chapter 7. Graphics Programming

Working with 2D Shapes 301

Figure 7–8 2D rectangle classes

It is best to try to ignore the fact that the two concrete classes are static inner classes—
that is just a gimmick to avoid names such as FloatRectangle2D and DoubleRectangle2D. (For
more information on static inner classes, see Chapter 6.)

When you construct a Rectangle2D.Float object, you supply the coordinates as float num-
bers. For a Rectangle2D.Double object, you supply them as double numbers.

Rectangle2D.Float floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);
Rectangle2D.Double doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);

Actually, because both Rectangle2D.Float and Rectangle2D.Double extend the common
Rectangle2D class and the methods in the subclasses simply override methods in the
Rectangle2D superclass, there is no benefit in remembering the exact shape type. You can
simply use Rectangle2D variables to hold the rectangle references.

Rectangle2D floatRect = new Rectangle2D.Float(10.0F, 25.0F, 22.5F, 20.0F);
Rectangle2D doubleRect = new Rectangle2D.Double(10.0, 25.0, 22.5, 20.0);

That is, you only need to use the pesky inner classes when you construct the shape
objects.

The construction parameters denote the top-left corner, width, and height of the
rectangle.

NOTE: Actually, the Rectangle2D.Float class has one additional method that is not inherited
from Rectangle2D, namely, setRect(float x, float y, float h, float w). You lose that method if
you store the Rectangle2D.Float reference in a Rectangle2D variable. But it is not a big loss—
the Rectangle2D class has a setRect method with double parameters.

The Rectangle2D methods use double parameters and return values. For example, the getWidth
method returns a double value, even if the width is stored as a float in a Rectangle2D.Float
object.

Rectangle2D
.Float

Rectangle2D
.Double

Rectangle2D

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming302

TIP: Simply use the Double shape classes to avoid dealing with float values altogether. How-
ever, if you are constructing thousands of shape objects, then you can consider using the
Float classes to conserve memory.

What we just discussed for the Rectangle2D classes holds for the other shape classes as
well. Furthermore, there is a Point2D class with subclasses Point2D.Float and Point2D.Double.
Here is how to make a point object.

Point2D p = new Point2D.Double(10, 20);

TIP: The Point2D class is very useful—it is more object oriented to work with Point2D objects
than with separate x- and y- values. Many constructors and methods accept Point2D param-
eters. We suggest that you use Point2D objects when you can—they usually make geometric
computations easier to understand.

The classes Rectangle2D and Ellipse2D both inherit from the common superclass RectangularShape.
Admittedly, ellipses are not rectangular, but they have a bounding rectangle (see Figure 7–9).

Figure 7–9 The bounding rectangle of an ellipse

The RectangularShape class defines over 20 methods that are common to these shapes, among
them such useful methods as getWidth, getHeight, getCenterX, and getCenterY (but sadly, at the
time of this writing, not a getCenter method that returns the center as a Point2D object).

Finally, a couple of legacy classes from Java 1.0 have been fitted into the shape class hier-
archy. The Rectangle and Point classes, which store a rectangle and a point with integer
coordinates, extend the Rectangle2D and Point2D classes.

Figure 7–10 shows the relationships between the shape classes. However, the Double and
Float subclasses are omitted. Legacy classes are marked with a gray fill.

Rectangle2D and Ellipse2D objects are simple to construct. You need to specify

• The x- and y-coordinates of the top-left corner; and
• The width and height.

For ellipses, these refer to the bounding rectangle. For example,
Ellipse2D e = new Ellipse2D.Double(150, 200, 100, 50);

constructs an ellipse that is bounded by a rectangle with the top-left corner at (150, 200),
width 100, and height 50.

Chapter 7. Graphics Programming

Working with 2D Shapes 303

Figure 7–10 Relationships between the shape classes

However, sometimes you don’t have the top-left corner readily available. It is quite
common to have two diagonal corner points of a rectangle, but perhaps they aren’t the
top-left and bottom-right corners. You can’t simply construct a rectangle as

Rectangle2D rect = new Rectangle2D.Double(px, py, qx - px, qy - py); // Error

If p isn’t the top-left corner, one or both of the coordinate differences will be negative
and the rectangle will come out empty. In that case, first create a blank rectangle and use
the setFrameFromDiagonal method, as follows:

Rectangle2D rect = new Rectangle2D.Double();
rect.setFrameFromDiagonal(px, py, qx, qy);

Or, even better, if you know the corner points as Point2D objects p and q, then
rect.setFrameFromDiagonal(p, q);

When constructing an ellipse, you usually know the center, width, and height, and not
the corner points of the bounding rectangle (which don’t even lie on the ellipse). The
setFrameFromCenter method uses the center point, but it still requires one of the four corner
points. Thus, you will usually end up constructing an ellipse as follows:

Point2D Shape

Point Line2D Rectangular
Shape

Rectangle2D

Rectangle

Ellipse2D

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming304

Ellipse2D ellipse = new Ellipse2D.Double(centerX - width / 2, centerY - height / 2, width, height);

To construct a line, you supply the start and end points, either as Point2D objects or as
pairs of numbers:

Line2D line = new Line2D.Double(start, end);

or
Line2D line = new Line2D.Double(startX, startY, endX, endY);

The program in Listing 7–4 draws a rectangle, the ellipse that is enclosed in the rectan-
gle, a diagonal of the rectangle, and a circle that has the same center as the rectangle.
Figure 7–11 shows the result.

Figure 7–11 Drawing geometric shapes

Listing 7–4 DrawTest.java

1. import java.awt.*;
2. import java.awt.geom.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.32 2007-04-14
7. * @author Cay Horstmann
8. */
9. public class DrawTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()

Chapter 7. Graphics Programming

Working with 2D Shapes 305

16. {
17. DrawFrame frame = new DrawFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame that contains a panel with drawings
27. */
28. class DrawFrame extends JFrame
29. {
30. public DrawFrame()
31. {
32. setTitle("DrawTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // add panel to frame
36.

37. DrawComponent component = new DrawComponent();
38. add(component);
39. }
40.

41. public static final int DEFAULT_WIDTH = 400;
42. public static final int DEFAULT_HEIGHT = 400;
43. }
44.

45. /**
46. * A component that displays rectangles and ellipses.
47. */
48. class DrawComponent extends JComponent
49. {
50. public void paintComponent(Graphics g)
51. {
52. Graphics2D g2 = (Graphics2D) g;
53.

54. // draw a rectangle
55.

56. double leftX = 100;
57. double topY = 100;
58. double width = 200;
59. double height = 150;
60.

61. Rectangle2D rect = new Rectangle2D.Double(leftX, topY, width, height);
62. g2.draw(rect);
63.

64. // draw the enclosed ellipse

Listing 7–4 DrawTest.java (continued)

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming306

• double getCenterX()
• double getCenterY()
• double getMinX()
• double getMinY()
• double getMaxX()
• double getMaxY()

returns the center, minimum, or maximum x- or y-value of the enclosing rectangle.
• double getWidth()
• double getHeight()

returns the width or height of the enclosing rectangle.
• double getX()
• double getY()

returns the x- or y-coordinate of the top-left corner of the enclosing rectangle.

• Rectangle2D.Double(double x, double y, double w, double h)
constructs a rectangle with the given top-left corner, width, and height.

• Rectangle2D.Float(float x, float y, float w, float h)
constructs a rectangle with the given top-left corner, width, and height.

65.

66. Ellipse2D ellipse = new Ellipse2D.Double();
67. ellipse.setFrame(rect);
68. g2.draw(ellipse);
69.

70. // draw a diagonal line
71.

72. g2.draw(new Line2D.Double(leftX, topY, leftX + width, topY + height));
73.

74. // draw a circle with the same center
75.

76. double centerX = rect.getCenterX();
77. double centerY = rect.getCenterY();
78. double radius = 150;
79.

80. Ellipse2D circle = new Ellipse2D.Double();
81. circle.setFrameFromCenter(centerX, centerY, centerX + radius, centerY + radius);
82. g2.draw(circle);
83. }
84. }

java.awt.geom.RectangularShape 1.2

java.awt.geom.Rectangle2D.Double 1.2

java.awt.geom.Rectangle2D.Float 1.2

Listing 7–4 DrawTest.java (continued)

Chapter 7. Graphics Programming

Using Color 307

• Ellipse2D.Double(double x, double y, double w, double h)
constructs an ellipse whose bounding rectangle has the given top-left corner,
width, and height.

• Point2D.Double(double x, double y)
constructs a point with the given coordinates.

• Line2D.Double(Point2D start, Point2D end)
• Line2D.Double(double startX, double startY, double endX, double endY)

constructs a line with the given start and end points.

Using Color
The setPaint method of the Graphics2D class lets you select a color that is used for all subse-
quent drawing operations on the graphics context. For example:

g2.setPaint(Color.RED);
g2.drawString("Warning!", 100, 100);

You can fill the interiors of closed shapes (such as rectangles or ellipses) with a color.
Simply call fill instead of draw:

Rectangle2D rect = . . .;
g2.setPaint(Color.RED);
g2.fill(rect); // fills rect with red color

To draw in multiple colors, you select a color, draw or fill, then select another color, and
draw or fill again.

You define colors with the Color class. The java.awt.Color class offers predefined constants
for the following 13 standard colors:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, YELLOW

NOTE: Before Java SE 1.4, color constant names were lowercase, such as Color.red. This is
odd because the standard coding convention is to write constants in uppercase. You can
now write the standard color names in uppercase or, for backward compatibility, in lower-
case.

You can specify a custom color by creating a Color object by its red, green, and blue com-
ponents. Using a scale of 0–255 (that is, one byte) for the redness, blueness, and green-
ness, call the Color constructor like this:

Color(int redness, int greenness, int blueness)

Here is an example of setting a custom color:
g2.setPaint(new Color(0, 128, 128)); // a dull blue-green
g2.drawString("Welcome!", 75, 125);

java.awt.geom.Ellipse2D.Double 1.2

java.awt.geom.Point2D.Double 1.2

java.awt.geom.Line2D.Double 1.2

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming308

NOTE: In addition to solid colors, you can select more complex “paint” settings, such as
varying hues or images. See the Advanced AWT chapter in Volume II for more details. If you
use a Graphics object instead of a Graphics2D object, you need to use the setColor method to
set colors.

To set the background color, you use the setBackground method of the Component class, an
ancestor of JComponent.

MyComponent p = new MyComponent();
p.setBackground(Color.PINK);

There is also a setForeground method. It specifies the default color that is used for drawing
on the component.

TIP: The brighter() and darker() methods of the Color class produce, as their names sug-
gest, either brighter or darker versions of the current color. Using the brighter method is also
a good way to highlight an item. Actually, brighter() is just a little bit brighter. To make a
color really stand out, apply it three times: c.brighter().brighter().brighter().

Java gives you predefined names for many more colors in its SystemColor class. The con-
stants in this class encapsulate the colors used for various elements of the user’s system.
For example,

p.setBackground(SystemColor.window)

sets the background color of the component to the default used by all windows on the
user’s desktop. (The background is filled in whenever the window is repainted.) Using
the colors in the SystemColor class is particularly useful when you want to draw user inter-
face elements so that the colors match those already found on the user’s desktop. Table
7–1 lists the system color names and their meanings.

Table 7–1 System Colors

Name Purpose

desktop Background color of desktop

activeCaption Background color for captions

activeCaptionText Text color for captions

activeCaptionBorder Border color for caption text

inactiveCaption Background color for inactive captions

inactiveCaptionText Text color for inactive captions

inactiveCaptionBorder Border color for inactive captions

window Background for windows

windowBorder Color of window border frame

Chapter 7. Graphics Programming

Using Color 309

• Color(int r, int g, int b)
creates a color object.

• Color getColor()
• void setColor(Color c)

gets or sets the current color. All subsequent graphics operations will use the new
color.

Name Purpose

windowText Text color inside windows

menu Background for menus

menuText Text color for menus

text Background color for text

textText Text color for text

textInactiveText Text color for inactive controls

textHighlight Background color for highlighted text

textHighlightText Text color for highlighted text

control Background color for controls

controlText Text color for controls

controlLtHighlight Light highlight color for controls

controlHighlight Highlight color for controls

controlShadow Shadow color for controls

controlDkShadow Dark shadow color for controls

scrollbar Background color for scrollbars

info Background color for spot-help text

infoText Text color for spot-help text

java.awt.Color 1.0

Parameters: r The red value (0–255)
g The green value (0–255)
b The blue value (0–255)

java.awt.Graphics 1.0

Parameters: c The new color

Table 7–1 System Colors (continued)

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming310

• Paint getPaint()
• void setPaint(Paint p)

gets or sets the paint property of this graphics context. The Color class implements
the Paint interface. Therefore, you can use this method to set the paint attribute to a
solid color.

• void fill(Shape s)
fills the shape with the current paint.

• Color getBackground()
• void setBackground(Color c)

gets or sets the background color.

• Color getForeground()
• void setForeground(Color c)

gets or sets the foreground color.

Using Special Fonts for Text
The “Not a Hello, World” program at the beginning of this chapter displayed a string in
the default font. Often, you want to show text in a different font. You specify a font by its
font face name. A font face name is composed of a font family name, such as “Helvetica,”
and an optional suffix such as “Bold.” For example, the font faces “Helvetica” and
“Helvetica Bold” are both considered to be part of the family named “Helvetica.”

To find out which fonts are available on a particular computer, call the getAvailable-
FontFamilyNames method of the GraphicsEnvironment class. The method returns an array of
strings that contains the names of all available fonts. To obtain an instance of the
GraphicsEnvironment class that describes the graphics environment of the user’s system,
use the static getLocalGraphicsEnvironment method. Thus, the following program prints
the names of all fonts on your system:

import java.awt.*;

public class ListFonts
{
 public static void main(String[] args)
 {
 String[] fontNames = GraphicsEnvironment
 .getLocalGraphicsEnvironment()
 .getAvailableFontFamilyNames();
 for (String fontName : fontNames)
 System.out.println(fontName);
 }
}

java.awt.Graphics2D 1.2

java.awt.Component 1.0

Parameters: c The new background color

Parameters: c The new foreground color

Chapter 7. Graphics Programming

Using Special Fonts for Text 311

On one system, the list starts out like this:
Abadi MT Condensed Light
Arial
Arial Black
Arial Narrow
Arioso
Baskerville
Binner Gothic
. . .

and goes on for another 70 fonts or so.

Font face names can be trademarked, and font designs can be copyrighted in some juris-
dictions. Thus, the distribution of fonts often involves royalty payments to a font
foundry. Of course, just as there are inexpensive imitations of famous perfumes, there
are lookalikes for name-brand fonts. For example, the Helvetica imitation that is
shipped with Windows is called Arial.

To establish a common baseline, the AWT defines five logical font names:
SansSerif
Serif
Monospaced
Dialog
DialogInput

These names are always mapped to fonts that actually exist on the client machine. For
example, on a Windows system, SansSerif is mapped to Arial.

In addition, the Sun JDK always includes three font families named “Lucida Sans,”
“Lucida Bright,” and “Lucida Sans Typewriter.”

To draw characters in a font, you must first create an object of the class Font. You specify
the font face name, the font style, and the point size. Here is an example of how you con-
struct a Font object:

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14);

The third argument is the point size. Points are commonly used in typography to indi-
cate the size of a font. There are 72 points per inch.

You can use a logical font name in the place of a font face name in the Font constructor.
You specify the style (plain, bold, italic, or bold italic) by setting the second Font con-
structor argument to one of the following values:

Font.PLAIN
Font.BOLD
Font.ITALIC
Font.BOLD + Font.ITALIC

NOTE: The mapping from logical to physical font names is defined in the fontconfig.proper-
ties file in the jre/lib subdirectory of the Java installation. See http://java.sun.com/javase/6/
docs/technotes/guides/intl/fontconfig.html for information on this file.

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming312

You can read font files in TrueType or PostScript Type 1 formats. You need an input
stream for the font—typically from a file or URL. (See Chapter 1 of Volume II for more
information on streams.) Then call the static Font.createFont method:

URL url = new URL("http://www.fonts.com/Wingbats.ttf");
InputStream in = url.openStream();
Font f1 = Font.createFont(Font.TRUETYPE_FONT, in);

The font is plain with a font size of 1 point. Use the deriveFont method to get a font of the
desired size:

Font f = f1.deriveFont(14.0F);

CAUTION: There are two overloaded versions of the deriveFont method. One of them (with a
float parameter) sets the font size, the other (with an int parameter) sets the font style.
Thus, f1.deriveFont(14) sets the style and not the size! (The result is an italic font because it
happens that the binary representation of 14 sets the ITALIC bit but not the BOLD bit.)

The Java fonts contain the usual ASCII characters as well as symbols. For example, if
you print the character '\u2297' in the Dialog font, then you get a ⊗ character. Only those
symbols that are defined in the Unicode character set are available.

Here’s the code that displays the string “Hello, World!” in the standard sans serif font
on your system, using 14-point bold type:

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14);
g2.setFont(sansbold14);
String message = "Hello, World!";
g2.drawString(message, 75, 100);

Next, let’s center the string in its component rather than drawing it at an arbitrary posi-
tion. We need to know the width and height of the string in pixels. These dimensions
depend on three factors:

• The font used (in our case, sans serif, bold, 14 point);
• The string (in our case, “Hello, World!”); and
• The device on which the font is drawn (in our case, the user’s screen).

To obtain an object that represents the font characteristics of the screen device, you call
the getFontRenderContext method of the Graphics2D class. It returns an object of the Font-
RenderContext class. You simply pass that object to the getStringBounds method of the Font
class:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

The getStringBounds method returns a rectangle that encloses the string.

To interpret the dimensions of that rectangle, you should know some basic typesetting
terms (see Figure 7–12). The baseline is the imaginary line where, for example, the bottom
of a character like “e” rests. The ascent is the distance from the baseline to the top of an
ascender, which is the upper part of a letter like “b” or “k,” or an uppercase character. The
descent is the distance from the baseline to a descender, which is the lower portion of a letter
like “p” or “g.”

Chapter 7. Graphics Programming

Using Special Fonts for Text 313

Figure 7–12 Typesetting terms illustrated

Leading is the space between the descent of one line and the ascent of the next line. (The
term has its origin from the strips of lead that typesetters used to separate lines.) The
height of a font is the distance between successive baselines, which is the same as
descent + leading + ascent.

The width of the rectangle that the getStringBounds method returns is the horizontal
extent of the string. The height of the rectangle is the sum of ascent, descent, and
leading. The rectangle has its origin at the baseline of the string. The top y-coordi-
nate of the rectangle is negative. Thus, you can obtain string width, height, and
ascent as follows:

double stringWidth = bounds.getWidth();
double stringHeight = bounds.getHeight();
double ascent = -bounds.getY();

If you need to know the descent or leading, you need to use the getLineMetrics method of
the Font class. That method returns an object of the LineMetrics class, which has methods
to obtain the descent and leading:

LineMetrics metrics = f.getLineMetrics(message, context);
float descent = metrics.getDescent();
float leading = metrics.getLeading();

The following code uses all this information to center a string in its surrounding
component:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

// (x,y) = top left corner of text
double x = (getWidth() - bounds.getWidth()) / 2;
double y = (getHeight() - bounds.getHeight()) / 2;

// add ascent to y to reach the baseline
double ascent = -bounds.getY();
double baseY = y + ascent;
g2.drawString(message, (int) x, (int) baseY);

To understand the centering, consider that getWidth() returns the width of the compo-
nent. A portion of that width, namely, bounds.getWidth(), is occupied by the message
string. The remainder should be equally distributed on both sides. Therefore, the blank
space on each side is half the difference. The same reasoning applies to the height.

e b k p gbaseline

baseline

height

ascent

descent

leading

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming314

NOTE: When you need to compute layout dimensions outside the paintComponent method,
you can’t obtain the font render context from the Graphics2D object. Instead, call the getFont-
Metrics method of the JComponent class and then call getFontRenderContext.

FontRenderContext context = getFontMetrics(f).getFontRenderContext();

To show that the positioning is accurate, the sample program also draws the baseline
and the bounding rectangle. Figure 7–13 shows the screen display; Listing 7–5 is the
program listing.

Figure 7–13 Drawing the baseline and string bounds

Listing 7–5 FontTest.java

1. import java.awt.*;
2. import java.awt.font.*;
3. import java.awt.geom.*;
4. import javax.swing.*;
5.

6. /**
7. * @version 1.33 2007-04-14
8. * @author Cay Horstmann
9. */

10. public class FontTest
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. FontFrame frame = new FontFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

Chapter 7. Graphics Programming

Using Special Fonts for Text 315

26. /**
27. * A frame with a text message component
28. */
29. class FontFrame extends JFrame
30. {
31. public FontFrame()
32. {
33. setTitle("FontTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. // add component to frame
37.

38. FontComponent component = new FontComponent();
39. add(component);
40. }
41.

42. public static final int DEFAULT_WIDTH = 300;
43. public static final int DEFAULT_HEIGHT = 200;
44. }
45.

46. /**
47. * A component that shows a centered message in a box.
48. */
49. class FontComponent extends JComponent
50. {
51. public void paintComponent(Graphics g)
52. {
53. Graphics2D g2 = (Graphics2D) g;
54.

55. String message = "Hello, World!";
56.

57. Font f = new Font("Serif", Font.BOLD, 36);
58. g2.setFont(f);
59.

60. // measure the size of the message
61.

62. FontRenderContext context = g2.getFontRenderContext();
63. Rectangle2D bounds = f.getStringBounds(message, context);
64.

65. // set (x,y) = top-left corner of text
66.

67. double x = (getWidth() - bounds.getWidth()) / 2;
68. double y = (getHeight() - bounds.getHeight()) / 2;
69.

70. // add ascent to y to reach the baseline
71.

72. double ascent = -bounds.getY();
73. double baseY = y + ascent;
74.

Listing 7–5 FontTest.java (continued)

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming316

• Font(String name, int style, int size)
creates a new font object.

• String getFontName()
gets the font face name (such as “Helvetica Bold”).

• String getFamily()
gets the font family name (such as “Helvetica”).

• String getName()
gets the logical name (such as “SansSerif”) if the font was created with a logical
font name; otherwise, gets the font face name.

• Rectangle2D getStringBounds(String s, FontRenderContext context) 1.2
returns a rectangle that encloses the string. The origin of the rectangle falls on the
baseline. The top y-coordinate of the rectangle equals the negative of the ascent.
The height of the rectangle equals the sum of ascent, descent, and leading. The
width equals the string width.

• LineMetrics getLineMetrics(String s, FontRenderContext context) 1.2
returns a line metrics object to determine the extent of the string.

75. // draw the message
76.

77. g2.drawString(message, (int) x, (int) baseY);
78.

79. g2.setPaint(Color.LIGHT_GRAY);
80.

81. // draw the baseline
82.

83. g2.draw(new Line2D.Double(x, baseY, x + bounds.getWidth(), baseY));
84.

85. // draw the enclosing rectangle
86.

87. Rectangle2D rect = new Rectangle2D.Double(x, y, bounds.getWidth(), bounds.getHeight());
88. g2.draw(rect);
89. }
90. }

java.awt.Font 1.0

Parameters: name The font name. This is either a font face name (such
as “Helvetica Bold”) or a logical font name (such as
“Serif”, “SansSerif”)

style The style (Font.PLAIN, Font.BOLD, Font.ITALIC, or Font.BOLD +
Font.ITALIC)

size The point size (for example, 12)

Listing 7–5 FontTest.java (continued)

Chapter 7. Graphics Programming

Using Special Fonts for Text 317

• Font deriveFont(int style) 1.2
• Font deriveFont(float size) 1.2
• Font deriveFont(int style, float size) 1.2

returns a new font that equals this font, except that it has the given size and style.

• float getAscent()
gets the font ascent—the distance from the baseline to the tops of uppercase
characters.

• float getDescent()
gets the font descent—the distance from the baseline to the bottoms of descenders.

• float getLeading()
gets the font leading—the space between the bottom of one line of text and the top
of the next line.

• float getHeight()
gets the total height of the font—the distance between the two baselines of text
(descent + leading + ascent).

• Font getFont()
• void setFont(Font font)

gets or sets the current font. That font will be used for subsequent text-drawing
operations.

• void drawString(String str, int x, int y)
draws a string in the current font and color.

• FontRenderContext getFontRenderContext()
gets a font render context that specifies font characteristics in this graphics
context.

• void drawString(String str, float x, float y)
draws a string in the current font and color.

java.awt.font.LineMetrics 1.2

java.awt.Graphics 1.0

Parameters: font A font

Parameters: str The string to be drawn
x The x-coordinate of the start of the string
y The y-coordinate of the baseline of the string

java.awt.Graphics2D 1.2

Parameters: str The string to be drawn
x The x-coordinate of the start of the string
y The y-coordinate of the baseline of the string

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming318

• FontMetrics getFontMetrics(Font f) 5.0
gets the font metrics for the given font. The FontMetrics class is a precursor to the
LineMetrics class.

• FontRenderContext getFontRenderContext() 1.2
gets a font render context for the font.

Displaying Images
You have already seen how to build up simple drawings by painting lines and shapes.
Complex images, such as photographs, are usually generated externally, for example,
with a scanner or special image-manipulation software. (As you will see in Volume II, it
is also possible to produce an image, pixel by pixel, and store the result in an array. This
procedure is common for fractal images, for example.)

Once images are stored in local files or someplace on the Internet, you can read them
into a Java application and display them on Graphics objects. As of Java SE 1.4, reading an
image is very simple. If the image is stored in a local file, call

String filename = "...";
Image image = ImageIO.read(new File(filename));

Otherwise, you can supply a URL:
String urlname = "...";
Image image = ImageIO.read(new URL(urlname));

The read method throws an IOException if the image is not available. We discuss the gen-
eral topic of exception handling in Chapter 11. For now, our sample program just
catches that exception and prints a stack trace if it occurs.

Now the variable image contains a reference to an object that encapsulates the image data.
You can display the image with the drawImage method of the Graphics class.

public void paintComponent(Graphics g)
{
 . . .
 g.drawImage(image, x, y, null);
}

Listing 7–6 takes this a little bit further and tiles the window with the graphics image.
The result looks like the screen shown in Figure 7–14. We do the tiling in the paintCompo-
nent method. We first draw one copy of the image in the top-left corner and then use the
copyArea call to copy it into the entire window:

for (int i = 0; i * imageWidth <= getWidth(); i++)
 for (int j = 0; j * imageHeight <= getHeight(); j++)
 if (i + j > 0)
 g.copyArea(0, 0, imageWidth, imageHeight, i * imageWidth, j * imageHeight);

Listing 7–6 shows the full source code of the image display program.

javax.swing.JComponent 1.2

java.awt.FontMetrics 1.0

Chapter 7. Graphics Programming

Displaying Images 319

Figure 7–14 Window with tiled graphics image

Listing 7–6 ImageTest.java

1. import java.awt.*;
2. import java.io.*;
3. import javax.imageio.*;
4. import javax.swing.*;
5.

6. /**
7. * @version 1.33 2007-04-14
8. * @author Cay Horstmann
9. */

10. public class ImageTest
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. ImageFrame frame = new ImageFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A frame with an image component
28. */
29. class ImageFrame extends JFrame
30. {
31. public ImageFrame()
32. {
33. setTitle("ImageTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming320

36. // add component to frame
37.

38. ImageComponent component = new ImageComponent();
39. add(component);
40. }
41.

42. public static final int DEFAULT_WIDTH = 300;
43. public static final int DEFAULT_HEIGHT = 200;
44. }
45.

46. /**
47. * A component that displays a tiled image
48. */
49. class ImageComponent extends JComponent
50. {
51. public ImageComponent()
52. {
53. // acquire the image
54. try
55. {
56. image = ImageIO.read(new File("blue-ball.gif"));
57. }
58. catch (IOException e)
59. {
60. e.printStackTrace();
61. }
62. }
63.

64. public void paintComponent(Graphics g)
65. {
66. if (image == null) return;
67.

68. int imageWidth = image.getWidth(this);
69. int imageHeight = image.getHeight(this);
70.

71. // draw the image in the top-left corner
72.

73. g.drawImage(image, 0, 0, null);
74. // tile the image across the component
75.

76. for (int i = 0; i * imageWidth <= getWidth(); i++)
77. for (int j = 0; j * imageHeight <= getHeight(); j++)
78. if (i + j > 0) g.copyArea(0, 0, imageWidth, imageHeight, i * imageWidth, j
79. * imageHeight);
80. }
81.

82. private Image image;
83. }

Listing 7–6 ImageTest.java (continued)

Chapter 7. Graphics Programming

Displaying Images 321

• static BufferedImage read(File f)
• static BufferedImage read(URL u)

reads an image from the given file or URL.

• boolean drawImage(Image img, int x, int y, ImageObserver observer)
draws an unscaled image. Note: This call may return before the image is drawn.

• boolean drawImage(Image img, int x, int y, int width, int height, ImageObserver observer)
draws a scaled image. The system scales the image to fit into a region with the
given width and height. Note: This call may return before the image is drawn.

• void copyArea(int x, int y, int width, int height, int dx, int dy)
copies an area of the screen.

javax.imageio.ImageIO 1.4

java.awt.Graphics 1.0

Parameters: img The image to be drawn

x The x-coordinate of the top-left corner

y The y-coordinate of the top-left corner

observer The object to notify of the progress of the rendering
process (may be null)

Parameters: img The image to be drawn

x The x-coordinate of the top-left corner

y The y-coordinate of the top-left corner

width The desired width of image

height The desired height of image

observer The object to notify of the progress of the rendering
process (may be null)

Parameters: x The x-coordinate of the top-left corner of the source
area

y The y-coordinate of the top-left corner of the source
area

width The width of the source area

height The height of the source area

dx The horizontal distance from the source area to the
target area

dy The vertical distance from the source area to the
target area

Chapter 7. Graphics Programming

Chapter 7 ■ Graphics Programming322

This concludes our introduction to Java graphics programming. For more advanced
techniques, you can turn to the discussion about 2D graphics and image manipulation
in Volume II. In the next chapter, you will learn how your programs react to user input.

Chapter 7. Graphics Programming

ChapterChapter

323

EVENT HANDLING

▼ BASICS OF EVENT HANDLING

▼ ACTIONS

▼ MOUSE EVENTS

▼ THE AWT EVENT HIERARCHY

Chapter 8. Event Handling

Chapter 8 ■ Event Handling324

Event handling is of fundamental importance to programs with a graphical user
interface. To implement user interfaces, you must master the way in which Java handles
events. This chapter explains how the Java AWT event model works. You will see how
to capture events from user interface components and input devices. We also show you
how to work with actions, a more structured approach for processing action events.

Basics of Event Handling
Any operating environment that supports GUIs constantly monitors events such as
keystrokes or mouse clicks. The operating environment reports these events to the pro-
grams that are running. Each program then decides what, if anything, to do in response
to these events. In languages like Visual Basic, the correspondence between events and
code is obvious. One writes code for each specific event of interest and places the code
in what is usually called an event procedure. For example, a Visual Basic button named
“HelpButton” would have a HelpButton_Click event procedure associated with it. The
code in this procedure executes whenever that button is clicked. Each Visual Basic GUI
component responds to a fixed set of events, and it is impossible to change the events
to which a Visual Basic component responds.

On the other hand, if you use a language like raw C to do event-driven programming,
you need to write the code that constantly checks the event queue for what the operat-
ing environment is reporting. (You usually do this by encasing your code in a loop with
a massive switch statement!) This technique is obviously rather ugly, and, in any case, it
is much more difficult to code. The advantage is that the events you can respond to are
not as limited as in languages, like Visual Basic, that go to great lengths to hide the event
queue from the programmer.

The Java programming environment takes an approach somewhat between the Visual
Basic approach and the raw C approach in terms of power and, therefore, in resulting
complexity. Within the limits of the events that the AWT knows about, you completely
control how events are transmitted from the event sources (such as buttons or scrollbars)
to event listeners. You can designate any object to be an event listener—in practice, you
pick an object that can conveniently carry out the desired response to the event. This
event delegation model gives you much more flexibility than is possible with Visual Basic,
in which the listener is predetermined.

Event sources have methods that allow you to register event listeners with them. When
an event happens to the source, the source sends a notification of that event to all the lis-
tener objects that were registered for that event.

As one would expect in an object-oriented language like Java, the information about the
event is encapsulated in an event object. In Java, all event objects ultimately derive from
the class java.util.EventObject. Of course, there are subclasses for each event type, such as
ActionEvent and WindowEvent.

Different event sources can produce different kinds of events. For example, a button can
send ActionEvent objects, whereas a window can send WindowEvent objects.

To sum up, here’s an overview of how event handling in the AWT works:
• A listener object is an instance of a class that implements a special interface called

(naturally enough) a listener interface.
• An event source is an object that can register listener objects and send them event

objects.

Chapter 8. Event Handling

Basics of Event Handling 325

• The event source sends out event objects to all registered listeners when that event
occurs.

• The listener objects will then use the information in the event object to determine
their reaction to the event.

Figure 8–1 shows the relationship between the event handling classes and interfaces.

Figure 8–1 Relationship between event sources and listeners

Here is an example for specifying a listener:
ActionListener listener = . . .;
JButton button = new JButton("Ok");
button.addActionListener(listener);

Now the listener object is notified whenever an “action event” occurs in the button. For
buttons, as you might expect, an action event is a button click.

To implement the ActionListener interface, the listener class must have a method called
actionPerformed that receives an ActionEvent object as a parameter.

class MyListener implements ActionListener
{
 . . .
 public void actionPerformed(ActionEvent event)
 {
 // reaction to button click goes here
 . . .
 }
}

Whenever the user clicks the button, the JButton object creates an ActionEvent object and
calls listener.actionPerformed(event), passing that event object. An event source such as a
button can have multiple listeners. In that case, the button calls the actionPerformed meth-
ods of all listeners whenever the user clicks the button.

Figure 8–2 shows the interaction between the event source, event listener, and event
object.

<<set of one or more>>

1…*

<<implements>>

Listener
interface

Event
source

Event
listener

Chapter 8. Event Handling

Chapter 8 ■ Event Handling326

Figure 8–2 Event notification

Example: Handling a Button Click
As a way of getting comfortable with the event delegation model, let’s work through all
details needed for the simple example of responding to a button click. For this example,
we will show a panel populated with three buttons. Three listener objects are added as
action listeners to the buttons.

With this scenario, each time a user clicks on any of the buttons on the panel, the associ-
ated listener object then receives an ActionEvent that indicates a button click. In our sam-
ple program, the listener object will then change the background color of the panel.

Before we can show you the program that listens to button clicks, we first need to
explain how to create buttons and how to add them to a panel. (For more on GUI ele-
ments, see Chapter 9.)

You create a button by specifying a label string, an icon, or both in the button construc-
tor. Here are two examples:

MyListener

JButton

MyFrame

new

addActionListener

new

actionPerformed

Chapter 8. Event Handling

Basics of Event Handling 327

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton(new ImageIcon("blue-ball.gif"));

Call the add method to add the buttons to a panel:
JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton("Blue");
JButton redButton = new JButton("Red");

buttonPanel.add(yellowButton);
buttonPanel.add(blueButton);
buttonPanel.add(redButton);

Figure 8–3 shows the result.

Figure 8–3 A panel filled with buttons

Next, we need to add code that listens to these buttons. This requires classes that imple-
ment the ActionListener interface, which, as we just mentioned, has one method: actionPer-
formed, whose signature looks like this:

public void actionPerformed(ActionEvent event)

NOTE: The ActionListener interface we used in the button example is not restricted to button
clicks. It is used in many separate situations:

• When an item is selected from a list box with a double click
• When a menu item is selected
• When the ENTER key is clicked in a text field
• When a certain amount of time has elapsed for a Timer component

You will see more details in this chapter and the next.

The way to use the ActionListener interface is the same in all situations: the actionPerformed
method (which is the only method in ActionListener) takes an object of type ActionEvent as a
parameter. This event object gives you information about the event that happened.

When a button is clicked, we want the background color of the panel to change to a par-
ticular color. We store the desired color in our listener class.

class ColorAction implements ActionListener
{
 public ColorAction(Color c)
 {

Chapter 8. Event Handling

Chapter 8 ■ Event Handling328

 backgroundColor = c;
 }

 public void actionPerformed(ActionEvent event)
 {
 // set panel background color
 . . .
 }

 private Color backgroundColor;
}

We then construct one object for each color and set the objects as the button listeners.
ColorAction yellowAction = new ColorAction(Color.YELLOW);
ColorAction blueAction = new ColorAction(Color.BLUE);
ColorAction redAction = new ColorAction(Color.RED);

yellowButton.addActionListener(yellowAction);
blueButton.addActionListener(blueAction);
redButton.addActionListener(redAction);

For example, if a user clicks on the button marked “Yellow,” then the actionPerformed
method of the yellowAction object is called. Its backgroundColor instance field is set to
Color.YELLOW, and it can now proceed to set the panel’s background color.

Just one issue remains. The ColorAction object doesn’t have access to the buttonPanel vari-
able. You can solve this problem in two ways. You can store the panel in the ColorAction
object and set it in the ColorAction constructor. Or, more conveniently, you can make Color-
Action into an inner class of the ButtonFrame class. Its methods can then access the outer
panel automatically. (For more information on inner classes, see Chapter 6.)

We follow the latter approach. Here is how you place the ColorAction class inside the
ButtonFrame class:

class ButtonPanel extends JFrame
{
 . . .

 private class ColorAction implements ActionListener
 {
 . . .

 public void actionPerformed(ActionEvent event)
 {
 buttonPanel.setBackground(backgroundColor);
 }

 private Color backgroundColor;
 }
 private JPanel buttonPanel;
}

Look closely at the actionPerformed method. The ColorAction class doesn’t have a buttonPanel
field. But the outer ButtonFrame class does.

Chapter 8. Event Handling

Basics of Event Handling 329

This situation is very common. Event listener objects usually need to carry out some
action that affects other objects. You can often strategically place the listener class inside
the class whose state the listener should modify.

Listing 8–1 contains the complete program. Whenever you click one of the buttons, the
appropriate action listener changes the background color of the panel.

Listing 8–1 ButtonTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class ButtonTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. ButtonFrame frame = new ButtonFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a button panel
27. */
28. class ButtonFrame extends JFrame
29. {
30. public ButtonFrame()
31. {
32. setTitle("ButtonTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // create buttons
36. JButton yellowButton = new JButton("Yellow");
37. JButton blueButton = new JButton("Blue");
38. JButton redButton = new JButton("Red");
39.

40. buttonPanel = new JPanel();
41.

Chapter 8. Event Handling

Chapter 8 ■ Event Handling330

42. // add buttons to panel
43. buttonPanel.add(yellowButton);
44. buttonPanel.add(blueButton);
45. buttonPanel.add(redButton);
46.

47. // add panel to frame
48. add(buttonPanel);
49.

50. // create button actions
51. ColorAction yellowAction = new ColorAction(Color.YELLOW);
52. ColorAction blueAction = new ColorAction(Color.BLUE);
53. ColorAction redAction = new ColorAction(Color.RED);
54.

55. // associate actions with buttons
56. yellowButton.addActionListener(yellowAction);
57. blueButton.addActionListener(blueAction);
58. redButton.addActionListener(redAction);
59. }
60.

61. /**
62. * An action listener that sets the panel's background color.
63. */
64. private class ColorAction implements ActionListener
65. {
66. public ColorAction(Color c)
67. {
68. backgroundColor = c;
69. }
70.

71. public void actionPerformed(ActionEvent event)
72. {
73. buttonPanel.setBackground(backgroundColor);
74. }
75.

76. private Color backgroundColor;
77. }
78.

79. private JPanel buttonPanel;
80.

81. public static final int DEFAULT_WIDTH = 300;
82. public static final int DEFAULT_HEIGHT = 200;
83. }

Listing 8–1 ButtonTest.java (continued)

Chapter 8. Event Handling

Basics of Event Handling 331

• JButton(String label)
• JButton(Icon icon)
• JButton(String label, Icon icon)

constructs a button. The label string can be plain text or, starting with Java SE 1.3,
HTML; for example, "<html>Ok</html>".

• Component add(Component c)
adds the component c to this container.

• ImageIcon(String filename)
constructs an icon whose image is stored in a file.

Becoming Comfortable with Inner Classes
Some people dislike inner classes because they feel that a proliferation of classes and
objects makes their programs slower. Let’s have a look at that claim. You don’t need a
new class for every user interface component. In our example, all three buttons share
the same listener class. Of course, each of them has a separate listener object. But these
objects aren’t large. They each contain a color value and a reference to the panel. And
the traditional solution, with if . . . else statements, also references the same color
objects that the action listeners store, just as local variables and not as instance fields.

Here is a good example of how anonymous inner classes can actually simplify your
code. If you look at the code of Listing 8–1, you will note that each button requires the
same treatment:
1. Construct the button with a label string.
2. Add the button to the panel.
3. Construct an action listener with the appropriate color.
4. Add that action listener.

Let’s implement a helper method to simplify these tasks:
public void makeButton(String name, Color backgroundColor)
{
 JButton button = new JButton(name);
 buttonPanel.add(button);
 ColorAction action = new ColorAction(backgroundColor);
 button.addActionListener(action);
}

Then we simply call
makeButton("yellow", Color.YELLOW);
makeButton("blue", Color.BLUE);
makeButton("red", Color.RED);

javax.swing.JButton 1.2

java.awt.Container 1.0

javax.swing.ImageIcon 1.2

Chapter 8. Event Handling

Chapter 8 ■ Event Handling332

Now you can make a further simplification. Note that the ColorAction class is only needed
once: in the makeButton method. Therefore, you can make it into an anonymous class:

public void makeButton(String name, final Color backgroundColor)
{
 JButton button = new JButton(name);
 buttonPanel.add(button);
 button.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 buttonPanel.setBackground(backgroundColor);
 }
 });
}

The action listener code has become quite a bit simpler. The actionPerformed method sim-
ply refers to the parameter variable backgroundColor. (As with all local variables that are
accessed in the inner class, the parameter needs to be declared as final.)

No explicit constructor is needed. As you saw in Chapter 6, the inner class mechanism
automatically generates a constructor that stores all local final variables that are used in
one of the methods of the inner class.

TIP: Anonymous inner classes can look confusing. But you can get used to deciphering
them if you train your eyes to glaze over the routine code, like this:

 button.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 buttonPanel.setBackground(backgroundColor);
 }
 });

That is, the button action sets the background color. As long as the event handler consists of
just a few statements, we think this can be quite readable, particularly if you don’t worry
about the inner class mechanics.

NOTE: You are completely free to designate any object of a class that implements the
ActionListener interface as a button listener. We prefer to use objects of a new class that was
expressly created for carrying out the desired button actions. However, some programmers
are not comfortable with inner classes and choose a different strategy. They make the con-
tainer of the event sources implement the ActionListener interface. Then, the container sets
itself as the listener, like this:

yellowButton.addActionListener(this);
blueButton.addActionListener(this);
redButton.addActionListener(this);

Now the three buttons no longer have individual listeners. They share a single
listener object, namely, the button frame. Therefore, the actionPerformed method must figure
out which button was clicked.

Chapter 8. Event Handling

Basics of Event Handling 333

class ButtonFrame extends JFrame implements ActionListener
 {
 . . .
 public void actionPerformed(ActionEvent event)
 {
 Object source = event.getSource();
 if (source == yellowButton) . . .
 else if (source == blueButton) . . .
 else if (source == redButton) . . .
 else . . .
 }
 }

As you can see, this gets quite messy, and we do not recommend it.

• Object getSource()
returns a reference to the object where the event occurred.

• String getActionCommand()
returns the command string associated with this action event. If the action event
originated from a button, the command string equals the button label, unless it
has been changed with the setActionCommand method.

• static Object create(Class listenerInterface, Object target, String action)
• static Object create(Class listenerInterface, Object target, String action,

String eventProperty)
• static Object create(Class listenerInterface, Object target, String action,

String eventProperty, String listenerMethod)
constructs an object of a proxy class that implements the given interface. Either
the named method or all methods of the interface carry out the given action on the
target object.

The action can be a method name or a property of the target. If it is a property, its
setter method is executed. For example, an action "text" is turned into a call of the
setText method.

The event property consists of one or more dot-separated property names. The
first property is read from the parameter of the listener method. The second
property is read from the resulting object, and so on. The final result becomes the
parameter of the action. For example, the property "source.text" is turned into calls
to the getSource and getText methods.

java.util.EventObject 1.1

java.awt.event.ActionEvent 1.1

java.beans.EventHandler 1.4

Chapter 8. Event Handling

Chapter 8 ■ Event Handling334

Creating Listeners Containing a Single Method Call
Java SE 1.4 introduces a mechanism that lets you specify simple event listeners without
programming inner classes. For example, suppose you have a button labeled “Load”
whose event handler contains a single method call:

frame.loadData();

Of course, you can use an anonymous inner class:
loadButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 frame.loadData();
 }
 });

But the EventHandler class can create such a listener automatically, with the call
EventHandler.create(ActionListener.class, frame, "loadData")

Of course, you still need to install the handler:
loadButton.addActionListener(
 EventHandler.create(ActionListener.class, frame, "loadData"));

If the listener calls a method with a single parameter that can be obtained from the event
parameter, you can use another form of the create method. For example, the call

EventHandler.create(ActionListener.class, frame, "loadData", "source.text")

is equivalent to
new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 frame.loadData(((JTextField) event.getSource()).getText());
 }
 }

The property names source and text turn into method calls getSource and getText.

Example: Changing the Look and Feel
By default, Swing programs use the Metal look and feel. There are two ways to change
to a different look and feel. The first way is to supply a file swing.properties in the jre/lib
subdirectory of your Java installation. In that file, set the property swing.defaultlaf to the
class name of the look and feel that you want. For example:

swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

Note that the Metal look and feel is located in the javax.swing package. The other look-
and-feel packages are located in the com.sun.java package and need not be present in
every Java implementation. Currently, for copyright reasons, the Windows and Macin-
tosh look-and-feel packages are only shipped with the Windows and Macintosh ver-
sions of the Java runtime environment.

Chapter 8. Event Handling

Basics of Event Handling 335

TIP: Because lines starting with a # character are ignored in property files, you can supply
several look and feel selections in the swing.properties file and move around the # to select
one of them:

#swing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel
#swing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

You must restart your program to switch the look and feel in this way. A Swing program
reads the swing.properties file only once, at startup.

The second way is to change the look and feel dynamically. Call the static UIManager.setLook-
AndFeel method and give it the name of the look-and-feel class that you want. Then call
the static method SwingUtilities.updateComponentTreeUI to refresh the entire set of compo-
nents. You need to supply one component to that method; it will find all others. The
UIManager.setLookAndFeel method may throw a number of exceptions when it can’t find
the look and feel that you request, or when there is an error loading it. As always, we
ask you to gloss over the exception handling code and wait until Chapter 11 for a full
explanation.

Here is an example showing how you can switch to the Motif look and feel in your
program:

String plaf = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";
try
{
 UIManager.setLookAndFeel(plaf);
 SwingUtilities.updateComponentTreeUI(panel);
}
catch(Exception e) { e.printStackTrace(); }

To enumerate all installed look and feel implementations, call
UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();

Then you can get the name and class name for each look and feel as
String name = infos[i].getName();
String className = infos[i].getClassName();

Listing 8–2 is a complete program that demonstrates how to switch the look and feel
(see Figure 8–4). The program is similar to Listing 8–1. Following the advice of the pre-
ceding section, we use a helper method makeButton and an anonymous inner class to spec-
ify the button action, namely, to switch the look and feel.

There is one fine point to this program. The actionPerformed method of the inner action
listener class needs to pass the this reference of the outer PlafFrame class to the update-
ComponentTreeUI method. Recall from Chapter 6 that the outer object’s this pointer must be
prefixed by the outer class name:

SwingUtilities.updateComponentTreeUI(PlafPanel.this);

Chapter 8. Event Handling

Chapter 8 ■ Event Handling336

Figure 8–4 Switching the look and feel

Listing 8–2 PlafTest.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.32 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class PlafTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. PlafFrame frame = new PlafFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a button panel for changing look and feel
27. */
28. class PlafFrame extends JFrame
29. {

Chapter 8. Event Handling

Basics of Event Handling 337

30. public PlafFrame()
31. {
32. setTitle("PlafTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. buttonPanel = new JPanel();
36.
37. UIManager.LookAndFeelInfo[] infos = UIManager.getInstalledLookAndFeels();
38. for (UIManager.LookAndFeelInfo info : infos)
39. makeButton(info.getName(), info.getClassName());
40.
41. add(buttonPanel);
42. }
43.

44. /**
45. * Makes a button to change the pluggable look and feel.
46. * @param name the button name
47. * @param plafName the name of the look and feel class
48. */
49. void makeButton(String name, final String plafName)
50. {
51. // add button to panel
52.

53. JButton button = new JButton(name);
54. buttonPanel.add(button);
55.

56. // set button action
57.

58. button.addActionListener(new ActionListener()
59. {
60. public void actionPerformed(ActionEvent event)
61. {
62. // button action: switch to the new look and feel
63. try
64. {
65. UIManager.setLookAndFeel(plafName);
66. SwingUtilities.updateComponentTreeUI(PlafFrame.this);
67. }
68. catch (Exception e)
69. {
70. e.printStackTrace();
71. }
72. }
73. });
74. }
75.

76. private JPanel buttonPanel;
77.
78. public static final int DEFAULT_WIDTH = 300;
79. public static final int DEFAULT_HEIGHT = 200;
80. }

Listing 8–2 PlafTest.java (continued)

Chapter 8. Event Handling

Chapter 8 ■ Event Handling338

• static UIManager.LookAndFeelInfo[] getInstalledLookAndFeels()
gets an array of objects that describe the installed look-and-feel implementations.

• static setLookAndFeel(String className)
sets the current look and feel, using the given class name (such as
"javax.swing.plaf.metal.MetalLookAndFeel").

• String getName()
returns the display name for the look and feel.

• String getClassName()
returns the name of the implementation class for the look and feel.

Adapter Classes
Not all events are as simple to handle as button clicks. In a non-toy program, you will
want to monitor when the user tries to close the main frame because you don’t want your
users to lose unsaved work. When the user closes the frame, you want to put up a dialog
and exit the program only when the user agrees.

When the program user tries to close a frame window, the JFrame object is the source of a
WindowEvent. If you want to catch that event, you must have an appropriate listener object
and add it to the frame’s list of window listeners.

WindowListener listener = . . .;
frame.addWindowListener(listener);

The window listener must be an object of a class that implements the WindowListener
interface. There are actually seven methods in the WindowListener interface. The frame
calls them as the responses to seven distinct events that could happen to a window. The
names are self-explanatory, except that “iconified” is usually called “minimized”
under Windows. Here is the complete WindowListener interface:

public interface WindowListener
{
 void windowOpened(WindowEvent e);
 void windowClosing(WindowEvent e);
 void windowClosed(WindowEvent e);
 void windowIconified(WindowEvent e);
 void windowDeiconified(WindowEvent e);
 void windowActivated(WindowEvent e);
 void windowDeactivated(WindowEvent e);
}

NOTE: To find out whether a window has been maximized, install a WindowStateListener. See
the API notes on page 341 for details.

As is always the case in Java, any class that implements an interface must implement all
its methods; in this case, that means implementing seven methods. Recall that we are
only interested in one of these seven methods, namely, the windowClosing method.

javax.swing.UIManager 1.2

javax.swing.UIManager.LookAndFeelInfo 1.2

Chapter 8. Event Handling

Basics of Event Handling 339

Of course, we can define a class that implements the interface, add a call to System.exit(0)
in the windowClosing method, and write do-nothing functions for the other six methods:

class Terminator implements WindowListener
{
 public void windowClosing(WindowEvent e)
 {
 if (user agrees)
 System.exit(0);
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}
}

Typing code for six methods that don’t do anything is the kind of tedious busywork that
nobody likes. To simplify this task, each of the AWT listener interfaces that has more
than one method comes with a companion adapter class that implements all the methods
in the interface but does nothing with them. For example, the WindowAdapter class has
seven do-nothing methods. This means the adapter class automatically satisfies the
technical requirements that Java imposes for implementing the associated listener inter-
face. You can extend the adapter class to specify the desired reactions to some, but not
all, of the event types in the interface. (An interface such as ActionListener that has only a
single method does not need an adapter class.)

Let us make use of the window adapter. We can extend the WindowAdapter class, inherit six
of the do-nothing methods, and override the windowClosing method:

class Terminator extends WindowAdapter
{
 public void windowClosing(WindowEvent e)
 {
 if (user agrees)
 System.exit(0);
 }
}

Now you can register an object of type Terminator as the event listener:
WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Whenever the frame generates a window event, it passes it to the listener object by
calling one of its seven methods (see Figure 8–5). Six of those methods do nothing; the
windowClosing method calls System.exit(0), terminating the application.

CAUTION: If you misspell the name of a method when extending an adapter class, then
the compiler won’t catch your error. For example, if you define a method windowIsClosing in
a WindowAdapter class, then you get a class with eight methods, and the windowClosing method
does nothing.

Chapter 8. Event Handling

Chapter 8 ■ Event Handling340

Figure 8–5 A window listener

Creating a listener class that extends the WindowAdapter is an improvement, but we can go
even further. There is no need to give a name to the listener object. Simply write

frame.addWindowListener(new Terminator());

But why stop there? We can make the listener class into an anonymous inner class of the
frame.

frame.addWindowListener(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 if (user agrees)
 System.exit(0);
 }
 });

Terminator

MyFrame

new

addWindowListener

windowClosing

windowClosed

Chapter 8. Event Handling

Basics of Event Handling 341

This code does the following:

• Defines a class without a name that extends the WindowAdapter class
• Adds a windowClosing method to that anonymous class (as before, this method exits

the program)
• Inherits the remaining six do-nothing methods from WindowAdapter
• Creates an object of this class; that object does not have a name, either
• Passes that object to the addWindowListener method

We say again that the syntax for using anonymous inner classes takes some getting used
to. The payoff is that the resulting code is as short as possible.

• void windowOpened(WindowEvent e)
is called after the window has been opened.

• void windowClosing(WindowEvent e)
is called when the user has issued a window manager command to close the
window. Note that the window will close only if its hide or dispose method is called.

• void windowClosed(WindowEvent e)
is called after the window has closed.

• void windowIconified(WindowEvent e)
is called after the window has been iconified.

• void windowDeiconified(WindowEvent e)
is called after the window has been deiconified.

• void windowActivated(WindowEvent e)
is called after the window has become active. Only a frame or dialog can be active.
Typically, the window manager decorates the active window, for example, by
highlighting the title bar.

• void windowDeactivated(WindowEvent e)
is called after the window has become deactivated.

• void windowStateChanged(WindowEvent event)
is called after the window has been maximized, iconified, or restored to normal size.

• int getNewState() 1.4
• int getOldState() 1.4

returns the new and old state of a window in a window state change event. The
returned integer is one of the following values:
Frame.NORMAL
Frame.ICONIFIED
Frame.MAXIMIZED_HORIZ
Frame.MAXIMIZED_VERT
Frame.MAXIMIZED_BOTH

java.awt.event.WindowListener 1.1

java.awt.event.WindowStateListener 1.4

java.awt.event.WindowEvent 1.1

Chapter 8. Event Handling

Chapter 8 ■ Event Handling342

Actions
It is common to have multiple ways to activate the same command. The user can choose
a certain function through a menu, a keystroke, or a button on a toolbar. This is easy to
achieve in the AWT event model: link all events to the same listener. For example, sup-
pose blueAction is an action listener whose actionPerformed method changes the background
color to blue. You can attach the same object as a listener to several event sources:

• A toolbar button labeled “Blue”
• A menu item labeled “Blue”
• A keystroke CTRL+B

Then the color change command is handled in a uniform way, no matter whether it was
caused by a button click, a menu selection, or a key press.

The Swing package provides a very useful mechanism to encapsulate commands and to
attach them to multiple event sources: the Action interface. An action is an object that
encapsulates

• A description of the command (as a text string and an optional icon); and
• Parameters that are necessary to carry out the command (such as the requested

color in our example).

The Action interface has the following methods:
void actionPerformed(ActionEvent event)
void setEnabled(boolean b)
boolean isEnabled()
void putValue(String key, Object value)
Object getValue(String key)
void addPropertyChangeListener(PropertyChangeListener listener)
void removePropertyChangeListener(PropertyChangeListener listener)

The first method is the familiar method in the ActionListener interface: in fact, the Action
interface extends the ActionListener interface. Therefore, you can use an Action object
whenever an ActionListener object is expected.

The next two methods let you enable or disable the action and check whether the action
is currently enabled. When an action is attached to a menu or toolbar and the action is
disabled, then the option is grayed out.

The putValue and getValue methods let you store and retrieve arbitrary name/value
pairs in the action object. A couple of important predefined strings, namely,
Action.NAME and Action.SMALL_ICON, store action names and icons into an action object:

action.putValue(Action.NAME, "Blue");
action.putValue(Action.SMALL_ICON, new ImageIcon("blue-ball.gif"));

Table 8–1 shows all predefined action table names.

If the action object is added to a menu or toolbar, then the name and icon are automati-
cally retrieved and displayed in the menu item or toolbar button. The SHORT_DESCRIPTION
value turns into a tooltip.

The final two methods of the Action interface allow other objects, in particular menus
or toolbars that trigger the action, to be notified when the properties of the action
object change. For example, if a menu is added as a property change listener of an
action object and the action object is subsequently disabled, then the menu is called

Chapter 8. Event Handling

Actions 343

and can gray out the action name. Property change listeners are a general construct
that is a part of the “JavaBeans” component model. You can find out more about beans
and their properties in Volume II.

Note that Action is an interface, not a class. Any class implementing this interface must
implement the seven methods we just discussed. Fortunately, a friendly soul has pro-
vided a class AbstractAction that implements all methods except for actionPerformed. That
class takes care of storing all name/value pairs and managing the property change
listeners. You simply extend AbstractAction and supply an actionPerformed method.

Let’s build an action object that can execute color change commands. We store the name
of the command, an icon, and the desired color. We store the color in the table of name/
value pairs that the AbstractAction class provides. Here is the code for the ColorAction class.
The constructor sets the name/value pairs, and the actionPerformed method carries out the
color change action.

public class ColorAction extends AbstractAction
{
 public ColorAction(String name, Icon icon, Color c)
 {
 putValue(Action.NAME, name);
 putValue(Action.SMALL_ICON, icon);
 putValue("color", c);
 putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.toLowerCase());
 }

 public void actionPerformed(ActionEvent event)
 {
 Color c = (Color) getValue("color");
 buttonPanel.setBackground(c);
 }
}

Table 8–1 Predefined Action Table Names

Name Value

NAME The name of the action; displayed on buttons and menu items.

SMALL_ICON A place to store a small icon; for display in a button, menu item, or toolbar.

SHORT_DESCRIPTION A short description of the icon; for display in a tooltip.

LONG_DESCRIPTION A long description of the icon; for potential use in on-line help. No Swing
component uses this value.

MNEMONIC_KEY A mnemonic abbreviation; for display in menu items (see Chapter 9).

ACCELERATOR_KEY A place to store an accelerator keystroke. No Swing component uses this
value.

ACTION_COMMAND_KEY Historically, used in the now obsolete registerKeyboardAction method.

DEFAULT Potentially useful catch-all property. No Swing component uses this value.

Chapter 8. Event Handling

Chapter 8 ■ Event Handling344

Our test program creates three objects of this class, such as
Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);

Next, let’s associate this action with a button. That is easy because we can use a JButton
constructor that takes an Action object.

JButton blueButton = new JButton(blueAction);

That constructor reads the name and icon from the action, sets the short description as
the tooltip, and sets the action as the listener. You can see the icons and a tooltip in
Figure 8–6.

As we demonstrate in the next chapter, it is just as easy to add the same action to a
menu.

Figure 8–6 Buttons display the icons from the action objects

Finally, we want to add the action objects to keystrokes so that the actions are carried
out when the user types keyboard commands. To associate actions with keystrokes, you
first need to generate objects of the KeyStroke class. This is a convenience class that encap-
sulates the description of a key. To generate a KeyStroke object, you don’t call a constructor
but instead use the static getKeyStroke method of the KeyStroke class.

KeyStroke ctrlBKey = KeyStroke.getKeyStroke("ctrl B");

To understand the next step, you nee to know the concept of keyboard focus. A user inter-
face can have many buttons, menus, scrollbars, and other components. When you hit a
key, it is sent to the component that has focus. That component is usually (but not
always) visually distinguished. For example, in the Java Look and Feel, a button with
focus has a thin rectangular border around the button text. You can use the TAB key to
move the focus between components. When you press the SPACE key, the button with
focus is clicked. Other keys carry out different actions; for example, the arrow keys can
move a scrollbar.

However, in our case, we do not want to send the keystroke to the component that has
focus. Otherwise, each of the buttons would need to know how to handle the CTRL+Y,
CTRL+B, and CTRL+R keys.

This is a common problem, and the Swing designers came up with a convenient solu-
tion for solving it. Every JComponent has three input maps, each mapping KeyStroke objects to
associated actions. The three input maps correspond to three different conditions (see
Table 8–2).

Chapter 8. Event Handling

Actions 345

Keystroke processing checks these maps in the following order:

1. Check the WHEN_FOCUSED map of the component with input focus. If the keystroke exists,
execute the corresponding action. If the action is enabled, stop processing.

2. Starting from the component with input focus, check the WHEN_ANCESTOR_OF_FOCUSED_
COMPONENT maps of its parent components. As soon as a map with the keystroke is
found, execute the corresponding action. If the action is enabled, stop processing.

3. Look at all visible and enabled components in the window with input focus that
have this keystroke registered in a WHEN_IN_FOCUSED_WINDOW map. Give these compo-
nents (in the order of their keystroke registration) a chance to execute the corre-
sponding action. As soon as the first enabled action is executed, stop processing.
This part of the process is somewhat fragile if a keystroke appears in more than
one WHEN_IN_FOCUSED_WINDOW map.

You obtain an input map from the component with the getInputMap method. Here is an
example:

InputMap imap = panel.getInputMap(JComponent.WHEN_FOCUSED);

The WHEN_FOCUSED condition means that this map is consulted when the current component
has the keyboard focus. In our situation, that isn’t the map we want. One of the buttons,
not the panel, has the input focus. Either of the other two map choices works fine for
inserting the color change keystrokes. We use WHEN_ANCESTOR_OF_FOCUSED_COMPONENT in our exam-
ple program.

The InputMap doesn’t directly map KeyStroke objects to Action objects. Instead, it maps to
arbitrary objects, and a second map, implemented by the ActionMap class, maps objects to
actions. That makes it easier to share the same actions among keystrokes that come from
different input maps.

Thus, each component has three input maps and one action map. To tie them together, you
need to come up with names for the actions. Here is how you can tie a key to an action:

imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
ActionMap amap = panel.getActionMap();
amap.put("panel.yellow", yellowAction);

It is customary to use the string "none" for a do-nothing action. That makes it easy to
deactivate a key:

imap.put(KeyStroke.getKeyStroke("ctrl C"), "none");

Table 8–2 Input Map Conditions

Flag Invoke Action

WHEN_FOCUSED When this component has keyboard focus

WHEN_ANCESTOR_OF_FOCUSED_COMPONENT When this component contains the component that has
keyboard focus

WHEN_IN_FOCUSED_WINDOW When this component is contained in the same window
as the component that has keyboard focus

Chapter 8. Event Handling

Chapter 8 ■ Event Handling346

CAUTION: The JDK documentation suggests using the action name as the action’s key. We
don’t think that is a good idea. The action name is displayed on buttons and menu items;
thus, it can change at the whim of the UI designer and it may be translated into multiple lan-
guages. Such unstable strings are poor choices for lookup keys. Instead, we recommend
that you come up with action names that are independent of the displayed names.

To summarize, here is what you do to carry out the same action in response to a button,
a menu item, or a keystroke:

1. Implement a class that extends the AbstractAction class. You may be able to use the
same class for multiple related actions.

2. Construct an object of the action class.
3. Construct a button or menu item from the action object. The constructor will read

the label text and icon from the action object.
4. For actions that can be triggered by keystrokes, you have to carry out additional

steps. First locate the top-level component of the window, such as a panel that con-
tains all other components.

5. Then get the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT input map of the top-level component.
Make a KeyStroke object for the desired keystroke. Make an action key object, such as
a string that describes your action. Add the pair (keystroke, action key) into the
input map.

6. Finally, get the action map of the top-level component. Add the pair (action key,
action object) into the map.

Listing 8–3 shows the complete code of the program that maps both buttons and key-
strokes to action objects. Try it out—clicking either the buttons or pressing CTRL+Y,
CTRL+B, or CTRL+R changes the panel color.

Listing 8–3 ActionTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class ActionTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {

Chapter 8. Event Handling

Actions 347

17. ActionFrame frame = new ActionFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a panel that demonstrates color change actions.
27. */
28. class ActionFrame extends JFrame
29. {
30. public ActionFrame()
31. {
32. setTitle("ActionTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. buttonPanel = new JPanel();
36.

37. // define actions
38. Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
39. Color.YELLOW);
40. Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);
41. Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED);
42.

43. // add buttons for these actions
44. buttonPanel.add(new JButton(yellowAction));
45. buttonPanel.add(new JButton(blueAction));
46. buttonPanel.add(new JButton(redAction));
47.

48. // add panel to frame
49. add(buttonPanel);
50.

51. // associate the Y, B, and R keys with names
52. InputMap imap = buttonPanel.getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
53. imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
54. imap.put(KeyStroke.getKeyStroke("ctrl B"), "panel.blue");
55. imap.put(KeyStroke.getKeyStroke("ctrl R"), "panel.red");
56.

57. // associate the names with actions
58. ActionMap amap = buttonPanel.getActionMap();
59. amap.put("panel.yellow", yellowAction);
60. amap.put("panel.blue", blueAction);
61. amap.put("panel.red", redAction);
62. }
63.
64. public class ColorAction extends AbstractAction
65. {

Listing 8–3 ActionTest.java (continued)

Chapter 8. Event Handling

Chapter 8 ■ Event Handling348

• boolean isEnabled()
• void setEnabled(boolean b)

gets or sets the enabled property of this action.
• void putValue(String key, Object value)

places a name/value pair inside the action object.

• Object getValue(String key)
returns the value of a stored name/value pair.

66. /**
67. * Constructs a color action.
68. * @param name the name to show on the button
69. * @param icon the icon to display on the button
70. * @param c the background color
71. */
72. public ColorAction(String name, Icon icon, Color c)
73. {
74. putValue(Action.NAME, name);
75. putValue(Action.SMALL_ICON, icon);
76. putValue(Action.SHORT_DESCRIPTION, "Set panel color to " + name.toLowerCase());
77. putValue("color", c);
78. }
79.

80. public void actionPerformed(ActionEvent event)
81. {
82. Color c = (Color) getValue("color");
83. buttonPanel.setBackground(c);
84. }
85. }
86.

87. private JPanel buttonPanel;
88.

89. public static final int DEFAULT_WIDTH = 300;
90. public static final int DEFAULT_HEIGHT = 200;
91. }

javax.swing.Action 1.2

Parameters: key The name of the feature to store with the action
object. This can be any string, but several names
have predefined meanings—see Table 8–1 on
page 343.

value The object associated with the name.

Listing 8–3 ActionTest.java (continued)

Chapter 8. Event Handling

Mouse Events 349

• static KeyStroke getKeyStroke(String description)
constructs a keystroke from a humanly readable description (a sequence of
whitespace-delimited strings). The description starts with zero or more modifiers
shift control ctrl meta alt altGraph and ends with either the string typed, followed by
a one-character string (for example, "typed a"), or an optional event specifier
(pressed—the default—or released), followed by a key code. The key code, when
prefixed with VK_, should correspond to a KeyEvent constant; for example, "INSERT"
corresponds to KeyEvent.VK_INSERT.

• ActionMap getActionMap() 1.3
returns the map that associates action map keys (which can be arbitrary objects)
with Action objects.

• InputMap getInputMap(int flag) 1.3
gets the input map that maps key strokes to action map keys.

Mouse Events
You do not need to handle mouse events explicitly if you just want the user to be able to
click on a button or menu. These mouse operations are handled internally by the vari-
ous components in the user interface. However, if you want to enable the user to draw
with the mouse, you will need to trap mouse move, click, and drag events.

In this section, we show you a simple graphics editor application that allows the user to
place, move, and erase squares on a canvas (see Figure 8–7).

Figure 8–7 A mouse test program

When the user clicks a mouse button, three listener methods are called: mousePressed when
the mouse is first pressed, mouseReleased when the mouse is released, and, finally, mouse-
Clicked. If you are only interested in complete clicks, you can ignore the first two meth-
ods. By using the getX and getY methods on the MouseEvent argument, you can obtain the x-
and y-coordinates of the mouse pointer when the mouse was clicked. To distinguish
between single, double, and triple (!) clicks, use the getClickCount method.

javax.swing.KeyStroke 1.2

javax.swing.JComponent 1.2

Parameters: flag A condition on the keyboard focus to trigger the
action, one of the values in Table 8–2 on page 345

Chapter 8. Event Handling

Chapter 8 ■ Event Handling350

Some user interface designers inflict mouse click and keyboard modifier combinations,
such as CONTROL + SHIFT + CLICK, on their users. We find this practice reprehensible, but
if you disagree, you will find that checking for mouse buttons and keyboard modifiers
is a mess.

You use bit masks to test which modifiers have been set. In the original API, two of the
button masks equal two keyboard modifier masks, namely

BUTTON2_MASK == ALT_MASK
BUTTON3_MASK == META_MASK

This was done so that users with a one-button mouse could simulate the other mouse
buttons by holding down modifier keys instead. However, as of Java SE 1.4, a different
approach is recommended. There are now masks

BUTTON1_DOWN_MASK
BUTTON2_DOWN_MASK
BUTTON3_DOWN_MASK
SHIFT_DOWN_MASK
CTRL_DOWN_MASK
ALT_DOWN_MASK
ALT_GRAPH_DOWN_MASK
META_DOWN_MASK

The getModifiersEx method accurately reports the mouse buttons and keyboard modifiers
of a mouse event.

Note that BUTTON3_DOWN_MASK tests for the right (nonprimary) mouse button under Win-
dows. For example, you can use code like this to detect whether the right mouse button
is down:

if ((event.getModifiersEx() & InputEvent.BUTTON3_DOWN_MASK) != 0)
 . . . // code for right click

In our sample program, we supply both a mousePressed and a mouseClicked method. When
you click onto a pixel that is not inside any of the squares that have been drawn, a new
square is added. We implemented this in the mousePressed method so that the user receives
immediate feedback and does not have to wait until the mouse button is released. When
a user double-clicks inside an existing square, it is erased. We implemented this in the
mouseClicked method because we need the click count.

public void mousePressed(MouseEvent event)
{
 current = find(event.getPoint());
 if (current == null) // not inside a square
 add(event.getPoint());
}

public void mouseClicked(MouseEvent event)
{
 current = find(event.getPoint());
 if (current != null && event.getClickCount() >= 2)
 remove(current);
}

Chapter 8. Event Handling

Mouse Events 351

As the mouse moves over a window, the window receives a steady stream of mouse
movement events. Note that there are separate MouseListener and MouseMotionListener inter-
faces. This is done for efficiency—there are a lot of mouse events as the user moves the
mouse around, and a listener that just cares about mouse clicks will not be bothered with
unwanted mouse moves.

Our test application traps mouse motion events to change the cursor to a different shape
(a cross hair) when it is over a square. This is done with the getPredefinedCursor method of
the Cursor class. Table 8–3 lists the constants to use with this method along with what the
cursors look like under Windows.

Here is the mouseMoved method of the MouseMotionListener in our example program:
public void mouseMoved(MouseEvent event)
{
 if (find(event.getPoint()) == null)
 setCursor(Cursor.getDefaultCursor());
 else
 setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
}

Table 8–3 Sample Cursor Shapes

Icon Constant Icon Constant

DEFAULT_CURSOR NE_RESIZE_CURSOR

CROSSHAIR_CURSOR E_RESIZE_CURSOR

HAND_CURSOR SE_RESIZE_CURSOR

MOVE_CURSOR S_RESIZE_CURSOR

TEXT_CURSOR SW_RESIZE_CURSOR

WAIT_CURSOR W_RESIZE_CURSOR

N_RESIZE_CURSOR NW_RESIZE_CURSOR

Chapter 8. Event Handling

Chapter 8 ■ Event Handling352

NOTE: You can also define your own cursor types through the use of the createCustomCursor
method in the Toolkit class:

Toolkit tk = Toolkit.getDefaultToolkit();
Image img = tk.getImage("dynamite.gif");
Cursor dynamiteCursor = tk.createCustomCursor(img, new Point(10, 10), "dynamite stick");

The first parameter of the createCustomCursor points to the cursor image. The second param-
eter gives the offset of the “hot spot” of the cursor. The third parameter is a string that
describes the cursor. This string can be used for accessibility support. For example, a
screen reader program can read the cursor shape description to a user who is visually
impaired or who simply is not facing the screen.

If the user presses a mouse button while the mouse is in motion, mouseDragged calls are
generated instead of mouseMoved calls. Our test application lets a user drag the square
under the cursor. We simply update the currently dragged rectangle to be centered
under the mouse position. Then, we repaint the canvas to show the new mouse position.

public void mouseDragged(MouseEvent event)
{
 if (current != null)
 {
 int x = event.getX();
 int y = event.getY();

 current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
 repaint();

}

NOTE: The mouseMoved method is only called as long as the mouse stays inside the component.
However, the mouseDragged method keeps getting called even when the mouse is being dragged
outside the component.

There are two other mouse event methods: mouseEntered and mouseExited. These methods
are called when the mouse enters or exits a component.

Finally, we explain how to listen to mouse events. Mouse clicks are reported through the
mouseClicked procedure, which is part of the MouseListener interface. Because many applica-
tions are interested only in mouse clicks and not in mouse moves and because mouse
move events occur so frequently, the mouse move and drag events are defined in a sep-
arate interface called MouseMotionListener.

In our program we are interested in both types of mouse events. We define two inner
classes: MouseHandler and MouseMotionHandler. The MouseHandler class extends the MouseAdapter
class because it defines only two of the five MouseListener methods. The MouseMotionHandler
implements the MouseMotionListener and defines both methods of that interface. Listing 8–4
is the program listing.

Chapter 8. Event Handling

Mouse Events 353

Listing 8–4 MouseTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.util.*;
4. import java.awt.geom.*;
5. import javax.swing.*;
6.

7. /**
8. * @version 1.32 2007-06-12
9. * @author Cay Horstmann

10. */
11. public class MouseTest
12. {
13. public static void main(String[] args)
14. {
15. EventQueue.invokeLater(new Runnable()
16. {
17. public void run()
18. {
19. MouseFrame frame = new MouseFrame();
20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);
22. }
23. });
24. }
25. }
26.

27. /**
28. * A frame containing a panel for testing mouse operations
29. */
30. class MouseFrame extends JFrame
31. {
32. public MouseFrame()
33. {
34. setTitle("MouseTest");
35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
36.

37. // add component to frame
38.

39. MouseComponent component = new MouseComponent();
40. add(component);
41. }
42.

43. public static final int DEFAULT_WIDTH = 300;
44. public static final int DEFAULT_HEIGHT = 200;
45. }
46.

47. /**
48. * A component with mouse operations for adding and removing squares.
49. */

Chapter 8. Event Handling

Chapter 8 ■ Event Handling354

50. class MouseComponent extends JComponent
51. {
52. public MouseComponent()
53. {
54. squares = new ArrayList<Rectangle2D>();
55. current = null;
56.

57. addMouseListener(new MouseHandler());
58. addMouseMotionListener(new MouseMotionHandler());
59. }
60.

61. public void paintComponent(Graphics g)
62. {
63. Graphics2D g2 = (Graphics2D) g;
64.

65. // draw all squares
66. for (Rectangle2D r : squares)
67. g2.draw(r);
68. }
69.

70. /**
71. * Finds the first square containing a point.
72. * @param p a point
73. * @return the first square that contains p
74. */
75. public Rectangle2D find(Point2D p)
76. {
77. for (Rectangle2D r : squares)
78. {
79. if (r.contains(p)) return r;
80. }
81. return null;
82. }
83.

84. /**
85. * Adds a square to the collection.
86. * @param p the center of the square
87. */
88. public void add(Point2D p)
89. {
90. double x = p.getX();
91. double y = p.getY();
92.

93. current = new Rectangle2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
94. SIDELENGTH);
95. squares.add(current);
96. repaint();
97. }
98.

Listing 8–4 MouseTest.java (continued)

Chapter 8. Event Handling

Mouse Events 355

99. /**
100. * Removes a square from the collection.
101. * @param s the square to remove
102. */
103. public void remove(Rectangle2D s)
104. {
105. if (s == null) return;
106. if (s == current) current = null;
107. squares.remove(s);
108. repaint();
109. }
110.

111. private static final int SIDELENGTH = 10;
112. private ArrayList<Rectangle2D> squares;
113. private Rectangle2D current;
114.

115. // the square containing the mouse cursor
116.

117. private class MouseHandler extends MouseAdapter
118. {
119. public void mousePressed(MouseEvent event)
120. {
121. // add a new square if the cursor isn't inside a square
122. current = find(event.getPoint());
123. if (current == null) add(event.getPoint());
124. }
125.

126. public void mouseClicked(MouseEvent event)
127. {
128. // remove the current square if double clicked
129. current = find(event.getPoint());
130. if (current != null && event.getClickCount() >= 2) remove(current);
131. }
132. }
133.

134. private class MouseMotionHandler implements MouseMotionListener
135. {
136. public void mouseMoved(MouseEvent event)
137. {
138. // set the mouse cursor to cross hairs if it is inside
139. // a rectangle
140.

141. if (find(event.getPoint()) == null) setCursor(Cursor.getDefaultCursor());
142. else setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
143. }
144.

145. public void mouseDragged(MouseEvent event)
146. {

Listing 8–4 MouseTest.java (continued)

Chapter 8. Event Handling

Chapter 8 ■ Event Handling356

• int getX()
• int getY()
• Point getPoint()

returns the x- (horizontal) and y- (vertical) coordinate, or point where the event
happened, measured from the top-left corner of the component that is the event
source.

• int getClickCount()
returns the number of consecutive mouse clicks associated with this event. (The
time interval for what constitutes “consecutive” is system dependent.)

• int getModifiersEx() 1.4
returns the extended or “down” modifiers for this event. Use the following mask
values to test the returned value:
BUTTON1_DOWN_MASK
BUTTON2_DOWN_MASK
BUTTON3_DOWN_MASK
SHIFT_DOWN_MASK
CTRL_DOWN_MASK
ALT_DOWN_MASK
ALT_GRAPH_DOWN_MASK
META_DOWN_MASK

• static String getModifiersExText(int modifiers) 1.4
returns a string such as “Shift+Button1” describing the extended or “down”
modifiers in the given flag set.

147. if (current != null)
148. {
149. int x = event.getX();
150. int y = event.getY();
151.

152. // drag the current rectangle to center it at (x, y)
153. current.setFrame(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH, SIDELENGTH);
154. repaint();
155. }
156. }
157. }
158. }

java.awt.event.MouseEvent 1.1

java.awt.event.InputEvent 1.1

Listing 8–4 MouseTest.java (continued)

Chapter 8. Event Handling

The AWT Event Hierarchy 357

• public Cursor createCustomCursor(Image image, Point hotSpot, String name) 1.2
creates a new custom cursor object.

• public void setCursor(Cursor cursor) 1.1
sets the cursor image to the specified cursor.

The AWT Event Hierarchy
Having given you a taste of how event handling works, we finish this chapter with an over-
view of the AWT event handling architecture.

As we briefly mentioned earlier, event handling in Java is object oriented, with all
events descending from the EventObject class in the java.util package. (The common
superclass is not called Event because that is the name of the event class in the old event
model. Although the old model is now deprecated, its classes are still a part of the Java
library.)

The EventObject class has a subclass AWTEvent, which is the parent of all AWT event classes.
Figure 8–8 shows the inheritance diagram of the AWT events.

Some of the Swing components generate event objects of yet more event types; these
directly extend EventObject, not AWTEvent.

The event objects encapsulate information about the event that the event source com-
municates to its listeners. When necessary, you can then analyze the event objects that
were passed to the listener object, as we did in the button example with the getSource and
getActionCommand methods.

Some of the AWT event classes are of no practical use for the Java programmer. For
example, the AWT inserts PaintEvent objects into the event queue, but these objects are
not delivered to listeners. Java programmers don’t listen to paint events; they over-
ride the paintComponent method to control repainting. The AWT also generates a number
of events that are needed only by system programmers, to provide input systems for
ideographic languages, automated testing robots, and so on. We do not discuss these
specialized event types.

java.awt.Toolkit 1.0

Parameters: image The image to display when the cursor is active

hotSpot The cursor’s hot spot (such as the tip of an arrow or
the center of cross hairs)

name A description of the cursor, to support special
accessibility environments

java.awt.Component 1.0

Chapter 8. Event Handling

Chapter 8 ■ Event Handling358

Figure 8–8 Inheritance diagram of AWT event classes

Semantic and Low-Level Events
The AWT makes a useful distinction between low-level and semantic events. A semantic event
is one that expresses what the user is doing, such as “clicking that button”; hence, an Action-
Event is a semantic event. Low-level events are those events that make this possible. In the case
of a button click, this is a mouse down, a series of mouse moves, and a mouse up (but only if
the mouse up is inside the button area). Or it might be a keystroke, which happens if the user
selects the button with the TAB key and then activates it with the space bar. Similarly, adjusting
a scrollbar is a semantic event, but dragging the mouse is a low-level event.

Event
Object

AWT Event

Action
Event

Adjustment
Event

Component
Event

Item
Event

Key
Event

Mouse
Event

MouseWheel
Event

Focus
Event

Input
Event

Paint
Event

Window
Event

Chapter 8. Event Handling

The AWT Event Hierarchy 359

Here are the most commonly used semantic event classes in the java.awt.event package:
• ActionEvent (for a button click, a menu selection, selecting a list item, or ENTER typed

in a text field)
• AdjustmentEvent (the user adjusted a scrollbar)
• ItemEvent (the user made a selection from a set of checkbox or list items)

Five low-level event classes are commonly used:

• KeyEvent (a key was pressed or released)
• MouseEvent (the mouse button was pressed, released, moved, or dragged)
• MouseWheelEvent (the mouse wheel was rotated)
• FocusEvent (a component got focus or lost focus)
• WindowEvent (the window state changed)

The following interfaces listen to these events:
ActionListener MouseMotionListener
AdjustmentListener MouseWheelListener
FocusListener WindowListener
ItemListener WindowFocusListener
KeyListener WindowStateListener
MouseListener

Several of the AWT listener interfaces, namely, those that have more than one
method, come with a companion adapter class that implements all the methods in
the interface to do nothing. (The other interfaces have only a single method each,
so there is no benefit in having adapter classes for these interfaces.) Here are the
commonly used adapter classes:

FocusAdapter MouseMotionAdapter
KeyAdapter WindowAdapter
MouseAdapter

Table 8–4 shows the most important AWT listener interfaces, events, and event sources.

The javax.swing.event package contains additional events that are specific to Swing com-
ponents. We cover some of them in the next chapter.

Table 8–4 Event Handling Summary

Interface Methods
Parameter/
Accessors

Events
Generated By

ActionListener actionPerformed ActionEvent

• getActionCommand

• getModifiers

AbstractButton

JComboBox

JTextField

Timer

AdjustmentListener adjustmentValueChanged AdjustmentEvent

• getAdjustable

• getAdjustmentType

• getValue

JScrollbar

Chapter 8. Event Handling

Chapter 8 ■ Event Handling360

This concludes our discussion of AWT event handling. The next chapter shows you how
to put together the most common of the components that Swing offers, along with a
detailed coverage of the events they generate.

ItemListener itemStateChanged ItemEvent

• getItem

• getItemSelectable

• getStateChange

AbstractButton

JComboBox

FocusListener focusGained

focusLost

FocusEvent

• isTemporary

Component

KeyListener keyPressed

keyReleased

keyTyped

KeyEvent

• getKeyChar

• getKeyCode

• getKeyModifiersText

• getKeyText

• isActionKey

Component

MouseListener mousePressed

mouseReleased

mouseEntered

mouseExited

mouseClicked

MouseEvent

• getClickCount

• getX

• getY

• getPoint

• translatePoint

Component

MouseMotionListener mouseDragged

mouseMoved

MouseEvent Component

MouseWheelListener mouseWheelMoved MouseWheelEvent

• getWheelRotation

• getScrollAmount

Component

WindowListener windowClosing

windowOpened

windowIconified

windowDeiconified

windowClosed

windowActivated

windowDeactivated

WindowEvent

• getWindow

Window

WindowFocusListener windowGainedFocus

windowLostFocus

WindowEvent

• getOppositeWindow

Window

WindowStateListener windowStateChanged WindowEvent

• getOldState

• getNewState

Window

Table 8–4 Event Handling Summary (continued)

Interface Methods
Parameter/
Accessors

Events
Generated By

Chapter 8. Event Handling

ChapterChapter

361

USER INTERFACE
COMPONENTS
WITH SWING

▼ SWING AND THE MODEL-VIEW-CONTROLLER DESIGN PATTERN

▼ INTRODUCTION TO LAYOUT MANAGEMENT

▼ TEXT INPUT

▼ CHOICE COMPONENTS

▼ MENUS

▼ SOPHISTICATED LAYOUT MANAGEMENT

▼ DIALOG BOXES

The last chapter was primarily designed to show you how to use the event model
in Java. In the process you took the first steps toward learning how to build a graphical
user interface. This chapter shows you the most important tools you’ll need to build
more full-featured GUIs.

We start out with a tour of the architectural underpinnings of Swing. Knowing what
goes on “under the hood” is important in understanding how to use some of the more
advanced components effectively. We then show you how to use the most common user
interface components in Swing such as text fields, radio buttons, and menus. Next, you

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing362

will learn how to use the nifty layout manager features of Java to arrange these compo-
nents in a window, regardless of the look and feel of a particular user interface. Finally,
you’ll see how to implement dialog boxes in Swing.

This chapter covers basic Swing components such as text components, buttons, and
sliders. These are the essential user interface components that you will need most fre-
quently. We cover advanced Swing components in Volume II.

Swing and the Model-View-Controller Design Pattern
As promised, we start this chapter with a section describing the architecture of Swing
components. We first discuss the concept of design patterns and then look at the “model-
view-controller” pattern that has greatly influenced the design of the Swing framework.

Design Patterns
When solving a problem, you don’t usually figure out a solution from first principles.
Instead, you are likely to be guided by past experience, or you may ask other experts for
advice on what has worked for them. Design patterns are a method for presenting this
expertise in a structured way.

In recent years, software engineers have begun to assemble catalogs of such patterns.
The pioneers in this area were inspired by the architectural design patterns of the archi-
tect Christopher Alexander. In his book, The Timeless Way of Building (Oxford University
Press, 1979), Alexander gives a catalog of patterns for designing public and private liv-
ing spaces. Here is a typical example:

Window Place

Everybody loves window seats, bay windows, and big windows with low sills and comfortable
chairs drawn up to them . . . A room which does not have a place like this seldom allows you to feel
comfortable or perfectly at ease . . .

If the room contains no window which is a “place,” a person in the room will be torn between two
forces: (1) He wants to sit down and be comfortable, and (2) he is drawn toward the light.

Obviously, if the comfortable places—those places in the room where you most want to sit—are
away from the windows, there is no way of overcoming this conflict . . .

Therefore: In every room where you spend any length of time during the day, make at least one
window into a “window place.”

Figure 9–1 A window place

low
sill

place

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern 363

Each pattern in Alexander’s catalog, as well as those in the catalogs of software patterns,
follows a particular format. The pattern first describes a context, a situation that gives
rise to a design problem. Then, the problem is explained, usually as a set of conflicting
forces. Finally, the solution shows a configuration that balances these forces.

In the “window place” pattern, the context is a room in which you spend any length of
time during the day. The conflicting forces are that you want to sit down and be com-
fortable and that you are drawn to the light. The solution is to make a “window place.”

In the “model-view-controller” pattern, which we will describe in the next section, the
context is a user interface system that presents information and receives user input.
There are several forces. There may be multiple visual representations of the same data
that need to be updated together. The visual representation may change, for example, to
accommodate various look-and-feel standards. The interaction mechanisms may
change, for example, to support voice commands. The solution is to distribute responsi-
bilities into three separate interacting components: the model, view, and controller.

The model-view-controller pattern is not the only pattern used in the design of AWT
and Swing. Here are several additonal examples:

• Containers and components are examples of the “composite” pattern.
• The scroll pane is a “decorator.”
• Layout managers follow the “strategy” pattern.

One important aspect of design patterns is that they become part of the culture. Pro-
grammers all over the world know what you mean when you talk about the model-
view-controller pattern or the “decorator” pattern. Thus, patterns become an efficient
way of talking about design problems.

You will find a formal description of numerous useful software patterns in the seminal
book of the pattern movement, Design Patterns—Elements of Reusable Object-Oriented
Software, by Erich Gamma et al. (Addison-Wesley, 1995). We also highly recommend the
excellent book A System of Patterns by Frank Buschmann et al. (John Wiley & Sons, 1996),
which we find less seminal and more approachable.
The Model-View-Controller Pattern
Let’s step back for a minute and think about the pieces that make up a user interface
component such as a button, a checkbox, a text field, or a sophisticated tree control.
Every component has three characteristics:

• Its content, such as the state of a button (pushed in or not), or the text in a text field
• Its visual appearance (color, size, and so on)
• Its behavior (reaction to events)

Even a seemingly simple component such as a button exhibits some moderately com-
plex interaction among these characteristics. Obviously, the visual appearance of a but-
ton depends on the look and feel. A Metal button looks different from a Windows
button or a Motif button. In addition, the appearance depends on the button state:
When a button is pushed in, it needs to be redrawn to look different. The state depends
on the events that the button receives. When the user depresses the mouse inside the
button, the button is pushed in.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing364

Of course, when you use a button in your programs, you simply consider it as a button,
and you don’t think too much about the inner workings and characteristics. That, after
all, is the job of the programmer who implemented the button. However, those pro-
grammers who implement buttons are motivated to think a little harder about them.
After all, they have to implement buttons, and all other user interface components, so
that they work well no matter what look and feel is installed.

To do this, the Swing designers turned to a well-known design pattern: the model-view-
controller pattern. This pattern, like many other design patterns, goes back to one of the
principles of object-oriented design that we mentioned way back in Chapter 5: Don’t
make one object responsible for too much. Don’t have a single button class do every-
thing. Instead, have the look and feel of the component associated with one object and
store the content in another object. The model-view-controller (MVC) design pattern
teaches how to accomplish this. Implement three separate classes:

• The model, which stores the content
• The view, which displays the content
• The controller, which handles user input

The pattern specifies precisely how these three objects interact. The model stores the con-
tent and has no user interface. For a button, the content is pretty trivial—just a small set of
flags that tells whether the button is currently pushed in or out, whether it is active or
inactive, and so on. For a text field, the content is a bit more interesting. It is a string object
that holds the current text. This is not the same as the view of the content—if the content is
larger than the text field, the user sees only a portion of the text displayed (see Figure 9–2).

Figure 9–2 Model and view of a text field

The model must implement methods to change the content and to discover what the con-
tent is. For example, a text model has methods to add or remove characters in the current
text and to return the current text as a string. Again, keep in mind that the model is com-
pletely nonvisual. It is the job of a view to draw the data that is stored in the model.

NOTE: The term “model” is perhaps unfortunate because we often think of a model as a
representation of an abstract concept. Car and airplane designers build models to simulate
real cars and planes. But that analogy really leads you astray when thinking about the
model-view-controller pattern. In the design pattern, the model stores the complete content,
and the view gives a (complete or incomplete) visual representation of the content. A better
analogy might be the model who poses for an artist. It is up to the artist to look at the model
and create a view. Depending on the artist, that view might be a formal portrait, an impres-
sionist painting, or a cubist drawing that shows the limbs in strange contortions.

model "The quick brown fox jumps over the lazy dog"

view

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern 365

One of the advantages of the model-view-controller pattern is that a model can have mul-
tiple views, each showing a different part or aspect of the full content. For example, an
HTML editor can offer two simultaneous views of the same content: a WYSIWYG view and
a “raw tag” view (see Figure 9–3). When the model is updated through the controller of
one of the views, it tells both attached views about the change. When the views are noti-
fied, they refresh themselves automatically. Of course, for a simple user interface compo-
nent such as a button, you won’t have multiple views of the same model.

Figure 9–3 Two separate views of the same model

The controller handles the user-input events such as mouse clicks and keystrokes. It
then decides whether to translate these events into changes in the model or the view.
For example, if the user presses a character key in a text box, the controller calls the
“insert character” command of the model. The model then tells the view to update itself.
The view never knows why the text changed. But if the user presses a cursor key, then
the controller may tell the view to scroll. Scrolling the view has no effect on the underly-
ing text, so the model never knows that this event happened.

Figure 9–4 shows the interactions among model, view, and controller objects.

As a programmer using Swing components, you generally don’t need to think about the
model-view-controller architecture. Each user interface component has a wrapper class
(such as JButton or JTextField) that stores the model and the view. When you want to inquire
about the content (for example, the text in a text field), the wrapper class asks the model

model

1.

2

3.

P

OL LI

LI

LI

.

<P>

tag
view

WYSIWG
view

</P>

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing366

and returns the answer to you. When you want to change the view (for example, move the
caret position in a text field), the wrapper class forwards that request to the view. How-
ever, occasionally the wrapper class doesn’t work hard enough on forwarding commands.
Then, you have to ask it to retrieve the model and work directly with the model. (You
don’t have to work directly with the view—that is the job of the look-and-feel code.)

Figure 9–4 Interactions among model, view, and controller objects

Besides being “the right thing to do,” the model-view-controller pattern was attractive
for the Swing designers because it allowed them to implement pluggable look and feel.
The model of a button or text field is independent of the look and feel. But of course the
visual representation is completely dependent on the user interface design of a particu-
lar look and feel. The controller can vary as well. For example, in a voice-controlled
device, the controller must cope with an entirely different set of events than in a stan-
dard computer with a keyboard and a mouse. By separating out the underlying model

ModelViewController

paint view

read content

update content

content changed

update view

Chapter 9. User Interface Components with Swing

Swing and the Model-View-Controller Design Pattern 367

from the user interface, the Swing designers can reuse the code for the models and can
even switch the look and feel in a running program.

Of course, patterns are only intended as guidance, not as religion. No pattern is applica-
ble in all situations. For example, you may find it difficult to follow the “window
places” pattern to rearrange your cubicle. Similarly, the Swing designers found that the
harsh reality of pluggable look-and-feel implementation does not always allow for a
neat realization of the model-view-controller pattern. Models are easy to separate, and
each user interface component has a model class. But the responsibilities of the view
and controller are not always clearly separated and are distributed over a number of dif-
ferent classes. Of course, as a user of these classes, you won’t be concerned about this. In
fact, as we pointed out before, you often won’t have to worry about the models either—
you can just use the component wrapper classes.

A Model-View-Controller Analysis of Swing Buttons
You already learned how to use buttons in the previous chapter, without having to
worry about the controller, model, or view for them. Still, buttons are about the simplest
user interface elements, so they are a good place to become comfortable with the model-
view-controller pattern. You will encounter similar kinds of classes and interfaces for
the more sophisticated Swing components.

For most components, the model class implements an interface whose name ends in
Model; thus the interface called ButtonModel. Classes implementing that interface can define
the state of the various kinds of buttons. Actually, buttons aren’t all that complicated,
and the Swing library contains a single class, called DefaultButtonModel, that implements
this interface.

You can get a sense of what sort of data are maintained by a button model by looking at
the properties of the ButtonModel interface—see Table 9–1.

Table 9–1 Properties of the ButtonModel Interface

Property Name Value

actionCommand The action command string associated with this button

mnemonic The keyboard mnemonic for this button

armed true if the button was pressed and the mouse is still over the button

enabled true if the button is selectable

pressed true if the button was pressed but the mouse button hasn’t yet been
released

rollover true if the mouse is over the button

selected true if the button has been toggled on (used for checkboxes and
radio buttons)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing368

Each JButton object stores a button model object, which you can retrieve.
JButton button = new JButton("Blue");
ButtonModel model = button.getModel();

In practice, you won’t care—the minutiae of the button state are only of interest to
the view that draws it. And the important information—such as whether a button is
enabled—is available from the JButton class. (The JButton then asks its model, of course, to
retrieve that information.)

Have another look at the ButtonModel interface to see what isn’t there. The model does not
store the button label or icon. There is no way to find out what’s on the face of a button
just by looking at its model. (Actually, as you will see in “Radio Buttons” on page 388,
purity of design is the source of some grief for the programmer.)

It is also worth noting that the same model (namely, DefaultButtonModel) is used for push
buttons, radio buttons, checkboxes, and even menu items. Of course, each of these but-
ton types has different views and controllers. When using the Metal look and feel, the
JButton uses a class called BasicButtonUI for the view and a class called ButtonUIListener as
controller. In general, each Swing component has an associated view object that ends in
UI. But not all Swing components have dedicated controller objects.

So, having read this short introduction to what is going on under the hood in a JButton,
you may be wondering: Just what is a JButton really? It is simply a wrapper class inherit-
ing from JComponent that holds the DefaultButtonModel object, some view data (such as the
button label and icons), and a BasicButtonUI object that is responsible for the button view.

Introduction to Layout Management
Before we go on to discussing individual Swing components, such as text fields and
radio buttons, we briefly cover how to arrange these components inside a frame. Unlike
Visual Basic, the JDK has no form designer. You need to write code to position (lay out)
the user interface components where you want them to be.
Of course, if you have a Java-enabled development environment, it will probably have a
layout tool that automates some or all of these tasks. Nevertheless, it is important to
know exactly what goes on “under the hood” because even the best of these tools will
usually require hand-tweaking.
Let’s start by reviewing the program from Chapter 8 that used buttons to change the
background color of a frame (see Figure 9–5).

Figure 9–5 A panel with three buttons

Chapter 9. User Interface Components with Swing

Introduction to Layout Management 369

The buttons are contained in a JPanel object and are managed by the flow layout man-
ager, the default layout manager for a panel. Figure 9–6 shows what happens when
you add more buttons to the panel. As you can see, a new row is started when there
is no more room.

Figure 9–6 A panel with six buttons managed by a flow layout

Moreover, the buttons stay centered in the panel, even when the user resizes the frame
(see Figure 9–7).

Figure 9–7 Changing the panel size rearranges the buttons automatically

In general, components are placed inside containers, and a layout manager determines the
positions and sizes of the components in the container.

Buttons, text fields, and other user interface elements extend the class Component. Compo-
nents can be placed inside containers such as panels. Because containers can themselves
be put inside other containers, the class Container extends Component. Figure 9–8 shows the
inheritance hierarchy for Component.

NOTE: Unfortunately, the inheritance hierarchy is somewhat unclean in two respects. First,
top-level windows such as JFrame are subclasses of Container and hence Component, but they
cannot be placed inside other containers. Moreover, JComponent is a subclass of Container not
Component, and therefore one can add other components into a JButton. (However, those com-
ponents would not be displayed.)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing370

Each container has a default layout manager, but you can always set your own. For
example, the statement

panel.setLayout(new GridLayout(4, 4));

uses the GridLayout class to lay out the components in the panel. You add components to
the container. The add method of the container passes the component and any placement
directions to the layout manager.

• void setLayout(LayoutManager m)
sets the layout manager for this container.

• Component add(Component c)
• Component add(Component c, Object constraints) 1.1

adds a component to this container and returns the component reference.

Figure 9–8 Inheritance hierarchy for the Component class

java.awt.Container 1.0

Parameters: c The component to add

constraints An identifier understood by the layout manager

Object

Component

Container

Window JComponent

Frame Dialog

JFrame JDialog

JPanel
JText

Component
JLabel JScrollPane JComboBox

Abstract
Button

JMenuBar

JTextField JTextArea JButton JMenuItem
JToggle
Button

Chapter 9. User Interface Components with Swing

Introduction to Layout Management 371

• FlowLayout()
• FlowLayout(int align)
• FlowLayout(int align, int hgap, int vgap)

constructs a new FlowLayout.

Border Layout
The border layout manager is the default layout manager of the content pane of every
JFrame. Unlike the flow layout manager, which completely controls the position of each
component, the border layout manager lets you choose where you want to place each
component. You can choose to place the component in the center, north, south, east, or
west of the content pane (see Figure 9–9).

Figure 9–9 Border layout

For example:
frame.add(component, BorderLayout.SOUTH);

The edge components are laid out first, and the remaining available space is occupied
by the center. When the container is resized, the dimensions of the edge components are
unchanged, but the center component changes its size. You add components by specify-
ing a constant CENTER, NORTH, SOUTH, EAST, or WEST of the BorderLayout class. Not all of the posi-
tions need to be occupied. If you don’t supply any value, CENTER is assumed.

NOTE: The BorderLayout constants are defined as strings. For example, BorderLayout.SOUTH is
defined as the string "South". Many programmers prefer to use the strings directly because
they are shorter, for example, frame.add(component, "South"). However, if you accidentally
misspell a string, the compiler won’t catch that error.

java.awt.FlowLayout 1.0

Parameters: align One of LEFT, CENTER, or RIGHT

hgap The horizontal gap to use in pixels (negative values
force an overlap)

vgap The vertical gap to use in pixels (negative values
force an overlap)

North

South

West Center East

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing372

Unlike the flow layout, the border layout grows all components to fill the available
space. (The flow layout leaves each component at its preferred size.) This is a problem
when you add a button:

frame.add(yellowButton, BorderLayout.SOUTH); // don't

Figure 9–10 shows what happens when you use the preceding code fragment. The but-
ton has grown to fill the entire southern region of the frame. And, if you were to add
another button to the southern region, it would just displace the first button.

Figure 9–10 A single button managed by a border layout

You solve this problem by using additional panels. For example, look at Figure 9–11. The
three buttons at the bottom of the screen are all contained in a panel. The panel is put into
the southern region of the content pane.

Figure 9–11 Panel placed at the southern region of the frame

To achieve this configuration, first create a new JPanel object, then add the individual but-
tons to the panel. The default layout manager for a panel is a FlowLayout, which is a good
choice for this situation. You add the individual buttons to the panel, using the add method
you have seen before.The position and size of the buttons is under the control of the FlowLay-
out manager. This means the buttons stay centered within the panel, and they do not expand
to fill the entire panel area. Finally, you add the panel to the content pane of the frame.

JPanel panel = new JPanel();
panel.add(yellowButton);
panel.add(blueButton);
panel.add(redButton);
frame.add(panel, BorderLayout.SOUTH);

The border layout expands the size of the panel to fill the entire southern region.

Chapter 9. User Interface Components with Swing

Introduction to Layout Management 373

• BorderLayout()
• BorderLayout(int hgap, int vgap)

constructs a new BorderLayout.

Grid Layout
The grid layout arranges all components in rows and columns like a spreadsheet. All
components are given the same size. The calculator program in Figure 9–12 uses a grid
layout to arrange the calculator buttons. When you resize the window, the buttons grow
and shrink, but all buttons have identical sizes.

Figure 9–12 A calculator

In the constructor of the grid layout object, you specify how many rows and columns you
need.

panel.setLayout(new GridLayout(5, 4));

You add the components, starting with the first entry in the first row, then the second
entry in the first row, and so on.

panel.add(new JButton("1"));
panel.add(new JButton("2"));

Listing 9–1 is the source listing for the calculator program. This is a regular calculator,
not the “reverse Polish” variety that is so oddly popular in Java tutorials. In this pro-
gram, we call the pack method after adding the component to the frame. This method
uses the preferred sizes of all components to compute the width and height of the frame.

Of course, few applications have as rigid a layout as the face of a calculator. In prac-
tice, small grids (usually with just one row or one column) can be useful to organize
partial areas of a window. For example, if you want to have a row of buttons with
identical size, then you can put the buttons inside a panel that is governed by a grid
layout with a single row.

java.awt.Borderlayout 1.0

Parameters: hgap The horizontal gap to use in pixels (negative values
force an overlap)

vgap The vertical gap to use in pixels (negative values
force an overlap)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing374

Listing 9–1 Calculator.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class Calculator

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. CalculatorFrame frame = new CalculatorFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a calculator panel.
27. */
28. class CalculatorFrame extends JFrame
29. {
30. public CalculatorFrame()
31. {
32. setTitle("Calculator");
33. CalculatorPanel panel = new CalculatorPanel();
34. add(panel);
35. pack();
36. }
37. }
38.

39. /**
40. * A panel with calculator buttons and a result display.
41. */
42. class CalculatorPanel extends JPanel
43. {
44. public CalculatorPanel()
45. {
46. setLayout(new BorderLayout());
47.

48. result = 0;
49. lastCommand = "=";
50. start = true;

Chapter 9. User Interface Components with Swing

Introduction to Layout Management 375

51.

52. // add the display
53.

54. display = new JButton("0");
55. display.setEnabled(false);
56. add(display, BorderLayout.NORTH);
57.

58. ActionListener insert = new InsertAction();
59. ActionListener command = new CommandAction();
60.

61. // add the buttons in a 4 x 4 grid
62.

63. panel = new JPanel();
64. panel.setLayout(new GridLayout(4, 4));
65.

66. addButton("7", insert);
67. addButton("8", insert);
68. addButton("9", insert);
69. addButton("/", command);
70.

71. addButton("4", insert);
72. addButton("5", insert);
73. addButton("6", insert);
74. addButton("*", command);
75.

76. addButton("1", insert);
77. addButton("2", insert);
78. addButton("3", insert);
79. addButton("-", command);
80.

81. addButton("0", insert);
82. addButton(".", insert);
83. addButton("=", command);
84. addButton("+", command);
85.

86. add(panel, BorderLayout.CENTER);
87. }
88.

89. /**
90. * Adds a button to the center panel.
91. * @param label the button label
92. * @param listener the button listener
93. */
94. private void addButton(String label, ActionListener listener)
95. {
96. JButton button = new JButton(label);
97. button.addActionListener(listener);
98. panel.add(button);
99. }

100.

Listing 9–1 Calculator.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing376

101. /**
102. * This action inserts the button action string to the end of the display text.
103. */
104. private class InsertAction implements ActionListener
105. {
106. public void actionPerformed(ActionEvent event)
107. {
108. String input = event.getActionCommand();
109. if (start)
110. {
111. display.setText("");
112. start = false;
113. }
114. display.setText(display.getText() + input);
115. }
116. }
117.

118. /**
119. * This action executes the command that the button action string denotes.
120. */
121. private class CommandAction implements ActionListener
122. {
123. public void actionPerformed(ActionEvent event)
124. {
125. String command = event.getActionCommand();
126.

127. if (start)
128. {
129. if (command.equals("-"))
130. {
131. display.setText(command);
132. start = false;
133. }
134. else lastCommand = command;
135. }
136. else
137. {
138. calculate(Double.parseDouble(display.getText()));
139. lastCommand = command;
140. start = true;
141. }
142. }
143. }
144.

145. /**
146. * Carries out the pending calculation.
147. * @param x the value to be accumulated with the prior result.
148. */
149. public void calculate(double x)
150. {

Listing 9–1 Calculator.java (continued)

Chapter 9. User Interface Components with Swing

Text Input 377

• GridLayout(int rows, int columns)
• GridLayout(int rows, int columns, int hgap, int vgap)

constructs a new GridLayout. One of rows and columns (but not both) may be zero,
denoting an arbitrary number of components per row or column.

• void pack()
resizes this window, taking into account the preferred sizes of its components.

Text Input
We are finally ready to start introducing the Swing user interface components. We start
with components that let a user input and edit text. You can use the JTextField and JText-
Area components for gathering text input. A text field can accept only one line of text; a
text area can accept multiple lines of text. A JPasswordField accepts one line of text without
showing the contents.

All three of these classes inherit from a class called JTextComponent. You will not be able to
construct a JTextComponent yourself because it is an abstract class. On the other hand, as is
so often the case in Java, when you go searching through the API documentation, you
may find that the methods you are looking for are actually in the parent class JTextCompo-
nent rather than in the derived class. For example, the methods that get or set the text in
a text field or text area are actually methods in JTextComponent.

151. if (lastCommand.equals("+")) result += x;
152. else if (lastCommand.equals("-")) result -= x;
153. else if (lastCommand.equals("*")) result *= x;
154. else if (lastCommand.equals("/")) result /= x;
155. else if (lastCommand.equals("=")) result = x;
156. display.setText("" + result);
157. }
158.

159. private JButton display;
160. private JPanel panel;
161. private double result;
162. private String lastCommand;
163. private boolean start;
164. }

java.awt.GridLayout 1.0

Parameters: rows The number of rows in the grid
columns The number of columns in the grid
hgap The horizontal gap to use in pixels (negative values

force an overlap)
vgap The vertical gap to use in pixels (negative values

force an overlap)

java.awt.Window 1.0

Listing 9–1 Calculator.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing378

• String getText()
• void setText(String text)

gets or sets the text of this text component.
• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property that determines whether the user can edit the
content of this text component.

Text Fields
The usual way to add a text field to a window is to add it to a panel or other container—
just as you would a button:

JPanel panel = new JPanel();
JTextField textField = new JTextField("Default input", 20);
panel.add(textField);

This code adds a text field and initializes the text field by placing the string "Default input"
inside it. The second parameter of this constructor sets the width. In this case, the width
is 20 “columns.” Unfortunately, a column is a rather imprecise measurement. One col-
umn is the expected width of one character in the font you are using for the text. The idea
is that if you expect the inputs to be n characters or less, you are supposed to specify n as
the column width. In practice, this measurement doesn’t work out too well, and you
should add 1 or 2 to the maximum input length to be on the safe side. Also, keep in mind
that the number of columns is only a hint to the AWT that gives the preferred size. If the
layout manager needs to grow or shrink the text field, it can adjust its size. The column
width that you set in the JTextField constructor is not an upper limit on the number of
characters the user can enter. The user can still type in longer strings, but the input scrolls
when the text exceeds the length of the field. Users tend to find scrolling text fields irritat-
ing, so you should size the fields generously. If you need to reset the number of columns
at runtime, you can do that with the setColumns method.

TIP: After changing the size of a text box with the setColumns method, call the revalidate
method of the surrounding container.

textField.setColumns(10);
panel.revalidate();

The revalidate method recomputes the size and layout of all components in a container.
After you use the revalidate method, the layout manager resizes the container, and the
changed size of the text field will be visible.

The revalidate method belongs to the JComponent class. It doesn’t immediately resize the
component but merely marks it for resizing. This approach avoids repetitive calculations
if multiple components request to be resized. However, if you want to recompute all
components inside a JFrame, you have to call the validate method—JFrame doesn’t extend
JComponent.

javax.swing.text.JTextComponent 1.2

Chapter 9. User Interface Components with Swing

Text Input 379

In general, you want to let the user add text (or edit the existing text) in a text field.
Quite often these text fields start out blank. To make a blank text field, just leave out the
string as a parameter for the JTextField constructor:

JTextField textField = new JTextField(20);

You can change the content of the text field at any time by using the setText method from
the JTextComponent parent class mentioned in the previous section. For example:

textField.setText("Hello!");

And, as was also mentioned in the previous section, you can find out what the user
typed by calling the getText method. This method returns the exact text that the user
typed. To trim any extraneous leading and trailing spaces from the data in a text field,
apply the trim method to the return value of getText:

String text = textField.getText().trim();

To change the font in which the user text appears, use the setFont method.

• JTextField(int cols)
constructs an empty JTextField with a specified number of columns.

• JTextField(String text, int cols)
constructs a new JTextField with an initial string and the specified number
of columns.

• int getColumns()
• void setColumns(int cols)

gets or sets the number of columns that this text field should use.

• void revalidate()
causes the position and size of a component to be recomputed.

• void setFont(Font f)
sets the font of this component.

• void validate()
recomputes the position and size of a component. If the component is a container,
the positions and sizes of its components are recomputed.

• Font getFont()
gets the font of this component.

Labels and Labeling Components
Labels are components that hold text. They have no decorations (for example, no
boundaries). They also do not react to user input. You can use a label to identify compo-
nents. For example, unlike buttons, text fields have no label to identify them. To label a
component that does not itself come with an identifier:

javax.swing.JTextField 1.2

javax.swing.JComponent 1.2

java.awt.Component 1.0

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing380

1. Construct a JLabel component with the correct text.
2. Place it close enough to the component you want to identify so that the user can see

that the label identifies the correct component.

The constructor for a JLabel lets you specify the initial text or icon, and optionally,
the alignment of the content. You use constants from the SwingConstants interface to
specify alignment. That interface defines a number of useful constants such as LEFT,
RIGHT, CENTER, NORTH, EAST, and so on. The JLabel class is one of several Swing classes that
implement this interface. Therefore, you can specify a right-aligned label either as

JLabel label = new JLabel("User name: ", SwingConstants.RIGHT);

or
JLabel label = new JLabel("User name: ", JLabel.RIGHT);

The setText and setIcon methods let you set the text and icon of the label at runtime.

TIP: Beginning with Java SE 1.3, you can use both plain and HTML text in buttons, labels, and
menu items. We don’t recommend HTML in buttons—it interferes with the look and feel. But
HTML in labels can be very effective. Simply surround the label string with <html>. . .</html>,
like this:

label = new JLabel("<html>Required entry:</html>");

Fair warning—the first component with an HTML label takes some time to be displayed
because the rather complex HTML rendering code must be loaded.

Labels can be positioned inside a container like any other component. This means you
can use the techniques you have seen before to place labels where you need them.

• JLabel(String text)
• JLabel(Icon icon)
• JLabel(String text, int align)
• JLabel(String text, Icon icon, int align)

constructs a label.

• String getText()
• void setText(String text)

gets or sets the text of this label.
• Icon getIcon()
• void setIcon(Icon icon)

gets or sets the icon of this label.

javax.swing.JLabel 1.2

Parameters: text The text in the label

icon The icon in the label

align One of the SwingConstants constants LEFT (default),
CENTER, or RIGHT

Chapter 9. User Interface Components with Swing

Text Input 381

Password Fields
Password fields are a special kind of text field. To avoid nosy bystanders being able to
glance at a password, the characters that the user entered are not actually displayed.
Instead, each typed character is represented by an echo character, typically an asterisk (*).
Swing supplies a JPasswordField class that implements such a text field.

The password field is another example of the power of the model-view-controller archi-
tecture pattern. The password field uses the same model to store the data as a regular
text field, but its view has been changed to display all characters as echo characters.

• JPasswordField(String text, int columns)
constructs a new password field.

• void setEchoChar(char echo)
sets the echo character for this password field. This is advisory; a particular look
and feel may insist on its own choice of echo character. A value of 0 resets the echo
character to the default.

• char[] getPassword()
returns the text contained in this password field. For stronger security, you should
overwrite the content of the returned array after use. (The password is not
returned as a String because a string would stay in the virtual machine until it is
garbage-collected.)

Text Areas
Sometimes, you need to collect user input that is more than one line long. As mentioned
earlier, you use the JTextArea component for this collection. When you place a text area
component in your program, a user can enter any number of lines of text, using the
ENTER key to separate them. Each line ends with a '\n'. Figure 9–13 shows a text area at
work.

Figure 9–13 Text components

javax.swing.JPasswordField 1.2

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing382

In the constructor for the JTextArea component, you specify the number of rows and
columns for the text area. For example,

textArea = new JTextArea(8, 40); // 8 lines of 40 columns each

where the columns parameter works as before—and you still need to add a few more
columns for safety’s sake. Also, as before, the user is not restricted to the number of
rows and columns; the text simply scrolls when the user inputs too much. You can
also use the setColumns method to change the number of columns, and the setRows
method to change the number of rows. These numbers only indicate the preferred
size—the layout manager can still grow or shrink the text area.

If there is more text than the text area can display, then the remaining text is simply
clipped. You can avoid clipping long lines by turning on line wrapping:

textArea.setLineWrap(true); // long lines are wrapped

This wrapping is a visual effect only; the text in the document is not changed—no '\n'
characters are inserted into the text.

Scroll Panes
In Swing, a text area does not have scrollbars. If you want scrollbars, you have to insert
the text area inside a scroll pane.

textArea = new JTextArea(8, 40);
JScrollPane scrollPane = new JScrollPane(textArea);

The scroll pane now manages the view of the text area. Scrollbars automatically appear
if there is more text than the text area can display, and they vanish again if text is deleted
and the remaining text fits inside the area. The scrolling is handled internally in the
scroll pane— your program does not need to process scroll events.

This is a general mechanism that works for any component, not just text areas. To add
scrollbars to a component, put them inside a scroll pane.

Listing 9–2 demonstrates the various text components. This program simply shows a
text field, a password field, and a text area with scrollbars. The text field and password
field are labeled. Click on “Insert” to insert the field contents into the text area.

NOTE: The JTextArea component displays plain text only, without special fonts or formatting.
To display formatted text (such as HTML), you can use the JEditorPane class that is dis-
cussed in Volume II.

Listing 9–2 TextComponentTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.40 2007-04-27
7. * @author Cay Horstmann
8. */

Chapter 9. User Interface Components with Swing

Text Input 383

9. public class TextComponentTest
10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. TextComponentFrame frame = new TextComponentFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with sample text components.
27. */
28. class TextComponentFrame extends JFrame
29. {
30. public TextComponentFrame()
31. {
32. setTitle("TextComponentTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. final JTextField textField = new JTextField();
36. final JPasswordField passwordField = new JPasswordField();
37.

38. JPanel northPanel = new JPanel();
39. northPanel.setLayout(new GridLayout(2, 2));
40. northPanel.add(new JLabel("User name: ", SwingConstants.RIGHT));
41. northPanel.add(textField);
42. northPanel.add(new JLabel("Password: ", SwingConstants.RIGHT));
43. northPanel.add(passwordField);
44.

45. add(northPanel, BorderLayout.NORTH);
46.

47. final JTextArea textArea = new JTextArea(8, 40);
48. JScrollPane scrollPane = new JScrollPane(textArea);
49.

50. add(scrollPane, BorderLayout.CENTER);
51.

52. // add button to append text into the text area
53.

54. JPanel southPanel = new JPanel();
55.

56. JButton insertButton = new JButton("Insert");
57. southPanel.add(insertButton);

Listing 9–2 TextComponentTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing384

• JTextArea()
• JTextArea(int rows, int cols)
• JTextArea(String text, int rows, int cols)

constructs a new text area.
• void setColumns(int cols)

tells the text area the preferred number of columns it should use.
• void setRows(int rows)

tells the text area the preferred number of rows it should use.
• void append(String newText)

appends the given text to the end of the text already in the text area.
• void setLineWrap(boolean wrap)

turns line wrapping on or off.
• void setWrapStyleWord(boolean word)

If word is true, then long lines are wrapped at word boundaries. If it is false, then
long lines are broken without taking word boundaries into account.

• void setTabSize(int c)
sets tab stops every c columns. Note that the tabs aren’t converted to spaces but
cause alignment with the next tab stop.

• JScrollPane(Component c)
creates a scroll pane that displays the content of the specified component.
Scrollbars are supplied when the component is larger than the view.

58. insertButton.addActionListener(new ActionListener()
59. {
60. public void actionPerformed(ActionEvent event)
61. {
62. textArea.append("User name: " + textField.getText() + " Password: "
63. + new String(passwordField.getPassword()) + "\n");
64. }
65. });
66.

67. add(southPanel, BorderLayout.SOUTH);
68.

69. // add a text area with scrollbars
70.

71. }
72.

73. public static final int DEFAULT_WIDTH = 300;
74. public static final int DEFAULT_HEIGHT = 300;
75. }

javax.swing.JTextArea 1.2

javax.swing.JScrollPane 1.2

Listing 9–2 TextComponentTest.java (continued)

Chapter 9. User Interface Components with Swing

Choice Components 385

Choice Components
You now know how to collect text input from users, but there are many occasions for
which you would rather give users a finite set of choices than have them enter the data
in a text component. Using a set of buttons or a list of items tells your users what choices
they have. (It also saves you the trouble of error checking.) In this section, you learn
how to program checkboxes, radio buttons, lists of choices, and sliders.

Checkboxes
If you want to collect just a “yes” or “no” input, use a checkbox component. Checkboxes
automatically come with labels that identify them. The user usually checks the box by
clicking inside it and turns off the check mark by clicking inside the box again. To toggle
the check mark, the user can also press the space bar when the focus is in the checkbox.

Figure 9–14 shows a simple program with two checkboxes, one to turn on or off the
italic attribute of a font, and the other for boldface. Note that the second checkbox has
focus, as indicated by the rectangle around the label. Each time the user clicks one of the
checkboxes, the screen is refreshed, using the new font attributes.

Figure 9–14 Checkboxes

Checkboxes need a label next to them to identify their purpose. You give the label text in
the constructor.

bold = new JCheckBox("Bold");

You use the setSelected method to turn a checkbox on or off. For example:
bold.setSelected(true);

The isSelected method then retrieves the current state of each checkbox. It is false if
unchecked; true if checked.

When the user clicks on a checkbox, this triggers an action event. As always, you attach
an action listener to the checkbox. In our program, the two checkboxes share the same
action listener.

ActionListener listener = . . .
bold.addActionListener(listener);
italic.addActionListener(listener);

The actionPerformed method queries the state of the bold and italic checkboxes and sets the
font of the panel to plain, bold, italic, or both bold and italic.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing386

public void actionPerformed(ActionEvent event)
{
 int mode = 0;
 if (bold.isSelected()) mode += Font.BOLD;
 if (italic.isSelected()) mode += Font.ITALIC;
 label.setFont(new Font("Serif", mode, FONTSIZE));
}

Listing 9–3 is the complete program listing for the checkbox example.

Listing 9–3 CheckBoxTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class CheckBoxTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. CheckBoxFrame frame = new CheckBoxFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a sample text label and check boxes for selecting font attributes.
27. */
28. class CheckBoxFrame extends JFrame
29. {
30. public CheckBoxFrame()
31. {
32. setTitle("CheckBoxTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // add the sample text label
36.

37. label = new JLabel("The quick brown fox jumps over the lazy dog.");
38. label.setFont(new Font("Serif", Font.PLAIN, FONTSIZE));
39. add(label, BorderLayout.CENTER);
40.

Chapter 9. User Interface Components with Swing

Choice Components 387

• JCheckBox(String label)
• JCheckBox(String label, Icon icon)

constructs a checkbox that is initially unselected.
• JCheckBox(String label, boolean state)

constructs a checkbox with the given label and initial state.
• boolean isSelected ()
• void setSelected(boolean state)

gets or sets the selection state of the checkbox.

41. // this listener sets the font attribute of
42. // the label to the check box state
43.

44. ActionListener listener = new ActionListener()
45. {
46. public void actionPerformed(ActionEvent event)
47. {
48. int mode = 0;
49. if (bold.isSelected()) mode += Font.BOLD;
50. if (italic.isSelected()) mode += Font.ITALIC;
51. label.setFont(new Font("Serif", mode, FONTSIZE));
52. }
53. };
54.

55. // add the check boxes
56.

57. JPanel buttonPanel = new JPanel();
58.

59. bold = new JCheckBox("Bold");
60. bold.addActionListener(listener);
61. buttonPanel.add(bold);
62.

63. italic = new JCheckBox("Italic");
64. italic.addActionListener(listener);
65. buttonPanel.add(italic);
66.

67. add(buttonPanel, BorderLayout.SOUTH);
68. }
69.

70. public static final int DEFAULT_WIDTH = 300;
71. public static final int DEFAULT_HEIGHT = 200;
72.

73. private JLabel label;
74. private JCheckBox bold;
75. private JCheckBox italic;
76.

77. private static final int FONTSIZE = 12;
78. }

javax.swing.JCheckBox 1.2

Listing 9–3 CheckBoxTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing388

Radio Buttons
In the previous example, the user could check either, both, or neither of the two check-
boxes. In many cases, we want to require the user to check only one of several boxes.
When another box is checked, the previous box is automatically unchecked. Such a
group of boxes is often called a radio button group because the buttons work like the sta-
tion selector buttons on a radio. When you push in one button, the previously depressed
button pops out. Figure 9–15 shows a typical example. We allow the user to select a font
size from among the choices—Small, Medium, Large, and Extra large—but, of course,
we will allow the user to select only one size at a time.

Figure 9–15 A radio button group

Implementing radio button groups is easy in Swing. You construct one object of type
ButtonGroup for every group of buttons. Then, you add objects of type JRadioButton to the
button group. The button group object is responsible for turning off the previously set
button when a new button is clicked.

ButtonGroup group = new ButtonGroup();

JRadioButton smallButton = new JRadioButton("Small", false);
group.add(smallButton);

JRadioButton mediumButton = new JRadioButton("Medium", true);
group.add(mediumButton);
. . .

The second argument of the constructor is true for the button that should be checked ini-
tially and false for all others. Note that the button group controls only the behavior of the
buttons; if you want to group the buttons for layout purposes, you also need to add
them to a container such as a JPanel.

If you look again at Figures 9–14 and 9–15, you will note that the appearance of the
radio buttons is different from that of checkboxes. Checkboxes are square and contain a
check mark when selected. Radio buttons are round and contain a dot when selected.

The event notification mechanism for radio buttons is the same as for any other buttons.
When the user checks a radio button, the radio button generates an action event. In our
example program, we define an action listener that sets the font size to a particular value:

ActionListener listener = new
 ActionListener()
 {

Chapter 9. User Interface Components with Swing

Choice Components 389

 public void actionPerformed(ActionEvent event)
 {
 // size refers to the final parameter of the addRadioButton method
 label.setFont(new Font("Serif", Font.PLAIN, size));
 }
 };

Compare this listener setup with that of the checkbox example. Each radio button gets a
different listener object. Each listener object knows exactly what it needs to do—set
the font size to a particular value. In the case of the checkboxes, we used a different
approach. Both checkboxes have the same action listener. It called a method that looked
at the current state of both checkboxes.

Could we follow the same approach here? We could have a single listener that computes
the size as follows:

if (smallButton.isSelected()) size = 8;
else if (mediumButton.isSelected()) size = 12;
. . .

However, we prefer to use separate action listener objects because they tie the size val-
ues more closely to the buttons.

NOTE: If you have a group of radio buttons, you know that only one of them is selected. It
would be nice to be able to quickly find out which one without having to query all the but-
tons in the group. Because the ButtonGroup object controls all buttons, it would be conve-
nient if this object could give us a reference to the selected button. Indeed, the ButtonGroup
class has a getSelection method, but that method doesn’t return the radio button that is
selected. Instead, it returns a ButtonModel reference to the model attached to the button.
Unfortunately, none of the ButtonModel methods are very helpful. The ButtonModel interface
inherits a method getSelectedObjects from the ItemSelectable interface that, rather uselessly,
returns null. The getActionCommand method looks promising because the “action command”
of a radio button is its text label. But the action command of its model is null. Only if you
explicitly set the action commands of all radio buttons with the setActionCommand method do
the models’ action command values also get set. Then you can retrieve the action com-
mand of the currently selected button with buttonGroup.getSelection().getActionCommand().

Listing 9–4 is the complete program for font size selection that puts a set of radio but-
tons to work.

Listing 9–4 RadioButtonTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class RadioButtonTest

10. {

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing390

11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. RadioButtonFrame frame = new RadioButtonFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a sample text label and radio buttons for selecting font sizes.
27. */
28. class RadioButtonFrame extends JFrame
29. {
30. public RadioButtonFrame()
31. {
32. setTitle("RadioButtonTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // add the sample text label
36.

37. label = new JLabel("The quick brown fox jumps over the lazy dog.");
38. label.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
39. add(label, BorderLayout.CENTER);
40.

41. // add the radio buttons
42.

43. buttonPanel = new JPanel();
44. group = new ButtonGroup();
45.

46. addRadioButton("Small", 8);
47. addRadioButton("Medium", 12);
48. addRadioButton("Large", 18);
49. addRadioButton("Extra large", 36);
50.

51. add(buttonPanel, BorderLayout.SOUTH);
52. }
53.

54. /**
55. * Adds a radio button that sets the font size of the sample text.
56. * @param name the string to appear on the button
57. * @param size the font size that this button sets
58. */

Listing 9–4 RadioButtonTest.java (continued)

Chapter 9. User Interface Components with Swing

Choice Components 391

• JRadioButton(String label, Icon icon)
constructs a radio button that is initially unselected.

• JRadioButton(String label, boolean state)
constructs a radio button with the given label and initial state.

• void add(AbstractButton b)
adds the button to the group.

• ButtonModel getSelection()
returns the button model of the selected button.

59. public void addRadioButton(String name, final int size)
60. {
61. boolean selected = size == DEFAULT_SIZE;
62. JRadioButton button = new JRadioButton(name, selected);
63. group.add(button);
64. buttonPanel.add(button);
65.

66. // this listener sets the label font size
67.

68. ActionListener listener = new ActionListener()
69. {
70. public void actionPerformed(ActionEvent event)
71. {
72. // size refers to the final parameter of the addRadioButton
73. // method
74. label.setFont(new Font("Serif", Font.PLAIN, size));
75. }
76. };
77.

78. button.addActionListener(listener);
79. }
80.

81. public static final int DEFAULT_WIDTH = 400;
82. public static final int DEFAULT_HEIGHT = 200;
83.

84. private JPanel buttonPanel;
85. private ButtonGroup group;
86. private JLabel label;
87.

88. private static final int DEFAULT_SIZE = 12;
89. }

javax.swing.JRadioButton 1.2

javax.swing.ButtonGroup 1.2

Listing 9–4 RadioButtonTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing392

• String getActionCommand()
returns the action command for this button model.

• void setActionCommand(String s)
sets the action command for this button and its model.

Borders
If you have multiple groups of radio buttons in a window, you will want to visually
indicate which buttons are grouped. Swing provides a set of useful borders for this pur-
pose. You can apply a border to any component that extends JComponent. The most com-
mon usage is to place a border around a panel and fill that panel with other user
interface elements such as radio buttons.

You can choose from quite a few borders, but you follow the same steps for all of them.

1. Call a static method of the BorderFactory to create a border. You can choose among the
following styles (see Figure 9–16):
• Lowered bevel
• Raised bevel
• Etched
• Line
• Matte
• Empty (just to create some blank space around the component)

2. If you like, add a title to your border by passing your border to
BorderFactory.createTitledBorder.

3. If you really want to go all out, combine several borders with a call to
BorderFactory.createCompoundBorder.

4. Add the resulting border to your component by calling the setBorder method of the
JComponent class.

For example, here is how you add an etched border with a title to a panel:
Border etched = BorderFactory.createEtchedBorder()
Border titled = BorderFactory.createTitledBorder(etched, "A Title");
panel.setBorder(titled);

Run the program in Listing 9–5 to get an idea what the various borders look like.

The various borders have different options for setting border widths and colors. See
the API notes for details. True border enthusiasts will appreciate that there is also a
SoftBevelBorder class for beveled borders with softened corners and that a LineBorder can
have rounded corners as well. You can construct these borders only by using one of
the class constructors—there is no BorderFactory method for them.

javax.swing.ButtonModel 1.2

javax.swing.AbstractButton 1.2

Chapter 9. User Interface Components with Swing

Choice Components 393

Figure 9–16 Testing border types

Listing 9–5 BorderTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4. import javax.swing.border.*;
5.

6. /**
7. * @version 1.33 2007-06-12
8. * @author Cay Horstmann
9. */

10. public class BorderTest
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. BorderFrame frame = new BorderFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A frame with radio buttons to pick a border style.
28. */
29. class BorderFrame extends JFrame
30. {
31. public BorderFrame()
32. {
33. setTitle("BorderTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing394

• static Border createLineBorder(Color color)
• static Border createLineBorder(Color color, int thickness)

creates a simple line border.

36. demoPanel = new JPanel();
37. buttonPanel = new JPanel();
38. group = new ButtonGroup();
39.

40. addRadioButton("Lowered bevel", BorderFactory.createLoweredBevelBorder());
41. addRadioButton("Raised bevel", BorderFactory.createRaisedBevelBorder());
42. addRadioButton("Etched", BorderFactory.createEtchedBorder());
43. addRadioButton("Line", BorderFactory.createLineBorder(Color.BLUE));
44. addRadioButton("Matte", BorderFactory.createMatteBorder(10, 10, 10, 10, Color.BLUE));
45. addRadioButton("Empty", BorderFactory.createEmptyBorder());
46.

47. Border etched = BorderFactory.createEtchedBorder();
48. Border titled = BorderFactory.createTitledBorder(etched, "Border types");
49. buttonPanel.setBorder(titled);
50.

51. setLayout(new GridLayout(2, 1));
52. add(buttonPanel);
53. add(demoPanel);
54. }
55.

56. public void addRadioButton(String buttonName, final Border b)
57. {
58. JRadioButton button = new JRadioButton(buttonName);
59. button.addActionListener(new ActionListener()
60. {
61. public void actionPerformed(ActionEvent event)
62. {
63. demoPanel.setBorder(b);
64. }
65. });
66. group.add(button);
67. buttonPanel.add(button);
68. }
69.

70. public static final int DEFAULT_WIDTH = 600;
71. public static final int DEFAULT_HEIGHT = 200;
72.

73. private JPanel demoPanel;
74. private JPanel buttonPanel;
75. private ButtonGroup group;
76. }

javax.swing.BorderFactory 1.2

Listing 9–5 BorderTest.java (continued)

Chapter 9. User Interface Components with Swing

Choice Components 395

• static MatteBorder createMatteBorder(int top, int left, int bottom, int right, Color color)
• static MatteBorder createMatteBorder(int top, int left, int bottom, int right, Icon tileIcon)

creates a thick border that is filled with a color or a repeating icon.
• static Border createEmptyBorder()
• static Border createEmptyBorder(int top, int left, int bottom, int right)

creates an empty border.
• static Border createEtchedBorder()
• static Border createEtchedBorder(Color highlight, Color shadow)
• static Border createEtchedBorder(int type)
• static Border createEtchedBorder(int type, Color highlight, Color shadow)

creates a line border with a 3D effect.

• static Border createBevelBorder(int type)
• static Border createBevelBorder(int type, Color highlight, Color shadow)
• static Border createLoweredBevelBorder()
• static Border createRaisedBevelBorder()

creates a border that gives the effect of a lowered or raised surface.

• static TitledBorder createTitledBorder(String title)
• static TitledBorder createTitledBorder(Border border)
• static TitledBorder createTitledBorder(Border border, String title)
• static TitledBorder createTitledBorder(Border border, String title, int justification,

int position)
• static TitledBorder createTitledBorder(Border border, String title, int justification,

int position, Font font)
• static TitledBorder createTitledBorder(Border border, String title, int justification,

int position, Font font, Color color)
creates a titled border with the specified properties.

• static CompoundBorder createCompoundBorder(Border outsideBorder, Border insideBorder)
combines two borders to a new border.

Parameters: highlight, shadow Colors for 3D effect

type One of EtchedBorder.RAISED, EtchedBorder.LOWERED

Parameters: highlight, shadow Colors for 3D effect

type One of EtchedBorder.RAISED, EtchedBorder.LOWERED

Parameters: title The title string

border The border to decorate with the title

justification One of the TitledBorder constants LEFT, CENTER,
RIGHT, LEADING, TRAILING, or DEFAULT_JUSTIFICATION (left)

position One of the TitledBorder constants ABOVE_TOP, TOP,
BELOW_TOP, ABOVE_BOTTOM, BOTTOM, BELOW_BOTTOM, or
DEFAULT_POSITION (top)

font The font for the title

color The color of the title

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing396

• SoftBevelBorder(int type)
• SoftBevelBorder(int type, Color highlight, Color shadow)

creates a bevel border with softened corners.

• public LineBorder(Color color, int thickness, boolean roundedCorners)
creates a line border with the given color and thickness. If roundedCorners is true, the
border has rounded corners.

• void setBorder(Border border)
sets the border of this component.

Combo Boxes
If you have more than a handful of alternatives, radio buttons are not a good choice
because they take up too much screen space. Instead, you can use a combo box. When
the user clicks on the component, a list of choices drops down, and the user can then
select one of them (see Figure 9–17).

Figure 9–17 A combo box

If the drop-down list box is set to be editable, then you can edit the current selection as if
it were a text field. For that reason, this component is called a combo box—it combines
the flexibility of a text field with a set of predefined choices. The JComboBox class provides
a combo box component.

You call the setEditable method to make the combo box editable. Note that editing affects
only the current item. It does not change the content of the list.

javax.swing.border.SoftBevelBorder 1.2

Parameters: highlight, shadow Colors for 3D effect

type One of EtchedBorder.RAISED, EtchedBorder.LOWERED

javax.swing.border.LineBorder 1.2

javax.swing.JComponent 1.2

Chapter 9. User Interface Components with Swing

Choice Components 397

You can obtain the current selection or edited text by calling the getSelectedItem method.

In the example program, the user can choose a font style from a list of styles (Serif, Sans-
Serif, Monospaced, etc.). The user can also type in another font.

You add the choice items with the addItem method. In our program, addItem is called only
in the constructor, but you can call it any time.

faceCombo = new JComboBox();
faceCombo.setEditable(true);
faceCombo.addItem("Serif");
faceCombo.addItem("SansSerif");
. . .

This method adds the string at the end of the list. You can add new items anywhere in
the list with the insertItemAt method:

faceCombo.insertItemAt("Monospaced", 0); // add at the beginning

You can add items of any type—the combo box invokes each item’s toString method to
display it.

If you need to remove items at runtime, you use the removeItem or removeItemAt method,
depending on whether you supply the item to be removed or its position.

faceCombo.removeItem("Monospaced");
faceCombo.removeItemAt(0); // remove first item

The removeAllItems method removes all items at once.

TIP: If you need to add a large number of items to a combo box, the addItem method will per-
form poorly. Instead, construct a DefaultComboBoxModel, populate it by calling addElement, and
then call the setModel method of the JComboBox class.

When the user selects an item from a combo box, the combo box generates an action
event. To find out which item was selected, call getSource on the event parameter to get a
reference to the combo box that sent the event. Then call the getSelectedItem method to
retrieve the currently selected item. You need to cast the returned value to the appropri-
ate type, usually String.

public void actionPerformed(ActionEvent event)
{
 label.setFont(new Font(
 (String) faceCombo.getSelectedItem(),
 Font.PLAIN,
 DEFAULT_SIZE));
}

Listing 9–6 shows the complete program.

NOTE: If you want to show a permanently displayed list instead of a dropdown list, use the
JList component. We cover JList in Chapter 6 of Volume II.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing398

Listing 9–6 ComboBoxTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class ComboBoxTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17.

18. ComboBoxFrame frame = new ComboBoxFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A frame with a sample text label and a combo box for selecting font faces.
28. */
29. class ComboBoxFrame extends JFrame
30. {
31. public ComboBoxFrame()
32. {
33. setTitle("ComboBoxTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. // add the sample text label
37.

38. label = new JLabel("The quick brown fox jumps over the lazy dog.");
39. label.setFont(new Font("Serif", Font.PLAIN, DEFAULT_SIZE));
40. add(label, BorderLayout.CENTER);
41.

42. // make a combo box and add face names
43.

44. faceCombo = new JComboBox();
45. faceCombo.setEditable(true);
46. faceCombo.addItem("Serif");
47. faceCombo.addItem("SansSerif");
48. faceCombo.addItem("Monospaced");
49. faceCombo.addItem("Dialog");
50. faceCombo.addItem("DialogInput");

Chapter 9. User Interface Components with Swing

Choice Components 399

• boolean isEditable()
• void setEditable(boolean b)

gets or sets the editable property of this combo box.
• void addItem(Object item)

adds an item to the item list.
• void insertItemAt(Object item, int index)

inserts an item into the item list at a given index.
• void removeItem(Object item)

removes an item from the item list.
• void removeItemAt(int index)

removes the item at an index.
• void removeAllItems()

removes all items from the item list.
• Object getSelectedItem()

returns the currently selected item.

51.

52. // the combo box listener changes the label font to the selected face name
53.

54. faceCombo.addActionListener(new ActionListener()
55. {
56. public void actionPerformed(ActionEvent event)
57. {
58. label.setFont(new Font((String) faceCombo.getSelectedItem(), Font.PLAIN,
59. DEFAULT_SIZE));
60. }
61. });
62.

63. // add combo box to a panel at the frame's southern border
64.

65. JPanel comboPanel = new JPanel();
66. comboPanel.add(faceCombo);
67. add(comboPanel, BorderLayout.SOUTH);
68. }
69.

70. public static final int DEFAULT_WIDTH = 300;
71. public static final int DEFAULT_HEIGHT = 200;
72.

73. private JComboBox faceCombo;
74. private JLabel label;
75. private static final int DEFAULT_SIZE = 12;
76. }

javax.swing.JComboBox 1.2

Listing 9–6 ComboBoxTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing400

Sliders
Combo boxes let users choose from a discrete set of values. Sliders offer a choice from a
continuum of values, for example, any number between 1 and 100.

The most common way of constructing a slider is as follows:
JSlider slider = new JSlider(min, max, initialValue);

If you omit the minimum, maximum, and initial values, they are initialized with 0, 100,
and 50, respectively.

Or if you want the slider to be vertical, then use the following constructor call:
JSlider slider = new JSlider(SwingConstants.VERTICAL, min, max, initialValue);

These constructors create a plain slider, such as the top slider in Figure 9–18. You will
see presently how to add decorations to a slider.

Figure 9–18 Sliders

As the user slides the slider bar, the value of the slider moves between the minimum and
the maximum values. When the value changes, a ChangeEvent is sent to all change listen-
ers. To be notified of the change, you call the addChangeListener method and install an
object that implements the ChangeListener interface. That interface has a single method,
stateChanged. In that method, you should retrieve the slider value:

public void stateChanged(ChangeEvent event)
{
 JSlider slider = (JSlider) event.getSource();
 int value = slider.getValue();
 . . .
}

Chapter 9. User Interface Components with Swing

Choice Components 401

You can embellish the slider by showing ticks. For example, in the sample program, the
second slider uses the following settings:

slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(5);

The slider is decorated with large tick marks every 20 units and small tick marks every
5 units. The units refer to slider values, not pixels.

These instructions only set the units for the tick marks. To actually have the tick marks
appear, you also call

slider.setPaintTicks(true);

The major and minor tick marks are independent. For example, you can set major tick
marks every 20 units and minor tick marks every 7 units, but you’ll get a very messy
scale.

You can force the slider to snap to ticks. Whenever the user has finished dragging a slider
in snap mode, it is immediately moved to the closest tick. You activate this mode with
the call

slider.setSnapToTicks(true);

CAUTION: The “snap to ticks” behavior doesn’t work as well as you might imagine. Until the
slider has actually snapped, the change listener still reports slider values that don’t corre-
spond to ticks. And if you click next to the slider—an action that normally advances the slider
a bit in the direction of the click—a slider with “snap to ticks” does not move to the next tick.

You can ask for tick mark labels for the major tick marks by calling
slider.setPaintLabels(true);

For example, with a slider ranging from 0 to 100 and major tick spacing of 20, the ticks
are labeled 0, 20, 40, 60, 80, and 100.

You can also supply other tick marks, such as strings or icons (see Figure 9–18). The
process is a bit convoluted. You need to fill a hash table with keys of type Integer and
values of type Component. (Autoboxing makes this simple in Java SE 5.0 and beyond.) You
then call the setLabelTable method. The components are placed under the tick marks.
Usually, you use JLabel objects. Here is how you can label ticks as A, B, C, D, E, and F:

Hashtable<Integer, Component> labelTable = new Hashtable<Integer, Component>();
labelTable.put(0, new JLabel("A"));
labelTable.put(20, new JLabel("B"));
. . .
labelTable.put(100, new JLabel("F"));
slider.setLabelTable(labelTable);

See Chapter 2 of Volume II for more information about hash tables.

Listing 9–7 also shows a slider with icons as tick labels.

TIP: If your tick marks or labels don’t show, double-check that you called setPaintTicks(true)
and setPaintLabels(true).

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing402

The fourth slider in Figure 9–18 has no track. To suppress the “track” in which the slider
moves, call

slider.setPaintTrack(false);

The fifth slider has its direction reversed by a call to
slider.setInverted(true);

The example program shows all these visual effects with a collection of sliders. Each
slider has a change event listener installed that places the current slider value into the
text field at the bottom of the frame.

Listing 9–7 SliderTest.java

1. import java.awt.*;
2. import java.util.*;
3. import javax.swing.*;
4. import javax.swing.event.*;
5.

6. /**
7. * @version 1.13 2007-06-12
8. * @author Cay Horstmann
9. */

10. public class SliderTest
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. SliderTestFrame frame = new SliderTestFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A frame with many sliders and a text field to show slider values.
28. */
29. class SliderTestFrame extends JFrame
30. {
31. public SliderTestFrame()
32. {
33. setTitle("SliderTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. sliderPanel = new JPanel();
37. sliderPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
38.

Chapter 9. User Interface Components with Swing

Choice Components 403

39. // common listener for all sliders
40. listener = new ChangeListener()
41. {
42. public void stateChanged(ChangeEvent event)
43. {
44. // update text field when the slider value changes
45. JSlider source = (JSlider) event.getSource();
46. textField.setText("" + source.getValue());
47. }
48. };
49.

50. // add a plain slider
51.

52. JSlider slider = new JSlider();
53. addSlider(slider, "Plain");
54.

55. // add a slider with major and minor ticks
56.

57. slider = new JSlider();
58. slider.setPaintTicks(true);
59. slider.setMajorTickSpacing(20);
60. slider.setMinorTickSpacing(5);
61. addSlider(slider, "Ticks");
62.

63. // add a slider that snaps to ticks
64.

65. slider = new JSlider();
66. slider.setPaintTicks(true);
67. slider.setSnapToTicks(true);
68. slider.setMajorTickSpacing(20);
69. slider.setMinorTickSpacing(5);
70. addSlider(slider, "Snap to ticks");
71.

72. // add a slider with no track
73.

74. slider = new JSlider();
75. slider.setPaintTicks(true);
76. slider.setMajorTickSpacing(20);
77. slider.setMinorTickSpacing(5);
78. slider.setPaintTrack(false);
79. addSlider(slider, "No track");
80.

81. // add an inverted slider
82.

83. slider = new JSlider();
84. slider.setPaintTicks(true);
85. slider.setMajorTickSpacing(20);
86. slider.setMinorTickSpacing(5);
87. slider.setInverted(true);
88. addSlider(slider, "Inverted");

Listing 9–7 SliderTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing404

89.

90. // add a slider with numeric labels
91.

92. slider = new JSlider();
93. slider.setPaintTicks(true);
94. slider.setPaintLabels(true);
95. slider.setMajorTickSpacing(20);
96. slider.setMinorTickSpacing(5);
97. addSlider(slider, "Labels");
98.

99. // add a slider with alphabetic labels
100.

101. slider = new JSlider();
102. slider.setPaintLabels(true);
103. slider.setPaintTicks(true);
104. slider.setMajorTickSpacing(20);
105. slider.setMinorTickSpacing(5);
106.

107. Dictionary<Integer, Component> labelTable = new Hashtable<Integer, Component>();
108. labelTable.put(0, new JLabel("A"));
109. labelTable.put(20, new JLabel("B"));
110. labelTable.put(40, new JLabel("C"));
111. labelTable.put(60, new JLabel("D"));
112. labelTable.put(80, new JLabel("E"));
113. labelTable.put(100, new JLabel("F"));
114.

115. slider.setLabelTable(labelTable);
116. addSlider(slider, "Custom labels");
117.

118. // add a slider with icon labels
119.

120. slider = new JSlider();
121. slider.setPaintTicks(true);
122. slider.setPaintLabels(true);
123. slider.setSnapToTicks(true);
124. slider.setMajorTickSpacing(20);
125. slider.setMinorTickSpacing(20);
126.

127. labelTable = new Hashtable<Integer, Component>();
128.

129. // add card images
130.

131. labelTable.put(0, new JLabel(new ImageIcon("nine.gif")));
132. labelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
133. labelTable.put(40, new JLabel(new ImageIcon("jack.gif")));
134. labelTable.put(60, new JLabel(new ImageIcon("queen.gif")));
135. labelTable.put(80, new JLabel(new ImageIcon("king.gif")));
136. labelTable.put(100, new JLabel(new ImageIcon("ace.gif")));
137.

Listing 9–7 SliderTest.java (continued)

Chapter 9. User Interface Components with Swing

Choice Components 405

• JSlider()
• JSlider(int direction)
• JSlider(int min, int max)
• JSlider(int min, int max, int initialValue)
• JSlider(int direction, int min, int max, int initialValue)

constructs a horizontal slider with the given direction and minimum, maximum,
and initial values.

138. slider.setLabelTable(labelTable);
139. addSlider(slider, "Icon labels");
140.

141. // add the text field that displays the slider value
142.

143. textField = new JTextField();
144. add(sliderPanel, BorderLayout.CENTER);
145. add(textField, BorderLayout.SOUTH);
146. }
147.

148. /**
149. * Adds a slider to the slider panel and hooks up the listener
150. * @param s the slider
151. * @param description the slider description
152. */
153. public void addSlider(JSlider s, String description)
154. {
155. s.addChangeListener(listener);
156. JPanel panel = new JPanel();
157. panel.add(s);
158. panel.add(new JLabel(description));
159. sliderPanel.add(panel);
160. }
161.

162. public static final int DEFAULT_WIDTH = 350;
163. public static final int DEFAULT_HEIGHT = 450;
164.

165. private JPanel sliderPanel;
166. private JTextField textField;
167. private ChangeListener listener;
168. }

javax.swing.JSlider 1.2

Parameters: direction One of SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL. The default is horizontal.

min, max The minimum and maximum for the slider
values. Defaults are 0 and 100.

initialValue The initial value for the slider. The default is 50.

Listing 9–7 SliderTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing406

• void setPaintTicks(boolean b)
displays ticks if b is true.

• void setMajorTickSpacing(int units)
• void setMinorTickSpacing(int units)

sets major or minor ticks at multiples of the given slider units.
• void setPaintLabels(boolean b)

displays tick labels if b is true.
• void setLabelTable(Dictionary table)

sets the components to use for the tick labels. Each key/value pair in the table has
the form new Integer(value)/component.

• void setSnapToTicks(boolean b)
if b is true, then the slider snaps to the closest tick after each adjustment.

• void setPaintTrack(boolean b)
if b is true, then a track is displayed in which the slider runs.

Menus
We started this chapter by introducing the most common components that you might
want to place into a window, such as various kinds of buttons, text fields, and combo
boxes. Swing also supports another type of user interface element, the pull-down
menus that are familiar from GUI applications.

A menu bar on top of the window contains the names of the pull-down menus. Clicking
on a name opens the menu containing menu items and submenus. When the user clicks on
a menu item, all menus are closed and a message is sent to the program. Figure 9–19
shows a typical menu with a submenu.

Figure 9–19 A menu with a submenu

Menu Building
Building menus is straightforward. You first create a menu bar:

JMenuBar menuBar = new JMenuBar();

A menu bar is just a component that you can add anywhere you like. Normally, you
want it to appear at the top of a frame. You can add it there with the setJMenuBar method:

frame.setJMenuBar(menuBar);

For each menu, you create a menu object:
JMenu editMenu = new JMenu("Edit");

Chapter 9. User Interface Components with Swing

Menus 407

You add the top-level menus to the menu bar:
menuBar.add(editMenu);

You add menu items, separators, and submenus to the menu object:
JMenuItem pasteItem = new JMenuItem("Paste");
editMenu.add(pasteItem);
editMenu.addSeparator();
JMenu optionsMenu = . . .; // a submenu
editMenu.add(optionsMenu);

You can see separators in Figure 9–19 below the “Paste” and “Read-only” menu items.

When the user selects a menu, an action event is triggered. You need to install an action
listener for each menu item:

ActionListener listener = . . .;
pasteItem.addActionListener(listener);

The method JMenu.add(String s) conveniently adds a menu item to the end of a menu. For
example:

editMenu.add("Paste");

The add method returns the created menu item, so you can capture it and then add the
listener, as follows:

JMenuItem pasteItem = editMenu.add("Paste");
pasteItem.addActionListener(listener);

It often happens that menu items trigger commands that can also be activated through
other user interface elements such as toolbar buttons. In Chapter 8, you saw how to
specify commands through Action objects. You define a class that implements the Action
interface, usually by extending the AbstractAction convenience class. You specify the
menu item label in the constructor of the AbstractAction object, and you override the
actionPerformed method to hold the menu action handler. For example:

Action exitAction = new AbstractAction("Exit") // menu item text goes here
 {
 public void actionPerformed(ActionEvent event)
 {
 // action code goes here
 System.exit(0);
 }
 };

You can then add the action to the menu:
JMenuItem exitItem = fileMenu.add(exitAction);

This command adds a menu item to the menu, using the action name. The action object
becomes its listener. This is just a convenient shortcut for

JMenuItem exitItem = new JMenuItem(exitAction);
fileMenu.add(exitItem);

NOTE: In Windows and Macintosh programs, menus are generally defined in an exter-
nal resource file and tied to the application with resource identifiers. In Java, menus are
still usually built inside the program because the mechanism for dealing with external
resources is far more limited than it is in Windows or Mac OS.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing408

• JMenu(String label)
constructs a menu with the given label.

• JMenuItem add(JMenuItem item)
adds a menu item (or a menu).

• JMenuItem add(String label)
adds a menu item with the given label to this menu and returns the item.

• JMenuItem add(Action a)
adds a menu item with the given action to this menu and returns the item.

• void addSeparator()
adds a separator line to the menu.

• JMenuItem insert(JMenuItem menu, int index)
adds a new menu item (or submenu) to the menu at a specific index.

• JMenuItem insert(Action a, int index)
adds a new menu item with the given action at a specific index.

• void insertSeparator(int index)
adds a separator to the menu.

• void remove(int index)
• void remove(JMenuItem item)

removes a specific item from the menu.

• JMenuItem(String label)
constructs a menu item with a given label.

• JMenuItem(Action a) 1.3
constructs a menu item for the given action.

• void setAction(Action a) 1.3
sets the action for this button or menu item.

• void setJMenuBar(JMenuBar menubar)
sets the menu bar for this frame.

Icons in Menu Items
Menu items are very similar to buttons. In fact, the JMenuItem class extends the AbstractBut-
ton class. Just like buttons, menus can have just a text label, just an icon, or both. You can
specify the icon with the JMenuItem(String, Icon) or JMenuItem(Icon) constructor, or you can

javax.swing.JMenu 1.2

Parameters: index Where to add the separator

javax.swing.JMenuItem 1.2

javax.swing.AbstractButton 1.2

javax.swing.JFrame 1.2

Chapter 9. User Interface Components with Swing

Menus 409

set it with the setIcon method that the JMenuItem class inherits from the AbstractButton class.
Here is an example:

JMenuItem cutItem = new JMenuItem("Cut", new ImageIcon("cut.gif"));

In Figure 9–19 on page 406, you can see icons next to several menu items. By default, the
menu item text is placed to the right of the icon. If you prefer the text to be placed on the
left, call the setHorizontalTextPosition method that the JMenuItem class inherits from the
AbstractButton class. For example, the call

cutItem.setHorizontalTextPosition(SwingConstants.LEFT);

moves the menu item text to the left of the icon.

You can also add an icon to an action:
cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));

Whenever you construct a menu item out of an action, the Action.NAME value becomes the
text of the menu item and the Action.SMALL_ICON value becomes the icon.

Alternatively, you can set the icon in the AbstractAction constructor:
cutAction = new
 AbstractAction("Cut", new ImageIcon("cut.gif"))
 {
 public void actionPerformed(ActionEvent event)
 {
 // action code goes here
 }
 };

• JMenuItem(String label, Icon icon)
constructs a menu item with the given label and icon.

• void setHorizontalTextPosition(int pos)
sets the horizontal position of the text relative to the icon.

• AbstractAction(String name, Icon smallIcon)
constructs an abstract action with the given name and icon.

Checkbox and Radio Button Menu Items
Checkbox and radio button menu items display a checkbox or radio button next to the
name (see Figure 9–19 on page 406). When the user selects the menu item, the item auto-
matically toggles between checked and unchecked.

javax.swing.JMenuItem 1.2

javax.swing.AbstractButton 1.2

Parameters: pos SwingConstants.RIGHT (text is to the right of icon) or
SwingConstants.LEFT

javax.swing.AbstractAction 1.2

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing410

Apart from the button decoration, you treat these menu items just as you would any
others. For example, here is how you create a checkbox menu item:

JCheckBoxMenuItem readonlyItem = new JCheckBoxMenuItem("Read-only");
optionsMenu.add(readonlyItem);

The radio button menu items work just like regular radio buttons. You must add them
to a button group. When one of the buttons in a group is selected, all others are automat-
ically deselected.

ButtonGroup group = new ButtonGroup();
JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");
insertItem.setSelected(true);
JRadioButtonMenuItem overtypeItem = new JRadioButtonMenuItem("Overtype");
group.add(insertItem);
group.add(overtypeItem);
optionsMenu.add(insertItem);
optionsMenu.add(overtypeItem);

With these menu items, you don’t necessarily want to be notified at the exact moment
the user selects the item. Instead, you can simply use the isSelected method to test the
current state of the menu item. (Of course, that means that you should keep a reference
to the menu item stored in an instance field.) Use the setSelected method to set the state.

• JCheckBoxMenuItem(String label)
constructs the checkbox menu item with the given label.

• JCheckBoxMenuItem(String label, boolean state)
constructs the checkbox menu item with the given label and the given initial state
(true is checked).

• JRadioButtonMenuItem(String label)
constructs the radio button menu item with the given label.

• JRadioButtonMenuItem(String label, boolean state)
constructs the radio button menu item with the given label and the given initial
state (true is checked).

• boolean isSelected()
• void setSelected(boolean state)

gets or sets the selection state of this item (true is checked).

Pop-Up Menus
A pop-up menu is a menu that is not attached to a menu bar but that floats somewhere
(see Figure 9–20).

javax.swing.JCheckBoxMenuItem 1.2

javax.swing.JRadioButtonMenuItem 1.2

javax.swing.AbstractButton 1.2

Chapter 9. User Interface Components with Swing

Menus 411

Figure 9–20 A pop-up menu

You create a pop-up menu similarly to the way you create a regular menu, but a pop-up
menu has no title.

JPopupMenu popup = new JPopupMenu();

You then add menu items in the usual way:
JMenuItem item = new JMenuItem("Cut");
item.addActionListener(listener);
popup.add(item);

Unlike the regular menu bar that is always shown at the top of the frame, you must
explicitly display a pop-up menu by using the show method. You specify the parent com-
ponent and the location of the pop-up, using the coordinate system of the parent. For
example:

popup.show(panel, x, y);

Usually you write code to pop up a menu when the user clicks a particular mouse but-
ton, the so-called pop-up trigger. In Windows and Linux, the pop-up trigger is the non-
primary (usually, the right) mouse button. To pop up a menu when the user clicks on a
component, using the pop-up trigger, simply call the method

component.setComponentPopupMenu(popup);

Very occasionally, you may place a component inside another component that has a
pop-up menu. The child component can inherit the parent component’s pop-up menu
by calling

child.setInheritsPopupMenu(true);

These methods were added in Java SE 5.0 to insulate programmers from system
dependencies with pop-up menus. Before Java SE 5.0, you had to install a mouse
listener and add the following code to both the mousePressed and the mouseReleased lis-
tener methods:

if (popup.isPopupTrigger(event))
 popup.show(event.getComponent(), event.getX(), event.getY());

Some systems trigger pop-ups when the mouse button goes down, others when the
mouse button goes up.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing412

• void show(Component c, int x, int y)
shows the pop-up menu.

• boolean isPopupTrigger(MouseEvent event) 1.3
returns true if the mouse event is the pop-up menu trigger.

• boolean isPopupTrigger()
returns true if this mouse event is the pop-up menu trigger.

• JPopupMenu getComponentPopupMenu() 5.0
• void setComponentPopupMenu(JPopupMenu popup) 5.0

gets or sets the pop-up menu for this component.
• boolean getInheritsPopupMenu() 5.0
• void setInheritsPopupMenu(boolean b) 5.0

gets or sets the inheritsPopupMenu property. If the property is set and this
component’s pop-up menu is null, it uses its parent’s pop-up menu.

Keyboard Mnemonics and Accelerators
It is a real convenience for the experienced user to select menu items by keyboard
mnemonics. You can specify keyboard mnemonics for menu items by specifying a
mnemonic letter in the menu item constructor:

JMenuItem aboutItem = new JMenuItem("About", 'A');

The keyboard mnemonic is displayed automatically in the menu, with the mnemonic
letter underlined (see Figure 9–21). For example, in the item defined in the last exam-
ple, the label will be displayed as “About” with an underlined letter “A”. When the
menu is displayed, the user just needs to press the A key, and the menu item is
selected. (If the mnemonic letter is not part of the menu string, then typing it still
selects the item, but the mnemonic is not displayed in the menu. Naturally, such
invisible mnemonics are of dubious utility.)

Sometimes, you don’t want to underline the first letter of the menu item that matches the
mnemonic. For example, if you have a mnemonic “A” for the menu item “Save As,” then it
makes more sense to underline the second “A” (Save As). As of Java SE 1.4, you can specify
which character you want to have underlined; call the setDisplayedMnemonicIndex method.

If you have an Action object, you can add the mnemonic as the value of the
Action.MNEMONIC_KEY key, as follows:

cutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));

javax.swing.JPopupMenu 1.2

Parameters: c The component over which the pop-up menu is
to appear

x, y The coordinates (in the coordinate space of c) of the
top-left corner of the pop-up menu

java.awt.event.MouseEvent 1.1

javax.swing.JComponent 1.2

Chapter 9. User Interface Components with Swing

Menus 413

Figure 9–21 Keyboard mnemonics

You can supply a mnemonic letter only in the constructor of a menu item, not in
the constructor for a menu. Instead, to attach a mnemonic to a menu, you call the
setMnemonic method:

JMenu helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

To select a top-level menu from the menu bar, you press the ALT key together with the
mnemonic letter. For example, you press ALT+H to select the Help menu from the menu
bar.

Keyboard mnemonics let you select a submenu or menu item from the currently open
menu. In contrast, accelerators are keyboard shortcuts that let you select menu items
without ever opening a menu. For example, many programs attach the accelerators
CTRL+O and CTRL+S to the Open and Save items in the File menu. You use the setAcceler-
ator method to attach an accelerator key to a menu item. The setAccelerator method takes
an object of type Keystroke. For example, the following call attaches the accelerator
CTRL+O to the openItem menu item:

openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl O"));

When the user presses the accelerator key combination, this automatically selects the
menu option and fires an action event, as if the user had selected the menu option
manually.

You can attach accelerators only to menu items, not to menus. Accelerator keys
don’t actually open the menu. Instead, they directly fire the action event that is asso-
ciated with a menu.

Conceptually, adding an accelerator to a menu item is similar to the technique of
adding an accelerator to a Swing component. (We discussed that technique in Chap-
ter 8.) However, when the accelerator is added to a menu item, the key combination
is automatically displayed in the menu (see Figure 9–22).

NOTE: Under Windows, ALT+F4 closes a window. But this is not an accelerator that was
programmed in Java. It is a shortcut defined by the operating system. This key combina-
tion will always trigger the WindowClosing event for the active window regardless of
whether there is a Close item on the menu.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing414

Figure 9–22 Accelerators

• JMenuItem(String label, int mnemonic)
constructs a menu item with a given label and mnemonic.

• void setAccelerator(KeyStroke k)
sets the keystroke k as accelerator for this menu item. The accelerator key is
displayed next to the label.

• void setMnemonic(int mnemonic)
sets the mnemonic character for the button. This character will be underlined in
the label.

• void setDisplayedMnemonicIndex(int index) 1.4
sets the index of the character to be underlined in the button text. Use this method
if you don’t want the first occurrence of the mnemonic character to be underlined.

Enabling and Disabling Menu Items
Occasionally, a particular menu item should be selected only in certain contexts. For exam-
ple, when a document is opened for reading only, then the Save menu item is not meaning-
ful. Of course, we could remove the item from the menu with the JMenu.remove method, but
users would react with some surprise to menus whose content keeps changing. Instead, it is
better to deactivate the menu items that lead to temporarily inappropriate commands. A
deactivated menu item is shown in gray, and it cannot be selected (see Figure 9–23).

To enable or disable a menu item, use the setEnabled method:
saveItem.setEnabled(false);

There are two strategies for enabling and disabling menu items. Each time circum-
stances change, you can call setEnabled on the relevant menu items or actions. For exam-
ple, as soon as a document has been set to read-only mode, you can locate the Save and
Save As menu items and disable them. Alternatively, you can disable items just before

javax.swing.JMenuItem 1.2

Parameters: label The label for this menu item

mnemonic The mnemonic character for the item; this character
will be underlined in the label

javax.swing.AbstractButton 1.2

Chapter 9. User Interface Components with Swing

Menus 415

displaying the menu. To do this, you must register a listener for the “menu selected”
event. The javax.swing.event package defines a MenuListener interface with three methods:

void menuSelected(MenuEvent event)
void menuDeselected(MenuEvent event)
void menuCanceled(MenuEvent event)

The menuSelected method is called before the menu is displayed. It can therefore be used to
disable or enable menu items. The following code shows how to disable the Save and
Save As actions whenever the Read Only checkbox menu item is selected:

public void menuSelected(MenuEvent event)
{
 saveAction.setEnabled(!readonlyItem.isSelected());
 saveAsAction.setEnabled(!readonlyItem.isSelected());
}

Figure 9–23 Disabled menu items

CAUTION: Disabling menu items just before displaying the menu is a clever idea, but it does
not work for menu items that also have accelerator keys. Because the menu is never opened
when the accelerator key is pressed, the action is never disabled, and it is still triggered by
the accelerator key.

• void setEnabled(boolean b)
enables or disables the menu item.

• void menuSelected(MenuEvent e)
is called when the menu has been selected, before it is opened.

• void menuDeselected(MenuEvent e)
is called when the menu has been deselected, after it has been closed.

• void menuCanceled(MenuEvent e)
is called when the menu has been canceled, for example, by a user clicking
outside the menu.

javax.swing.JMenuItem 1.2

javax.swing.event.MenuListener 1.2

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing416

Listing 9–8 is a sample program that generates a set of menus. It shows all the features
that you saw in this section: nested menus, disabled menu items, checkbox and radio
button menu items, a pop-up menu, and keyboard mnemonics and accelerators.

Listing 9–8 MenuTest.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.23 2007-05-30
7. * @author Cay Horstmann
8. */
9. public class MenuTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. MenuFrame frame = new MenuFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a sample menu bar.
27. */
28. class MenuFrame extends JFrame
29. {
30. public MenuFrame()
31. {
32. setTitle("MenuTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. JMenu fileMenu = new JMenu("File");
36. fileMenu.add(new TestAction("New"));
37.

38. // demonstrate accelerators
39.

40. JMenuItem openItem = fileMenu.add(new TestAction("Open"));
41. openItem.setAccelerator(KeyStroke.getKeyStroke("ctrl O"));
42.

43. fileMenu.addSeparator();
44.

Chapter 9. User Interface Components with Swing

Menus 417

45. saveAction = new TestAction("Save");
46. JMenuItem saveItem = fileMenu.add(saveAction);
47. saveItem.setAccelerator(KeyStroke.getKeyStroke("ctrl S"));
48.

49. saveAsAction = new TestAction("Save As");
50. fileMenu.add(saveAsAction);
51. fileMenu.addSeparator();
52.

53. fileMenu.add(new AbstractAction("Exit")
54. {
55. public void actionPerformed(ActionEvent event)
56. {
57. System.exit(0);
58. }
59. });
60.

61. // demonstrate check box and radio button menus
62.

63. readonlyItem = new JCheckBoxMenuItem("Read-only");
64. readonlyItem.addActionListener(new ActionListener()
65. {
66. public void actionPerformed(ActionEvent event)
67. {
68. boolean saveOk = !readonlyItem.isSelected();
69. saveAction.setEnabled(saveOk);
70. saveAsAction.setEnabled(saveOk);
71. }
72. });
73.

74. ButtonGroup group = new ButtonGroup();
75.

76. JRadioButtonMenuItem insertItem = new JRadioButtonMenuItem("Insert");
77. insertItem.setSelected(true);
78. JRadioButtonMenuItem overtypeItem = new JRadioButtonMenuItem("Overtype");
79.

80. group.add(insertItem);
81. group.add(overtypeItem);
82.

83. // demonstrate icons
84.

85. Action cutAction = new TestAction("Cut");
86. cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));
87. Action copyAction = new TestAction("Copy");
88. copyAction.putValue(Action.SMALL_ICON, new ImageIcon("copy.gif"));
89. Action pasteAction = new TestAction("Paste");
90. pasteAction.putValue(Action.SMALL_ICON, new ImageIcon("paste.gif"));
91.

92. JMenu editMenu = new JMenu("Edit");
93. editMenu.add(cutAction);

Listing 9–8 MenuTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing418

94. editMenu.add(copyAction);
95. editMenu.add(pasteAction);
96.

97. // demonstrate nested menus
98.

99. JMenu optionMenu = new JMenu("Options");
100.

101. optionMenu.add(readonlyItem);
102. optionMenu.addSeparator();
103. optionMenu.add(insertItem);
104. optionMenu.add(overtypeItem);
105.

106. editMenu.addSeparator();
107. editMenu.add(optionMenu);
108.

109. // demonstrate mnemonics
110.

111. JMenu helpMenu = new JMenu("Help");
112. helpMenu.setMnemonic('H');
113.

114. JMenuItem indexItem = new JMenuItem("Index");
115. indexItem.setMnemonic('I');
116. helpMenu.add(indexItem);
117.

118. // you can also add the mnemonic key to an action
119. Action aboutAction = new TestAction("About");
120. aboutAction.putValue(Action.MNEMONIC_KEY, new Integer('A'));
121. helpMenu.add(aboutAction);
122.

123. // add all top-level menus to menu bar
124.

125. JMenuBar menuBar = new JMenuBar();
126. setJMenuBar(menuBar);
127.

128. menuBar.add(fileMenu);
129. menuBar.add(editMenu);
130. menuBar.add(helpMenu);
131.

132. // demonstrate pop-ups
133.

134. popup = new JPopupMenu();
135. popup.add(cutAction);
136. popup.add(copyAction);
137. popup.add(pasteAction);
138.

139. JPanel panel = new JPanel();
140. panel.setComponentPopupMenu(popup);
141. add(panel);
142.

Listing 9–8 MenuTest.java (continued)

Chapter 9. User Interface Components with Swing

Menus 419

Toolbars
A toolbar is a button bar that gives quick access to the most commonly used commands
in a program (see Figure 9–24).

Figure 9–24 A toolbar

143. // the following line is a workaround for bug 4966109
144. panel.addMouseListener(new MouseAdapter()
145. {
146. });
147. }
148.

149. public static final int DEFAULT_WIDTH = 300;
150. public static final int DEFAULT_HEIGHT = 200;
151.

152. private Action saveAction;
153. private Action saveAsAction;
154. private JCheckBoxMenuItem readonlyItem;
155. private JPopupMenu popup;
156. }
157.

158. /**
159. * A sample action that prints the action name to System.out
160. */
161. class TestAction extends AbstractAction
162. {
163. public TestAction(String name)
164. {
165. super(name);
166. }
167.

168. public void actionPerformed(ActionEvent event)
169. {
170. System.out.println(getValue(Action.NAME) + " selected.");
171. }
172. }

Listing 9–8 MenuTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing420

What makes toolbars special is that you can move them elsewhere. You can drag the
toolbar to one of the four borders of the frame (see Figure 9–25). When you release the
mouse button, the toolbar is dropped into the new location (see Figure 9–26).

NOTE: Toolbar dragging works if the toolbar is inside a container with a border layout, or
any other layout manager that supports the North, East, South, and West constraints.

Figure 9–25 Dragging the toolbar

Figure 9–26 The toolbar has been dragged to another border

The toolbar can even be completely detached from the frame. A detached toolbar is con-
tained in its own frame (see Figure 9–27). When you close the frame containing a
detached toolbar, the toolbar jumps back into the original frame.

Figure 9–27 Detaching the toolbar

Chapter 9. User Interface Components with Swing

Menus 421

Toolbars are straightforward to program. You add components into the toolbar:
JToolBar bar = new JToolBar();
bar.add(blueButton);

The JToolBar class also has a method to add an Action object. Simply populate the toolbar
with Action objects, like this:

bar.add(blueAction);

The small icon of the action is displayed in the toolbar.

You can separate groups of buttons with a separator:
bar.addSeparator();

For example, the toolbar in Figure 9–24 has a separator between the third and fourth
button.

Then, you add the toolbar to the frame.
add(bar, BorderLayout.NORTH);

You can also specify a title for the toolbar that appears when the toolbar is undocked:
bar = new JToolBar(titleString);

By default, toolbars are initially horizontal. To have a toolbar start out as vertical, use
bar = new JToolBar(SwingConstants.VERTICAL)

or
bar = new JToolBar(titleString, SwingConstants.VERTICAL)

Buttons are the most common components inside toolbars. But there is no restriction
on the components that you can add to a toolbar. For example, you can add a combo
box to a toolbar.

Tooltips
A disadvantage of toolbars is that users are often mystified by the meanings of the tiny
icons in toolbars. To solve this problem, user interface designers invented tooltips. A
tooltip is activated when the cursor rests for a moment over a button. The tooltip text is
displayed inside a colored rectangle. When the user moves the mouse away, the tooltip
is removed. (See Figure 9–28.)

Figure 9–28 A tooltip

In Swing, you can add tooltips to any JComponent simply by calling the setToolTipText method:
exitButton.setToolTipText("Exit");

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing422

Alternatively, if you use Action objects, you associate the tooltip with the SHORT_DESCRIPTION
key:

exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");

Listing 9–9 shows how the same Action objects can be added to a menu and a toolbar.
Note that the action names show up as the menu item names in the menu, and the short
descriptions as the tooltips in the toolbar.

Listing 9–9 ToolBarTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.13 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class ToolBarTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. ToolBarFrame frame = new ToolBarFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a toolbar and menu for color changes.
27. */
28. class ToolBarFrame extends JFrame
29. {
30. public ToolBarFrame()
31. {
32. setTitle("ToolBarTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // add a panel for color change
36.

37. panel = new JPanel();
38. add(panel, BorderLayout.CENTER);
39.

40. // set up actions
41.

Chapter 9. User Interface Components with Swing

Menus 423

42. Action blueAction = new ColorAction("Blue", new ImageIcon("blue-ball.gif"), Color.BLUE);
43. Action yellowAction = new ColorAction("Yellow", new ImageIcon("yellow-ball.gif"),
44. Color.YELLOW);
45. Action redAction = new ColorAction("Red", new ImageIcon("red-ball.gif"), Color.RED);
46.

47. Action exitAction = new AbstractAction("Exit", new ImageIcon("exit.gif"))
48. {
49. public void actionPerformed(ActionEvent event)
50. {
51. System.exit(0);
52. }
53. };
54. exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");
55.

56. // populate tool bar
57.

58. JToolBar bar = new JToolBar();
59. bar.add(blueAction);
60. bar.add(yellowAction);
61. bar.add(redAction);
62. bar.addSeparator();
63. bar.add(exitAction);
64. add(bar, BorderLayout.NORTH);
65.

66. // populate menu
67.

68. JMenu menu = new JMenu("Color");
69. menu.add(yellowAction);
70. menu.add(blueAction);
71. menu.add(redAction);
72. menu.add(exitAction);
73. JMenuBar menuBar = new JMenuBar();
74. menuBar.add(menu);
75. setJMenuBar(menuBar);
76. }
77.

78. public static final int DEFAULT_WIDTH = 300;
79. public static final int DEFAULT_HEIGHT = 200;
80.

81. private JPanel panel;
82.

83. /**
84. * The color action sets the background of the frame to a given color.
85. */
86. class ColorAction extends AbstractAction
87. {
88. public ColorAction(String name, Icon icon, Color c)
89. {

Listing 9–9 ToolBarTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing424

• JToolBar()
• JToolBar(String titleString)
• JToolBar(int orientation)
• JToolBar(String titleString, int orientation)

constructs a toolbar with the given title string and orientation. orientation is one of
SwingConstants.HORIZONTAL (the default) and SwingConstants.VERTICAL.

• JButton add(Action a)
constructs a new button inside the toolbar with name, icon, short description, and
action callback from the given action, and adds the button to the end of the toolbar.

• void addSeparator()
adds a separator to the end of the toolbar.

• void setToolTipText(String text)
sets the text that should be displayed as a tooltip when the mouse hovers over the
component.

Sophisticated Layout Management
We have managed to lay out the user interface components of our sample applications so
far by using only the border layout, flow layout, and grid layout. For more complex
tasks, this is not going to be enough. In this section, we discuss advanced layout manage-
ment in detail.

Windows programmers may well wonder why Java makes so much fuss about layout
managers. After all, in Windows, layout management is not a big deal: First, you use a
dialog editor to drag and drop your components onto the surface of a dialog, and then
you use editor tools to line up components, to space them equally, to center them, and
so on. If you are working on a big project, you probably don’t have to worry about com-
ponent layout at all—a skilled user interface designer does all this for you.

90. putValue(Action.NAME, name);
91. putValue(Action.SMALL_ICON, icon);
92. putValue(Action.SHORT_DESCRIPTION, name + " background");
93. putValue("Color", c);
94. }
95.

96. public void actionPerformed(ActionEvent event)
97. {
98. Color c = (Color) getValue("Color");
99. panel.setBackground(c);

100. }
101. }
102. }

javax.swing.JToolBar 1.2

javax.swing.JComponent 1.2

Listing 9–9 ToolBarTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 425

The problem with this approach is that the resulting layout must be manually updated
if the size of the components changes. Why would the component size change? There
are two common cases. First, a user may choose a larger font for button labels and other
dialog text. If you try this out for yourself in Windows, you will find that many applica-
tions deal with this exceedingly poorly. The buttons do not grow, and the larger font is
simply crammed into the same space as before. The same problem can occur when the
strings in an application are translated to a foreign language. For example, the German
word for “Cancel” is “Abbrechen.” If a button has been designed with just enough room
for the string “Cancel”, then the German version will look broken, with a clipped com-
mand string.

Why don’t Windows buttons simply grow to accommodate the labels? Because the
designer of the user interface gave no instructions in which direction they should grow.
After the dragging and dropping and arranging, the dialog editor merely remembers
the pixel position and size of each component. It does not remember why the compo-
nents were arranged in this fashion.

The Java layout managers are a much better approach to component layout. With a lay-
out manager, the layout comes with instructions about the relationships among the
components. This was particularly important in the original AWT, which used native
user interface elements. The size of a button or list box in Motif, Windows, and the Mac-
intosh could vary widely, and an application or applet would not know a priori on
which platform it would display its user interface. To some extent, that degree of vari-
ability has gone away with Swing. If your application forces a particular look and feel,
such as the Metal look and feel, then it looks identical on all platforms. However, if you
let users of your application choose their favorite look and feel, then you again need to
rely on the flexibility of layout managers to arrange the components.

Since Java 1.0, the AWT includes the grid bag layout that lays out components in rows
and columns. The row and column sizes are flexible and components can span multiple
rows and columns. This layout manager is very flexible, but it is also very complex. The
mere mention of the words “grid bag layout” has been known to strike fear in the hearts
of Java programmers.

In an unsuccessful attempt to design a layout manager that would free programmers
from the tyranny of the grid bag layout, the Swing designers came up with the box lay-
out. According to the JDK documentation of the BoxLayout class: “Nesting multiple panels
with different combinations of horizontal and vertical [sic] gives an effect similar to Grid-
BagLayout, without the complexity.” However, because each box is laid out independently,
you cannot use box layouts to arrange neighboring components both horizontally and
vertically.

Java SE 1.4 saw yet another attempt to design a replacement for the grid bag layout—the
spring layout. You use imaginary springs to connect the components in a container. As
the container is resized, the springs stretch or shrink, thereby adjusting the positions of
the components. This sounds tedious and confusing, and it is. The spring layout
quickly sank into obscurity.

In 2005, the NetBeans team invented the Matisse technology, which combines a layout
tool and a layout manager. A user interface designer uses the tool to drop components
into a container and to indicate which components should line up. The tool translates

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing426

the designer’s intentions into instructions for the group layout manager. This is much
more convenient than writing layout management code by hand. The group layout
manager is now a part of Java SE 6. Even if you don’t use NetBeans as your IDE, we
think you should consider using its GUI builder tool. You can design your GUI in Net-
Beans and paste the resulting code into your IDE of choice.

In the coming sections, we cover the grid bag layout because it is commonly used and is
still the easiest mechanism for producing layout code for older Java versions. We will
tell you a strategy that makes grid bag layouts relatively painless in common situations.

Next, we cover the Matisse tool and the group layout manager. You will want to know
how the group layout manager works so that you can check whether Matisse recorded
the correct instructions when you visually positioned your components.

We end the discussion of layout managers by showing you how you can bypass layout
management altogether and place components manually, and how you can write your
own layout manager.

The Grid Bag Layout
The grid bag layout is the mother of all layout managers. You can think of a grid bag
layout as a grid layout without the limitations. In a grid bag layout, the rows and col-
umns can have variable sizes. You can join adjacent cells to make room for larger com-
ponents. (Many word processors, as well as HTML, have the same capability when
tables are edited: you start out with a grid and then merge adjacent cells if need be.) The
components need not fill the entire cell area, and you can specify their alignment within
cells.

Consider the font selector of Figure 9–29. It consists of the following components:
• Two combo boxes to specify the font face and size
• Labels for these two combo boxes
• Two checkboxes to select bold and italic
• A text area for the sample string

Figure 9–29 A font selector

Now, chop up the container into a grid of cells, as shown in Figure 9–30. (The rows and
columns need not have equal size.) Each checkbox spans two columns, and the text area
spans four rows.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 427

Figure 9–30 Dialog box grid used in design

To describe the layout to the grid bag manager, use the following procedure:

1. Create an object of type GridBagLayout. You don’t tell it how many rows and columns the
underlying grid has. Instead, the layout manager will try to guess it from the informa-
tion you give it later.

2. Set this GridBagLayout object to be the layout manager for the component.
3. For each component, create an object of type GridBagConstraints. Set field values of the

GridBagConstraints object to specify how the components are laid out within the grid bag.
4. Finally, add each component with its constraints by using the call

add(component, constraints);

Here’s an example of the code needed. (We go over the various constraints in more
detail in the sections that follow—so don’t worry if you don’t know what some of the
constraints do.)

GridBagLayout layout = new GridBagLayout();
panel.setLayout(layout);
GridBagConstraints constraints = new GridBagConstraints();
constraints.weightx = 100;
constraints.weighty = 100;
constraints.gridx = 0;
constraints.gridy = 2;
constraints.gridwidth = 2;
constraints.gridheight = 1;
panel.add(component, constraints);

The trick is knowing how to set the state of the GridBagConstraints object. We go over the
most important constraints for using this object in the sections that follow.

The gridx, gridy, gridwidth, and gridheight Parameters

The gridx, gridy, gridwidth, and gridheight constraints define where the component is located
in the grid. The gridx and gridy values specify the column and row positions of the upper-
left corner of the component to be added. The gridwidth and gridheight values determine
how many columns and rows the component occupies.

The grid coordinates start with 0. In particular, gridx = 0 and gridy = 0 denotes the top-left
corner. For example, the text area in our example has gridx = 2, gridy = 0 because it starts

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing428

in column 2 (that is, the third column) of row 0. It has gridwidth = 1 and gridheight = 4
because it spans one column and four rows.

Weight Fields

You always need to set the weight fields (weightx and weighty) for each area in a grid bag
layout. If you set the weight to 0, then the area never grows or shrinks beyond its initial
size in that direction. In the grid bag layout for Figure 9–29 on page 426, we set the
weightx field of the labels to be 0. This allows the labels to remain a constant width when
you resize the window. On the other hand, if you set the weights for all areas to 0, the
container will huddle in the center of its allotted area rather than stretching to fill it.

Conceptually, the problem with the weight parameters is that weights are properties
of rows and columns, not individual cells. But you need to specify them in terms of
cells because the grid bag layout does not expose the rows and columns. The row
and column weights are computed as the maxima of the cell weights in each row or
column. Thus, if you want a row or column to stay at a fixed size, you need to set the
weights of all components in it to zero.

Note that the weights don’t actually give the relative sizes of the columns. They tell
what proportion of the “slack” space should be allocated to each area if the container
exceeds its preferred size. This isn’t particularly intuitive. We recommend that you set
all weights at 100. Then, run the program and see how the layout looks. Resize the dia-
log to see how the rows and columns adjust. If you find that a particular row or column
should not grow, set the weights of all components in it to zero. You can tinker with
other weight values, but it is usually not worth the effort.

The fill and anchor Parameters

If you don’t want a component to stretch out and fill the entire area, you set the fill
constraint. You have four possibilities for this parameter: the valid values are used in
the forms GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL, GridBagConstraints.VERTICAL,
and GridBagConstraints.BOTH.

If the component does not fill the entire area, you can specify where in the area you want
it by setting the anchor field. The valid values are GridBagConstraints.CENTER (the default),
GridBagConstraints.NORTH, GridBagConstraints.NORTHEAST, GridBagConstraints.EAST, and so on.

Padding

You can surround a component with additional blank space by setting the insets field of
GridBagConstraints. Set the left, top, right and bottom values of the Insets object to the amount
of space that you want to have around the component. This is called the external padding.

The ipadx and ipady values set the internal padding. These values are added to the mini-
mum width and height of the component. This ensures that the component does not
shrink down to its minimum size.

Alternative Method to Specify the gridx, gridy, gridwidth,
and gridheight Parameters

The AWT documentation recommends that instead of setting the gridx and gridy values
to absolute positions, you set them to the constant GridBagConstraints.RELATIVE. Then, add
the components to the grid bag layout in a standardized order, going from left to right in
the first row, then moving along the next row, and so on.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 429

You still specify the number of rows and columns spanned, by giving the appropriate grid-
height and gridwidth fields. Except, if the component extends to the last row or column, you
aren’t supposed to specify the actual number, but the constant GridBagConstraints.REMAINDER.
This tells the layout manager that the component is the last one in its row.

This scheme does seem to work. But it sounds really goofy to hide the actual placement
information from the layout manager and hope that it will rediscover it.

All this sounds like a lot of trouble and complexity. But in practice, the strategy in the
following recipe makes grid bag layouts relatively trouble-free:

1. Sketch out the component layout on a piece of paper.
2. Find a grid such that the small components are each contained in a cell and the

larger components span multiple cells.
3. Label the rows and columns of your grid with 0, 1, 2, 3, You can now read off

the gridx, gridy, gridwidth, and gridheight values.
4. For each component, ask yourself whether it needs to fill its cell horizontally or verti-

cally. If not, how do you want it aligned? This tells you the fill and anchor parameters.
5. Set all weights to 100. However, if you want a particular row or column to always

stay at its default size, set the weightx or weighty to 0 in all components that belong to
that row or column.

6. Write the code. Carefully double-check your settings for the GridBagConstraints. One
wrong constraint can ruin your whole layout.

7. Compile, run, and enjoy.

Some GUI builders even have tools for specifying the constraints visually—see Figure
9–31 for the configuration dialog in NetBeans.

Figure 9–31 Specifying grid bag constraints in NetBeans

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing430

A Helper Class to Tame the Grid Bag Constraints

The most tedious aspect of the grid bag layout is writing the code that sets the con-
straints. Most programmers write helper functions or a small helper class for this pur-
pose. We present such a class after the complete code for the font dialog example. This
class has the following features:

• Its name is short: GBC instead of GridBagConstraints.
• It extends GridBagConstraints, so you can use shorter names such as GBC.EAST for the

constants.
• Use a GBC object when adding a component, such as

add(component, new GBC(1, 2));

• There are two constructors to set the most common parameters: gridx and gridy,
or gridx, gridy, gridwidth, and gridheight.

add(component, new GBC(1, 2, 1, 4));

• There are convenient setters for the fields that come in x/y pairs:
add(component, new GBC(1, 2).setWeight(100, 100));

• The setter methods return this, so you can chain them:
add(component, new GBC(1, 2).setAnchor(GBC.EAST).setWeight(100, 100));

• The setInsets methods construct the Insets object for you. To get one-pixel insets,
simply call

add(component, new GBC(1, 2).setAnchor(GBC.EAST).setInsets(1));

Listing 9–10 shows the complete code for the font dialog example. Here is the code that
adds the components to the grid bag:

add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
add(face, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
add(size, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
add(bold, new GBC(0, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(italic, new GBC(0, 3, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
add(sample, new GBC(2, 0, 1, 4).setFill(GBC.BOTH).setWeight(100, 100));

Once you understand the grid bag constraints, this kind of code is fairly easy to read
and debug.

NOTE: The Sun tutorial at http://java.sun.com/docs/books/tutorial/uiswing/layout/grid-
bag.html suggests that you reuse the same GridBagConstraints object for all components. We
find the resulting code hard to read and error prone. For example, look at the demo at
http://java.sun.com/docs/books/tutorial/uiswing/events/containerlistener.html. Was it really
intended that the buttons are stretched horizontally, or did the programmer just forget to turn
off the fill constraint?

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 431

Listing 9–10 GridBagLayoutTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class GridBagLayoutTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. FontFrame frame = new FontFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame that uses a grid bag layout to arrange font selection components.
27. */
28. class FontFrame extends JFrame
29. {
30. public FontFrame()
31. {
32. setTitle("GridBagLayoutTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. GridBagLayout layout = new GridBagLayout();
36. setLayout(layout);
37.

38. ActionListener listener = new FontAction();
39.

40. // construct components
41.

42. JLabel faceLabel = new JLabel("Face: ");
43.

44. face = new JComboBox(new String[] { "Serif", "SansSerif", "Monospaced", "Dialog",
45. "DialogInput" });
46.

47. face.addActionListener(listener);
48.

49. JLabel sizeLabel = new JLabel("Size: ");
50.

51. size = new JComboBox(new String[] { "8", "10", "12", "15", "18", "24", "36", "48" });

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing432

52.

53. size.addActionListener(listener);
54.

55. bold = new JCheckBox("Bold");
56. bold.addActionListener(listener);
57.

58. italic = new JCheckBox("Italic");
59. italic.addActionListener(listener);
60.

61. sample = new JTextArea();
62. sample.setText("The quick brown fox jumps over the lazy dog");
63. sample.setEditable(false);
64. sample.setLineWrap(true);
65. sample.setBorder(BorderFactory.createEtchedBorder());
66.

67. // add components to grid, using GBC convenience class
68.

69. add(faceLabel, new GBC(0, 0).setAnchor(GBC.EAST));
70. add(face, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
71. add(sizeLabel, new GBC(0, 1).setAnchor(GBC.EAST));
72. add(size, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100, 0).setInsets(1));
73. add(bold, new GBC(0, 2, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
74. add(italic, new GBC(0, 3, 2, 1).setAnchor(GBC.CENTER).setWeight(100, 100));
75. add(sample, new GBC(2, 0, 1, 4).setFill(GBC.BOTH).setWeight(100, 100));
76. }
77.

78. public static final int DEFAULT_WIDTH = 300;
79. public static final int DEFAULT_HEIGHT = 200;
80.

81. private JComboBox face;
82. private JComboBox size;
83. private JCheckBox bold;
84. private JCheckBox italic;
85. private JTextArea sample;
86.

87. /**
88. * An action listener that changes the font of the sample text.
89. */
90. private class FontAction implements ActionListener
91. {
92. public void actionPerformed(ActionEvent event)
93. {
94. String fontFace = (String) face.getSelectedItem();
95. int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
96. + (italic.isSelected() ? Font.ITALIC : 0);
97. int fontSize = Integer.parseInt((String) size.getSelectedItem());
98. Font font = new Font(fontFace, fontStyle, fontSize);
99. sample.setFont(font);

100. sample.repaint();
101. }
102. }
103. }

Listing 9–10 GridBagLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 433

Listing 9–11 shows the code of the GBC helper class.

Listing 9–11 GBC.java

1. import java.awt.*;
2.

3. /**
4. * This class simplifies the use of the GridBagConstraints class.
5. * @version 1.01 2004-05-06
6. * @author Cay Horstmann
7. */
8. public class GBC extends GridBagConstraints
9. {

10. /**
11. * Constructs a GBC with a given gridx and gridy position and all other grid
12. * bag constraint values set to the default.
13. * @param gridx the gridx position
14. * @param gridy the gridy position
15. */
16. public GBC(int gridx, int gridy)
17. {
18. this.gridx = gridx;
19. this.gridy = gridy;
20. }
21.

22. /**
23. * Constructs a GBC with given gridx, gridy, gridwidth, gridheight and all
24. * other grid bag constraint values set to the default.
25. * @param gridx the gridx position
26. * @param gridy the gridy position
27. * @param gridwidth the cell span in x-direction
28. * @param gridheight the cell span in y-direction
29. */
30. public GBC(int gridx, int gridy, int gridwidth, int gridheight)
31. {
32. this.gridx = gridx;
33. this.gridy = gridy;
34. this.gridwidth = gridwidth;
35. this.gridheight = gridheight;
36. }
37.

38. /**
39. * Sets the anchor.
40. * @param anchor the anchor value
41. * @return this object for further modification
42. */
43. public GBC setAnchor(int anchor)
44. {
45. this.anchor = anchor;
46. return this;
47. }

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing434

48.

49. /**
50. * Sets the fill direction.
51. * @param fill the fill direction
52. * @return this object for further modification
53. */
54. public GBC setFill(int fill)
55. {
56. this.fill = fill;
57. return this;
58. }
59.

60. /**
61. * Sets the cell weights.
62. * @param weightx the cell weight in x-direction
63. * @param weighty the cell weight in y-direction
64. * @return this object for further modification
65. */
66. public GBC setWeight(double weightx, double weighty)
67. {
68. this.weightx = weightx;
69. this.weighty = weighty;
70. return this;
71. }
72.

73. /**
74. * Sets the insets of this cell.
75. * @param distance the spacing to use in all directions
76. * @return this object for further modification
77. */
78. public GBC setInsets(int distance)
79. {
80. this.insets = new Insets(distance, distance, distance, distance);
81. return this;
82. }
83.

84. /**
85. * Sets the insets of this cell.
86. * @param top the spacing to use on top
87. * @param left the spacing to use to the left
88. * @param bottom the spacing to use on the bottom
89. * @param right the spacing to use to the right
90. * @return this object for further modification
91. */
92. public GBC setInsets(int top, int left, int bottom, int right)
93. {
94. this.insets = new Insets(top, left, bottom, right);
95. return this;
96. }
97.

Listing 9–11 GBC.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 435

• int gridx, gridy
specifies the starting column and row of the cell. The default is 0.

• int gridwidth, gridheight
specifies the column and row extent of the cell. The default is 1.

• double weightx, weighty
specifies the capacity of the cell to grow. The default is 0.

• int anchor
indicates the alignment of the component inside the cell. You can choose between
absolute positions:

or their orientation-independent counterparts:

Use the latter if your application may be localized for right-to-left or top-to-
bottom text. The default is CENTER.

• int fill
specifies the fill behavior of the component inside the cell, one of NONE, BOTH,
HORIZONTAL, or VERTICAL. The default is NONE.

• int ipadx, ipady
specifies the “internal” padding around the component. The default is 0.

98. /**
99. * Sets the internal padding

100. * @param ipadx the internal padding in x-direction
101. * @param ipady the internal padding in y-direction
102. * @return this object for further modification
103. */
104. public GBC setIpad(int ipadx, int ipady)
105. {
106. this.ipadx = ipadx;
107. this.ipady = ipady;
108. return this;
109. }
110. }

java.awt.GridBagConstraints 1.0

NORTHWEST NORTH NORTHEAST

WEST CENTER EAST

SOUTHWEST SOUTH SOUTHEAST

FIRST_LINE_START LINE_START FIRST_LINE_END

PAGE_START CENTER PAGE_END

LAST_LINE_START LINE_END LAST_LINE_END

Listing 9–11 GBC.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing436

• Insets insets
specifies the “external” padding along the cell boundaries. The default is no
padding.

• GridBagConstraints(int gridx, int gridy, int gridwidth, int gridheight, double weightx,
double weighty, int anchor, int fill, Insets insets, int ipadx, int ipady) 1.2
constructs a GridBagConstraints with all its fields specified in the arguments. Sun
recommends that this constructor be used only by automatic code generators
because it makes your source code very hard to read.

Group Layout
Before discussing the API of the GroupLayout class, let us have a quick look at the Matisse GUI
builder in NetBeans. We won’t give you a full Matisse tutorial—see http://www.netbeans.org/kb/
articles/matisse.html for more information.

Here is the workflow for laying out the top of the dialog in Figure 9–13. Start a new
project and add a new JFrame form. Drag a label until two guidelines appear that sepa-
rate it from the container borders:

Place another label below the first row:

Drag a text field so that its baseline lines up with the baseline of the first label. Again,
note the guidelines:

Finally, line up a password field with the label to the left and the text field above.

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 437

Matisse translates these actions into the following Java code:
layout.setHorizontalGroup(
 layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel1)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField1))
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel2)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jPasswordField1)))
 .addContainerGap(222, Short.MAX_VALUE)));
layout.setVerticalGroup(
 layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel1)
 .addComponent(jTextField1))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel2)
 .addComponent(jPasswordField1))
 .addContainerGap(244, Short.MAX_VALUE)));

That looks a bit scary, but fortunately you don’t have to write the code. However, it is
helpful to have a basic understanding of the layout actions so that you can spot errors.
We will analyze the basic structure of the code. The API notes at the end of this section
explain each of the classes and methods in detail.

Components are organized by placing them into objects of type GroupLayout.SequentialGroup
or GroupLayout.ParallelGroup. These classes are subclasses of GroupLayout.Group. Groups can
contain components, gaps, and nested groups. The various add methods of the group
classes return the group object so that method calls can be chained, like this:

group.addComponent(...).addPreferredGap(...).addComponent(...);

As you can see from the sample code, the group layout separates the horizontal and ver-
tical layout computations.

To visualize the horizontal computations, imagine that the components are flattened so
they have zero height, like this:

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing438

There are two parallel sequences of components, corresponding to the (slightly simpli-
fied) code:

 .addContainerGap()
 .addGroup(layout.createParallelGroup()
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel1)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField1))
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel2)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jPasswordField1)))

But wait, that can’t be right. If the labels have different lengths, the text field and the
password field won’t line up.

We have to tell Matisse that we want the fields to line up. Select both fields, right-
click, and select Align -> Left to Column from the menu. Also line up the labels (see
Figure 9–32).

This dramatically changes the layout code:
.addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addComponent(jLabel1, GroupLayout.Alignment.TRAILING)
 .addComponent(jLabel2, GroupLayout.Alignment.TRAILING))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
 .addComponent(jTextField1)
 .addComponent(jPasswordField1))

Gap

Container
border

jLabel1

jLabel2

Gap

Gap

jTextField1

jPasswordField1

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 439

Figure 9–32 Aligning the labels and text fields in Matisse

Now the labels and fields are each placed in a parallel group. The first group has an align-
ment of TRAILING (which means alignment to the right when the text direction is left-to-right):

Gap

Container
border

jLabel1

jLabel2
Gap

jTextField1

jPasswordField1

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing440

It seems like magic that Matisse can translate the designer’s instructions into nested
groups, but as Arthur C. Clarke said, any sufficiently advanced technology is indistin-
guishable from magic.

For completeness, let’s look at the vertical computation. Now you should think of the
components as having no width. We have a sequential group that contains two parallel
groups, separated by gaps:

The corresponding code is
layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel1)
 .addComponent(jTextField1))
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel2)
 .addComponent(jPasswordField1))

As you can see from the code, the components are aligned by their baselines. (The base-
line is the line on which the component text is aligned.)

NOTE: Accurate baseline alignment was not possible in earlier versions of Java. Finally,
Java SE 6 added a getBaseline method to the Component class for determining the exact base-
line of a component containing text.

You can force a set of components to have equal size. For example, we may want to
make sure that the text field and password field width match exactly. In Matisse, select
both, right-click, and select Same Size -> Same Width from the menu (see Figure 9–33).

Gap

Container
border

jLabel1

jLabel2

jTextField1

jPasswordField1

Gap

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 441

Figure 9–33 Forcing two components to have the same width

Matisse adds the following statement to the layout code:
layout.linkSize(SwingConstants.HORIZONTAL, new Component[] {jPasswordField1, jTextField1});

The code in Listing 9–12 shows how to lay out the font selector of the preceding section,
using the GroupLayout instead of the GridBagLayout. The code may not look any simpler than
that of Listing 9–10 on page 431, but we didn’t have to write it. We used Matisse to do
the layout and then cleaned up the code a bit.

Listing 9–12 GroupLayoutTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.0 2007-04-27
7. * @author Cay Horstmann
8. */
9. public class GroupLayoutTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. FontFrame frame = new FontFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing442

24.

25. /**
26. * A frame that uses a group layout to arrange font selection components.
27. */
28. class FontFrame extends JFrame
29. {
30. public FontFrame()
31. {
32. setTitle("GroupLayoutTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. ActionListener listener = new FontAction();
36.

37. // construct components
38.

39. JLabel faceLabel = new JLabel("Face: ");
40.

41. face = new JComboBox(new String[] { "Serif", "SansSerif", "Monospaced", "Dialog",
42. "DialogInput" });
43.

44. face.addActionListener(listener);
45.

46. JLabel sizeLabel = new JLabel("Size: ");
47.

48. size = new JComboBox(new String[] { "8", "10", "12", "15", "18", "24", "36", "48" });
49.

50. size.addActionListener(listener);
51.

52. bold = new JCheckBox("Bold");
53. bold.addActionListener(listener);
54.

55. italic = new JCheckBox("Italic");
56. italic.addActionListener(listener);
57.

58. sample = new JTextArea();
59. sample.setText("The quick brown fox jumps over the lazy dog");
60. sample.setEditable(false);
61. sample.setLineWrap(true);
62. sample.setBorder(BorderFactory.createEtchedBorder());
63.

64. pane = new JScrollPane(sample);
65.

66. GroupLayout layout = new GroupLayout(getContentPane());
67. setLayout(layout);
68. layout.setHorizontalGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
69. .addGroup(
70. layout.createSequentialGroup().addContainerGap().addGroup(
71. layout.createParallelGroup(GroupLayout.Alignment.LEADING).addGroup(

Listing 9–12 GroupLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 443

72. GroupLayout.Alignment.TRAILING,
73. layout.createSequentialGroup().addGroup(
74. layout.createParallelGroup(GroupLayout.Alignment.TRAILING)
75. .addComponent(faceLabel).addComponent(sizeLabel))
76. .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
77. .addGroup(
78. layout.createParallelGroup(
79. GroupLayout.Alignment.LEADING, false)
80. .addComponent(size).addComponent(face)))
81. .addComponent(italic).addComponent(bold)).addPreferredGap(
82. LayoutStyle.ComponentPlacement.RELATED).addComponent(pane)
83. .addContainerGap()));
84.

85. layout.linkSize(SwingConstants.HORIZONTAL, new java.awt.Component[] { face, size });
86.

87. layout.setVerticalGroup(layout.createParallelGroup(GroupLayout.Alignment.LEADING)
88. .addGroup(
89. layout.createSequentialGroup().addContainerGap().addGroup(
90. layout.createParallelGroup(GroupLayout.Alignment.LEADING).addComponent(
91. pane, GroupLayout.Alignment.TRAILING).addGroup(
92. layout.createSequentialGroup().addGroup(
93. layout.createParallelGroup(GroupLayout.Alignment.BASELINE)
94. .addComponent(face).addComponent(faceLabel))
95. .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
96. .addGroup(
97. layout.createParallelGroup(
98. GroupLayout.Alignment.BASELINE).addComponent(size)
99. .addComponent(sizeLabel)).addPreferredGap(

100. LayoutStyle.ComponentPlacement.RELATED).addComponent(
101. italic, GroupLayout.DEFAULT_SIZE,
102. GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
103. .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
104. .addComponent(bold, GroupLayout.DEFAULT_SIZE,
105. GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)))
106. .addContainerGap()));
107. }
108.

109. public static final int DEFAULT_WIDTH = 300;
110. public static final int DEFAULT_HEIGHT = 200;
111.

112. private JComboBox face;
113. private JComboBox size;
114. private JCheckBox bold;
115. private JCheckBox italic;
116. private JScrollPane pane;
117. private JTextArea sample;
118.

119. /**
120. * An action listener that changes the font of the sample text.
121. */

Listing 9–12 GroupLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing444

• GroupLayout(Container host)
constructs a GroupLayout for laying out the components in the host container. (Note
that you still need to call setLayout on the host object.)

• void setHorizontalGroup(GroupLayout.Group g)
• void setVerticalGroup(GroupLayout.Group g)

sets the group that controls horizontal or vertical layout.
• void linkSize(Component... components)
• void linkSize(int axis, Component... component)

forces the given components to have the same size, or the same size along the
given axis (one of SwingConstants.HORIZONTAL or SwingConstants.VERTICAL).

• GroupLayout.SequentialGroup createSequentialGroup()
creates a group that lays out its children sequentially.

• GroupLayout.ParallelGroup createParallelGroup()
• GroupLayout.ParallelGroup createParallelGroup(GroupLayout.Alignment align)
• GroupLayout.ParallelGroup createParallelGroup(GroupLayout.Alignment align,

boolean resizable)
creates a group that lays out its children in parallel.

• boolean getHonorsVisibility()
• void setHonorsVisibility(boolean b)

gets or sets the honorsVisibility property. When true (the default), non-visible
components are not laid out. When false, they are laid out as if they were visible.
This is useful when you temporarily hide some components and don’t want the
layout to change.

122. private class FontAction implements ActionListener
123. {
124. public void actionPerformed(ActionEvent event)
125. {
126. String fontFace = (String) face.getSelectedItem();
127. int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
128. + (italic.isSelected() ? Font.ITALIC : 0);
129. int fontSize = Integer.parseInt((String) size.getSelectedItem());
130. Font font = new Font(fontFace, fontStyle, fontSize);
131. sample.setFont(font);
132. sample.repaint();
133. }
134. }
135. }

javax.swing.GroupLayout 6

Parameters: align One of BASELINE, LEADING (default), TRAILING, or CENTER

resizable true (default) when the group can be resized; false if
the preferred size is also the minimum and
maximum size

Listing 9–12 GroupLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 445

• boolean getAutoCreateGaps()
• void setAutoCreateGaps(boolean b)
• boolean getAutoCreateContainerGaps()
• void setAutoCreateContainerGaps(boolean b)

gets and sets the autoCreateGaps and autoCreateContainerGaps properties. When true,
gaps are automatically added between components or the at the container
boundaries. The default is false. A true value is useful when you manually
produce a GroupLayout.

• GroupLayout.Group addComponent(Component c)
• GroupLayout.Group addComponent(Component c, int minimumSize, int preferredSize,

int maximumSize)
adds a component to this group. The size parameters can be actual (nonnegative)
values, or the special constants GroupLayout.DEFAULT_SIZE or GroupLayout.PREFERRED_SIZE.
When DEFAULT_SIZE is used, the component’s getMinimumSize, getPreferredSize, or
getMaximumSize is called. When PREFERRED_SIZE is used, the component’s getPreferredSize
method is called.

• GroupLayout.Group addGap(int size)
• GroupLayout.Group addGap(int minimumSize, int preferredSize, int maximumSize)

adds a gap of the given rigid or flexible size.
• GroupLayout.Group addGroup(GroupLayout.Group g)

adds the given group to this group.

• GroupLayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align)
• GroupLayout.ParallelGroup addComponent(Component c, GroupLayout.Alignment align,

int minimumSize, int preferredSize, int maximumSize)
• GroupLayout.ParallelGroup addGroup(GroupLayout.Group g, GroupLayout.Alignment align)

adds a component or group to this group, using the given alignment (one of
BASELINE, LEADING, TRAILING, or CENTER).

• GroupLayout.SequentialGroup addContainerGap()
• GroupLayout.SequentialGroup addContainerGap(int preferredSize, int maximumSize)

adds a gap for separating a component and the edge of the container.
• GroupLayout.SequentialGroup addPreferredGap(LayoutStyle.ComponentPlacement type)

adds a gap for separating components. The type is LayoutStyle.ComponentPlacement.RELATED
or LayoutStyle.ComponentPlacement.UNRELATED.

Using No Layout Manager
There will be times when you don’t want to bother with layout managers but just want
to drop a component at a fixed location (sometimes called absolute positioning). This is
not a great idea for platform-independent applications, but there is nothing wrong with
using it for a quick prototype.

javax.swing.GroupLayout.Group

javax.swing.GroupLayout.ParallelGroup

javax.swing.GroupLayout.SequentialGroup

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing446

Here is what you do to place a component at a fixed location:

1. Set the layout manager to null.
2. Add the component you want to the container.
3. Then specify the position and size that you want:

frame.setLayout(null);
JButton ok = new JButton("Ok");
frame.add(ok);
ok.setBounds(10, 10, 30, 15);

• void setBounds(int x, int y, int width, int height)
moves and resizes a component.

Custom Layout Managers
You can design your own LayoutManager class that manages components in a special
way. As a fun example, we show you how to arrange all components in a container
to form a circle (see Figure 9–34).

Figure 9–34 Circle layout

Your own layout manager must implement the LayoutManager interface. You need to over-
ride the following five methods:

void addLayoutComponent(String s, Component c);
void removeLayoutComponent(Component c);
Dimension preferredLayoutSize(Container parent);
Dimension minimumLayoutSize(Container parent);
void layoutContainer(Container parent);

The first two methods are called when a component is added or removed. If you don’t
keep any additional information about the components, you can make them do nothing.
The next two methods compute the space required for the minimum and the preferred
layout of the components. These are usually the same quantity. The fifth method does
the actual work and invokes setBounds on all components.

java.awt.Component 1.0

Parameters: x, y The new top-left corner of the component

width, height The new size of the component

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 447

NOTE: The AWT has a second interface, called LayoutManager2, with 10 methods to imple-
ment rather than 5. The main point of the LayoutManager2 interface is to allow the user to use
the add method with constraints. For example, the BorderLayout and GridBagLayout implement
the LayoutManager2 interface.

Listing 9–13 shows the code for the CircleLayout manager, which, amazingly and use-
lessly enough, lays out the components along a circle inside the parent.

Listing 9–13 CircleLayoutTest.java

1. import java.awt.*;
2.

3. import javax.swing.*;
4.

5. /**
6. * @version 1.32 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class CircleLayoutTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. CircleLayoutFrame frame = new CircleLayoutFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame that shows buttons arranged along a circle.
27. */
28. class CircleLayoutFrame extends JFrame
29. {
30. public CircleLayoutFrame()
31. {
32. setTitle("CircleLayoutTest");
33.

34. setLayout(new CircleLayout());
35. add(new JButton("Yellow"));
36. add(new JButton("Blue"));
37. add(new JButton("Red"));
38. add(new JButton("Green"));
39. add(new JButton("Orange"));

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing448

40. add(new JButton("Fuchsia"));
41. add(new JButton("Indigo"));
42. pack();
43. }
44. }
45.

46. /**
47. * A layout manager that lays out components along a circle.
48. */
49. class CircleLayout implements LayoutManager
50. {
51. public void addLayoutComponent(String name, Component comp)
52. {
53. }
54.

55. public void removeLayoutComponent(Component comp)
56. {
57. }
58.

59. public void setSizes(Container parent)
60. {
61. if (sizesSet) return;
62. int n = parent.getComponentCount();
63.

64. preferredWidth = 0;
65. preferredHeight = 0;
66. minWidth = 0;
67. minHeight = 0;
68. maxComponentWidth = 0;
69. maxComponentHeight = 0;
70.

71. // compute the maximum component widths and heights
72. // and set the preferred size to the sum of the component sizes.
73. for (int i = 0; i < n; i++)
74. {
75. Component c = parent.getComponent(i);
76. if (c.isVisible())
77. {
78. Dimension d = c.getPreferredSize();
79. maxComponentWidth = Math.max(maxComponentWidth, d.width);
80. maxComponentHeight = Math.max(maxComponentHeight, d.height);
81. preferredWidth += d.width;
82. preferredHeight += d.height;
83. }
84. }
85. minWidth = preferredWidth / 2;
86. minHeight = preferredHeight / 2;
87. sizesSet = true;
88. }
89.

Listing 9–13 CircleLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 449

90. public Dimension preferredLayoutSize(Container parent)
91. {
92. setSizes(parent);
93. Insets insets = parent.getInsets();
94. int width = preferredWidth + insets.left + insets.right;
95. int height = preferredHeight + insets.top + insets.bottom;
96. return new Dimension(width, height);
97. }
98.

99. public Dimension minimumLayoutSize(Container parent)
100. {
101. setSizes(parent);
102. Insets insets = parent.getInsets();
103. int width = minWidth + insets.left + insets.right;
104. int height = minHeight + insets.top + insets.bottom;
105. return new Dimension(width, height);
106. }
107.

108. public void layoutContainer(Container parent)
109. {
110. setSizes(parent);
111.

112. // compute center of the circle
113.

114. Insets insets = parent.getInsets();
115. int containerWidth = parent.getSize().width - insets.left - insets.right;
116. int containerHeight = parent.getSize().height - insets.top - insets.bottom;
117.

118. int xcenter = insets.left + containerWidth / 2;
119. int ycenter = insets.top + containerHeight / 2;
120.

121. // compute radius of the circle
122.

123. int xradius = (containerWidth - maxComponentWidth) / 2;
124. int yradius = (containerHeight - maxComponentHeight) / 2;
125. int radius = Math.min(xradius, yradius);
126.

127. // lay out components along the circle
128.

129. int n = parent.getComponentCount();
130. for (int i = 0; i < n; i++)
131. {
132. Component c = parent.getComponent(i);
133. if (c.isVisible())
134. {
135. double angle = 2 * Math.PI * i / n;
136.

137. // center point of component
138. int x = xcenter + (int) (Math.cos(angle) * radius);
139. int y = ycenter + (int) (Math.sin(angle) * radius);

Listing 9–13 CircleLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing450

• void addLayoutComponent(String name, Component comp)
adds a component to the layout.

• void removeLayoutComponent(Component comp)
removes a component from the layout.

• Dimension preferredLayoutSize(Container cont)
returns the preferred size dimensions for the container under this layout.

• Dimension minimumLayoutSize(Container cont)
returns the minimum size dimensions for the container under this layout.

• void layoutContainer(Container cont)
lays out the components in a container.

Traversal Order
When you add many components into a window, you need to give some thought to the
traversal order. When a window is first displayed, the first component in the traversal
order has the keyboard focus. Each time the user presses the TAB key, the next component
gains focus. (Recall that a component that has the keyboard focus can be manipulated
with the keyboard. For example, a button can be “clicked” with the space bar when it has
focus.) You may not personally care about using the TAB key to navigate through a set of
controls, but plenty of users do. Among them are the mouse haters and those who cannot
use a mouse, perhaps because of a handicap or because they are navigating the user inter-
face by voice. For that reason, you need to know how Swing handles traversal order.

140.

141. // move component so that its center is (x, y)
142. // and its size is its preferred size
143. Dimension d = c.getPreferredSize();
144. c.setBounds(x - d.width / 2, y - d.height / 2, d.width, d.height);
145. }
146. }
147. }
148.

149. private int minWidth = 0;
150. private int minHeight = 0;
151. private int preferredWidth = 0;
152. private int preferredHeight = 0;
153. private boolean sizesSet = false;
154. private int maxComponentWidth = 0;
155. private int maxComponentHeight = 0;
156. }

java.awt.LayoutManager 1.0

Parameters: name An identifier for the component placement

comp The component to be added

Listing 9–13 CircleLayoutTest.java (continued)

Chapter 9. User Interface Components with Swing

Sophisticated Layout Management 451

The traversal order is straightforward, first left to right and then top to bottom. For
example, in the font dialog example, the components are traversed in the following
order (see Figure 9–35):
➊ Face combo box

➋ Sample text area (press CTRL+TAB to move to the next field; the TAB character is
considered text input)

➌ Size combo box

➍ Bold checkbox

➎ Italic checkbox

NOTE: In the old AWT, the traversal order was determined by the order in which you
inserted components into a container. In Swing, the insertion order does not matter—only
the layout of the components is considered.

Figure 9–35 Geometric traversal order

The situation is more complex if your container contains other containers. When the
focus is given to another container, it automatically ends up within the top-left compo-
nent in that container and then it traverses all other components in that container.
Finally, the focus is given to the component following the container.

You can use this to your advantage by grouping related elements in another container
such as a panel.

NOTE: As of Java SE 1.4, you call

component.setFocusable(false);

to remove a component from the focus traversal. Previously, you had to override the isFocus-
Traversable method, but that method is now deprecated.

In summary, there are two standard traversal policies in Java SE 1.4:

• Pure AWT applications use the DefaultFocusTraversalPolicy. Components are included
in the focus traversal if they are visible, displayable, enabled, and focusable, and if
their native peers are focusable. The components are traversed in the order in which
they were inserted in the container.

➊
➋➌

➍

➎

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing452

• Swing applications use the LayoutFocusTraversalPolicy. Components are included in the
focus traversal if they are visible, displayable, enabled, and focusable. The compo-
nents are traversed in geometric order: left to right, then top to bottom. However, a
container introduces a new “cycle”—its components are traversed first before the
successor of the container gains focus.

NOTE: The “cycle” notion is a bit confusing. After reaching the last element in a child con-
tainer, the focus does not go back to its first element, but instead to the container’s succes-
sor. The API supports true cycles, including keystrokes that move up and down in a cycle
hierarchy. However, the standard traversal policy does not use hierarchical cycles. It flattens
the cycle hierarchy into a linear (depth-first) traversal.

NOTE: In Java SE 1.3, you could change the default traversal order by calling the setNext-
FocusableComponent method of the JComponent class. That method is now deprecated. To
change the traversal order, try grouping related components into panels so that they form
cycles. If that doesn’t work, you have to either install a comparator that sorts the compo-
nents differently or completely replace the traversal policy. Neither operation seems
intended for the faint of heart—see the Sun API documentation for details.

Dialog Boxes
So far, all our user interface components have appeared inside a frame window that was
created in the application. This is the most common situation if you write applets that
run inside a web browser. But if you write applications, you usually want separate dia-
log boxes to pop up to give information to or get information from the user.

Just as with most windowing systems, AWT distinguishes between modal and modeless
dialog boxes. A modal dialog box won’t let users interact with the remaining windows
of the application until he or she deals with it. You use a modal dialog box when you
need information from the user before you can proceed with execution. For example,
when the user wants to read a file, a modal file dialog box is the one to pop up. The user
must specify a file name before the program can begin the read operation. Only when
the user closes the (modal) dialog box can the application proceed.

A modeless dialog box lets the user enter information in both the dialog box and the
remainder of the application. One example of a modeless dialog is a toolbar. The toolbar
can stay in place as long as needed, and the user can interact with both the application
window and the toolbar as needed.

We start this section with the simplest dialogs—modal dialogs with just a single mes-
sage. Swing has a convenient JOptionPane class that lets you put up a simple dialog with-
out writing any special dialog box code. Next, you see how to write more complex
dialogs by implementing your own dialog windows. Finally, you see how to transfer
data from your application into a dialog and back.

We conclude this section by looking at two standard dialogs: file dialogs and color dialogs.
File dialogs are complex, and you definitely want to be familiar with the Swing JFileChooser
for this purpose—it would be a real challenge to write your own. The JColorChooser dialog is
useful when you want users to pick colors.

Chapter 9. User Interface Components with Swing

Dialog Boxes 453

Option Dialogs
Swing has a set of ready-made simple dialogs that suffice when you need to ask the user
for a single piece of information. The JOptionPane has four static methods to show these
simple dialogs:

showMessageDialog Show a message and wait for the user to click OK
showConfirmDialog Show a message and get a confirmation (like OK/Cancel)
showOptionDialog Show a message and get a user option from a set of options
showInputDialog Show a message and get one line of user input

Figure 9–36 shows a typical dialog. As you can see, the dialog has the following
components:

• An icon
• A message
• One or more option buttons

Figure 9–36 An option dialog

The input dialog has an additional component for user input. This can be a text field into
which the user can type an arbitrary string, or a combo box from which the user can select
one item.

The exact layout of these dialogs, and the choice of icons for standard message types,
depend on the pluggable look and feel.

The icon on the left side depends on one of five message types:
ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
QUESTION_MESSAGE
PLAIN_MESSAGE

The PLAIN_MESSAGE type has no icon. Each dialog type also has a method that lets you sup-
ply your own icon instead.

For each dialog type, you can specify a message. This message can be a string, an
icon, a user interface component, or any other object. Here is how the message object
is displayed:

String Draw the string
Icon Show the icon
Component Show the component
Object[] Show all objects in the array, stacked on top of each other
Any other object Apply toString and show the resulting string

You can see these options by running the program in Listing 9–14 on page 455.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing454

Of course, supplying a message string is by far the most common case. Supplying a
Component gives you ultimate flexibility because you can make the paintComponent method
draw anything you want.

The buttons on the bottom depend on the dialog type and the option type. When calling
showMessageDialog and showInputDialog, you get only a standard set of buttons (OK and OK/
Cancel, respectively). When calling showConfirmDialog, you can choose among four option
types:

DEFAULT_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTION
OK_CANCEL_OPTION

With the showOptionDialog you can specify an arbitrary set of options. You supply an array
of objects for the options. Each array element is rendered as follows:

String Make a button with the string as label
Icon Make a button with the icon as label
Component Show the component
Any other object Apply toString and make a button with the resulting string

as label

The return values of these functions are as follows:

showMessageDialog None
showConfirmDialog An integer representing the chosen option
showOptionDialog An integer representing the chosen option
showInputDialog The string that the user supplied or selected

The showConfirmDialog and showOptionDialog return integers to indicate which button the user
chose. For the option dialog, this is simply the index of the chosen option or the value
CLOSED_OPTION if the user closed the dialog instead of choosing an option. For the confirma-
tion dialog, the return value can be one of the following:

OK_OPTION
CANCEL_OPTION
YES_OPTION
NO_OPTION
CLOSED_OPTION

This all sounds like a bewildering set of choices, but in practice it is simple. Follow these
steps:

1. Choose the dialog type (message, confirmation, option, or input).
2. Choose the icon (error, information, warning, question, none, or custom).
3. Choose the message (string, icon, custom component, or a stack of them).
4. For a confirmation dialog, choose the option type (default, Yes/No, Yes/No/

Cancel, or OK/Cancel).
5. For an option dialog, choose the options (strings, icons, or custom components) and

the default option.
6. For an input dialog, choose between a text field and a combo box.
7. Locate the appropriate method to call in the JOptionPane API.

Chapter 9. User Interface Components with Swing

Dialog Boxes 455

For example, suppose you want to show the dialog in Figure 9–36. The dialog shows a
message and asks the user to confirm or cancel. Thus, it is a confirmation dialog. The
icon is a question icon. The message is a string. The option type is OK_CANCEL_OPTION. Here is
the call you would make:

int selection = JOptionPane.showConfirmDialog(parent,
 "Message", "Title",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);
if (selection == JOptionPane.OK_OPTION) . . .

TIP: The message string can contain newline ('\n') characters. Such a string is displayed in
multiple lines.

Figure 9–37 The OptionDialogTest program

The program in Listing 9–14 lets you make the selections shown in Figure 9–37. It then
shows you the resulting dialog.

Listing 9–14 OptionDialogTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.awt.geom.*;
4. import java.util.*;
5. import javax.swing.*;
6.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing456

7. /**
8. * @version 1.33 2007-04-28
9. * @author Cay Horstmann

10. */
11. public class OptionDialogTest
12. {
13. public static void main(String[] args)
14. {
15. EventQueue.invokeLater(new Runnable()
16. {
17. public void run()
18. {
19. OptionDialogFrame frame = new OptionDialogFrame();
20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);
22. }
23. });
24. }
25. }
26.

27. /**
28. * A panel with radio buttons inside a titled border.
29. */
30. class ButtonPanel extends JPanel
31. {
32. /**
33. * Constructs a button panel.
34. * @param title the title shown in the border
35. * @param options an array of radio button labels
36. */
37. public ButtonPanel(String title, String... options)
38. {
39. setBorder(BorderFactory.createTitledBorder(BorderFactory.createEtchedBorder(), title));
40. setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));
41. group = new ButtonGroup();
42.

43. // make one radio button for each option
44. for (String option : options)
45. {
46. JRadioButton b = new JRadioButton(option);
47. b.setActionCommand(option);
48. add(b);
49. group.add(b);
50. b.setSelected(option == options[0]);
51. }
52. }
53.

Listing 9–14 OptionDialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 457

54. /**
55. * Gets the currently selected option.
56. * @return the label of the currently selected radio button.
57. */
58. public String getSelection()
59. {
60. return group.getSelection().getActionCommand();
61. }
62.

63. private ButtonGroup group;
64. }
65.

66. /**
67. * A frame that contains settings for selecting various option dialogs.
68. */
69. class OptionDialogFrame extends JFrame
70. {
71. public OptionDialogFrame()
72. {
73. setTitle("OptionDialogTest");
74. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
75.

76. JPanel gridPanel = new JPanel();
77. gridPanel.setLayout(new GridLayout(2, 3));
78.

79. typePanel = new ButtonPanel("Type", "Message", "Confirm", "Option", "Input");
80. messageTypePanel = new ButtonPanel("Message Type", "ERROR_MESSAGE", "INFORMATION_MESSAGE",
81. "WARNING_MESSAGE", "QUESTION_MESSAGE", "PLAIN_MESSAGE");
82. messagePanel = new ButtonPanel("Message", "String", "Icon", "Component", "Other", "Object[]");
83. optionTypePanel = new ButtonPanel("Confirm", "DEFAULT_OPTION", "YES_NO_OPTION",
84. "YES_NO_CANCEL_OPTION", "OK_CANCEL_OPTION");
85. optionsPanel = new ButtonPanel("Option", "String[]", "Icon[]", "Object[]");
86. inputPanel = new ButtonPanel("Input", "Text field", "Combo box");
87.

88. gridPanel.add(typePanel);
89. gridPanel.add(messageTypePanel);
90. gridPanel.add(messagePanel);
91. gridPanel.add(optionTypePanel);
92. gridPanel.add(optionsPanel);
93. gridPanel.add(inputPanel);
94.

95. // add a panel with a Show button
96.

97. JPanel showPanel = new JPanel();
98. JButton showButton = new JButton("Show");
99. showButton.addActionListener(new ShowAction());

100. showPanel.add(showButton);
101.

Listing 9–14 OptionDialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing458

102. add(gridPanel, BorderLayout.CENTER);
103. add(showPanel, BorderLayout.SOUTH);
104. }
105.

106. /**
107. * Gets the currently selected message.
108. * @return a string, icon, component or object array, depending on the Message panel selection
109. */
110. public Object getMessage()
111. {
112. String s = messagePanel.getSelection();
113. if (s.equals("String")) return messageString;
114. else if (s.equals("Icon")) return messageIcon;
115. else if (s.equals("Component")) return messageComponent;
116. else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
117. messageComponent, messageObject };
118. else if (s.equals("Other")) return messageObject;
119. else return null;
120. }
121.

122. /**
123. * Gets the currently selected options.
124. * @return an array of strings, icons or objects, depending on the Option panel selection
125. */
126. public Object[] getOptions()
127. {
128. String s = optionsPanel.getSelection();
129. if (s.equals("String[]")) return new String[] { "Yellow", "Blue", "Red" };
130. else if (s.equals("Icon[]")) return new Icon[] { new ImageIcon("yellow-ball.gif"),
131. new ImageIcon("blue-ball.gif"), new ImageIcon("red-ball.gif") };
132. else if (s.equals("Object[]")) return new Object[] { messageString, messageIcon,
133. messageComponent, messageObject };
134. else return null;
135. }
136.

137. /**
138. * Gets the selected message or option type
139. * @param panel the Message Type or Confirm panel
140. * @return the selected XXX_MESSAGE or XXX_OPTION constant from the JOptionPane class
141. */
142. public int getType(ButtonPanel panel)
143. {
144. String s = panel.getSelection();
145. try
146. {
147. return JOptionPane.class.getField(s).getInt(null);
148. }
149. catch (Exception e)
150. {

Listing 9–14 OptionDialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 459

151. return -1;
152. }
153. }
154.

155. /**
156. * The action listener for the Show button shows a Confirm, Input, Message or Option dialog
157. * depending on the Type panel selection.
158. */
159. private class ShowAction implements ActionListener
160. {
161. public void actionPerformed(ActionEvent event)
162. {
163. if (typePanel.getSelection().equals("Confirm")) JOptionPane.showConfirmDialog(
164. OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
165. getType(messageTypePanel));
166. else if (typePanel.getSelection().equals("Input"))
167. {
168. if (inputPanel.getSelection().equals("Text field")) JOptionPane.showInputDialog(
169. OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
170. else JOptionPane.showInputDialog(OptionDialogFrame.this, getMessage(), "Title",
171. getType(messageTypePanel), null, new String[] { "Yellow", "Blue", "Red" },
172. "Blue");
173. }
174. else if (typePanel.getSelection().equals("Message")) JOptionPane.showMessageDialog(
175. OptionDialogFrame.this, getMessage(), "Title", getType(messageTypePanel));
176. else if (typePanel.getSelection().equals("Option")) JOptionPane.showOptionDialog(
177. OptionDialogFrame.this, getMessage(), "Title", getType(optionTypePanel),
178. getType(messageTypePanel), null, getOptions(), getOptions()[0]);
179. }
180. }
181.

182. public static final int DEFAULT_WIDTH = 600;
183. public static final int DEFAULT_HEIGHT = 400;
184.

185. private ButtonPanel typePanel;
186. private ButtonPanel messagePanel;
187. private ButtonPanel messageTypePanel;
188. private ButtonPanel optionTypePanel;
189. private ButtonPanel optionsPanel;
190. private ButtonPanel inputPanel;
191.

192. private String messageString = "Message";
193. private Icon messageIcon = new ImageIcon("blue-ball.gif");
194. private Object messageObject = new Date();
195. private Component messageComponent = new SampleComponent();
196. }
197.

198. /**
199. * A component with a painted surface
200. */

Listing 9–14 OptionDialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing460

• static void showMessageDialog(Component parent, Object message, String title, int messageType,
Icon icon)

• static void showMessageDialog(Component parent, Object message, String title, int messageType)
• static void showMessageDialog(Component parent, Object message)
• static void showInternalMessageDialog(Component parent, Object message, String title,

int messageType, Icon icon)
• static void showInternalMessageDialog(Component parent, Object message, String title,

int messageType)
• static void showInternalMessageDialog(Component parent, Object message)

shows a message dialog or an internal message dialog. (An internal dialog is
rendered entirely within its owner frame.)

• static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType, Icon icon)

• static int showConfirmDialog(Component parent, Object message, String title, int optionType,
int messageType)

201.

202. class SampleComponent extends JComponent
203. {
204. public void paintComponent(Graphics g)
205. {
206. Graphics2D g2 = (Graphics2D) g;
207. Rectangle2D rect = new Rectangle2D.Double(0, 0, getWidth() - 1, getHeight() - 1);
208. g2.setPaint(Color.YELLOW);
209. g2.fill(rect);
210. g2.setPaint(Color.BLUE);
211. g2.draw(rect);
212. }
213.

214. public Dimension getPreferredSize()
215. {
216. return new Dimension(10, 10);
217. }
218. }

javax.swing.JOptionPane 1.2

Parameters: parent The parent component (can be null)

message The message to show on the dialog (can be a
string, icon, component, or an array of them)

title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,
WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE

icon An icon to show instead of one of the standard
icons

Listing 9–14 OptionDialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 461

• static int showConfirmDialog(Component parent, Object message, String title, int optionType)
• static int showConfirmDialog(Component parent, Object message)
• static int showInternalConfirmDialog(Component parent, Object message, String title,

int optionType, int messageType, Icon icon)
• static int showInternalConfirmDialog(Component parent, Object message, String title,

int optionType, int messageType)
• static int showInternalConfirmDialog(Component parent, Object message, String title,

int optionType)
• static int showInternalConfirmDialog(Component parent, Object message)

shows a confirmation dialog or an internal confirmation dialog. (An internal
dialog is rendered entirely within its owner frame.) Returns the option selected by
the user (one of OK_OPTION, CANCEL_OPTION, YES_OPTION, NO_OPTION), or CLOSED_OPTION if the
user closed the dialog.

• static int showOptionDialog(Component parent, Object message, String title, int optionType,
int messageType, Icon icon, Object[] options, Object default)

• static int showInternalOptionDialog(Component parent, Object message, String title,
int optionType, int messageType, Icon icon, Object[] options, Object default)
shows an option dialog or an internal option dialog. (An internal dialog is
rendered entirely within its owner frame.) Returns the index of the option
selected by the user, or CLOSED_OPTION if the user canceled the dialog.

Parameters: parent The parent component (can be null)

message The message to show on the dialog (can be a string,
icon, component, or an array of them)

title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, PLAIN_MESSAGE

optionType One of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION

icon An icon to show instead of one of the standard icons

Parameters: parent The parent component (can be null)

message The message to show on the dialog (can be a string,
icon, component, or an array of them)

title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE,
QUESTION_MESSAGE, PLAIN_MESSAGE

optionType One of DEFAULT_OPTION, YES_NO_OPTION, YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION

icon An icon to show instead of one of the standard icons

options An array of options (can be strings, icons, or
components)

default The default option to present to the user

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing462

• static Object showInputDialog(Component parent, Object message, String title, int message-
Type, Icon icon, Object[] values, Object default)

• static String showInputDialog(Component parent, Object message, String title, int message-
Type)

• static String showInputDialog(Component parent, Object message)
• static String showInputDialog(Object message)
• static String showInputDialog(Component parent, Object message, Object default) 1.4
• static String showInputDialog(Object message, Object default) 1.4
• static Object showInternalInputDialog(Component parent, Object message, String title,

int messageType, Icon icon, Object[] values, Object default)
• static String showInternalInputDialog(Component parent, Object message, String title,

int messageType)
• static String showInternalInputDialog(Component parent, Object message)

shows an input dialog or an internal input dialog. (An internal dialog is rendered
entirely within its owner frame.) Returns the input string typed by the user, or null
if the user canceled the dialog.

Creating Dialogs
In the last section, you saw how to use the JOptionPane class to show a simple dialog. In
this section, you see how to create such a dialog by hand.

Figure 9–38 shows a typical modal dialog box, a program information box that is dis-
played when the user clicks the About button.

To implement a dialog box, you extend the JDialog class. This is essentially the same pro-
cess as extending JFrame for the main window for an application. More precisely:

1. In the constructor of your dialog box, call the constructor of the superclass JDialog.
2. Add the user interface components of the dialog box.
3. Add the event handlers.
4. Set the size for the dialog box.

When you call the superclass constructor, you will need to supply the owner frame, the title
of the dialog, and the modality.

The owner frame controls where the dialog is displayed. You can supply null as the owner;
then, the dialog is owned by a hidden frame.

Parameters: parent The parent component (can be null)

message The message to show on the dialog (can be a string,
icon, component, or an array of them)

title The string in the title bar of the dialog

messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,
WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE

icon An icon to show instead of one of the standard
icons

values An array of values to show in a combo box

default The default value to present to the user

Chapter 9. User Interface Components with Swing

Dialog Boxes 463

The modality specifies which other windows of your application are blocked while the
dialog is displayed. A modeless dialog does not block other windows. A modal dialog
blocks all other windows of the application (except children of the dialog). You would use
a modeless dialog for a toolbox that the user can always access. On the other hand, you
would use a modal dialog if you want to force the user to supply required information
before continuing.

NOTE: As of Java SE 6, there are two additional modality types. A document-modal dialog
blocks all windows belonging to the same “document,” or more precisely, all windows with
the same parentless root window as the dialog. This solves a problem with help systems. In
older versions, users were unable to interact with the help windows when a modal dialog
was popped up. A toolkit-modal dialog blocks all windows from the same “toolkit.” A toolkit is
a Java program that launches multiple applications, such as the applet engine in a browser.
For more information on these advanced issues, please see http://java.sun.com/developer/
technicalArticles/J2SE/Desktop/javase6/modality.

Figure 9–38 An About dialog box

Here’s the code for a dialog box:
public AboutDialog extends JDialog
{
 public AboutDialog(JFrame owner)
 {
 super(owner, "About DialogTest", true);
 add(new JLabel(
 "<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann and Gary Cornell</html>"),
 BorderLayout.CENTER);

 JPanel panel = new JPanel();
 JButton ok = new JButton("Ok");

 ok.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 setVisible(false);
 }
 });

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing464

 panel.add(ok);
 add(panel, BorderLayout.SOUTH);

 setSize(250, 150);
 }
}

As you can see, the constructor adds user interface elements: in this case, labels and a
button. It adds a handler to the button and sets the size of the dialog.

To display the dialog box, you create a new dialog object and make it visible:
JDialog dialog = new AboutDialog(this);
dialog.setVisible(true);

Actually, in the sample code below, we create the dialog box only once, and we can
reuse it whenever the user clicks the About button.

if (dialog == null) // first time
 dialog = new AboutDialog(this);
dialog.setVisible(true);

When the user clicks the Ok button, the dialog box should close. This is handled in the
event handler of the Ok button:

ok.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 setVisible(false);
 }
 });

When the user closes the dialog by clicking on the Close box, then the dialog is also hid-
den. Just as with a JFrame, you can override this behavior with the setDefaultCloseOperation
method.

Listing 9–15 is the code for the About dialog box test program.

Listing 9–15 DialogTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class DialogTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {

Chapter 9. User Interface Components with Swing

Dialog Boxes 465

15. public void run()
16. {
17. DialogFrame frame = new DialogFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a menu whose File->About action shows a dialog.
27. */
28. class DialogFrame extends JFrame
29. {
30. public DialogFrame()
31. {
32. setTitle("DialogTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // construct a File menu
36.

37. JMenuBar menuBar = new JMenuBar();
38. setJMenuBar(menuBar);
39. JMenu fileMenu = new JMenu("File");
40. menuBar.add(fileMenu);
41.

42. // add About and Exit menu items
43.

44. // The About item shows the About dialog
45.

46. JMenuItem aboutItem = new JMenuItem("About");
47. aboutItem.addActionListener(new ActionListener()
48. {
49. public void actionPerformed(ActionEvent event)
50. {
51. if (dialog == null) // first time
52. dialog = new AboutDialog(DialogFrame.this);
53. dialog.setVisible(true); // pop up dialog
54. }
55. });
56. fileMenu.add(aboutItem);
57.

58. // The Exit item exits the program
59.

60. JMenuItem exitItem = new JMenuItem("Exit");
61. exitItem.addActionListener(new ActionListener()
62. {

Listing 9–15 DialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing466

63. public void actionPerformed(ActionEvent event)
64. {
65. System.exit(0);
66. }
67. });
68. fileMenu.add(exitItem);
69. }
70.

71. public static final int DEFAULT_WIDTH = 300;
72. public static final int DEFAULT_HEIGHT = 200;
73.

74. private AboutDialog dialog;
75. }
76.

77. /**
78. * A sample modal dialog that displays a message and waits for the user to click the Ok button.
79. */
80. class AboutDialog extends JDialog
81. {
82. public AboutDialog(JFrame owner)
83. {
84. super(owner, "About DialogTest", true);
85.

86. // add HTML label to center
87.

88. add(
89. new JLabel(
90. "<html><h1><i>Core Java</i></h1><hr>By Cay Horstmann and Gary Cornell</html>"),
91. BorderLayout.CENTER);
92.

93. // Ok button closes the dialog
94.

95. JButton ok = new JButton("Ok");
96. ok.addActionListener(new ActionListener()
97. {
98. public void actionPerformed(ActionEvent event)
99. {

100. setVisible(false);
101. }
102. });
103.

104. // add Ok button to southern border
105.

106. JPanel panel = new JPanel();
107. panel.add(ok);
108. add(panel, BorderLayout.SOUTH);
109.

110. setSize(250, 150);
111. }
112. }

Listing 9–15 DialogTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 467

• public JDialog(Frame parent, String title, boolean modal)
constructs a dialog. The dialog is not visible until it is explicitly shown.

Data Exchange
The most common reason to put up a dialog box is to get information from the user. You
have already seen how easy it is to make a dialog box object: Give it initial data and then
call setVisible(true) to display the dialog box on the screen. Now let us see how to trans-
fer data in and out of a dialog box.

Consider the dialog box in Figure 9–39 that could be used to obtain a user name and a
password to connect to some on-line service.

Figure 9–39 Password dialog box

Your dialog box should provide methods to set default data. For example, the Password-
Chooser class of the example program has a method, setUser, to place default values into
the next fields:

public void setUser(User u)
{
 username.setText(u.getName());
}

Once you set the defaults (if desired), you show the dialog by calling setVisible(true). The
dialog is now displayed.

The user then fills in the information and clicks the Ok or Cancel button. The event han-
dlers for both buttons call setVisible(false), which terminates the call to setVisible(true).
Alternatively, the user may close the dialog. If you did not install a window listener for
the dialog, then the default window closing operation applies: The dialog becomes
invisible, which also terminates the call to setVisible(true).

The important issue is that the call to setVisible(true) blocks until the user has dismissed
the dialog. This makes it easy to implement modal dialogs.

javax.swing.JDialog 1.2

Parameters: parent The frame that is the owner of the dialog

title The title of the dialog

modal True for modal dialogs (a modal dialog blocks input
to other windows)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing468

You want to know whether the user has accepted or canceled the dialog. Our sample
code sets the ok flag to false before showing the dialog. Only the event handler for the
Ok button sets the ok flag to true. In that case, you can retrieve the user input from the
dialog.

NOTE: Transferring data out of a modeless dialog is not as simple. When a modeless dialog
is displayed, the call to setVisible(true) does not block and the program continues running
while the dialog is displayed. If the user selects items on a modeless dialog and then clicks
“Ok,” the dialog needs to send an event to some listener in the program.

The example program contains another useful improvement. When you construct a JDi-
alog object, you need to specify the owner frame. However, quite often you want to show
the same dialog with different owner frames. It is better to pick the owner frame when
you are ready to show the dialog, not when you construct the PasswordChooser object.
The trick is to have the PasswordChooser extend JPanel instead of JDialog. Build a JDialog object
on the fly in the showDialog method:

public boolean showDialog(Frame owner, String title)
{
 ok = false;

 if (dialog == null || dialog.getOwner() != owner)
 {
 dialog = new JDialog(owner, true);
 dialog.add(this);
 dialog.pack();
 }

 dialog.setTitle(title);
 dialog.setVisible(true);
 return ok;
}

Note that it is safe to have owner equal to null.
You can do even better. Sometimes, the owner frame isn’t readily available. It is easy
enough to compute it from any parent component, like this:

Frame owner;
if (parent instanceof Frame)
 owner = (Frame) parent;
else
 owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);

We use this enhancement in our sample program. The JOptionPane class also uses this
mechanism.
Many dialogs have a default button, which is automatically selected if the user presses a
trigger key (ENTER in most “look and feel” implementations). The default button is spe-
cially marked, often with a thick outline.
You set the default button in the root pane of the dialog:

dialog.getRootPane().setDefaultButton(okButton);

Chapter 9. User Interface Components with Swing

Dialog Boxes 469

If you follow our suggestion of laying out the dialog in a panel, then you must be care-
ful to set the default button only after you wrapped the panel into a dialog. The panel
itself has no root pane.

Listing 9–16 is the complete code that illustrates the data flow into and out of a dialog box.

Listing 9–16 DataExchangeTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.33 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class DataExchangeTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. DataExchangeFrame frame = new DataExchangeFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. /**
26. * A frame with a menu whose File->Connect action shows a password dialog.
27. */
28. class DataExchangeFrame extends JFrame
29. {
30. public DataExchangeFrame()
31. {
32. setTitle("DataExchangeTest");
33. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
34.

35. // construct a File menu
36.

37. JMenuBar mbar = new JMenuBar();
38. setJMenuBar(mbar);
39. JMenu fileMenu = new JMenu("File");
40. mbar.add(fileMenu);
41.

42. // add Connect and Exit menu items
43.

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing470

44. JMenuItem connectItem = new JMenuItem("Connect");
45. connectItem.addActionListener(new ConnectAction());
46. fileMenu.add(connectItem);
47.

48. // The Exit item exits the program
49.

50. JMenuItem exitItem = new JMenuItem("Exit");
51. exitItem.addActionListener(new ActionListener()
52. {
53. public void actionPerformed(ActionEvent event)
54. {
55. System.exit(0);
56. }
57. });
58. fileMenu.add(exitItem);
59.

60. textArea = new JTextArea();
61. add(new JScrollPane(textArea), BorderLayout.CENTER);
62. }
63.

64. public static final int DEFAULT_WIDTH = 300;
65. public static final int DEFAULT_HEIGHT = 200;
66.

67. private PasswordChooser dialog = null;
68. private JTextArea textArea;
69.

70. /**
71. * The Connect action pops up the password dialog.
72. */
73.

74. private class ConnectAction implements ActionListener
75. {
76. public void actionPerformed(ActionEvent event)
77. {
78. // if first time, construct dialog
79.

80. if (dialog == null) dialog = new PasswordChooser();
81.

82. // set default values
83. dialog.setUser(new User("yourname", null));
84.

85. // pop up dialog
86. if (dialog.showDialog(DataExchangeFrame.this, "Connect"))
87. {
88. // if accepted, retrieve user input
89. User u = dialog.getUser();
90. textArea.append("user name = " + u.getName() + ", password = "
91. + (new String(u.getPassword())) + "\n");
92. }
93. }

Listing 9–16 DataExchangeTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 471

94. }
95. }
96.

97. /**
98. * A password chooser that is shown inside a dialog
99. */

100. class PasswordChooser extends JPanel
101. {
102. public PasswordChooser()
103. {
104. setLayout(new BorderLayout());
105.

106. // construct a panel with user name and password fields
107.

108. JPanel panel = new JPanel();
109. panel.setLayout(new GridLayout(2, 2));
110. panel.add(new JLabel("User name:"));
111. panel.add(username = new JTextField(""));
112. panel.add(new JLabel("Password:"));
113. panel.add(password = new JPasswordField(""));
114. add(panel, BorderLayout.CENTER);
115.

116. // create Ok and Cancel buttons that terminate the dialog
117.

118. okButton = new JButton("Ok");
119. okButton.addActionListener(new ActionListener()
120. {
121. public void actionPerformed(ActionEvent event)
122. {
123. ok = true;
124. dialog.setVisible(false);
125. }
126. });
127.

128. JButton cancelButton = new JButton("Cancel");
129. cancelButton.addActionListener(new ActionListener()
130. {
131. public void actionPerformed(ActionEvent event)
132. {
133. dialog.setVisible(false);
134. }
135. });
136.

137. // add buttons to southern border
138.

139. JPanel buttonPanel = new JPanel();
140. buttonPanel.add(okButton);
141. buttonPanel.add(cancelButton);
142. add(buttonPanel, BorderLayout.SOUTH);
143. }

Listing 9–16 DataExchangeTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing472

144.

145. /**
146. * Sets the dialog defaults.
147. * @param u the default user information
148. */
149. public void setUser(User u)
150. {
151. username.setText(u.getName());
152. }
153.

154. /**
155. * Gets the dialog entries.
156. * @return a User object whose state represents the dialog entries
157. */
158. public User getUser()
159. {
160. return new User(username.getText(), password.getPassword());
161. }
162.

163. /**
164. * Show the chooser panel in a dialog
165. * @param parent a component in the owner frame or null
166. * @param title the dialog window title
167. */
168. public boolean showDialog(Component parent, String title)
169. {
170. ok = false;
171.

172. // locate the owner frame
173.

174. Frame owner = null;
175. if (parent instanceof Frame) owner = (Frame) parent;
176. else owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);
177.

178. // if first time, or if owner has changed, make new dialog
179.

180. if (dialog == null || dialog.getOwner() != owner)
181. {
182. dialog = new JDialog(owner, true);
183. dialog.add(this);
184. dialog.getRootPane().setDefaultButton(okButton);
185. dialog.pack();
186. }
187.

188. // set title and show dialog
189.

190. dialog.setTitle(title);
191. dialog.setVisible(true);
192. return ok;
193. }

Listing 9–16 DataExchangeTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 473

• Container getAncestorOfClass(Class c, Component comp)
returns the innermost parent container of the given component that belongs to the
given class or one of its subclasses.

194.

195. private JTextField username;
196. private JPasswordField password;
197. private JButton okButton;
198. private boolean ok;
199. private JDialog dialog;
200. }
201.

202. /**
203. * A user has a name and password. For security reasons, the password is stored as a char[],
204. * not a String.
205. */
206. class User
207. {
208. public User(String aName, char[] aPassword)
209. {
210. name = aName;
211. password = aPassword;
212. }
213.

214. public String getName()
215. {
216. return name;
217. }
218.

219. public char[] getPassword()
220. {
221. return password;
222. }
223.

224. public void setName(String aName)
225. {
226. name = aName;
227. }
228.

229. public void setPassword(char[] aPassword)
230. {
231. password = aPassword;
232. }
233.

234. private String name;
235. private char[] password;
236. }

javax.swing.SwingUtilities 1.2

Listing 9–16 DataExchangeTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing474

• JRootPane getRootPane()
gets the root pane enclosing this component, or null if this component does not
have an ancestor with a root pane.

• void setDefaultButton(JButton button)
sets the default button for this root pane. To deactivate the default button, call this
method with a null parameter.

• boolean isDefaultButton()
returns true if this button is the default button of its root pane.

File Dialogs
When you write an application, you often want to be able to open and save files. A
good file dialog box that shows files and directories and lets the user navigate the file
system is hard to write, and you definitely don’t want to reinvent that wheel. Fortu-
nately, Swing provides a JFileChooser class that allows you to display a file dialog box
similar to the one that most native applications use. JFileChooser dialogs are always
modal. Note that the JFileChooser class is not a subclass of JDialog. Instead of calling set-
Visible(true), you call showOpenDialog to display a dialog for opening a file or you call
showSaveDialog to display a dialog for saving a file. The button for accepting a file is then
automatically labeled Open or Save. You can also supply your own button label with
the showDialog method. Figure 9–40 shows an example of the file chooser dialog box.

Figure 9–40 File chooser dialog box

javax.swing.JComponent 1.2

javax.swing.JRootPane 1.2

javax.swing.JButton 1.2

Chapter 9. User Interface Components with Swing

Dialog Boxes 475

Here are the steps needed to put up a file dialog box and recover what the user chooses
from the box:

1. Make a JFileChooser object. Unlike the constructor for the JDialog class, you do not sup-
ply the parent component. This allows you to reuse a file chooser dialog with multiple
frames.
For example:

JFileChooser chooser = new JFileChooser();

TIP: Reusing a file chooser object is a good idea because the JFileChooser constructor can
be quite slow, especially on Windows if the user has many mapped network drives.

2. Set the directory by calling the setCurrentDirectory method.
For example, to use the current working directory

chooser.setCurrentDirectory(new File("."));

you need to supply a File object. File objects are explained in detail in Chapter 12.
All you need to know for now is that the constructor File(String filename) turns a file
or directory name into a File object.

3. If you have a default file name that you expect the user to choose, supply it with the
setSelectedFile method:

chooser.setSelectedFile(new File(filename));

4. To enable the user to select multiple files in the dialog, call the setMultiSelectionEnabled
method. This is, of course, entirely optional and not all that common.

chooser.setMultiSelectionEnabled(true);

5. If you want to restrict the display of files in the dialog to those of a particular type
(for example, all files with extension .gif), then you need to set a file filter. We discuss
file filters later in this section.

6. By default, a user can select only files with a file chooser. If you want the user to select
directories, use the setFileSelectionMode method. Call it with JFileChooser.FILES_ONLY (the
default), JFileChooser.DIRECTORIES_ONLY, or JFileChooser.FILES_AND_DIRECTORIES.

7. Show the dialog box by calling the showOpenDialog or showSaveDialog method. You must
supply the parent component in these calls:

int result = chooser.showOpenDialog(parent);

or
int result = chooser.showSaveDialog(parent);

The only difference between these calls is the label of the “approve button,” the but-
ton that the user clicks to finish the file selection. You can also call the showDialog
method and pass an explicit text for the approve button:

int result = chooser.showDialog(parent, "Select");

These calls return only when the user has approved, canceled, or dismissed the
file dialog. The return value is JFileChooser.APPROVE_OPTION, JFileChooser.CANCEL_OPTION, or
JFileChooser.ERROR_OPTION

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing476

8. You get the selected file or files with the getSelectedFile() or getSelectedFiles() method.
These methods return either a single File object or an array of File objects. If you just
need the name of the file object, call its getPath method. For example:

String filename = chooser.getSelectedFile().getPath();

For the most part, these steps are simple. The major difficulty with using a file dialog is to
specify a subset of files from which the user should choose. For example, suppose the user
should choose a GIF image file. Then, the file chooser should only display files with exten-
sion .gif. It should also give the user some kind of feedback that the displayed files are of
a particular category, such as “GIF Images.” But the situation can be more complex. If the
user should choose a JPEG image file, then the extension can be either .jpg or .jpeg. Rather
than coming up with a mechanism to codify these complexities, the designers of the file
chooser supply a more elegant mechanism: to restrict the displayed files, you supply an
object that extends the abstract class javax.swing.filechooser.FileFilter. The file chooser
passes each file to the file filter and displays only the files that the file filter accepts.

At the time of this writing, two such subclasses are supplied: the default filter that
accepts all files, and a filter that accepts all files with a given extension. Moreover, it is
easy to write ad hoc file filters. You simply implement the two abstract methods of the
FileFilter superclass:

public boolean accept(File f);
public String getDescription();

The first method tests whether a file should be accepted. The second method returns a
description of the file type that can be displayed in the file chooser dialog.

NOTE: An unrelated FileFilter interface in the java.io package has a single method, boolean
accept(File f). It is used in the listFiles method of the File class to list files in a directory.
We do not know why the designers of Swing didn’t extend this interface—perhaps the Java
class library has now become so complex that even the programmers at Sun are no longer
aware of all the standard classes and interfaces.

You will need to resolve the name conflict between these two identically named types if you
import both the java.io and the javax.swing.filechooser package. The simplest remedy is to
import javax.swing.filechooser.FileFilter, not javax.swing.filechooser.*.

Once you have a file filter object, you use the setFileFilter method of the JFileChooser class
to install it into the file chooser object:

chooser.setFileFilter(new FileNameExtensionFilter("Image files", "gif", "jpg");

You can install multiple filters to the file chooser by calling
chooser.addChoosableFileFilter(filter1);
chooser.addChoosableFileFilter(filter2);
. . .

The user selects a filter from the combo box at the bottom of the file dialog. By default,
the “All files” filter is always present in the combo box. This is a good idea, just in case a
user of your program needs to select a file with a nonstandard extension. However, if
you want to suppress the “All files” filter, call

chooser.setAcceptAllFileFilterUsed(false)

Chapter 9. User Interface Components with Swing

Dialog Boxes 477

CAUTION: If you reuse a single file chooser for loading and saving different file types, call

chooser.resetChoosableFilters()

to clear any old file filters before adding new ones.

Finally, you can customize the file chooser by providing special icons and file descrip-
tions for each file that the file chooser displays. You do this by supplying an object of a
class extending the FileView class in the javax.swing.filechooser package. This is definitely
an advanced technique. Normally, you don't need to supply a file view—the pluggable
look and feel supplies one for you. But if you want to show different icons for special
file types, you can install your own file view. You need to extend the FileView class and
implement five methods:

Icon getIcon(File f);
String getName(File f);
String getDescription(File f);
String getTypeDescription(File f);
Boolean isTraversable(File f);

Then you use the setFileView method to install your file view into the file chooser.

The file chooser calls your methods for each file or directory that it wants to display. If
your method returns null for the icon, name, or description, the file chooser then con-
sults the default file view of the look and feel. That is good, because it means you need
to deal only with the file types for which you want to do something different.

The file chooser calls the isTraversable method to decide whether to open a directory
when a user clicks on it. Note that this method returns a Boolean object, not a boolean
value! This seems weird, but it is actually convenient—if you aren't interested in deviat-
ing from the default file view, just return null. The file chooser will then consult the
default file view. In other words, the method returns a Boolean to let you choose among
three options: true (Boolean.TRUE), false (Boolean.FALSE), and don't care (null).

The example program contains a simple file view class. That class shows a particular
icon whenever a file matches a file filter. We use it to display a palette icon for all image
files.

class FileIconView extends FileView
{
 public FileIconView(FileFilter aFilter, Icon anIcon)
 {
 filter = aFilter;
 icon = anIcon;
 }

 public Icon getIcon(File f)
 {
 if (!f.isDirectory() && filter.accept(f))
 return icon;
 else return null;
 }

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing478

 private FileFilter filter;
 private Icon icon;
}

You install this file view into your file chooser with the setFileView method:
chooser.setFileView(new FileIconView(filter,
 new ImageIcon("palette.gif")));

The file chooser will then show the palette icon next to all files that pass the filter and
use the default file view to show all other files. Naturally, we use the same filter that we
set in the file chooser.

TIP: You can find a more useful ExampleFileView class in the demo/jfc/FileChooserDemo directory
of the JDK. That class lets you associate icons and descriptions with arbitrary extensions.

Finally, you can customize a file dialog by adding an accessory component. For example,
Figure 9–41 shows a preview accessory next to the file list. This accessory displays a
thumbnail view of the currently selected file.

Figure 9–41 A file dialog with a preview accessory

An accessory can be any Swing component. In our case, we extend the JLabel class and
set its icon to a scaled copy of the graphics image:

class ImagePreviewer extends JLabel
{
 public ImagePreviewer(JFileChooser chooser)
 {
 setPreferredSize(new Dimension(100, 100));
 setBorder(BorderFactory.createEtchedBorder());
 }

 public void loadImage(File f)

Chapter 9. User Interface Components with Swing

Dialog Boxes 479

 {
 ImageIcon icon = new ImageIcon(f.getPath());
 if(icon.getIconWidth() > getWidth())
 icon = new ImageIcon(icon.getImage().getScaledInstance(
 getWidth(), -1, Image.SCALE_DEFAULT));
 setIcon(icon);
 repaint();
 }
}

There is just one challenge. We want to update the preview image whenever the user
selects a different file. The file chooser uses the “JavaBeans” mechanism of notifying
interested listeners whenever one of its properties changes. The selected file is a prop-
erty that you can monitor by installing a PropertyChangeListener. We discuss this mecha-
nism in greater detail in Chapter 8 of Volume II. Here is the code that you need to trap
the notifications:

chooser.addPropertyChangeListener(new
 PropertyChangeListener()
 {
 public void propertyChange(PropertyChangeEvent event)
 {
 if (event.getPropertyName() == JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
 {
 File newFile = (File) event.getNewValue()
 // update the accessory

 . . .
 }
 }
});

In our example program, we add this code to the ImagePreviewer constructor.

Listing 9–17 contains a modification of the ImageViewer program from Chapter 2, in which
the file chooser has been enhanced by a custom file view and a preview accessory.

Listing 9–17 FileChooserTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.beans.*;
4. import java.util.*;
5. import java.io.*;
6. import javax.swing.*;
7. import javax.swing.filechooser.*;
8. import javax.swing.filechooser.FileFilter;
9.

10. /**
11. * @version 1.23 2007-06-12
12. * @author Cay Horstmann
13. */

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing480

14. public class FileChooserTest
15. {
16. public static void main(String[] args)
17. {
18. EventQueue.invokeLater(new Runnable()
19. {
20. public void run()
21. {
22. ImageViewerFrame frame = new ImageViewerFrame();
23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24. frame.setVisible(true);
25. }
26. });
27. }
28. }
29.

30. /**
31. * A frame that has a menu for loading an image and a display area for the loaded image.
32. */
33. class ImageViewerFrame extends JFrame
34. {
35. public ImageViewerFrame()
36. {
37. setTitle("FileChooserTest");
38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
39.

40. // set up menu bar
41. JMenuBar menuBar = new JMenuBar();
42. setJMenuBar(menuBar);
43.

44. JMenu menu = new JMenu("File");
45. menuBar.add(menu);
46.

47. JMenuItem openItem = new JMenuItem("Open");
48. menu.add(openItem);
49. openItem.addActionListener(new FileOpenListener());
50.

51. JMenuItem exitItem = new JMenuItem("Exit");
52. menu.add(exitItem);
53. exitItem.addActionListener(new ActionListener()
54. {
55. public void actionPerformed(ActionEvent event)
56. {
57. System.exit(0);
58. }
59. });
60.

61. // use a label to display the images
62. label = new JLabel();
63. add(label);

Listing 9–17 FileChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 481

64.

65. // set up file chooser
66. chooser = new JFileChooser();
67.

68. // accept all image files ending with .jpg, .jpeg, .gif
69. /*
70. final ExtensionFileFilter filter = new ExtensionFileFilter();
71. filter.addExtension("jpg");
72. filter.addExtension("jpeg");
73. filter.addExtension("gif");
74. filter.setDescription("Image files");
75. */
76. FileNameExtensionFilter filter = new FileNameExtensionFilter(
77. "Image files", "jpg", "jpeg", "gif");
78. chooser.setFileFilter(filter);
79.

80. chooser.setAccessory(new ImagePreviewer(chooser));
81.

82. chooser.setFileView(new FileIconView(filter, new ImageIcon("palette.gif")));
83. }
84.

85. /**
86. * This is the listener for the File->Open menu item.
87. */
88. private class FileOpenListener implements ActionListener
89. {
90. public void actionPerformed(ActionEvent event)
91. {
92. chooser.setCurrentDirectory(new File("."));
93.

94. // show file chooser dialog
95. int result = chooser.showOpenDialog(ImageViewerFrame.this);
96.

97. // if image file accepted, set it as icon of the label
98. if (result == JFileChooser.APPROVE_OPTION)
99. {

100. String name = chooser.getSelectedFile().getPath();
101. label.setIcon(new ImageIcon(name));
102. }
103. }
104. }
105.

106. public static final int DEFAULT_WIDTH = 300;
107. public static final int DEFAULT_HEIGHT = 400;
108.

109. private JLabel label;
110. private JFileChooser chooser;
111. }
112.

Listing 9–17 FileChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing482

113. /**
114. * A file view that displays an icon for all files that match a file filter.
115. */
116. class FileIconView extends FileView
117. {
118. /**
119. * Constructs a FileIconView.
120. * @param aFilter a file filter--all files that this filter accepts will be shown with the
121. * icon. @param anIcon--the icon shown with all accepted files.
122. */
123. public FileIconView(FileFilter aFilter, Icon anIcon)
124. {
125. filter = aFilter;
126. icon = anIcon;
127. }
128.

129. public Icon getIcon(File f)
130. {
131. if (!f.isDirectory() && filter.accept(f)) return icon;
132. else return null;
133. }
134.

135. private FileFilter filter;
136. private Icon icon;
137. }
138.

139. /**
140. * A file chooser accessory that previews images.
141. */
142. class ImagePreviewer extends JLabel
143. {
144. /**
145. * Constructs an ImagePreviewer.
146. * @param chooser the file chooser whose property changes trigger an image change in this
147. * previewer
148. */
149. public ImagePreviewer(JFileChooser chooser)
150. {
151. setPreferredSize(new Dimension(100, 100));
152. setBorder(BorderFactory.createEtchedBorder());
153.

154. chooser.addPropertyChangeListener(new PropertyChangeListener()
155. {
156. public void propertyChange(PropertyChangeEvent event)
157. {
158. if (event.getPropertyName() == JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
159. {
160. // the user has selected a new file
161. File f = (File) event.getNewValue();
162. if (f == null)

Listing 9–17 FileChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 483

• JFileChooser()
creates a file chooser dialog box that can be used for multiple frames.

• void setCurrentDirectory(File dir)
sets the initial directory for the file dialog box.

• void setSelectedFile(File file)
• void setSelectedFiles(File[] file)

sets the default file choice for the file dialog box.
• void setMultiSelectionEnabled(boolean b)

sets or clears multiple selection mode.
• void setFileSelectionMode(int mode)

lets the user select files only (the default), directories only, or both files and
directories. The mode parameter is one of JFileChooser.FILES_ONLY,
JFileChooser.DIRECTORIES_ONLY, and JFileChooser.FILES_AND_DIRECTORIES.

• int showOpenDialog(Component parent)
• int showSaveDialog(Component parent)
• int showDialog(Component parent, String approveButtonText)

shows a dialog in which the approve button is labeled “Open”, “Save”, or with
the approveButtonText string. Returns APPROVE_OPTION, CANCEL_OPTION (if the user selected
the cancel button or dismissed the dialog), or ERROR_OPTION (if an error occurred).

• File getSelectedFile()
• File[] getSelectedFiles()

gets the file or files that the user selected (or returns null if the user didn’t select
any file).

163. {
164. setIcon(null);
165. return;
166. }
167.

168. // read the image into an icon
169. ImageIcon icon = new ImageIcon(f.getPath());
170.

171. // if the icon is too large to fit, scale it
172. if (icon.getIconWidth() > getWidth()) icon = new ImageIcon(icon.getImage()
173. .getScaledInstance(getWidth(), -1, Image.SCALE_DEFAULT));
174.

175. setIcon(icon);
176. }
177. }
178. });
179. }
180. }

javax.swing.JFileChooser 1.2

Listing 9–17 FileChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing484

• void setFileFilter(FileFilter filter)
sets the file mask for the file dialog box. All files for which filter.accept returns true
will be displayed. Also adds the filter to the list of choosable filters.

• void addChoosableFileFilter(FileFilter filter)
adds a file filter to the list of choosable filters.

• void setAcceptAllFileFilterUsed(boolean b)
includes or suppresses an “All files” filter in the filter combo box.

• void resetChoosableFileFilters()
clears the list of choosable filters. Only the “All files” filter remains unless it is
explicitly suppressed.

• void setFileView(FileView view)
sets a file view to provide information about the files that the file chooser
displays.

• void setAccessory(JComponent component)
sets an accessory component.

• boolean accept(File f)
returns true if the file chooser should display this file.

• String getDescription()
returns a description of this file filter, for example, "Image files (*.gif,*.jpeg)".

• FileNameExtensionFilter(String description, String ... extensions)
constructs a file filter with the given descriptions that accepts all directories and
all files whose names end in a period followed by one of the given extension
strings.

• String getName(File f)
returns the name of the file f, or null. Normally, this method simply returns
f.getName().

• String getDescription(File f)
returns a humanly readable description of the file f, or null. For example, if f is an
HTML document, this method might return its title.

• String getTypeDescription(File f)
returns a humanly readable description of the type of the file f, or null. For
example, if f is an HTML document, this method might return a string "Hypertext
document".

• Icon getIcon(File f)
returns an icon for the file f, or null. For example, if f is a JPEG file, this method
might return a thumbnail icon.

javax.swing.filechooser.FileFilter 1.2

javax.swing.filechooser.FileNameExtensionFilter 6

javax.swing.filechooser.FileView 1.2

Chapter 9. User Interface Components with Swing

Dialog Boxes 485

• Boolean isTraversable(File f)
returns Boolean.TRUE if f is a directory that the user can open. This method might
return false if a directory is conceptually a compound document. Like all FileView
methods, this method can return null to signify that the file chooser should consult
the default view instead.

Color Choosers
As you saw in the preceding section, a high-quality file chooser is an intricate user
interface component that you definitely do not want to implement yourself. Many
user interface toolkits provide other common dialogs: to choose a date/time, currency
value, font, color, and so on. The benefit is twofold. Programmers can simply use a
high-quality implementation rather than rolling their own. And users have a common
experience for these selections.

At this point, Swing provides only one additional chooser, the JColorChooser (see Figures
9–42 through 9–44). You use it to let users pick a color value. Like the JFileChooser class, the
color chooser is a component, not a dialog, but it contains convenience methods to create
dialogs that contain a color chooser component.

Here is how you show a modal dialog with a color chooser:
Color selectedColor = JColorChooser.showDialog(parent,title, initialColor);

Alternatively, you can display a modeless color chooser dialog. You supply the following:

• A parent component
• The title of the dialog
• A flag to select either a modal or a modeless dialog
• A color chooser
• Listeners for the “OK” and “Cancel” buttons (or null if you don’t want a listener)

Figure 9–42 The Swatches pane of a color chooser

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing486

Figure 9–43 The HSB pane of a color chooser

Figure 9–44 The RGB pane of a color chooser

Here is how you make a modeless dialog that sets the background color when the user
clicks the OK button:

chooser = new JColorChooser();
dialog = JColorChooser.createDialog(
 parent,
 "Background Color",

Chapter 9. User Interface Components with Swing

Dialog Boxes 487

 false /* not modal */,
 chooser,
 new ActionListener() // OK button listener
 {
 public void actionPerformed(ActionEvent event)
 {
 setBackground(chooser.getColor());
 }
 },
 null /* no Cancel button listener */);

You can do even better than that and give the user immediate feedback of the color
selection. To monitor the color selections, you need to obtain the selection model of the
chooser and add a change listener:

chooser.getSelectionModel().addChangeListener(new
 ChangeListener()
 {
 public void stateChanged(ChangeEvent event)
 {
 do something with chooser.getColor();
 }
 });

In this case, there is no benefit to the OK and Cancel buttons that the color chooser dia-
log provides. You can just add the color chooser component directly into a modeless
dialog:

dialog = new JDialog(parent, false /* not modal */);
dialog.add(chooser);
dialog.pack();

The program in Listing 9–18 shows the three types of dialogs. If you click on the Modal
button, you must select a color before you can do anything else. If you click on the
Modeless button, you get a modeless dialog, but the color change only happens when
you click the OK button on the dialog. If you click the Immediate button, you get a
modeless dialog without buttons. As soon as you pick a different color in the dialog, the
background color of the panel is updated.

Listing 9–18 ColorChooserTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4. import javax.swing.event.*;
5.

6. /**
7. * @version 1.03 2007-06-12
8. * @author Cay Horstmann
9. */

10. public class ColorChooserTest
11. {

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing488

12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. ColorChooserFrame frame = new ColorChooserFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A frame with a color chooser panel
28. */
29. class ColorChooserFrame extends JFrame
30. {
31. public ColorChooserFrame()
32. {
33. setTitle("ColorChooserTest");
34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
35.

36. // add color chooser panel to frame
37.

38. ColorChooserPanel panel = new ColorChooserPanel();
39. add(panel);
40. }
41.

42. public static final int DEFAULT_WIDTH = 300;
43. public static final int DEFAULT_HEIGHT = 200;
44. }
45.

46. /**
47. * A panel with buttons to pop up three types of color choosers
48. */
49. class ColorChooserPanel extends JPanel
50. {
51. public ColorChooserPanel()
52. {
53. JButton modalButton = new JButton("Modal");
54. modalButton.addActionListener(new ModalListener());
55. add(modalButton);
56.

57. JButton modelessButton = new JButton("Modeless");
58. modelessButton.addActionListener(new ModelessListener());
59. add(modelessButton);
60.

Listing 9–18 ColorChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 489

61. JButton immediateButton = new JButton("Immediate");
62. immediateButton.addActionListener(new ImmediateListener());
63. add(immediateButton);
64. }
65.

66. /**
67. * This listener pops up a modal color chooser
68. */
69. private class ModalListener implements ActionListener
70. {
71. public void actionPerformed(ActionEvent event)
72. {
73. Color defaultColor = getBackground();
74. Color selected = JColorChooser.showDialog(ColorChooserPanel.this, "Set background",
75. defaultColor);
76. if (selected != null) setBackground(selected);
77. }
78. }
79.

80. /**
81. * This listener pops up a modeless color chooser. The panel color is changed when the user
82. * clicks the Ok button.
83. */
84. private class ModelessListener implements ActionListener
85. {
86. public ModelessListener()
87. {
88. chooser = new JColorChooser();
89. dialog = JColorChooser.createDialog(ColorChooserPanel.this, "Background Color",
90. false /* not modal */, chooser, new ActionListener() // OK
91. // button
92. // listener
93. {
94. public void actionPerformed(ActionEvent event)
95. {
96. setBackground(chooser.getColor());
97. }
98. }, null /* no Cancel button listener */);
99. }

100.

101. public void actionPerformed(ActionEvent event)
102. {
103. chooser.setColor(getBackground());
104. dialog.setVisible(true);
105. }
106.

107. private JDialog dialog;
108. private JColorChooser chooser;
109. }
110.

Listing 9–18 ColorChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Chapter 9 ■ User Interface Components with Swing490

• JColorChooser()
constructs a color chooser with an initial color of white.

• Color getColor()
• void setColor(Color c)

gets and sets the current color of this color chooser.
• static Color showDialog(Component parent, String title, Color initialColor)

shows a modal dialog that contains a color chooser.

111. /**
112. * This listener pops up a modeless color chooser. The panel color is changed immediately
113. * when the user picks a new color.
114. */
115. private class ImmediateListener implements ActionListener
116. {
117. public ImmediateListener()
118. {
119. chooser = new JColorChooser();
120. chooser.getSelectionModel().addChangeListener(new ChangeListener()
121. {
122. public void stateChanged(ChangeEvent event)
123. {
124. setBackground(chooser.getColor());
125. }
126. });
127.

128. dialog = new JDialog((Frame) null, false /* not modal */);
129. dialog.add(chooser);
130. dialog.pack();
131. }
132.

133. public void actionPerformed(ActionEvent event)
134. {
135. chooser.setColor(getBackground());
136. dialog.setVisible(true);
137. }
138.

139. private JDialog dialog;
140. private JColorChooser chooser;
141. }
142. }

javax.swing.JColorChooser 1.2

Parameters: parent The component over which to pop up the dialog

title The title for the dialog box frame

initialColor The initial color to show in the color chooser

Listing 9–18 ColorChooserTest.java (continued)

Chapter 9. User Interface Components with Swing

Dialog Boxes 491

• static JDialog createDialog(Component parent, String title, boolean modal, JColorChooser
chooser, ActionListener okListener, ActionListener cancelListener)
creates a dialog box that contains a color chooser.

This ends our discussion of user interface components. The material in Chapters 7
through 9 showed you how to implement simple GUIs in Swing. Turn to Volume II for
more advanced Swing components and sophisticated graphics techniques.

Parameters: parent The component over which to pop up the
dialog

title The title for the dialog box frame

modal true if this call should block until the dialog
is closed

chooser The color chooser to add to the dialog

okListener,
cancelListener

The listeners of the OK and Cancel buttons

Chapter 9. User Interface Components with Swing

Chapter 9. User Interface Components with Swing

ChapterChapter

493

DEPLOYING
APPLICATIONS
AND APPLETS

▼ JAR FILES

▼ JAVA WEB START

▼ APPLETS

▼ STORAGE OF APPLICATION PREFERENCES

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets494

At this point, you should be comfortable with using most of the features of the
Java programming language, and you have had a pretty thorough introduction to basic
graphics programming in Java. Now that you are ready to create applications for your
users, you will want to know how to package them for deployment on your users’ com-
puters. The traditional deployment choice—which was responsible for the unbelievable
hype during the first few years of Java’s life— is to use applets. An applet is a special kind of
Java program that a Java-enabled browser can download from the Internet and then run.
The hopes were that users would be freed from the hassles of installing software and that
they could access their software from any Java-enabled computer or device with an Internet
connection.
For a number of reasons, applets never quite lived up to these expectations. Therefore,
we start this chapter with instructions for packaging applications. We then turn to the
Java Web Start mechanism, an alternative approach for Internet-based application deliv-
ery, which fixes some of the problems of applets. Finally, we cover applets and show
you in which circumstances you still want to use them.

We also discuss how your applications can store configuration information and user
preferences.

JAR Files
When you package your application, you want to give your users a single file, not a
directory structure filled with class files. Java Archive (JAR) files were designed for
this purpose. A JAR file can contain both class files and other file types such as image
and sound files. Moreover, JAR files are compressed, using the familiar ZIP compres-
sion format.

TIP: Java SE 5.0 introduced a new compression scheme, called “pack200”, that is
specifically tuned to compress class files more efficiently than the generic ZIP com-
pression algorithm. Sun claims a compression rate of close to 90% for class files. See
http://java.sun.com/javase/6/docs/technotes/guide/deployment/deployment-guide/pack200.html
for more information.

You use the jar tool to make JAR files. (In the default JDK installation, it’s in the jdk/bin
directory.) The most common command to make a new JAR file uses the following
syntax:

jar cvf JARFileName File1 File2 . . .

For example:
jar cvf CalculatorClasses.jar *.class icon.gif

In general, the jar command has the following format:
jar options File1 File2 . . .

Table 10–1 lists all the options for the jar program. They are similar to the options of the
UNIX tar command.

You can package application programs, program components (sometimes called
“beans”—see Chapter 8 of Volume II), and code libraries into JAR files. For example, the
runtime library of the JDK is contained in a very large file rt.jar.

Chapter 10. Deploying Applications and Applets

JAR Files 495

The Manifest
In addition to class files, images, and other resources, each JAR file contains a manifest
file that describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF subdirectory of
the JAR file. The minimum legal manifest is quite boring—just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are grouped into
sections. The first section in the manifest is called the main section. It applies to the whole
JAR file. Subsequent entries can specify properties of named entities such as individual
files, packages, or URLs. Those entries must begin with a Name entry. Sections are sepa-
rated by blank lines. For example:

Manifest-Version: 1.0
lines describing this archive

Name: Woozle.class
lines describing this file

Table 10–1 jar Program Options

Option Description

c Creates a new or empty archive and adds files to it. If any of the specified file names
are directories, the jar program processes them recursively.

C Temporarily changes the directory. For example,

jar cvf JARFileName.jar -C classes *.class

changes to the classes subdirectory to add class files.

e Creates an entry point in the manifest (see “Executable JAR Files” on page 496).

f Specifies the JAR file name as the second command-line argument. If this param-
eter is missing, jar will write the result to standard output (when creating a JAR
file) or read it from standard input (when extracting or tabulating a JAR file).

i Creates an index file (for speeding up lookups in a large archive).

m Adds a manifest to the JAR file. A manifest is a description of the archive contents
and origin. Every archive has a default manifest, but you can supply your own if
you want to authenticate the contents of the archive.

M Does not create a manifest file for the entries.

t Displays the table of contents.

u Updates an existing JAR file.

v Generates verbose output.

x Extracts files. If you supply one or more file names, only those files are extracted.
Otherwise, all files are extracted.

0 Stores without ZIP compression.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets496

Name: com/mycompany/mypkg/
lines describing this package

To edit the manifest, place the lines that you want to add to the manifest into a text file.
Then run

jar cfm JARFileName ManifestFileName . . .

For example, to make a new JAR file with a manifest, run
jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To update the manifest of an existing JAR file, place the additions into a text file and use
a command such as

jar ufm MyArchive.jar manifest-additions.mf

NOTE: See http://java.sun.com/javase/6/docs/technotes/guides/jar for more information on
the JAR and manifest file formats.

Executable JAR Files
As of Java SE 6, you can use the e option of the jar command to specify the entry point of
your program—the class that you would normally specify when invoking the java pro-
gram launcher:

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files to add

Users can now simply start the program as
java -jar MyProgram.jar

In older versions of the JDK, you had to specify the main class of your program, follow-
ing this procedure:

Main-Class: com.mycompany.mypkg.MainAppClass

Do not add a .class extension to the main class name. Then run the jar command:
jar cvfm MyProgram.jar mainclass.mf files to add

CAUTION: The last line in the manifest must end with a newline character. Otherwise, the
manifest will not be read correctly. It is a common error to produce a text file containing just
the Main-Class line without a line terminator.

Depending on the operating system configuration, you may be able to launch the appli-
cation by double-clicking on the JAR file icon. Here are behaviors for various operating
systems:

• On Windows, the Java runtime installer creates a file association for the “.jar” exten-
sion that launches the file with the javaw -jar command. (Unlike the java command,
the javaw command doesn’t open a shell window.)

• On Solaris, the operating system recognizes the “magic number” of a JAR file and
starts it with the java -jar command.

• On Mac OS X, the operating system recognizes the “.jar” file extension and executes
the Java program when you double-click on a JAR file.

Chapter 10. Deploying Applications and Applets

JAR Files 497

However, a Java program in a JAR file does not have the same feel as a native application.
On Windows, you can use third-party wrapper utilities that turn JAR files into Windows
executables. A wrapper is a Windows program with the familiar .exe extension that
locates and launches the Java virtual machine (JVM), or tells the user what to do when no
JVM is found. There are a number of commercial and open source products, such as
JSmooth (http://jsmooth.sourceforge.net) and Launch4J (http://launch4j.sourceforge.net). The
open source installer generator IzPack (http://izpack.org) also contains a native launcher.
For more information on this topic, see http://www.javalobby.org/articles/java2exe.

On the Macintosh, the situation is a bit easier. The application package utility MRJAppBuilder
lets you turn a JAR file into a first-class Mac application. For more information, see http://
java.sun.com/developer/technicalArticles/JavaLP/JavaToMac3.

Resources
Classes that are used in both applets and applications often use associated data files,
such as

• Image and sound files;
• Text files with message strings and button labels; or
• Files with binary data, for example, to describe the layout of a map.

In Java, such an associated file is called a resource.

NOTE: In Windows, the term “resource” has a more specialized meaning. Windows
resources also consist of images, button labels, and so on, but they are attached to the
executable file and accessed by a standard programming interface. In contrast, Java
resources are stored as separate files, not as part of class files. It is up to each program to
access and interpret the resource data.

For example, consider a class, AboutPanel, that displays a message such as the one in
Figure 10–1.

Figure 10–1 Displaying a resource from a JAR file

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets498

Of course, the book title and copyright year in the panel will change for the next edition
of the book. To make it easy to track this change, we want to put the text inside a file and
not hardcode it as a string.

But where should you put a file such as about.txt? Of course, it would be convenient if
you simply placed it with the rest of the program files inside the JAR file.

The class loader knows how to search for class files until it has located them somewhere
on the class path, or in an archive, or on a web server. The resource mechanism gives
you the same convenience for files that aren’t class files. Here are the necessary steps:

1. Get the Class object of the class that has a resource, for example, AboutPanel.class.
2. If the resource is an image or audio file, call getResource(filename) to get the resource

location as a URL. Then read it with the getImage or getAudioClip method.
3. For resources other than images or audio files, use the getResourceAsStream method to

read the data in the file.

The point is that the class loader remembers how to locate the class and it can then
search for the associated resource in the same location.

For example, to make an icon with the image file about.gif, do the following:
URL url = ResourceTest.class.getResource("about.gif");
Image img = Toolkit.getDefaultToolkit().getImage(url);

That means “locate the about.gif file at the same place where you find the ResourceTest
class.”

To read in the file about.txt, you use these commands:
InputStream stream = ResourceTest.class.getResourceAsStream("about.txt");
Scanner in = new Scanner(stream);

Instead of placing a resource file inside the same directory as the class file, you can place
it in a subdirectory. You can use a hierarchical resource name such as

data/text/about.txt

This is a relative resource name, and it is interpreted relative to the package of the class
that is loading the resource. Note that you must always use the / separator, regardless
of the directory separator on the system that actually stores the resource files. For
example, on the Windows file system, the resource loader automatically translates /
to \ separators.

A resource name starting with a / is called an absolute resource name. It is located in the
same way that a class inside a package would be located. For example, a resource

/corejava/title.txt

is located in the corejava directory (which may be a subdirectory of the class path, inside
a JAR file, or, for applets, on a web server).

Automating the loading of files is all that the resource loading feature does. There are no
standard methods for interpreting the contents of a resource file. Each program must
have its own way of interpreting the contents of its resource files.

Another common application of resources is the internationalization of programs.
Language-dependent strings, such as messages and user interface labels, are stored in
resource files, with one file for each language. The internationalization API, which is

Chapter 10. Deploying Applications and Applets

JAR Files 499

discussed in Chapter 5 of Volume II, supports a standard method for organizing and
accessing these localization files.

Listing 10–1 shows the source code of the program that demonstrates resource load-
ing. Compile, build a JAR file, and execute it:

javac ResourceTest.java
jar cvfm ResourceTest.jar ResourceTest.mf *.class *.gif *.txt
java -jar ResourceTest.jar

Move the JAR file to a different directory and run it again to check that the program
reads the resource files from the JAR file, not the current directory.

Listing 10–1 ResourceTest.java

1. import java.awt.*;
2. import java.io.*;
3. import java.net.*;
4. import java.util.*;
5. import javax.swing.*;
6.

7. /**
8. * @version 1.4 2007-04-30
9. * @author Cay Horstmann

10. */
11. public class ResourceTest
12. {
13. public static void main(String[] args)
14. {
15. EventQueue.invokeLater(new Runnable()
16. {
17. public void run()
18. {
19. ResourceTestFrame frame = new ResourceTestFrame();
20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21. frame.setVisible(true);
22. }
23. });
24. }
25. }
26.

27. /**
28. * A frame that loads image and text resources.
29. */
30. class ResourceTestFrame extends JFrame
31. {
32. public ResourceTestFrame()
33. {
34. setTitle("ResourceTest");
35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
36. URL aboutURL = getClass().getResource("about.gif");

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets500

• URL getResource(String name) 1.1
• InputStream getResourceAsStream(String name) 1.1

finds the resource in the same place as the class and then returns a URL or input
stream you can use for loading the resource. Returns null if the resource isn’t
found, and so does not throw an exception for an I/O error.

Sealing
We mentioned in Chapter 4 that you can seal a Java language package to ensure that no
further classes can add themselves to it. You would want to seal a package if you use
package-visible classes, methods, and fields in your code. Without sealing, other classes
can place themselves into the same package and thereby gain access to its package-
visible features.

For example, if you seal the package com.mycompany.util, then no class outside the sealed
archive can be defined with the statement

package com.mycompany.util;

To achieve this, you put all classes of the package into a JAR file. By default, packages in
a JAR file are not sealed. You can change that global default by placing the line

Sealed: true

into the main section of the manifest. For each individual package, you can specify
whether you want the package sealed or not, by adding another section to the JAR file
manifest, like this:

Name: com/mycompany/util/
Sealed: true

Name: com/mycompany/misc/
Sealed: false

37. Image img = Toolkit.getDefaultToolkit().getImage(aboutURL);
38. setIconImage(img);
39.

40. JTextArea textArea = new JTextArea();
41. InputStream stream = getClass().getResourceAsStream("about.txt");
42. Scanner in = new Scanner(stream);
43. while (in.hasNext())
44. textArea.append(in.nextLine() + "\n");
45. add(textArea);
46. }
47.

48. public static final int DEFAULT_WIDTH = 300;
49. public static final int DEFAULT_HEIGHT = 300;
50. }

java.lang.Class 1.0

Listing 10–1 ResourceTest.java (continued)

Chapter 10. Deploying Applications and Applets

Java Web Start 501

To seal a package, make a text file with the manifest instructions. Then run the jar command
in the usual way:

jar cvfm MyArchive.jar manifest.mf files to add

Java Web Start
Java Web Start is a technology for delivering applications over the Internet. Java Web
Start applications have the following characteristics:

• They are typically delivered through a browser. Once a Java Web Start application
has been downloaded, it can be started without using a browser.

• They do not live inside a browser window. The application is displayed in its own
frame, outside the browser.

• They do not use the Java implementation of the browser. The browser simply
launches an external application whenever it loads a Java Web Start application
descriptor. That is the same mechanism that is used to launch other helper applica-
tions such as Adobe Acrobat or RealAudio.

• Digitally signed applications can be given arbitrary access rights on the local
machine. Unsigned applications run in a “sandbox,” which prohibits potentially
dangerous operations.

To prepare an application for delivery by Java Web Start, you package it in one or more
JAR files. Then you prepare a descriptor file in Java Network Launch Protocol (JNLP)
format. Place these files on a web server.

You also need to ensure that your web server reports a MIME type of application/x-java-
jnlp-file for files with extension .jnlp. (Browsers use the MIME type to determine which
helper application to launch.) Consult your web server documentation for details.

TIP: To experiment with Java Web Start, install Tomcat from http://jakarta.apache.org/
tomcat. Tomcat is a container for servlets and JSP pages, but it also serves web pages.
It is preconfigured to serve the correct MIME type for JNLP files.

Let’s try out Java Web Start to deliver the calculator application from Chapter 9. Follow
these steps:

1. Compile Calculator.java.
2. Prepare a manifest file Calculator.mf with the line

Main-Class: Calculator

3. Produce a JAR file with the command
jar cvfm Calculator.jar Calculator.mf *.class

4. Prepare the launch file Calculator.jnlp with the following contents:
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://localhost:8080/calculator/" href="Calculator.jnlp">
 <information>
 <title>Calculator Demo Application</title>
 <vendor>Cay S. Horstmann</vendor>
 <description>A Calculator</description>
 <offline-allowed/>

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets502

 </information>
 <resources>
 <j2se version="1.5.0+"/>
 <jar href="Calculator.jar"/>
 </resources>
 <application-desc/>
</jnlp>

(Note that the version number must be 1.5.0, not 5.0. As of Java SE 6, you can use java
instead of j2se for the tag name.)
The launch file format is fairly self-explanatory. For a full specification, see http://
java.sun.com/products/javawebstart/docs/developersguide.html.

5. If you use Tomcat, make a directory tomcat/webapps/calculator, where tomcat is the base
directory of your Tomcat installation. Make a subdirectory tomcat/webapps/calculator/
WEB-INF, and place the following minimal web.xml file inside the WEB-INF subdirectory:

<?xml version="1.0" encoding="utf-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd">
</web-app>

6. Place the JAR file and the launch file on your web server so that the URL matches
the codebase entry in the JNLP file. If you use Tomcat, put them into the tomcat/webapps/
calculator directory.

7. Make sure that your browser has been configured for Java Web Start, by checking
that the application/x-java-jnlp-file MIME type is associated with the javaws applica-
tion. If you installed the JDK, the configuration should be automatic.

8. Start Tomcat.
9. Point your browser to the JNLP file. For example, if you use Tomcat, go to

http://localhost:8080/calculator/Calculator.jnlp.
10. You should see the launch window for Java Web Start (see Figure 10–2).

Figure 10–2 Launching Java Web Start

Chapter 10. Deploying Applications and Applets

Java Web Start 503

11. Soon afterward, the calculator should come up, with a border marking it as a Java
application (see Figure 10–3).

Figure 10–3 The calculator delivered by Java Web Start

12. When you access the JNLP file again, the application is retrieved from the cache.
You can review the cache content by using the Java Plug-in control panel (see Figure
10–4). As of Java SE 5.0, that control panel is used both for applets and Java Web
Start applications. In Windows, look for the Java Plug-in control inside the Win-
dows control panel. Under Linux, run jdk/jre/bin/ControlPanel.

Figure 10–4 The application cache

TIP: If you don’t want to run a web server while you are testing your JNLP configuration, you
can temporarily override the codebase URL in the launch file by running

javaws -codebase file://programDirectory JNLPfile

For example, in UNIX, you can simply issue this command from the directory containing the
JNLP file:

javaws -codebase file://`pwd` WebStartCalculator.jnlp

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets504

Of course, you don’t want to tell your users to launch the cache viewer whenever they
want to run your application again. You can have the installer offer to install desktop
and menu shortcuts. Add these lines to the JNLP file:

<shortcut>
 <desktop/>
 <menu submenu="Accessories"/>
</shortcut>

When the user first downloads the application, a “desktop integration warning” is dis-
played (see Figure 10–5).

Figure 10–5 The desktop integration warning

You should also supply an icon for the menu shortcut and the launch screen. Sun recom-
mends that you supply a 32 × 32 and a 64 × 64 icon. Place the icon files on the web
server, together with the JNLP and JAR files. Add these lines to the information section of
the JNLP file:

<icon href="calc_icon32.png" width="32" height="32" />
<icon href="calc_icon64.png" width="64" height="64" />

Note that these icons are not related to the application icon. If you want the application
to have an icon, you need to add a separate icon image into the JAR file and call the set-
IconImage method on the frame class. (See Listing 10–1 for an example.)

The Sandbox
Whenever code is loaded from a remote site and then executed locally, security becomes
vital. Clicking a single link can launch a Java Web Start application. Visiting a web page
automatically starts all applets on the page. If clicking a link or visiting a web page
could install arbitrary code on the user’s computer, criminals would have an easy time
stealing confidential information, accessing financial data, or taking over users’
machines to send spam.

To ensure that the Java technology cannot be used for nefarious purposes, Java has an
elaborate security model that we discuss in detail in Volume II. A security manager
checks access to all system resources. By default, it only allows those operations that

Chapter 10. Deploying Applications and Applets

Java Web Start 505

are harmless. To allow additional operations, the code must be digitally signed and
the user must approve the signing certificate.

What can remote code do on all platforms? It is always ok to show images and play
sounds, get keystrokes and mouse clicks from the user, and send user input back to the
host from which the code was loaded. That is enough functionality to show facts and
figures or to get user input for placing an order. The restricted execution environment is
often called the “sandbox.” Code that plays in the sandbox cannot alter the user’s sys-
tem or spy on it.
In particular, programs in the sandbox have the following restrictions:
• They can never run any local executable program.
• They cannot read from or write to the local computer’s file system.
• They cannot find out any information about the local computer, except for the Java

version used and a few harmless operating system details. In particular, code in the
sandbox cannot find out the user’s name, e-mail address, and so on.

• Remotely loaded programs cannot communicate with any host other than the server
from which they were downloaded; that server is called the originating host. This
rule is often called “remote code can only phone home.” The rule protects users
from code that might try to spy on intranet resources. (As of Java SE 6, a Java Web
Start application can make other network connections, but the program user must
consent.)

• All pop-up windows carry a warning message.This message is a security feature to
ensure that users do not mistake the window for a local application. The fear is that
an unsuspecting user could visit a web page, be tricked into running remote code,
and then type in a password or credit card number, which can be sent back to the
web server. In early versions of the JDK, that message was very ominous:
“Untrusted Java Applet Window”. Every successive version watered down the
warning a bit—“Unauthenticated Java Applet Window”, then “Warning: Java
Applet Window”. Now it is simply “Java Applet Window” or “Java Application
Window”.

Signed Code
The sandbox restrictions are too restrictive for many situations. For example, on a
corporate intranet, you can certainly imagine a Web Start application or applet wanting
to access local files. It is possible to control in great detail which rights to grant a
particular application; we discuss this in Chapter 9 of Volume II. Of course, an
application can simply request to have all permissions of a desktop application, and
quite a few Java Web Start applications do just that. This is accomplished by adding the
following tags to the JNLP file:

<security>
 <all-permissions/>
</security>

To run outside the sandbox, the JAR files of a Java Web Start application must be digi-
tally signed. A signed JAR file carries with it a certificate that indicates the identity of the
signer. Cryptographic techniques ensure that such a certificate cannot be forged, and
that any effort to tamper with the signed file will be detected.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets506

For example, suppose you receive an application that is produced and digitally signed
by yWorks GmbH, using a certificate issued by Thawte (see Figure 10–6). When you
receive the application, you will be assured of the following:

1. The code is exactly as it was when it was signed it; no third party has tampered with it.
2. The signature really is from yWorks.
3. The certificate really was issued by Thawte. (Java Web Start knows how to check

certificates from Thawte and a few other vendors.)

Unfortunately, that’s all you know. You do not know that the code is inherently safe. In
fact, if you click on the “More Information” link, you are told that the application will
run without the security restrictions normally provided by Java. Should you install and
run the application? That really depends on your trust in yWorks GmbH.

Figure 10–6 A secure certificate

Getting a certificate from one of the supported vendors costs hundreds of dollars per
year. Many developers simply generate their own and use them for code signing. Of
course, Java Web Start has no way of checking the accuracy of these certificates. When
you receive such an application, then you know:

1. The code is exactly as it was when it was signed; no other party has tampered with it.
2. Someone has signed the code, but Java Web Start cannot verify who it was.

Chapter 10. Deploying Applications and Applets

Java Web Start 507

This is quite worthless; anyone could have tampered with the code and then signed it,
claiming to be the author. Nevertheless, Java Web Start will be perfectly happy to present
the certificate for your approval (see Figure 10–7). It is theoretically possible to verify the
certificate through another way, but few users have the technical savvy to do that.

Figure 10–7 An insecure certificate

Of course, many people download and run applications from the Internet every day. If
you find that your users trust your application and your web infrastructure, go ahead and
use a self-signed certificate. (See http://java.sun.com/javase/6/docs/technotes/guides/javaws/devel-
opersguide/development.html for details.) If not, give your users the benefit of safety and stay
within the sandbox. With the JNLP API (which we discuss in the next section), you can
still allow your program to selectively access resources, subject to user approval.

The JNLP API
The JNLP API allows unsigned applications to run in the sandbox and at the same time
access local resources in a secure way. For example, there are services to load and save
files. The application can’t look at the file system and it can’t specify file names. Instead,
a file dialog is popped up, and the program user selects the file. Before the file dialog is
popped up, the program user is alerted and must agree to proceed (see Figure 10–8).
Furthermore, the API doesn’t actually give the program access to a File object. In partic-
ular, the application has no way of finding out the file location. Thus, programmers are
given the tools to implement “file open” and “file save” actions, but as much system
information as possible is hidden from untrusted applications.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets508

Figure 10–8 A Java Web Start security advisory

The API provides the following services:

• Loading and saving files
• Accessing the clipboard
• Printing
• Downloading a file
• Displaying a document in the default browser
• Storing and retrieving persistent configuration information
• Ensuring that only a single instance of an application executes (added in Java SE 5.0)

To access a service, you use the ServiceManager, like this:
FileSaveService service = (FileSaveService) ServiceManager.lookup("javax.jnlp.FileSaveService");

This call throws an UnavailableServiceException if the service is not available.

NOTE: You must include the file javaws.jar in the class path if you want to compile programs
that use the JNLP API. That file is included in the jre/lib subdirectory of the JDK.

We now discuss the most useful JNLP services. To save a file, you provide suggestions
for the initial path name and file extensions for the file dialog, the data to be saved, and
a suggested file name. For example:

service.saveFileDialog(".", new String[] { "txt" }, data, "calc.txt");

The data must be delivered in an InputStream. That can be somewhat tricky to arrange.
The program in Listing 10–2 on page 511 uses the following strategy:

1. It creates a ByteArrayOutputStream to hold the bytes to be saved.
2. It creates a PrintStream that sends its data to the ByteArrayOutputStream.
3. It prints the information to be saved to the PrintStream.
4. It creates a ByteArrayInputStream to read the saved bytes.
5. It passes that stream to the saveFileDialog method.

You will learn more about streams in Chapter 1 of Volume II. For now, you can just gloss
over the details in the sample program.

Chapter 10. Deploying Applications and Applets

Java Web Start 509

To read data from a file, you use the FileOpenService instead. Its openFileDialog receives
suggestions for the initial path name and file extensions for the file dialog and
returns a FileContents object. You can then call the getInputStream and getOutputStream
methods to read and write the file data. If the user didn’t choose a file, then the
openFileDialog method returns null.

FileOpenService service = (FileOpenService) ServiceManager.lookup("javax.jnlp.FileOpenService");
FileContents contents = service.openFileDialog(".", new String[] { "txt" });
if (contents != null)
{
 InputStream in = contents.getInputStream();
 . . .
}

Note that your application does not know the name or location of the file. Con-
versely, if you want to open a specific file, you use the ExtendedService:

ExtendedService service = (ExtendedService) ServiceManager.lookup("javax.jnlp.ExtendedService");
FileContents contents = service.openFile(new File("c:\\autoexec.bat"));
if (contents != null)
{
 OutputStream out = contents.getOutputStream();
 . . .
}

The user of your program must agree to the file access (see Figure 10–9).

Figure 10–9 File access warning

To display a document on the default browser, use the BasicService interface. Note
that some systems may not have a default browser.

BasicService service = (BasicService) ServiceManager.lookup("javax.jnlp.BasicService");
if (service.isWebBrowserSupported())
 service.showDocument(url);
else . . .

A rudimentary PersistenceService lets an application store small amounts of configuration
information and retrieve it when the application runs again. The mechanism is similar
to HTTP cookies. The persistent store uses URLs as keys. The URLs don’t have to
point to a real web resource. The service simply uses them as a convenient hierarchical

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets510

naming scheme. For any given URL key, an application can store arbitrary binary data.
(The store may restrict the size of the data block.)

So that applications are isolated from each other, a particular application can only use
URL keys that start with its codebase (as specified in the JNLP file). For example, if an
application is downloaded from http://myserver.com/apps, then it can only use keys of the
form http://myserver.com/apps/subkey1/subkey2/... Attempts to access other keys will fail.

An application can call the getCodeBase method of the BasicService to find its codebase.

You create a new key with the create method of the PersistenceService.
URL url = new URL(codeBase, "mykey");
service.create(url, maxSize);

To access the information associated with a particular key, call the get method.
That method returns a FileContents object through which you can read and write the
key data. For example:

FileContents contents = service.get(url);
InputStream in = contents.getInputStream();
OutputStream out = contents.getOutputStream(true); // true = overwrite

Unfortunately, there is no convenient way to find out whether a key already exists or
whether you need to create it. You can hope that the key exists and call get. If the call
throws a FileNotFoundException, then you need to create the key.

NOTE: Starting with Java SE 5.0, both Java Web Start applications and applets can print,
using the normal printing API. A security dialog pops up, asking the user for permission to
access the printer. For more information on the printing API, turn to Chapter 7 of Volume II.

The program in Listing 10–2 is a simple enhancement of the calculator application.
This calculator has a virtual paper tape that keeps track of all calculations. You can
save and load the calculation history. To demonstrate the persistent store, the
application lets you set the frame title. If you run the application again, it retrieves
your title choice from the persistent store (see Figure 10–10).

Figure 10–10 The WebStartCalculator application

Chapter 10. Deploying Applications and Applets

Java Web Start 511

Listing 10–2 WebStartCalculator.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.net.*;
5. import javax.swing.*;
6. import javax.jnlp.*;
7.

8. /**
9. * A calculator with a calculation history that can be deployed as a Java Web Start application.

10. * @version 1.02 2007-06-12
11. * @author Cay Horstmann
12. */
13. public class WebStartCalculator
14. {
15. public static void main(String[] args)
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {
21. CalculatorFrame frame = new CalculatorFrame();
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. frame.setVisible(true);
24. }
25. });
26. }
27. }
28.

29. /**
30. * A frame with a calculator panel and a menu to load and save the calculator history.
31. */
32. class CalculatorFrame extends JFrame
33. {
34. public CalculatorFrame()
35. {
36. setTitle();
37. panel = new CalculatorPanel();
38. add(panel);
39.

40. JMenu fileMenu = new JMenu("File");
41.

42. JMenuItem openItem = fileMenu.add("Open");
43. openItem.addActionListener(new ActionListener()
44. {
45. public void actionPerformed(ActionEvent event)
46. {
47. open();
48. }
49. });

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets512

50.

51. JMenuItem saveItem = fileMenu.add("Save");
52. saveItem.addActionListener(new ActionListener()
53. {
54. public void actionPerformed(ActionEvent event)
55. {
56. save();
57. }
58. });
59. JMenuBar menuBar = new JMenuBar();
60. menuBar.add(fileMenu);
61. setJMenuBar(menuBar);
62.

63. pack();
64. }
65.

66. /**
67. * Gets the title from the persistent store or asks the user for the title if there is no
68. * prior entry.
69. */
70. public void setTitle()
71. {
72. try
73. {
74. String title = null;
75.

76. BasicService basic = (BasicService) ServiceManager.lookup("javax.jnlp.BasicService");
77. URL codeBase = basic.getCodeBase();
78.

79. PersistenceService service = (PersistenceService) ServiceManager
80. .lookup("javax.jnlp.PersistenceService");
81. URL key = new URL(codeBase, "title");
82.

83. try
84. {
85. FileContents contents = service.get(key);
86. InputStream in = contents.getInputStream();
87. BufferedReader reader = new BufferedReader(new InputStreamReader(in));
88. title = reader.readLine();
89. }
90. catch (FileNotFoundException e)
91. {
92. title = JOptionPane.showInputDialog("Please supply a frame title:");
93. if (title == null) return;
94.

95. service.create(key, 100);
96. FileContents contents = service.get(key);
97. OutputStream out = contents.getOutputStream(true);
98. PrintStream printOut = new PrintStream(out);
99. printOut.print(title);

Listing 10–2 WebStartCalculator.java (continued)

Chapter 10. Deploying Applications and Applets

Java Web Start 513

100. }
101. setTitle(title);
102. }
103. catch (UnavailableServiceException e)
104. {
105. JOptionPane.showMessageDialog(this, e);
106. }
107. catch (MalformedURLException e)
108. {
109. JOptionPane.showMessageDialog(this, e);
110. }
111. catch (IOException e)
112. {
113. JOptionPane.showMessageDialog(this, e);
114. }
115. }
116.

117. /**
118. * Opens a history file and updates the display.
119. */
120. public void open()
121. {
122. try
123. {
124. FileOpenService service = (FileOpenService) ServiceManager
125. .lookup("javax.jnlp.FileOpenService");
126. FileContents contents = service.openFileDialog(".", new String[] { "txt" });
127.

128. JOptionPane.showMessageDialog(this, contents.getName());
129. if (contents != null)
130. {
131. InputStream in = contents.getInputStream();
132. BufferedReader reader = new BufferedReader(new InputStreamReader(in));
133. String line;
134. while ((line = reader.readLine()) != null)
135. {
136. panel.append(line);
137. panel.append("\n");
138. }
139. }
140. }
141. catch (UnavailableServiceException e)
142. {
143. JOptionPane.showMessageDialog(this, e);
144. }
145. catch (IOException e)
146. {
147. JOptionPane.showMessageDialog(this, e);
148. }
149. }

Listing 10–2 WebStartCalculator.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets514

• static String[] getServiceNames()
returns the names of all available services.

• static Object lookup(String name)
returns a service with a given name.

• URL getCodeBase()
returns the codebase of this application.

• boolean isWebBrowserSupported()
returns true if the Web Start environment can launch a web browser.

• boolean showDocument(URL url)
attempts to show the given URL in a browser. Returns true if the request
succeeded.

150.

151. /**
152. * Saves the calculator history to a file.
153. */
154. public void save()
155. {
156. try
157. {
158. ByteArrayOutputStream out = new ByteArrayOutputStream();
159. PrintStream printOut = new PrintStream(out);
160. printOut.print(panel.getText());
161. InputStream data = new ByteArrayInputStream(out.toByteArray());
162. FileSaveService service = (FileSaveService) ServiceManager
163. .lookup("javax.jnlp.FileSaveService");
164. service.saveFileDialog(".", new String[] { "txt" }, data, "calc.txt");
165. }
166. catch (UnavailableServiceException e)
167. {
168. JOptionPane.showMessageDialog(this, e);
169. }
170. catch (IOException e)
171. {
172. JOptionPane.showMessageDialog(this, e);
173. }
174. }
175.

176. private CalculatorPanel panel;
177. }

javax.jnlp.ServiceManager

javax.jnlp.BasicService

Listing 10–2 WebStartCalculator.java (continued)

Chapter 10. Deploying Applications and Applets

Java Web Start 515

• InputStream getInputStream()
returns an input stream to read the contents of the file.

• OutputStream getOutputStream(boolean overwrite)
returns an output stream to write to the file. If overwrite is true, then the existing
contents of the file are overwritten.

• String getName()
returns the file name (but not the full directory path).

• boolean canRead()
• boolean canWrite()

returns true if the underlying file is readable or writable.

• FileContents openFileDialog(String pathHint, String[] extensions)
• FileContents[] openMultiFileDialog(String pathHint, String[] extensions)

displays a user warning and a file chooser. Returns content descriptors of the file or files
that the user selected, or null if the user didn’t choose a file.

• FileContents saveFileDialog(String pathHint, String[] extensions, InputStream data,
String nameHint)

• FileContents saveAsFileDialog(String pathHint, String[] extensions, FileContents data)
displays a user warning and a file chooser. Writes the data and returns content
descriptors of the file or files that the user selected, or null if the user didn’t choose
a file.

• long create(URL key, long maxsize)
creates a persistent store entry for the given key. Returns the maximum size
granted by the persistent store.

• void delete(URL key)
deletes the entry for the given key.

• String[] getNames(URL url)
returns the relative key names of all keys that start with the given URL.

• FileContents get(URL key)
gets a content descriptor through which you can modify the data associated with
the given key. If no entry exists for the key, a FileNotFoundException is thrown.

javax.jnlp.FileContents

javax.jnlp.FileOpenService

javax.jnlp.FileSaveService

javax.jnlp.PersistenceService

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets516

Applets
Applets are Java programs that are included in an HTML page. The HTML page must
tell the browser which applets to load and then where to put each applet on the web
page. As you might expect, the tag needed to use an applet must tell the browser where
to get the class files, and how the applet is positioned on the web page (size, location,
and so on). The browser then retrieves the class files from the Internet (or from a direc-
tory on the user’s machine) and automatically runs the applet.

When applets were first developed, you had to use Sun’s HotJava browser to view
web pages that contained applets. Naturally, few users were willing to use a sepa-
rate browser just to enjoy a new web feature. Java applets became really popular
when Netscape included a Java virtual machine in its Navigator browser. Microsoft
Internet Explorer soon followed suit. Unfortunately, two problems happened.
Netscape didn’t keep up with more modern versions of Java, and Microsoft vacil-
lated between reluctantly supporting outdated Java versions and dropping Java
support altogether.

To overcome this problem, Sun released a tool called the “Java Plug-in.” Using the vari-
ous extension mechanisms, it seamlessly plugs in to a variety of browsers and enables
them to execute Java applets by using an external Java runtime environment that Sun
supplies. By keeping the Plug-in up-to-date, you can always take advantage of the latest
and greatest features of Java.

NOTE: To run the applets in this chapter in a browser, you need to install the current ver-
sion of the Java Plug-in and make sure your browser is connected with the Plug-in. Go to
http://java.com for download and configuration information.

A Simple Applet
For tradition’s sake, let’s write a NotHelloWorld program as an applet. An applet is simply a
Java class that extends the java.applet.Applet class. In this book, we will use Swing to
implement applets. All of our applets will extend the JApplet class, the superclass for
Swing applets. As you can see in Figure 10–11, JApplet is an immediate subclass of the
ordinary Applet class.

NOTE: If your applet contains Swing components, you must extend the JApplet class. Swing
components inside a plain Applet don’t paint correctly.

Listing 10–3 on page 518 shows the code for an applet version of “Not Hello World”.

Notice how similar this is to the corresponding program from Chapter 7. However,
because the applet lives inside a web page, there is no need to specify a method for
exiting the applet.

Chapter 10. Deploying Applications and Applets

Applets 517

Figure 10–11 Applet inheritance diagram

Object

Component

Container

PanelWindow

Frame

JFrame

Applet

JApplet

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets518

To execute the applet, you carry out two steps:

1. Compile your Java source files into class files.
2. Create an HTML file that tells the browser which class file to load first and how to

size the applet.

It is customary (but not necessary) to give the HTML file the same name as that of the
applet class inside. So, following this tradition, we call the file NotHelloWorldApplet.html.

Here are the contents of the file:
<applet code="NotHelloWorldApplet.class" width="300" height="300">
</applet>

Before you view the applet in a browser, it is a good idea to test it in the applet viewer
program that is a part of the JDK. To use the applet viewer in our example, enter

appletviewer NotHelloWorldApplet.html

at the command line. The command-line argument for the applet viewer program is the
name of the HTML file, not the class file. Figure 10–12 shows the applet viewer display-
ing this applet.

Listing 10–3 NotHelloWorldApplet.java

1. /*
2. * The following HTML tags are required to display this applet in a browser: <applet
3. * code="NotHelloWorldApplet.class" width="300" height="100"> </applet>
4. */
5.

6. import java.awt.*;
7. import javax.swing.*;
8.

9. /**
10. * @version 1.22 2007-06-12
11. * @author Cay Horstmann
12. */
13. public class NotHelloWorldApplet extends JApplet
14. {
15. public void init()
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {
21. JLabel label = new JLabel("Not a Hello, World applet", SwingConstants.CENTER);
22. add(label);
23. }
24. });
25. }
26. }

Chapter 10. Deploying Applications and Applets

Applets 519

Figure 10–12 Viewing an applet in the applet viewer

TIP: Here is a weird trick to avoid the additional HTML file. Add an applet tag as a comment
inside the source file:

/*
 <applet code="MyApplet.class" width="300" height="300">
 </applet>
*/
public class MyApplet extends JApplet
. . .

Then run the applet viewer with the source file as its command-line argument:

appletviewer NotHelloWorldApplet.java

We aren’t recommending this as standard practice, but it can come in handy if you want to
minimize the number of files that you need to worry about during testing.

TIP: You can also run applets from inside your integrated environment. In Eclipse, you select
Run -> Run as -> Java Applet from the menu.

The applet viewer is good for the first stage of testing, but at some point you need to
run your applets in a browser to see them in the same way a user might use them. In
particular, the applet viewer program shows you only the applet, not the surround-
ing HTML text. If an HTML file contains multiple applet tags, the applet viewer pops
up multiple windows.

To properly view the applet, simply load the HTML file into the browser (see Figure
10–13). If the applet doesn’t show up, you need to install the Java Plug-in.

TIP: If you make a change to your applet and recompile, you need to restart the browser so
that it loads the new class files. Simply refreshing the HTML page will not load the new
code. This is a hassle when you are debugging an applet. You can avoid the painful browser
restart from the Java console. Launch the console and issue the x command, which clears
the classloader cache. Then you can reload the HTML page, and the new applet code is
used. Under Windows, open the Java Plug-in control in the Windows control panel. Under
Linux, run jcontrol and request that the Java console be displayed. The console will pop up
whenever an applet is loaded.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets520

Figure 10–13 Viewing an applet in a browser

Converting Applications to Applets

It is easy to convert a graphical Java application into an applet that you can embed in
a web page. Essentially, all of the user interface code can stay the same. Here are the
specific steps:

1. Make an HTML page with the appropriate tag to load the applet code.
2. Supply a subclass of the JApplet class. Make this class public. Otherwise, the applet

cannot be loaded.
3. Eliminate the main method in the application. Do not construct a frame window for

the application. Your application will be displayed inside the browser.
4. Move any initialization code from the frame window constructor to the init method

of the applet. You don’t need to explicitly construct the applet object—the browser
instantiates it for you and calls the init method.

5. Remove the call to setSize; for applets, sizing is done with the width and height param-
eters in the HTML file.

6. Remove the call to setDefaultCloseOperation. An applet cannot be closed; it terminates
when the browser exits.

7. If the application calls setTitle, eliminate the call to the method. Applets cannot have
title bars. (You can, of course, title the web page itself, using the HTML title tag.)

8. Don’t call setVisible(true). The applet is displayed automatically.

NOTE: On page 532, you will see how to implement a program that is both an applet and an
application.

• void init()
is called when the applet is first loaded. Override this method and place all
initialization code here.

java.applet.Applet 1.0

Chapter 10. Deploying Applications and Applets

Applets 521

• void start()
override this method for code that needs to be executed every time the user visits
the browser page containing this applet. A typical action is to reactivate a thread.

• void stop()
override this method for code that needs to be executed every time the user leaves
the browser page containing this applet. A typical action is to deactivate a thread.

• void destroy()
override this method for code that needs to be executed when the user exits
the browser.

• void resize(int width, int height)
requests that the applet be resized. This would be a great method if it worked on
web pages; unfortunately, it does not work in current browsers because it
interferes with their page-layout mechanisms.

The Applet HTML Tag and Its Attributes
In its most basic form, an example for using the applet tag looks like this:

<applet code="NotHelloWorldApplet.class" width="300" height="100">

As you have seen, the code attribute gives the name of the class file and must include the
.class extension; the width and height attributes size the window that will hold the applet.
Both are measured in pixels. You also need a matching </applet> tag that marks the end
of the HTML tagging needed for an applet. The text between the <applet> and </applet>
tags is displayed only if the browser cannot show applets. The code, width, and height
attributes are required. If any are missing, the browser cannot load your applet.

All this information would usually be embedded in an HTML page that, at the very
least, might look like this:

<html>
 <head>
 <title>NotHelloWorldApplet</title>
 </head>
 <body>
 <p>The next line of text is displayed under the auspices of Java:</p>
 <applet code="NotHelloWorldApplet.class" width="100" height="100">
 If your browser could show Java, you would see an applet here.
 </applet>
 </body>
</html>

You can use the following attributes within the applet tag:

• width, height

These attributes are required and give the width and height of the applet, measured
in pixels. In the applet viewer, this is the initial size of the applet. You can resize any
window that the applet viewer creates. In a browser, you cannot resize the applet.
You will need to make a good guess about how much space your applet requires to
show up well for all users.

• align

This attribute specifies the alignment of the applet. The attribute values are the same
as for the align attribute of the HTML img tag.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets522

• vspace, hspace

These optional attributes specify the number of pixels above and below the applet (vspace)
and on each side of the applet (hspace).

• code

This attribute gives the name of the applet’s class file. This name is taken relative to the
codebase (see below) or relative to the current page if the codebase is not specified.

The path name must match the package of the applet class. For example, if the applet
class is in the package com.mycompany, then the attribute is code="com/mycompany/MyApplet.class".
The alternative code="com.mycompany.MyApplet.class" is also permitted. But you cannot use
absolute path names here. Use the codebase attribute if your class file is located elsewhere.

The code attribute specifies only the name of the class that contains the applet class.
Of course, your applet may contain other class files. Once the browser’s class loader
loads the class containing the applet, it will realize that it needs more class files and
will load them.

Either the code or the object attribute (see below) is required.
• codebase

This optional attribute is a URL for locating the class files. You can use an absolute
URL, even to a different server. Most commonly, though, this is a relative URL that
points to a subdirectory. For example, if the file layout looks like this:

then you use the following tag in MyPage.html:
<applet code="MyApplet.class" codebase="myApplets" width="100" height="150">

• archive

This optional attribute lists the JAR file or files containing classes and other
resources for the applet. These files are fetched from the web server before the
applet is loaded. This technique speeds up the loading process significantly because
only one HTTP request is necessary to load a JAR file that contains many smaller
files. The JAR files are separated by commas. For example:

<applet code="MyApplet.class"
 archive="MyClasses.jar,corejava/CoreJavaClasses.jar"
 width="100" height="150">

• object

This tag lets you specify the name of a file that contains the serialized applet object.
(An object is serialized when you write all its instance fields to a file. We discuss seri-
alization in Chapter 1 of Volume II.) To display the applet, the object is deserialized
from the file to return it to its previous state. When you use this attribute, the init
method is not called, but the applet’s start method is called. Before serializing an
applet object, you should call its stop method. This feature is useful for implement-
ing a persistent browser that automatically reloads its applets and has them return
to the same state that they were in when the browser was closed. This is a special-
ized feature, not normally encountered by web page designers.

aDirectory/
MyPage.html
myApplets/

MyApplet.class

Chapter 10. Deploying Applications and Applets

Applets 523

Either code or object must be present in every applet tag. For example:
<applet object="MyApplet.ser" width="100" height="150">

• name

Scripters will want to give the applet a name attribute that they can use to refer to the
applet when scripting. Both Netscape and Internet Explorer let you call methods of
an applet on a page through JavaScript. This is not a book on JavaScript, so we only
give you a brief idea of the code that is required to call Java code from JavaScript.

NOTE: JavaScript is a scripting language that can be used inside web pages, invented by
Netscape and originally called LiveScript. It has little to do with Java, except for some simi-
larity in syntax. It was a marketing move to call it JavaScript. A subset (with the catchy name
of ECMAScript) is standardized as ECMA-262. But, to nobody’s surprise, Netscape and
Microsoft support incompatible extensions of that standard in their browsers. For more infor-
mation on JavaScript, we recommend the book JavaScript: The Definitive Guide by David
Flanagan (O’Reilly Media, Inc., 2006).

To access an applet from JavaScript, you first have to give it a name.
<applet code="MyApplet.class" width="100" height="150" name="mine">
</applet>

You can then refer to the object as document.applets.appletname. For example:
var myApplet = document.applets.mine;

Through the magic of the integration between Java and JavaScript that both
Netscape and Internet Explorer provide, you can call applet methods:

myApplet.init();

The name attribute is also essential when you want two applets on the same page to
communicate with each other directly. You specify a name for each current applet
instance. You pass this string to the getApplet method of the AppletContext class. We dis-
cuss this mechanism, called inter-applet communication, later in this chapter.

NOTE: In http://www.javaworld.com/javatips/jw-javatip80.html, Francis Lu uses JavaScript-to-
Java communication to solve an age-old problem: to resize an applet so that it isn’t bound by
hardcoded width and height attributes. This is a good example of the integration between
Java and JavaScript.

• alt

Java may be deactivated in the browser, perhaps by a paranoid system administrator.
You can then use the alt attribute to display a message to these unfortunate souls.

<applet code="MyApplet.class" width="100" height="150"
 alt="If you activated Java, you would see my applet here">

If a browser cannot process applets at all, it ignores the unknown applet and param
tags. All text between the <applet> and </applet> tags is displayed by the browser.
Conversely, Java-aware browsers do not display any text between the <applet> and
</applet> tags. You can display messages inside these tags for those poor folks that
use a prehistoric browser. For example:

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets524

<applet code="MyApplet.class" width="100" height="150">
 If your browser could show Java, you would see my applet here.
</applet>

The object Tag
The object tag is part of the HTML 4.0 standard, and the W3 consortium suggests that peo-
ple use it instead of the applet tag. There are 35 different attributes to the object tag, most of
which (such as onkeydown) are relevant only to people writing Dynamic HTML. The various
positioning attributes such as align and height work exactly as they did for the applet tag.
The key attribute in the object tag for your Java applets is the classid attribute. This
attribute specifies the location of the object. Of course, object tags can load different kinds
of objects, such as Java applets or ActiveX components like the Java Plug-in itself. In the
codetype attribute, you specify the nature of the object. For example, Java applets have a
code type of application/java. Here is an object tag to load a Java applet:

<object
 codetype="application/java"
 classid="java:MyApplet.class"
 width="100" height="150">

Note that the classid attribute can be followed by a codebase attribute that works exactly
as it did with the applet tag.

Use of Parameters to Pass Information to Applets
Just as applications can use command-line information, applets can use parameters that
are embedded in the HTML file. This is done by the HTML tag called param along with
attributes that you define. For example, suppose you want to let the web page deter-
mine the style of the font to use in your applet. You could use the following HTML tags:

<applet code="FontParamApplet.class" width="200" height="200">
 <param name="font" value="Helvetica"/>
</applet>

You then pick up the value of the parameter, using the getParameter method of the Applet
class, as in the following example:

public class FontParamApplet extends JApplet
{
 public void init()
 {
 String fontName = getParameter("font");
 . . .
 }
 . . .
}

NOTE: You can call the getParameter method only in the init method of the applet, not in the
constructor. When the applet constructor is executed, the parameters are not yet prepared.
Because the layout of most nontrivial applets is determined by parameters, we recommend
that you don’t supply constructors to applets. Simply place all initialization code into the init
method.

Chapter 10. Deploying Applications and Applets

Applets 525

Parameters are always returned as strings. You need to convert the string to a numeric
type if that is what is called for. You do this in the standard way by using the appropri-
ate method, such as parseInt of the Integer class.

For example, if we wanted to add a size parameter for the font, then the HTML code
might look like this:

<applet code="FontParamApplet.class" width="200" height="200">
 <param name="font" value="Helvetica"/>
 <param name="size" value="24"/>
</applet>

The following source code shows how to read the integer parameter:
public class FontParamApplet extends JApplet
{
 public void init()
 {
 String fontName = getParameter("font");
 int fontSize = Integer.parseInt(getParameter("size"));
 . . .
 }
}

NOTE: A case-insensitive comparison is used when matching the name attribute value in the
param tag and the argument of the getParameter method.

In addition to ensuring that the parameters match in your code, you should find out
whether or not the size parameter was left out. You do this with a simple test for null.
For example:

int fontsize;
String sizeString = getParameter("size");
if (sizeString == null) fontSize = 12;
else fontSize = Integer.parseInt(sizeString);

Here is a useful applet that uses parameters extensively. The applet draws a bar chart,
shown in Figure 10–14.

This applet takes the labels and the heights of the bars from the param values in the
HTML file. Here is what the HTML file for Figure 10–14 looks like:

<applet code="Chart.class" width="400" height="300">
 <param name="title" value="Diameters of the Planets"/>
 <param name="values" value="9"/>
 <param name="name.1" value="Mercury"/>
 <param name="name.2" value="Venus"/>
 <param name="name.3" value="Earth"/>
 <param name="name.4" value="Mars"/>
 <param name="name.5" value="Jupiter"/>
 <param name="name.6" value="Saturn"/>
 <param name="name.7" value="Uranus"/>
 <param name="name.8" value="Neptune"/>
 <param name="name.9" value="Pluto"/>
 <param name="value.1" value="3100"/>

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets526

 <param name="value.2" value="7500"/>
 <param name="value.3" value="8000"/>
 <param name="value.4" value="4200"/>
 <param name="value.5" value="88000"/>
 <param name="value.6" value="71000"/>
 <param name="value.7" value="32000"/>
 <param name="value.8" value="30600"/>
 <param name="value.9" value="1430"/>
</applet>

Figure 10–14 A chart applet

You could have set up an array of strings and an array of numbers in the applet, but
there are two advantages to using the parameter mechanism instead. You can have mul-
tiple copies of the same applet on your web page, showing different graphs: just put two
applet tags with different sets of parameters on the page. And you can change the data
that you want to chart. Admittedly, the diameters of the planets will stay the same for
quite some time, but suppose your web page contains a chart of weekly sales data. It is
easy to update the web page because it is plain text. Editing and recompiling a Java file
weekly is more tedious.

In fact, there are commercial JavaBeans components (beans) that make much fancier
graphs than the one in our chart applet. If you buy one, you can drop it into your web
page and feed it parameters without ever needing to know how the applet renders the
graphs.

Listing 10–4 is the source code of our chart applet. Note that the init method reads the
parameters, and the paintComponent method draws the chart.

Chapter 10. Deploying Applications and Applets

Applets 527

Listing 10–4 Chart.java

1. import java.awt.*;
2. import java.awt.font.*;
3. import java.awt.geom.*;
4. import javax.swing.*;
5.

6. /**
7. * @version 1.33 2007-06-12
8. * @author Cay Horstmann
9. */

10. public class Chart extends JApplet
11. {
12. public void init()
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. String v = getParameter("values");
19. if (v == null) return;
20. int n = Integer.parseInt(v);
21. double[] values = new double[n];
22. String[] names = new String[n];
23. for (int i = 0; i < n; i++)
24. {
25. values[i] = Double.parseDouble(getParameter("value." + (i + 1)));
26. names[i] = getParameter("name." + (i + 1));
27. }
28.

29. add(new ChartComponent(values, names, getParameter("title")));
30. }
31. });
32. }
33. }
34.

35. /**
36. * A component that draws a bar chart.
37. */
38. class ChartComponent extends JComponent
39. {
40. /**
41. * Constructs a ChartComponent.
42. * @param v the array of values for the chart
43. * @param n the array of names for the values
44. * @param t the title of the chart
45. */
46. public ChartComponent(double[] v, String[] n, String t)
47. {
48. values = v;
49. names = n;
50. title = t;

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets528

51. }
52.

53. public void paintComponent(Graphics g)
54. {
55. Graphics2D g2 = (Graphics2D) g;
56.

57. // compute the minimum and maximum values
58. if (values == null) return;
59. double minValue = 0;
60. double maxValue = 0;
61. for (double v : values)
62. {
63. if (minValue > v) minValue = v;
64. if (maxValue < v) maxValue = v;
65. }
66. if (maxValue == minValue) return;
67.

68. int panelWidth = getWidth();
69. int panelHeight = getHeight();
70.

71. Font titleFont = new Font("SansSerif", Font.BOLD, 20);
72. Font labelFont = new Font("SansSerif", Font.PLAIN, 10);
73.

74. // compute the extent of the title
75. FontRenderContext context = g2.getFontRenderContext();
76. Rectangle2D titleBounds = titleFont.getStringBounds(title, context);
77. double titleWidth = titleBounds.getWidth();
78. double top = titleBounds.getHeight();
79.

80. // draw the title
81. double y = -titleBounds.getY(); // ascent
82. double x = (panelWidth - titleWidth) / 2;
83. g2.setFont(titleFont);
84. g2.drawString(title, (float) x, (float) y);
85.

86. // compute the extent of the bar labels
87. LineMetrics labelMetrics = labelFont.getLineMetrics("", context);
88. double bottom = labelMetrics.getHeight();
89.

90. y = panelHeight - labelMetrics.getDescent();
91. g2.setFont(labelFont);
92.

93. // get the scale factor and width for the bars
94. double scale = (panelHeight - top - bottom) / (maxValue - minValue);
95. int barWidth = panelWidth / values.length;
96.

97. // draw the bars
98. for (int i = 0; i < values.length; i++)
99. {

Listing 10–4 Chart.java (continued)

Chapter 10. Deploying Applications and Applets

Applets 529

• public String getParameter(String name)
gets the value of a parameter defined with a param tag in the web page loading the
applet. The string name is case sensitive.

• public String getAppletInfo()
is a method that many applet authors override to return a string that contains
information about the author, version, and copyright of the current applet. You
need to create this information by overriding this method in your applet class.

• public String[][] getParameterInfo()
is a method that you can override to return an array of param tag options that this
applet supports. Each row contains three entries: the name, the type, and a
description of the parameter. Here is an example:
"fps", "1-10", "frames per second"
"repeat", "boolean", "repeat image loop?"
"images", "url", "directory containing images"

100. // get the coordinates of the bar rectangle
101. double x1 = i * barWidth + 1;
102. double y1 = top;
103. double height = values[i] * scale;
104. if (values[i] >= 0) y1 += (maxValue - values[i]) * scale;
105. else
106. {
107. y1 += maxValue * scale;
108. height = -height;
109. }
110.

111. // fill the bar and draw the bar outline
112. Rectangle2D rect = new Rectangle2D.Double(x1, y1, barWidth - 2, height);
113. g2.setPaint(Color.RED);
114. g2.fill(rect);
115. g2.setPaint(Color.BLACK);
116. g2.draw(rect);
117.

118. // draw the centered label below the bar
119. Rectangle2D labelBounds = labelFont.getStringBounds(names[i], context);
120.

121. double labelWidth = labelBounds.getWidth();
122. x = x1 + (barWidth - labelWidth) / 2;
123. g2.drawString(names[i], (float) x, (float) y);
124. }
125. }
126.

127. private double[] values;
128. private String[] names;
129. private String title;
130. }

java.applet.Applet 1.0

Listing 10–4 Chart.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets530

Accessing Image and Audio Files
Applets can handle both images and audio. As we write this, images must be in GIF,
PNG, or JPEG form, audio files in AU, AIFF, WAV, or MIDI. Animated GIFs are sup-
ported, and the animation is displayed.

You specify the locations of image and audio files with relative URLs. The base URL is
usually obtained by calling the getDocumentBase or getCodeBase method. The former gets the
URL of the HTML page in which the applet is contained, the latter the URL of the
applet’s codebase directory.

NOTE: In prior versions of Java SE, there was considerable confusion about these methods—
see bug #4456393 on the Java bug parade (http://bugs.sun.com/bugdatabase/index.jsp). The
documentation was finally clarified in Java SE 5.0.

Give the base URL and the file location to the getImage or getAudioClip method. For example:
Image cat = getImage(getCodeBase(), "images/cat.gif");
AudioClip meow = getAudioClip(getCodeBase(), "audio/meow.au");

You saw in Chapter 7 how to display an image. To play an audio clip, simply invoke
its play method. You can also call the play method of the Applet class without first load-
ing the audio clip.

play(getCodeBase(), "audio/meow.au");

• URL getDocumentBase()
gets the URL of the web page containing this applet.

• URL getCodeBase()
gets the URL of the codebase directory from which this applet is loaded. That is
either the absolute URL of the directory referenced by the codebase attribute or the
directory of the HTML file if no codebase is specified.

• void play(URL url)
• void play(URL url, String name)

The first form plays an audio file specified by the URL. The second form uses the
string to provide a path relative to the URL in the first parameter. Nothing
happens if the audio clip cannot be found.

• AudioClip getAudioClip(URL url)
• AudioClip getAudioClip(URL url, String name)

The first form gets an audio clip from the given URL. The second form uses the
string to provide a path relative to the URL in the first argument. The methods
return null if the audio clip cannot be found.

• Image getImage(URL url)
• Image getImage(URL url, String name)

returns an image object that encapsulates the image specified by the URL. If the
image does not exist, immediately returns null. Otherwise, a separate thread is
launched to load the image.

java.applet.Applet 1.0

Chapter 10. Deploying Applications and Applets

Applets 531

The Applet Context
An applet runs inside a browser or the applet viewer. An applet can ask the browser to
do things for it, for example, fetch an audio clip, show a short message in the status line,
or display a different web page. The ambient browser can carry out these requests, or it
can ignore them. For example, if an applet running inside the applet viewer asks the
applet viewer program to display a web page, nothing happens.

To communicate with the browser, an applet calls the getAppletContext method. That
method returns an object that implements an interface of type AppletContext. You can
think of the concrete implementation of the AppletContext interface as a communication
path between the applet and the ambient browser. In addition to getAudioClip and getImage,
the AppletContext interface contains several useful methods, which we discuss in the next
few sections.

Inter-Applet Communication

A web page can contain more than one applet. If a web page contains multiple applets
from the same codebase, they can communicate with each other. Naturally, this is an
advanced technique that you probably will not need very often.

If you give name attributes to each applet in the HTML file, you can use the getApplet method
of the AppletContext interface to get a reference to the applet. For example, if your HTML file
contains the tag

<applet code="Chart.class" width="100" height="100" name="Chart1">

then the call
Applet chart1 = getAppletContext().getApplet("Chart1");

gives you a reference to the applet. What can you do with the reference? Provided you
give the Chart class a method to accept new data and redraw the chart, you can call this
method by making the appropriate cast.

((Chart) chart1).setData(3, "Earth", 9000);

You can also list all applets on a web page, whether or not they have a name attribute. The
getApplets method returns an enumeration object. (You learn more about enumeration
objects in Chapter 13.) Here is a loop that prints the class names of all applets on the
current page:

Enumeration<Applet> e = getAppletContext().getApplets();
while (e.hasMoreElements())
{
 Applet a = e.nextElement();
 System.out.println(a.getClass().getName());
}

An applet cannot communicate with an applet on a different web page.

Display of Items in the Browser

You have access to two areas of the ambient browsers: the status line and the web page
display area. Both use methods of the AppletContext class.

You can display a string in the status line at the bottom of the browser with the showStatus
message. For example:

showStatus("Loading data . . . please wait");

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets532

TIP: In our experience, showStatus is of limited use. The browser is also using the status line,
and, more often than not, it will overwrite your precious message with chatter like “Applet
running.” Use the status line for fluff messages like “Loading data . . . please wait,” but not
for something that the user cannot afford to miss.

You can tell the browser to show a different web page with the showDocument method.
There are several ways to do this. The simplest is with a call to showDocument with one
argument, the URL you want to show.

URL u = new URL("http://java.sun.com/index.html");
getAppletContext().showDocument(u);

The problem with this call is that it opens the new web page in the same window as
your current page, thereby displacing your applet. To return to your applet, the user
must click the Back button of the browser.

You can tell the browser to show the document in another window by giving a second
parameter in the call to showDocument (see Table 10–2). If you supply the special string
"_blank", the browser opens a new window with the document, instead of displacing the
current document. More important, if you take advantage of the frame feature in
HTML, you can split a browser window into multiple frames, each of which has a name.
You can put your applet into one frame and have it show documents in other frames.
We show you an example of how to do this in the next section.

NOTE: Sun’s applet viewer does not show web pages. The showDocument method is ignored in
the applet viewer.

It’s an Applet. It’s an Application. It’s Both!

Quite a few years ago, a Saturday Night Live skit poked fun at a television commercial,
showing a couple that argued about a gelatinous substance. The husband said, “It’s a
dessert topping.” The wife said, “It’s a floor wax.” And the announcer concluded trium-
phantly, “It’s both!”

Table 10–2 The showDocument Method

Target Parameter Location

"_self" or none Show the document in the current frame.

"_parent" Show the document in the parent frame.

"_top" Show the document in the topmost frame.

"_blank" Show in new, unnamed, top-level window.

Any other string Show in the frame with that name. If no frame with that name
exists, open a new window and give it that name.

Chapter 10. Deploying Applications and Applets

Applets 533

Well, in this section, we show you how to turn an applet into a Java program that is both
an applet and an application. That is, you can load the program with the applet viewer
or a browser, or you can start it from the command line with the java program launcher.
We are not sure how often this comes up—we found it interesting that this could be
done at all and thought you would, too.

The screen shots in Figures 10–15 and 10–16 show the same program, viewed inside the
applet viewer as an applet and launched from the command line as an application.

Figure 10–15 It’s an applet!

Figure 10–16 It’s an application!

A GUI application constructs a frame object and invokes setVisible(true) on it. Since you
cannot call setVisible on a naked applet, the applet must be placed inside a frame. We
provide a class AppletFrame whose constructor adds the applet into the content pane:

public class AppletFrame extends JFrame
{
 public AppletFrame(Applet anApplet)
 {
 applet = anApplet;
 add(applet);
 . . .
 }
 . . .
}

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets534

In the main method of the applet/application, we construct and show an AppletFrame.
class MyAppletApplication extends MyApplet
{
 public static void main(String args[])
 {
 AppletFrame frame = new AppletFrame(new MyApplet());
 frame.setTitle("MyAppletApplication");
 frame.setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

(Note that we simply extend the existing applet.)

When the applet starts, its init and start methods must be called. We achieve this by
overriding the setVisible method of the AppletFrame class:

public void setVisible(boolean b)
{
 if (b)
 {
 applet.init();
 super.setVisible(true);
 applet.start();
 }
 else
 {
 applet.stop();
 super.setVisible(false);
 applet.destroy();
 }
}

There is one catch. If the program is started as an application, and it calls getAppletContext,
it gets a null pointer because it has not been launched inside a browser. This causes a
runtime crash whenever we have code like

getAppletContext().showStatus(message);

While we do not want to write a full-fledged browser, we do need to supply the bare
minimum to make calls like this work. The call displays no message, but at least it will
not crash the program. It turns out that all we need to do is implement two interfaces:
AppletStub and AppletContext. The major purpose of the AppletStub interface is to locate the
applet context. Every applet has an applet stub (set with the setStub method of the Applet
class). We supply the bare minimum functionality that is necessary to implement these
two interfaces.

public class AppletFrame extends JFrame
 implements AppletStub, AppletContext
{
 . . .
 // AppletStub methods
 public boolean isActive() { return true; }
 public URL getDocumentBase() { return null; }

Chapter 10. Deploying Applications and Applets

Applets 535

 public URL getCodeBase() { return null; }
 public String getParameter(String name) { return ""; }
 public AppletContext getAppletContext() { return this; }
 public void appletResize(int width, int height) {}

 // AppletContext methods
 public AudioClip getAudioClip(URL url) { return null; }
 public Image getImage(URL url) { return Toolkit.getDefaultToolkit().getImage(url); }
 public Applet getApplet(String name) { return null; }
 public Enumeration<Applet> getApplets() { return null; }
 public void showDocument(URL url) {}
 public void showDocument(URL url, String target) {}
 public void showStatus(String status) {}
 public void setStream(String key, InputStream stream) {}
 public InputStream getStream(String key) { return null; }
 public Iterator<String> getStreamKeys() { return null; }
}

Next, the constructor of the frame class calls setStub on the applet to make itself its stub.
public AppletFrame(Applet anApplet)
{
 applet = anApplet
 Container contentPane = getContentPane();
 contentPane.add(applet);
 applet.setStub(this);
}

Just for fun, we use the previously mentioned trick of adding the applet tag as a com-
ment to the source file. Then, you can invoke the applet viewer with the source file with-
out requiring an additional HTML file.

Listings 10–5 and 10–6 list the code. Try running both the applet and the application:
appletviewer NotHelloAppletApplication.java
java NotHelloAppletApplication

Listing 10–5 AppletFrame.java

1. import java.awt.*;
2. import java.applet.*;
3. import java.io.*;
4. import java.net.*;
5. import java.util.*;
6. import javax.swing.*;
7.

8. /**
9. * @version 1.32 2007-06-12

10. * @author Cay Horstmann
11. */
12. public class AppletFrame extends JFrame implements AppletStub, AppletContext
13. {
14. public AppletFrame(Applet anApplet)
15. {

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets536

16. applet = anApplet;
17. add(applet);
18. applet.setStub(this);
19. }
20.

21. public void setVisible(boolean b)
22. {
23. if (b)
24. {
25. applet.init();
26. super.setVisible(true);
27. applet.start();
28. }
29. else
30. {
31. applet.stop();
32. super.setVisible(false);
33. applet.destroy();
34. }
35. }
36.

37. // AppletStub methods
38. public boolean isActive()
39. {
40. return true;
41. }
42.

43. public URL getDocumentBase()
44. {
45. return null;
46. }
47.

48. public URL getCodeBase()
49. {
50. return null;
51. }
52.

53. public String getParameter(String name)
54. {
55. return "";
56. }
57.

58. public AppletContext getAppletContext()
59. {
60. return this;
61. }
62.

63. public void appletResize(int width, int height)
64. {
65. }

Listing 10–5 AppletFrame.java (continued)

Chapter 10. Deploying Applications and Applets

Applets 537

66.

67. // AppletContext methods
68. public AudioClip getAudioClip(URL url)
69. {
70. return null;
71. }
72.

73. public Image getImage(URL url)
74. {
75. return Toolkit.getDefaultToolkit().getImage(url);
76. }
77.

78. public Applet getApplet(String name)
79. {
80. return null;
81. }
82.

83. public Enumeration<Applet> getApplets()
84. {
85. return null;
86. }
87.

88. public void showDocument(URL url)
89. {
90. }
91.

92. public void showDocument(URL url, String target)
93. {
94. }
95.

96. public void showStatus(String status)
97. {
98. }
99.

100. public void setStream(String key, InputStream stream)
101. {
102. }
103.

104. public InputStream getStream(String key)
105. {
106. return null;
107. }
108.

109. public Iterator<String> getStreamKeys()
110. {
111. return null;
112. }
113.

114. private Applet applet;
115. }

Listing 10–5 AppletFrame.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets538

• public AppletContext getAppletContext()
gives you a handle to the applet’s browser environment. On most browsers, you
can use this information to control the browser in which the applet is running.

• void showStatus(String msg)
shows the string specified in the status line of the browser.

Listing 10–6 AppletApplication.java

1. /*
2. * The applet viewer reads the tags below if you call it with appletviewer AppletApplication.java
3. * No separate HTML file is required. <applet code="AppletApplication.class"
4. * width="200" height="200">
5. * </applet>
6. */
7.

8. import java.awt.EventQueue;
9.

10. import javax.swing.*;
11.

12. /**
13. * It's an applet. It's an application. It's BOTH!
14. * @version 1.32 2007-04-28
15. * @author Cay Horstmann
16. */
17. public class AppletApplication extends NotHelloWorldApplet
18. {
19. public static void main(String[] args)
20. {
21. EventQueue.invokeLater(new Runnable()
22. {
23. public void run()
24. {
25. AppletFrame frame = new AppletFrame(new NotHelloWorldApplet());
26. frame.setTitle("NotHelloWorldApplet");
27. frame.setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
28. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29. frame.setVisible(true);
30. }
31. });
32. }
33.

34. public static final int DEFAULT_WIDTH = 200;
35. public static final int DEFAULT_HEIGHT = 200;
36. }

java.applet.Applet 1.2

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 539

• Enumeration<Applet> getApplets()
returns an enumeration (see Chapter 13) of all the applets in the same context, that
is, the same web page.

• Applet getApplet(String name)
returns the applet in the current context with the given name; returns null if none
exists. Only the current web page is searched.

• void showDocument(URL url)
• void showDocument(URL url, String target)

shows a new web page in a frame in the browser. In the first form, the new page
displaces the current page. The second form uses the target parameter to identify
the target frame (see Table 10–2 on page 532).

Storage of Application Preferences
Users of your applications will usually expect that their preferences and customizations
are saved, and later restored when the application starts again. First, we cover the sim-
ple approach for storing configuration information in property files that Java applica-
tions have traditionally taken. We then turn to the powerful preferences mechanism that
was introduced in Java SE 1.4.

Property Maps
A property map is a data structure that stores key/value pairs. Property maps are often
used for storing configuration information. Property maps have three particular charac-
teristics:

• The keys and values are strings.
• The set can easily be saved to a file and loaded from a file.
• There is a secondary table for default values.

The Java class that implements a property map is called Properties.

Property maps are useful in specifying configuration options for programs. For example:
Properties settings = new Properties();
settings.put("width", "200");
settings.put("title", "Hello, World!");

Use the store method to save this list of properties to a file. Here, we just save the
property map in the file program.properties. The second argument is a comment that is
included in the file.

FileOutputStream out = new FileOutputStream("program.properties");
settings.store(out, "Program Properties");

The sample set gives the following output:
#Program Properties
#Mon Apr 30 07:22:52 2007
width=200
title=Hello, World!

java.applet.AppletContext 1.0

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets540

To load the properties from a file, use
FileInputStream in = new FileInputStream("program.properties");
settings.load(in);

It is customary to store program properties in a subdirectory of the user’s home direc-
tory. The directory name is often chosen to start with a dot—on a UNIX system, this con-
vention indicates a system directory that is hidden from the user. Our sample program
follows this convention.

To find the user’s home directory, you can call the System.getProperties method, which, as
it happens, also uses a Properties object to describe the system information. The home
directory has the key "user.home". There is also a convenience method to read a single key:

String userDir = System.getProperty("user.home");

It is a good idea to provide defaults for our program properties, in case a user edits the
file by hand. The Properties class has two mechanisms for providing defaults. First,
whenever you look up the value of a string, you can specify a default that should be
used automatically when the key is not present.

String title = settings.getProperty("title", "Default title");

If there is a "title" property in the property map, title is set to that string. Otherwise,
title is set to "Default title".
If you find it too tedious to specify the default in every call to getProperty, then you can
pack all the defaults into a secondary property map and supply that map in the con-
structor of your primary property map.

Properties defaultSettings = new Properties();
defaultSettings.put("width", "300");
defaultSettings.put("height", "200");
defaultSettings.put("title", "Default title");
. . .
Properties settings = new Properties(defaultSettings);

Yes, you can even specify defaults to defaults if you give another property map parame-
ter to the defaultSettings constructor, but it is not something one would normally do.
Listing 10–7 shows how you can use properties for storing and loading program state.
The program remembers the frame position, size, and title. You can also manually edit
the file .corejava/program.properties in your home directory to change the program’s
appearance to the way you want

NOTE: Properties are simple tables without a hierarchical structure. It is common to intro-
duce a fake hierarchy with key names such as window.main.color, window.main.title, and so
on. But the Properties class has no methods that help organize such a hierarchy. If you store
complex configuration information, you should use the Preferences class instead—see the
next section.

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 541

Listing 10–7 PropertiesTest.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.util.Properties;
5.

6. import javax.swing.*;
7.

8. /**
9. * A program to test properties. The program remembers the frame position, size, and title.

10. * @version 1.00 2007-04-29
11. * @author Cay Horstmann
12. */
13. public class PropertiesTest
14. {
15. public static void main(String[] args)
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {
21. PropertiesFrame frame = new PropertiesFrame();
22. frame.setVisible(true);
23. }
24. });
25. }
26. }
27.

28. /**
29. * A frame that restores position and size from a properties file and updates the properties
30. * upon exit.
31. */
32. class PropertiesFrame extends JFrame
33. {
34. public PropertiesFrame()
35. {
36. // get position, size, title from properties
37.

38. String userDir = System.getProperty("user.home");
39. File propertiesDir = new File(userDir, ".corejava");
40. if (!propertiesDir.exists()) propertiesDir.mkdir();
41. propertiesFile = new File(propertiesDir, "program.properties");
42.

43. Properties defaultSettings = new Properties();
44. defaultSettings.put("left", "0");
45. defaultSettings.put("top", "0");
46. defaultSettings.put("width", "" + DEFAULT_WIDTH);
47. defaultSettings.put("height", "" + DEFAULT_HEIGHT);
48. defaultSettings.put("title", "");
49.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets542

50. settings = new Properties(defaultSettings);
51.

52. if (propertiesFile.exists()) try
53. {
54. FileInputStream in = new FileInputStream(propertiesFile);
55. settings.load(in);
56. }
57. catch (IOException ex)
58. {
59. ex.printStackTrace();
60. }
61.

62. int left = Integer.parseInt(settings.getProperty("left"));
63. int top = Integer.parseInt(settings.getProperty("top"));
64. int width = Integer.parseInt(settings.getProperty("width"));
65. int height = Integer.parseInt(settings.getProperty("height"));
66. setBounds(left, top, width, height);
67.

68. // if no title given, ask user
69.

70. String title = settings.getProperty("title");
71. if (title.equals("")) title = JOptionPane.showInputDialog("Please supply a frame title:");
72. if (title == null) title = "";
73. setTitle(title);
74.

75. addWindowListener(new WindowAdapter()
76. {
77. public void windowClosing(WindowEvent event)
78. {
79. settings.put("left", "" + getX());
80. settings.put("top", "" + getY());
81. settings.put("width", "" + getWidth());
82. settings.put("height", "" + getHeight());
83. settings.put("title", getTitle());
84. try
85. {
86. FileOutputStream out = new FileOutputStream(propertiesFile);
87. settings.store(out, "Program Properties");
88. }
89. catch (IOException ex)
90. {
91. ex.printStackTrace();
92. }
93. System.exit(0);
94. }
95. });
96. }
97.

Listing 10–7 PropertiesTest.java (continued)

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 543

• Properties()
creates an empty property map.

• Properties(Properties defaults)
creates an empty property map with a set of defaults.

• String getProperty(String key)
gets a property map. Returns the string associated with the key, or the string
associated with the key in the default table if it wasn’t present in the table, or null
if the key wasn’t present in the default table either.

• String getProperty(String key, String defaultValue)
gets a property with a default value if the key is not found. Returns the string
associated with the key, or the default string if it wasn’t present in the table.

• void load(InputStream in) throws IOException
loads a property map from an input stream.

• void store(OutputStream out, String header) 1.2
saves a property map to an output stream.

• Properties getProperties()
retrieves all system properties. The application must have permission to retrieve
all properties or a security exception is thrown.

98. private File propertiesFile;
99. private Properties settings;

100.

101. public static final int DEFAULT_WIDTH = 300;
102. public static final int DEFAULT_HEIGHT = 200;
103. }

java.util.Properties 1.0

Parameters: defaults The defaults to use for lookups

Parameters: key The key whose associated string to get

Parameters: key The key whose associated string to get

defaultValue The string to return if the key is not present

Parameters: in The input stream

Parameters: out The output stream

header The header in the first line of the stored file

java.lang.System 1.0

Listing 10–7 PropertiesTest.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets544

• String getProperty(String key)
retrieves the system property with the given key name. The application must
have permission to retrieve the property or a security exception is thrown. The
following properties can always be retrieved:
java.version
java.vendor
java.vendor.url
java.class.version
os.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.vm.specification.version
java.vm.specification.vendor
java.vm.specification.name
java.vm.version
java.vm.vendor
java.vm.name

NOTE: You can find the names of the freely accessible system properties in the file security/
java.policy in the directory of the Java runtime.

The Preferences API
As you have seen, the Properties class makes it simple to load and save configuration
information. However, using property files has these disadvantages:

• Configuration files cannot always be stored in the user’s home directory. Some
operating systems (such as Windows 9x) have no concept of a home directory.

• There is no standard convention for naming configuration files, increasing the likeli-
hood of name clashes as users install multiple Java applications.

Some operating systems have a central repository for configuration information. The
best-known example is the registry in Microsoft Windows. The Preferences class of Java
SE 1.4 provides such a central repository in a platform-independent manner. In Win-
dows, the Preferences class uses the registry for storage; on Linux, the information is
stored in the local file system instead. Of course, the repository implementation is trans-
parent to the programmer using the Preferences class.

The Preferences repository has a tree structure, with node path names such as /com/mycom-
pany/myapp. As with package names, name clashes are avoided as long as programmers
start the paths with reversed domain names. In fact, the designers of the API suggest
that the configuration node paths match the package names in your program.

Each node in the repository has a separate table of key/value pairs that you can use to
store numbers, strings, or byte arrays. No provision is made for storing serializable
objects. The API designers felt that the serialization format is too fragile for long-term
storage. Of course, if you disagree, you can save serialized objects in byte arrays.

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 545

For additional flexibility, there are multiple parallel trees. Each program user has one
tree, and an additional tree, called the system tree, is available for settings that are com-
mon to all users. The Preferences class uses the operating system notion of the “current
user” for accessing the appropriate user tree.

To access a node in the tree, start with the user or system root:
Preferences root = Preferences.userRoot();

or
Preferences root = Preferences.systemRoot();

Then access the node. You can simply provide a node path name:
Preferences node = root.node("/com/mycompany/myapp");

A convenient shortcut gets a node whose path name equals the package name of a class.
Simply take an object of that class and call

Preferences node = Preferences.userNodeForPackage(obj.getClass());

or
Preferences node = Preferences.systemNodeForPackage(obj.getClass());

Typically, obj will be the this reference.

Once you have a node, you can access the key/value table with methods
String get(String key, String defval)
int getInt(String key, int defval)
long getLong(String key, long defval)
float getFloat(String key, float defval)
double getDouble(String key, double defval)
boolean getBoolean(String key, boolean defval)
byte[] getByteArray(String key, byte[] defval)

Note that you must specify a default value when reading the information, in case the
repository data is not available. Defaults are required for several reasons. The data
might be missing because the user never specified a preference. Certain resource-con-
strained platforms might not have a repository, and mobile devices might be tempo-
rarily disconnected from the repository.

Conversely, you can write data to the repository with put methods such as
put(String key, String value)
putInt(String key, int value)

and so on.

You can enumerate all keys stored in a node with the method
String[] keys

But there is currently no way to find out the type of the value of a particular key.

Central repositories such as the Windows registry traditionally suffer from two
problems:

• They turn into a “dumping ground,” filled with obsolete information.
• Configuration data gets entangled into the repository, making it difficult to move

preferences to a new platform.

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets546

The Preferences class has a solution for the second problem. You can export the prefer-
ences of a subtree (or, less commonly, a single node) by calling the methods

void exportSubtree(OutputStream out)
void exportNode(OutputStream out)

The data are saved in XML format. You can import them into another repository by
calling

void importPreferences(InputStream in)

Here is a sample file:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE preferences SYSTEM "http://java.sun.com/dtd/preferences.dtd">
<preferences EXTERNAL_XML_VERSION="1.0">
 <root type="user">
 <map/>
 <node name="com">
 <map/>
 <node name="horstmann">
 <map/>
 <node name="corejava">
 <map>
 <entry key="left" value="11"/>
 <entry key="top" value="9"/>
 <entry key="width" value="453"/>
 <entry key="height" value="365"/>
 <entry key="title" value="Hello, World!"/>
 </map>
 </node>
 </node>
 </node>
 </root>
</preferences>

If your program uses preferences, you should give your users the opportunity of export-
ing and importing them, so they can easily migrate their settings from one computer to
another. The program in Listing 10–8 demonstrates this technique. The program simply
saves the position, size, and title of the main window. Try resizing the window, then exit
and restart the application. The window will be just like you left it when you exited.

Listing 10–8 PreferencesTest.java

1. import java.awt.EventQueue;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.util.prefs.*;
5. import javax.swing.*;
6.

7. /**
8. * A program to test preference settings. The program remembers the frame position, size,
9. * and title.

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 547

10. * @version 1.02 2007-06-12
11. * @author Cay Horstmann
12. */
13. public class PreferencesTest
14. {
15. public static void main(String[] args)
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {
21. PreferencesFrame frame = new PreferencesFrame();
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. frame.setVisible(true);
24. }
25. });
26. }
27. }
28.

29. /**
30. * A frame that restores position and size from user preferences and updates the preferences
31. * upon exit.
32. */
33. class PreferencesFrame extends JFrame
34. {
35. public PreferencesFrame()
36. {
37. // get position, size, title from preferences
38.

39. Preferences root = Preferences.userRoot();
40. final Preferences node = root.node("/com/horstmann/corejava");
41. int left = node.getInt("left", 0);
42. int top = node.getInt("top", 0);
43. int width = node.getInt("width", DEFAULT_WIDTH);
44. int height = node.getInt("height", DEFAULT_HEIGHT);
45. setBounds(left, top, width, height);
46.

47. // if no title given, ask user
48.

49. String title = node.get("title", "");
50. if (title.equals("")) title = JOptionPane.showInputDialog("Please supply a frame title:");
51. if (title == null) title = "";
52. setTitle(title);
53.

54. // set up file chooser that shows XML files
55.

56. final JFileChooser chooser = new JFileChooser();
57. chooser.setCurrentDirectory(new File("."));
58.

Listing 10–8 PreferencesTest.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets548

59. // accept all files ending with .xml
60. chooser.setFileFilter(new javax.swing.filechooser.FileFilter()
61. {
62. public boolean accept(File f)
63. {
64. return f.getName().toLowerCase().endsWith(".xml") || f.isDirectory();
65. }
66.

67. public String getDescription()
68. {
69. return "XML files";
70. }
71. });
72.

73. // set up menus
74. JMenuBar menuBar = new JMenuBar();
75. setJMenuBar(menuBar);
76. JMenu menu = new JMenu("File");
77. menuBar.add(menu);
78.

79. JMenuItem exportItem = new JMenuItem("Export preferences");
80. menu.add(exportItem);
81. exportItem.addActionListener(new ActionListener()
82. {
83. public void actionPerformed(ActionEvent event)
84. {
85. if (chooser.showSaveDialog(PreferencesFrame.this) == JFileChooser.APPROVE_OPTION)
86. {
87. try
88. {
89. OutputStream out = new FileOutputStream(chooser.getSelectedFile());
90. node.exportSubtree(out);
91. out.close();
92. }
93. catch (Exception e)
94. {
95. e.printStackTrace();
96. }
97. }
98. }
99. });

100.

101. JMenuItem importItem = new JMenuItem("Import preferences");
102. menu.add(importItem);
103. importItem.addActionListener(new ActionListener()
104. {
105. public void actionPerformed(ActionEvent event)
106. {

Listing 10–8 PreferencesTest.java (continued)

Chapter 10. Deploying Applications and Applets

Storage of Application Preferences 549

• Preferences userRoot()
returns the root preferences node of the user of the calling program.

• Preferences systemRoot()
returns the systemwide root preferences node.

• Preferences node(String path)
returns a node that can be reached from the current node by the given path. If path
is absolute (that is, starts with a /), then the node is located starting from the root
of the tree containing this preference node. If there isn’t a node with the given
path, it is created.

107. if (chooser.showOpenDialog(PreferencesFrame.this) == JFileChooser.APPROVE_OPTION)
108. {
109. try
110. {
111. InputStream in = new FileInputStream(chooser.getSelectedFile());
112. Preferences.importPreferences(in);
113. in.close();
114. }
115. catch (Exception e)
116. {
117. e.printStackTrace();
118. }
119. }
120. }
121. });
122.

123. JMenuItem exitItem = new JMenuItem("Exit");
124. menu.add(exitItem);
125. exitItem.addActionListener(new ActionListener()
126. {
127. public void actionPerformed(ActionEvent event)
128. {
129. node.putInt("left", getX());
130. node.putInt("top", getY());
131. node.putInt("width", getWidth());
132. node.putInt("height", getHeight());
133. node.put("title", getTitle());
134. System.exit(0);
135. }
136. });
137. }
138.

139. public static final int DEFAULT_WIDTH = 300;
140. public static final int DEFAULT_HEIGHT = 200;
141. }

java.util.prefs.Preferences 1.4

Listing 10–8 PreferencesTest.java (continued)

Chapter 10. Deploying Applications and Applets

Chapter 10 ■ Deploying Applications and Applets550

• Preferences userNodeForPackage(Class cl)
• Preferences systemNodeForPackage(Class cl)

returns a node in the current user’s tree or the system tree whose absolute node
path corresponds to the package name of the class cl.

• String[] keys()
returns all keys belonging to this node.

• String get(String key, String defval)
• int getInt(String key, int defval)
• long getLong(String key, long defval)
• float getFloat(String key, float defval)
• double getDouble(String key, double defval)
• boolean getBoolean(String key, boolean defval)
• byte[] getByteArray(String key, byte[] defval)

returns the value associated with the given key, or the supplied default value if no
value is associated with the key, or the associated value is not of the correct type,
or the preferences store is unavailable.

• void put(String key, String value)
• void putInt(String key, int value)
• void putLong(String key, long value)
• void putFloat(String key, float value)
• void putDouble(String key, double value)
• void putBoolean(String key, boolean value)
• void putByteArray(String key, byte[] value)

stores a key/value pair with this node.
• void exportSubtree(OutputStream out)

writes the preferences of this node and its children to the specified stream.
• void exportNode(OutputStream out)

writes the preferences of this node (but not its children) to the specified stream.
• void importPreferences(InputStream in)

imports the preferences contained in the specified stream.

This concludes our discussion of Java software deployment. In the next chapter, you
learn how to use exceptions to tell your programs what to do when problems arise at
runtime. We also give you tips and techniques for testing and debugging so that not too
many things will go wrong when your programs run.

Chapter 10. Deploying Applications and Applets

ChapterChapter

551

EXCEPTIONS,
LOGGING,
ASSERTIONS, AND
DEBUGGING

▼ DEALING WITH ERRORS

▼ CATCHING EXCEPTIONS

▼ TIPS FOR USING EXCEPTIONS

▼ USING ASSERTIONS

▼ LOGGING

▼ DEBUGGING TIPS

▼ USING A DEBUGGER

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging552

In a perfect world, users would never enter data in the wrong form, files they
choose to open would always exist, and code would never have bugs. So far, we have
mostly presented code as though we lived in this kind of perfect world. It is now time to
turn to the mechanisms the Java programming language has for dealing with the real
world of bad data and buggy code.

Encountering errors is unpleasant. If a user loses all the work he or she did during a
program session because of a programming mistake or some external circumstance, that
user may forever turn away from your program. At the very least, you must

• Notify the user of an error;
• Save all work; and
• Allow users to gracefully exit the program.

For exceptional situations, such as bad input data with the potential to bomb the pro-
gram, Java uses a form of error trapping called, naturally enough, exception handling.
Exception handling in Java is similar to that in C++ or Delphi. The first part of this chap-
ter covers Java’s exceptions.

During testing, you want to run lots of checks to make sure your program does the right
thing. But those checks can be time-consuming and unnecessary after testing has com-
pleted. You could just remove the checks and stick them back in when additional testing
is required, but that is tedious. The second part of this chapter shows you how to use the
assertion facility for selectively activating checks.

When your program does the wrong thing, you can’t always communicate with the user
or terminate. Instead, you may want to record the problem for later analysis. The third
part of this chapter discusses the logging facility of Java SE.

Finally, we give you some tips on how to get useful information out of a running Java
application, and how to use the debugger in an IDE.

Dealing with Errors
Suppose an error occurs while a Java program is running. The error might be caused by a
file containing wrong information, a flaky network connection, or (we hate to mention it)
use of an invalid array index or an attempt to use an object reference that hasn’t yet been
assigned to an object. Users expect that programs will act sensibly when errors happen. If
an operation cannot be completed because of an error, the program ought to either

• Return to a safe state and enable the user to execute other commands; or
• Allow the user to save all work and terminate the program gracefully.

This may not be easy to do, because the code that detects (or even causes) the error
condition is usually far removed from the code that can roll back the data to a safe
state or the code that can save the user’s work and exit cheerfully. The mission of
exception handling is to transfer control from where the error occurred to an error
handler that can deal with the situation. To handle exceptional situations in your pro-
gram, you must take into account the errors and problems that may occur. What sorts
of problems do you need to consider?

• User input errors. In addition to the inevitable typos, some users like to blaze their
own trail instead of following directions. Suppose, for example, that a user asks to
connect to a URL that is syntactically wrong. Your code should check the syntax, but
suppose it does not. Then the network layer will complain.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Dealing with Errors 553

• Device errors. Hardware does not always do what you want it to. The printer may be
turned off. A web page may be temporarily unavailable. Devices will often fail in
the middle of a task. For example, a printer may run out of paper during printing.

• Physical limitations. Disks can fill up; you can run out of available memory.
• Code errors. A method may not perform correctly. For example, it could deliver

wrong answers or use other methods incorrectly. Computing an invalid array index,
trying to find a nonexistent entry in a hash table, and trying to pop an empty stack
are all examples of a code error.

The traditional reaction to an error in a method is to return a special error code that the
calling method analyzes. For example, methods that read information back from files
often return a –1 end-of-file value marker rather than a standard character. This can be
an efficient method for dealing with many exceptional conditions. Another common
return value to denote an error condition is the null reference. In Chapter 10, you saw an
example of this with the getParameter method of the Applet class that returns null if the que-
ried parameter is not present.

Unfortunately, it is not always possible to return an error code. There may be no obvious
way of distinguishing valid and invalid data. A method returning an integer cannot
simply return –1 to denote the error—the value –1 might be a perfectly valid result.

Instead, as we mentioned back in Chapter 5, Java allows every method an alternative exit
path if it is unable to complete its task in the normal way. In this situation, the method
does not return a value. Instead, it throws an object that encapsulates the error informa-
tion. Note that the method exits immediately; it does not return its normal (or any) value.
Moreover, execution does not resume at the code that called the method; instead, the
exception-handling mechanism begins its search for an exception handler that can deal
with this particular error condition.

Exceptions have their own syntax and are part of a special inheritance hierarchy. We
take up the syntax first and then give a few hints on how to use this language feature
effectively.

The Classification of Exceptions
In the Java programming language, an exception object is always an instance of a class
derived from Throwable. As you will soon see, you can create your own exception classes
if the ones built into Java do not suit your needs.

Figure 11–1 is a simplified diagram of the exception hierarchy in Java.

Notice that all exceptions descend from Throwable, but the hierarchy immediately splits
into two branches: Error and Exception.

The Error hierarchy describes internal errors and resource exhaustion inside the Java
runtime system. You should not throw an object of this type. There is little you can do if
such an internal error occurs, beyond notifying the user and trying to terminate the
program gracefully. These situations are quite rare.

When doing Java programming, you focus on the Exception hierarchy. The Exception hier-
archy also splits into two branches: exceptions that derive from RuntimeException and those
that do not. The general rule is this: A RuntimeException happens because you made a pro-
gramming error. Any other exception occurs because a bad thing, such as an I/O error,
happened to your otherwise good program.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging554

Figure 11–1 Exception hierarchy in Java

Exceptions that inherit from RuntimeException include such problems as

• A bad cast
• An out-of-bounds array access
• A null pointer access

Exceptions that do not inherit from RuntimeException include

• Trying to read past the end of a file
• Trying to open a malformed URL
• Trying to find a Class object for a string that does not denote an existing class

The rule “If it is a RuntimeException, it was your fault” works pretty well. You could have
avoided that ArrayIndexOutOfBoundsException by testing the array index against the array
bounds. The NullPointerException would not have happened had you checked whether the
variable was null before using it.

How about a malformed URL? Isn’t it also possible to find out whether it is “mal-
formed” before using it? Well, different browsers can handle different kinds of URLs.
For example, Netscape can deal with a mailto: URL, whereas the applet viewer cannot.
Thus, the notion of “malformed” depends on the environment, not just on your code.

The Java Language Specification calls any exception that derives from the class Error or
the class RuntimeException an unchecked exception. All other exceptions are called checked
exceptions. This is useful terminology that we also adopt. The compiler checks that you
provide exception handlers for all checked exceptions.

Runtime
ExceptionIOException

ExceptionError

Throwable

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Dealing with Errors 555

NOTE: The name RuntimeException is somewhat confusing. Of course, all of the errors we
are discussing occur at runtime.

C++ NOTE: If you are familiar with the (much more limited) exception hierarchy of the
standard C++ library, you will be really confused at this point. C++ has two fundamental
exception classes, runtime_error and logic_error. The logic_error class is the equivalent of
Java’s RuntimeException and also denotes logical errors in the program. The runtime_error
class is the base class for exceptions caused by unpredictable problems. It is equivalent to
exceptions in Java that are not of type RuntimeException.

Declaring Checked Exceptions
A Java method can throw an exception if it encounters a situation it cannot handle. The
idea is simple: a method will not only tell the Java compiler what values it can return, it
is also going to tell the compiler what can go wrong. For example, code that attempts to read
from a file knows that the file might not exist or that it might be empty. The code that
tries to process the information in a file therefore will need to notify the compiler that it
can throw some sort of IOException.

The place in which you advertise that your method can throw an exception is the header
of the method; the header changes to reflect the checked exceptions the method can
throw. For example, here is the declaration of one of the constructors of the FileInput-
Stream class from the standard library. (See Chapter 12 for more on streams.)

public FileInputStream(String name) throws FileNotFoundException

The declaration says that this constructor produces a FileInputStream object from a String
parameter but that it also can go wrong in a special way—by throwing a FileNotFoundExcep-
tion. If this sad state should come to pass, the constructor call will not initialize a new
FileInputStream object but instead will throw an object of the FileNotFoundException class. If it
does, then the runtime system will begin to search for an exception handler that knows
how to deal with FileNotFoundException objects.

When you write your own methods, you don’t have to advertise every possible throw-
able object that your method might actually throw. To understand when (and what) you
have to advertise in the throws clause of the methods you write, keep in mind that an
exception is thrown in any of the following four situations:

• You call a method that throws a checked exception, for example, the FileInputStream
constructor.

• You detect an error and throw a checked exception with the throw statement (we
cover the throw statement in the next section).

• You make a programming error, such as a[-1] = 0 that gives rise to an unchecked
exception such as an ArrayIndexOutOfBoundsException.

• An internal error occurs in the virtual machine or runtime library.

If either of the first two scenarios occurs, you must tell the programmers who will use
your method about the possibility of an exception. Why? Any method that throws an

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging556

exception is a potential death trap. If no handler catches the exception, the current
thread of execution terminates.

As with Java methods that are part of the supplied classes, you declare that your
method may throw an exception with an exception specification in the method header.

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws IOException
 {
 . . .
 }
}

If a method might throw more than one checked exception type, you must list all excep-
tion classes in the header. Separate them by a comma as in the following example:

class MyAnimation
{
 . . .
 public Image loadImage(String s) throws EOFException, MalformedURLException
 {
 . . .
 }
}

However, you do not need to advertise internal Java errors, that is, exceptions inheriting
from Error. Any code could potentially throw those exceptions, and they are entirely
beyond your control.

Similarly, you should not advertise unchecked exceptions inheriting from RuntimeException.
class MyAnimation
{
 . . .
 void drawImage(int i) throws ArrayIndexOutOfBoundsException // bad style
 {
 . . .
 }
}

These runtime errors are completely under your control. If you are so concerned about
array index errors, you should spend the time needed to fix them instead of advertising
the possibility that they can happen.

In summary, a method must declare all the checked exceptions that it might throw.
Unchecked exceptions are either beyond your control (Error) or result from conditions
that you should not have allowed in the first place (RuntimeException). If your method fails
to faithfully declare all checked exceptions, the compiler will issue an error message.

Of course, as you have already seen in quite a few examples, instead of declaring the
exception, you can also catch it. Then the exception won’t be thrown out of the method,
and no throws specification is necessary. You see later in this chapter how to decide
whether to catch an exception or to enable someone else to catch it.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Dealing with Errors 557

CAUTION: If you override a method from a superclass, the checked exceptions that the sub-
class method declares cannot be more general than those of the superclass method. (It is
ok to throw more specific exceptions, or not to throw any exceptions in the subclass
method.) In particular, if the superclass method throws no checked exception at all, neither
can the subclass. For example, if you override JComponent.paintComponent, your paintComponent
method must not throw any checked exceptions, because the superclass method doesn’t
throw any.

When a method in a class declares that it throws an exception that is an instance of a
particular class, then it may throw an exception of that class or of any of its subclasses.
For example, the FileInputStream constructor could have declared that it throws an IOExcep-
tion. In that case, you would not have known what kind of IOException. It could be a plain
IOException or an object of one of the various subclasses, such as FileNotFoundException.

C++ NOTE: The throws specifier is the same as the throw specifier in C++, with one impor-
tant difference. In C++, throw specifiers are enforced at runtime, not at compile time. That is,
the C++ compiler pays no attention to exception specifications. But if an exception is thrown
in a function that is not part of the throw list, then the unexpected function is called, and, by
default, the program terminates.

Also, in C++, a function may throw any exception if no throw specification is given. In Java, a
method without a throws specifier may not throw any checked exception at all.

How to Throw an Exception
Let us suppose something terrible has happened in your code. You have a method,
readData, that is reading in a file whose header promised

Content-length: 1024

but you get an end of file after 733 characters. You decide this situation is so abnormal
that you want to throw an exception.

You need to decide what exception type to throw. Some kind of IOException would be a
good choice. Perusing the Java API documentation, you find an EOFException with the
description “Signals that an EOF has been reached unexpectedly during input.” Perfect.
Here is how you throw it:

throw new EOFException();

or, if you prefer,
EOFException e = new EOFException();
throw e;

Here is how it all fits together:
String readData(Scanner in) throws EOFException
{
 . . .
 while (. . .)
 {
 if (!in.hasNext()) // EOF encountered
 {

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging558

 if (n < len)
 throw new EOFException();
 }
 . . .
 }
 return s;
}

The EOFException has a second constructor that takes a string argument. You can put this
to good use by describing the exceptional condition more carefully.

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);

As you can see, throwing an exception is easy if one of the existing exception classes
works for you. In this case:

1. Find an appropriate exception class.
2. Make an object of that class.
3. Throw it.

Once a method throws an exception, the method does not return to its caller. This means
that you do not have to worry about cooking up a default return value or an error code.

C++ NOTE: Throwing an exception is the same in C++ and in Java, with one small exception.
In Java, you can throw only objects of subclasses of Throwable. In C++, you can throw values of
any type.

Creating Exception Classes
Your code may run into a problem that is not adequately described by any of the stan-
dard exception classes. In this case, it is easy enough to create your own exception class.
Just derive it from Exception or from a child class of Exception such as IOException. It is
customary to give both a default constructor and a constructor that contains a detailed
message. (The toString method of the Throwable superclass prints that detailed message,
which is handy for debugging.)

class FileFormatException extends IOException
{
 public FileFormatException() {}
 public FileFormatException(String gripe)
 {
 super(gripe);
 }
}

Now you are ready to throw your very own exception type.
String readData(BufferedReader in) throws FileFormatException
{
 . . .
 while (. . .)
 {
 if (ch == -1) // EOF encountered

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Catching Exceptions 559

 {
 if (n < len)
 throw new FileFormatException();
 }
 . . .
 }
 return s;
}

• Throwable()
constructs a new Throwable object with no detailed message.

• Throwable(String message)
constructs a new Throwable object with the specified detailed message. By
convention, all derived exception classes support both a default constructor and a
constructor with a detailed message.

• String getMessage()
gets the detailed message of the Throwable object.

Catching Exceptions
You now know how to throw an exception. It is pretty easy. You throw it and you forget
it. Of course, some code has to catch the exception. Catching exceptions requires more
planning.

If an exception occurs that is not caught anywhere, the program will terminate and
print a message to the console, giving the type of the exception and a stack trace.
Graphics programs (both applets and applications) catch exceptions, print stack trace
messages, and then go back to the user interface processing loop. (When you are
debugging a graphically based program, it is a good idea to keep the console available
on the screen and not minimized.)

To catch an exception, you set up a try/catch block. The simplest form of the try block is
as follows:

try
{
 code
 more code
 more code
}
catch (ExceptionType e)
{
 handler for this type
}

If any of the code inside the try block throws an exception of the class specified in the
catch clause, then

1. The program skips the remainder of the code in the try block.
2. The program executes the handler code inside the catch clause.

java.lang.Throwable 1.0

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging560

If none of the code inside the try block throws an exception, then the program skips the
catch clause.

If any of the code in a method throws an exception of a type other than the one named
in the catch clause, this method exits immediately. (Hopefully, one of its callers has
already coded a catch clause for that type.)

To show this at work, we show some fairly typical code for reading in data:
public void read(String filename)
{
 try
 {
 InputStream in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {
 process input
 }
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

Notice that most of the code in the try clause is straightforward: it reads and processes
bytes until we encounter the end of the file. As you can see by looking at the Java API,
there is the possibility that the read method will throw an IOException. In that case, we skip
out of the entire while loop, enter the catch clause and generate a stack trace. For a toy
program, that seems like a reasonable way to deal with this exception. What other
choice do you have?

Often, the best choice is to do nothing at all and simply pass the exception on to the
caller. If an error occurs in the read method, let the caller of the read method worry about
it! If we take that approach, then we have to advertise the fact that the method may
throw an IOException.

public void read(String filename) throws IOException
{
 InputStream in = new FileInputStream(filename);
 int b;
 while ((b = in.read()) != -1)
 {
 process input
 }
}

Remember, the compiler strictly enforces the throws specifiers. If you call a method that
throws a checked exception, you must either handle it or pass it on.

Which of the two is better? As a general rule, you should catch those exceptions that
you know how to handle and propagate those that you do not know how to handle.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Catching Exceptions 561

When you propagate an exception, you must add a throws specifier to alert the caller that
an exception may be thrown.

Look at the Java API documentation to see what methods throw which exceptions. Then
decide whether you should handle them or add them to the throws list. There is nothing
embarrassing about the latter choice. It is better to direct an exception to a competent
handler than to squelch it.

Please keep in mind that there is one exception to this rule, as we mentioned earlier. If
you are writing a method that overrides a superclass method that throws no exceptions
(such as paintComponent in JComponent), then you must catch each checked exception in the
method’s code. You are not allowed to add more throws specifiers to a subclass method
than are present in the superclass method.

C++ NOTE: Catching exceptions is almost the same in Java and in C++. Strictly speaking,
the analog of

catch (Exception e) // Java
is

catch (Exception& e) // C++

There is no analog to the C++ catch (...). This is not needed in Java because all exceptions
derive from a common superclass.

Catching Multiple Exceptions
You can catch multiple exception types in a try block and handle each type differently.
You use a separate catch clause for each type as in the following example:

try
{
 code that might throw exceptions
}
catch (MalformedURLException e1)
{
 emergency action for malformed URLs
}
catch (UnknownHostException e2)
{
 emergency action for unknown hosts
}
catch (IOException e3)
{
 emergency action for all other I/O problems
}

The exception object (e1, e2, e3) may contain information about the nature of the excep-
tion. To find out more about the object, try

e3.getMessage()

to get the detailed error message (if there is one), or
e3.getClass().getName()

to get the actual type of the exception object.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging562

Rethrowing and Chaining Exceptions
You can throw an exception in a catch clause. Typically, you do this because you want to
change the exception type. If you build a subsystem that other programmers use, it
makes a lot of sense to use an exception type that indicates a failure of the subsystem.
An example of such an exception type is the ServletException. The code that executes a
servlet may not want to know in minute detail what went wrong, but it definitely wants
to know that the servlet was at fault.

Here is how you can catch an exception and rethrow it:
try
{
 access the database
}
catch (SQLException e)
{
 throw new ServletException("database error: " + e.getMessage());
}

Here, the ServletException is constructed with the message text of the exception. As of Java
SE 1.4, you can do better than that and set the original exception as the “cause” of the
new exception:

try
{
 access the database
}
catch (SQLException e)
{
 Throwable se = new ServletException("database error");
 se.initCause(e);
 throw se;
}

When the exception is caught, the original exception can be retrieved:
Throwable e = se.getCause();

This wrapping technique is highly recommended. It allows you to throw high-level
exceptions in subsystems without losing the details of the original failure.

TIP: The wrapping technique is also useful if a checked exception occurs in a method that is
not allowed to throw a checked exception. You can catch the checked exception and wrap it
into a runtime exception.

NOTE: A number of exception classes, such as ClassNotFoundException, InvocationTarget-
Exception, and RuntimeException, have had their own chaining schemes. As of Java SE 1.4,
these have been brought into conformance with the “cause” mechanism. You can still
retrieve the chained exception in the historical way or just call getCause.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Catching Exceptions 563

The finally Clause
When your code throws an exception, it stops processing the remaining code in your
method and exits the method. This is a problem if the method has acquired some local
resource that only it knows about and if that resource must be cleaned up. One solution
is to catch and rethrow all exceptions. But this solution is tedious because you need to
clean up the resource allocation in two places, in the normal code and in the exception
code.

Java has a better solution, the finally clause. Here we show you how to properly dispose
of a Graphics object. If you do any database programming in Java, you will need to use the
same techniques to close connections to the database. As you will see in Chapter 4 of
Volume II, it is very important to close all database connections properly, even when
exceptions occur.

The code in the finally clause executes whether or not an exception was caught. In the fol-
lowing example, the program will dispose of the graphics context under all circumstances:

Graphics g = image.getGraphics();
try
{
 // 1
 code that might throw exceptions
 // 2
}
catch (IOException e)
{
 // 3
 show error dialog
 // 4
}
finally
{
 // 5
 g.dispose();
}
// 6

Let us look at the three possible situations in which the program will execute the
finally clause.

1. The code throws no exceptions. In this event, the program first executes all the
code in the try block. Then, it executes the code in the finally clause. Afterwards,
execution continues with the first statement after the finally clause. In other words,
execution passes through points 1, 2, 5, and 6.

2. The code throws an exception that is caught in a catch clause, in our case, an
IOException. For this, the program executes all code in the try block, up to the point
at which the exception was thrown. The remaining code in the try block is skipped.
The program then executes the code in the matching catch clause, then the code in
the finally clause.
If the catch clause does not throw an exception, the program executes the first line after
the finally clause. In this scenario, execution passes through points 1, 3, 4, 5, and 6.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging564

If the catch clause throws an exception, then the exception is thrown back to the
caller of this method, and execution passes through points 1, 3, and 5 only.

3. The code throws an exception that is not caught in any catch clause. For this, the pro-
gram executes all code in the try block until the exception is thrown. The remaining
code in the try block is skipped. Then, the code in the finally clause is executed, and
the exception is thrown back to the caller of this method. Execution passes through
points 1 and 5 only.

You can use the finally clause without a catch clause. For example, consider the following
try statement:

InputStream in = ...;
try
{
 code that might throw exceptions
}
finally
{
 in.close();
}

The in.close() statement in the finally clause is executed whether or not an exception is
encountered in the try block. Of course, if an exception is encountered, it is rethrown
and must be caught in another catch clause.

In fact, as explained in the following tip, we think it is a very good idea to use the finally
clause in this way whenever you need to close a resource.

TIP: We strongly suggest that you decouple try/catch and try/finally blocks. This makes
your code far less confusing. For example:

InputStream in = ...;
try
{
 try
 {
 code that might throw exceptions
 }
 finally
 {
 in.close();
 }
}
catch (IOException e)
{
 show error dialog
}

The inner try block has a single responsibility: to make sure that the input stream is closed.
The outer try block has a single responsibility: to ensure that errors are reported. Not only is
this solution clearer, it is also more functional: errors in the finally clause are reported.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Catching Exceptions 565

CAUTION: A finally clause can yield unexpected results when it contains return statements.
Suppose you exit the middle of a try block with a return statement. Before the method returns,
the contents of the finally block are executed. If the finally block also contains a return state-
ment, then it masks the original return value. Consider this contrived example:

public static int f(int n)
{
 try
 {
 int r = n * n;
 return r;
 }
 finally
 {
 if (n == 2) return 0;
 }
}

If you call f(2), then the try block computes r = 4 and executes the return statement. How-
ever, the finally clause is executed before the method actually returns. The finally clause
causes the method to return 0, ignoring the original return value of 4.

Sometimes the finally clause gives you grief, namely if the cleanup method can also
throw an exception. A typical case is closing a stream. (See Chapter 1 of Volume II for
more information on streams.) Suppose you want to make sure that you close a stream
when an exception hits in the stream processing code.

InputStream in = ...;
try
{
 code that might throw exceptions
}
finally
{
 in.close();
}

Now suppose that the code in the try block throws some exception other than an
IOException that is of interest to the caller of the code. The finally block executes, and
the close method is called. That method can itself throw an IOException! When it does,
then the original exception is lost and the IOException is thrown instead. That is very
much against the spirit of exception handling.

It is always a good idea—unfortunately not one that the designers of the InputStream class
chose to follow—to throw no exceptions in cleanup operations such as dispose, close, and
so on, that you expect users to call in finally blocks.

C++ NOTE: There is one fundamental difference between C++ and Java with regard to
exception handling. Java has no destructors; thus, there is no stack unwinding as in C++.
This means that the Java programmer must manually place code to reclaim resources in
finally blocks. Of course, because Java does garbage collection, there are far fewer
resources that require manual deallocation.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging566

Analyzing Stack Trace Elements
A stack trace is a listing of all pending method calls at a particular point in the execution
of a program. You have almost certainly seen stack trace listings—they are displayed
whenever a Java program terminates with an uncaught exception.

Before Java SE 1.4, you could access the text description of a stack trace by calling the
printStackTrace method of the Throwable class. Now you can call the getStackTrace method
to get an array of StackTraceElement objects that you can analyze in your program. For
example:

Throwable t = new Throwable();
StackTraceElement[] frames = t.getStackTrace();
for (StackTraceElement frame : frames)
 analyze frame

The StackTraceElement class has methods to obtain the file name and line number, as well
as the class and method name, of the executing line of code. The toString method yields a
formatted string containing all of this information.

Java SE 5.0 added the static Thread.getAllStackTraces method that yields the stack traces of
all threads. Here is how you use that method:

Map<Thread, StackTraceElement[]> map = Thread.getAllStackTraces();
for (Thread t : map.keySet())
{
 StackTraceElement[] frames = map.get(t);
 analyze frames
}

See Chapters 13 and 14 for more information on the Map interface and threads.

Listing 11–1 prints the stack trace of a recursive factorial function. For example, if you
compute factorial(3), the printout is

factorial(3):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.main(StackTraceTest.java:34)
factorial(2):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.main(StackTraceTest.java:34)
factorial(1):
StackTraceTest.factorial(StackTraceTest.java:18)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.factorial(StackTraceTest.java:24)
StackTraceTest.main(StackTraceTest.java:34)
return 1
return 2
return 6

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Catching Exceptions 567

• Throwable(Throwable cause) 1.4
• Throwable(String message, Throwable cause) 1.4

constructs a Throwable with a given cause.
• Throwable initCause(Throwable cause) 1.4

sets the cause for this object or throws an exception if this object already has a
cause. Returns this.

Listing 11–1 StackTraceTest.java

1. import java.util.*;
2.

3. /**
4. * A program that displays a trace feature of a recursive method call.
5. * @version 1.01 2004-05-10
6. * @author Cay Horstmann
7. */
8. public class StackTraceTest
9. {

10. /**
11. * Computes the factorial of a number
12. * @param n a nonnegative integer
13. * @return n! = 1 * 2 * . . . * n
14. */
15. public static int factorial(int n)
16. {
17. System.out.println("factorial(" + n + "):");
18. Throwable t = new Throwable();
19. StackTraceElement[] frames = t.getStackTrace();
20. for (StackTraceElement f : frames)
21. System.out.println(f);
22. int r;
23. if (n <= 1) r = 1;
24. else r = n * factorial(n - 1);
25. System.out.println("return " + r);
26. return r;
27. }
28.

29. public static void main(String[] args)
30. {
31. Scanner in = new Scanner(System.in);
32. System.out.print("Enter n: ");
33. int n = in.nextInt();
34. factorial(n);
35. }
36. }

java.lang.Throwable 1.0

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging568

• Throwable getCause() 1.4
gets the exception object that was set as the cause for this object, or null if no cause
was set.

• StackTraceElement[] getStackTrace() 1.4
gets the trace of the call stack at the time this object was constructed.

• Exception(Throwable cause) 1.4
• Exception(String message, Throwable cause)

constructs an Exception with a given cause.

• RuntimeException(Throwable cause) 1.4
• RuntimeException(String message, Throwable cause) 1.4

constructs a RuntimeException with a given cause.

• String getFileName()
gets the name of the source file containing the execution point of this element, or
null if the information is not available.

• int getLineNumber()
gets the line number of the source file containing the execution point of this
element, or –1 if the information is not available.

• String getClassName()
gets the fully qualified name of the class containing the execution point of this
element.

• String getMethodName()
gets the name of the method containing the execution point of this element. The
name of a constructor is <init>. The name of a static initializer is <clinit>. You can’t
distinguish between overloaded methods with the same name.

• boolean isNativeMethod()
returns true if the execution point of this element is inside a native method.

• String toString()
returns a formatted string containing the class and method name and the file
name and line number, if available.

Tips for Using Exceptions
There is a certain amount of controversy about the proper use of exceptions. Some
programmers believe that all checked exceptions are a nuisance, others can’t seem to
throw enough of them. We think that exceptions (even checked exceptions) have their
place, and offer you these tips for their proper use.

java.lang.Exception 1.0

java.lang.RuntimeException 1.0

java.lang.StackTraceElement 1.4

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Tips for Using Exceptions 569

1. Exception handling is not supposed to replace a simple test.
As an example of this, we wrote some code that tries 10,000,000 times to pop an
empty stack. It first does this by finding out whether the stack is empty.

if (!s.empty()) s.pop();

Next, we tell it to pop the stack no matter what. Then, we catch the EmptyStackException
that tells us that we should not have done that.

try()
{
 s.pop();
}
catch (EmptyStackException e)
{
}

On our test machine, we got the timing data in Table 11–1.

As you can see, it took far longer to catch an exception than it did to perform a sim-
ple test. The moral is: Use exceptions for exceptional circumstances only.

2. Do not micromanage exceptions.
Many programmers wrap every statement in a separate try block.

OutputStream out;
Stack s;

for (i = 0; i < 100; i++)
{
 try
 {
 n = s.pop();
 }
 catch (EmptyStackException s)
 {
 // stack was empty
 }
 try
 {
 out.writeInt(n);
 }
 catch (IOException e)
 {
 // problem writing to file
 }
}

Table 11–1 Timing Data

Test Throw/Catch

646 milliseconds 21,739 milliseconds

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging570

This approach blows up your code dramatically. Think about the task that you want the
code to accomplish. Here we want to pop 100 numbers off a stack and save them to a file.
(Never mind why—it is just a toy example.) There is nothing we can do if a problem
rears its ugly head. If the stack is empty, it will not become occupied. If the file contains
an error, the error will not magically go away. It therefore makes sense to wrap the entire
task in a try block. If any one operation fails, you can then abandon the task.
try
{
 for (i = 0; i < 100; i++)
 {
 n = s.pop();
 out.writeInt(n);
 }
}
catch (IOException e)
{
 // problem writing to file
}
catch (EmptyStackException s)
{
 // stack was empty
}

This code looks much cleaner. It fulfills one of the promises of exception handling,
to separate normal processing from error handling.

3. Make good use of the exception hierarchy.

Don’t just throw a RuntimeException. Find an appropriate subclass or create your own.
Don’t just catch Throwable. It makes your code hard to read and maintain.
Respect the difference between checked and unchecked exceptions. Checked excep-
tions are inherently burdensome—don’t throw them for logic errors. (For example,
the reflection library gets this wrong. Callers often need to catch exceptions that
they know can never happen.)
Do not hesitate to turn an exception into another exception that is more appropriate.
For example, when you parse an integer in a file, catch the NumberFormatException and
turn it into a subclass of IOException or MySubsystemException.

4. Do not squelch exceptions.

In Java, there is the tremendous temptation to shut up exceptions. You write a
method that calls a method that might throw an exception once a century. The com-
piler whines because you have not declared the exception in the throws list of your
method. You do not want to put it in the throws list because then the compiler will
whine about all the methods that call your method. So you just shut it up:

public Image loadImage(String s)
{
 try
 {
 code that threatens to throw checked exceptions
 }
 catch (Exception e)
 {} // so there
}

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Using Assertions 571

Now your code will compile without a hitch. It will run fine, except when an excep-
tion occurs. Then, the exception will be silently ignored. If you believe that excep-
tions are at all important, you should make some effort to handle them right.

5. When you detect an error, “tough love” works better than indulgence.

Some programmers worry about throwing exceptions when they detect errors.
Maybe it would be better to return a dummy value rather than throw an exception
when a method is called with invalid parameters. For example, should Stack.pop
return null rather than throw an exception when a stack is empty? We think it is bet-
ter to throw a EmptyStackException at the point of failure than to have a NullPointerException
occur at later time.

6. Propagating exceptions is not a sign of shame.

Many programmers feel compelled to catch all exceptions that are thrown. If they
call a method that throws an exception, such as the FileInputStream constructor or the
readLine method, they instinctively catch the exception that may be generated. Often,
it is actually better to propagate the exception instead of catching it:

public void readStuff(String filename) throws IOException // not a sign of shame!

{

 InputStream in = new FileInputStream(filename);
 . . .
}

Higher-level methods are often better equipped to inform the user of errors or to
abandon unsuccessful commands.

NOTE: Rules 5 and 6 can be summarized as “throw early, catch late.”

Using Assertions
Assertions are a commonly used idiom for defensive programming. Suppose you are
convinced that a particular property is fulfilled, and you rely on that property in your
code. For example, you may be computing

double y = Math.sqrt(x);

You are certain that x is not negative. Perhaps it is the result of another computation that
can’t have a negative result, or it is a parameter of a method that requires its callers to
supply only positive inputs. Still, you want to double-check rather than having confus-
ing “not a number” floating-point values creep into your computation. You could, of
course, throw an exception:

if (x < 0) throw new IllegalArgumentException("x < 0");

But this code stays in the program, even after testing is complete. If you have lots of
checks of this kind, the program runs quite a bit slower than it should.

The assertion mechanism allows you to put in checks during testing and to have them
automatically removed in the production code.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging572

As of Java SE 1.4, the Java language has a keyword assert. There are two forms:
assert condition;

and
assert condition : expression;

Both statements evaluate the condition and throw an AssertionError if it is false. In the sec-
ond statement, the expression is passed to the constructor of the AssertionError object and
turned into a message string.

NOTE: The sole purpose of the expression part is to produce a message string. The Assertion-
Error object does not store the actual expression value, so you can’t query it later. As the JDK
documentation states with paternalistic charm, doing so “would encourage programmers to
attempt to recover from assertion failure, which defeats the purpose of the facility.”

To assert that x is nonnegative, you can simply use the statement
assert x >= 0;

Or you can pass the actual value of x into the AssertionError object, so that it gets displayed
later.

assert x >= 0 : x;

C++ NOTE: The assert macro of the C language turns the assertion condition into a string
that is printed if the assertion fails. For example, if assert(x >= 0) fails, it prints that "x >= 0" is
the failing condition. In Java, the condition is not automatically part of the error report. If you
want to see it, you have to pass it as a string into the AssertionError object: assert x >= 0 : "x
>= 0".

Assertion Enabling and Disabling
By default, assertions are disabled. You enable them by running the program with the
-enableassertions or -ea option:

java -enableassertions MyApp

Note that you do not have to recompile your program to enable or disable assertions.
Enabling or disabling assertions is a function of the class loader. When assertions are dis-
abled, the class loader strips out the assertion code so that it won’t slow execution.

You can even turn on assertions in specific classes or in entire packages. For example:
java -ea:MyClass -ea:com.mycompany.mylib... MyApp

This command turns on assertions for the class MyClass and all classes in the
com.mycompany.mylib package and its subpackages. The option -ea... turns on assertions in
all classes of the default package.

You can also disable assertions in certain classes and packages with the -disableassertions
or -da option:

java -ea:... -da:MyClass MyApp

Some classes are not loaded by a class loader but directly by the virtual machine. You
can use these switches to selectively enable or disable assertions in those classes.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Using Assertions 573

However, the -ea and -da switches that enable or disable all assertions do not apply to
the “system classes” without class loaders. Use the -enablesystemassertions/-esa switch to
enable assertions in system classes.

It is also possible to programmatically control the assertion status of class loaders. See
the API notes at the end of this section.

Using Assertions for Parameter Checking
The Java language gives you three mechanisms to deal with system failures:

• Throwing an exception
• Logging
• Using assertions

When should you choose assertions? Keep these points in mind:

• Assertion failures are intended to be fatal, unrecoverable errors.
• Assertion checks are turned on only during development and testing. (This is some-

times jokingly described as “wearing a life jacket when you are close to shore, and
throwing it overboard once you are in the middle of the ocean.”)

Therefore, you would not use assertions for signaling recoverable conditions to another
part of the program or for communicating problems to the program user. Assertions
should only be used to locate internal program errors during testing.

Let’s look at a common scenario—the checking of method parameters. Should you use
assertions to check for illegal index values or null references? To answer that question,
you have to look at the documentation of the method. Suppose you implement a sorting
method.

/**

 Sorts the specified range of the specified array into ascending numerical order.
 The range to be sorted extends from fromIndex, inclusive, to toIndex, exclusive.
 @param a the array to be sorted.
 @param fromIndex the index of the first element (inclusive) to be sorted.
 @param toIndex the index of the last element (exclusive) to be sorted.
 @throws IllegalArgumentException if fromIndex > toIndex
 @throws ArrayIndexOutOfBoundsException if fromIndex < 0 or toIndex > a.length

*/
static void sort(int[] a, int fromIndex, int toIndex)

The documentation states that the method throws an exception if the index values are
incorrect. That behavior is part of the contract that the method makes with its callers. If
you implement the method, you have to respect that contract and throw the indicated
exceptions. It would not be appropriate to use assertions instead.

Should you assert that a is not null? That is not appropriate either. The method documen-
tation is silent on the behavior of the method when a is null. The callers have the right to
assume that the method will return successfully in that case and not throw an assertion
error.

However, suppose the method contract had been slightly different:
@param a the array to be sorted. (Must not be null)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging574

Now the callers of the method have been put on notice that it is illegal to call the method
with a null array. Then the method may start with the assertion

assert a != null;

Computer scientists call this kind of contract a precondition. The original method had no
preconditions on its parameters—it promised a well-defined behavior in all cases. The
revised method has a single precondition: that a is not null. If the caller fails to fulfill the
precondition, then all bets are off and the method can do anything it wants. In fact, with
the assertion in place, the method has a rather unpredictable behavior when it is called
illegally. It sometimes throws an assertion error, and sometimes a null pointer exception,
depending on how its class loader is configured.

Using Assertions for Documenting Assumptions
Many programmers use comments to document their underlying assumptions. Con-
sider this example from http://java.sun.com/javase/6/docs/technotes/guides/language/assert.html:

if (i % 3 == 0)
 . . .
else if (i % 3 == 1)
 . . .
else // (i % 3 == 2)
 . . .

In this case, it makes a lot of sense to use an assertion instead.
if (i % 3 == 0)
 . . .
else if (i % 3 == 1)
 . . .
else
{
 assert i % 3 == 2;
 . . .
}

Of course, it would make even more sense to think through the issue a bit more thor-
oughly. What are the possible values of i % 3? If i is positive, the remainders must be 0, 1,
or 2. If i is negative, then the remainders can be −1 or −2. Thus, the real assumption is
that i is not negative. A better assertion would be

assert i >= 0;

before the if statement.

At any rate, this example shows a good use of assertions as a self-check for the program-
mer. As you can see, assertions are a tactical tool for testing and debugging. In contrast,
logging is a strategic tool for the entire life cycle of a program. We will examine logging
in the next section.

• void setDefaultAssertionStatus(boolean b) 1.4
enables or disables assertions for all classes loaded by this class loader that don’t
have an explicit class or package assertion status.

java.lang.ClassLoader 1.0

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 575

• void setClassAssertionStatus(String className, boolean b) 1.4
enables or disables assertions for the given class and its inner classes.

• void setPackageAssertionStatus(String packageName, boolean b) 1.4
enables or disables assertions for all classes in the given package and its
subpackages.

• void clearAssertionStatus() 1.4
removes all explicit class and package assertion status settings and disables
assertions for all classes loaded by this class loader.

Logging
Every Java programmer is familiar with the process of inserting calls to System.out.println
into troublesome code to gain insight into program behavior. Of course, once you have fig-
ured out the cause of trouble, you remove the print statements, only to put them back in
when the next problem surfaces. The logging API is designed to overcome this problem.
Here are the principal advantages of the API:

• It is easy to suppress all log records or just those below a certain level, and just as
easy to turn them back on.

• Suppressed logs are very cheap, so that there is only a minimal penalty for leaving
the logging code in your application.

• Log records can be directed to different handlers, for display in the console, for
storage in a file, and so on.

• Both loggers and handlers can filter records. Filters discard boring log entries, using
any criteria supplied by the filter implementor.

• Log records can be formatted in different ways, for example, in plain text or XML.
• Applications can use multiple loggers, with hierarchical names such as

com.mycompany.myapp, similar to package names.
• By default, the logging configuration is controlled by a configuration file. Applica-

tions can replace this mechanism if desired.

Basic Logging
Let’s get started with the simplest possible case. The logging system manages a default
logger Logger.global that you can use instead of System.out. Use the info method to log an
information message:

Logger.global.info("File->Open menu item selected");

By default, the record is printed like this:
May 10, 2004 10:12:15 PM LoggingImageViewer fileOpen
INFO: File->Open menu item selected

(Note that the time and the names of the calling class and method are automatically
included.) But if you call

Logger.global.setLevel(Level.OFF);

at an appropriate place (such as the beginning of main), then all logging is suppressed.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging576

Advanced Logging
Now that you have seen “logging for dummies,” let’s go on to industrial-strength log-
ging. In a professional application, you wouldn’t want to log all records to a single glo-
bal logger. Instead, you can define your own loggers.

When you request a logger with a given name for the first time, it is created.
Logger myLogger = Logger.getLogger("com.mycompany.myapp");

Subsequent calls to the same name yield the same logger object.

Similar to package names, logger names are hierarchical. In fact, they are more hierarchi-
cal than packages. There is no semantic relationship between a package and its parent,
but logger parents and children share certain properties. For example, if you set the log
level on the logger "com.mycompany", then the child loggers inherit that level.

There are seven logging levels:
• SEVERE
• WARNING
• INFO
• CONFIG
• FINE
• FINER
• FINEST

By default, the top three levels are actually logged. You can set a different level, for
example,

logger.setLevel(Level.FINE);

Now all levels of FINE and higher are logged.

You can also use Level.ALL to turn on logging for all levels or Level.OFF to turn all logging
off.

There are logging methods for all levels, such as
logger.warning(message);
logger.fine(message);

and so on. Alternatively, you can use the log method and supply the level, such as
logger.log(Level.FINE, message);

TIP: The default logging configuration logs all records with level of INFO or higher. Therefore,
you should use the levels CONFIG, FINE, FINER, and FINEST for debugging messages that are
useful for diagnostics but meaningless to the program user.

CAUTION: If you set the logging level to a value finer than INFO, then you also need to
change the log handler configuration. The default log handler suppresses messages below
INFO. See the next section for details.

The default log record shows the name of the class and method that contain the logging
call, as inferred from the call stack. However, if the virtual machine optimizes execution,

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 577

accurate call information may not be available. You can use the logp method to give the
precise location of the calling class and method. The method signature is

void logp(Level l, String className, String methodName, String message)

There are convenience methods for tracing execution flow:
void entering(String className, String methodName)
void entering(String className, String methodName, Object param)
void entering(String className, String methodName, Object[] params)
void exiting(String className, String methodName)
void exiting(String className, String methodName, Object result)

For example:
int read(String file, String pattern)
{
 logger.entering("com.mycompany.mylib.Reader", "read",
 new Object[] { file, pattern });
 . . .
 logger.exiting("com.mycompany.mylib.Reader", "read", count);
 return count;
}

These calls generate log records of level FINER that start with the strings ENTRY and RETURN.

NOTE: At some point in the future, the logging methods with an Object[] parameter will be
rewritten to support variable parameter lists (“varargs”). Then, you will be able to make calls
such as logger.entering("com.mycompany.mylib.Reader", "read", file, pattern).

A common use for logging is to log unexpected exceptions. Two convenience methods
include a description of the exception in the log record.

void throwing(String className, String methodName, Throwable t)
void log(Level l, String message, Throwable t)

Typical uses are
if (. . .)
{
 IOException exception = new IOException(". . .");
 logger.throwing("com.mycompany.mylib.Reader", "read", exception);
 throw exception;
}

and
try
{
 . . .
}
catch (IOException e)
{
 Logger.getLogger("com.mycompany.myapp").log(Level.WARNING, "Reading image", e);
}

The throwing call logs a record with level FINER and a message that starts with THROW.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging578

Changing the Log Manager Configuration
You can change various properties of the logging system by editing a configuration file.
The default configuration file is located at

jre/lib/logging.properties

To use another file, set the java.util.logging.config.file property to the file location by
starting your application with

java -Djava.util.logging.config.file=configFile MainClass

CAUTION: Calling System.setProperty("java.util.logging.config.file", file) in main has no
effect because the log manager is initialized during VM startup, before main executes.

To change the default logging level, edit the configuration file and modify the line
.level=INFO

You can specify the logging levels for your own loggers by adding lines such as
com.mycompany.myapp.level=FINE

That is, append the .level suffix to the logger name.

As you see later in this section, the loggers don’t actually send the messages to the con-
sole—that is the job of the handlers. Handlers also have levels. To see FINE messages on
the console, you also need to set

java.util.logging.ConsoleHandler.level=FINE

CAUTION: The settings in the log manager configuration are not system properties. Starting
a program with -Dcom.mycompany.myapp.level=FINE does not have any influence on the logger.

CAUTION: At least up to Java SE 6, the API documentation of the LogManager class claims
that you can set the java.util.logging.config.class and java.util.logging.config.file
properties via the Preferences API. This is false—see http://bugs.sun.com/bugdatabase/
view_bug.do?bug_id=4691587.

NOTE: The logging properties file is processed by the java.util.logging.LogManager class.
It is possible to specify a different log manager by setting the java.util.logging.manager
system property to the name of a subclass. Alternatively, you can keep the standard
log manager and still bypass the initialization from the logging properties file. Set the
java.util.logging.config.class system property to the name of a class that sets log man-
ager properties in some other way. See the API documentation for the LogManager class for
more information.

It is also possible to change logging levels in a running program by using the jconsole
program. See http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html#LoggingControl
for information.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 579

Localization
You may want to localize logging messages so that they are readable for international
users. Internationalization of applications is the topic of Chapter 5 of Volume II. Briefly,
here are the points to keep in mind when localizing logging messages.

Localized applications contain locale-specific information in resource bundles. A
resource bundle consists of a set of mappings for various locales (such as United
States or Germany). For example, a resource bundle may map the string "reading-
File" into strings "Reading file" in English or "Achtung! Datei wird eingelesen" in German.

A program may contain multiple resource bundles, perhaps one for menus and
another for log messages. Each resource bundle has a name (such as "com.mycom-
pany.logmessages"). To add mappings to a resource bundle, you supply a file for each
locale. English message mappings are in a file com/mycompany/logmessages_en.properties,
and German message mappings are in a file com/mycompany/logmessages_de.properties. (The
en, de codes are the language codes.) You place the files together with the class files
of your application, so that the ResourceBundle class will automatically locate them.
These files are plain text files, consisting of entries such as

readingFile=Achtung! Datei wird eingelesen
renamingFile=Datei wird umbenannt
...

When requesting a logger, you can specify a resource bundle:
Logger logger = Logger.getLogger(loggerName, "com.mycompany.logmessages");

Then you specify the resource bundle key, not the actual message string, for the
log message.

logger.info("readingFile");

You often need to include arguments into localized messages. Then the message should
contain placeholders {0}, {1}, and so on. For example, to include the file name with a log
message, include the placeholder like this:

Reading file {0}.
Achtung! Datei {0} wird eingelesen.

You then pass values into the placeholders by calling one of the following methods:
logger.log(Level.INFO, "readingFile", fileName);
logger.log(Level.INFO, "renamingFile", new Object[] { oldName, newName });

Handlers
By default, loggers send records to a ConsoleHandler that prints them to the System.err
stream. Specifically, the logger sends the record to the parent handler, and the ulti-
mate ancestor (with name "") has a ConsoleHandler.

Like loggers, handlers have a logging level. For a record to be logged, its logging level
must be above the threshold of both the logger and the handler. The log manager config-
uration file sets the logging level of the default console handler as

java.util.logging.ConsoleHandler.level=INFO

To log records with level FINE, change both the default logger level and the handler level
in the configuration. Alternatively, you can bypass the configuration file altogether and
install your own handler.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging580

Logger logger = Logger.getLogger("com.mycompany.myapp");
logger.setLevel(Level.FINE);
logger.setUseParentHandlers(false);
Handler handler = new ConsoleHandler();
handler.setLevel(Level.FINE);
logger.addHandler(handler);

By default, a logger sends records both to its own handlers and the handlers of the par-
ent. Our logger is a child of the primordial logger (with name "") that sends all records
with level INFO or higher to the console. But we don’t want to see those records twice. For
that reason, we set the useParentHandlers property to false.

To send log records elsewhere, add another handler. The logging API provides two use-
ful handlers for this purpose, a FileHandler and a SocketHandler. The SocketHandler sends
records to a specified host and port. Of greater interest is the FileHandler that collects
records in a file.

You can simply send records to a default file handler, like this:
FileHandler handler = new FileHandler();
logger.addHandler(handler);

The records are sent to a file javan.log in the user’s home directory, where n is a number
to make the file unique. If a user’s system has no concept of the user’s home directory
(for example, in Windows 95/98/Me), then the file is stored in a default location such as
C:\Windows. By default, the records are formatted in XML. A typical log record has the
form

<record>
 <date>2002-02-04T07:45:15</date>
 <millis>1012837515710</millis>
 <sequence>1</sequence>
 <logger>com.mycompany.myapp</logger>
 <level>INFO</level>
 <class>com.mycompany.mylib.Reader</class>
 <method>read</method>
 <thread>10</thread>
 <message>Reading file corejava.gif</message>
</record>

You can modify the default behavior of the file handler by setting various parameters in
the log manager configuration (see Table 11–2), or by using another constructor (see the
API notes at the end of this section).

You probably don’t want to use the default log file name. Therefore, you should use
another pattern, such as %h/myapp.log. (See Table 11–3 for an explanation of the pattern
variables.)

If multiple applications (or multiple copies of the same application) use the same log
file, then you should turn the “append” flag on. Alternatively, use %u in the file name
pattern so that each application creates a unique copy of the log.

It is also a good idea to turn file rotation on. Log files are kept in a rotation sequence,
such as myapp.log.0, myapp.log.1, myapp.log.2, and so on. Whenever a file exceeds the size
limit, the oldest log is deleted, the other files are renamed, and a new file with genera-
tion number 0 is created.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 581

TIP: Many programmers use logging as an aid for the technical support staff. If a program
misbehaves in the field, then the user can send back the log files for inspection. In that case,
you should turn the “append” flag on, use rotating logs, or both.

Table 11–2 File Handler Configuration Parameters

Configuration Property Description Default

java.util.logging.
FileHandler.level

The handler level. Level.ALL

java.util.logging.
FileHandler.append

Controls whether the handler
should append to an existing
file, or open a new file for each
program run.

false

java.util.logging.
FileHandler.limit

The approximate maximum
number of bytes to write in a
file before opening another.
(0 = no limit).

0 (no limit) in the FileHandler
class, 50000 in the default log
manager configuration

java.util.logging.
FileHandler.pattern

The pattern for the log file
name. See Table 11–3 for
pattern variables.

%h/java%u.log

java.util.logging.
FileHandler.count

The number of logs in a
rotation sequence.

1 (no rotation)

java.util.logging.
FileHandler.filter

The filter class to use. No filtering

java.util.logging.
FileHandler.encoding

The character encoding to use. The platform encoding

java.util.logging.
FileHandler.formatter

The record formatter. java.util.logging.
XMLFormatter

Table 11–3 Log File Pattern Variables

Variable Description

%h The value of the user.home system property.

%t The system temporary directory.

%u A unique number to resolve conflicts.

%g The generation number for rotated logs. (A .%g suffix is used if rotation is
specified and the pattern doesn’t contain %g.)

%% The % character.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging582

You can also define your own handlers by extending the Handler or the StreamHandler class.
We define such a handler in the example program at the end of this section. That han-
dler displays the records in a window (see Figure 11–2).

The handler extends the StreamHandler class and installs a stream whose write methods dis-
play the stream output in a text area.

class WindowHandler extends StreamHandler
{
 public WindowHandler()
 {
 . . .
 final JTextArea output = new JTextArea();
 setOutputStream(new
 OutputStream()
 {
 public void write(int b) {} // not called
 public void write(byte[] b, int off, int len)
 {
 output.append(new String(b, off, len));
 }
 });
 }
 . . .
}

Figure 11–2 A log handler that displays records in a window

There is just one problem with this approach—the handler buffers the records and only
writes them to the stream when the buffer is full. Therefore, we override the publish
method to flush the buffer after each record:

class WindowHandler extends StreamHandler
{
 . . .
 public void publish(LogRecord record)
 {
 super.publish(record);
 flush();
 }
}

If you want to write more exotic stream handlers, extend the Handler class and define the
publish, flush, and close methods.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 583

Filters
By default, records are filtered according to their logging levels. Each logger and han-
dler can have an optional filter to perform added filtering. You define a filter by imple-
menting the Filter interface and defining the method

boolean isLoggable(LogRecord record)

Analyze the log record, using any criteria that you desire, and return true for those
records that should be included in the log. For example, a particular filter may only be
interested in the messages generated by the entering and exiting methods. The filter
should then call record.getMessage() and check whether it starts with ENTRY or RETURN.

To install a filter into a logger or handler, simply call the setFilter method. Note that you
can have at most one filter at a time.

Formatters
The ConsoleHandler and FileHandler classes emit the log records in text and XML for-
mats. However, you can define your own formats as well. You need to extend the
Formatter class and override the method

String format(LogRecord record)

Format the information in the record in any way you like and return the resulting
string. In your format method, you may want to call the method

String formatMessage(LogRecord record)

That method formats the message part of the record, substituting parameters and
applying localization.

Many file formats (such as XML) require a head and tail part that surrounds the format-
ted records. In that case, override the methods

String getHead(Handler h)
String getTail(Handler h)

Finally, call the setFormatter method to install the formatter into the handler.

A Logging Recipe
With so many options for logging, it is easy to lose track of the fundamentals. The fol-
lowing recipe summarizes the most common operations.

1. For a simple application, choose a single logger. It is a good idea to give the logger the
same name as your main application package, such as com.mycompany.myprog. You can
always get the logger by calling

Logger logger = Logger.getLogger("com.mycompany.myprog");

For convenience, you may want to add static fields
private static final Logger logger = Logger.getLogger("com.mycompany.myprog");

to classes with a lot of logging activity.
2. The default logging configuration logs all messages of level INFO or higher to the con-

sole. Users can override the default configuration, but as you have seen, the process
is a bit involved. Therefore, it is a good idea to install a more reasonable default in
your application.
The following code ensures that all messages are logged to an application-specific
file. Place the code into the main method of your application.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging584

if (System.getProperty("java.util.logging.config.class") == null
 && System.getProperty("java.util.logging.config.file") == null)
{
 try
 {
 Logger.getLogger("").setLevel(Level.ALL);
 final int LOG_ROTATION_COUNT = 10;
 Handler handler = new FileHandler("%h/myapp.log", 0, LOG_ROTATION_COUNT);
 Logger.getLogger("").addHandler(handler);
 }
 catch (IOException e)
 {
 logger.log(Level.SEVERE, "Can't create log file handler", e);
 }
}

3. Now you are ready to log to your heart’s content. Keep in mind that all messages
with level INFO, WARNING, and SEVERE show up on the console. Therefore, reserve these
levels for messages that are meaningful to the users of your program. The level FINE
is a good choice for logging messages that are intended for programmers.
Whenever you are tempted to call System.out.println, emit a log message instead:

logger.fine("File open dialog canceled");

It is also a good idea to log unexpected exceptions. For example:
try
{
 . . .
}
catch (SomeException e)
{
 logger.log(Level.FINE, "explanation", e);
}

Listing 11–2 puts this recipe to use with an added twist: Logging messages are also dis-
played in a log window.

Listing 11–2 LoggingImageViewer.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.util.logging.*;
5. import javax.swing.*;
6.

7. /**
8. * A modification of the image viewer program that logs various events.
9. * @version 1.02 2007-05-31

10. * @author Cay Horstmann
11. */

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 585

12. public class LoggingImageViewer
13. {
14. public static void main(String[] args)
15. {
16. if (System.getProperty("java.util.logging.config.class") == null
17. && System.getProperty("java.util.logging.config.file") == null)
18. {
19. try
20. {
21. Logger.getLogger("com.horstmann.corejava").setLevel(Level.ALL);
22. final int LOG_ROTATION_COUNT = 10;
23. Handler handler = new FileHandler("%h/LoggingImageViewer.log", 0, LOG_ROTATION_COUNT);
24. Logger.getLogger("com.horstmann.corejava").addHandler(handler);
25. }
26. catch (IOException e)
27. {
28. Logger.getLogger("com.horstmann.corejava").log(Level.SEVERE,
29. "Can't create log file handler", e);
30. }
31. }
32.

33. EventQueue.invokeLater(new Runnable()
34. {
35. public void run()
36. {
37. Handler windowHandler = new WindowHandler();
38. windowHandler.setLevel(Level.ALL);
39. Logger.getLogger("com.horstmann.corejava").addHandler(windowHandler);
40.

41. JFrame frame = new ImageViewerFrame();
42. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
43.

44. Logger.getLogger("com.horstmann.corejava").fine("Showing frame");
45. frame.setVisible(true);
46. }
47. });
48. }
49. }
50.

51. /**
52. * The frame that shows the image.
53. */
54. class ImageViewerFrame extends JFrame
55. {
56. public ImageViewerFrame()
57. {
58. logger.entering("ImageViewerFrame", "<init>");
59. setTitle("LoggingImageViewer");
60. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
61.

Listing 11–2 LoggingImageViewer.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging586

62. // set up menu bar
63. JMenuBar menuBar = new JMenuBar();
64. setJMenuBar(menuBar);
65.

66. JMenu menu = new JMenu("File");
67. menuBar.add(menu);
68.

69. JMenuItem openItem = new JMenuItem("Open");
70. menu.add(openItem);
71. openItem.addActionListener(new FileOpenListener());
72.

73. JMenuItem exitItem = new JMenuItem("Exit");
74. menu.add(exitItem);
75. exitItem.addActionListener(new ActionListener()
76. {
77. public void actionPerformed(ActionEvent event)
78. {
79. logger.fine("Exiting.");
80. System.exit(0);
81. }
82. });
83.

84. // use a label to display the images
85. label = new JLabel();
86. add(label);
87. logger.exiting("ImageViewerFrame", "<init>");
88. }
89.

90. private class FileOpenListener implements ActionListener
91. {
92. public void actionPerformed(ActionEvent event)
93. {
94. logger.entering("ImageViewerFrame.FileOpenListener", "actionPerformed", event);
95.

96. // set up file chooser
97. JFileChooser chooser = new JFileChooser();
98. chooser.setCurrentDirectory(new File("."));
99.

100. // accept all files ending with .gif
101. chooser.setFileFilter(new javax.swing.filechooser.FileFilter()
102. {
103. public boolean accept(File f)
104. {
105. return f.getName().toLowerCase().endsWith(".gif") || f.isDirectory();
106. }
107.

108. public String getDescription()
109. {
110. return "GIF Images";
111. }

Listing 11–2 LoggingImageViewer.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 587

112. });
113.

114. // show file chooser dialog
115. int r = chooser.showOpenDialog(ImageViewerFrame.this);
116.

117. // if image file accepted, set it as icon of the label
118. if (r == JFileChooser.APPROVE_OPTION)
119. {
120. String name = chooser.getSelectedFile().getPath();
121. logger.log(Level.FINE, "Reading file {0}", name);
122. label.setIcon(new ImageIcon(name));
123. }
124. else logger.fine("File open dialog canceled.");
125. logger.exiting("ImageViewerFrame.FileOpenListener", "actionPerformed");
126. }
127. }
128.

129. private JLabel label;
130. private static Logger logger = Logger.getLogger("com.horstmann.corejava");
131. private static final int DEFAULT_WIDTH = 300;
132. private static final int DEFAULT_HEIGHT = 400;
133. }
134.

135. /**
136. * A handler for displaying log records in a window.
137. */
138. class WindowHandler extends StreamHandler
139. {
140. public WindowHandler()
141. {
142. frame = new JFrame();
143. final JTextArea output = new JTextArea();
144. output.setEditable(false);
145. frame.setSize(200, 200);
146. frame.add(new JScrollPane(output));
147. frame.setFocusableWindowState(false);
148. frame.setVisible(true);
149. setOutputStream(new OutputStream()
150. {
151. public void write(int b)
152. {
153. } // not called
154.

155. public void write(byte[] b, int off, int len)
156. {
157. output.append(new String(b, off, len));
158. }
159. });
160. }
161.

Listing 11–2 LoggingImageViewer.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging588

• Logger getLogger(String loggerName)
• Logger getLogger(String loggerName, String bundleName)

gets the logger with the given name. If the logger doesn’t exist, it is created.

• void severe(String message)
• void warning(String message)
• void info(String message)
• void config(String message)
• void fine(String message)
• void finer(String message)
• void finest(String message)

logs a record with the level indicated by the method name and the given message.
• void entering(String className, String methodName)
• void entering(String className, String methodName, Object param)
• void entering(String className, String methodName, Object[] param)
• void exiting(String className, String methodName)
• void exiting(String className, String methodName, Object result)

logs a record that describes entering or exiting a method with the given
parameter(s) or return value.

• void throwing(String className, String methodName, Throwable t)
logs a record that describes throwing of the given exception object.

• void log(Level level, String message)
• void log(Level level, String message, Object obj)
• void log(Level level, String message, Object[] objs)
• void log(Level level, String message, Throwable t)

logs a record with the given level and message, optionally including objects or a
throwable. To include objects, the message must contain formatting placeholders
{0}, {1}, and so on.

162. public void publish(LogRecord record)
163. {
164. if (!frame.isVisible()) return;
165. super.publish(record);
166. flush();
167. }
168.

169. private JFrame frame;
170. }

java.util.logging.Logger 1.4

Parameters: loggerName The hierarchical logger name, such as com.mycompany.myapp

bundleName The name of the resource bundle for looking up
localized messages

Listing 11–2 LoggingImageViewer.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Logging 589

• void logp(Level level, String className, String methodName, String message)
• void logp(Level level, String className, String methodName, String message, Object obj)
• void logp(Level level, String className, String methodName, String message, Object[] objs)
• void logp(Level level, String className, String methodName, String message, Throwable t)

logs a record with the given level, precise caller information, and message,
optionally including objects or a throwable.

• void logrb(Level level, String className, String methodName, String bundleName,
String message)

• void logrb(Level level, String className, String methodName, String bundleName,
String message, Object obj)

• void logrb(Level level, String className, String methodName, String bundleName,
String message, Object[] objs)

• void logrb(Level level, String className, String methodName, String bundleName,
String message, Throwable t)
logs a record with the given level, precise caller information, resource bundle
name, and message, optionally including objects or a throwable.

• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this logger.
• Logger getParent()
• void setParent(Logger l)

gets and sets the parent logger of this logger.
• Handler[] getHandlers()

gets all handlers of this logger.
• void addHandler(Handler h)
• void removeHandler(Handler h)

adds or removes a handler for this logger.
• boolean getUseParentHandlers()
• void setUseParentHandlers(boolean b)

gets and sets the “use parent handler” property. If this property is true, the logger
forwards all logged records to the handlers of its parent.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this logger.

• abstract void publish(LogRecord record)
sends the record to the intended destination.

• abstract void flush()
flushes any buffered data.

• abstract void close()
flushes any buffered data and releases all associated resources.

• Filter getFilter()
• void setFilter(Filter f)

gets and sets the filter of this handler.

java.util.logging.Handler 1.4

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging590

• Formatter getFormatter()
• void setFormatter(Formatter f)

gets and sets the formatter of this handler.
• Level getLevel()
• void setLevel(Level l)

gets and sets the level of this handler.

• ConsoleHandler()
constructs a new console handler.

• FileHandler(String pattern)
• FileHandler(String pattern, boolean append)
• FileHandler(String pattern, int limit, int count)
• FileHandler(String pattern, int limit, int count, boolean append)

constructs a file handler.

• Level getLevel()
gets the logging level of this record.

• String getLoggerName()
gets the name of the logger that is logging this record.

• ResourceBundle getResourceBundle()
• String getResourceBundleName()

gets the resource bundle, or its name, to be used for localizing the message, or null
if none is provided.

• String getMessage()
gets the “raw” message before localization or formatting.

• Object[] getParameters()
gets the parameter objects, or null if none is provided.

• Throwable getThrown()
gets the thrown object, or null if none is provided.

java.util.logging.ConsoleHandler 1.4

java.util.logging.FileHandler 1.4

Parameters: pattern The pattern for constructing the log file name. See
Table 11–3 on page 581 for pattern variables.

limit The approximate maximum number of bytes before
a new log file is opened.

count The number of files in a rotation sequence.

append true if a newly constructed file handler object should
append to an existing log file.

java.util.logging.LogRecord 1.4

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 591

• String getSourceClassName()
• String getSourceMethodName()

gets the location of the code that logged this record. This information may be
supplied by the logging code or automatically inferred from the runtime stack. It
might be inaccurate, if the logging code supplied the wrong value or if the
running code was optimized and the exact location cannot be inferred.

• long getMillis()
gets the creation time, in milliseconds, since 1970.

• long getSequenceNumber()
gets the unique sequence number of this record.

• int getThreadID()
gets the unique ID for the thread in which this record was created. These IDs are
assigned by the LogRecord class and have no relationship to other thread IDs.

• boolean isLoggable(LogRecord record)
returns true if the given log record should be logged.

• abstract String format(LogRecord record)
returns the string that results from formatting the given log record.

• String getHead(Handler h)
• String getTail(Handler h)

returns the strings that should appear at the head and tail of the document
containing the log records. The Formatter superclass defines these methods to
return the empty string; override them if necessary.

• String formatMessage(LogRecord record)
returns the localized and formatted message part of the log record.

Debugging Tips
Suppose you wrote your program and made it bulletproof by catching and properly
handling all exceptions. Then you run it, and it does not work right. Now what? (If you
never have this problem, you can skip the remainder of this chapter.)

Of course, it is best if you have a convenient and powerful debugger. Debuggers are avail-
able as a part of professional development environments such as Eclipse and NetBeans.
We discuss the debugger later in this chapter. In this section, we offer you a number of tips
that may be worth trying before you launch the debugger.

1. You can print or log the value of any variable with code like this:
System.out.println("x=" + x);

or
Logger.global.info("x=" + x);

java.util.logging.Filter 1.4

java.util.logging.Formatter 1.4

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging592

If x is a number, it is converted to its string equivalent. If x is an object, then Java calls
its toString method. To get the state of the implicit parameter object, print the state of
the this object.

Logger.global.info("this=" + this);

Most of the classes in the Java library are very conscientious about overriding the
toString method to give you useful information about the class. This is a real boon for
debugging. You should make the same effort in your classes.

2. One seemingly little-known but very useful trick is that you can put a separate main
method in each class. Inside it, you can put a unit test stub that lets you test the class
in isolation.

public class MyClass
{
 methods and fields
 . . .
 public static void main(String[] args)
 {
 test code
 }
}

Make a few objects, call all methods, and check that each of them does the right
thing. You can leave all these main methods in place and launch the Java virtual
machine separately on each of the files to run the tests. When you run an applet,
none of these main methods are ever called. When you run an application, the
Java virtual machine calls only the main method of the startup class.

3. If you liked the preceding tip, you should check out JUnit from http://junit.org. JUnit
is a very popular unit testing framework that makes it easy to organize suites of test
cases. Run the tests whenever you make changes to a class, and add another test case
whenever you find a bug.

4. A logging proxy is an object of a subclass that intercepts method calls, logs them, and
then calls the superclass. For example, if you have trouble with the setBackground
method of a panel, you can create a proxy object as an instance of an anonymous
subclass:

JPanel panel = new
 JPanel()
 {
 public void setBackground(Color c)
 {
 Logger.global.info("setBackground: c=" + c);
 super.setBackground(c);
 }
 };

Whenever the setBackground method is called, a log message is generated. To find out
who called the method, generate a stack trace.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 593

5. You can get a stack trace from any exception object with the printStackTrace method
in the Throwable class. The following code catches any exception, prints the excep-
tion object and the stack trace, and rethrows the exception so it can find its
intended handler.

try
{
 . . .
}
catch (Throwable t)
{
 t.printStackTrace();
 throw t;
}

You don’t even need to catch an exception to generate a stack trace. Simply insert
the statement

Thread.dumpStack();

anywhere into your code to get a stack trace.

6. Normally, the stack trace is displayed on System.err. You can send it to a file with the
void printStackTrace(PrintWriter s) method. Or, if you want to log or display the stack
trace, here is how you can capture it into a string:

StringWriter out = new StringWriter();
new Throwable().printStackTrace(new PrintWriter(out));
String trace = out.toString();

(See Chapter 1 of Volume II for the PrintWriter and StringWriter classes.)

7. It is often handy to trap program errors in a file. However, errors are sent to
System.err, not System.out. Therefore, you cannot simply trap them by running
java MyProgram > errors.txt

Instead, capture the error stream as
java MyProgram 2> errors.txt

To capture both System.err and System.out in the same file, use
java MyProgram >& errors.txt

This works in bash and the Windows shell.

8. Having stack traces of uncaught exceptions show up in System.err is not ideal. These
messages are confusing to end users if they happen to see them, and they are not
available for diagnostic purposes when you need them. A better approach is to log
them to a file. As of Java SE 5.0, you can change the handler for uncaught exceptions
with the static Thread.setDefaultUncaughtExceptionHandler method:

Thread.setDefaultUncaughtExceptionHandler(
 new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {
 save information in log file
 };
 });

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging594

9. To watch class loading, launch the Java virtual machine with the -verbose flag. You
get a printout such as the following:

[Opened /usr/local/jdk5.0/jre/lib/rt.jar]
[Opened /usr/local/jdk5.0/jre/lib/jsse.jar]
[Opened /usr/local/jdk5.0/jre/lib/jce.jar]
[Opened /usr/local/jdk5.0/jre/lib/charsets.jar]
[Loaded java.lang.Object from shared objects file]
[Loaded java.io.Serializable from shared objects file]
[Loaded java.lang.Comparable from shared objects file]
[Loaded java.lang.CharSequence from shared objects file]
[Loaded java.lang.String from shared objects file]
[Loaded java.lang.reflect.GenericDeclaration from shared objects file]
[Loaded java.lang.reflect.Type from shared objects file]
[Loaded java.lang.reflect.AnnotatedElement from shared objects file]
[Loaded java.lang.Class from shared objects file]
[Loaded java.lang.Cloneable from shared objects file]
...

This can occasionally be helpful to diagnose class path problems.

10. If you ever looked at a Swing window and wondered how its designer managed
to get all the components to line up so nicely, you can spy on the contents. Press
CTRL+SHIFT+F1, and you get a printout of all components in the hierarchy:

FontDialog[frame0,0,0,300x200,layout=java.awt.BorderLayout,...
 javax.swing.JRootPane[,4,23,292x173,layout=javax.swing.JRootPane$RootLayout,...
 javax.swing.JPanel[null.glassPane,0,0,292x173,hidden,layout=java.awt.FlowLayout,...
 javax.swing.JLayeredPane[null.layeredPane,0,0,292x173,...
 javax.swing.JPanel[null.contentPane,0,0,292x173,layout=java.awt.GridBagLayout,...
 javax.swing.JList[,0,0,73x152,alignmentX=null,alignmentY=null,...
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.DefaultListCellRenderer$UIResource[,-73,-19,0x0,...
 javax.swing.JCheckBox[,157,13,50x25,layout=javax.swing.OverlayLayout,...
 javax.swing.JCheckBox[,156,65,52x25,layout=javax.swing.OverlayLayout,...
 javax.swing.JLabel[,114,119,30x17,alignmentX=0.0,alignmentY=null,...
 javax.swing.JTextField[,186,117,105x21,alignmentX=null,alignmentY=null,...
 javax.swing.JTextField[,0,152,291x21,alignmentX=null,alignmentY=null,...

11. If you design your own custom Swing component and it doesn’t seem to be dis-
played correctly, you’ll really love the Swing graphics debugger. And even if you
don’t write your own component classes, it is instructive and fun to see exactly
how the contents of a component are drawn. To turn on debugging for a Swing
component, use the setDebugGraphicsOptions method of the JComponent class. The follow-
ing options are available:

DebugGraphics.FLASH_OPTION Flashes each line, rectangle, and text in red before
drawing it

DebugGraphics.LOG_OPTION Prints a message for each drawing operation

DebugGraphics.BUFFERED_OPTION Displays the operations that are performed on the
off-screen buffer

DebugGraphics.NONE_OPTION Turns graphics debugging off

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 595

We have found that for the flash option to work, you must disable “double buffer-
ing,” the strategy used by Swing to reduce flicker when updating a window. The
magic incantation for turning on the flash option is

RepaintManager.currentManager(getRootPane()).setDoubleBufferingEnabled(false);
((JComponent) getContentPane()).setDebugGraphicsOptions(DebugGraphics.FLASH_OPTION);

Simply place these lines at the end of your frame constructor. When the program runs,
you will see the content pane filled in slow motion. Or, for more localized debugging,
just call setDebugGraphicsOptions for a single component. Control freaks can set the dura-
tion, count, and color of the flashes—see the on-line documentation of the DebugGraphics
class for details.

12. Java SE 5.0 added the -Xlint option to the compiler for spotting common code prob-
lems. For example, if you compile with the command

javac -Xlint:fallthrough

then the compiler reports missing break statements in switch statements. (The term
“lint” originally described a tool for locating potential problems in C programs, and
is now generically applied to tools that flag constructs that are questionable but not
illegal.)

The following options are available:

13. Java SE 5.0 added support for monitoring and management of Java applications,
allowing the installation of agents in the virtual machine that track memory con-
sumption, thread usage, class loading, and so on. This feature is particularly impor-
tant for large and long-running Java programs such as application servers. As a
demonstration of these capabilities, the JDK ships with a graphical tool called jcon-
sole that displays statistics about the performance of a virtual machine (see Figure
11–3). Find out the ID of the operating system process that runs the virtual machine.
In UNIX/Linux, run the ps utility; in Windows, use the task manager. Then launch
the jconsole program:

jconsole processID

The console gives you a wealth of information about your running program. See
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html for more information.

-Xlint or -Xlint:all Carries out all checks

-Xlint:deprecation Same as -deprecation, checks for deprecated methods

-Xlint:fallthrough Checks for missing break statements in switch statements

-Xlint:finally Warns about finally clauses that cannot complete normally

-Xlint:none Carries out none of the checks

-Xlint:path Checks that all directories on the class path and source
path exist

-Xlint:serial Warns about serializable classes without serialVersionUID
(see Chapter 1 of Volume II)

-Xlint:unchecked Warns of unsafe conversions between generic and raw
types (see Chapter 12)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging596

NOTE: Prior to Java SE 6, you need to launch your program with the
-Dcom.sun.management.jmxremote option:

java -Dcom.sun.management.jmxremote MyProgram
jconsole processID

Figure 11–3 The jconsole program

14. You can use the jmap utility to get a heap dump that shows you every object on the
heap. Use these commands:

jmap -dump:format=b,file=dumpFileName processID
jhat dumpFileName

Then, point your browser to localhost:7000. You will get a web application that lets
you drill down into the contents of the heap at the time of the dump.

15. If you launch the Java virtual machine with the -Xprof flag, it runs a rudimentary pro-
filer that keeps track of the methods in your code that were executed most often. The
profiling information is sent to System.out. The output also tells you which methods
were compiled by the just-in-time compiler.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 597

CAUTION: The -X options of the compiler are not officially supported and may not be present
in all versions of the JDK. Run java -X to get a listing of all nonstandard options.

Using a Console Window
When you debug an applet, you can see error messages in a window: In the configura-
tion panel of the Java Plug-in, check the Show Java Console box (see Chapter 10). The
Java Console window has a set of scrollbars, so you can retrieve messages that have
scrolled off the window. Windows users will find this a definite advantage over the
DOS shell window in which the System.out and System.err output normally appears.

We give you a similar window class so you can enjoy the same benefit of seeing your
debugging messages in a window when debugging a program. Figure 11–4 shows our
ConsoleWindow class in action.

The class is easy to use. Simply call
ConsoleWindow.init()

Then print to System.out or System.err in the normal way.

Figure 11–4 The console window

Listing 11–3 lists the code for the ConsoleWindow class. As you can see, the class is
quite simple. Messages are displayed in a JTextArea inside a JScrollPane. We call the
System.setOut and System.setErr methods to set the output and error streams to a special
stream that adds all messages to the text area.

Listing 11–3 ConsoleWindow.java

1. import javax.swing.*;
2. import java.io.*;
3.

4. /**
5. A window that displays the bytes sent to System.out and System.err
6. @version 1.01 2004-05-10
7. @author Cay Horstmann
8. */

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging598

Tracing AWT Events
When you write a fancy user interface in Java, you need to know what events AWT
sends to what components. Unfortunately, the AWT documentation is somewhat
sketchy in this regard. For example, suppose you want to show hints in the status line
when the user moves the mouse over different parts of the screen. The AWT generates
mouse and focus events that you may be able to trap.

We give you a useful EventTrace class to spy on these events. It prints out all event han-
dling methods and their parameters. See Figure 11–5 for a display of the traced events.

To spy on messages, add the component whose events you want to trace to an event tracer:
EventTracer tracer = new EventTracer();
tracer.add(frame);

9. public class ConsoleWindow
10. {
11. public static void init()
12. {
13. JFrame frame = new JFrame();
14. frame.setTitle("ConsoleWindow");
15. final JTextArea output = new JTextArea();
16. output.setEditable(false);
17. frame.add(new JScrollPane(output));
18. frame.setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
19. frame.setLocation(DEFAULT_LEFT, DEFAULT_TOP);
20. frame.setFocusableWindowState(false);
21. frame.setVisible(true);
22.

23. // define a PrintStream that sends its bytes to the output text area
24. PrintStream consoleStream = new PrintStream(new
25. OutputStream()
26. {
27. public void write(int b) {} // never called
28. public void write(byte[] b, int off, int len)
29. {
30. output.append(new String(b, off, len));
31. }
32. });
33.

34. // set both System.out and System.err to that stream
35. System.setOut(consoleStream);
36. System.setErr(consoleStream);
37. }
38.

39. public static final int DEFAULT_WIDTH = 300;
40. public static final int DEFAULT_HEIGHT = 200;
41. public static final int DEFAULT_LEFT = 200;
42. public static final int DEFAULT_TOP = 200;
43. }

Listing 11–3 ConsoleWindow.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 599

That prints a textual description of all events, like this:
public abstract void java.awt.event.MouseListener.mouseExited(java.awt.event.MouseEvent):
java.awt.event.MouseEvent[MOUSE_EXITED,(408,14),button=0,clickCount=0] on javax.swing.JBut-
ton[,0,345,400x25,...]
public abstract void java.awt.event.FocusListener.focusLost(java.awt.event.FocusEvent):
java.awt.event.FocusEvent[FOCUS_LOST,temporary,opposite=null] on javax.swing.JButton[,0,345,400x25,...]

You may want to capture this output in a file or a console window, as explained in the
preceding sections.

Figure 11–5 The EventTracer class at work

Listing 11–4 is the EventTracer class. The idea behind the class is easy even if the imple-
mentation is a bit mysterious. Here are the steps that are carried out behind the
scenes:

1. When you add a component to the event tracer in the add method, the JavaBeans
introspection class analyzes the component for methods of the form void addXxx-
Listener(XxxListener). (See Chapter 8 of Volume II for more information on Java-
Beans.) For each matching method, an EventSetDescriptor is generated. We pass
each descriptor to the addListener method.

2. If the component is a container, we enumerate its components and recursively
call add for each of them.

3. The addListener method is called with two parameters: the component on whose
events we want to spy and the event set descriptor. The getListenerType method of
the EventSetDescriptor class returns a Class object that describes the event listener
interface such as ActionListener or ChangeListener. We create a proxy object for that
interface. The proxy handler simply prints the name and event parameter of the
invoked event method. The getAddListenerMethod method of the EventSetDescriptor class
returns a Method object that we use to add the proxy object as the event listener to
the component.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging600

This program is a good example of the power of the reflection mechanism. We don’t
have to hardwire the fact that the JButton class has a method addActionListener whereas
a JSlider has a method addChangeListener. The reflection mechanism discovers these
facts for us.

Listing 11–5 tests the event tracer. The program displays a frame with a button and a
slider and traces the events that these components generate.

Listing 11–4 EventTracer.java

1. import java.awt.*;
2. import java.beans.*;
3. import java.lang.reflect.*;
4.

5. /**
6. * @version 1.31 2004-05-10
7. * @author Cay Horstmann
8. */
9. public class EventTracer

10. {
11. public EventTracer()
12. {
13. // the handler for all event proxies
14. handler = new InvocationHandler()
15. {
16. public Object invoke(Object proxy, Method method, Object[] args)
17. {
18. System.out.println(method + ":" + args[0]);
19. return null;
20. }
21. };
22. }
23.

24. /**
25. * Adds event tracers for all events to which this component and its children can listen
26. * @param c a component
27. */
28. public void add(Component c)
29. {
30. try
31. {
32. // get all events to which this component can listen
33. BeanInfo info = Introspector.getBeanInfo(c.getClass());
34.

35. EventSetDescriptor[] eventSets = info.getEventSetDescriptors();
36. for (EventSetDescriptor eventSet : eventSets)
37. addListener(c, eventSet);

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 601

38. }
39. catch (IntrospectionException e)
40. {
41. }
42. // ok not to add listeners if exception is thrown
43.

44. if (c instanceof Container)
45. {
46. // get all children and call add recursively
47. for (Component comp : ((Container) c).getComponents())
48. add(comp);
49. }
50. }
51.

52. /**
53. * Add a listener to the given event set
54. * @param c a component
55. * @param eventSet a descriptor of a listener interface
56. */
57. public void addListener(Component c, EventSetDescriptor eventSet)
58. {
59. // make proxy object for this listener type and route all calls to the handler
60. Object proxy = Proxy.newProxyInstance(null, new Class[] { eventSet.getListenerType() },
61. handler);
62.

63. // add the proxy as a listener to the component
64. Method addListenerMethod = eventSet.getAddListenerMethod();
65. try
66. {
67. addListenerMethod.invoke(c, proxy);
68. }
69. catch (InvocationTargetException e)
70. {
71. }
72. catch (IllegalAccessException e)
73. {
74. }
75. // ok not to add listener if exception is thrown
76. }
77.

78. private InvocationHandler handler;
79. }

Listing 11–4 EventTracer.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging602

Listing 11–5 EventTracerTest.java

1. import java.awt.*;
2.

3. import javax.swing.*;
4.

5. /**
6. * @version 1.13 2007-06-12
7. * @author Cay Horstmann
8. */
9. public class EventTracerTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. JFrame frame = new EventTracerFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. class EventTracerFrame extends JFrame
26. {
27. public EventTracerFrame()
28. {
29. setTitle("EventTracerTest");
30. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
31.

32. // add a slider and a button
33. add(new JSlider(), BorderLayout.NORTH);
34. add(new JButton("Test"), BorderLayout.SOUTH);
35.

36. // trap all events of components inside the frame
37. EventTracer tracer = new EventTracer();
38. tracer.add(this);
39. }
40.

41. public static final int DEFAULT_WIDTH = 400;
42. public static final int DEFAULT_HEIGHT = 400;
43. }

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 603

Letting the AWT Robot Do the Work
Java SE 1.3 added a Robot class that you can use to send keystrokes and mouse clicks to
any AWT program. This class is intended for automatic testing of user interfaces.

To get a robot, you need to first get a GraphicsDevice object. You get the default screen
device through the sequence of calls:

GraphicsEnvironment environment = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice screen = environment.getDefaultScreenDevice();

Then you construct a robot:
Robot robot = new Robot(screen);

To send a keystroke, tell the robot to simulate a key press and a key release:
robot.keyPress(KeyEvent.VK_TAB);
robot.keyRelease(KeyEvent.VK_TAB);

For a mouse click, you first need to move the mouse and then press and release a button:
robot.mouseMove(x, y); // x and y are absolute screen pixel coordinates.
robot.mousePress(InputEvent.BUTTON1_MASK);
robot.mouseRelease(InputEvent.BUTTON1_MASK);

The idea is that you simulate key and mouse input and afterwards take a screen snap-
shot to see whether the application did what it was supposed to. You capture the screen
with the createScreenCapture method:

Rectangle rect = new Rectangle(x, y, width, height);
BufferedImage image = robot.createScreenCapture(rect);

The rectangle coordinates also refer to absolute screen pixels.

Finally, you usually want to add a small delay between robot instructions so that the
application can catch up. Use the delay method and give it the number of milliseconds to
delay. For example:

robot.delay(1000); // delay by 1000 milliseconds

The program in Listing 11–6 shows how you can use the robot. A robot tests the but-
ton test program that you saw in Chapter 8. First, pressing the space bar activates the
leftmost button. Then the robot waits for two seconds so that you can see what it has
done. After the delay, the robot simulates the tab key and another space bar press to
click on the next button. Finally, we simulate a mouse click on the third button. (You
may need to adjust the x and y coordinates of the program to actually press the but-
ton.) The program ends by taking a screen capture and displaying it in another frame
(see Figure 11–6).

As you can see from this example, the Robot class is not by itself suitable for convenient
user interface testing. Instead, it is a basic building block that can be a foundational part
of a testing tool. A professional testing tool can capture, store, and replay user interac-
tion scenarios and find out the screen locations of the components so that mouse clicks
aren’t guesswork. Hopefully, as Java applications are becoming more popular, we will
see more sophisticated testing tools.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging604

Figure 11–6 Capturing the screen with the AWT robot

Listing 11–6 RobotTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.awt.image.*;
4. import javax.swing.*;
5.

6. /**
7. * @version 1.03 2007-06-12
8. * @author Cay Horstmann
9. */

10. public class RobotTest
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. // make frame with a button panel
19.

20. ButtonFrame frame = new ButtonFrame();
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. frame.setVisible(true);
23.

24. // attach a robot to the screen device
25.

26. GraphicsEnvironment environment = GraphicsEnvironment.getLocalGraphicsEnvironment();
27. GraphicsDevice screen = environment.getDefaultScreenDevice();

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Debugging Tips 605

28.

29. try
30. {
31. Robot robot = new Robot(screen);
32. runTest(robot);
33. }
34. catch (AWTException e)
35. {
36. e.printStackTrace();
37. }
38. }
39. });
40. }
41.

42. /**
43. * Runs a sample test procedure
44. * @param robot the robot attached to the screen device
45. */
46. public static void runTest(Robot robot)
47. {
48. // simulate a space bar press
49. robot.keyPress(' ');
50. robot.keyRelease(' ');
51.

52. // simulate a tab key followed by a space
53. robot.delay(2000);
54. robot.keyPress(KeyEvent.VK_TAB);
55. robot.keyRelease(KeyEvent.VK_TAB);
56. robot.keyPress(' ');
57. robot.keyRelease(' ');
58.

59. // simulate a mouse click over the rightmost button
60. robot.delay(2000);
61. robot.mouseMove(200, 50);
62. robot.mousePress(InputEvent.BUTTON1_MASK);
63. robot.mouseRelease(InputEvent.BUTTON1_MASK);
64.

65. // capture the screen and show the resulting image
66. robot.delay(2000);
67. BufferedImage image = robot.createScreenCapture(new Rectangle(0, 0, 400, 300));
68.

69. ImageFrame frame = new ImageFrame(image);
70. frame.setVisible(true);
71. }
72. }
73.

74. /**
75. * A frame to display a captured image
76. */

Listing 11–6 RobotTest.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging606

• static GraphicsEnvironment getLocalGraphicsEnvironment()
returns the local graphics environment.

• GraphicsDevice getDefaultScreenDevice()
returns the default screen device. Note that computers with multiple monitors
have one graphics device per screen—use the getScreenDevices method to obtain an
array of all screen devices.

• Robot(GraphicsDevice device)
constructs a robot that can interact with the given device.

• void keyPress(int key)
• void keyRelease(int key)

simulates a key press or release.

• void mouseMove(int x, int y)
simulates a mouse move.

• void mousePress(int eventMask)
• void mouseRelease(int eventMask)

simulates a mouse button press or release.

77. class ImageFrame extends JFrame
78. {
79. /**
80. * @param image the image to display
81. */
82. public ImageFrame(Image image)
83. {
84. setTitle("Capture");
85. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
86.

87. JLabel label = new JLabel(new ImageIcon(image));
88. add(label);
89. }
90.

91. public static final int DEFAULT_WIDTH = 450;
92. public static final int DEFAULT_HEIGHT = 350;
93. }

java.awt.GraphicsEnvironment 1.2

java.awt.Robot 1.3

Parameters: key The key code. See the KeyStroke class for more
information on key codes

Parameters: x, y The mouse position in absolute pixel coordinates

Parameters: eventMask The event mask describing the mouse buttons. See the
InputEvent class for more information on event masks

Listing 11–6 RobotTest.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Using a Debugger 607

• void delay(int milliseconds)
delays the robot for the given number of milliseconds.

• BufferedImage createScreenCapture(Rectangle rect)
captures a portion of the screen.

Using a Debugger
Debugging with print statements is not one of life’s more joyful experiences. You con-
stantly find yourself adding and removing the statements, then recompiling the pro-
gram. Using a debugger is better. A debugger runs your program in full motion until it
reaches a breakpoint, and then you can look at everything that interests you.

Listing 11–7 show a deliberately corrupted version of the ButtonTest program from
Chapter 8. When you click on any of the buttons, nothing happens. Look at the
source code—button clicks are supposed to set the background color to the color
specified by the button name.

Parameters: rect The rectangle to be captured, in absolute pixel
coordinates

Listing 11–7 BuggyButtonTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * @version 1.22 2007-05-14
7. * @author Cay Horstmann
8. */
9. public class BuggyButtonTest

10. {
11. public static void main(String[] args)
12. {
13. EventQueue.invokeLater(new Runnable()
14. {
15. public void run()
16. {
17. BuggyButtonFrame frame = new BuggyButtonFrame();
18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19. frame.setVisible(true);
20. }
21. });
22. }
23. }
24.

25. class BuggyButtonFrame extends JFrame
26. {
27. public BuggyButtonFrame()
28. {

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging608

In a program this short, you may be able to find the bug just by reading the source code.
Let us pretend that scanning the source code for errors is not practical. We show you
how to use the Eclipse debugger to locate the error.

29. setTitle("BuggyButtonTest");
30. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
31.

32. // add panel to frame
33.

34. BuggyButtonPanel panel = new BuggyButtonPanel();
35. add(panel);
36. }
37.

38. public static final int DEFAULT_WIDTH = 300;
39. public static final int DEFAULT_HEIGHT = 200;
40. }
41.

42. class BuggyButtonPanel extends JPanel
43. {
44. public BuggyButtonPanel()
45. {
46. ActionListener listener = new ButtonListener();
47.

48. JButton yellowButton = new JButton("Yellow");
49. add(yellowButton);
50. yellowButton.addActionListener(listener);
51.

52. JButton blueButton = new JButton("Blue");
53. add(blueButton);
54. blueButton.addActionListener(listener);
55.

56. JButton redButton = new JButton("Red");
57. add(redButton);
58. redButton.addActionListener(listener);
59. }
60.

61. private class ButtonListener implements ActionListener
62. {
63. public void actionPerformed(ActionEvent event)
64. {
65. String arg = event.getActionCommand();
66. if (arg.equals("yellow")) setBackground(Color.yellow);
67. else if (arg.equals("blue")) setBackground(Color.blue);
68. else if (arg.equals("red")) setBackground(Color.red);
69. }
70. }
71. }

Listing 11–7 BuggyButtonTest.java (continued)

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Using a Debugger 609

NOTE: If you use a stand-alone debugger such as JSwat (http://www.bluemarsh.com/java/
jswat/) or the venerable and extremely clunky jdb, you must first compile your program with
the -g option. For example:

javac -g BuggyButtonTest.java

In an integrated environment, this is done automatically.

In Eclipse, start the debugger with the menu option Run -> Debug As -> Java Applica-
tion. The program will start running.

Set a breakpoint at the first line of the actionPerformed method: Right-click in the left mar-
gin, next to the line of code, and chose Toggle Breakpoint.

The breakpoint will be hit as soon as Java starts processing code in the actionPerformed
method. For this, click on the Yellow button. The debugger breaks at the start of the
actionPerformed method—see Figure 11–7.

Figure 11–7 Stopping at a breakpoint

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11 ■ Exceptions, Logging, Assertions, and Debugging610

There are two basic commands to single-step through a program. The “Step Into”
command steps into every method call. The “Step Over”command goes to the next
line without stepping inside any further method calls. Eclipse uses menu options
Run -> Step Into and Run -> Step Over, with keyboard shortcuts F5 and F6. Issue
the “Step Over” command twice and see where you are.

That is not what should have happened. The program was supposed to call
setColor(Color.yellow) and then exit the method.

Inspect the local variables and check the value of the arg variable:

Now you can see what happened. The value of arg was "Yellow", with an uppercase Y, but
the comparison tested

if (arg.equals("yellow"))

with a lowercase y. Mystery solved.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Using a Debugger 611

To quit the debugger, select Run -> Terminate from the menu.

There are more advanced debugging commands in Eclipse, but you can get a long way
with the simple techniques that you just saw. Other debuggers, such as the NetBeans
debugger, have very similar commands.

This chapter introduced you to exception handling and gave you some useful hints for
testing and debugging. The next two chapters cover generic programming and its most
important application: the Java collections framework.

Chapter 11. Exceptions, Logging, Assertions, and Debugging

Chapter 11. Exceptions, Logging, Assertions, and Debugging

ChapterChapter

613

GENERIC
PROGRAMMING

▼ WHY GENERIC PROGRAMMING?
▼ DEFINITION OF A SIMPLE GENERIC CLASS

▼ GENERIC METHODS

▼ BOUNDS FOR TYPE VARIABLES

▼ GENERIC CODE AND THE VIRTUAL MACHINE

▼ RESTRICTIONS AND LIMITATIONS

▼ INHERITANCE RULES FOR GENERIC TYPES

▼ WILDCARD TYPES

▼ REFLECTION AND GENERICS

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming614

Generics constitute the most significant change in the Java programming lan-
guage since the 1.0 release. The addition of generics to Java SE 5.0 was the result of one
of the first Java Specification Requests, JSR 14, that was formulated in 1999. The expert
group spent about five years on specifications and test implementations.

Generics are desirable because they let you write code that is safer and easier to read
than code that is littered with Object variables and casts. Generics are particularly useful
for collection classes, such as the ubiquitous ArrayList.

Generics are—at least on the surface—similar to templates in C++. In C++, as in Java,
templates were first added to the language to support strongly typed collections. How-
ever, over the years, other uses were discovered. After reading this chapter, perhaps you
will find novel uses for Java generics in your programs.

Why Generic Programming?
Generic programming means to write code that can be reused for objects of many different
types. For example, you don’t want to program separate classes to collect String and File
objects. And you don’t have to—the single class ArrayList collects objects of any class.
This is one example of generic programming.

Before Java SE 5.0, generic programming in Java was always achieved with inheritance.
The ArrayList class simply maintained an array of Object references:

public class ArrayList // before Java SE 5.0
{
 public Object get(int i) { . . . }
 public void add(Object o) { . . . }
 . . .
 private Object[] elementData;
}

This approach has two problems. A cast is necessary whenever you retrieve a value:
ArrayList files = new ArrayList();
. . .
String filename = (String) names.get(0);

Moreover, there is no error checking. You can add values of any class:
files.add(new File(". . ."));

This call compiles and runs without error. Elsewhere, casting the result of get to a String
will cause an error.

Generics offer a better solution: type parameters. The ArrayList class now has a type
parameter that indicates the element type:

ArrayList<String> files = new ArrayList<String>();

This makes your code easier to read. You can tell right away that this particular array
list contains String objects.

The compiler can make good use of this information too. No cast is required for calling
get. The compiler knows that the return type is String, not Object:

String filename = files.get(0);

Chapter 12. Generic Programming

Why Generic Programming? 615

The compiler also knows that the add method of an ArrayList<String> has a parameter of
type String. That is a lot safer than having an Object parameter. Now the compiler can
check that you don’t insert objects of the wrong type. For example, the statement

files.add(new File(". . .")); // can only add String objects to an ArrayList<String>

will not compile. A compiler error is much better than a class cast exception at runtime.

This is the appeal of type parameters: they make your programs easier to read and safer.

Who Wants to Be a Generic Programmer?
It is easy to use a generic class such as ArrayList. Most Java programmers will simply
use types such as ArrayList<String> as if they had been built into the language, just like
String[] arrays. (Of course, array lists are better than arrays because they can expand
automatically.)

However, it is not so easy to implement a generic class. The programmers who use your
code will want to plug in all sorts of classes for your type parameters. They expect
everything to work without onerous restrictions and confusing error messages. Your job
as a generic programmer, therefore, is to anticipate all the potential future uses of your
class.

How hard can this get? Here is a typical issue that the designers of the standard class
library had to grapple with. The ArrayList class has a method addAll to add all elements of
another collection. A programmer may want to add all elements from an ArrayList<Man-
ager> to an ArrayList<Employee>. But, of course, doing it the other way around should not be
legal. How do you allow one call and disallow the other? The Java language designers
invented an ingenious new concept, the wildcard type, to solve this problem. Wildcard
types are rather abstract, but they allow a library builder to make methods as flexible as
possible.

Generic programming falls into three skill levels. At a basic level, you just use generic
classes—typically, collections such as ArrayList—without thinking how and why they
work. Most application programmers will want to stay at that level until something
goes wrong. You may encounter a confusing error message when mixing different
generic classes, or when interfacing with legacy code that knows nothing about type
parameters. At that point, you need to learn enough about Java generics to solve prob-
lems systematically rather than through random tinkering. Finally, of course, you may
want to implement your own generic classes and methods.

Application programmers probably won’t write lots of generic code. The folks at Sun
have already done the heavy lifting and supplied type parameters for all the collection
classes. As a rule of thumb, only code that traditionally involved lots of casts from very
general types (such as Object or the Comparable interface) will benefit from using type
parameters.

In this chapter, we tell you everything you need to know to implement your own
generic code. However, we expect most readers to use this knowledge primarily for
help with troubleshooting, and to satisfy their curiosity about the inner workings of the
parameterized collection classes.

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming616

Definition of a Simple Generic Class
A generic class is a class with one or more type variables. In this chapter, we use a simple
Pair class as an example. This class allows us to focus on generics without being dis-
tracted by data storage details. Here is the code for the generic Pair class:

public class Pair<T>
{
 public Pair() { first = null; second = null; }
 public Pair(T first, T second) { this.first = first; this.second = second; }

 public T getFirst() { return first; }
 public T getSecond() { return second; }

 public void setFirst(T newValue) { first = newValue; }
 public void setSecond(T newValue) { second = newValue; }

 private T first;
 private T second;
}

The Pair class introduces a type variable T, enclosed in angle brackets < >, after the class
name. A generic class can have more than one type variable. For example, we could
have defined the Pair class with separate types for the first and second field:

public class Pair<T, U> { . . . }

The type variables are used throughout the class definition to specify method return
types and the types of fields and local variables. For example:

private T first; // uses type variable

NOTE: It is common practice to use uppercase letters for type variables, and to keep them
short. The Java library uses the variable E for the element type of a collection, K and V for key
and value types of a table, and T (and the neighboring letters U and S, if necessary) for “any
type at all”.

You instantiate the generic type by substituting types for the type variables, such as
Pair<String>

You can think of the result as an ordinary class with constructors
Pair<String>()
Pair<String>(String, String)

and methods
String getFirst()
String getSecond()
void setFirst(String)
void setSecond(String)

In other words, the generic class acts as a factory for ordinary classes.

The program in Listing 12–1 puts the Pair class to work. The static minmax method
traverses an array and simultaneously computes the minimum and maximum value. It
uses a Pair object to return both results. Recall that the compareTo method compares two

Chapter 12. Generic Programming

Definition of a Simple Generic Class 617

strings, returning 0 if the strings are identical, a negative integer if the first string comes
before the second in dictionary order, and a positive integer otherwise.

C++ NOTE: Superficially, generic classes in Java are similar to template classes in C++.
The only obvious difference is that Java has no special template keyword. However, as
you will see throughout this chapter, there are substantial differences between these two
mechanisms.

Listing 12–1 PairTest1.java

1. /**
2. * @version 1.00 2004-05-10
3. * @author Cay Horstmann
4. */
5. public class PairTest1
6. {
7. public static void main(String[] args)
8. {
9. String[] words = { "Mary", "had", "a", "little", "lamb" };

10. Pair<String> mm = ArrayAlg.minmax(words);
11. System.out.println("min = " + mm.getFirst());
12. System.out.println("max = " + mm.getSecond());
13. }
14. }
15.

16. class ArrayAlg
17. {
18. /**
19. * Gets the minimum and maximum of an array of strings.
20. * @param a an array of strings
21. * @return a pair with the min and max value, or null if a is null or empty
22. */
23. public static Pair<String> minmax(String[] a)
24. {
25. if (a == null || a.length == 0) return null;
26. String min = a[0];
27. String max = a[0];
28. for (int i = 1; i < a.length; i++)
29. {
30. if (min.compareTo(a[i]) > 0) min = a[i];
31. if (max.compareTo(a[i]) < 0) max = a[i];
32. }
33. return new Pair<String>(min, max);
34. }
35. }

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming618

Generic Methods
In the preceding section, you have seen how to define a generic class. You can also
define a single method with type parameters.

class ArrayAlg
{
 public static <T> T getMiddle(T[] a)
 {
 return a[a.length / 2];
 }
}

This method is defined inside an ordinary class, not inside a generic class. However, it is
a generic method, as you can see from the angle brackets and the type variable. Note
that the type variables are inserted after the modifiers (public static, in our case) and
before the return type.

You can define generic methods both inside ordinary classes and inside generic classes.

When you call a generic method, you can place the actual types, enclosed in angle
brackets, before the method name:

String[] names = { "John", "Q.", "Public" };
String middle = ArrayAlg.<String>getMiddle(names);

In this case (and indeed in most cases), you can omit the <String> type parameter from
the method call. The compiler has enough information to infer the method that you
want. It matches the type of names (that is, String[]) against the generic type T[] and
deduces that T must be String. That is, you can simply call

String middle = ArrayAlg.getMiddle(names);

In almost all cases, type inference for generic methods works smoothly. Occasionally,
the compiler gets it wrong,and you’ll need to decipher an error report. Consider this
example:

double middle = ArrayAlg.getMiddle(3.14, 1729, 0);

The error message is: “found: java.lang.Number&java.lang.Comparable<? extends java.lang.Num-
ber&java.lang.Comparable<?>>, required: double”. You will learn later in this chapter how to
decipher the “found” type declaration. In a nutshell, the compiler autoboxed the param-
eters into a Double and two Integer objects, and then it tried to find a common supertype of
these classes. It actually found two: Number and the Comparable interface, which is itself a
generic type. In this case, the remedy is to write all parameters as double values.

TIP: Peter von der Ahé recommends this trick if you want to see which type the compiler
infers for a generic method call: Purposefully introduce an error and study the resulting error
message. For example, consider the call ArrayAlg.getMiddle("Hello", 0, null). Assign the
result to a JButton, which can’t possibly be right. You will get an error report “found:
java.lang.Object&java.io.Serializable&java.lang.Comparable<? extends
java.lang.Object&java.io.Serializable&java.lang.Comparable<?>>.”

In plain English, you can assign the result to Object, Serializable, or Comparable.

Chapter 12. Generic Programming

Bounds for Type Variables 619

C++ NOTE: In C++, you place the type parameters after the method name. That can lead to
nasty parsing ambiguities. For example, g(f<a,b>(c)) can mean “call g with the result of
f<a,b>(c)”, or “call g with the two boolean values f<a and b>(c)”.

Bounds for Type Variables
Sometimes, a class or a method needs to place restrictions on type variables. Here is a
typical example. We want to compute the smallest element of an array:

class ArrayAlg
{
 public static <T> T min(T[] a) // almost correct
 {
 if (a == null || a.length == 0) return null;
 T smallest = a[0];
 for (int i = 1; i < a.length; i++)
 if (smallest.compareTo(a[i]) > 0) smallest = a[i];
 return smallest;
 }
}

But there is a problem. Look inside the code of the min method. The variable smallest has
type T, which means that it could be an object of an arbitrary class. How do we know
that the class to which T belongs has a compareTo method?

The solution is to restrict T to a class that implements the Comparable interface—a standard
interface with a single method, compareTo. You achieve this by giving a bound for the type
variable T:

public static <T extends Comparable> T min(T[] a) . . .

Actually, the Comparable interface is itself a generic type. For now, we will ignore that com-
plexity and the warnings that the compiler generates. “Wildcard Types” on page 632 dis-
cusses how to properly use type parameters with the Comparable interface.

Now, the generic min method can only be called with arrays of classes that implement the
Comparable interface, such as String, Date, and so on. Calling min with a Rectangle array is a
compile-time error because the Rectangle class does not implement Comparable.

C++ NOTE: In C++, you cannot restrict the types of template parameters. If a programmer
instantiates a template with an inappropriate type, an (often obscure) error message is
reported inside the template code.

You may wonder why you use the extends keyword rather than the implements keyword in
this situation—after all, Comparable is an interface. The notation

<T extends BoundingType>

expresses that T should be a subtype of the bounding type. Both T and the bounding type
can be either a class or an interface. The extends keyword was chosen because it is a rea-
sonable approximation of the subtype concept, and the Java designers did not want to
add a new keyword (such as sub) to the language.

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming620

A type variable or wildcard can have multiple bounds. For example:
T extends Comparable & Serializable

The bounding types are separated by ampersands (&) because commas are used to sepa-
rate type variables.

As with Java inheritance, you can have as many interface supertypes as you like, but at
most one of the bounds can be a class. If you have a class as a bound, it must be the first
one in the bounds list.

In the next sample program (Listing 12–2), we rewrite the minmax method to be generic. The
method computes the minimum and maximum of a generic array, returning a Pair<T>.

Listing 12–2 PairTest2.java

1. import java.util.*;
2.

3. /**
4. * @version 1.00 2004-05-10
5. * @author Cay Horstmann
6. */
7. public class PairTest2
8. {
9. public static void main(String[] args)

10. {
11. GregorianCalendar[] birthdays =
12. {
13. new GregorianCalendar(1906, Calendar.DECEMBER, 9), // G. Hopper
14. new GregorianCalendar(1815, Calendar.DECEMBER, 10), // A. Lovelace
15. new GregorianCalendar(1903, Calendar.DECEMBER, 3), // J. von Neumann
16. new GregorianCalendar(1910, Calendar.JUNE, 22), // K. Zuse
17. };
18. Pair<GregorianCalendar> mm = ArrayAlg.minmax(birthdays);
19. System.out.println("min = " + mm.getFirst().getTime());
20. System.out.println("max = " + mm.getSecond().getTime());
21. }
22. }
23.

24. class ArrayAlg
25. {
26. /**
27. Gets the minimum and maximum of an array of objects of type T.
28. @param a an array of objects of type T
29. @return a pair with the min and max value, or null if a is
30. null or empty
31. */
32. public static <T extends Comparable> Pair<T> minmax(T[] a)
33. {
34. if (a == null || a.length == 0) return null;

Chapter 12. Generic Programming

Generic Code and the Virtual Machine 621

Generic Code and the Virtual Machine
The virtual machine does not have objects of generic types—all objects belong to ordi-
nary classes. An earlier version of the generics implementation was even able to com-
pile a program that uses generics into class files that executed on 1.0 virtual machines!
This backward compatibility was only abandoned fairly late in the development for
Java generics. If you use the Sun compiler to compile code that uses Java generics, the
resulting class files will not execute on pre-5.0 virtual machines.

NOTE: If you want to have the benefits of generics while retaining bytecode compatibility
with older virtual machines, check out http://sourceforge.net/projects/retroweaver. The
Retroweaver program rewrites class files so that they are compatible with older virtual
machines.

Whenever you define a generic type, a corresponding raw type is automatically pro-
vided. The name of the raw type is simply the name of the generic type, with the type
parameters removed. The type variables are erased and replaced by their bounding
types (or Object for variables without bounds.)

For example, the raw type for Pair<T> looks like this:
public class Pair
{
 public Pair(Object first, Object second)
 {
 this.first = first;
 this.second = second;
 }

 public Object getFirst() { return first; }
 public Object getSecond() { return second; }

 public void setFirst(Object newValue) { first = newValue; }
 public void setSecond(Object newValue) { second = newValue; }

 private Object first;
 private Object second;
}

35. T min = a[0];
36. T max = a[0];
37. for (int i = 1; i < a.length; i++)
38. {
39. if (min.compareTo(a[i]) > 0) min = a[i];
40. if (max.compareTo(a[i]) < 0) max = a[i];
41. }
42. return new Pair<T>(min, max);
43. }
44. }

Listing 12–2 PairTest2.java (continued)

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming622

Because T is an unbounded type variable, it is simply replaced by Object.

The result is an ordinary class, just as you might have implemented it before generics
were added to the Java programming language.

Your programs may contain different kinds of Pair, such as Pair<String> or Pair<Gregorian-
Calendar>, but erasure turns them all into raw Pair types.

C++ NOTE: In this regard, Java generics are very different from C++ templates. C++ pro-
duces different types for each template instantiation, a phenomenon called “template code
bloat.” Java does not suffer from this problem.

The raw type replaces type variables with the first bound, or Object if no bounds are
given. For example, the type variable in the class Pair<T> has no explicit bounds, hence
the raw type replaces T with Object. Suppose we declare a slightly different type:

public class Interval<T extends Comparable & Serializable> implements Serializable
{
 public Interval(T first, T second)
 {
 if (first.compareTo(second) <= 0) { lower = first; upper = second; }
 else { lower = second; upper = first; }
 }
 . . .
 private T lower;
 private T upper;
}

The raw type Interval looks like this:
public class Interval implements Serializable
{
 public Interval(Comparable first, Comparable second) { . . . }
 . . .
 private Comparable lower;
 private Comparable upper;
}

NOTE: You may wonder what happens if you switch the bounds: class Interval<Serializable
& Comparable>. In that case, the raw type replaces T with Serializable, and the compiler
inserts casts to Comparable when necessary. For efficiency, you should therefore put tagging
interfaces (that is, interfaces without methods) at the end of the bounds list.

Translating Generic Expressions
When you program a call to a generic method, the compiler inserts casts when the
return type has been erased. For example, consider the sequence of statements

Pair<Employee> buddies = . . .;
Employee buddy = buddies.getFirst();

The erasure of getFirst has return type Object. The compiler automatically inserts the
cast to Employee. That is, the compiler translates the method call into two virtual
machine instructions:

Chapter 12. Generic Programming

Generic Code and the Virtual Machine 623

• A call to the raw method Pair.getFirst
• A cast of the returned Object to the Employee type

Casts are also inserted when you access a generic field. Suppose the first and second
fields of the Pair class were public. (Not a good programming style, perhaps, but it is
legal Java.) Then the expression

Employee buddy = buddies.first;

also has a cast inserted in the resulting byte codes.

Translating Generic Methods
Type erasure also happens for generic methods. Programmers usually think of a generic
method such as

public static <T extends Comparable> T min(T[] a)

as a whole family of methods, but after erasure, only a single method is left:
public static Comparable min(Comparable[] a)

Note that the type parameter T has been erased, leaving only its bounding type
Comparable.

Erasure of method brings up a couple of complexities. Consider this example:
class DateInterval extends Pair<Date>
{
 public void setSecond(Date second)
 {
 if (second.compareTo(getFirst()) >= 0)
 super.setSecond(second);
 }
 . . .
}

A date interval is a pair of Date objects, and we’ll want to override the methods to ensure
that the second value is never smaller than the first. This class is erased to

class DateInterval extends Pair // after erasure
{
 public void setSecond(Date second) { . . . }
 . . .
}

Perhaps surprisingly, there is another setSecond method, inherited from Pair, namely,
public void setSecond(Object second)

This is clearly a different method because it has a parameter of a different type—Object
instead of Date. But it shouldn’t be different. Consider this sequence of statements:

DateInterval interval = new DateInterval(. . .);
Pair<Date> pair = interval; // OK--assignment to superclass
pair.setSecond(aDate);

Our expectation is that the call to setSecond is polymorphic and that the appropriate
method is called. Because pair refers to a DateInterval object, that should be DateInter-
val.setSecond. The problem is that the type erasure interferes with polymorphism. To fix
this problem, the compiler generates a bridge method in the DateInterval class:

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming624

public void setSecond(Object second) { setSecond((Date) second); }

To see why this works, let us carefully follow the execution of the statement
pair.setSecond(aDate)

The variable pair has declared type Pair<Date>, and that type only has a single method
called setSecond, namely setSecond(Object). The virtual machine calls that method on the
object to which pair refers. That object is of type DateInterval. Therefore, the method
DateInterval.setSecond(Object) is called. That method is the synthesized bridge method. It
calls DateInterval.setSecond(Date), which is what we want.

Bridge methods can get even stranger. Suppose the DateInterval method also overrides
the getSecond method:

class DateInterval extends Pair<Date>
{
 public Date getSecond() { return (Date) super.getSecond().clone(); }
 . . .
}

In the erased type, there are two getSecond methods:
Date getSecond() // defined in DateInterval
Object getSecond() // defined in Pair

You could not write Java code like that—it would be illegal to have two methods with
the same parameter types—here, no parameters. However, in the virtual machine, the
parameter types and the return type specify a method. Therefore, the compiler can pro-
duce bytecodes for two methods that differ only in their return type, and the virtual
machine will handle this situation correctly.

NOTE: Bridge methods are not limited to generic types. We already noted in Chapter 5 that,
starting with Java SE 5.0, it is legal for a method to specify a more restrictive return type
when overriding another method. For example:

public class Employee implements Cloneable
{
 public Employee clone() throws CloneNotSupportedException { ... }
}

The Object.clone and Employee.clone methods are said to have covariant return types.

Actually, the Employee class has two clone methods:

Employee clone() // defined above
Object clone() // synthesized bridge method, overrides Object.clone

The synthesized bridge method calls the newly defined method.

In summary, you need to remember these facts about translation of Java generics:

• There are no generics in the virtual machines, only ordinary classes and methods.
• All type parameters are replaced by their bounds.
• Bridge methods are synthesized to preserve polymorphism.
• Casts are inserted as necessary to preserve type safety.

Chapter 12. Generic Programming

Generic Code and the Virtual Machine 625

Calling Legacy Code
Lots of Java code was written before Java SE 5.0. If generic classes could not interoperate
with that code, they would probably not be widely used. Fortunately, it is straightfor-
ward to use generic classes together with their raw equivalents in legacy APIs.

Let us look at a concrete example. To set the labels of a JSlider, you use the method
void setLabelTable(Dictionary table)

In Chapter 9, we used the following code to populate the label table:
Dictionary<Integer, Component> labelTable = new Hashtable<Integer, Component>();
labelTable.put(0, new JLabel(new ImageIcon("nine.gif")));
labelTable.put(20, new JLabel(new ImageIcon("ten.gif")));
. . .
slider.setLabelTable(labelTable); // WARNING

In Java SE 5.0, the Dictionary and Hashtable classes were turned into a generic class. There-
fore, we are able to form Dictionary<Integer, Component> instead of using a raw Dictionary.
However, when you pass the Dictionary<Integer, Component> object to setLabelTable, the com-
piler issues a warning.

Dictionary<Integer, Component> labelTable = . . .;
slider.setLabelTable(labelTable); // WARNING

After all, the compiler has no assurance about what the setLabelTable might do to the Dictio-
nary object. That method might replace all the keys with strings. That breaks the guarantee
that the keys have type Integer, and future operations may cause bad cast exceptions.

There isn’t much you can do with this warning, except ponder it and ask what the
JSlider is likely going to do with this Dictionary object. In our case, it is pretty clear that the
JSlider only reads the information, so we can ignore the warning.

Now consider the opposite case, in which you get an object of a raw type from a legacy
class. You can assign it to a parameterized type variable, but of course you will get a
warning. For example:

Dictionary<Integer, Components> labelTable = slider.getLabelTable(); // WARNING

That’s ok—review the warning and make sure that the label table really contains Integer
and Component objects. Of course, there never is an absolute guarantee. A malicious coder
might have installed a different Dictionary in the slider. But again, the situation is no
worse than it was before Java SE 5.0. In the worst case, your program will throw an
exception.

After you are done pondering the warning, you can use an annotation to make it disap-
pear. The annotation must be placed before the method whose code generates the warn-
ing, like this:

@SuppressWarnings("unchecked")
public void configureSlider() { . . . }

Unfortunately, this annotation turns off checking for all code inside the method. It is a
good idea to isolate potentially unsafe code into separate methods so that they can be
reviewed more easily.

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming626

NOTE: The Hashtable class is a concrete subclass of the abstract Dictionary class. Both Dictio-
nary and Hashtable have been declared as “obsolete” ever since they were superseded by
the Map interface and the HashMap class of Java SE 1.2. Apparently though, they are still alive
and kicking. After all, the JSlider class was only added in Java SE 1.3. Didn’t its program-
mers know about the Map class by then? Does this make you hopeful that they are going to
adopt generics in the near future? Well, that’s the way it goes with legacy code.

Restrictions and Limitations
In the following sections, we discuss a number of restrictions that you need to con-
sider when working with Java generics. Most of these restrictions are a consequence of
type erasure.

Type Parameters Cannot Be Instantiated with Primitive Types
You cannot substitute a primitive type for a type parameter. Thus, there is no Pair<dou-
ble>, only Pair<Double>. The reason is, of course, type erasure. After erasure, the Pair class
has fields of type Object, and you can’t use them to store double values.

This is an annoyance, to be sure, but it is consistent with the separate status of primitive
types in the Java language. It is not a fatal flaw—there are only eight primitive types,
and you can always handle them with separate classes and methods when wrapper
types are not an acceptable substitute.

Runtime Type Inquiry Only Works with Raw Types
Objects in the virtual machine always have a specific nongeneric type. Therefore, all
type inquiries yield only the raw type. For example,

if (a instanceof Pair<String>) // same as a instanceof Pair

really only tests whether a is a Pair of any type. The same is true for the test
if (a instanceof Pair<T>) // T is ignored

or the cast
Pair<String> p = (Pair<String>) a; // WARNING--can only test that a is a Pair

To remind you of the risk, you will get a compiler warning whenever you use instanceof
or cast expressions that involve generic types.

In the same spirit, the getClass method always returns the raw type. For example:
Pair<String> stringPair = . . .;
Pair<Employee> employeePair = . . .;
if (stringPair.getClass() == employeePair.getClass()) // they are equal

The comparison yields true because both calls to getClass return Pair.class.

You Cannot Throw or Catch Instances of a Generic Class
You can neither throw nor catch objects of a generic class. In fact, it is not even legal
for a generic class to extend Throwable. For example, the following definition will not
compile:

public class Problem<T> extends Exception { /* . . . */ } // ERROR--can't extend Throwable

You cannot use a type variable in a catch clause. For example, the following method will
not compile:

Chapter 12. Generic Programming

Restrictions and Limitations 627

public static <T extends Throwable> void doWork(Class<T> t)
{
 try
 {
 do work
 }
 catch (T e) // ERROR--can't catch type variable
 {
 Logger.global.info(...)

 }
}

However, it is ok to use type variables in exception specifications. The following
method is legal:

public static <T extends Throwable> void doWork(T t) throws T // OK
{
 try
 {
 do work

 }

 catch (Throwable realCause)
 {
 t.initCause(realCause);
 throw t;
 }
}

Arrays of Parameterized Types Are Not Legal
You cannot declare arrays of parameterized types, such as

Pair<String>[] table = new Pair<String>[10]; // ERROR

What’s wrong with that? After erasure, the type of table is Pair[]. You can convert it to
Object[]:

Object[] objarray = table;

An array remembers its component type and throws an ArrayStoreException if you try to
store an element of the wrong type:

objarray[0] = "Hello"; // ERROR--component type is Pair

But erasure renders this mechanism ineffective for generic types. The assignment
objarray[0] = new Pair<Employee>();

would pass the array store check but still result in a type error. For this reason, arrays of
parameterized types are outlawed.

TIP: If you need to collect parameterized type objects, simply use an ArrayList:
ArrayList<Pair<String>> is safe and effective.

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming628

You Cannot Instantiate Type Variables
You cannot use type variables in expression such as new T(...), new T[...], or T.class. For
example, the following Pair<T> constructor is illegal:

public Pair() { first = new T(); second = new T(); } // ERROR

Type erasure would change T to Object, and surely you don’t want to call new Object().

As a workaround, you can construct generic objects through reflection, by calling the
Class.newInstance method.

Unfortunately, the details are a bit complex. You cannot call
first = T.class.newInstance(); // ERROR

The expression T.class is not legal. Instead, you must design the API so that you are
handed a Class object, like this:

public static <T> Pair<T> makePair(Class<T> cl)
{
 try { return new Pair<T>(cl.newInstance(), cl.newInstance()) }
 catch (Exception ex) { return null; }
}

This method could be called as follows:
Pair<String> p = Pair.makePair(String.class);

Note that the Class class is itself generic. For example, String.class is an instance (indeed,
the sole instance) of Class<String>. Therefore, the makePair method can infer the type of the
pair that it is making.

You cannot construct a generic array:
public static <T extends Comparable> T[] minmax(T[] a) { T[] mm = new T[2]; . . . } // ERROR

Type erasure would cause this method to always construct an array Object[2].

If the array is only used as a private instance field of a class, you can declare the array as
Object[] and use casts when retrieving elements. For example, the ArrayList class could be
implemented as follows:

public class ArrayList<E>
{
 private Object[] elements;
 @SuppressWarnings("unchecked") public E get(int n) { return (E) elements[n]; }
 public void set(int n, E e) { elements[n] = e; } // no cast needed
 . . .
}

The actual implementation is not quite as clean:
public class ArrayList<E>
{
 private E[] elements;
 public ArrayList() { elements = (E[]) new Object[10]; }
 . . .
}

Here, the cast E[] is an outright lie, but type erasure makes it undetectable.

Chapter 12. Generic Programming

Restrictions and Limitations 629

This technique does not work for our minmax method since we are returning a T[] array,
and a runtime error results if we lie about its type. Suppose we implement

public static <T extends Comparable> T[] minmax(T[] a)
{
 Object[] mm = new Object[2];
 . . .;
 return (T[]) mm; // compiles with warning
}

The call
String[] ss = minmax("Tom", "Dick", "Harry");

compiles without any warning. A ClassCastException occurs when the Object[] reference is
assigned to the String[] variable.

In this situation, you can use reflection and call Array.newInstance:
public static <T extends Comparable> T[] minmax(T[] a)
{
 T[] mm = (T[]) Array.newInstance(a.getClass().getComponentType(), 2);
 . . .
}

The toArray method of the ArrayList class is not so lucky. It needs to produce a T[] array,
but it doesn’t have the component type. Therefore, there are two variants:

Object[] toArray()
T[] toArray(T[] result)

The second method receives an array parameter. If the array is large enough, it is used.
Otherwise, a new array of sufficient size is created, using the component type of result.

Type Variables Are Not Valid in Static Contexts of Generic Classes
You cannot reference type variables in static fields or methods. For example, the follow-
ing clever idea won’t work:

public class Singleton<T>
{
 public static T getSingleInstance() // ERROR
 {
 if (singleInstance == null) construct new instance of T
 return singleInstance;
 }
 private static T singleInstance; // ERROR
}

If this could be done, then a program could declare a Singleton<Random> to share a random
number generator and a Singleton<JFileChooser> to share a file chooser dialog. But it can’t
work. After type erasure there is only one Singleton class, and only one singleInstance field.
For that reason, static fields and methods with type variables are simply outlawed.

Beware of Clashes After Erasure
It is illegal to create conditions that cause clashes when generic types are erased. Here is
an example. Suppose we add an equals method to the Pair class, like this:

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming630

public class Pair<T>
{
 public boolean equals(T value) { return first.equals(value) && second.equals(value); }
 . . .
}

Consider a Pair<String>. Conceptually, it has two equals methods:
boolean equals(String) // defined in Pair<T>
boolean equals(Object) // inherited from Object

But the intuition leads us astray. The erasure of the method
boolean equals(T)

is
boolean equals(Object)

which clashes with the Object.equals method.

The remedy is, of course, to rename the offending method.

The generics specification cites another rule: “To support translation by erasure, we
impose the restriction that a class or type variable may not at the same time be a subtype
of two interface types which are different parameterizations of the same interface.” For
example, the following is illegal:

class Calendar implements Comparable<Calendar> { . . . }
class GregorianCalendar extends Calendar implements Comparable<GregorianCalendar>
 { . . . } // ERROR

GregorianCalendar would then implement both Comparable<Calendar> and Comparable<Gregorian-
Calendar>, which are different parameterizations of the same interface.

It is not obvious what this restriction has to do with type erasure. After all, the non-
generic version

class Calendar implements Comparable { . . . }
class GregorianCalendar extends Calendar implements Comparable { . . . }

is legal. The reason is far more subtle. There would be a conflict with the synthesized
bridge methods. A class that implements Comparable<X> gets a bridge method

public int compareTo(Object other) { return compareTo((X) other); }

You cannot have two such methods for different types X.

Inheritance Rules for Generic Types
When you work with generic classes, you need to learn a few rules about inheritance
and subtypes. Let’s start with a situation that many programmers find unintuitive. Con-
sider a class and a subclass, such as Employee and Manager. Is Pair<Manager> a subclass of
Pair<Employee>? Perhaps surprisingly, the answer is “no.” For example, the following code
will not compile:

Manager[] topHonchos = . . .;
Pair<Employee> result = ArrayAlg.minmax(topHonchos); // ERROR

The minmax method returns a Pair<Manager>, not a Pair<Employee>, and it is illegal to assign one
to the other.

In general, there is no relationship between Pair<S> and Pair<T>, no matter how S and T are
related (see Figure 12–1).

Chapter 12. Generic Programming

Inheritance Rules for Generic Types 631

This seems like a cruel restriction, but it is necessary for type safety. Suppose we were
allowed to convert a Pair<Manager> to a Pair<Employee>. Consider this code:

Pair<Manager> managerBuddies = new Pair<Manager>(ceo, cfo);
Pair<Employee> employeeBuddies = managerBuddies; // illegal, but suppose it wasn't
employeeBuddies.setFirst(lowlyEmployee);

Clearly, the last statement is legal. But employeeBuddies and managerBuddies refer to the same
object. We now managed to pair up the CFO with a lowly employee, which should not
be possible for a Pair<Manager>.

Figure 12–1 No inheritance relationship between pair classes

NOTE: You just saw an important difference between generic types and Java arrays. You
can assign a Manager[] array to a variable of type Employee[]:

Manager[] managerBuddies = { ceo, cfo };
Employee[] employeeBuddies = managerBuddies; // OK

However, arrays come with special protection. If you try to store a lowly employee into
employeeBuddies[0], the virtual machine throws an ArrayStoreException.

You can always convert a parameterized type to a raw type. For example, Pair<Employee>
is a subtype of the raw type Pair. This conversion is necessary for interfacing with legacy
code.

Can you convert to the raw type and then cause a type error? Unfortunately, you can.
Consider this example:

Pair<Manager> managerBuddies = new Pair<Manager>(ceo, cfo);
Pair rawBuddies = managerBuddies; // OK
rawBuddies.setFirst(new File(". . .")); // only a compile-time warning

This sounds scary. However, keep in mind that you are no worse off than you were
with older versions of Java. The security of the virtual machine is not at stake. When the

Employee

Manager

Pair
<Employee>

Pair
<Manager>

no relationship!

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming632

foreign object is retrieved with getFirst and assigned to a Manager variable, a ClassCastExcep-
tion is thrown, just as in the good old days. You merely lose the added safety that generic
programming normally provides.

Finally, generic classes can extend or implement other generic classes. In this regard,
they are no different from ordinary classes. For example, the class ArrayList<T> imple-
ments the interface List<T>. That means, an ArrayList<Manager> can be converted to a
List<Manager>. However, as you just saw, an ArrayList<Manager> is not an ArrayList<Employee> or
List<Employee>. Figure 12–2 shows these relationships.

Figure 12–2 Subtype relationships among generic list types

Wildcard Types
It was known for some time among researchers of type systems that a rigid system of
generic types is quite unpleasant to use. The Java designers invented an ingenious (but
nevertheless safe) “escape hatch”: the wildcard type. For example, the wildcard type

Pair<? extends Employee>

ArrayList
(raw)

interface
List

<Employee>

<< >>interface
List

<Manager>

<< >>

interface
List

(raw)

<< >>

no relationship!

ArrayList
<Manager>

ArrayList
<Employee>

Chapter 12. Generic Programming

Wildcard Types 633

denotes any generic Pair type whose type parameter is a subclass of Employee, such as
Pair<Manager>, but not Pair<String>.

Let’s say you want to write a method that prints out pairs of employees, like this:
public static void printBuddies(Pair<Employee> p)
{
 Employee first = p.getFirst();
 Employee second = p.getSecond();
 System.out.println(first.getName() + " and " + second.getName() + " are buddies.";
}

As you saw in the preceding section, you cannot pass a Pair<Manager> to that method,
which is rather limiting. But the solution is simple—use a wildcard type:

public static void printBuddies(Pair<? extends Employee> p)

The type Pair<Manager> is a subtype of Pair<? extends Employee> (see Figure 12–3).

Can we use wildcards to corrupt a Pair<Manager> through a Pair<? extends Employee> reference?
Pair<Manager> managerBuddies = new Pair<Manager>(ceo, cfo);
Pair<? extends Employee> wildcardBuddies = managerBuddies; // OK
wildcardBuddies.setFirst(lowlyEmployee); // compile-time error

No corruption is possible. The call to setFirst is a type error. To see why, let us have a
closer look at the type Pair<? extends Employee>. Its methods look like this:

? extends Employee getFirst()
void setFirst(? extends Employee)

Figure 12–3 Subtype relationships with wildcards

Pair
<? extends
Employee>

Pair
<Manager>

Pair
<Employee>

Pair
(raw)

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming634

This makes it impossible to call the setFirst method. The compiler only knows that it
needs some subtype of Employee, but it doesn’t know which type. It refuses to pass any
specific type—after all, ? might not match it.

We don’t have this problem with getFirst: It is perfectly legal to assign the return value
of getFirst to an Employee reference.

This is the key idea behind bounded wildcards. We now have a way of distinguishing
between the safe accessor methods and the unsafe mutator methods.

Supertype Bounds for Wildcards
Wildcard bounds are similar to type variable bounds, but they have an added capabil-
ity— you can specify a supertype bound, like this:

? super Manager

This wildcard is restricted to all supertypes of Manager. (It was a stroke of good luck that
the existing super keyword describes the relationship so accurately.)

Why would you want to do this? A wildcard with a supertype bound gives you the
opposite behavior of the wildcards described in the section “Wildcard Types” on
page 632. You can supply parameters to methods, but you can’t use the return values.
For example, Pair<? super Manager> has methods

void setFirst(? super Manager)
? super Manager getFirst()

The compiler doesn’t know the exact type of the setFirst method but can call it with any
object of type Manager, Employee, or Object, but not a subtype such as Executive. However, if you
call getFirst, there is no guarantee about the type of the returned object. You can only
assign it to an Object.

Here is a typical example. We have an array of managers and want to put the manager
with the lowest and highest bonus into a Pair object. What kind of Pair? A Pair<Employee>
should be fair game or, for that matter, a Pair<Object> (see Figure 12–4). The following
method will accept any appropriate Pair:

public static void minmaxBonus(Manager[] a, Pair<? super Manager> result)
{
 if (a == null || a.length == 0) return;
 Manager min = a[0];
 Manager max = a[0];
 for (int i = 1; i < a.length; i++)
 {
 if (min.getBonus() > a[i].getBonus()) min = a[i];
 if (max.getBonus() < a[i].getBonus()) max = a[i];
 }
 result.setFirst(min);
 result.setSecond(max);
}

Intuitively speaking, wildcards with supertype bounds let you write to a generic object,
wildcards with subtype bounds let you read from a generic objects.

Here is another use for supertype bounds. The Comparable interface is itself a generic type.
It is declared as follows:

Chapter 12. Generic Programming

Wildcard Types 635

public interface Comparable<T>
{
 public int compareTo(T other);
}

Here, the type variable indicates the type of the other parameter. For example, the String
class implements Comparable<String>, and its compareTo method is declared as

public int compareTo(String other)

This is nice—the explicit parameter has the correct type. Before Java SE 5.0, other was an
Object, and a cast was necessary in the implementation of the method.

Because Comparable is a generic type, perhaps we should have done a better job with the
min method of the ArrayAlg class? We could have declared it as

public static <T extends Comparable<T>> T min(T[] a)

This looks more thorough than just using T extends Comparable, and it would work fine for
many classes. For example, if you compute the minimum of a String array, then T is the
type String, and String is a subtype of Comparable<String>. But we run into a problem when
processing an array of GregorianCalendar objects. As it happens, GregorianCalendar is a sub-
class of Calendar, and Calendar implements Comparable<Calendar>. Thus, GregorianCalendar imple-
ments Comparable<Calendar> but not Comparable<GregorianCalendar>.

Figure 12–4 A wildcard with a supertype bound

Pair
<? super

Manager>

Pair
<Employee>

Pair
<Object>

Pair<?>

Pair
(raw)

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming636

In a situation such as this one, supertypes come to the rescue:
public static <T extends Comparable<? super T>> T min(T[] a) . . .

Now the compareTo method has the form
int compareTo(? super T)

Maybe it is declared to take an object of type T, or—for example, when T is GregorianCalendar—
a supertype of T. At any rate, it is safe to pass an object of type T to the compareTo method.

To the uninitiated, a declaration such as <T extends Comparable<? super T>> is bound to look
intimidating. This is unfortunate, because the intent of this declaration is to help
application programmers by removing unnecessary restrictions on the call parameters.
Application programmers with no interest in generics will probably learn quickly to
gloss over these declarations and just take for granted that library programmers will do
the right thing. If you are a library programmer, you’ll need to get used to wildcards, or
your users will curse you and throw random casts at their code until it compiles.

Unbounded Wildcards
You can even use wildcards with no bounds at all, for example, Pair<?>. At first glance,
this looks identical to the raw Pair type. Actually, the types are very different. The type
Pair<?> has methods such as

? getFirst()
void setFirst(?)

The return value of getFirst can only be assigned to an Object. The setFirst method can
never be called, not even with an Object. That’s the essential difference between Pair<?> and
Pair: you can call the setObject method of the raw Pair class with any Object.

Why would you ever want such a wimpy type? It is useful for very simple operations.
For example, the following method tests whether a pair contains a given object. It never
needs the actual type.

public static boolean hasNulls(Pair<?> p)
{
 return p.getFirst() == null || p.getSecond() == null;
}

You could have avoided the wildcard type by turning contains into a generic method:
public static <T> boolean hasNulls(Pair<T> p)

However, the version with the wildcard type seems easier to read.

Wildcard Capture
Let us write a method that swaps the elements of a pair:

public static void swap(Pair<?> p)

A wildcard is not a type variable, so we can’t write code that uses ? as a type. In other
words, the following would be illegal:

? t = p.getFirst(); // ERROR
p.setFirst(p.getSecond());
p.setSecond(t);

That’s a problem because we need to temporarily hold the first element when we do the
swapping. Fortunately, there is an interesting solution to this problem. We can write a
helper method, swapHelper, like this:

Chapter 12. Generic Programming

Wildcard Types 637

public static <T> void swapHelper(Pair<T> p)
{
 T t = p.getFirst();
 p.setFirst(p.getSecond());
 p.setSecond(t);
}

Note that swapHelper is a generic method, whereas swap is not—it has a fixed parameter of
type Pair<?>.

Now we can call swapHelper from swap:
public static void swap(Pair<?> p) { swapHelper(p); }

In this case, the parameter T of the swapHelper method captures the wildcard. It isn’t known
what type the wildcard denotes, but it is a definite type, and the definition of <T>swapHelper
makes perfect sense when T denotes that type.

Of course, in this case, we were not compelled to use a wildcard. We could have directly
implemented <T> void swap(Pair<T> p) as a generic method without wildcards. However,
consider this example in which a wildcard type occurs naturally in the middle of a
computation:

public static void maxminBonus(Manager[] a, Pair<? super Manager> result)
{
 minmaxBonus(a, result);
 PairAlg.swapHelper(result); // OK--swapHelper captures wildcard type
}

Here, the wildcard capture mechanism cannot be avoided.

Wildcard capture is only legal in very limited circumstances. The compiler must be able
to guarantee that the wildcard represents a single, definite type. For example, the T in
ArrayList<Pair<T>> can never capture the wildcard in ArrayList<Pair<?>>. The array list might
hold two Pair<?>, each of which has a different type for ?.

The test program in Listing 12–3 gathers up the various methods that we discussed in
the preceding sections, so that you can see them in context.

Listing 12–3 PairTest3.java

1. import java.util.*;
2.

3. /**
4. * @version 1.00 2004-05-10
5. * @author Cay Horstmann
6. */
7. public class PairTest3
8. {
9. public static void main(String[] args)

10. {
11. Manager ceo = new Manager("Gus Greedy", 800000, 2003, 12, 15);
12. Manager cfo = new Manager("Sid Sneaky", 600000, 2003, 12, 15);
13. Pair<Manager> buddies = new Pair<Manager>(ceo, cfo);
14. printBuddies(buddies);

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming638

15.

16. ceo.setBonus(1000000);
17. cfo.setBonus(500000);
18. Manager[] managers = { ceo, cfo };
19.

20. Pair<Employee> result = new Pair<Employee>();
21. minmaxBonus(managers, result);
22. System.out.println("first: " + result.getFirst().getName()
23. + ", second: " + result.getSecond().getName());
24. maxminBonus(managers, result);
25. System.out.println("first: " + result.getFirst().getName()
26. + ", second: " + result.getSecond().getName());
27. }
28.

29. public static void printBuddies(Pair<? extends Employee> p)
30. {
31. Employee first = p.getFirst();
32. Employee second = p.getSecond();
33. System.out.println(first.getName() + " and " + second.getName() + " are buddies.");
34. }
35.

36. public static void minmaxBonus(Manager[] a, Pair<? super Manager> result)
37. {
38. if (a == null || a.length == 0) return;
39. Manager min = a[0];
40. Manager max = a[0];
41. for (int i = 1; i < a.length; i++)
42. {
43. if (min.getBonus() > a[i].getBonus()) min = a[i];
44. if (max.getBonus() < a[i].getBonus()) max = a[i];
45. }
46. result.setFirst(min);
47. result.setSecond(max);
48. }
49.

50. public static void maxminBonus(Manager[] a, Pair<? super Manager> result)
51. {
52. minmaxBonus(a, result);
53. PairAlg.swapHelper(result); // OK--swapHelper captures wildcard type
54. }
55. }
56.

57. class PairAlg
58. {
59. public static boolean hasNulls(Pair<?> p)
60. {
61. return p.getFirst() == null || p.getSecond() == null;
62. }
63.

Listing 12–3 PairTest3.java (continued)

Chapter 12. Generic Programming

Wildcard Types 639

64. public static void swap(Pair<?> p) { swapHelper(p); }
65.

66. public static <T> void swapHelper(Pair<T> p)
67. {
68. T t = p.getFirst();
69. p.setFirst(p.getSecond());
70. p.setSecond(t);
71. }
72. }
73.

74. class Employee
75. {
76. public Employee(String n, double s, int year, int month, int day)
77. {
78. name = n;
79. salary = s;
80. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);
81. hireDay = calendar.getTime();
82. }
83.

84. public String getName()
85. {
86. return name;
87. }
88.

89. public double getSalary()
90. {
91. return salary;
92. }
93.

94. public Date getHireDay()
95. {
96. return hireDay;
97. }
98.

99. public void raiseSalary(double byPercent)
100. {
101. double raise = salary * byPercent / 100;
102. salary += raise;
103. }
104.

105. private String name;
106. private double salary;
107. private Date hireDay;
108. }
109.

110. class Manager extends Employee
111. {

Listing 12–3 PairTest3.java (continued)

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming640

Reflection and Generics
The Class class is now generic. For example, String.class is actually an object (in fact, the
sole object) of the class Class<String>.

The type parameter is useful because it allows the methods of Class<T> to be more spe-
cific about their return types. The following methods of Class<T> take advantage of the
type parameter:

T newInstance()
T cast(Object obj)
T[] getEnumConstants()
Class<? super T> getSuperclass()
Constructor<T> getConstructor(Class... parameterTypes)
Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The newInstance method returns an instance of the class, obtained from the default con-
structor. Its return type can now be declared to be T, the same type as the class that is
being described by Class<T>. That saves a cast.

112. /**
113. @param n the employee's name
114. @param s the salary
115. @param year the hire year
116. @param month the hire month
117. @param day the hire day
118. */
119. public Manager(String n, double s, int year, int month, int day)
120. {
121. super(n, s, year, month, day);
122. bonus = 0;
123. }
124.

125. public double getSalary()
126. {
127. double baseSalary = super.getSalary();
128. return baseSalary + bonus;
129. }
130.

131. public void setBonus(double b)
132. {
133. bonus = b;
134. }
135.

136. public double getBonus()
137. {
138. return bonus;
139. }
140.

141. private double bonus;
142. }

Listing 12–3 PairTest3.java (continued)

Chapter 12. Generic Programming

Reflection and Generics 641

The cast method returns the given object, now declared as type T if its type is indeed a
subtype of T. Otherwise, it throws a BadCastException.

The getEnumConstants method returns null if this class is not an enum class or an array of the
enumeration values, which are known to be of type T.

Finally, the getConstructor and getDeclaredConstructor methods return a Constructor<T> object.
The Constructor class has also been made generic so that its newInstance method has the
correct return type.

• T newInstance() 5.0
returns a new instance constructed with the default constructor.

• T cast(Object obj) 5.0
returns obj if it is null or can be converted to the type T, or throws a BadCastException
otherwise.

• T[] getEnumConstants() 5.0
returns an array of all values if T is an enumerated type, null otherwise.

• Class<? super T> getSuperclass() 5.0
returns the superclass of this class, or null if T is not a class or the class Object.

• Constructor<T> getConstructor(Class... parameterTypes) 5.0
• Constructor<T> getDeclaredConstructor(Class... parameterTypes) 5.0

gets the public constructor, or the constructor with the given parameter types.

• T newInstance(Object... parameters) 5.0
returns a new instance constructed with the given parameters.

Using Class<T> Parameters for Type Matching
It is sometimes useful to match the type variable of a Class<T> parameter in a generic
method. Here is the canonical example:

public static <T> Pair<T> makePair(Class<T> c) throws InstantiationException,
 IllegalAccessException
{
 return new Pair<T>(c.newInstance(), c.newInstance());
}

If you call
makePair(Employee.class)

then Employee.class is an object of type Class<Employee>. The type parameter T of the makePair
method matches Employee, and the compiler can infer that the method returns a
Pair<Employee>.

Generic Type Information in the Virtual Machine
One of the notable features of Java generics is the erasure of generic types in the virtual
machine. Perhaps surprisingly, the erased classes still retain some faint memory of their
generic origin. For example, the raw Pair class knows that it originated from the generic

java.lang.Class<T> 1.0

java.lang.reflect.Constructor<T> 1.1

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming642

class Pair<T>, even though an object of type Pair can’t tell whether it was constructed as a
Pair<String> or Pair<Employee>.

Similarly, consider a method
public static Comparable min(Comparable[] a)

that is the erasure of a generic method
public static <T extends Comparable<? super T>> T min(T[] a)

You can use the reflection API enhancements of Java SE 5.0 to determine that

• The generic method has a type parameter called T;
• The type parameter has a subtype bound that is itself a generic type;
• The bounding type has a wildcard parameter;
• The wildcard parameter has a supertype bound; and
• The generic method has a generic array parameter.

In other words, you get to reconstruct everything about generic classes and methods
that their implementors declared. However, you won’t know how the type parameters
were resolved for specific objects or method calls.

NOTE: The type information that is contained in class files to enable reflection of generics is
incompatible with older virtual machines.

In order to express generic type declarations, Java SE 5.0 introduced a new interface Type
in the java.lang.reflect package. The interface has the following subtypes:

• The Class class, describing concrete types
• The TypeVariable interface, describing type variables (such as T extends Comparable<?

super T>)
• The WildcardType interface, describing wildcards (such as ? super T)
• The ParameterizedType interface, describing generic class or interface types (such as

Comparable<? super T>)
• The GenericArrayType interface, describing generic arrays (such as T[])

Figure 12–5 shows the inheritance hierarchy. Note that the last four subtypes are inter-
faces—the virtual machine instantiates suitable classes that implement these interfaces.

Listing 12–4 uses the generic reflection API to print out what it discovers about a given
class. If you run it with the Pair class, you get this report:

class Pair<T> extends java.lang.Object
public T getFirst()
public T getSecond()
public void setFirst(T)
public void setSecond(T)

If you run it with ArrayAlg in the PairTest2 directory, the report displays the following
method:

public static <T extends java.lang.Comparable> Pair<T> minmax(T[])

The API notes at the end of this section describe the methods used in the example program.

Chapter 12. Generic Programming

Reflection and Generics 643

Figure 12–5 The Type class and its descendants

Listing 12–4 GenericReflectionTest.java

1. import java.lang.reflect.*;
2. import java.util.*;
3.

4. /**
5. * @version 1.10 2004-05-15
6. * @author Cay Horstmann
7. */
8. public class GenericReflectionTest
9. {

10. public static void main(String[] args)
11. {
12. // read class name from command-line args or user input
13. String name;
14. if (args.length > 0) name = args[0];
15. else
16. {
17. Scanner in = new Scanner(System.in);
18. System.out.println("Enter class name (e.g. java.util.Collections): ");
19. name = in.next();
20. }
21.

22. try
23. {
24. // print generic info for class and public methods
25. Class cl = Class.forName(name);
26. printClass(cl);
27. for (Method m : cl.getDeclaredMethods())
28. printMethod(m);

Class<T>
interface

TypeVariable
<< >> interface

WildcardType
<< >> interface

Parameterized
Type

<< >> interface
Generic

ArrayType

<< >>

interface
Type

<< >>

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming644

29. }
30. catch (ClassNotFoundException e)
31. {
32. e.printStackTrace();
33. }
34. }
35.

36. public static void printClass(Class cl)
37. {
38. System.out.print(cl);
39. printTypes(cl.getTypeParameters(), "<", ", ", ">", true);
40. Type sc = cl.getGenericSuperclass();
41. if (sc != null)
42. {
43. System.out.print(" extends ");
44. printType(sc, false);
45. }
46. printTypes(cl.getGenericInterfaces(), " implements ", ", ", "", false);
47. System.out.println();
48. }
49.

50. public static void printMethod(Method m)
51. {
52. String name = m.getName();
53. System.out.print(Modifier.toString(m.getModifiers()));
54. System.out.print(" ");
55. printTypes(m.getTypeParameters(), "<", ", ", "> ", true);
56.

57. printType(m.getGenericReturnType(), false);
58. System.out.print(" ");
59. System.out.print(name);
60. System.out.print("(");
61. printTypes(m.getGenericParameterTypes(), "", ", ", "", false);
62. System.out.println(")");
63. }
64.

65. public static void printTypes(Type[] types, String pre, String sep, String suf,
66. boolean isDefinition)
67. {
68. if (pre.equals(" extends ") && Arrays.equals(types, new Type[] { Object.class })) return;
69. if (types.length > 0) System.out.print(pre);
70. for (int i = 0; i < types.length; i++)
71. {
72. if (i > 0) System.out.print(sep);
73. printType(types[i], isDefinition);
74. }
75. if (types.length > 0) System.out.print(suf);
76. }
77.

Listing 12–4 GenericReflectionTest.java (continued)

Chapter 12. Generic Programming

Reflection and Generics 645

78. public static void printType(Type type, boolean isDefinition)
79. {
80. if (type instanceof Class)
81. {
82. Class t = (Class) type;
83. System.out.print(t.getName());
84. }
85. else if (type instanceof TypeVariable)
86. {
87. TypeVariable t = (TypeVariable) type;
88. System.out.print(t.getName());
89. if (isDefinition)
90. printTypes(t.getBounds(), " extends ", " & ", "", false);
91. }
92. else if (type instanceof WildcardType)
93. {
94. WildcardType t = (WildcardType) type;
95. System.out.print("?");
96. printTypes(t.getUpperBounds(), " extends ", " & ", "", false);
97. printTypes(t.getLowerBounds(), " super ", " & ", "", false);
98. }
99. else if (type instanceof ParameterizedType)

100. {
101. ParameterizedType t = (ParameterizedType) type;
102. Type owner = t.getOwnerType();
103. if (owner != null)
104. {
105. printType(owner, false);
106. System.out.print(".");
107. }
108. printType(t.getRawType(), false);
109. printTypes(t.getActualTypeArguments(), "<", ", ", ">", false);
110. }
111. else if (type instanceof GenericArrayType)
112. {
113. GenericArrayType t = (GenericArrayType) type;
114. System.out.print("");
115. printType(t.getGenericComponentType(), isDefinition);
116. System.out.print("[]");
117. }
118.

119. }
120. }

Listing 12–4 GenericReflectionTest.java (continued)

Chapter 12. Generic Programming

Chapter 12 ■ Generic Programming646

• TypeVariable[] getTypeParameters() 5.0
gets the generic type variables if this type was declared as a generic type, or an
array of length 0 otherwise.

• Type getGenericSuperclass() 5.0
gets the generic type of the superclass that was declared for this type, or null if this
type is Object or not a class type.

• Type[] getGenericInterfaces() 5.0
gets the generic types of the interfaces that were declared for this type, in
declaration order, or an array of length 0 if this type doesn’t implement interfaces.

• TypeVariable[] getTypeParameters() 5.0
gets the generic type variables if this method was declared as a generic method, or
an array of length 0 otherwise.

• Type getGenericReturnType() 5.0
gets the generic return type with which this method was declared.

• Type[] getGenericParameterTypes() 5.0
gets the generic parameter types with which this method was declared. If the
method has no parameters, an array of length 0 is returned.

• String getName()
gets the name of this type variable.

• Type[] getBounds()
gets the subclass bounds of this type variable, or an array of length 0 if the
variable is unbounded.

• Type[] getLowerBounds()
gets the subclass (extends) bounds of this type variable, or an array of length 0 has
no subclass bounds

• Type[] getUpperBounds()
gets the superclass (super) bounds of this type variable, or an array of length 0 has
no superclass bounds.

• Type getRawType()
gets the raw type of this parameterized type.

java.lang.Class<T> 1.0

java.lang.reflect.Method 1.1

java.lang.reflect.TypeVariable 5.0

java.lang.reflect.WildcardType 5.0

java.lang.reflect.ParameterizedType 5.0

Chapter 12. Generic Programming

Reflection and Generics 647

• Type[] getActualTypeArguments()
gets the type parameters with which this parameterized type was declared.

• Type getOwnerType()
gets the outer class type if this is an inner type, or null if this is a top-level type.

• Type getGenericComponentType()
gets the generic component type with which this array type was declared.

You now know how to use generic classes and how to program your own generic
classes and methods if the need arises. Just as importantly, you know how to decipher
the generic type declarations that you may encounter in the API documentation and in
error messages. For an exhaustive discussion of everything there is to know about Java
generics, turn to Angelika Langer’s excellent list of frequently (and not so frequently)
asked questions at http://angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html.

In the next chapter, you will see how the Java collections framework puts generics to
work.

java.lang.reflect.GenericArrayType 5.0

Chapter 12. Generic Programming

Chapter 12. Generic Programming

ChapterChapter

649

COLLECTIONS

▼ COLLECTION INTERFACES

▼ CONCRETE COLLECTIONS

▼ THE COLLECTIONS FRAMEWORK

▼ ALGORITHMS

▼ LEGACY COLLECTIONS

Chapter 13. Collections

Chapter 13 ■ Collections650

The data structures that you choose can make a big difference when it comes to
implementing methods in a natural style, as well as for performance. Do you need to
search quickly through thousands (or even millions) of sorted items? Do you need to
rapidly insert and remove elements in the middle of an ordered sequence? Do you
need to establish associations between keys and values?

This chapter shows how the Java library can help you accomplish the traditional data
structuring needed for serious programming. In college computer science programs, a
course called Data Structures usually takes a semester to complete, so there are many,
many books devoted to this important topic. Our coverage differs from that of a college
course; we skip the theory and just tell you how to use the collection classes in the stan-
dard library.

Collection Interfaces
The initial release of Java supplied only a small set of classes for the most useful data struc-
tures: Vector, Stack, Hashtable, BitSet, and the Enumeration interface that provides an abstract
mechanism for visiting elements in an arbitrary container. That was certainly a wise
choice—it takes time and skill to come up with a comprehensive collection class library.

With the advent of Java SE 1.2, the designers felt that the time had come to roll out a full-
fledged set of data structures. They faced a number of conflicting design decisions. They
wanted the library to be small and easy to learn. They did not want the complexity of
the “Standard Template Library” (or STL) of C++, but they wanted the benefit of
“generic algorithms” that STL pioneered. They wanted the legacy classes to fit into the
new framework. As all designers of collection libraries do, they had to make some hard
choices, and they came up with a number of idiosyncratic design decisions along the
way. In this section, we will explore the basic design of the Java collections framework,
show you how to put it to work, and explain the reasoning behind some of the more
controversial features.

Separating Collection Interfaces and Implementation
As is common for modern data structure libraries, the Java collection library separates
interfaces and implementations. Let us look at that separation with a familiar data struc-
ture, the queue.

A queue interface specifies that you can add elements at the tail end of the queue, remove
them at the head, and find out how many elements are in the queue. You use a queue
when you need to collect objects and retrieve them in a “first in, first out” fashion (see
Figure 13–1).

A minimal form of a queue interface might look like this:
interface Queue<E> // a simplified form of the interface in the standard library
{
 void add(E element);
 E remove();
 int size();
}

The interface tells you nothing about how the queue is implemented. Of the two com-
mon implementations of a queue, one uses a “circular array” and one uses a linked list
(see Figure 13–2).

Chapter 13. Collections

Collection Interfaces 651

Figure 13–1 A queue

Figure 13–2 Queue implementations

tailhead

❶ ❹❸❷

next

data

head

head

tail

Linked List

Circular Array

Link Link

tail

LinkLink

❶

❹

❶

❷

❸

next

data

next

data

next

data❷ ❸ ❹

Chapter 13. Collections

Chapter 13 ■ Collections652

NOTE: As of Java SE 5.0, the collection classes are generic classes with type parameters.
For more information on generic classes, please turn to Chapter 12.

Each implementation can be expressed by a class that implements the Queue interface.
class CircularArrayQueue<E> implements Queue<E> // not an actual library class
{
 CircularArrayQueue(int capacity) { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }

 private E[] elements;
 private int head;
 private int tail;
}

class LinkedListQueue<E> implements Queue<E> // not an actual library class
{
 LinkedListQueue() { . . . }
 public void add(E element) { . . . }
 public E remove() { . . . }
 public int size() { . . . }

 private Link head;
 private Link tail;
}

NOTE: The Java library doesn’t actually have classes named CircularArrayQueue and
LinkedListQueue. We use these classes as examples to explain the conceptual distinction
between collection interfaces and implementations. If you need a circular array queue, use
the ArrayDeque class that was introduced in Java SE 6. For a linked list queue, simply use the
LinkedList class—it implements the Queue interface.

When you use a queue in your program, you don’t need to know which implementation
is actually used once the collection has been constructed. Therefore, it makes sense to
use the concrete class only when you construct the collection object. Use the interface type
to hold the collection reference.

Queue<Customer> expressLane = new CircularArrayQueue<Customer>(100);
expressLane.add(new Customer("Harry"));

With this approach if you change your mind, you can easily use a different
implementation. You only need to change your program in one place—the constructor
call. If you decide that a LinkedListQueue is a better choice after all, your code becomes

Queue<Customer> expressLane = new LinkedListQueue<Customer>();
expressLane.add(new Customer("Harry"));

Why would you choose one implementation over another? The interface says nothing
about the efficiency of the implementation. A circular array is somewhat more efficient
than a linked list, so it is generally preferable. However, as usual, there is a price to pay.

Chapter 13. Collections

Collection Interfaces 653

The circular array is a bounded collection—it has a finite capacity. If you don’t have an
upper limit on the number of objects that your program will collect, you may be better
off with a linked list implementation after all.

When you study the API documentation, you will find another set of classes whose
name begins with Abstract, such as AbstractQueue. These classes are intended for library
implementors. In the (perhaps unlikely) event that you want to implement your own
queue class, you will find it easier to extend AbstractQueue than to implement all the meth-
ods of the Queue interface.

Collection and Iterator Interfaces in the Java Library
The fundamental interface for collection classes in the Java library is the Collection inter-
face. The interface has two fundamental methods:

public interface Collection<E>
{
 boolean add(E element);
 Iterator<E> iterator();
 . . .
}

There are several methods in addition to these two; we discuss them later.

The add method adds an element to the collection. The add method returns true if adding
the element actually changes the collection, and false if the collection is unchanged. For
example, if you try to add an object to a set and the object is already present, then the add
request has no effect because sets reject duplicates.

The iterator method returns an object that implements the Iterator interface. You can use
the iterator object to visit the elements in the collection one by one.

Iterators

The Iterator interface has three methods:
public interface Iterator<E>
{
 E next();
 boolean hasNext();
 void remove();
}

By repeatedly calling the next method, you can visit the elements from the collection
one by one. However, if you reach the end of the collection, the next method throws a
NoSuchElementException. Therefore, you need to call the hasNext method before calling next.
That method returns true if the iterator object still has more elements to visit. If you want
to inspect all elements in a collection, you request an iterator and then keep calling the
next method while hasNext returns true. For example:

Collection<String> c = . . .;
Iterator<String> iter = c.iterator();
while (iter.hasNext())
{
 String element = iter.next();
 do something with element
}

Chapter 13. Collections

Chapter 13 ■ Collections654

As of Java SE 5.0, there is an elegant shortcut for this loop. You write the same loop more
concisely with the “for each” loop:

for (String element : c)
{
 do something with element
}

The compiler simply translates the “for each” loop into a loop with an iterator.

The “for each” loop works with any object that implements the Iterable interface, an
interface with a single method:

public interface Iterable<E>
{
 Iterator<E> iterator();
}

The Collection interface extends the Iterable interface. Therefore, you can use the “for
each” loop with any collection in the standard library.

The order in which the elements are visited depends on the collection type. If you iterate
over an ArrayList, the iterator starts at index 0 and increments the index in each step.
However, if you visit the elements in a HashSet, you will encounter them in essentially
random order. You can be assured that you will encounter all elements of the collection
during the course of the iteration, but you cannot make any assumptions about their
ordering. This is usually not a problem because the ordering does not matter for compu-
tations such as computing totals or counting matches.

NOTE: Old-timers will notice that the next and hasNext methods of the Iterator interface
serve the same purpose as the nextElement and hasMoreElements methods of an Enumeration.
The designers of the Java collection library could have chosen to make use of the Enumera-
tion interface. But they disliked the cumbersome method names and instead introduced a
new interface with shorter method names.

There is an important conceptual difference between iterators in the Java collection
library and iterators in other libraries. In traditional collection libraries such as the
Standard Template Library of C++, iterators are modeled after array indexes. Given
such an iterator, you can look up the element that is stored at that position, much like
you can look up an array element a[i] if you have an array index i. Independently of
the lookup, you can advance the iterator to the next position. This is the same opera-
tion as advancing an array index by calling i++, without performing a lookup. How-
ever, the Java iterators do not work like that. The lookup and position change are
tightly coupled. The only way to look up an element is to call next, and that lookup
advances the position.

Instead, you should think of Java iterators as being between elements. When you call next,
the iterator jumps over the next element, and it returns a reference to the element that it
just passed (see Figure 13–3).

Chapter 13. Collections

Collection Interfaces 655

Figure 13–3 Advancing an iterator

NOTE: Here is another useful analogy. You can think of Iterator.next as the equivalent of
InputStream.read. Reading a byte from a stream automatically “consumes” the byte. The next
call to read consumes and returns the next byte from the input. Similarly, repeated calls to
next let you read all elements in a collection.

Removing Elements

The remove method of the Iterator interface removes the element that was returned by the
last call to next. In many situations, that makes sense—you need to see the element
before you can decide that it is the one that should be removed. But if you want to
remove an element in a particular position, you still need to skip past the element. For
example, here is how you remove the first element in a collection of strings:

Iterator<String> it = c.iterator();
it.next(); // skip over the first element
it.remove(); // now remove it

More important, there is a dependency between calls to the next and remove methods. It is
illegal to call remove if it wasn’t preceded by a call to next. If you try, an IllegalStateException
is thrown.

If you want to remove two adjacent elements, you cannot simply call
it.remove();
it.remove(); // Error!

iterator

returned
element

Chapter 13. Collections

Chapter 13 ■ Collections656

Instead, you must first call next to jump over the element to be removed.
it.remove();
it.next();
it.remove(); // Ok

Generic Utility Methods

Because the Collection and Iterator interfaces are generic, you can write utility methods
that operate on any kind of collection. For example, here is a generic method that tests
whether an arbitrary collection contains a given element:

public static <E> boolean contains(Collection<E> c, Object obj)
{
 for (E element : c)
 if (element.equals(obj))
 return true;
 return false;
}

The designers of the Java library decided that some of these utility methods are so use-
ful that the library should make them available. That way, library users don’t have to
keep reinventing the wheel. The contains method is one such method.

In fact, the Collection interface declares quite a few useful methods that all implementing
classes must supply. Among them are

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object other)
boolean addAll(Collection<? extends E> from)
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
void clear()
boolean retainAll(Collection<?> c)
Object[] toArray()
<T> T[] toArray(T[] arrayToFill)

Many of these methods are self-explanatory; you will find full documentation in the
API notes at the end of this section.

Of course, it is a bother if every class that implements the Collection interface has to sup-
ply so many routine methods. To make life easier for implementors, the library supplies
a class AbstractCollection that leaves the fundamental methods size and iterator abstract
but implements the routine methods in terms of them. For example:

public abstract class AbstractCollection<E>
 implements Collection<E>
{
 . . .
 public abstract Iterator<E> iterator();

 public boolean contains(Object obj)
 {
 for (E element : c) // calls iterator()

Chapter 13. Collections

Collection Interfaces 657

 if (element.equals(obj))
 return = true;
 return false;
 }
 . . .
}

A concrete collection class can now extend the AbstractCollection class. It is now up to the
concrete collection class to supply an iterator method, but the contains method has been
taken care of by the AbstractCollection superclass. However, if the subclass has a more effi-
cient way of implementing contains, it is free to do so.

This is a good design for a class framework. The users of the collection classes have a
richer set of methods available in the generic interface, but the implementors of the
actual data structures do not have the burden of implementing all the routine methods.

• Iterator<E> iterator()
returns an iterator that can be used to visit the elements in the collection.

• int size()
returns the number of elements currently stored in the collection.

• boolean isEmpty()
returns true if this collection contains no elements.

• boolean contains(Object obj)
returns true if this collection contains an object equal to obj.

• boolean containsAll(Collection<?> other)
returns true if this collection contains all elements in the other collection.

• boolean add(Object element)
adds an element to the collection. Returns true if the collection changed as a result
of this call.

• boolean addAll(Collection<? extends E> other)
adds all elements from the other collection to this collection. Returns true if the
collection changed as a result of this call.

• boolean remove(Object obj)
removes an object equal to obj from this collection. Returns true if a matching
object was removed.

• boolean removeAll(Collection<?> other)
removes from this collection all elements from the other collection. Returns true if
the collection changed as a result of this call.

• void clear()
removes all elements from this collection.

• boolean retainAll(Collection<?> other)
removes all elements from this collection that do not equal one of the elements in
the other collection. Returns true if the collection changed as a result of this call.

• Object[] toArray()
returns an array of the objects in the collection.

java.util.Collection<E> 1.2

Chapter 13. Collections

Chapter 13 ■ Collections658

• <T> T[] toArray(T[] arrayToFill)
returns an array of the objects in the collection. If arrayToFill has sufficient length, it
is filled with the elements of this collection. If there is space, a null element is
appended. Otherwise, a new array with the same component type as arrayToFill
and the same length as the size of this collection is allocated and filled.

• boolean hasNext()
returns true if there is another element to visit.

• E next()
returns the next object to visit. Throws a NoSuchElementException if the end of the
collection has been reached.

• void remove()
removes the last visited object. This method must immediately follow an element
visit. If the collection has been modified since the last element visit, then the
method throws an IllegalStateException.

Concrete Collections
Rather than getting into more details about all the interfaces, we thought it would be
helpful to first discuss the concrete data structures that the Java library supplies. Once
we have thoroughly described the classes you might want to use, we will return to
abstract considerations and see how the collections framework organizes these classes.
Table 13–1 shows the collections in the Java library and briefly describes the purpose of
each collection class. (For simplicity, we omit the thread-safe collections that will be dis-
cussed in Chapter 14.) All classes in Table 13–1 implement the Collection interface, with
the exception of the classes with names ending in Map. Those classes implement the Map
interface instead. We will discuss the Map interface in the section “Maps” on page 680.

java.util.Iterator<E> 1.2

Table 13–1 Concrete Collections in the Java Library

Collection Type Description See Page

ArrayList An indexed sequence that grows and shrinks dynamically 668

LinkedList An ordered sequence that allows efficient insertions and
removal at any location

659

ArrayDeque A double-ended queue that is implemented as a circular
array

678

HashSet An unordered collection that rejects duplicates 668

TreeSet A sorted set 672

EnumSet A set of enumerated type values 687

LinkedHashSet A set that remembers the order in which elements were
inserted

686

Chapter 13. Collections

Concrete Collections 659

Linked Lists
We already used arrays and their dynamic cousin, the ArrayList class, for many examples
in this book. However, arrays and array lists suffer from a major drawback. Removing
an element from the middle of an array is expensive since all array elements beyond the
removed one must be moved toward the beginning of the array (see Figure 13–4). The
same is true for inserting elements in the middle.

Figure 13–4 Removing an element from an array

Another well-known data structure, the linked list, solves this problem. Whereas an
array stores object references in consecutive memory locations, a linked list stores each

Collection Type Description See Page

PriorityQueue A collection that allows efficient removal of the smallest
element

679

HashMap A data structure that stores key/value associations 680

TreeMap A map in which the keys are sorted 680

EnumMap A map in which the keys belong to an enumerated type 687

LinkedHashMap A map that remembers the order in which entries were
added

686

WeakHashMap A map with values that can be reclaimed by the garbage
collector if they are not used elsewhere

685

IdentityHashMap A map with keys that are compared by ==, not equals 688

Table 13–1 Concrete Collections in the Java Library (continued)

removed element

Chapter 13. Collections

Chapter 13 ■ Collections660

object in a separate link. Each link also stores a reference to the next link in the sequence.
In the Java programming language, all linked lists are actually doubly linked; that is, each
link also stores a reference to its predecessor (see Figure 13–5).

Removing an element from the middle of a linked list is an inexpensive operation—only
the links around the element to be removed need to be updated (see Figure 13–6).

Perhaps you once took a data structures course in which you learned how to implement
linked lists. You may have bad memories of tangling up the links when removing or
adding elements in the linked list. If so, you will be pleased to learn that the Java collec-
tions library supplies a class LinkedList ready for you to use.

The following code example adds three elements and and then removes the second one:
List<String> staff = new LinkedList<String>(); // LinkedList implements List
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
Iterator iter = staff.iterator();
String first = iter.next(); // visit first element
String second = iter.next(); // visit second element
iter.remove(); // remove last visited element

There is, however, an important difference between linked lists and generic collections.
A linked list is an ordered collection in which the position of the objects matters. The
LinkedList.add method adds the object to the end of the list. But you often want to add
objects somewhere in the middle of a list. This position-dependent add method is the

Figure 13–5 A doubly linked list

Link

next

data

previous

LinkedList

first

Link

next

data

previous

Link

next

data

previous

Chapter 13. Collections

Concrete Collections 661

responsibility of an iterator, since iterators describe positions in collections. Using itera-
tors to add elements makes sense only for collections that have a natural ordering. For
example, the set data type that we discuss in the next section does not impose any order-
ing on its elements. Therefore, there is no add method in the Iterator interface. Instead, the
collections library supplies a subinterface ListIterator that contains an add method:

interface ListIterator<E> extends Iterator<E>
{
 void add(E element);
 . . .
}

Unlike Collection.add, this method does not return a boolean—it is assumed that the add
operation always modifies the list.

In addition, the ListIterator interface has two methods that you can use for traversing a
list backwards.

E previous()
boolean hasPrevious()

Like the next method, the previous method returns the object that it skipped over.

The listIterator method of the LinkedList class returns an iterator object that implements
the ListIterator interface.

ListIterator<String> iter = staff.listIterator();

Figure 13–6 Removing an element from a linked list

LinkedList

first

Link

next

data

previous

Link

next

data

previous

Link

next

data

previous

Amy Bob Carl

Chapter 13. Collections

Chapter 13 ■ Collections662

The add method adds the new element before the iterator position. For example, the fol-
lowing code skips past the first element in the linked list and adds "Juliet" before the
second element (see Figure 13–7):

List<String> staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
ListIterator<String> iter = staff.listIterator();
iter.next(); // skip past first element
iter.add("Juliet");

If you call the add method multiple times, the elements are simply added in the order
in which you supplied them. They are all added in turn before the current iterator
position.

Figure 13–7 Adding an element to a linked list

LinkedList

first

Link

next

data

previous

Link

next

data

previous

Link

next

data

previous

Link

next

data

previous

Amy Bob Carl

Juliet

Chapter 13. Collections

Concrete Collections 663

When you use the add operation with an iterator that was freshly returned from the list-
Iterator method and that points to the beginning of the linked list, the newly added ele-
ment becomes the new head of the list. When the iterator has passed the last element of
the list (that is, when hasNext returns false), the added element becomes the new tail of
the list. If the linked list has n elements, there are n + 1 spots for adding a new element.
These spots correspond to the n + 1 possible positions of the iterator. For example, if a
linked list contains three elements, A, B, and C, then there are four possible positions
(marked as |) for inserting a new element:

|ABC
A|BC
AB|C
ABC|

NOTE: You have to be careful with the “cursor” analogy. The remove operation does not quite
work like the BACKSPACE key. Immediately after a call to next, the remove method indeed
removes the element to the left of the iterator, just like the BACKSPACE key would. However,
if you just called previous, the element to the right is removed. And you can’t call remove twice
in a row.

Unlike the add method, which depends only on the iterator position, the remove method
depends on the iterator state.

Finally, a set method replaces the last element returned by a call to next or previous with a
new element. For example, the following code replaces the first element of a list with a
new value:

ListIterator<String> iter = list.listIterator();
String oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

As you might imagine, if an iterator traverses a collection while another iterator is mod-
ifying it, confusing situations can occur. For example, suppose an iterator points before
an element that another iterator has just removed. The iterator is now invalid and
should no longer be used. The linked list iterators have been designed to detect such
modifications. If an iterator finds that its collection has been modified by another itera-
tor or by a method of the collection itself, then it throws a ConcurrentModificationException.
For example, consider the following code:

List<String> list = . . .;
ListIterator<String> iter1 = list.listIterator();
ListIterator<String> iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

The call to iter2.next throws a ConcurrentModificationException since iter2 detects that the list
was modified externally.

To avoid concurrent modification exceptions, follow this simple rule: You can attach as
many iterators to a collection as you like, provided that all of them are only readers.
Alternatively, you can attach a single iterator that can both read and write.

Chapter 13. Collections

Chapter 13 ■ Collections664

Concurrent modification detection is achieved in a simple way. The collection keeps
track of the number of mutating operations (such as adding and removing elements).
Each iterator keeps a separate count of the number of mutating operations that it was
responsible for. At the beginning of each iterator method, the iterator simply checks
whether its own mutation count equals that of the collection. If not, it throws a Concur-
rentModificationException.

NOTE: There is, however, a curious exception to the detection of concurrent modifications.
The linked list only keeps track of structural modifications to the list, such as adding and
removing links. The set method does not count as a structural modification. You can attach
multiple iterators to a linked list, all of which call set to change the contents of existing links.
This capability is required for a number of algorithms in the Collections class that we discuss
later in this chapter.

Now you have seen the fundamental methods of the LinkedList class. You use a List-
Iterator to traverse the elements of the linked list in either direction and to add and
remove elements.

As you saw in the preceding section, many other useful methods for operating on
linked lists are declared in the Collection interface. These are, for the most part, imple-
mented in the AbstractCollection superclass of the LinkedList class. For example, the toString
method invokes toString on all elements and produces one long string of the format [A,
B, C]. This is handy for debugging. Use the contains method to check whether an element
is present in a linked list. For example, the call staff.contains("Harry") returns true if the
linked list already contains a string that is equal to the string "Harry".

The library also supplies a number of methods that are, from a theoretical perspective,
somewhat dubious. Linked lists do not support fast random access. If you want to see
the nth element of a linked list, you have to start at the beginning and skip past the first
n – 1 elements first. There is no shortcut. For that reason, programmers don’t usually use
linked lists in programming situations in which elements need to be accessed by an inte-
ger index.

Nevertheless, the LinkedList class supplies a get method that lets you access a particular
element:

LinkedList<String> list = . . .;
String obj = list.get(n);

Of course, this method is not very efficient. If you find yourself using it, you are proba-
bly using the wrong data structure for your problem.

You should never use this illusory random access method to step through a linked list.
The code

for (int i = 0; i < list.size(); i++)
 do something with list.get(i);

is staggeringly inefficient. Each time you look up another element, the search starts
again from the beginning of the list. The LinkedList object makes no effort to cache the
position information.

Chapter 13. Collections

Concrete Collections 665

NOTE: The get method has one slight optimization: If the index is at least size() / 2, then
the search for the element starts at the end of the list.

The list iterator interface also has a method to tell you the index of the current position.
In fact, because Java iterators conceptually point between elements, it has two of them:
The nextIndex method returns the integer index of the element that would be returned by
the next call to next; the previousIndex method returns the index of the element that would
be returned by the next call to previous. Of course, that is simply one less than nextIndex.
These methods are efficient—the iterators keep a count of the current position. Finally, if
you have an integer index n, then list.listIterator(n) returns an iterator that points just
before the element with index n. That is, calling next yields the same element as
list.get(n); obtaining that iterator is inefficient.

If you have a linked list with only a handful of elements, then you don’t have to be
overly paranoid about the cost of the get and set methods. But then why use a linked list
in the first place? The only reason to use a linked list is to minimize the cost of insertion
and removal in the middle of the list. If you have only a few elements, you can just use
an ArrayList.

We recommend that you simply stay away from all methods that use an integer index to
denote a position in a linked list. If you want random access into a collection, use an
array or ArrayList, not a linked list.

The program in Listing 13–1 puts linked lists to work. It simply creates two lists, merges
them, then removes every second element from the second list, and finally tests the
removeAll method. We recommend that you trace the program flow and pay special atten-
tion to the iterators. You may find it helpful to draw diagrams of the iterator positions,
like this:

|ACE |BDFG
A|CE |BDFG
AB|CE B|DFG
. . .

Note that the call
System.out.println(a);

prints all elements in the linked list a by invoking the toString method in AbstractCollection.

Listing 13–1 LinkedListTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates operations on linked lists.
5. * @version 1.10 2004-08-02
6. * @author Cay Horstmann
7. */
8. public class LinkedListTest
9. {

Chapter 13. Collections

Chapter 13 ■ Collections666

10. public static void main(String[] args)
11. {
12. List<String> a = new LinkedList<String>();
13. a.add("Amy");
14. a.add("Carl");
15. a.add("Erica");
16.

17. List<String> b = new LinkedList<String>();
18. b.add("Bob");
19. b.add("Doug");
20. b.add("Frances");
21. b.add("Gloria");
22.

23. // merge the words from b into a
24.

25. ListIterator<String> aIter = a.listIterator();
26. Iterator<String> bIter = b.iterator();
27.

28. while (bIter.hasNext())
29. {
30. if (aIter.hasNext()) aIter.next();
31. aIter.add(bIter.next());
32. }
33.

34. System.out.println(a);
35.

36. // remove every second word from b
37.

38. bIter = b.iterator();
39. while (bIter.hasNext())
40. {
41. bIter.next(); // skip one element
42. if (bIter.hasNext())
43. {
44. bIter.next(); // skip next element
45. bIter.remove(); // remove that element
46. }
47. }
48.

49. System.out.println(b);
50.

51. // bulk operation: remove all words in b from a
52.

53. a.removeAll(b);
54.

55. System.out.println(a);
56. }
57. }

Listing 13–1 LinkedListTest.java (continued)

Chapter 13. Collections

Concrete Collections 667

• ListIterator<E> listIterator()
returns a list iterator for visiting the elements of the list.

• ListIterator<E> listIterator(int index)
returns a list iterator for visiting the elements of the list whose first call to next will
return the element with the given index.

• void add(int i, E element)
adds an element at the specified position.

• void addAll(int i, Collection<? extends E> elements)
adds all elements from a collection to the specified position.

• E remove(int i)
removes and returns the element at the specified position.

• E get(int i)
gets the element at the specified position.

• E set(int i, E element)
replaces the element at the specified position with a new element and returns the
old element.

• int indexOf(Object element)
returns the position of the first occurrence of an element equal to the specified
element, or –1 if no matching element is found.

• int lastIndexOf(Object element)
returns the position of the last occurrence of an element equal to the specified
element, or –1 if no matching element is found.

• void add(E newElement)
adds an element before the current position.

• void set(E newElement)
replaces the last element visited by next or previous with a new element. Throws an
IllegalStateException if the list structure was modified since the last call to next or
previous.

• boolean hasPrevious()
returns true if there is another element to visit when iterating backwards through the
list.

• E previous()
returns the previous object. Throws a NoSuchElementException if the beginning of the
list has been reached.

• int nextIndex()
returns the index of the element that would be returned by the next call to next.

• int previousIndex()
returns the index of the element that would be returned by the next call to previous.

java.util.List<E> 1.2

java.util.ListIterator<E> 1.2

Chapter 13. Collections

Chapter 13 ■ Collections668

• LinkedList()
constructs an empty linked list.

• LinkedList(Collection<? extends E> elements)
constructs a linked list and adds all elements from a collection.

• void addFirst(E element)
• void addLast(E element)

adds an element to the beginning or the end of the list.
• E getFirst()
• E getLast()

returns the element at the beginning or the end of the list.
• E removeFirst()
• E removeLast()

removes and returns the element at the beginning or the end of the list.

Array Lists
In the preceding section, you saw the List interface and the LinkedList class that imple-
ments it. The List interface describes an ordered collection in which the position of ele-
ments matters. There are two protocols for visiting the elements: through an iterator and
by random access with methods get and set. The latter is not appropriate for linked lists,
but of course get and set make a lot of sense for arrays. The collections library supplies
the familiar ArrayList class that also implements the List interface. An ArrayList encapsu-
lates a dynamically reallocated array of objects.

NOTE: If you are a veteran Java programmer, you may have used the Vector class when-
ever you needed a dynamic array. Why use an ArrayList instead of a Vector? For one simple
reason: All methods of the Vector class are synchronized. It is safe to access a Vector object
from two threads. But if you access a vector from only a single thread—by far the more com-
mon case—your code wastes quite a bit of time with synchronization. In contrast, the Array-
List methods are not synchronized. We recommend that you use an ArrayList instead of a
Vector whenever you don’t need synchronization.

Hash Sets
Linked lists and arrays let you specify the order in which you want to arrange the ele-
ments. However, if you are looking for a particular element and you don’t remember its
position, then you need to visit all elements until you find a match. That can be time
consuming if the collection contains many elements. If you don’t care about the order-
ing of the elements, then there are data structures that let you find elements much faster.
The drawback is that those data structures give you no control over the order in which
the elements appear. The data structures organize the elements in an order that is conve-
nient for their own purposes.

A well-known data structure for finding objects quickly is the hash table. A hash table
computes an integer, called the hash code, for each object. A hash code is an integer that
is somehow derived from the instance fields of an object, preferably such that objects

java.util.LinkedList<E> 1.2

Chapter 13. Collections

Concrete Collections 669

with different data yield different codes. Table 13–2 lists a few examples of hash codes
that result from the hashCode method of the String class.

If you define your own classes, you are responsible for implementing your own hashCode
method—see Chapter 5 for more information. Your implementation needs to be com-
patible with the equals method: If a.equals(b), then a and b must have the same hash code.

What’s important for now is that hash codes can be computed quickly and that the com-
putation depends only on the state of the object that needs to be hashed, and not on the
other objects in the hash table.

In Java, hash tables are implemented as arrays of linked lists. Each list is called a
bucket (see Figure 13–8). To find the place of an object in the table, compute its hash
code and reduce it modulo the total number of buckets. The resulting number is the
index of the bucket that holds the element. For example, if an object has hash code
76268 and there are 128 buckets, then the object is placed in bucket 108 (because the
remainder 76268 % 128 is 108). Perhaps you are lucky and there is no other element in
that bucket. Then, you simply insert the element into that bucket. Of course, it is
inevitable that you sometimes hit a bucket that is already filled. This is called a hash

Table 13–2 Hash Codes Resulting from the hashCode Function

String Hash Code

"Lee" 76268

"lee" 107020

"eel" 100300

Figure 13–8 A hash table

Chapter 13. Collections

Chapter 13 ■ Collections670

collision. Then, you compare the new object with all objects in that bucket to see if it is
already present. Provided that the hash codes are reasonably randomly distributed and
the number of buckets is large enough, only a few comparisons should be necessary.

If you want more control over the performance of the hash table, you can specify the ini-
tial bucket count. The bucket count gives the number of buckets that are used to collect
objects with identical hash values. If too many elements are inserted into a hash table,
the number of collisions increases and retrieval performance suffers.

If you know approximately how many elements will eventually be in the table, then you
can set the bucket count. Typically, you set it to somewhere between 75% and 150% of the
expected element count. Some researchers believe that it is a good idea to make the
bucket count a prime number to prevent a clustering of keys. The evidence for this isn’t
conclusive, however. The standard library uses bucket counts that are a power of 2, with
a default of 16. (Any value you supply for the table size is automatically rounded to the
next power of 2.)

Of course, you do not always know how many elements you need to store, or your ini-
tial guess may be too low. If the hash table gets too full, it needs to be rehashed. To rehash
the table, a table with more buckets is created, all elements are inserted into the new
table, and the original table is discarded. The load factor determines when a hash table is
rehashed. For example, if the load factor is 0.75 (which is the default) and the table is
more than 75% full, then it is automatically rehashed, with twice as many buckets. For
most applications, it is reasonable to leave the load factor at 0.75.

Hash tables can be used to implement several important data structures. The simplest
among them is the set type. A set is a collection of elements without duplicates. The add
method of a set first tries to find the object to be added, and adds it only if it is not yet
present.

The Java collections library supplies a HashSet class that implements a set based on a hash
table. You add elements with the add method. The contains method is redefined to make a
fast lookup to find if an element is already present in the set. It checks only the elements
in one bucket and not all elements in the collection.

The hash set iterator visits all buckets in turn. Because the hashing scatters the elements
around in the table, they are visited in seemingly random order. You would only use a
HashSet if you don’t care about the ordering of the elements in the collection.

The sample program at the end of this section (Listing 13–2) reads words from System.in,
adds them to a set, and finally prints out all words in the set. For example, you can feed
the program the text from Alice in Wonderland (which you can obtain from http://www.guten-
berg.net) by launching it from a command shell as

java SetTest < alice30.txt

The program reads all words from the input and adds them to the hash set. It then iter-
ates through the unique words in the set and finally prints out a count. (Alice in Wonder-
land has 5,909 unique words, including the copyright notice at the beginning.) The
words appear in random order.

CAUTION: Be careful when you mutate set elements. If the hash code of an element were
to change, then the element would no longer be in the correct position in the data structure.

Chapter 13. Collections

Concrete Collections 671

• HashSet()
constructs an empty hash set.

• HashSet(Collection<? extends E> elements)
constructs a hash set and adds all elements from a collection.

• HashSet(int initialCapacity)
constructs an empty hash set with the specified capacity (number of buckets).

• HashSet(int initialCapacity, float loadFactor)
constructs an empty hash set with the specified capacity and load factor (a
number between 0.0 and 1.0 that determines at what percentage of fullness the
hash table will be rehashed into a larger one).

Listing 13–2 SetTest.java

1. import java.util.*;
2.

3. /**
4. * This program uses a set to print all unique words in System.in.
5. * @version 1.10 2003-08-02
6. * @author Cay Horstmann
7. */
8. public class SetTest
9. {

10. public static void main(String[] args)
11. {
12. Set<String> words = new HashSet<String>(); // HashSet implements Set
13. long totalTime = 0;
14.

15. Scanner in = new Scanner(System.in);
16. while (in.hasNext())
17. {
18. String word = in.next();
19. long callTime = System.currentTimeMillis();
20. words.add(word);
21. callTime = System.currentTimeMillis() - callTime;
22. totalTime += callTime;
23. }
24.

25. Iterator<String> iter = words.iterator();
26. for (int i = 1; i <= 20; i++)
27. System.out.println(iter.next());
28. System.out.println(". . .");
29. System.out.println(words.size() + " distinct words. " + totalTime + " milliseconds.");
30. }
31. }

java.util.HashSet<E> 1.2

Chapter 13. Collections

Chapter 13 ■ Collections672

• int hashCode()
returns a hash code for this object. A hash code can be any integer, positive or
negative. The definitions of equals and hashCode must be compatible: If x.equals(y) is
true, then x.hashCode() must be the same value as y.hashCode().

Tree Sets
The TreeSet class is similar to the hash set, with one added improvement. A tree set is a
sorted collection. You insert elements into the collection in any order. When you iterate
through the collection, the values are automatically presented in sorted order. For exam-
ple, suppose you insert three strings and then visit all elements that you added.

SortedSet<String> sorter = new TreeSet<String>(); // TreeSet implements SortedSet
sorter.add("Bob");
sorter.add("Amy");
sorter.add("Carl");
for (String s : sorter) System.println(s);

Then, the values are printed in sorted order: Amy Bob Carl. As the name of the class sug-
gests, the sorting is accomplished by a tree data structure. (The current implementation
uses a red-black tree. For a detailed description of red-black trees, see, for example, Intro-
duction to Algorithms by Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford
Stein [The MIT Press, 2001].) Every time an element is added to a tree, it is placed into its
proper sorting position. Therefore, the iterator always visits the elements in sorted
order.

Adding an element to a tree is slower than adding it to a hash table, but it is still much
faster than adding it into the right place in an array or linked list. If the tree contains n
elements, then an average of log2 n comparisons are required to find the correct position
for the new element. For example, if the tree already contains 1,000 elements, then add-
ing a new element requires about 10 comparisons.

Thus, adding elements into a TreeSet is somewhat slower than adding into a HashSet—see
Table 13–3 for a comparison—but the TreeSet automatically sorts the elements.

• TreeSet()
constructs an empty tree set.

• TreeSet(Collection<? extends E> elements)
constructs a tree set and adds all elements from a collection.

java.lang.Object 1.0

Table 13–3 Adding Elements into Hash and Tree Sets

Document Total Number
of Words

Number of
Distinct Words HashSet TreeSet

Alice in Wonderland 28195 5909 5 sec 7 sec

The Count of Monte Cristo 466300 37545 75 sec 98 sec

java.util.TreeSet<E> 1.2

Chapter 13. Collections

Concrete Collections 673

Object Comparison
How does the TreeSet know how you want the elements sorted? By default, the tree set
assumes that you insert elements that implement the Comparable interface. That interface
defines a single method:

public interface Comparable<T>
{
 int compareTo(T other);
}

The call a.compareTo(b) must return 0 if a and b are equal, a negative integer if a comes
before b in the sort order, and a positive integer if a comes after b. The exact value does
not matter; only its sign (>0, 0, or < 0) matters. Several standard Java platform classes
implement the Comparable interface. One example is the String class. Its compareTo method
compares strings in dictionary order (sometimes called lexicographic order).

If you insert your own objects, you must define a sort order yourself by implementing
the Comparable interface. There is no default implementation of compareTo in the Object class.

For example, here is how you can sort Item objects by part number:
 class Item implements Comparable<Item>
 {
 public int compareTo(Item other)
 {
 return partNumber - other.partNumber;
 }
 . . .
 }

If you compare two positive integers, such as part numbers in our example, then you can
simply return their difference—it will be negative if the first item should come before
the second item, zero if the part numbers are identical, and positive otherwise.

CAUTION: This trick only works if the integers are from a small enough range. If x is a large
positive integer and y is a large negative integer, then the difference x − y can overflow.

However, using the Comparable interface for defining the sort order has obvious limita-
tions. A given class can implement the interface only once. But what can you do if you
need to sort a bunch of items by part number in one collection and by description in
another? Furthermore, what can you do if you need to sort objects of a class whose cre-
ator didn’t bother to implement the Comparable interface?

In those situations, you tell the tree set to use a different comparison method, by passing
a Comparator object into the TreeSet constructor. The Comparator interface declares a compare
method with two explicit parameters:

public interface Comparator<T>
{
 int compare(T a, T b);
}

Just like the compareTo method, the compare method returns a negative integer if a comes
before b, zero if they are identical, or a positive integer otherwise.

Chapter 13. Collections

Chapter 13 ■ Collections674

To sort items by their description, simply define a class that implements the Comparator
interface:

class ItemComparator implements Comparator<Item>
{
 public int compare(Item a, Item b)
 {
 String descrA = a.getDescription();
 String descrB = b.getDescription();
 return descrA.compareTo(descrB);
 }
}

You then pass an object of this class to the tree set constructor:
ItemComparator comp = new ItemComparator();
SortedSet<Item> sortByDescription = new TreeSet<Item>(comp);

If you construct a tree with a comparator, it uses this object whenever it needs to com-
pare two elements.

Note that this item comparator has no data. It is just a holder for the comparison
method. Such an object is sometimes called a function object.

Function objects are commonly defined “on the fly,” as instances of anonymous inner
classes:

SortedSet<Item> sortByDescription = new TreeSet<Item>(new
 Comparator<Item>()
 {
 public int compare(Item a, Item b)
 {
 String descrA = a.getDescription();
 String descrB = b.getDescription();
 return descrA.compareTo(descrB);
 }
 });

NOTE: Actually, the Comparator<T> interface is declared to have two methods: compare and
equals. Of course, every class has an equals method; thus, there seems little benefit in add-
ing the method to the interface declaration. The API documentation explains that you need
not override the equals method but that doing so may yield improved performance in some
cases. For example, the addAll method of the TreeSet class can work more effectively if you
add elements from another set that uses the same comparator.

If you look back at Table 13–3, you may well wonder if you should always use a tree set
instead of a hash set. After all, adding elements does not seem to take much longer, and
the elements are automatically sorted. The answer depends on the data that you are col-
lecting. If you don’t need the data sorted, there is no reason to pay for the sorting over-
head. More important, with some data it is much more difficult to come up with a sort
order than a hash function. A hash function only needs to do a reasonably good job of
scrambling the objects, whereas a comparison function must tell objects apart with com-
plete precision.

Chapter 13. Collections

Concrete Collections 675

To make this distinction more concrete, consider the task of collecting a set of rectangles.
If you use a TreeSet, you need to supply a Comparator<Rectangle>. How do you compare two
rectangles? By area? That doesn’t work. You can have two different rectangles with dif-
ferent coordinates but the same area. The sort order for a tree must be a total ordering.
Any two elements must be comparable, and the comparison can only be zero if the ele-
ments are equal. There is such a sort order for rectangles (the lexicographic ordering on
its coordinates), but it is unnatural and cumbersome to compute. In contrast, a hash
function is already defined for the Rectangle class. It simply hashes the coordinates.

NOTE: As of Java SE 6, the TreeSet class implements the NavigableSet interface. That inter-
face adds several convenient methods for locating elements, and for backward traversal.
See the API notes for details.

The program in Listing 13–3 builds two tree sets of Item objects. The first one is sorted by
part number, the default sort order of Item objects. The second set is sorted by descrip-
tion, by means of a custom comparator.

Listing 13–3 TreeSetTest.java

1. /**
2. @version 1.10 2004-08-02
3. @author Cay Horstmann
4. */
5.

6. import java.util.*;
7.

8. /**
9. This program sorts a set of items by comparing

10. their descriptions.
11. */
12. public class TreeSetTest
13. {
14. public static void main(String[] args)
15. {
16. SortedSet<Item> parts = new TreeSet<Item>();
17. parts.add(new Item("Toaster", 1234));
18. parts.add(new Item("Widget", 4562));
19. parts.add(new Item("Modem", 9912));
20. System.out.println(parts);
21.

22. SortedSet<Item> sortByDescription = new TreeSet<Item>(new
23. Comparator<Item>()
24. {
25. public int compare(Item a, Item b)
26. {
27. String descrA = a.getDescription();
28. String descrB = b.getDescription();
29. return descrA.compareTo(descrB);

Chapter 13. Collections

Chapter 13 ■ Collections676

30. }
31. });
32.

33. sortByDescription.addAll(parts);
34. System.out.println(sortByDescription);
35. }
36. }
37.

38. /**
39. An item with a description and a part number.
40. */
41. class Item implements Comparable<Item>
42. {
43. /**
44. Constructs an item.
45. @param aDescription the item's description
46. @param aPartNumber the item's part number
47. */
48. public Item(String aDescription, int aPartNumber)
49. {
50. description = aDescription;
51. partNumber = aPartNumber;
52. }
53.

54. /**
55. Gets the description of this item.
56. @return the description
57. */
58. public String getDescription()
59. {
60. return description;
61. }
62.

63. public String toString()
64. {
65. return "[descripion=" + description
66. + ", partNumber=" + partNumber + "]";
67. }
68.

69. public boolean equals(Object otherObject)
70. {
71. if (this == otherObject) return true;
72. if (otherObject == null) return false;
73. if (getClass() != otherObject.getClass()) return false;
74. Item other = (Item) otherObject;
75. return description.equals(other.description)
76. && partNumber == other.partNumber;
77. }
78.

Listing 13–3 TreeSetTest.java (continued)

Chapter 13. Collections

Concrete Collections 677

• int compareTo(T other)
compares this object with another object and returns a negative value if this comes
before other, zero if they are considered identical in the sort order, and a positive
value if this comes after other.

• int compare(T a, T b)
compares two objects and returns a negative value if a comes before b, zero if they
are considered identical in the sort order, and a positive value if a comes after b.

• Comparator<? super E> comparator()
returns the comparator used for sorting the elements, or null if the elements are
compared with the compareTo method of the Comparable interface.

• E first()
• E last()

returns the smallest or largest element in the sorted set.

• E higher(E value)
• E lower(E value)

returns the least element > value or the largest element < value, or null if there is no
such element.

• E ceiling(E value)
• E floor(E value)

returns the least element � value or the largest element � value, or null if there is no
such element.

79. public int hashCode()
80. {
81. return 13 * description.hashCode() + 17 * partNumber;
82. }
83.

84. public int compareTo(Item other)
85. {
86. return partNumber - other.partNumber;
87. }
88.

89. private String description;
90. private int partNumber;
91. }

java.lang.Comparable<T> 1.2

java.util.Comparator<T> 1.2

java.util.SortedSet<E> 1.2

java.util.NavigableSet<E> 6

Listing 13–3 TreeSetTest.java (continued)

Chapter 13. Collections

Chapter 13 ■ Collections678

• E pollFirst()
• E pollLast

removes and returns the smallest or largest element in this set, or null if the set is
empty.

• Iterator<E> descendingIterator()
returns an iterator that traverses this set in descending direction.

• TreeSet()
constructs a tree set for storing Comparable objects.

• TreeSet(Comparator<? super E> c)
constructs a tree set and uses the specified comparator for sorting its elements.

• TreeSet(SortedSet<? extends E> elements)
constructs a tree set, adds all elements from a sorted set, and uses the same
element comparator as the given sorted set.

Queues and Deques
As we already discussed, a queue lets you efficiently add elements at the tail and
remove elements from the head. A double ended queue or deque lets you efficiently add
or remove elements at the head and tail. Adding elements in the middle is not sup-
ported. Java SE 6 introduced a Deque interface. It is implemented by the ArrayDeque and
LinkedList classes, both of which provide deques whose size grows as needed. In Chapter
14, you will see bounded queues and deques.

• boolean add(E element)
• boolean offer(E element)

adds the given element to the tail of this deque and returns true, provided the queue
is not full. If the queue is full, the first method throws an IllegalStateException,
whereas the second method returns false

• E remove()
• E poll()

removes and returns the element at the head of this queue, provided the queue is
not empty. If the queue is empty, the first method throws a NoSuchElementException,
whereas the second method returns null.

• E element()
• E peek()

returns the element at the head of this queue without removing it, provided the queue
is not empty. If the queue is empty, the first method throws a NoSuchElementException,
whereas the second method returns null.

java.util.TreeSet<E> 1.2

java.util.Queue<E> 5.0

Chapter 13. Collections

Concrete Collections 679

• void addFirst(E element)
• void addLast(E element)
• boolean offerFirst(E element)
• boolean offerLast(E element)

adds the given element to the head or tail of this deque. If the queue is full, the
first two methods throw an IllegalStateException, whereas the last two methods
return false.

• E removeFirst()
• E removeLast()
• E pollFirst()
• E pollLast()

removes and returns the element at the head of this queue, provided the queue is
not empty. If the queue is empty, the first two methods throw a NoSuchElementException,
whereas the last two methods return null.

• E getFirst()
• E getLast()
• E peekFirst()
• E peekLast()

returns the element at the head of this queue without removing it, provided the
queue is not empty. If the queue is empty, the first two methods throw a
NoSuchElementException, whereas the last two methods return null.

• ArrayDeque()
• ArrayDeque(int initialCapacity)

constructs unbounded deques with an initial capacity of 16 or the given initial
capacity.

Priority Queues
A priority queue retrieves elements in sorted order after they were inserted in arbitrary
order. That is, whenever you call the remove method, you get the smallest element cur-
rently in the priority queue. However, the priority queue does not sort all its elements. If
you iterate over the elements, they are not necessarily sorted. The priority queue makes
use of an elegant and efficient data structure, called a heap. A heap is a self-organizing
binary tree in which the add and remove operations cause the smallest element to gravitate
to the root, without wasting time on sorting all elements.

Just like a TreeSet, a priority queue can either hold elements of a class that implements
the Comparable interface or a Comparator object you supply in the constructor.

A typical use for a priority queue is job scheduling. Each job has a priority. Jobs are
added in random order. Whenever a new job can be started, the highest-priority job is
removed from the queue. (Since it is traditional for priority 1 to be the “highest” priority,
the remove operation yields the minimum element.)

java.util.Deque<E> 6

java.util.ArrayDeque<E> 6

Chapter 13. Collections

Chapter 13 ■ Collections680

Listing 13–4 shows a priority queue in action. Unlike iteration in a TreeSet, the iteration
here does not visit the elements in sorted order. However, removal always yields the
smallest remaining element.

• PriorityQueue()
• PriorityQueue(int initialCapacity)

constructs a priority queue for storing Comparable objects.
• PriorityQueue(int initialCapacity, Comparator<? super E> c)

constructs a priority queue and uses the specified comparator for sorting its
elements.

Maps
A set is a collection that lets you quickly find an existing element. However, to look up
an element, you need to have an exact copy of the element to find. That isn’t a very com-
mon lookup—usually, you have some key information, and you want to look up the
associated element. The map data structure serves that purpose. A map stores key/value
pairs. You can find a value if you provide the key. For example, you may store a table of
employee records, where the keys are the employee IDs and the values are Employee
objects.

Listing 13–4 PriorityQueueTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the use of a priority queue.
5. * @version 1.00 2004-08-03
6. * @author Cay Horstmann
7. */
8. public class PriorityQueueTest
9. {

10. public static void main(String[] args)
11. {
12. PriorityQueue<GregorianCalendar> pq = new PriorityQueue<GregorianCalendar>();
13. pq.add(new GregorianCalendar(1906, Calendar.DECEMBER, 9)); // G. Hopper
14. pq.add(new GregorianCalendar(1815, Calendar.DECEMBER, 10)); // A. Lovelace
15. pq.add(new GregorianCalendar(1903, Calendar.DECEMBER, 3)); // J. von Neumann
16. pq.add(new GregorianCalendar(1910, Calendar.JUNE, 22)); // K. Zuse
17.

18. System.out.println("Iterating over elements...");
19. for (GregorianCalendar date : pq)
20. System.out.println(date.get(Calendar.YEAR));
21. System.out.println("Removing elements...");
22. while (!pq.isEmpty())
23. System.out.println(pq.remove().get(Calendar.YEAR));
24. }
25. }

java.util.PriorityQueue 5.0

Chapter 13. Collections

Concrete Collections 681

The Java library supplies two general-purpose implementations for maps: HashMap and
TreeMap. Both classes implement the Map interface.

A hash map hashes the keys, and a tree map uses a total ordering on the keys to orga-
nize them in a search tree. The hash or comparison function is applied only to the keys.
The values associated with the keys are not hashed or compared.

Should you choose a hash map or a tree map? As with sets, hashing is a bit faster, and it
is the preferred choice if you don’t need to visit the keys in sorted order.

Here is how you set up a hash map for storing employees:
Map<String, Employee> staff = new HashMap<String, Employee>(); // HashMap implements Map
Employee harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);
. . .

Whenever you add an object to a map, you must supply a key as well. In our case, the
key is a string, and the corresponding value is an Employee object.

To retrieve an object, you must use (and, therefore, remember) the key.
String s = "987-98-9996";
e = staff.get(s); // gets harry

If no information is stored in the map with the particular key specified, then get returns
null.

Keys must be unique. You cannot store two values with the same key. If you call the put
method twice with the same key, then the second value replaces the first one. In fact, put
returns the previous value stored with the key parameter.

The remove method removes an element with a given key from the map. The size method
returns the number of entries in the map.

The collections framework does not consider a map itself as a collection. (Other frame-
works for data structures consider a map as a collection of pairs, or as a collection of val-
ues that is indexed by the keys.) However, you can obtain views of the map, objects that
implement the Collection interface, or one of its subinterfaces.

There are three views: the set of keys, the collection of values (which is not a set), and
the set of key/value pairs. The keys and key/value pairs form a set because there can be
only one copy of a key in a map. The methods

Set<K> keySet()
Collection<K> values()
Set<Map.Entry<K, V>> entrySet()

return these three views. (The elements of the entry set are objects of the static inner
class Map.Entry.)

Note that the keySet is not a HashSet or TreeSet, but an object of some other class that imple-
ments the Set interface. The Set interface extends the Collection interface. Therefore, you
can use a keySet as you would use any collection.

For example, you can enumerate all keys of a map:
Set<String> keys = map.keySet();
for (String key : keys)

Chapter 13. Collections

Chapter 13 ■ Collections682

{
 do something with key
}

TIP: If you want to look at both keys and values, then you can avoid value lookups by enu-
merating the entries. Use the following code skeleton:

for (Map.Entry<String, Employee> entry : staff.entrySet())
{
 String key = entry.getKey();
 Employee value = entry.getValue();
 do something with key, value
}

If you invoke the remove method of the iterator, you actually remove the key and its associ-
ated value from the map. However, you cannot add an element to the key set view. It makes
no sense to add a key without also adding a value. If you try to invoke the add method, it
throws an UnsupportedOperationException. The entry set view has the same restriction, even
though it would make conceptual sense to add a new key/value pair.

Listing 13–5 illustrates a map at work. We first add key/value pairs to a map. Then, we
remove one key from the map, which removes its associated value as well. Next, we
change the value that is associated with a key and call the get method to look up a value.
Finally, we iterate through the entry set.

Listing 13–5 MapTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the use of a map with key type String and value type Employee.
5. * @version 1.10 2004-08-02
6. * @author Cay Horstmann
7. */
8. public class MapTest
9. {

10. public static void main(String[] args)
11. {
12. Map<String, Employee> staff = new HashMap<String, Employee>();
13. staff.put("144-25-5464", new Employee("Amy Lee"));
14. staff.put("567-24-2546", new Employee("Harry Hacker"));
15. staff.put("157-62-7935", new Employee("Gary Cooper"));
16. staff.put("456-62-5527", new Employee("Francesca Cruz"));
17.

18. // print all entries
19.

20. System.out.println(staff);
21.

22. // remove an entry
23.

Chapter 13. Collections

Concrete Collections 683

24. staff.remove("567-24-2546");
25.

26. // replace an entry
27.

28. staff.put("456-62-5527", new Employee("Francesca Miller"));
29.

30. // look up a value
31.

32. System.out.println(staff.get("157-62-7935"));
33.

34. // iterate through all entries
35.

36. for (Map.Entry<String, Employee> entry : staff.entrySet())
37. {
38. String key = entry.getKey();
39. Employee value = entry.getValue();
40. System.out.println("key=" + key + ", value=" + value);
41. }
42. }
43. }
44.

45. /**
46. * A minimalist employee class for testing purposes.
47. */
48. class Employee
49. {
50. /**
51. * Constructs an employee with $0 salary.
52. * @param n the employee name
53. */
54. public Employee(String n)
55. {
56. name = n;
57. salary = 0;
58. }
59.

60. public String toString()
61. {
62. return "[name=" + name + ", salary=" + salary + "]";
63. }
64.

65. private String name;
66. private double salary;
67. }

Listing 13–5 MapTest.java (continued)

Chapter 13. Collections

Chapter 13 ■ Collections684

• V get(K key)
gets the value associated with the key; returns the object associated with the key,
or null if the key is not found in the map. The key may be null.

• V put(K key, V value)
puts the association of a key and a value into the map. If the key is already
present, the new object replaces the old one previously associated with the key.
This method returns the old value of the key, or null if the key was not previously
present. The key may be null, but the value must not be null.

• void putAll(Map<? extends K, ? extends V> entries)
adds all entries from the specified map to this map.

• boolean containsKey(Object key)
returns true if the key is present in the map.

• boolean containsValue(Object value)
returns true if the value is present in the map.

• Set<Map.Entry<K, V>> entrySet()
returns a set view of Map.Entry objects, the key/value pairs in the map. You can
remove elements from this set and they are removed from the map, but you
cannot add any elements.

• Set<K> keySet()
returns a set view of all keys in the map. You can remove elements from this set
and the keys and associated values are removed from the map, but you cannot
add any elements.

• Collection<V> values()
returns a collection view of all values in the map. You can remove elements from
this set and the removed value and its key are removed from the map, but you
cannot add any elements.

• K getKey()
• V getValue()

returns the key or value of this entry.
• V setValue(V newValue)

changes the value in the associated map to the new value and returns the old value.

• HashMap()
• HashMap(int initialCapacity)
• HashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load factor (a
number between 0.0 and 1.0 that determines at what percentage of fullness the
hash table will be rehashed into a larger one). The default load factor is 0.75.

java.util.Map<K, V> 1.2

java.util.Map.Entry<K, V> 1.2

java.util.HashMap<K, V> 1.2

Chapter 13. Collections

Concrete Collections 685

• TreeMap(Comparator<? super K> c)
constructs a tree map and uses the specified comparator for sorting its keys.

• TreeMap(Map<? extends K, ? extends V> entries)
constructs a tree map and adds all entries from a map.

• TreeMap(SortedMap<? extends K, ? extends V> entries)
constructs a tree map, adds all entries from a sorted map, and uses the same
element comparator as the given sorted map.

• Comparator<? super K> comparator()
returns the comparator used for sorting the keys, or null if the keys are compared
with the compareTo method of the Comparable interface.

• K firstKey()
• K lastKey()

returns the smallest or largest key in the map.

Specialized Set and Map Classes
The collection class library has several map classes for specialized needs that we briefly
discuss in this section.

Weak Hash Maps

The WeakHashMap class was designed to solve an interesting problem. What happens with a
value whose key is no longer used anywhere in your program? Suppose the last refer-
ence to a key has gone away. Then, there is no longer any way to refer to the value
object. But because no part of the program has the key any more, the key/value pair
cannot be removed from the map. Why can’t the garbage collector remove it? Isn’t it the
job of the garbage collector to remove unused objects?

Unfortunately, it isn’t quite so simple. The garbage collector traces live objects. As long
as the map object is live, then all buckets in it are live and they won’t be reclaimed. Thus,
your program should take care to remove unused values from long-lived maps. Or, you
can use a WeakHashMap instead. This data structure cooperates with the garbage collector to
remove key/value pairs when the only reference to the key is the one from the hash
table entry.

Here are the inner workings of this mechanism. The WeakHashMap uses weak references to
hold keys. A WeakReference object holds a reference to another object, in our case, a hash
table key. Objects of this type are treated in a special way by the garbage collector. Nor-
mally, if the garbage collector finds that a particular object has no references to it, it sim-
ply reclaims the object. However, if the object is reachable only by a WeakReference, the
garbage collector still reclaims the object, but it places the weak reference that led to it
into a queue. The operations of the WeakHashMap periodically check that queue for newly
arrived weak references. The arrival of a weak reference in the queue signifies that the
key was no longer used by anyone and that it has been collected. The WeakHashMap then
removes the associated entry.

java.util.TreeMap<K,V> 1.2

java.util.SortedMap<K, V> 1.2

Chapter 13. Collections

Chapter 13 ■ Collections686

Linked Hash Sets and Maps

Java SE 1.4 added classes LinkedHashSet and LinkedHashMap that remember in which order
you inserted items. That way, you avoid the seemingly random order of items in a hash
table. As entries are inserted into the table, they are joined in a doubly linked list (see
Figure 13–9).

Figure 13–9 A linked hash table

For example, consider the following map insertions from Listing 13–5:
Map staff = new LinkedHashMap();
staff.put("144-25-5464", new Employee("Amy Lee"));
staff.put("567-24-2546", new Employee("Harry Hacker"));
staff.put("157-62-7935", new Employee("Gary Cooper"));
staff.put("456-62-5527", new Employee("Francesca Cruz"));

Then, staff.keySet().iterator() enumerates the keys in this order:
144-25-5464
567-24-2546
157-62-7935
456-62-5527

and staff.values().iterator() enumerates the values in this order:
Amy Lee
Harry Hacker
Gary Cooper
Francesca Cruz

❶

❹

❸

❷

Chapter 13. Collections

Concrete Collections 687

A linked hash map can alternatively use access order, not insertion order, to iterate
through the map entries. Every time you call get or put, the affected entry is removed
from its current position and placed at the end of the linked list of entries. (Only the
position in the linked list of entries is affected, not the hash table bucket. An entry
always stays in the bucket that corresponds to the hash code of the key.) To construct
such a hash map, call

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

Access order is useful for implementing a “least recently used” discipline for a cache.
For example, you may want to keep frequently accessed entries in memory and read
less frequently accessed objects from a database. When you don’t find an entry in the
table, and the table is already pretty full, then you can get an iterator into the table and
remove the first few elements that it enumerates. Those entries were the least recently
used ones.

You can even automate that process. Form a subclass of LinkedHashMap and override the
method

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

Adding a new entry then causes the eldest entry to be removed whenever your method
returns true. For example, the following cache is kept at a size of at most 100 elements:

Map<K, V> cache = new
 LinkedHashMap<K, V>(128, 0.75F, true)
 {
 protected boolean removeEldestEntry(Map.Entry<K, V> eldest)
 {
 return size() > 100;
 }
 };

Alternatively, you can consider the eldest entry to decide whether to remove it. For
example, you may want to check a time stamp stored with the entry.

Enumeration Sets and Maps

The EnumSet is an efficient set implementation with elements that belong to an enumer-
ated type. Because an enumerated type has a finite number of instances, the EnumSet is
internally implemented simply as a sequence of bits. A bit is turned on if the corre-
sponding value is present in the set.

The EnumSet class has no public constructors. You use a static factory method to construct
the set:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY };
EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);
EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);
EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY, Weekday.FRIDAY);
EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY, Weekday.WEDNESDAY, Weekday.FRIDAY);

You can use the usual methods of the Set interface to modify an EnumSet.

An EnumMap is a map with keys that belong to an enumerated type. It is simply and efficiently
implemented as an array of values. You need to specify the key type in the constructor:

EnumMap<Weekday, Employee> personInCharge = new EnumMap<Weekday, Employee>(Weekday.class);

Chapter 13. Collections

Chapter 13 ■ Collections688

NOTE: In the API documentation for EnumSet, you will see odd-looking type parameters of
the form E extends Enum<E>. This simply means “E is an enumerated type.” All enumerated
types extend the generic Enum class. For example, Weekday extends Enum<Weekday>.

Identity Hash Maps

Java SE 1.4 added another class IdentityHashMap for another quite specialized purpose,
where the hash values for the keys should not be computed by the hashCode method but
by the System.identityHashCode method. That’s the method that Object.hashCode uses to com-
pute a hash code from the object’s memory address. Also, for comparison of objects, the
IdentityHashMap uses ==, not equals.

In other words, different key objects are considered distinct even if they have equal
contents. This class is useful for implementing object traversal algorithms (such as
object serialization), in which you want to keep track of which objects have already
been traversed.

• WeakHashMap()
• WeakHashMap(int initialCapacity)
• WeakHashMap(int initialCapacity, float loadFactor)

constructs an empty hash map with the specified capacity and load factor.

• LinkedHashSet()
• LinkedHashSet(int initialCapacity)
• LinkedHashSet(int initialCapacity, float loadFactor)

constructs an empty linked hash set with the specified capacity and load factor.

• LinkedHashMap()
• LinkedHashMap(int initialCapacity)
• LinkedHashMap(int initialCapacity, float loadFactor)
• LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)

constructs an empty linked hash map with the specified capacity, load factor, and
ordering. The accessOrder parameter is true for access order, false for insertion order.

• protected boolean removeEldestEntry(Map.Entry<K, V> eldest)
should be overridden to return true if you want the eldest entry to be removed. The
eldest parameter is the entry whose removal is being contemplated. This method is
called after an entry has been added to the map. The default implementation
returns false—old elements are not removed by default. However, you can redefine
this method to selectively return true; for example, if the eldest entry fits a certain
condition or the map exceeds a certain size.

java.util.WeakHashMap<K, V> 1.2

java.util.LinkedHashSet<E> 1.4

java.util.LinkedHashMap<K, V> 1.4

Chapter 13. Collections

The Collections Framework 689

• static <E extends Enum<E>> EnumSet<E> allOf(Class<E> enumType)
returns a set that contains all values of the given enumerated type.

• static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> enumType)
returns an empty set, capable of holding values of the given enumerated type.

• static <E extends Enum<E>> EnumSet<E> range(E from, E to)
returns a set that contains all values between from and to (inclusive).

• static <E extends Enum<E>> EnumSet<E> of(E value)
• static <E extends Enum<E>> EnumSet<E> of(E value, E... values)

returns a set that contains the given values.

• EnumMap(Class<K> keyType)
constructs an empty map whose keys have the given type.

• IdentityHashMap()
• IdentityHashMap(int expectedMaxSize)

constructs an empty identity hash map whose capacity is the smallest power of 2
exceeding 1.5 * expectedMaxSize. (The default for expectedMaxSize is 21.)

• static int identityHashCode(Object obj) 1.1
returns the same hash code (derived from the object’s memory address) that
Object.hashCode computes, even if the class to which obj belongs has redefined the
hashCode method.

The Collections Framework
A framework is a set of classes that form the basis for building advanced functionality. A
framework contains superclasses with useful functionality, policies, and mechanisms.
The user of a framework forms subclasses to extend the functionality without having to
reinvent the basic mechanisms. For example, Swing is a framework for user interfaces.

The Java collections library forms a framework for collection classes. It defines a num-
ber of interfaces and abstract classes for implementors of collections (see Figure 13–10),
and it prescribes certain mechanisms, such as the iteration protocol. You can use the col-
lection classes without having to know much about the framework—we did just that in
the preceding sections. However, if you want to implement generic algorithms that
work for multiple collection types or if you want to add a new collection type, it is help-
ful to understand the framework.

There are two fundamental interfaces for collections: Collection and Map. You insert ele-
ments into a collection with a method:

boolean add(E element)

java.util.EnumSet<E extends Enum<E>> 5.0

java.util.EnumMap<K extends Enum<K>, V> 5.0

java.util.IdentityHashMap<K, V> 1.4

java.lang.System 1.0

Chapter 13. Collections

Chapter 13 ■ Collections690

However, maps hold key/value pairs, and you use the put method to insert them.
V put(K key, V value)

To read elements from a collection, you visit them with an iterator. However, you can
read values from a map with the get method:

V get(K key)

A List is an ordered collection. Elements are added into a particular position in the con-
tainer. An object can be placed into its position in two ways: by an integer index and by
a list iterator. The List interface defines methods for random access:

void add(int index, E element)
E get(int index)
void remove(int index)

As already discussed, the List interface provides these random access methods whether
or not they are efficient for a particular implementation. To avoid carrying out costly

Figure 13–10 The interfaces of the collections framework

List Set SortedMap

Iterator

ListIterator

SortedSet

RandomAccessMapCollection

Iterable

Queue

Deque

NavigableSet

NavigableMap

Chapter 13. Collections

The Collections Framework 691

random access operations, Java SE 1.4 introduced a tagging interface, RandomAccess. That
interface has no methods, but you can use it to test whether a particular collection sup-
ports efficient random access:

if (c instanceof RandomAccess)
{
 use random access algorithm
}
else
{
 use sequential access algorithm
}

The ArrayList and Vector classes implement the RandomAccess interface.

NOTE: From a theoretical point of view, it would have made sense to have a separate Array
interface that extends the List interface and declares the random access methods. If there
were a separate Array interface, then those algorithms that require random access would use
Array parameters and you could not accidentally apply them to collections with slow random
access. However, the designers of the collections framework chose not to define a separate
interface, because they wanted to keep the number of interfaces in the library small. Also, they
did not want to take a paternalistic attitude toward programmers. You are free to pass a linked
list to algorithms that use random access—you just need to be aware of the performance costs.

The ListIterator interface defines a method for adding an element before the iterator
position:

void add(E element)

To get and remove elements at a particular position, you simply use the next and remove
methods of the Iterator interface.

The Set interface is identical to the Collection interface, but the behavior of the methods is
more tightly defined. The add method of a set should reject duplicates. The equals method
of a set should be defined so that two sets are identical if they have the same elements,
but not necessarily in the same order. The hashCode method should be defined such that
two sets with the same elements yield the same hash code.

Why make a separate interface if the method signatures are the same? Conceptually, not
all collections are sets. Making a Set interface enables programmers to write methods
that accept only sets.

The SortedSet and SortedMap interfaces expose the comparator object used for sorting, and
they define methods to obtain views of subsets of the collections. We discuss these
views in the next section.

Finally, Java SE 6 introduced interfaces NavigableSet and NavigableMap that contain addi-
tional methods for searching and traversal in sorted sets and maps. (Ideally, these meth-
ods should have simply been included in the SortedSet and SortedMap interface.) The TreeSet
and TreeMap classes implement these interfaces.

Now, let us turn from the interfaces to the classes that implement them. We already
discussed that the collection interfaces have quite a few methods that can be trivially
implemented from more fundamental methods. Abstract classes supply many of these
routine implementations:

Chapter 13. Collections

Chapter 13 ■ Collections692

AbstractCollection
AbstractList
AbstractSequentialList
AbstractSet
AbstractQueue
AbstractMap

If you implement your own collection class, then you probably want to extend one of
these classes so that you can pick up the implementations of the routine operations.

The Java library supplies concrete classes:
LinkedList
ArrayList

ArrayDeque
HashSet
TreeSet
PriorityQueue
HashMap
TreeMap

Figure 13–11 shows the relationships between these classes.

Figure 13–11 Classes in the collections framework

Abstract
SequentialList

ArrayListLinkedList

Abstract
Collection

AbstractSetAbstractList

HashSet TreeSet

AbstractMap

HashMap TreeMap

Abstract
Queue

PriorityQueue ArrayDeque

Chapter 13. Collections

The Collections Framework 693

Finally, a number of “legacy” container classes have been present since the first release
of Java, before there was a collections framework:

Vector
Stack
Hashtable
Properties

They have been integrated into the collections framework—see Figure 13–12. We dis-
cuss these classes later in this chapter.

Figure 13–12 Legacy classes in the collections framework

Views and Wrappers
If you look at Figure 13–10 and Figure 13–11, you might think it is overkill to have lots of
interfaces and abstract classes to implement a modest number of concrete collection
classes. However, these figures don’t tell the whole story. By using views, you can obtain
other objects that implement the Collection or Map interfaces. You saw one example of this
with the keySet method of the map classes. At first glance, it appears as if the method cre-
ates a new set, fills it with all keys of the map, and returns it. However, that is not the

Vector

List

Stack

AbstractList

Map

RandomAccess

Properties

Hashtable

Chapter 13. Collections

Chapter 13 ■ Collections694

case. Instead, the keySet method returns an object of a class that implements the Set
interface and whose methods manipulate the original map. Such a collection is called
a view.

The technique of views has a number of useful applications in the collections frame-
work. We discuss these applications in the following sections.

Lightweight Collection Wrappers

The static asList method of the Arrays class returns a List wrapper around a plain Java
array. This method lets you pass the array to a method that expects a list or collection
argument. For example:

Card[] cardDeck = new Card[52];
. . .
List<Card> cardList = Arrays.asList(cardDeck);

The returned object is not an ArrayList. It is a view object with get and set methods that
access the underlying array. All methods that would change the size of the array (such as
add and the remove method of the associated iterator) throw an UnsupportedOperationException.

As of Java SE 5.0, the asList method is declared to have a variable number of arguments.
Instead of passing an array, you can also pass individual elements. For example:

List<String> names = Arrays.asList("Amy", "Bob", "Carl");

The method call
Collections.nCopies(n, anObject)

returns an immutable object that implements the List interface and gives the illusion of
having n elements, each of which appears as anObject.

For example, the following call creates a List containing 100 strings, all set to "DEFAULT":
List<String> settings = Collections.nCopies(100, "DEFAULT");

There is very little storage cost—the object is stored only once. This is a cute application
of the view technique.

NOTE: The Collections class contains a number of utility methods with parameters or return
values that are collections. Do not confuse it with the Collection interface.

The method call
Collections.singleton(anObject)

returns a view object that implements the Set interface (unlike ncopies, which produces a
List). The returned object implements an immutable single-element set without the
overhead of data structure. The methods singletonList and singletonMap behave similarly.

Subranges

You can form subrange views for a number of collections. For example, suppose you
have a list staff and want to extract elements 10 to 19. You use the subList method to
obtain a view into the subrange of the list.

List group2 = staff.subList(10, 20);

The first index is inclusive, the second exclusive—just like the parameters for the
substring operation of the String class.

Chapter 13. Collections

The Collections Framework 695

You can apply any operations to the subrange, and they automatically reflect the entire
list. For example, you can erase the entire subrange:

group2.clear(); // staff reduction

The elements are now automatically cleared from the staff list, and group2 is empty.

For sorted sets and maps, you use the sort order, not the element position, to form sub-
ranges. The SortedSet interface declares three methods:

SortedSet<E> subSet(E from, E to)
SortedSet<E> headSet(E to)
SortedSet<E> tailSet(E from)

These return the subsets of all elements that are larger than or equal to from and strictly
smaller than to. For sorted maps, the similar methods

SortedMap<K, V> subMap(K from, K to)
SortedMap<K, V> headMap(K to)
SortedMap<K, V> tailMap(K from)

return views into the maps consisting of all entries in which the keys fall into the speci-
fied ranges.

The NavigableSet interface that was introduced in Java SE 6 gives more control over these
subrange operations. You can specify whether the bounds are included:

NavigableSet<E> subSet(E from, boolean fromInclusive, E to, boolean toInclusive)
NavigableSet<E> headSet(E to, boolean toInclusive)
NavigableSet<E> tailSet(E from, boolean fromInclusive)

Unmodifiable Views

The Collections class has methods that produce unmodifiable views of collections. These
views add a runtime check to an existing collection. If an attempt to modify the collec-
tion is detected, then an exception is thrown and the collection remains untouched.

You obtain unmodifiable views by six methods:
Collections.unmodifiableCollection
Collections.unmodifiableList
Collections.unmodifiableSet
Collections.unmodifiableSortedSet
Collections.unmodifiableMap
Collections.unmodifiableSortedMap

Each method is defined to work on an interface. For example, Collections.unmodifiableList
works with an ArrayList, a LinkedList, or any other class that implements the List interface.

For example, suppose you want to let some part of your code look at, but not touch, the
contents of a collection. Here is what you could do:

List<String> staff = new LinkedList<String>();
. . .
lookAt(new Collections.unmodifiableList(staff));

The Collections.unmodifiableList method returns an object of a class implementing the List
interface. Its accessor methods retrieve values from the staff collection. Of course, the
lookAt method can call all methods of the List interface, not just the accessors. But all
mutator methods (such as add) have been redefined to throw an UnsupportedOperationExcep-
tion instead of forwarding the call to the underlying collection.

Chapter 13. Collections

Chapter 13 ■ Collections696

The unmodifiable view does not make the collection itself immutable. You can still
modify the collection through its original reference (staff, in our case). And you can still
call mutator methods on the elements of the collection.

Because the views wrap the interface and not the actual collection object, you only have
access to those methods that are defined in the interface. For example, the LinkedList class
has convenience methods, addFirst and addLast, that are not part of the List interface.
These methods are not accessible through the unmodifiable view.

CAUTION: The unmodifiableCollection method (as well as the synchronizedCollection and
checkedCollection methods discussed later in this section) returns a collection whose equals
method does not invoke the equals method of the underlying collection. Instead, it inherits
the equals method of the Object class, which just tests whether the objects are identical. If
you turn a set or list into just a collection, you can no longer test for equal contents. The view
acts in this way because equality testing is not well defined at this level of the hierarchy. The
views treat the hashCode method in the same way.

However, the unmodifiableSet and unmodifiableList class use the equals and hashCode methods
of the underlying collections.

Synchronized Views

If you access a collection from multiple threads, you need to ensure that the collection is
not accidentally damaged. For example, it would be disastrous if one thread tried to add
to a hash table while another thread was rehashing the elements.

Instead of implementing thread-safe collection classes, the library designers used the
view mechanism to make regular collections thread safe. For example, the static syn-
chronizedMap method in the Collections class can turn any map into a Map with synchro-
nized access methods:

Map<String, Employee> map = Collections.synchronizedMap(new HashMap<String, Employee>());

You can now access the map object from multiple threads. The methods such as get and put
are serialized—each method call must be finished completely before another thread can
call another method. We discuss the issue of synchronized access to data structures in
greater detail in Chapter 14.

Checked Views

Java SE 5.0 added a set of “checked” views that are intended as debugging support for a
problem that can occur with generic types. As explained in Chapter 12, it is actually pos-
sible to smuggle elements of the wrong type into a generic collection. For example:

ArrayList<String> strings = new ArrayList<String>();
ArrayList rawList = strings; // get warning only, not an error, for compatibility with legacy code
rawList.add(new Date()); // now strings contains a Date object!

The erroneous add command is not detected at runtime. Instead, a class cast exception
will happen later when another part of the code calls get and casts the result to a String.

A checked view can detect this problem. Define a safe list as follows:
List<String> safeStrings = Collections.checkedList(strings, String.class);

Chapter 13. Collections

The Collections Framework 697

The view’s add method checks that the inserted object belongs to the given class and
immediately throws a ClassCastException if it does not. The advantage is that the error is
reported at the correct location:

ArrayList rawList = safeStrings;
rawList.add(new Date()); // Checked list throws a ClassCastException

CAUTION: The checked views are limited by the runtime checks that the virtual machine
can carry out. For example, if you have an ArrayList<Pair<String>>, you cannot protect it from
inserting a Pair<Date> since the virtual machine has a single “raw” Pair class.

A Note on Optional Operations

A view usually has some restriction—it may be read-only, it may not be able to change
the size, or it may support removal, but not insertion, as is the case for the key view of
a map. A restricted view throws an UnsupportedOperationException if you attempt an inap-
propriate operation.

In the API documentation for the collection and iterator interfaces, many methods are
described as “optional operations.” This seems to be in conflict with the notion of an
interface. After all, isn’t the purpose of an interface to lay out the methods that a class
must implement? Indeed, this arrangement is unsatisfactory from a theoretical perspec-
tive. A better solution might have been to design separate interfaces for read-only views
and views that can’t change the size of a collection. However, that would have tripled
the number of interfaces, which the designers of the library found unacceptable.

Should you extend the technique of “optional” methods to your own designs? We
think not. Even though collections are used frequently, the coding style for imple-
menting them is not typical for other problem domains. The designers of a collection
class library have to resolve a particularly brutal set of conflicting requirements. Users
want the library to be easy to learn, convenient to use, completely generic, idiot proof,
and at the same time as efficient as hand-coded algorithms. It is plainly impossible to
achieve all these goals simultaneously, or even to come close. But in your own pro-
gramming problems, you will rarely encounter such an extreme set of constraints. You
should be able to find solutions that do not rely on the extreme measure of “optional”
interface operations.

• static <E> Collection unmodifiableCollection(Collection<E> c)
• static <E> List unmodifiableList(List<E> c)
• static <E> Set unmodifiableSet(Set<E> c)
• static <E> SortedSet unmodifiableSortedSet(SortedSet<E> c)
• static <K, V> Map unmodifiableMap(Map<K, V> c)
• static <K, V> SortedMap unmodifiableSortedMap(SortedMap<K, V> c)

constructs views of the collection whose mutator methods throw an
UnsupportedOperationException.

java.util.Collections 1.2

Chapter 13. Collections

Chapter 13 ■ Collections698

• static <E> Collection<E> synchronizedCollection(Collection<E> c)
• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> c)

constructs views of the collection whose methods are synchronized.
• static <E> Collection checkedCollection(Collection<E> c, Class<E> elementType)
• static <E> List checkedList(List<E> c, Class<E> elementType)
• static <E> Set checkedSet(Set<E> c, Class<E> elementType)
• static <E> SortedSet checkedSortedSet(SortedSet<E> c, Class<E> elementType)
• static <K, V> Map checkedMap(Map<K, V> c, Class<K> keyType, Class<V> valueType)
• static <K, V> SortedMap checkedSortedMap(SortedMap<K, V> c, Class<K> keyType,

Class<V> valueType)
constructs views of the collection whose methods throw a ClassCastException if an
element of the wrong type is inserted.

• static <E> List<E> nCopies(int n, E value)
• static <E> Set<E> singleton(E value)

constructs a view of the object as either an unmodifiable list with n identical
elements, or a set with a single element.

• static <E> List<E> asList(E... array)
returns a list view of the elements in an array that is modifiable but not resizable.

• List<E> subList(int firstIncluded, int firstExcluded)
returns a list view of the elements within a range of positions.

• SortedSet<E> subSet(E firstIncluded, E firstExcluded)
• SortedSet<E> headSet(E firstExcluded)
• SortedSet<E> tailSet(E firstIncluded)

returns a view of the elements within a range.

• NavigableSet<E> subSet(E from, boolean fromIncluded, E to, boolean toIncluded)
• NavigableSet<E> headSet(E to, boolean toIncluded)
• NavigableSet<E> tailSet(E from, boolean fromIncluded)

returns a view of the elements within a range. The boolean flags determine whether
the bound is included in the view.

java.util.Arrays 1.2

java.util.List<E> 1.2

java.util.SortedSet<E> 1.2

java.util.NavigableSet<E> 6

Chapter 13. Collections

The Collections Framework 699

• SortedMap<K, V> subMap(K firstIncluded, K firstExcluded)
• SortedMap<K, V> headMap(K firstExcluded)
• SortedMap<K, V> tailMap(K firstIncluded)

returns a map view of the entries whose keys are within a range.

• NavigableMap<K, V> subMap(K from, boolean fromIncluded, K to, boolean toIncluded)
• NavigableMap<K, V> headMap(K from, boolean fromIncluded)
• NavigableMap<K, V> tailMap(K to, boolean toIncluded)

returns a map view of the entries whose keys are within a range. The boolean flags
determine whether the bound is included in the view

Bulk Operations
So far, most of our examples used an iterator to traverse a collection, one element at a
time. However, you can often avoid iteration by using one of the bulk operations in the
library.

Suppose you want to find the intersection of two sets, the elements that two sets have in
common. First, make a new set to hold the result.

Set<String> result = new HashSet<String>(a);

Here, you use the fact that every collection has a constructor whose parameter is
another collection that holds the initialization values.

Now, use the retainAll method:
result.retainAll(b);

It retains all elements that also happen to be in b. You have formed the intersection with-
out programming a loop.

You can carry this idea further and apply a bulk operation to a view. For example, sup-
pose you have a map that maps employee IDs to employee objects and you have a set of
the IDs of all employees that are to be terminated.

Map<String, Employee> staffMap = . . .;
Set<String> terminatedIDs = . . .;

Simply form the key set and remove all IDs of terminated employees.
staffMap.keySet().removeAll(terminatedIDs);

Because the key set is a view into the map, the keys and associated employee names are
automatically removed from the map.

By using a subrange view, you can restrict bulk operations to sublists and subsets. For
example, suppose you want to add the first 10 elements of a list to another container.
Form a sublist to pick out the first 10:

relocated.addAll(staff.subList(0, 10));

The subrange can also be a target of a mutating operation.
staff.subList(0, 10).clear();

java.util.SortedMap<K, V> 1.2

java.util.NavigableMap<K, V> 6

Chapter 13. Collections

Chapter 13 ■ Collections700

Converting between Collections and Arrays
Because large portions of the Java platform API were designed before the collections
framework was created, you occasionally need to translate between traditional arrays
and the more modern collections.

If you have an array, you need to turn it into a collection. The Arrays.asList wrapper
serves this purpose. For example:

String[] values = . . .;
HashSet<String> staff = new HashSet<String>(Arrays.asList(values));

Obtaining an array from a collection is a bit trickier. Of course, you can use the toArray
method:

Object[] values = staff.toArray();

But the result is an array of objects. Even if you know that your collection contained
objects of a specific type, you cannot use a cast:

String[] values = (String[]) staff.toArray(); // Error!

The array returned by the toArray method was created as an Object[] array, and you can-
not change its type. Instead, you use a variant of the toArray method. Give it an array of
length 0 of the type that you’d like. The returned array is then created as the same array
type:

String[] values = staff.toArray(new String[0]);

If you like, you can construct the array to have the correct size:
staff.toArray(new String[staff.size()]);

In this case, no new array is created.

NOTE: You may wonder why you don’t simply pass a Class object (such as String.class) to
the toArray method. However, this method does “double duty,” both to fill an existing array
(provided it is long enough) and to create a new array.

Algorithms
Generic collection interfaces have a great advantage—you only need to implement your
algorithms once. For example, consider a simple algorithm to compute the maximum
element in a collection. Traditionally, programmers would implement such an algorithm
as a loop. Here is how you find the largest element of an array.

if (a.length == 0) throw new NoSuchElementException();
T largest = a[0];
for (int i = 1; i < a.length; i++)
 if (largest.compareTo(a[i]) < 0)
 largest = a[i];

Of course, to find the maximum of an array list, you would write the code slightly
differently.

if (v.size() == 0) throw new NoSuchElementException();
T largest = v.get(0);
for (int i = 1; i < v.size(); i++)
 if (largest.compareTo(v.get(i)) < 0)
 largest = v.get(i);

Chapter 13. Collections

Algorithms 701

What about a linked list? You don’t have efficient random access in a linked list, but you
can use an iterator.

if (l.isEmpty()) throw new NoSuchElementException();
Iterator<T> iter = l.iterator();
T largest = iter.next();
while (iter.hasNext())
{
 T next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
}

These loops are tedious to write, and they are just a bit error prone. Is there an off-by-
one error? Do the loops work correctly for empty containers? For containers with only
one element? You don’t want to test and debug this code every time, but you also don’t
want to implement a whole slew of methods, such as these:

static <T extends Comparable> T max(T[] a)
static <T extends Comparable> T max(ArrayList<T> v)
static <T extends Comparable> T max(LinkedList<T> l)

That’s where the collection interfaces come in. Think of the minimal collection interface
that you need to efficiently carry out the algorithm. Random access with get and set
comes higher in the food chain than simple iteration. As you have seen in the computa-
tion of the maximum element in a linked list, random access is not required for this task.
Computing the maximum can be done simply by iteration through the elements. There-
fore, you can implement the max method to take any object that implements the Collection
interface.

public static <T extends Comparable> T max(Collection<T> c)
{
 if (c.isEmpty()) throw new NoSuchElementException();
 Iterator<T> iter = c.iterator();
 T largest = iter.next();
 while (iter.hasNext())
 {
 T next = iter.next();
 if (largest.compareTo(next) < 0)
 largest = next;
 }
 return largest;
}

Now you can compute the maximum of a linked list, an array list, or an array, with a
single method.

That’s a powerful concept. In fact, the standard C++ library has dozens of useful algo-
rithms, each of which operates on a generic collection. The Java library is not quite so
rich, but it does contain the basics: sorting, binary search, and some utility algorithms.

Sorting and Shuffling
Computer old-timers will sometimes reminisce about how they had to use punched
cards and how they actually had to program by hand algorithms for sorting. Nowadays,

Chapter 13. Collections

Chapter 13 ■ Collections702

of course, sorting algorithms are part of the standard library for most programming lan-
guages, and the Java programming language is no exception.

The sort method in the Collections class sorts a collection that implements the List interface.
List<String> staff = new LinkedList<String>();
// fill collection . . .;
Collections.sort(staff);

This method assumes that the list elements implement the Comparable interface. If you
want to sort the list in some other way, you can pass a Comparator object as a second
parameter. (We discussed comparators in the section “Object Comparison” on
page 673.) Here is how you can sort a list of items:

Comparator<Item> itemComparator = new
 Comparator<Item>()
 {
 public int compare(Item a, Item b)
 {
 return a.partNumber - b.partNumber;
 }
 });
Collections.sort(items, itemComparator);

If you want to sort a list in descending order, then use the static convenience method Col-
lections.reverseOrder(). It returns a comparator that returns b.compareTo(a). For example,

Collections.sort(staff, Collections.reverseOrder())

sorts the elements in the list staff in reverse order, according to the ordering given by the
compareTo method of the element type. Similarly,

Collections.sort(items, Collections.reverseOrder(itemComparator))

reverses the ordering of the itemComparator.

You may wonder how the sort method sorts a list. Typically, when you look at a sort-
ing algorithm in a book on algorithms, it is presented for arrays and uses random ele-
ment access. However, random access in a list can be inefficient. You can actually sort
lists efficiently by using a form of merge sort (see, for example, Algorithms in C++ by
Robert Sedgewick [Addison-Wesley, 1998, pp. 366–369]). However, the implementation
in the Java programming language does not do that. It simply dumps all elements into
an array, sorts the array by using a different variant of merge sort, and then copies the
sorted sequence back into the list.

The merge sort algorithm used in the collections library is a bit slower than quick sort,
the traditional choice for a general-purpose sorting algorithm. However, it has one
major advantage: It is stable, that is, it doesn’t switch equal elements. Why do you care
about the order of equal elements? Here is a common scenario. Suppose you have an
employee list that you already sorted by name. Now you sort by salary. What happens
to employees with equal salary? With a stable sort, the ordering by name is preserved.
In other words, the outcome is a list that is sorted first by salary, then by name.

Because collections need not implement all of their “optional” methods, all methods
that receive collection parameters must describe when it is safe to pass a collection to
an algorithm. For example, you clearly cannot pass an unmodifiableList list to the sort

Chapter 13. Collections

Algorithms 703

algorithm. What kind of list can you pass? According to the documentation, the list
must be modifiable but need not be resizable.

The terms are defined as follows:

• A list is modifiable if it supports the set method.
• A list is resizable if it supports the add and remove operations.

The Collections class has an algorithm shuffle that does the opposite of sorting—it ran-
domly permutes the order of the elements in a list. For example:

ArrayList<Card> cards = . . .;
Collections.shuffle(cards);

If you supply a list that does not implement the RandomAccess interface, then the shuffle
method copies the elements into an array, shuffles the array, and copies the shuffled ele-
ments back into the list.

The program in Listing 13–6 fills an array list with 49 Integer objects containing the num-
bers 1 through 49. It then randomly shuffles the list and selects the first 6 values from
the shuffled list. Finally, it sorts the selected values and prints them.

• static <T extends Comparable<? super T>> void sort(List<T> elements)
• static <T> void sort(List<T> elements, Comparator<? super T> c)

sorts the elements in the list, using a stable sort algorithm. The algorithm is
guaranteed to run in O(n log n) time, where n is the length of the list.

Listing 13–6 ShuffleTest.java

1. import java.util.*;
2.

3. /**
4. * This program demonstrates the random shuffle and sort algorithms.
5. * @version 1.10 2004-08-02
6. * @author Cay Horstmann
7. */
8. public class ShuffleTest
9. {

10. public static void main(String[] args)
11. {
12. List<Integer> numbers = new ArrayList<Integer>();
13. for (int i = 1; i <= 49; i++)
14. numbers.add(i);
15. Collections.shuffle(numbers);
16. List<Integer> winningCombination = numbers.subList(0, 6);
17. Collections.sort(winningCombination);
18. System.out.println(winningCombination);
19. }
20. }

java.util.Collections 1.2

Chapter 13. Collections

Chapter 13 ■ Collections704

• static void shuffle(List<?> elements)
• static void shuffle(List<?> elements, Random r)

randomly shuffles the elements in the list. This algorithm runs in O(n a(n)) time,
where n is the length of the list and a(n) is the average time to access an element.

• static <T> Comparator<T> reverseOrder()
returns a comparator that sorts elements in the reverse order of the one given by
the compareTo method of the Comparable interface.

• static <T> Comparator<T> reverseOrder(Comparator<T> comp)
returns a comparator that sorts elements in the reverse order of the one given by
comp.

Binary Search
To find an object in an array, you normally visit all elements until you find a match.
However, if the array is sorted, then you can look at the middle element and check
whether it is larger than the element that you are trying to find. If so, you keep looking
in the first half of the array; otherwise, you look in the second half. That cuts the prob-
lem in half. You keep going in the same way. For example, if the array has 1024 ele-
ments, you will locate the match (or confirm that there is none) after 10 steps, whereas a
linear search would have taken you an average of 512 steps if the element is present,
and 1024 steps to confirm that it is not.

The binarySearch of the Collections class implements this algorithm. Note that the collec-
tion must already be sorted or the algorithm will return the wrong answer. To find an
element, supply the collection (which must implement the List interface—more on
that in the note below) and the element to be located. If the collection is not sorted by
the compareTo element of the Comparable interface, then you must supply a comparator
object as well.

i = Collections.binarySearch(c, element);
i = Collections.binarySearch(c, element, comparator);

A return value of ≥ 0 from the binarySearch method denotes the index of the matching
object. That is, c.get(i) is equal to element under the comparison order. If the value is
negative, then there is no matching element. However, you can use the return value to
compute the location where you should insert element into the collection to keep it
sorted. The insertion location is

insertionPoint = -i - 1;

It isn’t simply -i because then the value of 0 would be ambiguous. In other words, the
operation

if (i < 0)
 c.add(-i - 1, element);

adds the element in the correct place.

To be worthwhile, binary search requires random access. If you have to iterate one by
one through half of a linked list to find the middle element, you have lost all advantage
of the binary search. Therefore, the binarySearch algorithm reverts to a linear search if you
give it a linked list.

Chapter 13. Collections

Algorithms 705

NOTE: Java SE 1.3 had no separate interface for an ordered collection with efficient ran-
dom access, and the binarySearch method employed a very crude device, checking whether
the list parameter extended the AbstractSequentialList class. This was fixed in Java SE 1.4.
Now the binarySearch method checks whether the list parameter implements the RandomAccess
interface. If it does, then the method carries out a binary search. Otherwise, it uses a linear
search.

• static <T extends Comparable<? super T>> int binarySearch(List<T> elements, T key)
• static <T> int binarySearch(List<T> elements, T key, Comparator<? super T> c)

searches for a key in a sorted list, using a linear search if elements extends the
AbstractSequentialList class, and a binary search in all other cases. The methods are
guaranteed to run in O(a(n) log n) time, where n is the length of the list and a(n) is
the average time to access an element. The methods return either the index of the
key in the list, or a negative value i if the key is not present in the list. In that case,
the key should be inserted at index –i – 1 for the list to stay sorted.

Simple Algorithms
The Collections class contains several simple but useful algorithms. Among them is the
example from the beginning of this section, finding the maximum value of a collec-
tion. Others include copying elements from one list to another, filling a container with
a constant value, and reversing a list. Why supply such simple algorithms in the stan-
dard library? Surely most programmers could easily implement them with simple
loops. We like the algorithms because they make life easier for the programmer read-
ing the code. When you read a loop that was implemented by someone else, you have
to decipher the original programmer’s intentions. When you see a call to a method
such as Collections.max, you know right away what the code does.

The following API notes describe the simple algorithms in the Collections class.

• static <T extends Comparable<? super T>> T min(Collection<T> elements)
• static <T extends Comparable<? super T>> T max(Collection<T> elements)
• static <T> min(Collection<T> elements, Comparator<? super T> c)
• static <T> max(Collection<T> elements, Comparator<? super T> c)

returns the smallest or largest element in the collection. (The parameter bounds
are simplified for clarity.)

• static <T> void copy(List<? super T> to, List<T> from)
copies all elements from a source list to the same positions in the target list. The
target list must be at least as long as the source list.

• static <T> void fill(List<? super T> l, T value)
sets all positions of a list to the same value.

java.util.Collections 1.2

java.util.Collections 1.2

Chapter 13. Collections

Chapter 13 ■ Collections706

• static <T> boolean addAll(Collection<? super T> c, T... values) 5.0
adds all values to the given collection and returns true if the collection changed as
a result.

• static <T> boolean replaceAll(List<T> l, T oldValue, T newValue) 1.4
replaces all elements equal to oldValue with newValue.

• static int indexOfSubList(List<?> l, List<?> s) 1.4
• static int lastIndexOfSubList(List<?> l, List<?> s) 1.4

returns the index of the first or last sublist of l equalling s, or –1 if no sublist of l
equals s. For example, if l is [s, t, a, r] and s is [t, a, r], then both methods return
the index 1.

• static void swap(List<?> l, int i, int j) 1.4
swaps the elements at the given offsets.

• static void reverse(List<?> l)
reverses the order of the elements in a list. For example, reversing the list [t, a, r]
yields the list [r, a, t]. This method runs in O(n) time, where n is the length of the
list.

• static void rotate(List<?> l, int d) 1.4
rotates the elements in the list, moving the entry with index i to position
(i + d) % l.size(). For example, rotating the list [t, a, r] by 2 yields the list [a, r, t].
This method runs in O(n) time, where n is the length of the list.

• static int frequency(Collection<?> c, Object o) 5.0
returns the count of elements in c that equal the object o.

• boolean disjoint(Collection<?> c1, Collection<?> c2) 5.0
returns true if the collections have no elements in common.

Writing Your Own Algorithms
If you write your own algorithm (or in fact, any method that has a collection as a param-
eter), you should work with interfaces, not concrete implementations, whenever possi-
ble. For example, suppose you want to fill a JMenu with a set of menu items. Traditionally,
such a method might have been implemented like this:

void fillMenu(JMenu menu, ArrayList<JMenuItem> items)
{
 for (JMenuItem item : items)
 menu.addItem(item);
}

However, you now constrained the caller of your method—the caller must supply the
choices in an ArrayList. If the choices happen to be in another container, they first need to
be repackaged. It is much better to accept a more general collection.

You should ask yourself this: What is the most general collection interface that can do the
job? In this case, you just need to visit all elements, a capability of the basic Collection inter-
face. Here is how you can rewrite the fillMenu method to accept collections of any kind.

void fillMenu(JMenu menu, Collection<JMenuItem> items)
{
 for (JMenuItem item : items)
 menu.addItem(item);
}

Chapter 13. Collections

Legacy Collections 707

Now, anyone can call this method, with an ArrayList or a LinkedList, or even with an array,
wrapped with the Arrays.asList wrapper.

NOTE: If it is such a good idea to use collection interfaces as method parameters, why
doesn’t the Java library follow this rule more often? For example, the JComboBox class has two
constructors:

JComboBox(Object[] items)
JComboBox(Vector<?> items)

The reason is simply timing. The Swing library was created before the collections library.

If you write a method that returns a collection, you may also want to return an interface
instead of a class because you can then change your mind and reimplement the method
later with a different collection.

For example, let’s write a method getAllItems that returns all items of a menu.

List<MenuItem> getAllItems(JMenu menu)
{
 ArrayList<MenuItem> items = new ArrayList<MenuItem>()
 for (int i = 0; i < menu.getItemCount(); i++)
 items.add(menu.getItem(i));
 return items;
}

Later, you can decide that you don’t want to copy the items but simply provide a view
into them. You achieve this by returning an anonymous subclass of AbstractList.

List<MenuItem> getAllItems(final JMenu menu)
{
 return new
 AbstractList<MenuItem>()
 {
 public MenuItem get(int i)
 {
 return item.getItem(i);
 }
 public int size()
 {
 return item.getItemCount();
 }
 };
}

Of course, this is an advanced technique. If you employ it, be careful to document
exactly which “optional” operations are supported. In this case, you must advise the
caller that the returned object is an unmodifiable list.

Legacy Collections
In this section, we discuss the collection classes that existed in the Java programming
language since the beginning: the Hashtable class and its useful Properties subclass, the
Stack subclass of Vector, and the BitSet class.

Chapter 13. Collections

Chapter 13 ■ Collections708

The Hashtable Class
The classic Hashtable class serves the same purpose as the HashMap and has essentially the
same interface. Just like methods of the Vector class, the Hashtable methods are synchro-
nized. If you do not require synchronization or compatibility with legacy code, you
should use the HashMap instead.

NOTE: The name of the class is Hashtable, with a lowercase t. Under Windows, you’ll
get strange error messages if you use HashTable, because the Windows file system is
not case-sensitive but the Java compiler is.

Enumerations
The legacy collections use the Enumeration interface for traversing sequences of elements.
The Enumeration interface has two methods, hasMoreElements and nextElement. These are
entirely analogous to the hasNext and next methods of the Iterator interface.

For example, the elements method of the Hashtable class yields an object for enumerating
the values in the table:

Enumeration<Employee> e = staff.elements();
while (e.hasMoreElements())
{
 Employee e = e.nextElement();
 . . .
}

You will occasionally encounter a legacy method that expects an enumeration parame-
ter. The static method Collections.enumeration yields an enumeration object that enumer-
ates the elements in the collection. For example:

List<InputStream> streams = . . .;
SequenceInputStream in = new SequenceInputStream(Collections.enumeration(streams));
 // the SequenceInputStream constructor expects an enumeration

NOTE: In C++, it is quite common to use iterators as parameters. Fortunately, in program-
ming for the Java platform, very few programmers use this idiom. It is much smarter to pass
around the collection than to pass an iterator. The collection object is more useful. The
recipients can always obtain the iterator from the collection when they need to do so, plus
they have all the collection methods at their disposal. However, you will find enumerations in
some legacy code because they were the only available mechanism for generic collections
until the collections framework appeared in Java SE 1.2.

• boolean hasMoreElements()
returns true if there are more elements yet to be inspected.

• E nextElement()
returns the next element to be inspected. Do not call this method if hasMoreElements()
returned false.

java.util.Enumeration<E> 1.0

Chapter 13. Collections

Legacy Collections 709

• Enumeration<K> keys()
returns an enumeration object that traverses the keys of the hash table.

• Enumeration<V> elements()
returns an enumeration object that traverses the elements of the hash table.

• Enumeration<E> elements()
returns an enumeration object that traverses the elements of the vector.

Property Maps
A property map is a map structure of a very special type. It has three particular
characteristics:

• The keys and values are strings.
• The table can be saved to a file and loaded from a file.
• A secondary table for defaults is used.

The Java platform class that implements a property map is called Properties.

Property maps are commonly used in specifying configuration options for programs—
see Chapter 10.

• Properties()
creates an empty property map.

• Properties(Properties defaults)
creates an empty property map with a set of defaults.

• String getProperty(String key)
gets a property association; returns the string associated with the key, or the string
associated with the key in the default table if it wasn’t present in the map.

• String getProperty(String key, String defaultValue)
gets a property with a default value if the key is not found; returns the string
associated with the key, or the default string if it wasn’t present in the map.

• void load(InputStream in)
loads a property map from an InputStream.

• void store(OutputStream out, String commentString)
stores a property map to an OutputStream.

Stacks
Since version 1.0, the standard library had a Stack class with the familiar push and pop
methods. However, the Stack class extends the Vector class, which is not satisfactory from
a theoretical perspective—you can apply such un-stack-like operations as insert and
remove to insert and remove values anywhere, not just at the top of the stack.

java.util.Hashtable<K, V> 1.0

java.util.Vector<E> 1.0

java.util.Properties 1.0

Chapter 13. Collections

Chapter 13 ■ Collections710

• E push(E item)
pushes item onto the stack and returns item.

• E pop()
pops and returns the top item of the stack. Don’t call this method if the stack is
empty.

• E peek()
returns the top of the stack without popping it. Don’t call this method if the stack
is empty.

Bit Sets
The Java platform BitSet class stores a sequence of bits. (It is not a set in the mathematical
sense—bit vector or bit array would have been more appropriate terms.) Use a bit set if
you need to store a sequence of bits (for example, flags) efficiently. Because a bit set
packs the bits into bytes, it is far more efficient to use a bit set than to use an ArrayList of
Boolean objects.

The BitSet class gives you a convenient interface for reading, setting, or resetting indi-
vidual bits. Use of this interface avoids the masking and other bit-fiddling operations
that would be necessary if you stored bits in int or long variables.

For example, for a BitSet named bucketOfBits,
bucketOfBits.get(i)

returns true if the i’th bit is on, and false otherwise. Similarly,
bucketOfBits.set(i)

turns the i’th bit on. Finally,
bucketOfBits.clear(i)

turns the i’th bit off.

C++ NOTE: The C++ bitset template has the same functionality as the Java platform
BitSet.

• BitSet(int initialCapacity)
constructs a bit set.

• int length()
returns the “logical length” of the bit set: 1 plus the index of the highest set bit.

• boolean get(int bit)
gets a bit.

• void set(int bit)
sets a bit.

• void clear(int bit)
clears a bit.

java.util.Stack<E> 1.0

java.util.BitSet 1.0

Chapter 13. Collections

Legacy Collections 711

• void and(BitSet set)
logically ANDs this bit set with another.

• void or(BitSet set)
logically ORs this bit set with another.

• void xor(BitSet set)
logically XORs this bit set with another.

• void andNot(BitSet set)
clears all bits in this bit set that are set in the other bit set.

The “Sieve of Eratosthenes” Benchmark

As an example of using bit sets, we want to show you an implementation of the “sieve
of Eratosthenes” algorithm for finding prime numbers. (A prime number is a number
like 2, 3, or 5 that is divisible only by itself and 1, and the sieve of Eratosthenes was one
of the first methods discovered to enumerate these fundamental building blocks.) This
isn’t a terribly good algorithm for finding the number of primes, but for some reason it
has become a popular benchmark for compiler performance. (It isn’t a good benchmark
either, because it mainly tests bit operations.)

Oh well, we bow to tradition and include an implementation. This program counts all
prime numbers between 2 and 2,000,000. (There are 148,933 primes, so you probably
don’t want to print them all out.)

Without going into too many details of this program, the key is to march through a bit
set with 2 million bits. We first turn on all the bits. After that, we turn off the bits that are
multiples of numbers known to be prime. The positions of the bits that remain after this
process are themselves the prime numbers. Listing 13–7 illustrates this program in the
Java programming language, and Listing 13–8 is the C++ code.

NOTE: Even though the sieve isn’t a good benchmark, we couldn’t resist timing the two
implementations of the algorithm. Here are the timing results on a 1.66-GHz dual core
ThinkPad with 2 GB of RAM, running Ubuntu 7.04.

• C++ (g++ 4.1.2): 360 milliseconds

• Java (Java SE 6): 105 milliseconds

We have run this test for seven editions of Core Java, and in the last three editions. Java
easily beat C++. In all fairness, if one cranks up the optimization level in the C++ compiler, it
beats Java with a time of 60 milliseconds. Java could only match that if the program ran long
enough to trigger the Hotspot just-in-time compiler.

Listing 13–7 Sieve.java

1. import java.util.*;
2.

3. /**
4. * This program runs the Sieve of Erathostenes benchmark. It computes all primes up to 2,000,000.
5. * @version 1.21 2004-08-03
6. * @author Cay Horstmann
7. */

Chapter 13. Collections

Chapter 13 ■ Collections712

8. public class Sieve
9. {

10. public static void main(String[] s)
11. {
12. int n = 2000000;
13. long start = System.currentTimeMillis();
14. BitSet b = new BitSet(n + 1);
15. int count = 0;
16. int i;
17. for (i = 2; i <= n; i++)
18. b.set(i);
19. i = 2;
20. while (i * i <= n)
21. {
22. if (b.get(i))
23. {
24. count++;
25. int k = 2 * i;
26. while (k <= n)
27. {
28. b.clear(k);
29. k += i;
30. }
31. }
32. i++;
33. }
34. while (i <= n)
35. {
36. if (b.get(i)) count++;
37. i++;
38. }
39. long end = System.currentTimeMillis();
40. System.out.println(count + " primes");
41. System.out.println((end - start) + " milliseconds");
42. }
43. }

Listing 13–8 Sieve.cpp

1. /**
2. @version 1.21 2004-08-03
3. @author Cay Horstmann
4. */
5.

6. #include <bitset>
7. #include <iostream>
8. #include <ctime>

Listing 13–7 Sieve.java (continued)

Chapter 13. Collections

Legacy Collections 713

This completes our tour through the Java collection framework. As you have seen, the
Java library offers a wide variety of collection classes for your programming needs. In the
final chapter of this book, we will cover the important topic of concurrent programming.

9.

10. using namespace std;
11.

12. int main()
13. {
14. const int N = 2000000;
15. clock_t cstart = clock();
16.

17. bitset<N + 1> b;
18. int count = 0;
19. int i;
20. for (i = 2; i <= N; i++)
21. b.set(i);
22. i = 2;
23. while (i * i <= N)
24. {
25. if (b.test(i))
26. {
27. count++;
28. int k = 2 * i;
29. while (k <= N)
30. {
31. b.reset(k);
32. k += i;
33. }
34. }
35. i++;
36. }
37. while (i <= N)
38. {
39. if (b.test(i))
40. count++;
41. i++;
42. }
43.

44. clock_t cend = clock();
45. double millis = 1000.0
46. * (cend - cstart) / CLOCKS_PER_SEC;
47.

48. cout << count << " primes\n"
49. << millis << " milliseconds\n";
50.

51. return 0;
52. }

Listing 13–8 Sieve.cpp (continued)

Chapter 13. Collections

Chapter 13. Collections

ChapterChapter

715

MULTITHREADING

▼ WHAT ARE THREADS?
▼ INTERRUPTING THREADS

▼ THREAD STATES

▼ THREAD PROPERTIES

▼ SYNCHRONIZATION

▼ BLOCKING QUEUES

▼ THREAD-SAFE COLLECTIONS

▼ CALLABLES AND FUTURES

▼ EXECUTORS

▼ SYNCHRONIZERS

▼ THREADS AND SWING

Chapter 14. Multithreading

Chapter 14 ■ Multithreading716

You are probably familiar with multitasking in your operating system: the ability
to have more than one program working at what seems like the same time. For example,
you can print while editing or downloading your email. Nowadays, you are likely to
have a computer with more than one CPU, but the number of concurrently executing
processes is not limited by the number of CPUs. The operating system assigns CPU time
slices to each process, giving the impression of parallel activity.

Multithreaded programs extend the idea of multitasking by taking it one level lower:
individual programs will appear to do multiple tasks at the same time. Each task is usu-
ally called a thread—which is short for thread of control. Programs that can run more
than one thread at once are said to be multithreaded.

So, what is the difference between multiple processes and multiple threads? The essential
difference is that while each process has a complete set of its own variables, threads
share the same data. This sounds somewhat risky, and indeed it can be, as you will see
later in this chapter. However, shared variables make communication between threads
more efficient and easier to program than interprocess communication. Moreover, on
some operating systems, threads are more “lightweight” than processes—it takes less
overhead to create and destroy individual threads than it does to launch new processes.

Multithreading is extremely useful in practice. For example, a browser should be able to
simultaneously download multiple images. A web server needs to be able to serve con-
current requests. Graphical user interface (GUI) programs have a separate thread for
gathering user interface events from the host operating environment. This chapter
shows you how to add multithreading capability to your Java applications.

Multithreading changed dramatically in Java SE 5.0, with the addition of a large number
of classes and interfaces that provide high-quality implementations of the mechanisms
that most application programmers will need. In this chapter, we explain the features
that were added to Java SE 5.0 as well as the classic synchronization mechanisms, and
help you choose between them.

Fair warning: multithreading can get very complex. In this chapter, we cover all the tools
that an application programmer is likely to need. However, for more intricate system-level
programming, we suggest that you turn to a more advanced reference, such as Java Con-
currency in Practice by Brian Goetz (Addison-Wesley Professional, 2006).

What Are Threads?
Let us start by looking at a program that does not use multiple threads and that, as a
consequence, makes it difficult for the user to perform several tasks with that program.
After we dissect it, we then show you how easy it is to have this program run separate
threads. This program animates a bouncing ball by continually moving the ball, finding
out if it bounces against a wall, and then redrawing it. (See Figure 14–1.)

As soon as you click the Start button, the program launches a ball from the upper-left
corner of the screen and the ball begins bouncing. The handler of the Start button calls
the addBall method. That method contains a loop running through 1,000 moves. Each call
to move moves the ball by a small amount, adjusts the direction if it bounces against a
wall, and then redraws the panel.

Ball ball = new Ball();
panel.add(ball);

Chapter 14. Multithreading

What Are Threads? 717

for (int i = 1; i <= STEPS; i++)
{
 ball.move(panel.getBounds());
 panel.paint(panel.getGraphics());
 Thread.sleep(DELAY);

}

The static sleep method of the Thread class pauses for the given number of milliseconds.

Figure 14–1 Using a thread to animate a bouncing ball

The call to Thread.sleep does not create a new thread—sleep is a static method of the Thread
class that temporarily stops the activity of the current thread.

The sleep method can throw an InterruptedException. We discuss this exception and its
proper handling later. For now, we simply terminate the bouncing if this exception
occurs.

If you run the program, the ball bounces around nicely, but it completely takes over the
application. If you become tired of the bouncing ball before it has finished its 1,000 moves
and click the Close button, the ball continues bouncing anyway. You cannot interact with
the program until the ball has finished bouncing.

NOTE: If you carefully look over the code at the end of this section, you will notice the call

comp.paint(comp.getGraphics())

inside the addBall method of the BounceFrame class. That is pretty strange—normally, you’d call
repaint and let the AWT worry about getting the graphics context and doing the painting. But
if you try to call comp.repaint() in this program, you’ll find that the panel is never repainted
because the addBall method has completely taken over all processing. Also note that the ball
component extends JPanel; this makes it easier to erase the background. In the next program,
in which we use a separate thread to compute the ball position, we can go back to the familiar
use of repaint and JComponent.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading718

Obviously, the behavior of this program is rather poor. You would not want the pro-
grams that you use behaving in this way when you ask them to do a time-consum-
ing job. After all, when you are reading data over a network connection, it is all too
common to be stuck in a task that you would really like to interrupt. For example,
suppose you download a large image and decide, after seeing a piece of it, that you
do not need or want to see the rest; you certainly would like to be able to click a Stop
or Back button to interrupt the loading process. In the next section, we show you
how to keep the user in control by running crucial parts of the code in a separate
thread.

Listings 14–1 through 14–3 show the code for the program.

Listing 14–1 Bounce.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * Shows an animated bouncing ball.
7. * @version 1.33 2007-05-17
8. * @author Cay Horstmann
9. */

10. public class Bounce
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. JFrame frame = new BounceFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * The frame with ball component and buttons.
28. */
29. class BounceFrame extends JFrame
30. {
31. /**
32. * Constructs the frame with the component for showing the bouncing ball and Start and
33. * Close buttons
34. */

Chapter 14. Multithreading

What Are Threads? 719

35. public BounceFrame()
36. {
37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
38. setTitle("Bounce");
39.

40. comp = new BallComponent();
41. add(comp, BorderLayout.CENTER);
42. JPanel buttonPanel = new JPanel();
43. addButton(buttonPanel, "Start", new ActionListener()
44. {
45. public void actionPerformed(ActionEvent event)
46. {
47. addBall();
48. }
49. });
50.

51. addButton(buttonPanel, "Close", new ActionListener()
52. {
53. public void actionPerformed(ActionEvent event)
54. {
55. System.exit(0);
56. }
57. });
58. add(buttonPanel, BorderLayout.SOUTH);
59. }
60.

61. /**
62. * Adds a button to a container.
63. * @param c the container
64. * @param title the button title
65. * @param listener the action listener for the button
66. */
67. public void addButton(Container c, String title, ActionListener listener)
68. {
69. JButton button = new JButton(title);
70. c.add(button);
71. button.addActionListener(listener);
72. }
73.

74. /**
75. * Adds a bouncing ball to the panel and makes it bounce 1,000 times.
76. */
77. public void addBall()
78. {
79. try
80. {
81. Ball ball = new Ball();
82. comp.add(ball);
83.

Listing 14–1 Bounce.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading720

84. for (int i = 1; i <= STEPS; i++)
85. {
86. ball.move(comp.getBounds());
87. comp.paint(comp.getGraphics());
88. Thread.sleep(DELAY);
89. }
90. }
91. catch (InterruptedException e)
92. {
93. }
94. }
95.

96. private BallComponent comp;
97. public static final int DEFAULT_WIDTH = 450;
98. public static final int DEFAULT_HEIGHT = 350;
99. public static final int STEPS = 1000;

100. public static final int DELAY = 3;
101. }

Listing 14–2 Ball.java

1. import java.awt.geom.*;
2.

3. /**
4. * A ball that moves and bounces off the edges of a rectangle
5. * @version 1.33 2007-05-17
6. * @author Cay Horstmann
7. */
8. public class Ball
9. {

10. /**
11. * Moves the ball to the next position, reversing direction if it hits one of the edges
12. */
13. public void move(Rectangle2D bounds)
14. {
15. x += dx;
16. y += dy;
17. if (x < bounds.getMinX())
18. {
19. x = bounds.getMinX();
20. dx = -dx;
21. }
22. if (x + XSIZE >= bounds.getMaxX())
23. {
24. x = bounds.getMaxX() - XSIZE;
25. dx = -dx;
26. }

Listing 14–1 Bounce.java (continued)

Chapter 14. Multithreading

What Are Threads? 721

27. if (y < bounds.getMinY())
28. {
29. y = bounds.getMinY();
30. dy = -dy;
31. }
32. if (y + YSIZE >= bounds.getMaxY())
33. {
34. y = bounds.getMaxY() - YSIZE;
35. dy = -dy;
36. }
37. }
38.

39. /**
40. * Gets the shape of the ball at its current position.
41. */
42. public Ellipse2D getShape()
43. {
44. return new Ellipse2D.Double(x, y, XSIZE, YSIZE);
45. }
46.

47. private static final int XSIZE = 15;
48. private static final int YSIZE = 15;
49. private double x = 0;
50. private double y = 0;
51. private double dx = 1;
52. private double dy = 1;
53. }

Listing 14–3 BallComponent.java

1. import java.awt.*;
2. import java.util.*;
3. import javax.swing.*;
4.

5. /**
6. * The component that draws the balls.
7. * @version 1.33 2007-05-17
8. * @author Cay Horstmann
9. */

10. public class BallComponent extends JPanel
11. {
12. /**
13. * Add a ball to the component.
14. * @param b the ball to add
15. */
16. public void add(Ball b)
17. {

Listing 14–2 Ball.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading722

• static void sleep(long millis)
sleeps for the given number of milliseconds.

Using Threads to Give Other Tasks a Chance
We will make our bouncing-ball program more responsive by running the code that
moves the ball in a separate thread. In fact, you will be able to launch multiple balls.
Each of them is moved by its own thread. In addition, the AWT event dispatch thread con-
tinues running in parallel, taking care of user interface events. Because each thread gets
a chance to run, the event dispatch thread has the opportunity to notice when a user
clicks the Close button while the balls are bouncing. The thread can then process the
“close” action.

We use ball-bouncing code as an example to give you a visual impression of the need for
concurrency. In general, you will always want to be wary of any long-running computa-
tion. Your computation is likely to be a part of some bigger framework, such as a GUI or
web framework. Whenever the framework calls one of your methods, there is usually
an expectation of a quick return. If you need to do any task that takes a long time, you
should use a separate thread.

Here is a simple procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that implements the Runnable
interface. That interface is very simple, with a single method:

public interface Runnable
{
 void run();
}

18. balls.add(b);
19. }
20.

21. public void paintComponent(Graphics g)
22. {
23. super.paintComponent(g); // erase background
24. Graphics2D g2 = (Graphics2D) g;
25. for (Ball b : balls)
26. {
27. g2.fill(b.getShape());
28. }
29. }
30.

31. private ArrayList<Ball> balls = new ArrayList<Ball>();
32. }

java.lang.Thread 1.0

Parameters: millis The number of milliseconds to sleep

Listing 14–3 BallComponent.java (continued)

Chapter 14. Multithreading

What Are Threads? 723

You simply implement a class, like this:
class MyRunnable implements Runnable
{
 public void run()
 {
 task code
 }
}

2. Construct an object of your class:
Runnable r = new MyRunnable();

3. Construct a Thread object from the Runnable:
Thread t = new Thread(r);

4. Start the thread:
t.start();

To make our bouncing-ball program into a separate thread, we need only implement a
class BallRunnable and place the code for the animation inside the run method, as in the
following code:

class BallRunnable implements Runnable
{
 . . .
 public void run()
 {
 try
 {
 for (int i = 1; i <= STEPS; i++)
 {
 ball.move(component.getBounds());
 component.repaint();
 Thread.sleep(DELAY);
 }
 }
 catch (InterruptedException exception)
 {
 }
 }
 . . .
}

Again, we need to catch an InterruptedException that the sleep method threatens to throw. We
discuss this exception in the next section. Typically, interruption is used to request that a
thread terminates. Accordingly, our run method exits when an InterruptedException occurs.

Whenever the Start button is clicked, the addBall method launches a new thread (see
Figure 14–2):

Ball b = new Ball();
panel.add(b);
Runnable r = new BallRunnable(b, panel);
Thread t = new Thread(r);
t.start();

Chapter 14. Multithreading

Chapter 14 ■ Multithreading724

Figure 14–2 Running multiple threads

That’s all there is to it! You now know how to run tasks in parallel. The remainder of this
chapter tells you how to control the interaction between threads.

The complete code is shown in Listing 14–4.

NOTE: You can also define a thread by forming a subclass of the Thread class, like this:

class MyThread extends Thread
{
 public void run()
 {
 task code
 }
}

Then you construct an object of the subclass and call its start method. However, this
approach is no longer recommended. You should decouple the task that is to be run in par-
allel from the mechanism of running it. If you have many tasks, it is too expensive to create a
separate thread for each one of them. Instead, you can use a thread pool—see “Executors”
on page 778.

CAUTION: Do not call the run method of the Thread class or the Runnable object. Calling the
run method directly merely executes the task in the same thread—no new thread is started.
Instead, call the Thread.start method. It will create a new thread that executes the run
method.

Chapter 14. Multithreading

What Are Threads? 725

Listing 14–4 BounceThread.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4.

5. /**
6. * Shows animated bouncing balls.
7. * @version 1.33 2007-05-17
8. * @author Cay Horstmann
9. */

10. public class BounceThread
11. {
12. public static void main(String[] args)
13. {
14. EventQueue.invokeLater(new Runnable()
15. {
16. public void run()
17. {
18. JFrame frame = new BounceFrame();
19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
20. frame.setVisible(true);
21. }
22. });
23. }
24. }
25.

26. /**
27. * A runnable that animates a bouncing ball.
28. */
29. class BallRunnable implements Runnable
30. {
31. /**
32. * Constructs the runnable.
33. * @aBall the ball to bounce
34. * @aPanel the component in which the ball bounces
35. */
36. public BallRunnable(Ball aBall, Component aComponent)
37. {
38. ball = aBall;
39. component = aComponent;
40. }
41.

42. public void run()
43. {
44. try
45. {
46. for (int i = 1; i <= STEPS; i++)
47. {
48. ball.move(component.getBounds());

Chapter 14. Multithreading

Chapter 14 ■ Multithreading726

49. component.repaint();
50. Thread.sleep(DELAY);
51. }
52. }
53. catch (InterruptedException e)
54. {
55. }
56. }
57.

58. private Ball ball;
59. private Component component;
60. public static final int STEPS = 1000;
61. public static final int DELAY = 5;
62. }
63.

64. /**
65. * The frame with panel and buttons.
66. */
67. class BounceFrame extends JFrame
68. {
69. /**
70. * Constructs the frame with the component for showing the bouncing ball and Start and
71. * Close buttons
72. */
73. public BounceFrame()
74. {
75. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
76. setTitle("BounceThread");
77.

78. comp = new BallComponent();
79. add(comp, BorderLayout.CENTER);
80. JPanel buttonPanel = new JPanel();
81. addButton(buttonPanel, "Start", new ActionListener()
82. {
83. public void actionPerformed(ActionEvent event)
84. {
85. addBall();
86. }
87. });
88.

89. addButton(buttonPanel, "Close", new ActionListener()
90. {
91. public void actionPerformed(ActionEvent event)
92. {
93. System.exit(0);
94. }
95. });
96. add(buttonPanel, BorderLayout.SOUTH);
97. }
98.

Listing 14–4 BounceThread.java (continued)

Chapter 14. Multithreading

What Are Threads? 727

• Thread(Runnable target)
constructs a new thread that calls the run() method of the specified target.

• void start()
starts this thread, causing the run() method to be called. This method will return
immediately. The new thread runs concurrently.

• void run()
calls the run method of the associated Runnable.

• void run()
must be overriden and supplied with instructions for the task that you want to
have executed.

99. /**
100. * Adds a button to a container.
101. * @param c the container
102. * @param title the button title
103. * @param listener the action listener for the button
104. */
105. public void addButton(Container c, String title, ActionListener listener)
106. {
107. JButton button = new JButton(title);
108. c.add(button);
109. button.addActionListener(listener);
110. }
111.

112. /**
113. * Adds a bouncing ball to the canvas and starts a thread to make it bounce
114. */
115. public void addBall()
116. {
117. Ball b = new Ball();
118. comp.add(b);
119. Runnable r = new BallRunnable(b, comp);
120. Thread t = new Thread(r);
121. t.start();
122. }
123.

124. private BallComponent comp;
125. public static final int DEFAULT_WIDTH = 450;
126. public static final int DEFAULT_HEIGHT = 350;
127. public static final int STEPS = 1000;
128. public static final int DELAY = 3;
129. }

java.lang.Thread 1.0

java.lang.Runnable 1.0

Listing 14–4 BounceThread.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading728

Interrupting Threads
A thread terminates when its run method returns, by executing a return statement, after
executing the last statement in the method body, or if an exception occurs that is not
caught in the method. In the initial release of Java, there also was a stop method that
another thread could call to terminate a thread. However, that method is now depre-
cated. We discuss the reason in the section “Why the stop and suspend Methods Are Dep-
recated” on page 762.

There is a way to force a thread to terminate. However, the interrupt method can be
used to request termination of a thread.

When the interrupt method is called on a thread, the interrupted status of the thread is set.
This is a boolean flag that is present in every thread. Each thread should occasionally
check whether it has been interrupted.

To find out whether the interrupted status was set, first call the static Thread.currentThread
method to get the current thread and then call the isInterrupted method:

while (!Thread.currentThread().isInterrupted() && more work to do)
{
 do more work
}

However, if a thread is blocked, it cannot check the interrupted status. This is
where the InterruptedException comes in. When the interrupt method is called on a
thread that blocks on a call such as sleep or wait, the blocking call is terminated by
an InterruptedException. (There are blocking I/O calls that cannot be interrupted; you
should consider interruptible alternatives. See Chapters 1 and 3 of Volume II for
details.)

There is no language requirement that a thread that is interrupted should termi-
nate. Interrupting a thread simply grabs its attention. The interrupted thread can
decide how to react to the interruption. Some threads are so important that they
should handle the exception and continue. But quite commonly, a thread will sim-
ply want to interpret an interruption as a request for termination. The run method
of such a thread has the following form:

public void run()
{
 try
 {
 . . .
 while (!Thread.currentThread().isInterrupted() && more work to do)
 {
 do more work
 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep or wait
 }
 finally
 {

Chapter 14. Multithreading

Interrupting Threads 729

 cleanup, if required
 }
 // exiting the run method terminates the thread
}

The isInterrupted check is neither necessary nor useful if you call the sleep method
(or another interruptible method) after every work iteration. If you call the sleep
method when the interrupted status is set, it doesn’t sleep. Instead, it clears the
status (!) and throws an InterruptedException. Therefore, if your loop calls sleep, don’t
check the interrupted status. Instead, catch the InterruptedException, like this:

public void run()
{
 try
 {
 . . .
 while (more work to do)
 {
 do more work
 Thread.sleep(delay);
 }
 }
 catch(InterruptedException e)
 {
 // thread was interrupted during sleep
 }
 finally
 {
 cleanup, if required
 }
 // exiting the run method terminates the thread
}

NOTE: There are two very similar methods, interrupted and isInterrupted. The interrupted
method is a static method that checks whether the current thread has been interrupted. Fur-
thermore, calling the interrupted method clears the interrupted status of the thread. On the
other hand, the isInterrupted method is an instance method that you can use to check
whether any thread has been interrupted. Calling it does not change the interrupted status.

You’ll find lots of published code in which the InterruptedException is squelched at a low
level, like this:

void mySubTask()
{
 . . .
 try { sleep(delay); }
 catch (InterruptedException e) {} // DON'T IGNORE!
 . . .
}

Don’t do that! If you can’t think of anything good to do in the catch clause, you still have
two reasonable choices:

Chapter 14. Multithreading

Chapter 14 ■ Multithreading730

• In the catch clause, call Thread.currentThread().interrupt() to set the interrupted status.
Then the caller can test it.

void mySubTask()
{
 . . .
 try { sleep(delay); }
 catch (InterruptedException e) { Thread().currentThread().interrupt(); }
 . . .
}

• Or, even better, tag your method with throws InterruptedException and drop the try
block. Then the caller (or, ultimately, the run method) can catch it.

void mySubTask() throws InterruptedException
{
 . . .
 sleep(delay);
 . . .
}

• void interrupt()
sends an interrupt request to a thread. The interrupted status of the thread is set to
true. If the thread is currently blocked by a call to sleep, then an InterruptedException
is thrown.

• static boolean interrupted()
tests whether the current thread (that is, the thread that is executing this
instruction) has been interrupted. Note that this is a static method. The call has a
side effect—it resets the interrupted status of the current thread to false.

• boolean isInterrupted()
tests whether a thread has been interrupted. Unlike the static interrupted method,
this call does not change the interrupted status of the thread.

• static Thread currentThread()
returns the Thread object representing the currently executing thread.

Thread States
Threads can be in one of six states:

• New
• Runnable
• Blocked
• Waiting
• Timed waiting
• Terminated

Each of these states is explained in the sections that follow.

To determine the current state of a thread, simply call the getState method.

java.lang.Thread 1.0

Chapter 14. Multithreading

Thread States 731

New Threads
When you create a thread with the new operator—for example, new Thread(r)—the thread is
not yet running. This means that it is in the new state. When a thread is in the new state,
the program has not started executing code inside of it. A certain amount of bookkeep-
ing needs to be done before a thread can run.

Runnable Threads
Once you invoke the start method, the thread is in the runnable state. A runnable
thread may or may not actually be running. It is up to the operating system to give
the thread time to run. (The Java specification does not call this a separate state,
though. A running thread is still in the runnable state.)

Once a thread is running, it doesn’t necessarily keep running. In fact, it is desirable if
running threads occasionally pause so that other threads have a chance to run. The
details of thread scheduling depend on the services that the operating system pro-
vides. Preemptive scheduling systems give each runnable thread a slice of time to
perform its task. When that slice of time is exhausted, the operating system preempts
the thread and gives another thread an opportunity to work (see Figure 14–4 on page
741). When selecting the next thread, the operating system takes into account the
thread priorities—see “Thread Priorities” on page 733 for more information.

All modern desktop and server operating systems use preemptive scheduling. How-
ever, small devices such as cell phones may use cooperative scheduling. In such a
device, a thread loses control only when it calls the yield method, or it is blocked or
waiting.

On a machine with multiple processors, each processor can run a thread, and you can
have multiple threads run in parallel. Of course, if there are more threads than proces-
sors, the scheduler still has to do time-slicing.

Always keep in mind that a runnable thread may or may not be running at any given
time. (This is why the state is called “runnable” and not “running.”)

Blocked and Waiting Threads
When a thread is blocked or waiting, it is temporarily inactive. It doesn’t execute any
code and it consumes minimal resources. It is up to the thread scheduler to reactivate it.
The details depend on how the inactive state was reached.

• When the thread tries to acquire an intrinsic object lock (but not a Lock in the
java.util.concurrent library) that is currently held by another thread, it becomes
blocked. (We discuss java.util.concurrent locks in the section “Lock Objects” on
page 742 and intrinsic object locks in the section “The synchronized Keyword” on
page 750.) The thread becomes unblocked when all other threads have relinquished
the lock and the thread scheduler has allowed this thread to hold it.

• When the thread waits for another thread to notify the scheduler of a condition, it
enters the waiting state. We discuss conditions in the “Condition Objects” section
beginning on page 745. This happens by calling the Object.wait or Thread.join method,
or by waiting for a Lock or Condition in the java.util.concurrent library. In practice, the
difference between the blocked and waiting state is not significant.

• Several methods have a timeout parameter. Calling them causes the thread to enter
the timed waiting state. This state persists either until the timeout expired or the

Chapter 14. Multithreading

Chapter 14 ■ Multithreading732

appropriate notification has been received. Methods with timeout include
Thread.sleep and the timed versions of Object.wait, Thread.join, Lock.tryLock, and
Condition.await.

Figure 14–3 shows the states that a thread can have and the possible transitions from
one state to another. When a thread is blocked or waiting (or, of course, when it termi-
nates), another thread will be scheduled to run. When a thread is reactivated (for exam-
ple, because its timeout has expired or it has succeeded in acquiring a lock), the
scheduler checks to see if it has a higher priority than the currently running threads. If
so, it preempts one of the current threads and picks a new thread to run.

Figure 14–3 Thread states

terminated

new

runnable

acquirin
g a lock

lock acquire
d

run
method
exits

start

waiting
waiting for notification

notification occurred

blocked

timed
waiting

waiting for timeout or notification

timeout or notification occurred

Chapter 14. Multithreading

Thread Properties 733

Terminated Threads
A thread is terminated for one of two reasons:

• It dies a natural death because the run method exits normally.
• It dies abruptly because an uncaught exception terminates the run method.

In particular, you can kill a thread by invoking its stop method. That method
throws a ThreadDeath error object that kills the thread. However, the stop method is
deprecated, and you should never call it in your own code.

• void join()
waits for the specified thread to terminate.

• void join(long millis)
waits for the specified thread to die or for the specified number of milliseconds to
pass.

• Thread.State getState() 5.0
gets the state of this thread; one of NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, or
TERMINATED.

• void stop()
stops the thread. This method is deprecated.

• void suspend()
suspends this thread’s execution. This method is deprecated.

• void resume()
resumes this thread. This method is only valid after suspend() has been invoked.
This method is deprecated.

Thread Properties
In the following sections, we discuss miscellaneous properties of threads: thread priori-
ties, daemon threads, thread groups, and handlers for uncaught exceptions.

Thread Priorities
In the Java programming language, every thread has a priority. By default, a thread
inherits the priority of the thread that constructed it. You can increase or decrease the
priority of any thread with the setPriority method. You can set the priority to any value
between MIN_PRIORITY (defined as 1 in the Thread class) and MAX_PRIORITY (defined as 10).
NORM_PRIORITY is defined as 5.

Whenever the thread-scheduler has a chance to pick a new thread, it prefers threads
with higher priority. However, thread priorities are highly system dependent. When the
virtual machine relies on the thread implementation of the host platform, the Java
thread priorities are mapped to the priority levels of the host platform, which may have
more or fewer thread priority levels.

For example, Windows has seven priority levels. Some of the Java priorities will map to
the same operating system level. In the Sun JVM for Linux, thread priorities are ignored
altogether—all threads have the same priority.

java.lang.Thread 1.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading734

Beginning programmers sometimes overuse thread priorities. There are few reasons
ever to tweak priorites. You should certainly never structure your programs so that their
correct functioning depends on priority levels.

CAUTION: If you do use priorities, you should be aware of a common beginner’s error. If
you have several threads with a high priority that don’t become inactive, the lower-priority
threads may never execute. Whenever the scheduler decides to run a new thread, it will
choose among the highest-priority threads first, even though that may starve the lower-
priority threads completely.

• void setPriority(int newPriority)
sets the priority of this thread. The priority must be between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY. Use Thread.NORM_PRIORITY for normal priority.

• static int MIN_PRIORITY
is the minimum priority that a Thread can have. The minimum priority value is 1.

• static int NORM_PRIORITY
is the default priority of a Thread. The default priority is 5.

• static int MAX_PRIORITY
is the maximum priority that a Thread can have. The maximum priority value is 10.

• static void yield()
causes the currently executing thread to yield. If there are other runnable threads
with a priority at least as high as the priority of this thread, they will be scheduled
next. Note that this is a static method.

Daemon Threads
You can turn a thread into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread that has
no other role in life than to serve others. Examples are timer threads that send regu-
lar “timer ticks” to other threads or threads that clean up stale cache entries. When
only daemon threads remain, the virtual machine exits. There is no point in keeping
the program running if all remaining threads are daemons.

Daemon threads are sometimes mistakenly used by beginners who don’t want to
think about shutdown actions. However, this can be dangerous. A daemon thread
should never access a persistent resource such as a file or database since it can termi-
nate at any time, even in the middle of an operation.

• void setDaemon(boolean isDaemon)
marks this thread as a daemon thread or a user thread. This method must be
called before the thread is started.

java.lang.Thread 1.0

java.lang.Thread 1.0

Chapter 14. Multithreading

Thread Properties 735

Handlers for Uncaught Exceptions
The run method of a thread cannot throw any checked exceptions, but it can be termi-
nated by an unchecked exception. In that case, the thread dies.

However, there is no catch clause to which the exception can be propagated. Instead, just
before the thread dies, the exception is passed to a handler for uncaught exceptions.

The handler must belong to a class that implements the Thread.UncaughtExceptionHandler
interface. That interface has a single method,

void uncaughtException(Thread t, Throwable e)

As of Java SE 5.0, you can install a handler into any thread with the setUncaughtException-
Handler method. You can also install a default handler for all threads with the static
method setDefaultUncaughtExceptionHandler of the Thread class. A replacement handler might
use the logging API to send reports of uncaught exceptions into a log file.

If you don’t install a default handler, the default handler is null. However, if you
don’t install a handler for an individual thread, the handler is the thread’s ThreadGroup
object.

NOTE: A thread group is a collection of threads that can be managed together. By default,
all threads that you create belong to the same thread group, but it is possible to establish
other groupings. Since Java SE 5.0 introduced better features for operating on collections of
threads, you should not use thread groups in your own programs.

The ThreadGroup class implements the Thread.UncaughtExceptionHandler interface. Its uncaught-
Exception method takes the following action:

1. If the thread group has a parent, then the uncaughtException method of the parent group
is called.

2. Otherwise, if the Thread.getDefaultExceptionHandler method returns a non-null handler, it
is called.

3. Otherwise, if the Throwable is an instance of ThreadDeath, nothing happens.
4. Otherwise, the name of the thread and the stack trace of the Throwable are printed on

System.err.

That is the stack trace that you have undoubtedly seen many times in your programs.

• static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler handler) 5.0
• static Thread.UncaughtExceptionHandler getDefaultUncaughtExceptionHandler() 5.0

sets or gets the default handler for uncaught exceptions.
• void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler handler) 5.0
• Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() 5.0

sets or gets the handler for uncaught exceptions. If no handler is installed, the
thread group object is the handler.

java.lang.Thread 1.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading736

• void uncaughtException(Thread t, Throwable e)
defined to log a custom report when a thread is terminated with an uncaught
exception.

• void uncaughtException(Thread t, Throwable e)
calls this method of the parent thread group if there is a parent, or calls the default
handler of the Thread class if there is a default handler, or otherwise prints a stack
trace to the standard error stream. (However, if e is a ThreadDeath object, the stack
trace is suppressed. ThreadDeath objects are generated by the deprecated stop
method.)

Synchronization
In most practical multithreaded applications, two or more threads need to share access
to the same data. What happens if two threads have access to the same object and each
calls a method that modifies the state of the object? As you might imagine, the threads
can step on each other’s toes. Depending on the order in which the data were accessed,
corrupted objects can result. Such a situation is often called a race condition.

An Example of a Race Condition
To avoid corruption of shared data by multiple threads, you must learn how to synchro-
nize the access. In this section, you’ll see what happens if you do not use synchronization.
In the next section, you’ll see how to synchronize data access.

In the next test program, we simulate a bank with a number of accounts. We randomly
generate transactions that move money between these accounts. Each account has one
thread. Each transaction moves a random amount of money from the account serviced
by the thread to another random account.

The simulation code is straightforward. We have the class Bank with the method transfer.
This method transfers some amount of money from one account to another. (We don’t
yet worry about negative account balances.) Here is the code for the transfer method of
the Bank class.

public void transfer(int from, int to, double amount)
 // CAUTION: unsafe when called from multiple threads
{
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount, from, to);
 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
}

java.lang.Thread.UncaughtExceptionHandler 5.0

Parameters: t The thread that was terminated due to an uncaught
exception

e The uncaught exception object

java.lang.ThreadGroup 1.0

Chapter 14. Multithreading

Synchronization 737

Here is the code for the TransferRunnable class. Its run method keeps moving money out of
a fixed bank account. In each iteration, the run method picks a random target account
and a random amount, calls transfer on the bank object, and then sleeps.

class TransferRunnable implements Runnable
{
 . . .
 public void run()
 {
 try
 {
 int toAccount = (int) (bank.size() * Math.random());
 double amount = maxAmount * Math.random();
 bank.transfer(fromAccount, toAccount, amount);
 Thread.sleep((int) (DELAY * Math.random()));
 }
 catch(InterruptedException e) {}
 }
}

When this simulation runs, we do not know how much money is in any one bank
account at any time. But we do know that the total amount of money in all the accounts
should remain unchanged because all we do is move money from one account to
another.

At the end of each transaction, the transfer method recomputes the total and prints it.

This program never finishes. Just press CTRL+C to kill the program.

Here is a typical printout:
. . .
Thread[Thread-11,5,main] 588.48 from 11 to 44 Total Balance: 100000.00
Thread[Thread-12,5,main] 976.11 from 12 to 22 Total Balance: 100000.00
Thread[Thread-14,5,main] 521.51 from 14 to 22 Total Balance: 100000.00
Thread[Thread-13,5,main] 359.89 from 13 to 81 Total Balance: 100000.00
. . .
Thread[Thread-36,5,main] 401.71 from 36 to 73 Total Balance: 99291.06
Thread[Thread-35,5,main] 691.46 from 35 to 77 Total Balance: 99291.06
Thread[Thread-37,5,main] 78.64 from 37 to 3 Total Balance: 99291.06
Thread[Thread-34,5,main] 197.11 from 34 to 69 Total Balance: 99291.06
Thread[Thread-36,5,main] 85.96 from 36 to 4 Total Balance: 99291.06
. . .
Thread[Thread-4,5,main]Thread[Thread-33,5,main] 7.31 from 31 to 32 Total Balance:
99979.24
 627.50 from 4 to 5 Total Balance: 99979.24
. . .

As you can see, something is very wrong. For a few transactions, the bank balance
remains at $100,000, which is the correct total for 100 accounts of $1,000 each. But
after some time, the balance changes slightly. When you run this program, you
may find that errors happen quickly or it may take a very long time for the balance
to become corrupted. This situation does not inspire confidence, and you would
probably not want to deposit your hard-earned money in this bank.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading738

The program in Listings 14–5 through 14–7 provides the complete source code. See if you
can spot the problems with the code. We will unravel the mystery in the next section.

Listing 14–5 UnsynchBankTest.java

1. /**
2. * This program shows data corruption when multiple threads access a data structure.
3. * @version 1.30 2004-08-01
4. * @author Cay Horstmann
5. */
6. public class UnsynchBankTest
7. {
8. public static void main(String[] args)
9. {

10. Bank b = new Bank(NACCOUNTS, INITIAL_BALANCE);
11. int i;
12. for (i = 0; i < NACCOUNTS; i++)
13. {
14. TransferRunnable r = new TransferRunnable(b, i, INITIAL_BALANCE);
15. Thread t = new Thread(r);
16. t.start();
17. }
18. }
19.

20. public static final int NACCOUNTS = 100;
21. public static final double INITIAL_BALANCE = 1000;
22. }

Listing 14–6 Bank.java

1. /**
2. * A bank with a number of bank accounts.
3. * @version 1.30 2004-08-01
4. * @author Cay Horstmann
5. */
6. public class Bank
7. {
8. /**
9. * Constructs the bank.

10. * @param n the number of accounts
11. * @param initialBalance the initial balance for each account
12. */
13. public Bank(int n, double initialBalance)
14. {
15. accounts = new double[n];
16. for (int i = 0; i < accounts.length; i++)
17. accounts[i] = initialBalance;
18. }

Chapter 14. Multithreading

Synchronization 739

19.

20. /**
21. * Transfers money from one account to another.
22. * @param from the account to transfer from
23. * @param to the account to transfer to
24. * @param amount the amount to transfer
25. */
26. public void transfer(int from, int to, double amount)
27. {
28. if (accounts[from] < amount) return;
29. System.out.print(Thread.currentThread());
30. accounts[from] -= amount;
31. System.out.printf(" %10.2f from %d to %d", amount, from, to);
32. accounts[to] += amount;
33. System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
34. }
35.

36. /**
37. * Gets the sum of all account balances.
38. * @return the total balance
39. */
40. public double getTotalBalance()
41. {
42. double sum = 0;
43.

44. for (double a : accounts)
45. sum += a;
46.

47. return sum;
48. }
49.

50. /**
51. * Gets the number of accounts in the bank.
52. * @return the number of accounts
53. */
54. public int size()
55. {
56. return accounts.length;
57. }
58.

59. private final double[] accounts;
60. }

Listing 14–6 Bank.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading740

The Race Condition Explained
In the previous section, we ran a program in which several threads updated bank
account balances. After a while, errors crept in and some amount of money was
either lost or spontaneously created. This problem occurs when two threads are

Listing 14–7 TransferRunnable.java

1. /**
2. * A runnable that transfers money from an account to other accounts in a bank.
3. * @version 1.30 2004-08-01
4. * @author Cay Horstmann
5. */
6. public class TransferRunnable implements Runnable
7. {
8. /**
9. * Constructs a transfer runnable.

10. * @param b the bank between whose account money is transferred
11. * @param from the account to transfer money from
12. * @param max the maximum amount of money in each transfer
13. */
14. public TransferRunnable(Bank b, int from, double max)
15. {
16. bank = b;
17. fromAccount = from;
18. maxAmount = max;
19. }
20.

21. public void run()
22. {
23. try
24. {
25. while (true)
26. {
27. int toAccount = (int) (bank.size() * Math.random());
28. double amount = maxAmount * Math.random();
29. bank.transfer(fromAccount, toAccount, amount);
30. Thread.sleep((int) (DELAY * Math.random()));
31. }
32. }
33. catch (InterruptedException e)
34. {
35. }
36. }
37.

38. private Bank bank;
39. private int fromAccount;
40. private double maxAmount;
41. private int DELAY = 10;
42. }

Chapter 14. Multithreading

Synchronization 741

simultaneously trying to update an account. Suppose two threads simultaneously
carry out the instruction

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be pro-
cessed as follows:

1. Load accounts[to] into a register.
2. Add amount.
3. Move the result back to accounts[to].

Now, suppose the first thread executes Steps 1 and 2, and then it is preempted. Sup-
pose the second thread awakens and updates the same entry in the account array.
Then, the first thread awakens and completes its Step 3.

That action wipes out the modification of the other thread. As a result, the total is no
longer correct. (See Figure 14–4.)

Figure 14–4 Simultaneous access by two threads

Our test program detects this corruption. (Of course, there is a slight chance of false
alarms if the thread is interrupted as it is performing the tests!)

5000

5500

5500

load

add

store

load

add

store

5000

5900

5900

5000

5000

5000

5000

5900

5500

TransferThread 1 TransferThread 2 accounts[to]

thread 1 register thread 2 register

Chapter 14. Multithreading

Chapter 14 ■ Multithreading742

NOTE: You can actually peek at the virtual machine bytecodes that execute each statement
in our class. Run the command

javap -c -v Bank

to decompile the Bank.class file. For example, the line

accounts[to] += amount;

is translated into the following bytecodes:

aload_0
getfield #2; //Field accounts:[D
iload_2
dup2
daload
dload_3
dadd
dastore

What these codes mean does not matter. The point is that the increment command is made
up of several instructions, and the thread executing them can be interrupted at the point of
any instruction.

What is the chance of this corruption occurring? We boosted the chance of observing
the problem by interleaving the print statements with the statements that update the
balance.

If you omit the print statements, the risk of corruption is quite a bit lower because each
thread does so little work before going to sleep again, and it is unlikely that the sched-
uler will preempt it in the middle of the computation. However, the risk of corruption
does not completely go away. If you run lots of threads on a heavily loaded machine,
then the program will still fail even after you have eliminated the print statements. The
failure may take a few minutes or hours or days to occur. Frankly, there are few things
worse in the life of a programmer than an error that only manifests itself once every few
days.

The real problem is that the work of the transfer method can be interrupted in the
middle. If we could ensure that the method runs to completion before the thread
loses control, then the state of the bank account object would never be corrupted.

Lock Objects
Starting with Java SE 5.0, there are two mechanisms for protecting a code block
from concurrent access. The Java language provides a synchronized keyword for this
purpose, and Java SE 5.0 introduced the ReentrantLock class. The synchronized keyword
automatically provides a lock as well as an associated “condition,” which makes it
powerful and convenient for most cases that require explicit locking. However, we
believe that it is easier to understand the synchronized keyword after you have seen
locks and conditions in isolation. The java.util.concurrent framework provides sepa-
rate classes for these fundamental mechanisms, which we explain here and in the
section “Condition Objects” on page 745. Once you have understood these build-
ing blocks, we present the section “The synchronized Keyword” on page 750.

Chapter 14. Multithreading

Synchronization 743

The basic outline for protecting a code block with a ReentrantLock is:
myLock.lock(); // a ReentrantLock object
try
{
 critical section
}
finally
{
 myLock.unlock(); // make sure the lock is unlocked even if an exception is thrown
}

This construct guarantees that only one thread at a time can enter the critical section. As
soon as one thread locks the lock object, no other thread can get past the lock statement.
When other threads call lock, they are deactivated until the first thread unlocks the lock
object.

CAUTION: It is critically important that the unlock operation is enclosed in a finally clause. If
the code in the critical section throws an exception, the lock must be unlocked. Otherwise,
the other threads will be blocked forever.

Let us use a lock to protect the transfer method of the Bank class.
public class Bank
{
 public void transfer(int from, int to, int amount)
 {
 bankLock.lock();
 try
 {
 System.out.print(Thread.currentThread());
 accounts[from] -= amount;
 System.out.printf(" %10.2f from %d to %d", amount, from, to);
 accounts[to] += amount;
 System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
 }
 finally
 {
 bankLock.unlock();
 }
 }
 . . .
 private Lock bankLock = new ReentrantLock(); // ReentrantLock implements the Lock interface
}

Suppose one thread calls transfer and gets preempted before it is done. Suppose a sec-
ond thread also calls transfer. The second thread cannot acquire the lock and is blocked
in the call to the lock method. It is deactivated and must wait for the first thread to finish
executing the transfer method. When the first thread unlocks the lock, then the second
thread can proceed (see Figure 14–5).

Try it out. Add the locking code to the transfer method and run the program again. You
can run it forever, and the bank balance will not become corrupted.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading744

Figure 14–5 Comparison of unsynchronized and synchronized threads

Note that each Bank object has its own ReentrantLock object. If two threads try to access the
same Bank object, then the lock serves to serialize the access. However, if two threads
access different Bank objects, then each thread acquires a different lock and neither thread
is blocked. This is as it should be, because the threads cannot interfere with another
when they manipulate different Bank instances.

The lock is called reentrant because a thread can repeatedly acquire a lock that it already
owns. The lock keeps a hold count that keeps track of the nested calls to the lock method. The
thread has to call unlock for every call to lock in order to relinquish the lock. Because of this
feature, code that is protected by a lock can call another method that uses the same locks.

For example, the transfer method calls the getTotalBalance method, which also locks the
bankLock object, which now has a hold count of 2. When the getTotalBalance method exits,
the hold count is back to 1. When the transfer method exits, the hold count is 0, and the
thread relinquishes the lock.

In general, you will want to protect blocks of code that update or inspect a shared object.
You are then assured that these operations run to completion before another thread can
use the same object.

transfer
transfer

transfer

transfer

Thread 1 Thread 2 Thread 2Thread 1

Unsynchronized Synchronized

Chapter 14. Multithreading

Synchronization 745

CAUTION: You need to be careful that code in a critical section is not bypassed through the
throwing of an exception. If an exception is thrown before the end of the section, then the
finally clause will relinquish the lock but the object may be in a damaged state.

• void lock()
acquires this lock; blocks if the lock is currently owned by another thread.

• void unlock()
releases this lock.

• ReentrantLock()
constructs a reentrant lock that can be used to protect a critical section.

• ReentrantLock(boolean fair)
constructs a lock with the given fairness policy. A fair lock favors the thread that
has been waiting for the longest time. However, this fairness guarantee can be a
significant drag on performance. Therefore, by default, locks are not required to
be fair.

CAUTION: It sounds nicer to be fair, but fair locks are a lot slower than regular locks. You
should only enable fair locking if you truly know what you are doing and have a specific rea-
son why fairness is essential for your problem. Even if you use a fair lock, you have no guar-
antee that the thread scheduler is fair. If the thread scheduler chooses to neglect a thread
that has been waiting a long time for the lock, then it doesn’t get the chance to be treated
fairly by the lock.

Condition Objects
Often, a thread enters a critical section, only to discover that it can’t proceed until a
condition is fulfilled. You use a condition object to manage threads that have acquired
a lock but cannot do useful work. In this section, we introduce the implementation
of condition objects in the Java library. (For historical reasons, condition objects are
often called condition variables.)

Let us refine our simulation of the bank. We do not want to transfer money out of an
account that does not have the funds to cover the transfer. Note that we cannot use
code like

if (bank.getBalance(from) >= amount)
 bank.transfer(from, to, amount);

It is entirely possible that the current thread will be deactivated between the success-
ful outcome of the test and the call to transfer.

if (bank.getBalance(from) >= amount)
 // thread might be deactivated at this point
 bank.transfer(from, to, amount);

java.util.concurrent.locks.Lock 5.0

java.util.concurrent.locks.ReentrantLock 5.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading746

By the time the thread is running again, the account balance may have fallen below
the withdrawal amount. You must make sure that no other thread can modify the bal-
ance between the test and the transfer action. You do so by protecting both the test
and the transfer action with a lock:

public void transfer(int from, int to, int amount)
{
 bankLock.lock();
 try
 {
 while (accounts[from] < amount)
 {
 // wait
 . . .
 }
 // transfer funds
 . . .
 }
 finally
 {
 bankLock.unlock();
 }
}

Now, what do we do when there is not enough money in the account? We wait until
some other thread has added funds. But this thread has just gained exclusive access
to the bankLock, so no other thread has a chance to make a deposit. This is where con-
dition objects come in.

A lock object can have one or more associated condition objects. You obtain a condition
object with the newCondition method. It is customary to give each condition object a name
that evokes the condition that it represents. For example, here we set up a condition
object to represent the “sufficient funds” condition.

class Bank
{
 public Bank()
 {
 . . .
 sufficientFunds = bankLock.newCondition();
 }
 . . .
 private Condition sufficientFunds;
}

If the transfer method finds that sufficient funds are not available, it calls
sufficientFunds.await();

The current thread is now deactivated and gives up the lock. This lets in another
thread that can, we hope, increase the account balance.

There is an essential difference between a thread that is waiting to acquire a lock and a
thread that has called await. Once a thread calls the await method, it enters a wait set for that
condition. The thread is not made runnable when the lock is available. Instead, it stays
deactivated until another thread has called the signalAll method on the same condition.

Chapter 14. Multithreading

Synchronization 747

When another thread transfers money, then it should call
sufficientFunds.signalAll();

This call reactivates all threads that are waiting for the condition. When the threads are
removed from the wait set, they are again runnable and the scheduler will eventually
activate them again. At that time, they will attempt to reenter the object. As soon as the
lock is available, one of them will acquire the lock and continue where it left off, returning
from the call to await.

At this time, the thread should test the condition again. There is no guarantee that the
condition is now fulfilled—the signalAll method merely signals to the waiting threads
that it may be fulfilled at this time and that it is worth checking for the condition again.

NOTE: In general, a call to await should be inside a loop of the form

while (!(ok to proceed))
 condition.await();

It is crucially important that some other thread calls the signalAll method eventually.
When a thread calls await, it has no way of reactivating itself. It puts its faith in the other
threads. If none of them bother to reactivate the waiting thread, it will never run again.
This can lead to unpleasant deadlock situations. If all other threads are blocked and the
last active thread calls await without unblocking one of the others, then it also blocks. No
thread is left to unblock the others, and the program hangs.

When should you call signalAll? The rule of thumb is to call signalAll whenever the state
of an object changes in a way that might be advantageous to waiting threads. For exam-
ple, whenever an account balance changes, the waiting threads should be given another
chance to inspect the balance. In our example, we call signalAll when we have finished
the funds transfer.

public void transfer(int from, int to, int amount)
{
 bankLock.lock();
 try
 {
 while (accounts[from] < amount)
 sufficientFunds.await();
 // transfer funds
 . . .
 sufficientFunds.signalAll();
 }
 finally
 {
 bankLock.unlock();
 }
}

Note that the call to signalAll does not immediately activate a waiting thread. It only
unblocks the waiting threads so that they can compete for entry into the object after the
current thread has exited the synchronized method.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading748

Another method, signal, unblocks only a single thread from the wait set, chosen at ran-
dom. That is more efficient than unblocking all threads, but there is a danger. If the ran-
domly chosen thread finds that it still cannot proceed, then it becomes blocked again. If
no other thread calls signal again, then the system deadlocks.

CAUTION: A thread can only call await, signalAll, or signal on a condition when it owns the
lock of the condition.

If you run the sample program in Listing 14–8, you will notice that nothing ever goes
wrong. The total balance stays at $100,000 forever. No account ever has a negative bal-
ance. (Again, you need to press CTRL+C to terminate the program.) You may also notice
that the program runs a bit slower—this is the price you pay for the added bookkeeping
involved in the synchronization mechanism.

In practice, using conditions correctly can be quite challenging. Before you start imple-
menting your own condition objects, you should consider using one of the constructs
described in “Synchronizers” on page 785.

Listing 14–8 Bank.java

1. import java.util.concurrent.locks.*;
2.

3. /**
4. * A bank with a number of bank accounts that uses locks for serializing access.
5. * @version 1.30 2004-08-01
6. * @author Cay Horstmann
7. */
8. public class Bank
9. {

10. /**
11. * Constructs the bank.
12. * @param n the number of accounts
13. * @param initialBalance the initial balance for each account
14. */
15. public Bank(int n, double initialBalance)
16. {
17. accounts = new double[n];
18. for (int i = 0; i < accounts.length; i++)
19. accounts[i] = initialBalance;
20. bankLock = new ReentrantLock();
21. sufficientFunds = bankLock.newCondition();
22. }
23.

24. /**
25. * Transfers money from one account to another.
26. * @param from the account to transfer from
27. * @param to the account to transfer to
28. * @param amount the amount to transfer
29. */

Chapter 14. Multithreading

Synchronization 749

30. public void transfer(int from, int to, double amount) throws InterruptedException
31. {
32. bankLock.lock();
33. try
34. {
35. while (accounts[from] < amount)
36. sufficientFunds.await();
37. System.out.print(Thread.currentThread());
38. accounts[from] -= amount;
39. System.out.printf(" %10.2f from %d to %d", amount, from, to);
40. accounts[to] += amount;
41. System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
42. sufficientFunds.signalAll();
43. }
44. finally
45. {
46. bankLock.unlock();
47. }
48. }
49.

50. /**
51. * Gets the sum of all account balances.
52. * @return the total balance
53. */
54. public double getTotalBalance()
55. {
56. bankLock.lock();
57. try
58. {
59. double sum = 0;
60.

61. for (double a : accounts)
62. sum += a;
63.

64. return sum;
65. }
66. finally
67. {
68. bankLock.unlock();
69. }
70. }
71.

72. /**
73. * Gets the number of accounts in the bank.
74. * @return the number of accounts
75. */
76. public int size()
77. {
78. return accounts.length;
79. }

Listing 14–8 Bank.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading750

• Condition newCondition()
returns a condition object that is associated with this lock.

• void await()
puts this thread on the wait set for this condition.

• void signalAll()
unblocks all threads in the wait set for this condition.

• void signal()
unblocks one randomly selected thread in the wait set for this condition.

The synchronized Keyword
In the preceding sections, you saw how to use Lock and Condition objects. Before going any
further, let us summarize the key points about locks and conditions:

• A lock protects sections of code, allowing only one thread to execute the code at a
time.

• A lock manages threads that are trying to enter a protected code segment.
• A lock can have one or more associated condition objects.
• Each condition object manages threads that have entered a protected code section

but that cannot proceed.

The Lock and Condition interfaces were added to Java SE 5.0 to give programmers a high
degree of control over locking. However, in most situations, you don’t need that control,
and you can use a mechanism that is built into the Java language. Ever since version 1.0,
every object in Java has an intrinsic lock. If a method is declared with the synchronized key-
word, then the object’s lock protects the entire method. That is, to call the method, a
thread must acquire the intrinsic object lock.

In other words,
public synchronized void method()
{
 method body
}

is the equivalent of

public void method()
{

80.

81. private final double[] accounts;
82. private Lock bankLock;
83. private Condition sufficientFunds;
84. }

java.util.concurrent.locks.Lock 5.0

java.util.concurrent.locks.Condition 5.0

Listing 14–8 Bank.java (continued)

Chapter 14. Multithreading

Synchronization 751

 this.intrinsicLock.lock();
 try
 {
 method body
 }
 finally { this.intrinsicLock.unlock(); }
}

For example, instead of using an explicit lock, we can simply declare the transfer method
of the Bank class as synchronized.

The intrinsic object lock has a single associated condition. The wait method adds a thread
to the wait set, and the notifyAll/notify methods unblock waiting threads. In other
words, calling wait or notifyAll is the equivalent of

intrinsicCondition.await();
intrinsicCondition.signalAll();

NOTE: The wait, notifyAll, and notify methods are final methods of the Object class. The
Condition methods had to be named await, signalAll, and signal so that they don’t conflict
with those methods.

For example, you can implement the Bank class in Java like this:
class Bank
{
 public synchronized void transfer(int from, int to, int amount) throws InterruptedException
 {
 while (accounts[from] < amount)
 wait(); // wait on intrinsic object lock's single condition
 accounts[from] -= amount;
 accounts[to] += amount;
 notifyAll(); // notify all threads waiting on the condition
 }
 public synchronized double getTotalBalance() { . . . }
 private double[] accounts;
}

As you can see, using the synchronized keyword yields code that is much more concise. Of
course, to understand this code, you have to know that each object has an intrinsic lock,
and that the lock has an intrinsic condition. The lock manages the threads that try to
enter a synchronized method. The condition manages the threads that have called wait.

TIP: Synchronized methods are relatively straightforward. However, beginners often strug-
gle with conditions. Before you use wait/notifyAll, you should you should consider using
one of the constructs described in “Synchronizers” on page 785.

It is also legal to declare static methods as synchronized. If such a method is called, it
acquires the intrinsic lock of the associated class object. For example, if the Bank class has
a static synchronized method, then the lock of the Bank.class object is locked when it is
called. As a result, no other thread can call this or any other synchronized static method
of the same class.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading752

The intrinsic locks and conditions have some limitations. Among them:

• You cannot interrupt a thread that is trying to acquire a lock.
• You cannot specify a timeout when trying to acquire a lock.
• Having a single condition per lock can be inefficient.

What should you use in your code—Lock and Condition objects or synchronized methods?
Here is our recommendation:

• It is best to use neither Lock/Condition nor the synchronized keyword. In many situa-
tions, you can use one of the mechanisms of the java.util.concurrent package that do
all the locking for you. For example, in “Blocking Queues” on page 764, you will see
how to use a blocking queue to synchronize threads that work on a common task.

• If the synchronized keyword works for your situation, by all means, use it. You write
less code and have less room for error. Listing 14–9 shows the bank example, imple-
mented with synchronized methods.

• Use Lock/Condition if you specifically need the additional power that these constructs
give you.

Listing 14–9 Bank.java

1. /**
2. * A bank with a number of bank accounts that uses synchronization primitives.
3. * @version 1.30 2004-08-01
4. * @author Cay Horstmann
5. */
6. public class Bank
7. {
8. /**
9. * Constructs the bank.

10. * @param n the number of accounts
11. * @param initialBalance the initial balance for each account
12. */
13. public Bank(int n, double initialBalance)
14. {
15. accounts = new double[n];
16. for (int i = 0; i < accounts.length; i++)
17. accounts[i] = initialBalance;
18. }
19.

20. /**
21. * Transfers money from one account to another.
22. * @param from the account to transfer from
23. * @param to the account to transfer to
24. * @param amount the amount to transfer
25. */
26. public synchronized void transfer(int from, int to, double amount) throws InterruptedException
27. {

Chapter 14. Multithreading

Synchronization 753

• void notifyAll()
unblocks the threads that called wait on this object. This method can only be
called from within a synchronized method or block. The method throws an
IllegalMonitorStateException if the current thread is not the owner of the object’s lock.

• void notify()
unblocks one randomly selected thread among the threads that called wait on this
object. This method can only be called from within a synchronized method or
block. The method throws an IllegalMonitorStateException if the current thread is not
the owner of the object’s lock.

28. while (accounts[from] < amount)
29. wait();
30. System.out.print(Thread.currentThread());
31. accounts[from] -= amount;
32. System.out.printf(" %10.2f from %d to %d", amount, from, to);
33. accounts[to] += amount;
34. System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());
35. notifyAll();
36. }
37.

38. /**
39. * Gets the sum of all account balances.
40. * @return the total balance
41. */
42. public synchronized double getTotalBalance()
43. {
44. double sum = 0;
45.

46. for (double a : accounts)
47. sum += a;
48.

49. return sum;
50. }
51.

52. /**
53. * Gets the number of accounts in the bank.
54. * @return the number of accounts
55. */
56. public int size()
57. {
58. return accounts.length;
59. }
60.

61. private final double[] accounts;
62. }

java.lang.Object 1.0

Listing 14–9 Bank.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading754

• void wait()
causes a thread to wait until it is notified. This method can only be called from
within a synchronized method. It throws an IllegalMonitorStateException if the
current thread is not the owner of the object’s lock.

• void wait(long millis)
• void wait(long millis, int nanos)

causes a thread to wait until it is notified or until the specified amount of time has
passed. These methods can only be called from within a synchronized method.
They throw an IllegalMonitorStateException if the current thread is not the owner of
the object’s lock.

Synchronized Blocks
As we just discussed, every Java object has a lock. A thread can acquire the lock by call-
ing a synchronized method. There is a second mechanism for acquiring the lock, by
entering a synchronized block. When a thread enters a block of the form

synchronized (obj) // this is the syntax for a synchronized block
{
 critical section
}

then it acquires the lock for obj.

You will sometimes find “ad hoc” locks, such as

public class Bank
{
 public void transfer(int from, int to, int amount)
 {
 synchronized (lock) // an ad-hoc lock
 {
 accounts[from] -= amount;
 accounts[to] += amount;
 }
 System.out.println(. . .);
 }
 . . .
 private double[] accounts;
 private Object lock = new Object();
}

Here, the lock object is created only to use the lock that every Java object possesses.

Sometimes, programmers use the lock of an object to implement additional atomic oper-
ations, a practice known as client-side locking. Consider, for example, the Vector class, a
list whose methods are synchronized. Now suppose we stored our bank balances in a
Vector<Double>. Here is a naive implementation of a transfer method:

public void transfer(Vector<Double> accounts, int from, int to, int amount) // ERROR
{
 accounts.set(from, accounts.get(from) - amount);

Parameters: millis The number of milliseconds
nanos The number of nanoseconds, < 1,000,000

Chapter 14. Multithreading

Synchronization 755

 accounts.set(to, accounts.get(to) + amount);
 System.out.println(. . .);
}

The get and set methods of the Vector class are synchronized, but that doesn’t help us. It is
entirely possible for a thread to be preempted in the transfer method after the first call to
get has been completed. Another thread may then store a different value into the same
position. However, we can hijack the lock:

public void transfer(Vector<Double> accounts, int from, int to, int amount)
{
 synchronized (accounts)
 {

 accounts.set(from, accounts.get(from) - amount);
 accounts.set(to, accounts.get(to) + amount);
 }
 System.out.println(. . .);
}

This approach works, but it is entirely dependent on the fact that the Vector class uses the
intrinsic lock for all of its mutator methods. However, is this really a fact? The documen-
tation of the Vector class makes no such promise. You have to carefully study the source
code and hope that future versions do not introduce unsynchronized mutators. As you
can see, client-side locking is very fragile and not generally recommended.

The Monitor Concept
Locks and conditions are powerful tools for thread synchronization, but they are not
very object oriented. For many years, researchers have looked for ways to make multi-
threading safe without forcing programmers to think about explicit locks. One of the
most successful solutions is the monitor concept that was pioneered by Per Brinch
Hansen and Tony Hoare in the 1970s. In the terminology of Java, a monitor has these
properties:

• A monitor is a class with only private fields.
• Each object of that class has an associated lock.
• All methods are locked by that lock. In other words, if a client calls obj.method(), then

the lock for obj is automatically acquired at the beginning of the method call and
relinquished when the method returns. Because all fields are private, this arrange-
ment ensures that no thread can access the fields while another thread manipulates
them.

• The lock can have any number of associated conditions.

Earlier versions of monitors had a single condition, with a rather elegant syntax. You
can simply call await accounts[from] >= balance without using an explicit condition variable.
However, research showed that indiscriminate retesting of conditions can be inefficient.
This problem is solved with explicit condition variables, each managing a separate set of
threads.

The Java designers loosely adapted the monitor concept. Every object in Java has an
intrinsic lock and an intrinsic condition. If a method is declared with the synchronized key-
word, then it acts like a monitor method. The condition variable is accessed by calling
wait/notifyAll/notify.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading756

However, a Java object differs from a monitor in three important ways, compromising
thread safety:

• Fields are not required to be private.
• Methods are not required to be synchronized.
• The intrinsic lock is available to clients.

This disrespect for security enraged Per Brinch Hansen. In a scathing review of the mul-
tithreading primitives in Java, he wrote: “It is astounding to me that Java’s insecure par-
allelism is taken seriously by the programming community, a quarter of a century after
the invention of monitors and Concurrent Pascal. It has no merit.” [Java’s Insecure Par-
allelism, ACM SIGPLAN Notices 34:38–45, April 1999.]

Volatile Fields
Sometimes, it seems excessive to pay the cost of synchronization just to read or write an
instance field or two. After all, what can go wrong? Unfortunately, with modern proces-
sors and compilers, there is plenty of room for error:

• Computers with multiple processors can temporarily hold memory values in regis-
ters or local memory caches. As a consequence, threads running in different proces-
sors may see different values for the same memory location!

• Compilers can reorder instructions for maximum throughput. Compilers won’t
choose an ordering that changes the meaning of the code, but they make the
assumption that memory values are only changed when there are explicit instruc-
tions in the code. However, a memory value can be changed by another thread!

If you use locks to protect code that can be accessed by multiple threads, then you won’t
have these problems. Compilers are required to respect locks by flushing local caches as
necessary and not inappropriately reordering instructions. The details are explained in
the Java Memory Model and Thread Specification developed by JSR 133 (see http://
www.jcp.org/en/jsr/detail?id=133). Much of the specification is highly complex and technical,
but the document also contains a number of clearly explained examples. A more accessi-
ble overview article by Brian Goetz is available at http://www-106.ibm.com/developerworks/java/
library/j-jtp02244.html.

NOTE: Brian Goetz coined the following “synchronization motto”: “If you write a variable
which may next be read by another thread, or you read a variable which may have last been
written by another thread, you must use synchronization.”

The volatile keyword offers a lock-free mechanism for synchronizing access to an
instance field. If you declare a field as volatile, then the compiler and the virtual machine
take into account that the field may be concurrently updated by another thread.

For example, suppose an object has a boolean flag done that is set by one thread and que-
ried by another thread. As we already discussed, you can use a lock:

public synchronized boolean isDone() { return done; }
public synchronized void setDone() { done = true; }
private boolean done;

Chapter 14. Multithreading

Synchronization 757

Perhaps it is not a good idea to use the intrinsic object lock. The isDone and setDone meth-
ods can block if another thread has locked the object. If that is a concern, one can use a
separate Lock just for this variable. But this is getting to be a lot of trouble.

In this case, it is reasonable to declare the field as volatile:
public boolean isDone() { return done; }
public void setDone() { done = true; }
private volatile boolean done;

CAUTION: Volatile variables do not provide any atomicity. For example, the method

public void flipDone() { done = !done; } // not atomic

is not guaranteed to flip the value of the field.

In this very simple case, there is a third possibility, to use an AtomicBoolean. This class has
methods get and set that are guaranteed to be atomic (as if they were synchronized). The
implementation uses efficient machine-level instructions that guarantee atomicity with-
out using locks. There are a number of wrapper classes in the java.util.concurrent.atomic
package for atomic integers, floating point numbers, arrays, and so on. These classes are
intended for systems programmers who produce concurrency utilities, not for the appli-
cation programmer.

In summary, concurrent access to a field is safe in these three conditions:

• The field is final, and it is accessed after the constructor has completed.
• Every access to the field is protected by a common lock.
• The field is volatile.

NOTE: Prior to Java SE 5.0, the semantics of volatile were rather permissive. The lan-
guage designers attempted to give implementors leeway in optimizing the performance of
code that uses volatile fields. However, the old specification was so complex that implemen-
tors didn’t always follow it, and it allowed confusing and undesirable behavior, such as
immutable objects that weren’t truly immutable.

Deadlocks
Locks and conditions cannot solve all problems that might arise in multithreading. Con-
sider the following situation:

Account 1: $200

Account 2: $300

Thread 1: Transfer $300 from Account 1 to Account 2

Thread 2: Transfer $400 from Account 2 to Account 1

As Figure 14–6 indicates, Threads 1 and 2 are clearly blocked. Neither can proceed
because the balances in Accounts 1 and 2 are insufficient.

Is it possible that all threads are blocked because each is waiting for more money?
Such a situation is called a deadlock.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading758

Figure 14–6 A deadlock situation

In our program, a deadlock cannot occur for a simple reason. Each transfer amount
is for, at most, $1,000. Because there are 100 accounts and a total of $100,000 in them,
at least one of the accounts must have more than $1,000 at any time. The thread
moving money out of that account can therefore proceed.

But if you change the run method of the threads to remove the $1,000 transaction limit,
deadlocks can occur quickly. Try it out. Set NACCOUNTS to 10. Construct each transfer runna-
ble with a max value of 2 * INITIAL_BALANCE and run the program. The program will run for a
while and then hang.

TIP: When the program hangs, type CTRL+\. You will get a thread dump that lists all
threads. Each thread has a stack trace, telling you where it is currently blocked. Alterna-
tively, run jconsole, as described in Chapter 11, and consult the Threads panel (see Figure
14–7).

200

300

1

2

bank.accounts

Thread 1 Thread 2

bank.transfer(1,2,300)

bank.transfer(2,1,400)

bank.wait()

bank.wait()

Chapter 14. Multithreading

Synchronization 759

Figure 14–7 The Threads panel in jconsole

Another way to create a deadlock is to make the i’th thread responsible for putting
money into the i’th account, rather than for taking it out of the i’th account. In this case,
there is a chance that all threads will gang up on one account, each trying to remove
more money from it than it contains. Try it out. In the SynchBankTest program, turn to the
run method of the TransferRunnable class. In the call to transfer, flip fromAccount and toAccount.
Run the program and see how it deadlocks almost immediately.

Here is another situation in which a deadlock can occur easily: Change the signalAll
method to signal in the SynchBankTest program. You will find that the program hangs even-
tually. (Again, it is best to set NACCOUNTS to 10 to observe the effect more quickly.) Unlike
signalAll, which notifies all threads that are waiting for added funds, the signal method
unblocks only one thread. If that thread can’t proceed, all threads can be blocked. Con-
sider the following sample scenario of a developing deadlock.

Account 1: $1,990

All other accounts: $990 each

Thread 1: Transfer $995 from Account 1 to Account 2

All other threads: Transfer $995 from their account to another account

Chapter 14. Multithreading

Chapter 14 ■ Multithreading760

Clearly, all threads but Thread 1 are blocked, because there isn’t enough money in their
accounts.

Thread 1 proceeds. Afterward, we have the following situation:

Account 1: $995

Account 2: $1,985

All other accounts: $990 each

Then, Thread 1 calls signal. The signal method picks a thread at random to unblock. Sup-
pose it picks Thread 3. That thread is awakened, finds that there isn’t enough money in
its account, and calls await again. But Thread 1 is still running. A new random transac-
tion is generated, say,

Thread 1: Transfer $997 to from Account 1 to Account 2

Now, Thread 1 also calls await, and all threads are blocked. The system has deadlocked.

The culprit here is the call to signal. It only unblocks one thread, and it may not pick the
thread that is essential to make progress. (In our scenario, Thread 2 must proceed to take
money out of Account 2.)

Unfortunately, there is nothing in the Java programming language to avoid or break
these deadlocks. You must design your program to ensure that a deadlock situation
cannot occur.

Lock Testing and Timeouts
A thread blocks indefinitely when it calls the lock method to acquire a lock that is owned
by another thread. You can be more cautious about acquiring a lock. The tryLock method
tries to acquire a lock and returns true if it was successful. Otherwise, it immediately
returns false, and the thread can go off and do something else.

if (myLock.tryLock())
 // now the thread owns the lock
 try { . . . }
 finally { myLock.unlock(); }
else
 // do something else

You can call tryLock with a timeout parameter, like this:
if (myLock.tryLock(100, TimeUnit.MILLISECONDS)) . . .

TimeUnit is an enumeration with values SECONDS, MILLISECONDS, MICROSECONDS, and NANOSECONDS.

The lock method cannot be interrupted. If a thread is interrupted while it is waiting to
acquire a lock, the interrupted thread continues to be blocked until the lock is available.
If a deadlock occurs, then the lock method can never terminate.

However, if you call tryLock with a timeout, then an InterruptedException is thrown if the
thread is interrupted while it is waiting. This is clearly a useful feature because it allows
a program to break up deadlocks.

You can also call the lockInterruptibly method. It has the same meaning as tryLock with an
infinite timeout.

When you wait on a condition, you can also supply a timeout:
myCondition.await(100, TimeUnit.MILLISECONDS))

Chapter 14. Multithreading

Synchronization 761

The await method returns if another thread has activated this thread by calling signalAll
or signal, or if the timeout has elapsed, or if the thread was interrupted.

The await methods throw an InterruptedException if the waiting thread is interrupted. In the
(perhaps unlikely) case that you’d rather continue waiting, use the awaitUninterruptibly
method instead.

• boolean tryLock()
tries to acquire the lock without blocking; returns true if it was successful. This
method grabs the lock if it is available even if it has a fair locking policy and other
threads have been waiting.

• boolean tryLock(long time, TimeUnit unit)
tries to acquire the lock, blocking no longer than the given time; returns true if it
was successful.

• void lockInterruptibly()
acquires the lock, blocking indefinitely. If the thread is interrupted, throws an
InterruptedException.

• boolean await(long time, TimeUnit unit)
enters the wait set for this condition, blocking until the thread is removed from
the wait set or the given time has elapsed. Returns false if the method returned
because the time elapsed, true otherwise.

• void awaitUninterruptibly()
enters the wait set for this condition, blocking until the thread is removed from
the wait set. If the thread is interrupted, this method does not throw an
InterruptedException.

Read/Write Locks
The java.util.concurrent.locks package defines two lock classes, the ReentrantLock that we
already discussed and the ReentrantReadWriteLock class. The latter is useful when there are
many threads that read from a data structure and fewer threads that modify it. In that
situation, it makes sense to allow shared access for the readers. Of course, a writer must
still have exclusive access.

Here are the steps that are necessary to use read/write locks:

1. Construct a ReentrantReadWriteLock object:
private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

2. Extract read and write locks:
private Lock readLock = rwl.readLock();
private Lock writeLock = rwl.writeLock();

3. Use the read lock in all accessors:
public double getTotalBalance()
{

java.util.concurrent.locks.Lock 5.0

java.util.concurrent.locks.Condition 5.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading762

 readLock.lock();
 try { . . . }
 finally { readLock.unlock(); }
}

4. Use the write lock in all mutators:
public void transfer(. . .)
{
 writeLock.lock();
 try { . . . }
 finally { writeLock.unlock(); }
}

• Lock readLock()
gets a read lock that can be acquired by multiple readers, excluding all writers.

• Lock writeLock()
gets a write lock that excludes all other readers and writers.

Why the stop and suspend Methods Are Deprecated
The initial release of Java defined a stop method that simply terminates a thread, and a
suspend method that blocks a thread until another thread calls resume. The stop and suspend
methods have something in common: Both attempt to control the behavior of a
given thread without the thread’s cooperation.

Both of these methods have been deprecated since Java SE 1.2. The stop method is inher-
ently unsafe, and experience has shown that the suspend method frequently leads to
deadlocks. In this section, you will see why these methods are problematic and what
you can do to avoid problems.

Let us turn to the stop method first. This method terminates all pending methods, includ-
ing the run method. When a thread is stopped, it immediately gives up the locks on all
objects that it has locked. This can leave objects in an inconsistent state. For example, sup-
pose a TransferThread is stopped in the middle of moving money from one account to
another, after the withdrawal and before the deposit. Now the bank object is damaged.
Since the lock has been relinquished, the damage is observable from the other threads that
have not been stopped.

When a thread wants to stop another thread, it has no way of knowing when the stop
method is safe and when it leads to damaged objects. Therefore, the method has been
deprecated. You should interrupt a thread when you want it to stop. The interrupted
thread can then stop when it is safe to do so.

NOTE: Some authors claim that the stop method has been deprecated because it can
cause objects to be permanently locked by a stopped thread. However, that claim is not
valid. A stopped thread exits all synchronized methods it has called—technically, by throw-
ing a ThreadDeath exception. As a consequence, the thread relinquishes the intrinsic object
locks that it holds.

java.util.concurrent.locks.ReentrantReadWriteLock 5.0

Chapter 14. Multithreading

Synchronization 763

Next, let us see what is wrong with the suspend method. Unlike stop, suspend won’t damage
objects. However, if you suspend a thread that owns a lock, then the lock is unavailable
until the thread is resumed. If the thread that calls the suspend method tries to acquire the
same lock, then the program deadlocks: The suspended thread waits to be resumed, and
the suspending thread waits for the lock.

This situation occurs frequently in graphical user interfaces. Suppose we have a graphi-
cal simulation of our bank. A button labeled Pause suspends the transfer threads, and a
button labeled Resume resumes them.

pauseButton.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 for (int i = 0; i < threads.length; i++)
 threads[i].suspend(); // Don't do this
 }
 });
resumeButton.addActionListener(. . .); // calls resume on all transfer threads

Suppose a paintComponent method paints a chart of each account, calling a getBalances
method to get an array of balances.

As you will see in the section “Threads and Swing” on page 794, both the button actions
and the repainting occur in the same thread, the event dispatch thread. Consider the fol-
lowing scenario:

1. One of the transfer threads acquires the lock of the bank object.
2. The user clicks the Pause button.
3. All transfer threads are suspended; one of them still holds the lock on the bank

object.
4. For some reason, the account chart needs to be repainted.
5. The paintComponent method calls the getBalances method.
6. That method tries to acquire the lock of the bank object.

Now the program is frozen.

The event dispatch thread can’t proceed because the lock is owned by one of the sus-
pended threads. Thus, the user can’t click the Resume button, and the threads won’t
ever resume.

If you want to safely suspend a thread, introduce a variable suspendRequested and test it
in a safe place of your run method—somewhere your thread doesn’t lock objects that
other threads need. When your thread finds that the suspendRequested variable has been
set, it should keep waiting until it becomes available again.

The following code framework implements that design:
public void run()
{
 while (. . .)
 {
 . . .

Chapter 14. Multithreading

Chapter 14 ■ Multithreading764

 if (suspendRequested)
 {
 suspendLock.lock();
 try { while (suspendRequested) suspendCondition.await(); }
 finally { suspendLock.unlock(); }
 }
 }
}
public void requestSuspend() { suspendRequested = true; }
public void requestResume()
{
 suspendRequested = false;
 suspendLock.lock();
 try { suspendCondition.signalAll(); }
 finally { suspendLock.unlock(); }
}
private volatile boolean suspendRequested = false;
private Lock suspendLock = new ReentrantLock();
private Condition suspendCondition = suspendLock.newCondition();

Blocking Queues
You have now seen the low-level building blocks that form the foundations of concurrent
programming in Java. However, for practical programming, you want to stay away from
the low-level constructs whenever possible. It is much easier and safer to use higher level
structures that have been implemented by concurrency experts.

Many threading problems can be formulated elegantly and safely by using one or more
queues. Producer threads insert items into the queue, and consumer threads retrieve
them. The queue lets you safely hand over data from one thread to another. For exam-
ple, consider our bank transfer program. Rather than accessing the bank object directly,
the transfer threads insert transfer instruction objects into a queue. Another thread
removes the instructions from the queue and carries out the transfers. Only that thread
has access to the internals of the bank object. No synchronization is necessary. (Of
course, the implementors of the threadsafe queue classes had to worry about locks and
conditions, but that was their problem, not yours.)

A blocking queue causes a thread to block when you try to add an element when the queue
is currently full or to remove an element when the queue is empty. Blocking queues are a
useful tool for coordinating the work of multiple threads. Worker threads can periodi-
cally deposit intermediate results in a blocking queue. Other worker threads remove the
intermediate results and modify them further. The queue automatically balances the
workload. If the first set of threads runs slower than the second, the second set blocks
while waiting for the results. If the first set of threads runs faster, the queue fills up until
the second set catches up. Table 14–1 shows the methods for blocking queues.

Chapter 14. Multithreading

Blocking Queues 765

The blocking queue methods fall into three categories, depending on their action when
the queue is full or empty. If you use the queue as a thread management tool, you will
want to use the put and take methods. The add, remove, and element operations throw an
exception when you try to add to a full queue or get the head of an empty queue. Of
course, in a multithreaded program, the queue might become full or empty at any time,
so you will instead want to use the offer, poll, and peek methods. These methods simply
return with a failure indicator instead of throwing an exception if they cannot carry out
their tasks.

NOTE: The poll and peek methods return null to indicate failure. Therefore, it is illegal to
insert null values into these queues.

There are also variants of the offer and poll methods with a timeout. For example, the
call

boolean success = q.offer(x, 100, TimeUnit.MILLISECONDS);

tries for 100 milliseconds to insert an element to the tail of the queue. If it succeeds, it
returns true; otherwise, it returns false when it times out. Similarly, the call

Object head = q.poll(100, TimeUnit.MILLISECONDS)

tries for 100 milliseconds to remove the head of the queue. If it succeeds, it returns the
head; otherwise, it returns null when it times out.

The put method blocks if the queue is full, and the take method blocks if the queue is
empty. These are the equivalents of offer and poll with no timeout.

The java.util.concurrent package supplies several variations of blocking queues. By
default, the LinkedBlockingQueue has no upper bound on its capacity, but a maximum capac-
ity can be optionally specified. The LinkedBlockingDeque is a double-ended version. The

Table 14–1 Blocking Queue Methods

Method Normal Action Action in Special Circumstances

add Adds an element Throws an IllegalStateException if the
queue is full

element Returns the head element Throws a NoSuchElementException if the
queue is empty

offer Adds an element and returns true Returns false if the queue is full

peek Returns the head element Returns null if the queue was empty

poll Removes and returns the head element Returns null if the queue was empty

put Adds an element Blocks if the queue is full

remove Removes and returns the head element Throws a NoSuchElementException if the
queue is empty

take Removes and returns the head element Blocks if the queue is empty

Chapter 14. Multithreading

Chapter 14 ■ Multithreading766

ArrayBlockingQueue is constructed with a given capacity and an optional parameter to
require fairness. If fairness is specified, then the longest-waiting threads are given pref-
erential treatment. As always, fairness exacts a significant performance penalty, and you
should only use it if your problem specifically requires it.

The PriorityBlockingQueue is a priority queue, not a first-in/first-out queue. Elements are
removed in order of their priority. The queue has unbounded capacity, but retrieval will
block if the queue is empty. (See Chapter 13 for more information on priority queues.)

Finally, a DelayQueue contains objects that implement the Delayed interface:
interface Delayed extends Comparable<Delayed>
{
 long getDelay(TimeUnit unit);
}

The getDelay method returns the remaining delay of the object. A negative value indi-
cates that the delay has elapsed. Elements can only be removed from a DelayQueue if their
delay has elapsed. You also need to implement the compareTo method. The DelayQueue uses
that method to sort the entries.

The program in Listing 14–10 shows how to use a blocking queue to control a set of
threads. The program searches through all files in a directory and its subdirectories,
printing lines that contain a given keyword.

A producer thread enumerates all files in all subdirectories and places them in a block-
ing queue. This operation is fast, and the queue would quickly fill up with all files in the
file system if it was not bounded.

We also start a large number of search threads. Each search thread takes a file from the
queue, opens it, prints all lines containing the keyword, and then takes the next file. We
use a trick to terminate the application when no further work is required. In order to sig-
nal completion, the enumeration thread places a dummy object into the queue. (This is
similar to a dummy suitcase with a label “last bag” in a baggage claim belt.) When a
search thread takes the dummy, it puts it back and terminates.

Note that no explicit thread synchronization is required. In this application, we use the
queue data structure as a synchronization mechanism.

Listing 14–10 BlockingQueueTest.java

1. import java.io.*;
2. import java.util.*;
3. import java.util.concurrent.*;
4.

5. /**
6. * @version 1.0 2004-08-01
7. * @author Cay Horstmann
8. */
9. public class BlockingQueueTest

10. {
11. public static void main(String[] args)
12. {

Chapter 14. Multithreading

Blocking Queues 767

13. Scanner in = new Scanner(System.in);
14. System.out.print("Enter base directory (e.g. /usr/local/jdk1.6.0/src): ");
15. String directory = in.nextLine();
16. System.out.print("Enter keyword (e.g. volatile): ");
17. String keyword = in.nextLine();
18.

19. final int FILE_QUEUE_SIZE = 10;
20. final int SEARCH_THREADS = 100;
21.

22. BlockingQueue<File> queue = new ArrayBlockingQueue<File>(FILE_QUEUE_SIZE);
23.

24. FileEnumerationTask enumerator = new FileEnumerationTask(queue, new File(directory));
25. new Thread(enumerator).start();
26. for (int i = 1; i <= SEARCH_THREADS; i++)
27. new Thread(new SearchTask(queue, keyword)).start();
28. }
29. }
30.

31. /**
32. * This task enumerates all files in a directory and its subdirectories.
33. */
34. class FileEnumerationTask implements Runnable
35. {
36. /**
37. * Constructs a FileEnumerationTask.
38. * @param queue the blocking queue to which the enumerated files are added
39. * @param startingDirectory the directory in which to start the enumeration
40. */
41. public FileEnumerationTask(BlockingQueue<File> queue, File startingDirectory)
42. {
43. this.queue = queue;
44. this.startingDirectory = startingDirectory;
45. }
46.

47. public void run()
48. {
49. try
50. {
51. enumerate(startingDirectory);
52. queue.put(DUMMY);
53. }
54. catch (InterruptedException e)
55. {
56. }
57. }
58.

59. /**
60. * Recursively enumerates all files in a given directory and its subdirectories
61. * @param directory the directory in which to start
62. */

Listing 14–10 BlockingQueueTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading768

63. public void enumerate(File directory) throws InterruptedException
64. {
65. File[] files = directory.listFiles();
66. for (File file : files)
67. {
68. if (file.isDirectory()) enumerate(file);
69. else queue.put(file);
70. }
71. }
72.

73. public static File DUMMY = new File("");
74.

75. private BlockingQueue<File> queue;
76. private File startingDirectory;
77. }
78.

79. /**
80. * This task searches files for a given keyword.
81. */
82. class SearchTask implements Runnable
83. {
84. /**
85. * Constructs a SearchTask.
86. * @param queue the queue from which to take files
87. * @param keyword the keyword to look for
88. */
89. public SearchTask(BlockingQueue<File> queue, String keyword)
90. {
91. this.queue = queue;
92. this.keyword = keyword;
93. }
94.

95. public void run()
96. {
97. try
98. {
99. boolean done = false;

100. while (!done)
101. {
102. File file = queue.take();
103. if (file == FileEnumerationTask.DUMMY)
104. {
105. queue.put(file);
106. done = true;
107. }
108. else search(file);
109. }
110. }
111. catch (IOException e)
112. {

Listing 14–10 BlockingQueueTest.java (continued)

Chapter 14. Multithreading

Blocking Queues 769

• ArrayBlockingQueue(int capacity)
• ArrayBlockingQueue(int capacity, boolean fair)

constructs a blocking queue with the given capacity and fairness settings. The
queue is implemented as a circular array.

• LinkedBlockingQueue()
• LinkedBlockingDeque()

constructs an unbounded blocking queue or deque, implemented as a linked list.
• LinkedBlockingQueue(int capacity)
• LinkedBlockingDeque(int capacity)

constructs a bounded blocking queue or deque with the given capacity,
implemented as a linked list.

113. e.printStackTrace();
114. }
115. catch (InterruptedException e)
116. {
117. }
118. }
119.

120. /**
121. * Searches a file for a given keyword and prints all matching lines.
122. * @param file the file to search
123. */
124. public void search(File file) throws IOException
125. {
126. Scanner in = new Scanner(new FileInputStream(file));
127. int lineNumber = 0;
128. while (in.hasNextLine())
129. {
130. lineNumber++;
131. String line = in.nextLine();
132. if (line.contains(keyword)) System.out.printf("%s:%d:%s%n", file.getPath(),
133. lineNumber, line);
134. }
135. in.close();
136. }
137.

138. private BlockingQueue<File> queue;
139. private String keyword;
140. }

java.util.concurrent.ArrayBlockingQueue<E> 5.0

java.util.concurrent.LinkedBlockingQueue<E> 5.0

java.util.concurrent.LinkedBlockingDeque<E> 6

Listing 14–10 BlockingQueueTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading770

• DelayQueue()
constructs an unbounded bounded blocking queue of Delayed elements. Only
elements whose delay has expired can be removed from the queue.

• long getDelay(TimeUnit unit)
gets the delay for this object, measured in the given time unit.

• PriorityBlockingQueue()
• PriorityBlockingQueue(int initialCapacity)
• PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator)

constructs an unbounded blocking priority queue implemented as a heap.

• void put(E element)
adds the element, blocking if necessary.

• E take()
removes and returns the head element, blocking if necessary.

• boolean offer(E element, long time, TimeUnit unit)
adds the given element and returns true if successful, blocking if necessary until
the element has been added or the time has elapsed.

• E poll(long time, TimeUnit unit)
removes and returns the head element, blocking if necessary until an element is
available or the time has elapsed. Returns null upon failure.

• void putFirst(E element)
• void putLast(E element)

adds the element, blocking if necessary.
• E takeFirst()
• E takeLast()

removes and returns the head or tail element, blocking if necessary.

java.util.concurrent.DelayQueue<E extends Delayed> 5.0

java.util.concurrent.Delayed 5.0

java.util.concurrent.PriorityBlockingQueue<E> 5.0

Parameters initialCapacity The initial capacity of the priority queue. Default
is 11.

comparator The comparator used to compare elements. If
not specified, the elements must implement the
Comparable interface.

java.util.concurrent.BlockingQueue<E> 5.0

java.util.concurrent.BlockingDeque<E> 6

Chapter 14. Multithreading

Thread-Safe Collections 771

• boolean offerFirst(E element, long time, TimeUnit unit)
• boolean offerLast(E element, long time, TimeUnit unit)

adds the given element and returns true if successful, blocking if necessary until
the element has been added or the time has elapsed.

• E pollFirst(long time, TimeUnit unit)
• E pollLast(long time, TimeUnit unit)

removes and returns the head or tail element, blocking if necessary until an
element is available or the time has elapsed. Returns null upon failure.

Thread-Safe Collections
If multiple threads concurrently modify a data structure such as a hash table, then it is
easily possible to damage the data structure. (See Chapter 13 for more information on
hash tables.) For example, one thread may begin to insert a new element. Suppose it is
preempted while it is in the middle of rerouting the links between the hash table’s buck-
ets. If another thread starts traversing the same list, it may follow invalid links and cre-
ate havoc, perhaps throwing exceptions or being trapped in an infinite loop.

You can protect a shared data structure by supplying a lock, but it is usually easier to
choose a thread-safe implementation instead. The blocking queues that we discussed in
the preceding section are, of course, thread-safe collections. In the following sections,
we discuss the other thread-safe collections that the Java library provides.

Efficient Maps, Sets, and Queues
The java.util.concurrent package supplies efficient implementations for maps, sorted sets, and
queues: ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet, and ConcurrentLinkedQueue.

These collections use sophisticated algorithms that minimize contention by allowing
concurrent access to different parts of the data structure.

Unlike in most collections, the size method does not necessarily operate in constant
time. Determining the current size of one of these collections usually requires traversal.

The collections return weakly consistent iterators. That means that the iterators may or
may not reflect all modifications that are made after they were constructed, but they will
not return a value twice and they will not throw a ConcurrentModificationException.

NOTE: In contrast, an iterator of a collection in the java.util package throws a ConcurrentModi-
ficationException when the collection has been modified after construction of the iterator.

The concurrent hash map can efficiently support a large number of readers and a fixed
number of writers. By default, it is assumed that there are up to 16 simultaneous writer
threads. There can be many more writer threads, but if more than 16 write at the same
time, the others are temporarily blocked. You can specify a higher number in the con-
structor, but it is unlikely that you will need to.

The ConcurrentHashMap and ConcurrentSkipListMap classes have useful methods for atomic
insertion and removal of associations. The putIfAbsent method atomically adds a new
association provided there wasn’t one before. This is useful for a cache that is accessed
by multiple threads, to ensure that only one thread adds an item into the cache:

cache.putIfAbsent(key, value);

Chapter 14. Multithreading

Chapter 14 ■ Multithreading772

The opposite operation is remove (which perhaps should have been called removeIfPresent).
The call

cache.remove(key, value)

atomically removes the key and value if they are present in the map. Finally,
cache.replace(key, oldValue, newValue)

atomically replaces the old value with the new one, provided the old value was associ-
ated with the given key.

• ConcurrentLinkedQueue<E>()
constructs an unbounded, nonblocking queue that can be safely accessed by
multiple threads.

• ConcurrentSkipListSet<E>()
• ConcurrentSkipListSet<E>(Comparator<? super E> comp)

constructs a sorted set that can be safely accessed by multiple threads. The first
constructor requires that the elements implement the Comparable interface.

• ConcurrentHashMap<K, V>()
• ConcurrentHashMap<K, V>(int initialCapacity)
• ConcurrentHashMap<K, V>(int initialCapacity, float loadFactor, int concurrencyLevel)

constructs a hash map that can be safely accessed by multiple threads.

• ConcurrentSkipListMap<K, V>()
• ConcurrentSkipListSet<K, V>(Comparator<? super K> comp)

constructs a sorted map that can be safely accessed by multiple threads. The first
constructor requires that the keys implement the Comparable interface.

• V putIfAbsent(K key, V value)
if the key is not yet present in the map, associates the given value with the given
key and returns null. Otherwise returns the existing value associated with the key.

java.util.concurrent.ConcurrentLinkedQueue<E> 5.0

java.util.concurrent.ConcurrentSkipListSet<E> 6

java.util.concurrent.ConcurrentHashMap<K, V> 5.0

java.util.concurrent.ConcurrentSkipListMap<K, V> 6

Parameters initialCapacity The initial capacity for this collection.
Default is 16.

loadFactor Controls resizing: If the average load per
bucket exceeds this factor, the table is resized.
Default is 0.75.

concurrencyLevel The estimated number of concurrent writer
threads.

Chapter 14. Multithreading

Thread-Safe Collections 773

• boolean remove(K key, V value)
if the given key is currently associated with this value, removes the given key and
value and returns true. Otherwise returns false.

• boolean replace(K key, V oldValue, V newValue)
if the given key is currently associated with oldValue, associates it with newValue.
Otherwise, returns false.

Copy on Write Arrays
The CopyOnWriteArrayList and CopyOnWriteArraySet are thread-safe collections in which all
mutators make a copy of the underlying array. This arrangement is useful if the number
of threads that iterate over the collection greatly outnumbers the threads that mutate it.
When you construct an iterator, it contains a reference to the current array. If the array is
later mutated, the iterator still has the old array, but the collection’s array is replaced. As
a consequence, the older iterator has a consistent (but potentially outdated) view that it
can access without any synchronization expense.

Older Thread-Safe Collections
Ever since the initial release of Java, the Vector and Hashtable classes provided thread-safe
implementations of a dynamic array and a hash table. In Java SE 1.2, these classes were
declared obsolete and replaced by the ArrayList and HashMap classes. Those classes are not
thread-safe. Instead, a different mechanism is supplied in the collections library. Any
collection class can be made thread-safe by means of a synchronization wrapper:

List<E> synchArrayList = Collections.synchronizedList(new ArrayList<E>());
Map<K, V> synchHashMap = Collections.synchronizedMap(new HashMap<K, V>());

The methods of the resulting collections are protected by a lock, providing thread-safe
access.

You should make sure that no thread accesses the data structure through the original
unsynchronized methods. The easiest way to ensure this is not to save any reference to
the original object. Simply construct a collection and immediately pass it to the wrapper,
as we did in our examples.

You still need to use “client-side” locking if you want to iterate over the collection while
another thread has the opportunity to mutate it:

synchronized (synchHashMap)
{
 Iterator<K> iter = synchHashMap.keySet().iterator();
 while (iter.hasNext()) . . .;
}

You must use the same code if you use a “for each” loop because the loop uses an itera-
tor. Note that the iterator actually fails with a ConcurrentModificationException if another
thread mutates the collection while the iteration is in progress. The synchronization is
still required so that the concurrent modification can be reliably detected.

You are usually better off using the collections defined in the java.util.concurrent package
instead of the synchronization wrappers. In particular, the ConcurrentHashMap map has been
carefully implemented so that multiple threads can access it without blocking each other,
provided they access different buckets. One exception is an array list that is frequently
mutated. In that case, a synchronized ArrayList can outperform a CopyOnWriteArrayList.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading774

• static <E> Collection<E> synchronizedCollection(Collection<E> c)
• static <E> List synchronizedList(List<E> c)
• static <E> Set synchronizedSet(Set<E> c)
• static <E> SortedSet synchronizedSortedSet(SortedSet<E> c)
• static <K, V> Map<K, V> synchronizedMap(Map<K, V> c)
• static <K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> c)

constructs views of the collection whose methods are synchronized.

Callables and Futures
A Runnable encapsulates a task that runs asynchronously; you can think of it as an asyn-
chronous method with no parameters and no return value. A Callable is similar to a Runna-
ble, but it returns a value. The Callable interface is a parameterized type, with a single
method call.

public interface Callable<V>
{
 V call() throws Exception;
}

The type parameter is the type of the returned value. For example, a Callable<Integer> rep-
resents an asynchronous computation that eventually returns an Integer object.

A Future holds the result of an asynchronous computation. You can start a computation,
give someone the Future object, and forget about it. The owner of the Future object can
obtain the result when it is ready.

The Future interface has the following methods:
public interface Future<V>
{
 V get() throws . . .;
 V get(long timeout, TimeUnit unit) throws . . .;
 void cancel(boolean mayInterrupt);
 boolean isCancelled();
 boolean isDone();
}

A call to the first get method blocks until the computation is finished. The second
method throws a TimeoutException if the call timed out before the computation finished. If
the thread running the computation is interrupted, both methods throw an InterruptedEx-
ception. If the computation has already finished, then get returns immediately.

The isDone method returns false if the computation is still in progress, true if it is finished.

You can cancel the computation with the cancel method. If the computation has not yet
started, it is canceled and will never start. If the computation is currently in progress,
then it is interrupted if the mayInterrupt parameter is true.

The FutureTask wrapper is a convenient mechanism for turning a Callable into both a Future
and a Runnable—it implements both interfaces. For example:

Callable<Integer> myComputation = . . .;
FutureTask<Integer> task = new FutureTask<Integer>(myComputation);
Thread t = new Thread(task); // it's a Runnable

java.util.Collections 1.2

Chapter 14. Multithreading

Callables and Futures 775

t.start();
. . .
Integer result = task.get(); // it's a Future

The program in Listing 14–11 puts these concepts to work. This program is similar to the
preceding example that found files containing a given keyword. However, now we will
merely count the number of matching files. Thus, we have a long-running task that
yields an integer value—an example of a Callable<Integer>.

class MatchCounter implements Callable<Integer>
{
 public MatchCounter(File directory, String keyword) { . . . }
 public Integer call() { . . . } // returns the number of matching files
}

Then we construct a FutureTask object from the MatchCounter and use it to start a thread.
FutureTask<Integer> task = new FutureTask<Integer>(counter);
Thread t = new Thread(task);
t.start();

Finally, we print the result.
System.out.println(task.get() + " matching files.");

Of course, the call to get blocks until the result is actually available.

Inside the call method, we use the same mechanism recursively. For each subdirectory,
we produce a new MatchCounter and launch a thread for it. We also stash the FutureTask
objects away in an ArrayList<Future<Integer>>. At the end, we add up all results:

for (Future<Integer> result : results)
 count += result.get();

Each call to get blocks until the result is available. Of course, the threads run in parallel,
so there is a good chance that the results will all be available at about the same time.

Listing 14–11 FutureTest.java

1. import java.io.*;
2. import java.util.*;
3. import java.util.concurrent.*;
4.

5. /**
6. * @version 1.0 2004-08-01
7. * @author Cay Horstmann
8. */
9. public class FutureTest

10. {
11. public static void main(String[] args)
12. {
13. Scanner in = new Scanner(System.in);
14. System.out.print("Enter base directory (e.g. /usr/local/jdk5.0/src): ");
15. String directory = in.nextLine();
16. System.out.print("Enter keyword (e.g. volatile): ");
17. String keyword = in.nextLine();
18.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading776

19. MatchCounter counter = new MatchCounter(new File(directory), keyword);
20. FutureTask<Integer> task = new FutureTask<Integer>(counter);
21. Thread t = new Thread(task);
22. t.start();
23. try
24. {
25. System.out.println(task.get() + " matching files.");
26. }
27. catch (ExecutionException e)
28. {
29. e.printStackTrace();
30. }
31. catch (InterruptedException e)
32. {
33. }
34. }
35. }
36.

37. /**
38. * This task counts the files in a directory and its subdirectories that contain a given keyword.
39. */
40. class MatchCounter implements Callable<Integer>
41. {
42. /**
43. * Constructs a MatchCounter.
44. * @param directory the directory in which to start the search
45. * @param keyword the keyword to look for
46. */
47. public MatchCounter(File directory, String keyword)
48. {
49. this.directory = directory;
50. this.keyword = keyword;
51. }
52.

53. public Integer call()
54. {
55. count = 0;
56. try
57. {
58. File[] files = directory.listFiles();
59. ArrayList<Future<Integer>> results = new ArrayList<Future<Integer>>();
60.

61. for (File file : files)
62. if (file.isDirectory())
63. {
64. MatchCounter counter = new MatchCounter(file, keyword);
65. FutureTask<Integer> task = new FutureTask<Integer>(counter);
66. results.add(task);
67. Thread t = new Thread(task);
68. t.start();

Listing 14–11 FutureTest.java (continued)

Chapter 14. Multithreading

Callables and Futures 777

69. }
70. else
71. {
72. if (search(file)) count++;
73. }
74.

75. for (Future<Integer> result : results)
76. try
77. {
78. count += result.get();
79. }
80. catch (ExecutionException e)
81. {
82. e.printStackTrace();
83. }
84. }
85. catch (InterruptedException e)
86. {
87. }
88. return count;
89. }
90.

91. /**
92. * Searches a file for a given keyword.
93. * @param file the file to search
94. * @return true if the keyword is contained in the file
95. */
96. public boolean search(File file)
97. {
98. try
99. {

100. Scanner in = new Scanner(new FileInputStream(file));
101. boolean found = false;
102. while (!found && in.hasNextLine())
103. {
104. String line = in.nextLine();
105. if (line.contains(keyword)) found = true;
106. }
107. in.close();
108. return found;
109. }
110. catch (IOException e)
111. {
112. return false;
113. }
114. }
115.

116. private File directory;
117. private String keyword;
118. private int count;
119. }

Listing 14–11 FutureTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading778

• V call()
runs a task that yields a result.

• V get()
• V get(long time, TimeUnit unit)

gets the result, blocking until it is available or the given time has elapsed. The
second method throws a TimeoutException if it was unsuccessful.

• boolean cancel(boolean mayInterrupt)
attempts to cancel the execution of this task. If the task has already started and the
mayInterrupt parameter is true, it is interrupted. Returns true if the cancellation was
successful.

• boolean isCancelled()
returns true if the task was canceled before it completed.

• boolean isDone()
returns true if the task completed, through normal completion, cancellation, or an
exception.

• FutureTask(Callable<V> task)
• FutureTask(Runnable task, V result)

constructs an object that is both a Future<V> and a Runnable.

Executors
Constructing a new thread is somewhat expensive because it involves interaction with
the operating system. If your program creates a large number of short-lived threads,
then it should instead use a thread pool. A thread pool contains a number of idle threads
that are ready to run. You give a Runnable to the pool, and one of the threads calls the run
method. When the run method exits, the thread doesn’t die but stays around to serve the
next request.

Another reason to use a thread pool is to throttle the number of concurrent threads.
Creating a huge number of threads can greatly degrade performance and even crash the
virtual machine. If you have an algorithm that creates lots of threads, then you should
use a “fixed” thread pool that bounds the total number of concurrent threads.

The Executors class has a number of static factory methods for constructing thread pools;
see Table 14–2 for a summary.

java.util.concurrent.Callable<V> 5.0

java.util.concurrent.Future<V> 5.0

java.util.concurrent.FutureTask<V> 5.0

Chapter 14. Multithreading

Executors 779

Thread Pools
Let us look at the first three methods in Table 14–2. We discuss the remaining methods
in the section “Scheduled Execution” on page 783. The newCachedThreadPool method con-
structs a thread pool that executes each task immediately, using an existing idle thread
when available and creating a new thread otherwise. The newFixedThreadPool method con-
structs a thread pool with a fixed size. If more tasks are submitted than there are idle
threads, then the unserved tasks are placed on a queue. They are run when other tasks
have completed. The newSingleThreadExecutor is a degenerate pool of size 1: A single thread
executes the submitted tasks, one after another. These three methods return an object of
the ThreadPoolExecutor class that implements the ExecutorService interface.

You can submit a Runnable or Callable to an ExecutorService with one of the following
methods:

Future<?> submit(Runnable task)
Future<T> submit(Runnable task, T result)
Future<T> submit(Callable<T> task)

The pool will run the submitted task at its earliest convenience. When you call submit,
you get back a Future object that you can use to query the state of the task.

The first submit method returns an odd-looking Future<?>. You can use such an object to
call isDone, cancel, or isCancelled. But the get method simply returns null upon completion.

The second version of submit also submits a Runnable, and the get method of the Future
returns the given result object upon completion.

The third version submits a Callable, and the returned Future gets the result of the compu-
tation when it is ready.

When you are done with a thread pool, call shutdown. This method initiates the shutdown
sequence for the pool. An executor that is shut down accepts no new tasks. When all
tasks are finished, the threads in the pool die. Alternatively, you can call shutdownNow. The
pool then cancels all tasks that have not yet begun and attempts to interrupt the running
threads.

Table 14–2 Executors Factory Methods

Method Description

newCachedThreadPool New threads are created as needed; idle threads are kept
for 60 seconds.

newFixedThreadPool The pool contains a fixed set of threads; idle threads are
kept indefinitely.

newSingleThreadExecutor A “pool” with a single thread that executes the submitted
tasks sequentially (similar to the Swing event dispatch
thread).

newScheduledThreadPool A fixed-thread pool for scheduled execution; a replace-
ment for java.util.Timer.

newSingleThreadScheduledExecutor A single-thread “pool” for scheduled execution.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading780

Here, in summary, is what you do to use a connection pool:

1. Call the static newCachedThreadPool or newFixedThreadPool method of the Executors class.
2. Call submit to submit Runnable or Callable objects.
3. If you want to be able to cancel a task or if you submit Callable objects, hang on to the

returned Future objects.
4. Call shutdown when you no longer want to submit any tasks.

For example, the preceding example program produced a large number of short-lived
threads, one per directory. The program in Listing 14–12 uses a thread pool to launch the
tasks instead.

For informational purposes, this program prints out the largest pool size during execu-
tion. This information is not available through the ExecutorService interface. For that rea-
son, we had to cast the pool object to the ThreadPoolExecutor class.

Listing 14–12 ThreadPoolTest.java

1. import java.io.*;
2. import java.util.*;
3. import java.util.concurrent.*;
4.

5. /**
6. * @version 1.0 2004-08-01
7. * @author Cay Horstmann
8. */
9. public class ThreadPoolTest

10. {
11. public static void main(String[] args) throws Exception
12. {
13. Scanner in = new Scanner(System.in);
14. System.out.print("Enter base directory (e.g. /usr/local/jdk5.0/src): ");
15. String directory = in.nextLine();
16. System.out.print("Enter keyword (e.g. volatile): ");
17. String keyword = in.nextLine();
18.

19. ExecutorService pool = Executors.newCachedThreadPool();
20.

21. MatchCounter counter = new MatchCounter(new File(directory), keyword, pool);
22. Future<Integer> result = pool.submit(counter);
23.

24. try
25. {
26. System.out.println(result.get() + " matching files.");
27. }
28. catch (ExecutionException e)
29. {
30. e.printStackTrace();
31. }
32. catch (InterruptedException e)
33. {

Chapter 14. Multithreading

Executors 781

34. }
35. pool.shutdown();
36.

37. int largestPoolSize = ((ThreadPoolExecutor) pool).getLargestPoolSize();
38. System.out.println("largest pool size=" + largestPoolSize);
39. }
40. }
41.

42. /**
43. * This task counts the files in a directory and its subdirectories that contain a given keyword.
44. */
45. class MatchCounter implements Callable<Integer>
46. {
47. /**
48. * Constructs a MatchCounter.
49. * @param directory the directory in which to start the search
50. * @param keyword the keyword to look for
51. * @param pool the thread pool for submitting subtasks
52. */
53. public MatchCounter(File directory, String keyword, ExecutorService pool)
54. {
55. this.directory = directory;
56. this.keyword = keyword;
57. this.pool = pool;
58. }
59.

60. public Integer call()
61. {
62. count = 0;
63. try
64. {
65. File[] files = directory.listFiles();
66. ArrayList<Future<Integer>> results = new ArrayList<Future<Integer>>();
67.

68. for (File file : files)
69. if (file.isDirectory())
70. {
71. MatchCounter counter = new MatchCounter(file, keyword, pool);
72. Future<Integer> result = pool.submit(counter);
73. results.add(result);
74. }
75. else
76. {
77. if (search(file)) count++;
78. }
79.

80. for (Future<Integer> result : results)
81. try
82. {

Listing 14–12 ThreadPoolTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading782

83. count += result.get();
84. }
85. catch (ExecutionException e)
86. {
87. e.printStackTrace();
88. }
89. }
90. catch (InterruptedException e)
91. {
92. }
93. return count;
94. }
95.

96. /**
97. * Searches a file for a given keyword.
98. * @param file the file to search
99. * @return true if the keyword is contained in the file

100. */
101. public boolean search(File file)
102. {
103. try
104. {
105. Scanner in = new Scanner(new FileInputStream(file));
106. boolean found = false;
107. while (!found && in.hasNextLine())
108. {
109. String line = in.nextLine();
110. if (line.contains(keyword)) found = true;
111. }
112. in.close();
113. return found;
114. }
115. catch (IOException e)
116. {
117. return false;
118. }
119. }
120.

121. private File directory;
122. private String keyword;
123. private ExecutorService pool;
124. private int count;
125. }

Listing 14–12 ThreadPoolTest.java (continued)

Chapter 14. Multithreading

Executors 783

• ExecutorService newCachedThreadPool()
returns a cached thread pool that creates threads as needed and terminates
threads that have been idle for 60 seconds.

• ExecutorService newFixedThreadPool(int threads)
returns a thread pool that uses the given number of threads to execute tasks.

• ExecutorService newSingleThreadExecutor()
returns an executor that executes tasks sequentially in a single thread.

• Future<T> submit(Callable<T> task)
• Future<T> submit(Runnable task, T result)
• Future<?> submit(Runnable task)

submits the given task for execution.
• void shutdown()

shuts down the service, completing the already submitted tasks but not accepting
new submissions.

• int getLargestPoolSize()
returns the largest size of the thread pool during the life of this executor.

Scheduled Execution
The ScheduledExecutorService interface has methods for scheduled or repeated execution of
tasks. It is a generalization of java.util.Timer that allows for thread pooling. The newSched-
uledThreadPool and newSingleThreadScheduledExecutor methods of the Executors class return
objects that implement the ScheduledExecutorService interface.

You can schedule a Runnable or Callable to run once, after an initial delay. You can also
schedule a Runnable to run periodically. See the API notes for details.

• ScheduledExecutorService newScheduledThreadPool(int threads)
returns a thread pool that uses the given number of threads to schedule tasks.

• ScheduledExecutorService newSingleThreadScheduledExecutor()
returns an executor that schedules tasks in a single thread.

• ScheduledFuture<V> schedule(Callable<V> task, long time, TimeUnit unit)
• ScheduledFuture<?> schedule(Runnable task, long time, TimeUnit unit)

schedules the given task after the given time has elapsed.

java.util.concurrent.Executors 5.0

java.util.concurrent.ExecutorService 5.0

java.util.concurrent.ThreadPoolExecutor 5.0

java.util.concurrent.Executors 5.0

java.util.concurrent.ScheduledExecutorService 5.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading784

• ScheduledFuture<?> scheduleAtFixedRate(Runnable task, long initialDelay, long period,
TimeUnit unit)
schedules the given task to run periodially, every period units, after the initial
delay has elapsed.

• ScheduledFuture<?> scheduleWithFixedDelay(Runnable task, long initialDelay, long delay,
TimeUnit unit)
schedules the given task to run periodially, with delay units between completion of
one invocation and the start of the next, after the initial delay has elapsed.

Controlling Groups of Tasks
You have seen how to use an executor service as a thread pool to increase the effi-
ciency of task execution. Sometimes, an executor is used for a more tactical reason,
simply to control a group of related tasks. For example, you can cancel all tasks in an
executor with the shutdownNow method.

The invokeAny method submits all objects in a collection of Callable objects and returns the
result of a completed task. You don’t know which task that is—presumably, it was the one
that finished most quickly. You would use this method for a search problem in which you
are willing to accept any solution. For example, suppose that you need to factor a large
integer—a computation that is required for breaking the RSA cipher. You could submit a
number of tasks, each of which attempts a factorization by using numbers in a different
range. As soon as one of these tasks has an answer, your computation can stop.

The invokeAll method submits all objects in a collection of Callable objects and returns a
list of Future objects that represent the solutions to all tasks. You can process the results of
the computation when they are available, like this:

List<Callable<T>> tasks = . . .;
List<Future<T>> results = executor.invokeAll(tasks);
for (Future<T> result : results)
 processFurther(result.get());

A disadvantage with this approach is that you may wait needlessly if the first task hap-
pens to take a long time. It would make more sense to obtain the results in the order in
which they are available. This can be arranged with the ExecutorCompletionService.

Start with an executor, obtained in the usual way. Then construct an ExecutorCompletion-
Service. Submit tasks to the completion service. The service manages a blocking queue of
Future objects, containing the results of the submitted tasks as they become available.
Thus, a more efficient organization for the preceding computation is the following:

ExecutorCompletionService service = new ExecutorCompletionService(executor);
for (Callable<T> task : tasks) service.submit(task);
for (int i = 0; i < tasks.size(); i++)
 processFurther(service.take().get());

• T invokeAny(Collection<Callable<T>> tasks)
• T invokeAny(Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

executes the given tasks and returns the result of one of them. The second method
throws a TimeoutException if a timeout occurs.

java.util.concurrent.ExecutorService 5.0

Chapter 14. Multithreading

Synchronizers 785

• List<Future<T>> invokeAll(Collection<Callable<T>> tasks)
• List<Future<T>> invokeAll(Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

executes the given tasks and returns the results of all of them. The second method
throws a TimeoutException if a timeout occurs.

• ExecutorCompletionService(Executor e)
constructs an executor completion service that collects the results of the given
executor.

• Future<T> submit(Callable<T> task)
• Future<T> submit(Runnable task, T result)

submits a task to the underlying executor.
• Future<T> take()

removes the next completed result, blocking if no completed results are available.
• Future<T> poll()
• Future<T> poll(long time, TimeUnit unit)

removes the next completed result or null if no completed results are available.
The second method waits for the given time.

Synchronizers
The java.util.concurrent package contains several classes that help manage a set of collab-
orating threads—see Table 14–3. These mechanisms have “canned functionality” for
common rendezvous patterns between threads. If you have a set of collaborating
threads that follows one of these behavior patterns, you should simply reuse the appro-
priate library class instead of trying to come up with a handcrafted collection of locks
and conditions.

java.util.concurrent.ExecutorCompletionService 5.0

Table 14–3 Synchronizers

Class What It Does When To Use

CyclicBarrier Allows a set of threads to wait
until a predefined count of them
has reached a common barrier,
and then optionally executes a
barrier action.

When a number of threads need to
complete before their results can be
used.

CountDownLatch Allows a set of threads to wait
until a count has been decre-
mented to 0.

When one or more threads need to
wait until a specified number of
events have occurred.

Exchanger Allows two threads to exchange
objects when both are ready for
the exchange.

When two threads work on two
instances of the same data structure,
one by filling an instance and the
other by emptying the other.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading786

Semaphores
Conceptually, a semaphore manages a number of permits. To proceed past the sema-
phore, a thread requests a permit by calling acquire. Only a fixed number of permits are
available, limiting the number of threads that are allowed to pass. Other threads may
issue permits by calling release. There are no actual permit objects. The semaphore sim-
ply keeps a count. Moreover, a permit doesn’t have to be released by the thread that
acquires it. In fact, any thread can issue any number of permits. If it issues more than the
maximum available, the semaphore is simply set to the maximum count. This generality
makes semaphores both very flexible and potentially confusing.

Semaphores were invented by Edsger Dijkstra in 1968, for use as a synchronization primi-
tive. Dijkstra showed that semaphores can be efficiently implemented and that they are
powerful enough to solve many common thread synchronization problems. In just about
any operating systems textbook, you will find implementations of bounded queues using
semaphores. Of course, application programmers shouldn’t reinvent bounded queues. We
suggest that you only use semaphores when their behavior maps well onto your synchro-
nization problem, without your going through mental contortions.

One simple example is a semaphore with a permit count of 1. Such a semaphore can be
used as a gate for one thread that is opened and closed by another thread. In the section
“Example: Pausing and Resuming an Animation” on page 788, you will see an example
in which a worker thread produces an animation. Occasionally, the worker thread waits
for the user to press a button. The worker thread tries to acquire a permit, and it has to
wait until the button click causes a permit to be issued.

Countdown Latches
A CountDownLatch lets a set of threads wait until a count has reached zero. The countdown
latch is one-time only. Once the count has reached 0, you cannot increment it again.

A useful special case is a latch with a count of 1. This implements a one-time gate.
Threads are held at the gate until another thread sets the count to 0.

Imagine, for example, a set of threads that need some initial data to do their work. The
worker threads are started and wait at the gate. Another thread prepares the data. When
it is ready, it calls countDown, and all worker threads proceed.

You can then use a second latch to check when all worker threads are done. Initialize the
latch with the number of threads. Each worker thread counts down that latch just before

Class What It Does When To Use

Semaphore Allows a set of threads to wait
until permits are available for
proceeding.

To restrict the total number of threads
that can access a resource. If permit
count is one, use to block threads
until another thread gives permis-
sion.

SynchronousQueue Allows a thread to hand off an
object to another thread.

To send an object from one thread to
another when both are ready, without
explicit synchronization.

Table 14–3 Synchronizers (continued)

Chapter 14. Multithreading

Synchronizers 787

it terminates. Another thread that harvests the work results waits on the latch, and it
proceeds as soon as all workers have terminated.

Barriers
The CyclicBarrier class implements a rendezvous called a barrier. Consider a number of
threads that are working on parts of a computation. When all parts are ready, the results
need to be combined. When a thread is done with its part, we let it run against the bar-
rier. Once all threads have reached the barrier, the barrier gives way and the threads can
proceed.

Here are the details. First, construct a barrier, giving the number of participating
threads:

CyclicBarrier barrier = new CyclicBarrier(nthreads);

Each thread does some work and calls await on the barrier upon completion:
public void run()
{
 doWork();
 barrier.await();
 . . .
}

The await method takes an optional timeout parameter:
barrier.await(100, TimeUnit.MILLISECONDS);

If any of the threads waiting for the barrier leaves the barrier, then the barrier breaks. (A
thread can leave because it called await with a timeout or because it was interrupted.) In
that case, the await method for all other threads throws a BrokenBarrierException. Threads
that are already waiting have their await call terminated immediately.

You can supply an optional barrier action that is executed when all threads have reached
the barrier:

Runnable barrierAction = . . .;
CyclicBarrier barrier = new CyclicBarrier(nthreads, barrierAction);

The action can harvest the result of the individual threads.

The barrier is called cyclic because it can be reused after all waiting threads have been
released. In this regard, it differs from a CountDownLatch, which can only be used once.

Exchangers
An Exchanger is used when two threads are working on two instances of the same data
buffer. Typically, one thread fills the buffer, and the other consumes its contents. When
both are done, they exchange their buffers.

Synchronous Queues
A synchronous queue is a mechanism that pairs up producer and consumer threads.
When a thread calls put on a SynchronousQueue, it blocks until another thread calls take, and
vice versa. Unlike the case with an Exchanger, data are only transferred in one direction,
from the producer to the consumer.

Even though the SynchronousQueue class implements the BlockingQueue interface, it is not con-
ceptually a queue. It does not contain any elements—its size method always returns 0.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading788

Example: Pausing and Resuming an Animation
Consider a program that does some work, updates the screen display, then waits for the
user to look at the result and press a button to continue, and then does the next unit of
work.

A semaphore with a permit count of 1 can be used to synchronize the worker thread and
the event dispatch thread. The worker thread calls acquire whenever it is ready to pause.
The GUI thread calls release whenever the user clicks the Continue button.

What happens if the user clicks the button multiple times while the worker thread is
ready? Because only one permit is available, the permit count stays at 1.

The program in Listing 14–13 puts this idea to work. The program animates a sorting
algorithm. A worker thread sorts an array, stopping periodically and waiting for the
user to give permission to proceed. The user can admire a painting of the current state of
the algorithm and press the Continue button to allow the worker thread to go to the
next step.

We didn’t want to bore you with the code for a sorting algorithm, so we simply call
Arrays.sort, which implements the merge sort algorithm. To pause the algorithm, we sup-
ply a Comparator object that waits for the semaphore. Thus, the animation is paused when-
ever the algorithm compares two elements. We paint the current values of the array and
highlight the elements that are being compared (see Figure 14–8).

NOTE: The animation shows the merging of smaller sorted ranges into larger ones, but it is
not entirely accurate. The mergesort algorithm uses a second array for holding temporary
values that we do not get to see. The point of this example is not to delve into sorting algo-
rithms, but to show how to use a semaphore for pausing a worker thread.

Figure 14–8 Animating a sort algorithm

Chapter 14. Multithreading

Synchronizers 789

Listing 14–13 AlgorithmAnimation.java

1. import java.awt.*;
2. import java.awt.geom.*;
3. import java.awt.event.*;
4. import java.util.*;
5. import java.util.concurrent.*;
6. import javax.swing.*;
7.

8. /**
9. * This program animates a sort algorithm.

10. * @version 1.01 2007-05-18
11. * @author Cay Horstmann
12. */
13. public class AlgorithmAnimation
14. {
15. public static void main(String[] args)
16. {
17. EventQueue.invokeLater(new Runnable()
18. {
19. public void run()
20. {
21. JFrame frame = new AnimationFrame();
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. frame.setVisible(true);
24. }
25. });
26. }
27. }
28.

29. /**
30. * This frame shows the array as it is sorted, together with buttons to single-step the
31. * animation or to run it without interruption.
32. */
33. class AnimationFrame extends JFrame
34. {
35. public AnimationFrame()
36. {
37. ArrayComponent comp = new ArrayComponent();
38. add(comp, BorderLayout.CENTER);
39.

40. final Sorter sorter = new Sorter(comp);
41.

42. JButton runButton = new JButton("Run");
43. runButton.addActionListener(new ActionListener()
44. {
45. public void actionPerformed(ActionEvent event)
46. {
47. sorter.setRun();
48. }
49. });
50.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading790

51. JButton stepButton = new JButton("Step");
52. stepButton.addActionListener(new ActionListener()
53. {
54. public void actionPerformed(ActionEvent event)
55. {
56. sorter.setStep();
57. }
58. });
59.

60. JPanel buttons = new JPanel();
61. buttons.add(runButton);
62. buttons.add(stepButton);
63. add(buttons, BorderLayout.NORTH);
64. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
65.

66. Thread t = new Thread(sorter);
67. t.start();
68. }
69.

70. private static final int DEFAULT_WIDTH = 300;
71. private static final int DEFAULT_HEIGHT = 300;
72. }
73.

74. /**
75. * This runnable executes a sort algorithm. When two elements are compared, the algorithm
76. * pauses and updates a component.
77. */
78. class Sorter implements Runnable
79. {
80. /**
81. * Constructs a Sorter.
82. * @param values the array to be sorted
83. * @param comp the component on which to display the sorting progress
84. */
85. public Sorter(ArrayComponent comp)
86. {
87. values = new Double[VALUES_LENGTH];
88. for (int i = 0; i < values.length; i++)
89. values[i] = new Double(Math.random());
90. this.component = comp;
91. this.gate = new Semaphore(1);
92. this.run = false;
93. }
94.

95. /**
96. * Sets the sorter to "run" mode. Called on the event dispatch thread.
97. */
98. public void setRun()
99. {

Listing 14–13 AlgorithmAnimation.java (continued)

Chapter 14. Multithreading

Synchronizers 791

100. run = true;
101. gate.release();
102. }
103.

104. /**
105. * Sets the sorter to "step" mode. Called on the event dispatch thread.
106. */
107. public void setStep()
108. {
109. run = false;
110. gate.release();
111. }
112.

113. public void run()
114. {
115. Comparator<Double> comp = new Comparator<Double>()
116. {
117. public int compare(Double i1, Double i2)
118. {
119. component.setValues(values, i1, i2);
120. try
121. {
122. if (run) Thread.sleep(DELAY);
123. else gate.acquire();
124. }
125. catch (InterruptedException exception)
126. {
127. Thread.currentThread().interrupt();
128. }
129. return i1.compareTo(i2);
130. }
131. };
132. Arrays.sort(values, comp);
133. component.setValues(values, null, null);
134. }
135.

136. private Double[] values;
137. private ArrayComponent component;
138. private Semaphore gate;
139. private static final int DELAY = 100;
140. private volatile boolean run;
141. private static final int VALUES_LENGTH = 30;
142. }
143.

144. /**
145. * This component draws an array and marks two elements in the array.
146. */
147. class ArrayComponent extends JComponent
148. {

Listing 14–13 AlgorithmAnimation.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading792

• CyclicBarrier(int parties)
• CyclicBarrier(int parties, Runnable barrierAction)

constructs a cyclic barrier for the given number of parties. The barrierAction is
executed when all parties have called await on the barrier.

• int await()
• int await(long time, TimeUnit unit)

waits until all parties have called await on the barrier or until the timeout has been
reached, in which case a TimeoutException is thrown. Upon success, returns the
arrival index of this party. The first party has index parties - 1, and the last party
has index 0.

149. /**
150. * Sets the values to be painted. Called on the sorter thread.
151. * @param values the array of values to display
152. * @param marked1 the first marked element
153. * @param marked2 the second marked element
154. */
155. public synchronized void setValues(Double[] values, Double marked1, Double marked2)
156. {
157. this.values = values.clone();
158. this.marked1 = marked1;
159. this.marked2 = marked2;
160. repaint();
161. }
162.

163. public synchronized void paintComponent(Graphics g) // Called on the event dispatch thread
164. {
165. if (values == null) return;
166. Graphics2D g2 = (Graphics2D) g;
167. int width = getWidth() / values.length;
168. for (int i = 0; i < values.length; i++)
169. {
170. double height = values[i] * getHeight();
171. Rectangle2D bar = new Rectangle2D.Double(width * i, 0, width, height);
172. if (values[i] == marked1 || values[i] == marked2) g2.fill(bar);
173. else g2.draw(bar);
174. }
175. }
176.

177. private Double marked1;
178. private Double marked2;
179. private Double[] values;
180. }

java.util.concurrent.CyclicBarrier 5.0

Listing 14–13 AlgorithmAnimation.java (continued)

Chapter 14. Multithreading

Synchronizers 793

• CountdownLatch(int count)
constructs a countdown latch with the given count.

• void await()
waits for this latch to count down to 0.

• boolean await(long time, TimeUnit unit)
waits for this latch to count down to 0 or for the timeout to elapse. Returns true if
the count is 0, false if the timeout elapsed.

• public void countDown()
counts down the counter of this latch.

• V exchange(V item)
• V exchange(V item, long time, TimeUnit unit)

blocks until another thread calls this method, and then exchanges the item with
the other thread and returns the other thread’s item. The second method throws a
TimeoutException after the timeout has elapsed.

• SynchronousQueue()
• SynchronousQueue(boolean fair)

constructs a synchronous queue that allows threads to hand off items. If fair is
true, the queue favors the longest-waiting threads.

• void put(V item)
blocks until another thread calls take to take this item.

• V take()
blocks until another thread calls put. Returns the item that the other thread provided.

• Semaphore(int permits)
• Semaphore(int permits, boolean fair)

constructs a semaphore with the given maximum number of permits. If fair is true,
the queue favors the longest-waiting threads.

• void acquire()
waits to acquire a permit.

• boolean tryAcquire()
tries to acquire a permit; returns false if none is available.

• boolean tryAcquire(long time, TimeUnit unit)
tries to acquire a permit within the given time; returns false if none is available.

• void release()
releases a permit.

java.util.concurrent.CountDownLatch 5.0

java.util.concurrent.Exchanger<V> 5.0

java.util.concurrent.SynchronousQueue<V> 5.0

java.util.concurrent.Semaphore 5.0

Chapter 14. Multithreading

Chapter 14 ■ Multithreading794

Threads and Swing
As we mentioned in the introduction to this chapter, one of the reasons to use threads in
your programs is to make your programs more responsive. When your program needs
to do something time consuming, then you should fire up another worker thread
instead of blocking the user interface.

However, you have to be careful what you do in a worker thread because, perhaps sur-
prisingly, Swing is not thread safe. If you try to manipulate user interface elements from
multiple threads, then your user interface can become corrupted.

To see the problem, run the upcoming test program in Listing 14–14. When you click the
Bad button, a new thread is started whose run method tortures a combo box, randomly
adding and removing values.

public void run()
{
 try
 {
 while (true)
 {
 int i = Math.abs(generator.nextInt());
 if (i % 2 == 0)
 combo.insertItemAt(new Integer(i), 0);
 else if (combo.getItemCount() > 0)
 combo.removeItemAt(i % combo.getItemCount());
 sleep(1);
 }
 catch (InterruptedException e) {}
 }
}

Try it out. Click the Bad button. Click the combo box a few times. Move the scrollbar.
Move the window. Click the Bad button again. Keep clicking the combo box. Eventually,
you should see an exception report (see Figure 14–9).

What is going on? When an element is inserted into the combo box, the combo box
fires an event to update the display. Then, the display code springs into action,
reading the current size of the combo box and preparing to display the values. But
the worker thread keeps going—occasionally resulting in a reduction of the count
of the values in the combo box. The display code then thinks that there are more
values in the model than there actually are, asks for nonexistent values, and trig-
gers an ArrayIndexOutOfBounds exception.

This situation could have been avoided by enabling programmers to lock the
combo box object while displaying it. However, the designers of Swing decided
not to expend any effort to make Swing thread safe, for two reasons. First, syn-
chronization takes time, and nobody wanted to slow down Swing any further.
More important, the Swing team checked out the experience other teams had with
thread-safe user interface toolkits. What they found was not encouraging. Pro-
grammers using thread-safe toolkits turned out to be confused by the demands for
synchronization and often created deadlock-prone programs.

Chapter 14. Multithreading

Threads and Swing 795

Figure 14–9 Exception reports in the console

Running Time-Consuming Tasks
When you use threads together with Swing, you have to follow two simple rules.

• If an action takes a long time, do it in a separate worker thread and never in the
event dispatch thread.

• Do not touch Swing components in any thread other than the event dispatch thread.

The reason for the first rule is easy to understand. If you take a long time in the event dis-
patch thread, the application seems “dead” because it cannot respond to any events. In
particular, the event dispatch thread should never make input/output calls, which might
block indefinitely, and it should never call sleep. (If you need to wait for a specific amount
of time, use timer events.)

The second rule is often called the single-thread rule for Swing programming. We discuss
it further on page 806.

These two rules seem to be in conflict with each other. Suppose you fire up a separate
thread to run a time-consuming task. You usually want to update the user interface to
indicate progress while your thread is working. When your task is finished, you want to
update the GUI again. But you can’t touch Swing components from your thread. For
example, if you want to update a progress bar or a label text, then you can’t simply set
its value from your thread.

To solve this problem, you can use two utility methods in any thread to add arbitrary
actions to the event queue. For example, suppose you want to periodically update a
label in a thread to indicate progress. You can’t call label.setText from your thread.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading796

Instead, use the invokeLater and invokeAndWait methods of the EventQueue class to have that
call executed in the event dispatching thread.

Here is what you do. You place the Swing code into the run method of a class that imple-
ments the Runnable interface. Then, you create an object of that class and pass it to the static
invokeLater or invokeAndWait method. For example, here is how to update a label text:

EventQueue.invokeLater(new
 Runnable()
 {
 public void run()
 {
 label.setText(percentage + "% complete");
 }
 });

The invokeLater method returns immediately when the event is posted to the event
queue. The run method is executed asynchronously. The invokeAndWait method waits until
the run method has actually been executed.

In the situation of updating a progress label, the invokeLater method is more appropriate.
Users would rather have the worker thread make more progress than have the most
precise progress indicator.

Both methods execute the run method in the event dispatch thread. No new thread is
created.

Listing 14–14 demonstrates how to use the invokeLater method to safely modify the con-
tents of a combo box. If you click on the Good button, a thread inserts and removes
numbers. However, the actual modification takes place in the event dispatching thread.

Listing 14–14 SwingThreadTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.util.*;
4. import javax.swing.*;
5.

6. /**
7. * This program demonstrates that a thread that runs in parallel with the event dispatch thread
8. * can cause errors in Swing components.
9. * @version 1.23 2007-05-17

10. * @author Cay Horstmann
11. */
12. public class SwingThreadTest
13. {
14. public static void main(String[] args)
15. {
16. EventQueue.invokeLater(new Runnable()
17. {
18. public void run()
19. {

Chapter 14. Multithreading

Threads and Swing 797

20. SwingThreadFrame frame = new SwingThreadFrame();
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. frame.setVisible(true);
23. }
24. });
25. }
26. }
27.

28. /**
29. * This frame has two buttons to fill a combo box from a separate thread. The "Good" button
30. * uses the event queue; the "Bad" button modifies the combo box directly.
31. */
32. class SwingThreadFrame extends JFrame
33. {
34. public SwingThreadFrame()
35. {
36. setTitle("SwingThreadTest");
37.

38. final JComboBox combo = new JComboBox();
39. combo.insertItemAt(Integer.MAX_VALUE, 0);
40. combo.setPrototypeDisplayValue(combo.getItemAt(0));
41. combo.setSelectedIndex(0);
42.

43. JPanel panel = new JPanel();
44.

45. JButton goodButton = new JButton("Good");
46. goodButton.addActionListener(new ActionListener()
47. {
48. public void actionPerformed(ActionEvent event)
49. {
50. new Thread(new GoodWorkerRunnable(combo)).start();
51. }
52. });
53. panel.add(goodButton);
54. JButton badButton = new JButton("Bad");
55. badButton.addActionListener(new ActionListener()
56. {
57. public void actionPerformed(ActionEvent event)
58. {
59. new Thread(new BadWorkerRunnable(combo)).start();
60. }
61. });
62. panel.add(badButton);
63.

64. panel.add(combo);
65. add(panel);
66. pack();
67. }
68. }
69.

Listing 14–14 SwingThreadTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading798

70. /**
71. * This runnable modifies a combo box by randomly adding and removing numbers. This can result
72. * in errors because the combo box methods are not synchronized and both the worker thread
73. * and the event dispatch thread access the combo box.
74. */
75. class BadWorkerRunnable implements Runnable
76. {
77. public BadWorkerRunnable(JComboBox aCombo)
78. {
79. combo = aCombo;
80. generator = new Random();
81. }
82.

83. public void run()
84. {
85. try
86. {
87. while (true)
88. {
89. int i = Math.abs(generator.nextInt());
90. if (i % 2 == 0) combo.insertItemAt(i, 0);
91. else if (combo.getItemCount() > 0) combo.removeItemAt(i % combo.getItemCount());
92. Thread.sleep(1);
93. }
94. }
95. catch (InterruptedException e)
96. {
97. }
98. }
99.

100. private JComboBox combo;
101. private Random generator;
102. }
103.

104. /**
105. * This runnable modifies a combo box by randomly adding and removing numbers. In order to
106. * ensure that the combo box is not corrupted, the editing operations are forwarded to the
107. * event dispatch thread.
108. */
109. class GoodWorkerRunnable implements Runnable
110. {
111. public GoodWorkerRunnable(JComboBox aCombo)
112. {
113. combo = aCombo;
114. generator = new Random();
115. }
116.

117. public void run()
118. {

Listing 14–14 SwingThreadTest.java (continued)

Chapter 14. Multithreading

Threads and Swing 799

• static void invokeLater(Runnable runnable) 1.2
causes the run method of the runnable object to be executed in the event dispatch
thread after pending events have been processed.

• static void invokeAndWait(Runnable runnable) 1.2
causes the run method of the runnable object to be executed in the event dispatch
thread after pending events have been processed. This call blocks until the run
method has terminated.

• static boolean isDispatchThread() 1.2
returns true if the thread executing this method is the event dispatch thread.

Using the Swing Worker
When a user issues a command for which processing takes a long time, you will want to
fire up a new thread to do the work. As you saw in the preceding section, that thread
should use the EventQueue.invokeLater method to update the user interface.

Several authors have produced convenience classes to ease this programming task, and
one of these classes has made its way into Java SE 6. In this section, we describe that
SwingWorker class.

119. try
120. {
121. while (true)
122. {
123. EventQueue.invokeLater(new Runnable()
124. {
125. public void run()
126. {
127. int i = Math.abs(generator.nextInt());
128. if (i % 2 == 0) combo.insertItemAt(i, 0);
129. else if (combo.getItemCount() > 0) combo.removeItemAt(i
130. % combo.getItemCount());
131. }
132. });
133. Thread.sleep(1);
134. }
135. }
136. catch (InterruptedException e)
137. {
138. }
139. }
140.

141. private JComboBox combo;
142. private Random generator;
143. }

java.awt.EventQueue 1.1

Listing 14–14 SwingThreadTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading800

The program in Listing 14–15 has commands for loading a text file and for canceling the
file loading process. You should try the program with a long file, such as the full text of
The Count of Monte Cristo, supplied in the gutenberg directory of the book’s companion code.
The file is loaded in a separate thread. While the file is read, the Open menu item is dis-
abled and the Cancel item is enabled (see Figure 14–10). After each line is read, a line
counter in the status bar is updated. After the reading process is complete, the Open menu
item is reenabled, the Cancel item is disabled, and the status line text is set to Done.

This example shows the typical UI activities of a background task:

• After each work unit, update the UI to show progress.
• After the work is finished, make a final change to the UI.

The SwingWorker class makes it easy to implement such a task. You override the doInBack-
ground method to do the time-consuming work and occasionally call publish to commu-
nicate work progress. This method is executed in a worker thread. The publish method
causes a process method to execute in the event dispatch thread to deal with the
progress data. When the work is complete, the done method is called in the event dis-
patch thread so that you can finish updating the UI.

Figure 14–10 Loading a file in a separate thread

Whenever you want to do some work in the worker thread, construct a new worker.
(Each worker object is meant to be used only once.) Then call the execute method. You
will typically call execute on the event dispatch thread, but that is not a requirement.

It is assumed that a worker produces a result of some kind; therefore, SwingWorker<T, V>
implements Future<T>. This result can be obtained by the get method of the Future inter-
face. Since the get method blocks until the result is available, you don’t want to call it
immediately after calling execute. It is a good idea to call it only when you know that the
work has been completed. Typically, you call get from the done method. (There is no
requirement to call get. Sometimes, processing the progress data is all you need.)

Both the intermediate progress data and the final result can have arbitrary types. The
SwingWorker class has these types as type parameters. A SwingWorker<T, V> produces a result
of type T and progress data of type V.

Chapter 14. Multithreading

Threads and Swing 801

To cancel the work in progress, use the cancel method of the Future interface. When the
work is canceled, the get method throws a CancellationException.

As already mentioned, the worker thread’s call to publish will cause calls to process on the
event dispatch thread. For efficiency, the results of several calls to publish may be batched
up in a single call to process. The process method receives a List<V> containing all interme-
diate results.

Let us put this mechanism to work for reading in a text file. As it turns out, a JTextArea is
quite slow. Appending lines from a long text file (such as all lines in The Count of Monte
Cristo) takes considerable time.

To show the user that progress is being made, we want to display the number of lines
read in a status line. Thus, the progress data consist of the current line number and the
current line of text. We package these into a trivial inner class:

private class ProgressData
{
 public int number;
 public String line;
}

The final result is the text that has been read into a StringBuilder. Thus, we need a Swing-
Worker<StringBuilder, ProgressData>.

In the doInBackground method, we read a file, a line at a time. After each line, we call publish
to publish the line number and the text of the current line.

@Override public StringBuilder doInBackground() throws IOException, InterruptedException
{
 int lineNumber = 0;
 Scanner in = new Scanner(new FileInputStream(file));
 while (in.hasNextLine())
 {
 String line = in.nextLine();
 lineNumber++;
 text.append(line);
 text.append("\n");
 ProgressData data = new ProgressData();
 data.number = lineNumber;
 data.line = line;
 publish(data);
 Thread.sleep(1); // to test cancellation; no need to do this in your programs
 }
 return text;
}

We also sleep for a millisecond after every line so that you can test cancellation without
getting stressed out, but you wouldn’t want to slow down your own programs by sleep-
ing. If you comment out this line, you will find that The Count of Monte Cristo loads quite
quickly, with only a few batched user interface updates.

NOTE: You can make this program behave quite smoothly by updating the text area from the
worker thread, but this is not possible for most Swing components. We show you the general
approach in which all component updates occur in the event dispatch thread.

Chapter 14. Multithreading

Chapter 14 ■ Multithreading802

In the process method, we ignore all line numbers but the last one, and we concatenate all
lines for a single update of the text area.

@Override public void process(List<ProgressData> data)
{
 if (isCancelled()) return;
 StringBuilder b = new StringBuilder();
 statusLine.setText("" + data.get(data.size() - 1).number);
 for (ProgressData d : data) { b.append(d.line); b.append("\n"); }
 textArea.append(b.toString());
}

In the done method, the text area is updated with the complete text, and the Cancel menu
item is disabled.

Note how the worker is started in the event listener for the Open menu item.

This simple technique allows you to execute time-consuming tasks while keeping the
user interface responsive.

Listing 14–15 SwingWorkerTest.java

1. import java.awt.*;
2. import java.awt.event.*;
3. import java.io.*;
4. import java.util.*;
5. import java.util.List;
6. import java.util.concurrent.*;
7.

8. import javax.swing.*;
9.

10. /**
11. * This program demonstrates a worker thread that runs a potentially time-consuming task.
12. * @version 1.1 2007-05-18
13. * @author Cay Horstmann
14. */
15. public class SwingWorkerTest
16. {
17. public static void main(String[] args) throws Exception
18. {
19. EventQueue.invokeLater(new Runnable()
20. {
21. public void run()
22. {
23. JFrame frame = new SwingWorkerFrame();
24. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
25. frame.setVisible(true);
26. }
27. });
28. }
29. }
30.

Chapter 14. Multithreading

Threads and Swing 803

31. /**
32. * This frame has a text area to show the contents of a text file, a menu to open a file and
33. * cancel the opening process, and a status line to show the file loading progress.
34. */
35. class SwingWorkerFrame extends JFrame
36. {
37. public SwingWorkerFrame()
38. {
39. chooser = new JFileChooser();
40. chooser.setCurrentDirectory(new File("."));
41.

42. textArea = new JTextArea();
43. add(new JScrollPane(textArea));
44. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);
45.

46. statusLine = new JLabel(" ");
47. add(statusLine, BorderLayout.SOUTH);
48.

49. JMenuBar menuBar = new JMenuBar();
50. setJMenuBar(menuBar);
51.

52. JMenu menu = new JMenu("File");
53. menuBar.add(menu);
54.

55. openItem = new JMenuItem("Open");
56. menu.add(openItem);
57. openItem.addActionListener(new ActionListener()
58. {
59. public void actionPerformed(ActionEvent event)
60. {
61. // show file chooser dialog
62. int result = chooser.showOpenDialog(null);
63.

64. // if file selected, set it as icon of the label
65. if (result == JFileChooser.APPROVE_OPTION)
66. {
67. textArea.setText("");
68. openItem.setEnabled(false);
69. textReader = new TextReader(chooser.getSelectedFile());
70. textReader.execute();
71. cancelItem.setEnabled(true);
72. }
73. }
74. });
75.

76. cancelItem = new JMenuItem("Cancel");
77. menu.add(cancelItem);
78. cancelItem.setEnabled(false);
79. cancelItem.addActionListener(new ActionListener()

Listing 14–15 SwingWorkerTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading804

80. {
81. public void actionPerformed(ActionEvent event)
82. {
83. textReader.cancel(true);
84. }
85. });
86. }
87.

88. private class ProgressData
89. {
90. public int number;
91. public String line;
92. }
93.

94. private class TextReader extends SwingWorker<StringBuilder, ProgressData>
95. {
96. public TextReader(File file)
97. {
98. this.file = file;
99. }

100.

101. // the following method executes in the worker thread; it doesn't touch Swing components
102.

103. @Override
104. public StringBuilder doInBackground() throws IOException, InterruptedException
105. {
106. int lineNumber = 0;
107. Scanner in = new Scanner(new FileInputStream(file));
108. while (in.hasNextLine())
109. {
110. String line = in.nextLine();
111. lineNumber++;
112. text.append(line);
113. text.append("\n");
114. ProgressData data = new ProgressData();
115. data.number = lineNumber;
116. data.line = line;
117. publish(data);
118. Thread.sleep(1); // to test cancellation; no need to do this in your programs
119. }
120. return text;
121. }
122.

123. // the following methods execute in the event dispatch thread
124.

125. @Override
126. public void process(List<ProgressData> data)
127. {
128. if (isCancelled()) return;

Listing 14–15 SwingWorkerTest.java (continued)

Chapter 14. Multithreading

Threads and Swing 805

129. StringBuilder b = new StringBuilder();
130. statusLine.setText("" + data.get(data.size() - 1).number);
131. for (ProgressData d : data)
132. {
133. b.append(d.line);
134. b.append("\n");
135. }
136. textArea.append(b.toString());
137. }
138.

139. @Override
140. public void done()
141. {
142. try
143. {
144. StringBuilder result = get();
145. textArea.setText(result.toString());
146. statusLine.setText("Done");
147. }
148. catch (InterruptedException ex)
149. {
150. }
151. catch (CancellationException ex)
152. {
153. textArea.setText("");
154. statusLine.setText("Cancelled");
155. }
156. catch (ExecutionException ex)
157. {
158. statusLine.setText("" + ex.getCause());
159. }
160.

161. cancelItem.setEnabled(false);
162. openItem.setEnabled(true);
163. }
164.

165. private File file;
166. private StringBuilder text = new StringBuilder();
167. };
168.

169. private JFileChooser chooser;
170. private JTextArea textArea;
171. private JLabel statusLine;
172. private JMenuItem openItem;
173. private JMenuItem cancelItem;
174. private SwingWorker<StringBuilder, ProgressData> textReader;
175.

176. public static final int DEFAULT_WIDTH = 450;
177. public static final int DEFAULT_HEIGHT = 350;
178. }

Listing 14–15 SwingWorkerTest.java (continued)

Chapter 14. Multithreading

Chapter 14 ■ Multithreading806

• abstract T doInBackground()
override this method to carry out the background task and to return the result of
the work.

• void process(List<V> data)
override this method to process intermediate progress data in the event dispatch
thread.

• void publish(V... data)
forwards intermediate progress data to the event dispatch thread. Call this
method from doInBackground.

• void execute()
schedules this worker for execution on a worker thread.

• SwingWorker.StateValue getState()
gets the state of this worker, one of PENDING, STARTED, or DONE.

The Single-Thread Rule
Every Java application starts with a main method that runs in the main thread. In a
Swing program, the main thread is short-lived. It schedules the construction of the
user interface in the event dispatch thread and then exits. After the user interface
construction, the event dispatch thread processes event notifications, such as calls to
actionPerformed or paintComponent. Other threads, such as the thread that posts events
into the event queue, are running behind the scenes, but those threads are invisible
to the application programmer.

Earlier in the chapter, we introduced the single-thread rule: “Do not touch Swing com-
ponents in any thread other than the event dispatch thread.” In this section, we investi-
gate that rule further.

There are a few exceptions to the single-thread rule.

• You can safely add and remove event listeners in any thread. Of course, the listener
methods will be invoked in the event dispatch thread.

• A small number of Swing methods are thread safe. They are specially marked in the
API documentation with the sentence “This method is thread safe, although most Swing
methods are not.” The most useful among these thread-safe methods are

JTextComponent.setText
JTextArea.insert
JTextArea.append
JTextArea.replaceRange
JComponent.repaint
JComponent.revalidate

NOTE: We used the repaint method many times in this book, but the revalidate method is less
common. Its purpose is to force a layout of a component after the contents have changed. The
traditional AWT has a validate method to force the layout of a component. For Swing compo-
nents, you should simply call revalidate instead. (However, to force the layout of a JFrame, you
still need to call validate—a JFrame is a Component but not a JComponent.)

javax.swing.SwingWorker<T, V> 6

Chapter 14. Multithreading

Threads and Swing 807

Historically, the single-thread rule was more permissive. Any thread was allowed to
construct components, set their properties, and add them into containers, as long as
none of the components had been realized. A component is realized if it can receive paint
or validation events. This is the case as soon as the setVisible(true) or pack (!) methods
have been invoked on the component, or if the component has been added to a con-
tainer that has been realized.

That version of the single-thread rule was convenient. It allowed you to create the GUI
of in the main method and then call setVisible(true) on the top-level frame of the applica-
tion. There was no bothersome scheduling of a Runnable on the event dispatch thread.

Unfortunately, some component implementors did not pay attention to the subtleties of
the original single-thread rule. They launched activities on the event dispatch thread
without ever bothering to check whether the component was realized. For example, if
you call setSelectionStart or setSelectionEnd on a JTextComponent, a caret movement is sched-
uled in the event dispatch thread, even if the component is not visible.

It might well have been possible to detect and fix these problems, but the Swing design-
ers took the easy way out. They decreed that it is never safe to access components from
any thread other than the event dispatch thread. Therefore, you need to construct the
user interface in the event dispatch thread, using the call to EventQueue.invokeLater that you
have seen in all our sample programs.

Of course, there are plenty of programs that are not so careful and live by the old ver-
sion of the single-thread rule, initializing the user interface on the main thread. Those
programs incur the slight risk that some of the user interface initialization causes actions
on the event dispatch thread that conflict with actions on the main thread. As we said in
Chapter 7, you don’t want to be one of the unlucky few who run into trouble and waste
time debugging an intermittent threading bug. Therefore, you should simply follow the
strict single-thread rule.

You have now reached the end of Volume I of Core Java. This volume covered the funda-
mentals of the Java programming language and the parts of the standard library that
you need for most programming projects. We hope that you enjoyed your tour through
the Java fundamentals and that you found useful information along the way. For
advanced topics, such as networking, advanced AWT/Swing, security, and internation-
alization, please turn to Volume II.

Chapter 14. Multithreading

AppendixAppendix

809

JAVA KEYWORDS

Keyword Meaning
See
Chapter

abstract an abstract class or method 5

assert used to locate internal program errors 11

boolean the Boolean type 3

break breaks out of a switch or loop 3

byte the 8-bit integer type 3

case a case of a switch 3

catch the clause of a try block catching an exception 11

char the Unicode character type 3

class defines a class type 4

const not used

continue continues at the end of a loop 3

default the default clause of a switch 3

do the top of a do/while loop 3

Java Keywords

Appendix ■ Java Keywords810

double the double-precision floating-number type 3

else the else clause of an if statement 3

enum an enumerated type 3

extends defines the parent class of a class 4

final a constant, or a class or method that cannot be overrid-
den

5

finally the part of a try block that is always executed 11

float the single-precision floating-point type 3

for a loop type 3

goto not used

if a conditional statement 3

implements defines the interface(s) that a class implements 6

import imports a package 4

instanceof tests if an object is an instance of a class 5

int the 32-bit integer type 3

interface an abstract type with methods that a class can imple-
ment

6

long the 64-bit long integer type 3

native a method implemented by the host system 11 (Vol. II)

new allocates a new object or array 3

null a null reference 3

package a package of classes 4

private a feature that is accessible only by methods of this class 4

protected a feature that is accessible only by methods of this class,
its children, and other classes in the same package

5

public a feature that is accessible by methods of all classes 4

Keyword Meaning
See
Chapter

Java Keywords

Appendix ■ Java Keywords 811

return returns from a method 3

short the 16-bit integer type 3

static a feature that is unique to its class, not to objects of its
class

3

strictfp Use strict rules for floating-point computations 2

super the superclass object or constructor 5

switch a selection statement 3

synchronized a method or code block that is atomic to a thread 14

this the implicit argument of a method, or a constructor of
this class

4

throw throws an exception 11

throws the exceptions that a method can throw 11

transient marks data that should not be persistent 1 (Vol. II)

try a block of code that traps exceptions 11

void denotes a method that returns no value 3

volatile ensures that a field is coherently accessed by multiple
threads

14

while a loop 3

Keyword Meaning
See
Chapter

Java Keywords

	Core Java, Volume I, Fundamentals, Eighth Edition
	Table of Contents
	Preface
	Acknowledgments
	Ch.1 An Introduction to Java
	Java As a Programming Platform
	The Java “White Paper” Buzzwords
	Java Applets and the Internet
	A Short History of Java
	Common Misconceptions about Java

	Ch.2 The Java Programming Environment
	Installing the Java Development Kit
	Choosing a Development Environment
	Using the Command-Line Tools
	Using an Integrated Development Environment
	Running a Graphical Application
	Building and Running Applets

	Ch.3 Fundamental Programming Structures in Java
	A Simple Java Program
	Comments
	Data Types
	Variables
	Operators
	Strings
	Input and Output
	Control Flow
	Big Numbers
	Arrays

	Ch.4 Objects and Classes
	Introduction to Object-Oriented Programming
	Using Predefined Classes
	Defining Your Own Classes
	Static Fields and Methods
	Method Parameters
	Object Construction
	Packages
	The Class Path
	Documentation Comments
	Class Design Hints

	Ch.5 Inheritance
	Classes, Superclasses, and Subclasses
	Object: The Cosmic Superclass
	Generic Array Lists
	Object Wrappers and Autoboxing
	Methods with a Variable Number of Parameters
	Enumeration Classes
	Reflection
	Design Hints for Inheritance

	Ch.6 Interfaces and Inner Classes
	Interfaces
	Object Cloning
	Interfaces and Callbacks
	Inner Classes
	Proxies

	Ch.7 Graphics Programming
	Introducing Swing
	Creating a Frame
	Positioning a Frame
	Displaying Information in a Component
	Working with 2D Shapes
	Using Color
	Using Special Fonts for Text
	Displaying Images

	Ch.8 Event Handling
	Basics of Event Handling
	Actions
	Mouse Events
	The AWT Event Hierarchy

	Ch.9 User Interface Components with Swing
	Swing and the Model-View-Controller Design Pattern
	Introduction to Layout Management
	Text Input
	Choice Components
	Menus
	Sophisticated Layout Management
	Dialog Boxes

	Ch.10 Deploying Applications and Applets
	JAR Files
	Java Web Start
	Applets
	Storage of Application Preferences

	Ch.11 Exceptions, Logging, Assertions, and Debugging
	Dealing with Errors
	Catching Exceptions
	Tips for Using Exceptions
	Using Assertions
	Logging
	Debugging Tips
	Using a Debugger

	Ch.12 Generic Programming
	Why Generic Programming?
	Definition of a Simple Generic Class
	Generic Methods
	Bounds for Type Variables
	Generic Code and the Virtual Machine
	Restrictions and Limitations
	Inheritance Rules for Generic Types
	Wildcard Types
	Reflection and Generics

	Ch.13 Collections
	Collection Interfaces
	Concrete Collections
	The Collections Framework
	Algorithms
	Legacy Collections

	Ch.14 Multithreading
	What Are Threads?
	Interrupting Threads
	Thread States
	Thread Properties
	Synchronization
	Blocking Queues
	Thread-Safe Collections
	Callables and Futures
	Executors
	Synchronizers
	Threads and Swing

	Java Keywords

