
www.allitebooks.com

http://www.allitebooks.org

Data Visualization
with D3.js Cookbook

Over 70 recipes to create dynamic data-driven
visualization with D3.js

Nick Qi Zhu

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Data Visualization with D3.js Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1171013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-216-2

www.packtpub.com

Cover Image by Martin Bell (martinb@packtpub.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nick Qi Zhu

Reviewers
Andrew Berls

Kevin Coughlin

Ismini Lourentzou

Pablo Navarro

Acquisition Editor
Martin Bell

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Akashdeep Kundu

Proshonjit Mitra

Sonali S. Vernekar

Project Coordinator
Kranti Berde

Proofreader
Mario Cecere

Indexer
Tejal Soni

Graphics
Yuvraj Mannari

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nick Qi Zhu is a professional programmer and visualization enthusiast with more than a
decade of experience in software development. He is the author of dc.js—a popular multi-
dimensional charting library built on D3. Currently he is having fun and learning as a lead
consultant at ThoughtWorks.

I would like to thank the folks at Packt Publishing for supporting me through
my journey, especially my editors Martin Bell and Sweny Sukumaran for
polishing up my prose making this book much easier to read. And many
thanks to my technical reviewers who had really made this book a much
better one through their constructive criticism.

Finally to my wife Sherry for being supportive and incredibly patient with me
through the last several months; without her support this book would not be
possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Andrew Berls is a Ruby and JavaScript developer and lives in Santa Barbara, CA. He's been
building websites ever since he learned what an HTML tag was, and has since fallen in love
with full-stack application development. He was recently an intern at Causes.com, where he
developed data dashboards using D3.js for visualizing social networks. Andrew is completing his
degree in Computer Science at the University of California, Santa Barbara, and when he's not
programming you can find him learning to cook (badly) or hiking up a mountain somewhere.

Kevin Coughlin holds both Computer Science and Economics degrees from The College
of New Jersey. He is a JavaScript developer with over two years of industry experience. At
work and at home, Kevin combines HTML5 standards with cutting-edge client- and server-
side technologies such as Angular.js, Backbone.js, and Node.js to produce effective modern
solutions for the open web.

Kevin regularly posts tutorials on emerging web technologies on his website
http://kevintcoughlin.com.

www.allitebooks.com

http://www.allitebooks.org

Ismini Lourentzou has a Business Administration B.Sc. and a long-standing career in
the banking sector, at National Bank of Greece. Learning programming in Java in her spare
time and her continuous urge for novelty, drove her to pursue a second degree in Computer
Science from Athens University of Economics and Business (AUEB). During her undergraduate
studies, she has participated in the Knowledge Discovery and Data Mining Cup 2012,
as a member of the Data and Web Mining Group of AUEB, headed by Professor Michalis
Vazirgiannis, and worked on "Automated Snippet Generation of Online Advertising", which
led to a publication at CIKM 2013. Meanwhile, she also participated at ImageClef 2013
as a member of the Information Retrieval Group of AUEB, headed by Professor Theodore
Kalamboukis. Their participation was placed second in the Textual Ad-hoc image-based
retrieval and fifth in Visual Ad-hoc image-based retrieval. Due to her love for research and
programming, there was no doubt about changing her career orientation; she is currently a
PhD student at University of Illinois at Urbana – Champaign, combining Machine Learning and
Information Retrieval in developing intelligent information systems that will improve a user's
productivity by decreasing the amount of manual involvement in searching, organizing, and
understanding information from mainly textual sources. After completing her PhD, she hopes
to continue working in research, and to be able to learn more and more each day.

I would like to thank my family for their support and help, for always being
there to motivate me, my mother for taking care of me while my free time
was nonexistent, my sister that is always protective of me, my father to being
present during difficult situations. Moreover, I am thankful for my boyfriend
for his everlasting patience and love and my friends for their advices and
help during this process.

Pablo Navarro is a data visualization consultant from Chile. He earned his Master's
degree in Applied Mathematics from École des Mines de Saint-Etienne, France. After working
for some years in operations research and data analysis, he decided to specialize in data
visualization for web platforms, in which he currently works. In his free time, he enjoys doing
watercolor illustrations, running and reading about human evolution. His most recent works
can be seen at http://pnavarrc.github.io.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with D3.js 7

Introduction 7
Setting up a simple D3 development environment 8
Setting up an NPM-based development environment 11
Understanding D3-style JavaScript 15

Chapter 2: Be Selective 23
Introduction 23
Selecting a single element 25
Selecting multiple elements 28
Iterating through a selection 29
Performing subselection 31
Function chaining 34
Manipulating the raw selection 36

Chapter 3: Dealing with Data 39
Introduction 39
Binding an array as data 43
Binding object literals as data 47
Binding functions as data 51
Working with arrays 54
Filtering with data 58
Sorting with data 61
Loading data from a server 64

Chapter 4: Tipping the Scales 71
Introduction 71
Using quantitative scales 73
Using the time scale 78

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Using the ordinal scale 81
Interpolating a string 84
Interpolating colors 88
Interpolating compound objects 91
Implementing a custom interpolator 94

Chapter 5: Playing with Axes 101
Introduction 101
Working with basic axes 101
Customizing ticks 107
Drawing grid lines 109
Dynamic rescaling of axes 113

Chapter 6: Transition with Style 119
Introduction 119
Animating a single element 120
Animating multiple elements 123
Using ease 128
Using tweening 132
Using transition chaining 136
Using transition filter 138
Listening to transitional events 140
Implementing a custom interpolator 142
Working with timer 144

Chapter 7: Getting into Shape 147
Introduction 147
Creating simple shapes 149
Using a line generator 152
Using line interpolation 156
Changing line tension 159
Using an area generator 163
Using area interpolation 166
Using an arc generator 169
Implementing arc transition 173

Chapter 8: Chart Them Up 179
Introduction 179
Creating a line chart 181
Creating an area chart 188
Creating a scatter plot chart 192
Creating a bubble chart 196
Creating a bar chart 199

iii

Table of Contents

Chapter 9: Lay Them Out 205
Introduction 205
Building a pie chart 206
Building a stacked area chart 211
Building a treemap 217
Building a tree 224
Building an enclosure diagram 230

Chapter 10: Interacting with your Visualization 235
Introduction 235
Interacting with mouse events 236
Interacting with a multi-touch device 239
Implementing zoom and pan behavior 244
Implementing drag behavior 248

Chapter 11: Using Force 253
Introduction 253
Using gravity and charge 254
Generating momentum 262
Setting the link constraint 265
Using force to assist visualization 271
Manipulating force 275
Building a force-directed graph 279

Chapter 12: Know your Map 283
Introduction 283
Projecting the US map 283
Projecting the world map 288
Building a choropleth map 291

Chapter 13: Test Drive your Visualization 295
Introduction 295
Getting Jasmine and setting up the test environment 296
Test driving your visualization – chart creation 299
Test driving your visualization – SVG rendering 301
Test driving your visualization – pixel-perfect bar rendering 303

Appendix: Building Interactive Analytics in Minutes 307
Introduction 307
The crossfilter.js library 308
Dimensional charting – dc.js 311

Index 317

Preface
D3.js is a JavaScript library designed to display digital data in a dynamic graphical form. It
helps you to bring data to life using HTML, SVG, and CSS. D3 allows great control over the final
visual result, and it is the hottest and most powerful web-based data visualization technology
on the market today.

This book is packed with practical recipes to help you learn every aspect of data visualization
with D3. It is designed to provide you with all the guidance you need to get to grips with data
visualization with D3. With this book, you will create breathtaking data visualization with
professional efficiency and precision with the help of practical recipes, illustrations, and
code samples.

This cookbook starts off by touching upon data visualization and D3 basics before gradually
taking you through a number of practical recipes covering a wide range of topics you need to
know about D3.

You will learn the fundamental concepts of data visualization, functional JavaScript, and D3
fundamentals including element selection, data binding, animation, and SVG generation.
You will also learn how to leverage more advanced techniques such as custom interpolators,
custom tweening, timers, the layout manager, force manipulation, and so on. This book
also provides a number of prebuilt chart recipes with ready-to-go sample code to help you
bootstrap quickly.

What this book covers
Chapter 1, Getting Started with D3.js, is designed to get you up and running with D3.js. It
covers the fundamental aspects such as what D3.js is and how to set up a typical D3.js data
visualization environment.

Chapter 2, Be Selective, teaches you one of the most fundamental tasks you need to perform
with any data visualization project using D3—selection. Selection helps you target certain
visual elements on the page.

Preface

2

Chapter 3, Dealing with Data, explores the most essential question in any data visualization
project—how data can be represented both in programming constructs, and its visual metaphor.

Chapter 4, Tipping the Scales, deals with a very important subdomain of data visualization. As
a data visualization developer, one key task that you need to perform over and over again is to
map values in your data domain to visual domain, which is the focus of this chapter.

Chapter 5, Playing with Axes, explores the usage of axes' component and some related
techniques commonly used in Cartesian coordinate system based visualization.

Chapter 6, Transition with Style, deals with transitions. "A picture is worth a thousand words,"
this age-old wisdom is arguably one of the most important cornerstones of data visualization.
This chapter covers transition and animation support provided by D3 library.

Chapter 7, Getting into Shape, deals with Scalable Vector Graphics (SVG), which is a mature
World Wide Web Consortium (W3C) standard widely used in visualization projects.

Chapter 8, Chart Them Up, explores one of the oldest and well trusted companions in data
visualization—charts. Charts are well defined and well understood graphical representations
of data.

Chapter 9, Lay Them Out, focuses on D3 Layout. D3 layouts are algorithms that calculate and
generate placement information for a group of elements capable of generating some of the
most complex and interesting visualization.

Chapter 10, Interacting with your Visualization, focuses on D3 human visualization interaction
support, or in other words how to add computational steering capability to your visualization.

Chapter 11, Using Force, covers one of the most fascinating aspects of D3—Force. Force
simulation is one of the most awe-inspiring techniques that you can add to your visualization.

Chapter 12, Know your Map, introduces basic D3 cartographic visualization techniques and
how to implement a fully functional geographic visualization in D3.

Chapter 13, Test Drive your Visualization, teaches you to implement your visualization
like a pro with Test Driven Development (TDD).

Appendix, Building Interactive Analytics in Minutes serves as an introduction to Crossfilter.js and
dc.js on interactive dimensional charting.

Preface

3

What you need for this book
 f A text editor: To edit and create HTML, CSS, and JavaScript files

 f A web browser: A modern web browser (Firefox 3, IE 9, Chrome, Safari 3.2 and above)

 f A local HTTP server: You need a local HTTP server to host data file for some of the
more advanced recipes in this book. We will cover how to set up a Node or Python
based simple HTTP server in the first chapter.

 f Git client (Optional): If you would like to check out the recipe source code directly
from our Git repository, you need a Git client installed on your computer.

Who this book is for
If you are a developer or an analyst familiar with HTML, CSS, and JavaScript, and you wish to
get the most out of D3, then this book is for you. This book can also serve as a desktop quick-
reference guide for experienced data visualization developers.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can select HTML elements through the use of
the d3.select function."

A block of code is set as follows:

instance.description = function (d) {
 if (!arguments.length) d;
 description = d;
 return instance;
};

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

instance.description = function (d) {
 if (!arguments.length) d;
 description = d;
 return instance;
};

Any command-line input or output is written as follows:

> npm install http-server –g

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Getting Started

with D3.js

In this chapter we will cover:

 f Setting up a simple D3 development environment

 f Setting up an NPM-based development environment

 f Understanding D3-style JavaScript

Introduction
This chapter is designed to get you up and running with D3.js, covering fundamental aspects,
such as what D3.js is, and how to set up a typical D3.js data visualization environment. One
particular section is also devoted in covering some lesser known areas of JavaScript that D3.js
relies heavily on.

What is D3? D3 refers to Data-Driven Documents, and according to the official D3 Wiki:

D3.js is a JavaScript library for manipulating documents based on data. D3 helps
you bring data to life using HTML, SVG, and CSS. D3's emphasis on web standards
gives you the full capabilities of modern browsers without tying yourself to a
proprietary framework, combining powerful visualization components and a data-
driven approach to DOM manipulation.

D3 Wiki (2013, August)

www.allitebooks.com

http://www.allitebooks.org

Getting Started with D3.js

8

In a sense, D3 is a specialized JavaScript library that allows you to create amazing data
visualizations using a simpler (data driven) approach by leveraging existing web standards.
D3.js was created by Mike Bostock (http://bost.ocks.org/mike/) and superseded his
previous work on a different JavaScript data visualization library called Protovis. For more
information on how D3 was created and on the theory that influenced both Protovis and
D3.js, please check out links in the following information box. Here in this book we will focus
more on how to use D3.js to power your visualization. Initially, some aspects of D3 may be
a bit confusing due to its different approach to data visualization using JavaScript. I hope
that over the course of this book, a large number of topics, both basic and advanced, will
make you comfortable and effective with D3. Once properly understood, D3 can improve your
productivity and expressiveness with data visualizations by orders of magnitude.

For more formal introduction to the idea behind D3 see the Declarative
Language Design for Interactive Visualization paper published by
Mike Bostock on IEEE InfoVis 2010 http://vis.stanford.edu/
papers/protovis-design.

If you are interested to know how D3 came about, I recommend you
to check out the D3: Data-Driven Document paper published by Mike
Bostock on IEEE InfoVis 2011 at http://vis.stanford.edu/
papers/d3.

Protovis, the predecessor of D3.js, also created by Mike Bostock and
Jeff Heer of the Stanford Visualization Group can be found at http://
mbostock.github.io/protovis/.

Setting up a simple D3 development
environment

First thing you need when starting a D3 powered data visualization project is a working
development environment. In this recipe, we will show you how a simple D3 development
environment can be set up within minutes.

Getting Ready
Before we start, make sure you have your favorite text editor installed and ready on
your computer.

Chapter 1

9

How to do it...
We'll start by downloading D3.js:

1. Download the latest stable version of D3.js from http://d3js.org/. You can
download the archived, older releases from https://github.com/mbostock/
d3/tags. Additionally, if you are interested in trying out the bleeding edge D3 build
on master branch, then you can fork https://github.com/mbostock/d3.

2. Once downloaded and unzipped, you will find three files d3.v3.js, d3.v3.min.js,
and its license in the extracted folder. For development it is recommended to
use d3.v3.js, the "non-uglified" (minimized) version, since it can help you trace
and debug JavaScript inside D3 library. Once extracted place the d3.v3.js file in
the same folder with an index.html file containing the following HTML:
<!-- index.html -->
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Simple D3 Dev Env</title>
 <script type="text/javascript" src="d3.v3.js"></script>
</head>
<body>

</body>
</html>

If you download D3 from a source or a tagged version, the JavaScript file name
will be slightly different. Instead of d3.v3.js, it will simply be called d3.js.

This is all you need to create, in its simplest form, a D3-powered data visualization
development environment. With this setup you can essentially open the HTML file using your
favorite text editor to start your development and also view your visualization by opening the
file in your browser.

The source code for this recipe can be found at https://github.com/
NickQiZhu/d3-cookbook/tree/master/src/chapter1/simple-
dev-env.

Getting Started with D3.js

10

How it works...
D3 JavaScript library is very self-sufficient. It has no dependency on any JavaScript library
than other what your browser already provides. In fact, it can even be used in a non-browser
environment such as Node.js with some minimum setup (I will cover this in more detail in
later chapters).

If your visualization's target browser environment includes Internet
Explorer 9, it is recommended to use the compatibility library Aight, which
can be found at https://github.com/shawnbot/aight, and
Sizzle selector engine at http://sizzlejs.com/.

Having the following character encoding instruction in header section is critical:

 <meta charset="utf-8">

The character encoding instructs browsers and validators what set of characters to use when
rendering web pages. Otherwise your browser will not be able to load D3 JavaScript library
since D3 uses utf-8 character for certain symbols such as π.

D3 is completely open source, and it is open sourced under a custom
license agreement created by its author Michael Bostock. This license is
pretty similar to the popular MIT license with only one exception where it
explicitly states that Michael Bostock's name cannot be used to endorse
or promote products derived from this software without permission.

There's more...
Throughout this cookbook numerous recipe code examples will be provided. All example
source code are provided and hosted on GitHub (https://github.com/) a popular open
source social coding repository platform.

How to get source code
The easiest way to get all the recipe source code that you need is to clone the Git repository
(https://github.com/NickQiZhu/d3-cookbook) for this book. If you are not planning
to set up a development environment for the recipes then you can safely skip this section.

Chapter 1

11

If you are not familiar with Git, clone is similar to the check-out concept in
other versions of control software. However cloning does a lot more than
simply checking out the files. It also copies all branches and histories to
your local machine effectively cloning the entire repository to your local
machine so you can work completely offline with this cloned repository in
your own environment.

First install a Git client on your computer. You can find a list of Git client software here
http://git-scm.com/downloads, and a detailed guide on how to install it on different
operating systems here http://git-scm.com/book/en/Getting-Started-
Installing-Git.

Another popular way to get Git and GitHub working is to install the GitHub
client, which gives you a richer set of features than simply Git. However,
at the time of writing, GitHub only offered client software for Windows and
Mac OS.

GitHub for Windows: http://windows.github.com/.

GitHub for Mac: http://mac.github.com/.

Once the Git client is installed, simply issuing the following command will download all recipe
source code to your computer:

> git clone git://github.com/NickQiZhu/d3-cookbook.git

Or if you choose to use GitHub client, then simply click the Fork button
on the repository page https://github.com/NickQiZhu/d3-
cookbook. This will make this repository appear in your GitHub client.

Setting up an NPM-based development
environment

When you are working on a more complex data visualization project that requires the use of
a number of JavaScript libraries, the simple solution we discussed before might become a
bit clumsy and unwieldy. In this section, we will demonstrate an improved setup using Node
Packaged Modules (NPM)—a de facto JavaScript library repository management system. If
you are as impatient as me and want to get to the meaty part of the book—the recipes—you
can safely skip this section and come back when you need to set up a more production-ready
environment for your project.

Getting Started with D3.js

12

Getting Ready
Before we start please make sure you have NPM properly installed. NPM comes as part of
the Node.js installation. You can download Node.js from http://nodejs.org/download/.
Select the correct Node.js binary build for your OS. Once installed the npm command will
become available in your terminal console.

> npm -v

1.2.14

The preceding command prints out the version number of your NPM client indicating the
installation is successful.

How to do it...
With NPM installed, now we can create a package descriptor file to automate some of the
manual setup steps.

1. First, under your project folder, create a file named package.json containing the
following code:
{
 "name": "d3-project-template",
 "version": "0.1.0",
 "description": "Ready to go d3 data visualization project
template",
 "keywords": [
 "data visualization",
 "d3"
],
 "homepage": "<project home page>",
 "author": {
 "name": "<your name>",
 "url": "<your url>"
 },
 "repository": {
 "type": "git",
 "url": "<source repo url>"
 },
 "dependencies": {
 "d3":"3.x"
 },
 "devDependencies": {
 "uglify-js": "2.x"
 }
}

Chapter 1

13

2. Once the package.json file is defined, you can simply run:
> npm install

How it works...
Most of the fields in the package.json file are for informational purpose only, such as the
name, description, homepage, author, and the repository. The name and version field will be
used if you decide to publish your library into an NPM repository in the future. What we really
care about, at this point, is the dependencies and devDependencies fields.

 f The dependencies field describes the runtime library dependencies that your
project has, meaning the libraries your project needs to run properly in a browser.
In this simple example we only have one dependency on d3. d3 is the name that D3
library is published under in the NPM repository. The version number 3.x signifies
that this project is compatible with any version 3 releases, and NPM should retrieve
the latest stable version 3 build to satisfy this dependency.

D3 is a self-sufficient library with zero external runtime dependency. However,
this does not mean that it cannot work with other popular JavaScript libraries.
I regularly use D3 with other libraries to make my job easier, for example,
JQuery, Zepto.js, Underscore.js, and Backbone.js.

 f The devDependencies field describes development time (compile time) library
dependencies. What this means is that, libraries specified under this category
are only required in order to build this project, and not required for running your
JavaScript project.

Detailed NPM package JSON file documentation can be found at https://
npmjs.org/doc/json.html.

Executing the npm install command will automatically trigger NPM to download all
dependencies that your project requires including your dependencies' dependencies
recursively. All dependency libraries will be downloaded into node_modules folder under
your project root folder. When this is done you can just simply create your HTML file as it
has been shown in the previous recipe, and load your D3 JavaScript library directly from
node_modules/d3/d3.js.

The source code for this recipe with an automated build script can be found at https://
github.com/NickQiZhu/d3-cookbook/tree/master/src/chapter1/npm-dev-env.

Getting Started with D3.js

14

Relying on NPM is a simple and yet effective way to save you from all the trouble of downloading
JavaScript libraries manually and the constant need of keeping them up-to-date. However,
an astute reader might have already noticed that with this power we can easily push our
environment setup to the next level. Imagine if you are building a large visualization project
where thousands of lines of JavaScript code will be created, obviously our simple setup
described here is no longer sufficient. However modular JavaScript development by itself can
fill an entire book; therefore we are not going to try to cover this topic since our focus is on data
visualization and D3. If you are interested please refer the source code for this recipe where it is
demonstrated how a more modular approach can be implemented on top of what we described
here with a simple automated build script. In later chapters, when unit test related recipes are
discussed, we will expand the coverage on this topic to show how our setup can be enhanced to
run automated unit tests.

There's more...
Though in previous sections, it was mentioned that you can just open the HTML page that
you have created using your browser to view your visualization result directly, this approach
does have its limitations. This simple approach stops working once we need to load data from
separate data file (this is what we will do in later chapters and it is also the most likely case
in your daily working environment) due to the browser's built-in security policy. To get around
this security constraint it is highly recommended that you set up a local HTTP server so your
HTML page and the data file can be served from this server instead of loaded from file
system directly.

Setup a local HTTP server
There are probably a dozen ways to set up an HTTP server on your computer based on which
operating system you use and which software package you decide to use to act as an HTTP
server. Here I will attempt to cover some of the most popular setups.

Python Simple HTTP Server
This is my favorite for development and fast prototyping. If you have Python installed on your
OS, which is usually the case with any Unix/Linux/Mac OS distro, then you can simply type this
command in your terminal:

> python –m SimpleHTTPServer 8888

Or with newer Python distribution:

> python –m http.server

This little python program will launch an HTTP server and start serving any file right from the
folder where this program is launched. This is by far the easiest way to get an HTTP server
running on any OS.

Chapter 1

15

If you don't have python installed on your computer yet, you can get it
from http://www.python.org/getit/. It works on all modern OS
including Windows, Linux and Mac.

Node.js HTTP Server
If you have Node.js installed, perhaps as part of the development environment setup exercise
we did in the previous section, then you can simply install the http-server module. Similar to
Python Simple HTTP Server, this module will allow you to launch a lightweight HTTP server
from any folder and starting serving pages right away.

First install the http-server module:

> npm install http-server –g

The -g option in this command will install http-server module globally so it will become
available in your command line terminal automatically. Once this is done, then you can
launch the server from any folder you are in by simply issuing the following command:

> http-server .

This command will launch a Node.js powered HTTP server on the default port 8080 or if
you want you can use the –p option to provide a custom port number for it.

If you are running the npm install command on Linux/Unix/Mac OS, you
will need to run the command in sudo mode or as root in order to use the
–g global installation option.

Understanding D3-style JavaScript
D3 is designed and built using functional style JavaScript which might come as to
seem unfamiliar or even alien to someone who is more comfortable with the procedural
or object-oriented JavaScript styles. This recipe is designed to cover some of the most
fundamental concepts in functional JavaScript required to make sense of D3, and
furthermore enable you to write your visualization code in D3 style.

Getting ready
Open your local copy of the following file in your web browser: https://github.com/
NickQiZhu/d3-cookbook/blob/master/src/chapter1/functional-js.html

Getting Started with D3.js

16

How to do it...
Let's dig a little deeper into the good part of JavaScript—the more functional side. Take a look
at the following code snippet:

function SimpleWidget(spec) {
 var instance = {}; // <-- A

 var headline, description; // <-- B

 instance.render = function () {
 var div = d3.select('body').append("div");

 div.append("h3").text(headline); // <-- C

 div.attr("class", "box")
 .attr("style", "color:" + spec.color) // <-- D
 .append("p")
 .text(description); // <-- E

 return instance; // <-- F
 };

 instance.headline = function (h) {
 if (!arguments.length) h; // <-- G
 headline = h;
 return instance; // <-- H
 };

 instance.description = function (d) {
 if (!arguments.length) d;
 description = d;
 return instance;
 };

 return instance; // <-- I
}

 var widget = SimpleWidget({color: "#6495ed"})
 .headline("Simple Widget")
 .description("This is a simple widget demonstrating
 functional javascript.");
 widget.render();

Chapter 1

17

This code snippet generates the following simple widget on your web page:

Simple Widget

This is a simple widget
demonstrating functional

javascript.

A Simple Widget with functional JavaScript

How it works...
Despite its simplicity, the interface of this widget has this undeniable similarity to D3 style
of JavaScript. This is not by coincidence but rather by leveraging a JavaScript programming
paradigm called functional objects. Like many interesting topics, this is another topic that
can fill an entire book by itself; nevertheless I will try to cover the most important and useful
aspects of this particular paradigm in this section so you the reader cannot only understand
D3's syntax but will also be able to create a library in this fashion. As stated on D3's project
Wiki this functional programming style gives D3 much of its flexibility:

D3's functional style allows code reuse through a diverse collection of components
and plugins.

D3 Wiki (2013, August)

Functions are objects
Functions in JavaScript are objects. Like any other object, function is just a collection of name
and value pair. The only difference between a function object and a regular object is that
function can be invoked and additionally associated with two hidden properties: function
context and function code. This might come as a surprise and unnatural, especially if you are
coming from a more procedural programming background. Nevertheless this is the critical
insight most of us need, to make sense of some of the strange ways that D3 uses function.

JavaScript in its current form is generally considered not very object oriented,
however, function object is probably one aspect where it outshines some of
the other more object-oriented cousins.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with D3.js

18

Now with this insight in mind, let's take a look at the code snippet again:

 var instance = {}; // <-- A

 var headline, description; // <-- B

 instance.render = function () {
 var div = d3.select('body').append("div");

 div.append("h3").text(headline); // <-- C

 div.attr("class", "box")
 .attr("style", "color:" + spec.color) // <-- D
 .append("p")
 .text(description); // <-- E

 return instance; // <-- F
 };

At line marked as A, B, and C we can clearly see that instance, headline, and
description are all internal private variables belonging to the SimpleWidget function
object. While the render function is a function associated with the instance object which
itself is defined as an object literal. Since functions are just an object it can also be stored
in an object/function, other variables, arrays, and being passed as function arguments. The
result of the execution of function SimpleWidget is the returning of object instance at line I.

function SimpleWidget(spec) {
...
 return instance; // <-- I
}

The render function uses some of the D3 functions that we have not
covered yet, but let's not pay too much attention to them for now since we
will cover each of them in depth in the next couple of chapters. Also they
basically just render the visual representation of this widget, not having
much to do with our topic on hand.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

19

Static variable scoping
Curious readers are probably asking by now how the variable scoping is resolved in this
example since the render function has seemingly strange access to not only the instance,
headline, and description variables but also the spec variable that is passed into
the base SimpleWidget function. This seemingly strange variable scoping is actually
determined by a simple static scoping rule. This rule can be thought as the following:
whenever searching for a variable reference, variable search will be first performed locally.
When variable declaration is not found (as in the case of headline on line C) then the search
continues to the parent object (in this case SimpleWidget function is its static parent and
headline variable declaration is found at line B). If still not found, then this process will
continue recursively to the next static parent so on and so forth till it reaches global variable
definition, if still not found then a reference error will be generated for this variable. This
scoping behavior is very different from variable resolution rules in some of the most popular
languages such as Java and C#; it might take some time to get used to, however don't worry
too much about it if you still find it confusing. With more practice and keeping static scoping
rule in mind you will be comfortable with this kind of scoping in no time.

One word of caution here—again for folks from Java and C# backgrounds—is
that JavaScript does not implement block scoping. The static scoping rule
we described only applies to function/object but not at the block level.

for(var i = 0; i < 10; i++){
 for(var i = 0; i < 2; i++){
 console.log(i);
 }
}

You might be inclined to think this code should produce 20 numbers.
However in JavaScript this code creates an infinite loop. This is because
JavaScript does not implement block scoping so the i in the inner loop is
the same i used by the the outer loop. Therefore it gets reset by the inner
loop thus and can never end the outer loop.

This pattern is usually referred as functional when compared with the more popular
prototype-based Pseudo-classical pattern. The advantage of the functional pattern is
that it provides a much better mechanism for information hiding and encapsulation since
the private variables—in our case the headline and description variables—are only
accessible by nested functions via the static scoping rule therefore the object returned by
the SimpleWidget function is flexible yet more tamper-proof and durable.

If we create an object in the functional style, and if all of the methods of the
object make no use of this, then the object is durable. A durable object is simply
a collection of functions that act as capabilities.

(Crockfort D. 2008)

Getting Started with D3.js

20

Variable-parameter function
Something strange happens on line G:

instance.headline = function (h) {
 if (!arguments.length) h; // <-- G
 headline = h;
 return instance; // <-- H
};

You might be asking where this arguments variable on line G came from. It was never
defined anywhere in this example. The arguments variable is a built-in hidden parameter
that is available to functions when they are invoked. The arguments variable contains all
arguments for a function invocation in an array.

In fact, arguments is not really a JavaScript array object. It has length
and can be accessed using an index, however it does not have many of the
methods associated with a typical JavaScript array object such as slice
or concat. When you need to use a standard JavaScript array method on
arguments, you need to use the apply invocation pattern:

var newArgs = Array.prototype.slice.apply(arguments);

This hidden parameter when combined with the ability to omit function argument in JavaScript
allows you to write a function like instance.headline with unspecified number of
parameters. In this case, we can either have one argument h or none. Because arguments.
length returns 0 when no parameter is passed; therefore the headline function returns h
if no parameter is passed, otherwise it turns into a setter if parameter h is provided. To clarify
this explanation let's take a look at the following code snippet:

var widget = SimpleWidget({color: "#6495ed"})
 .headline("Simple Widget"); // set headline
console.log(widget.headline()); // prints "Simple Widget"

Here you can see how headline function can be used as both setter and getter with
different parameters.

Function chaining
The next interesting aspect of this particular example is the capability of chaining functions
to each other. This is also the predominant function invocation pattern that the D3 library
deploys since most of the D3 functions are designed to be chainable to provide a more concise
and contextual programming interface. This is actually quite simple once you understand
the variable-parameter function concept. Since a variable-parameter function—such as the
headline function—can serve as setter and getter at the same time, then returning the
instance object when it is acting as a setter allows you to immediately invoke another
function on the invocation result; hence the chaining.

Chapter 1

21

Let's take a look at the following code:

var widget = SimpleWidget({color: "#6495ed"})
 .headline("Simple Widget")
 .description("This is ...")
 .render();

In this example, the SimpleWidget function returns the instance object (as on line I).
Then, the headline function is invoked as a setter, which also returns the instance object
(as on line H). The description function can then be invoked directly on return which again
returns the instance object. Then finally the render function can be called.

Now with the knowledge of functional JavaScript and a working ready-to-go D3 data
visualization development environment, we are ready to dive into the rich concepts and
techniques that D3 has to offer. However before we take off, I would like to cover a few more
important areas—how to find and share code and how to get help when you are stuck.

There's more...
Let's take a look at some additional helpful resources.

Finding and sharing code
One of the great things about D3 when compared with other visualization options is that it
offers a wealth of examples and tutorials that you can draw your inspiration from. During the
course of creating my own open source visualization charting library and the creation of this
book, I had drawn heavily on these resources. I am going to list some of the most popular
options available in this aspect. This list is by no means a comprehensive directory but rather
a starting place for you to explore:

 f The D3 gallery (https://github.com/mbostock/d3/wiki/Gallery) contains
some of the most interesting examples that you can find online regarding D3 usage.
It contains examples on different visualization charts, specific techniques, and some
interesting visualization implementations in the wild, among others.

 f BioVisualize(http://biovisualize.github.io/d3visualization) is
another D3 gallery with categorization, to help you find your desired visualization
example online quickly.

 f The D3 tutorials page (https://github.com/mbostock/d3/wiki/Tutorials)
contains a collection of tutorials, talks and slides created by various contributors over
time, to demonstrate in detail how to use a lot of D3 concepts and techniques.

 f D3 plugins (https://github.com/d3/d3-plugins). Maybe some features are
missing in D3 for your visualization needs? Before you decide to implement your
own, make sure to check out D3 plugin repository. It contains a wide variety of
plugins that provide some of the common and, sometimes, uncommon features in
the visualization world.

Getting Started with D3.js

22

 f The D3 API (https://github.com/mbostock/d3/wiki/API-Reference) is
very well documented. This is where you can find detailed explanations for every
function and property that the D3 library has to offer.

 f Mike Bostok's Blocks (http://bl.ocks.org/mbostock) is a D3 example site,
where some of the more intriguing visualization example can be found and which is
maintained by its author Mike Bostock.

 f JS Bin (http://jsbin.com/ugacud/1/edit) is a pre-built D3 test and
experiment environment completely hosted online. You can easily prototype a simple
script using this tool or share your creation with other members in the community.

 f JS Fiddle (http://jsfiddle.net/qAHC2/) is similar to JS Bin; it also is a hosted-
online JavaScript code prototyping and sharing platform.

How to get help
Even with all the examples, tutorial, and cookbook like this, you might still run into challenges
when creating your visualization. Good news here is that D3 has a broad and active support
community. Simply "googling" your question can most often yield a satisfying answer. Even if it
does not, don't worry; D3 has a robust community-based support:

 f D3.js on Stack Overflow (http://stackoverflow.com/questions/tagged/
d3.js): Stack Overflow is the most popular community-based free Q&A site for
technologists. D3 is a specific category on the Stack Overflow site to help you reach
the experts and get an answer to your question quickly.

 f The D3 Google group (https://groups.google.com/
forum/?fromgroups#!forum/d3-js): This is the official user group for not just
D3 but also other related libraries in its ecosystem.

2
Be Selective

In this chapter we will cover:

 f Selecting a single element

 f Selecting multiple elements

 f Iterating through a selection

 f Performing subselection

 f Function chaining

 f Manipulating raw selection

Introduction
One of the most fundamental tasks that you need to perform with any data visualization
project using D3 is selection. Selection helps you target certain visual elements on the page.
If you are already familiar with the W3C standardized CSS selector or other similar selector
APIs provided by popular JavaScript libraries, such as jQuery and Zepto.js, then you will find
yourself right at home with D3's selection API. Don't worry if you haven't used selector API
before, this chapter is designed to cover this topic in steps with the help of some very visual
recipes; it will cover pretty much all common use cases for your data visualization needs.

Introducing selection: Selector support has been standardized by W3C so all modern web
browsers have built-in support for the selector API. However the basic W3C selector API has its
limitations when it comes to web development, especially in the data visualization realm. The
standard W3C selector API only provides selector but not selection. What this means is that
the selector API helps you to select element(s) in your document, however, to manipulate the
selected element(s) you still need to loop through each element, in order to manipulate the
selected element(s). Consider the following code snippet using the standard selector API:

var i = document.querySelectorAll("p").iterator();

Be Selective

24

var e;
while(e = i.next()){
 // do something with each element selected
 console.log(e);
}

The preceding code essentially selects all <p> elements in the document and then iterates
through each element to perform some task. This can obviously get tedious quickly, especially
when you have to manipulate many different elements on the page constantly, which is
what we usually do in data visualization projects. This is why D3 introduced its own selection
API, making development less of a chore. For the rest of this chapter we will cover how D3's
selection API works as well as some of its powerful features.

CSS3 selector basics: Before we dive into D3's selection API, some basic introduction on
the W3C level-3 selector API is required. If you are already comfortable with CSS3 selectors,
feel free to skip this section. D3's selection API is built based on the level-3 selector or more
commonly known as the CSS3 selector support. In this section, we plan to go through some of
the most common CSS3 selector syntax that are required to understand D3 selection API.

 f #foo: select element with foo as the value of id
<div id="foo">

 f foo: select element foo
<foo>

 f .foo: select elements with foo as the value of class
<div class="foo">

 f [foo=goo]: select elements with the foo attribute value and set it to goo
<div foo="goo">

 f foo goo: select the goo element inside the foo element
<foo><goo></foo>

 f foo#goo: select the foo element set goo as the value of id
<foo id="goo">

 f foo.goo: select the foo element with goo as the value of class
<foo class="goo">

 f foo:first-child: select the first child of the foo elements
<foo> // <-- this one
<foo>
<foo>

Chapter 2

25

 f foo:nth-child(n): select the nth child of the foo elements

<foo>
<foo> // <-- foo:nth-child(2)
<foo> // <-- foo:nth-child(3)

CSS3 selector is a pretty complex topic. Here we have only listed some of the most common
selectors that you will need to understand and to be effective when working with D3. For more
information on this topic please visit the W3C level-3 selector API document http://www.
w3.org/TR/css3-selectors/.

If you are targeting an older browser that does not support selector natively,
you can include Sizzle before D3 for backwards-compatibility. You can find
Sizzle at http://sizzlejs.com/.

Currently the next generation selector API level-4 is in draft stage with W3C.
You can have a peek at what it has to offer and its current draft here at
http://dev.w3.org/csswg/selectors4/

Major browser vendors have already started implementing some of the
level-4 selectors if you are interested to find out the level of support in your
browser, try out this handy website http://css4-selectors.com/
browser-selector-test/.

Selecting a single element
It is very common that sometimes you need to select a single element on a page to perform
some visual manipulation. This recipe will show you how to perform a targeted single element
selection in D3 using CSS selector.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
single-selection.html

How to do it...
Let's select something (a paragraph element perhaps) and produce the classic "hello world"
on screen.

<p id="target"></p> <!-- A -->

<script type="text/javascript">

Be Selective

26

 d3.select("p#target") // <-- B
 .text("Hello world!"); // <-- C
</script>

This recipe simply produces a Hello world! on your screen.

How it works...
The d3.select command is used to perform a single element selection in D3. This method
accepts a string representing a valid CSS3 selector or an element object if you already
have a reference to the element you want to select. The d3.select command returns a
D3 selection object on which you can chain modifier functions to manipulate the attribute,
content or inner HTML of this element.

More than one element can be selected using the selector provided only the
first element is returned in the selection.

In this example, we simply select the paragraph element with target as the value of id at
line B, and then set its textual content to Hello world! on line C. All D3 selections support
a set of standard modifier functions. The text function we have shown here is one of them.
The following are some of the most common modifier functions you will encounter throughout
this book:

 f The selection.attr function: This function allows you to retrieve or modify a given
attribute on the selected element(s)
// set foo attribute to goo on p element
d3.select("p").attr("foo", "goo");
// get foo attribute on p element
d3.select("p").attr("foo");

 f The selection.classed function: This function allows you to add or remove CSS
classes on the selected element(s).
// test to see if p element has CSS class goo
d3.select("p").classed("goo");
// add CSS class goo to p element
d3.select("p").classed("goo", true);
// remove CSS class goo from p element. classed function
// also accepts a function as the value so the decision
// of adding and removing can be made dynamically
d3.select("p").classed("goo", function(){return false;});

Chapter 2

27

 f The selection.style function: This function lets you set the CSS style with a
specific name to the specific value on the selected element(s).
// get p element's style for font-size
d3.select("p").style("font-size");
// set font-size style for p to 10px
d3.select("p").style("font-size", "10px");
// set font-size style for p to the result of some
// calculation. style function also accepts a function as // the
value can be produced dynamically
d3.select("p"). style("font-size", function(){
 return normalFontSize + 10;});

 f The selection.text function: This function allows you access and set the text
content of the selected element(s).
// get p element's text content
d3.select("p").text();
// set p element's text content to "Hello"
d3.select("p").text("Hello");
// text function also accepts a function as the value,
// thus allowing setting text content to some dynamically
// produced message
d3.select("p").text(function(){
 var model = retrieveModel();
 return model.message;
});

 f The selection.html function: This function lets you modify the element's inner
HTML content.
// get p element's inner html content
d3.select("p").html();
// set p element's inner html content to "Hello"
d3.select("p").text("Hello");
// html function also accepts a function as the value,
// thus allowing setting html content to some dynamically
// produced message
d3.select("p").text(function(){
 var template = compileTemplate();
 return template();
});

These modifier functions work on both single-element and multi-element selection results.
When applied to multi-element selections, these modifications will be applied to each and
every selected element. We will see them in action in other, more complex recipes covered in
the rest of this chapter.

Be Selective

28

When a function is used as a value in these modifier functions, there
are actually some built-in parameters being passed to these functions to
enable data-driven calculation. This data-driven approach is what gives
D3 its power and its name (Data-Driven Document) and will be discussed
in detail in the next chapter.

Selecting multiple elements
Often selecting a single element is not good enough, but rather you want to apply certain
change to a set of elements on the page simultaneously. In this recipe, we will play with D3
multi-element selector and its selection API.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
multiple-selection.html

How to do it...
This is what the d3.selectAll function is designed for. In this code snippet, we will select
three different div elements and enhance them with some CSS classes.

<div></div>
<div></div>
<div></div>

<script type="text/javascript">
 d3.selectAll("div") // <-- A
 .attr("class", "red box"); // <-- B
</script>

This code snippet produces the following visual:

Multi-element selection

Chapter 2

29

How it works...
First thing you probably would notice in this example is how similar the usage of D3 selection
API is when compared to the single-element version. This is one of the powerful design
choices of the D3 selection API. No matter how many elements you are targeting, whether
one or many, the modifier functions are exactly the same. All modifier functions we mentioned
in the previous section can be applied directly to multi-element selection, in other words D3
selection is set-based.

Now with that being said, let's take a closer look at the code example shown in this section,
though it is generally pretty simple and self-descriptive. At line A, the d3.selectAll function
is used to select all the div elements on the page. The return of this function call is a D3
selection object that contains all three div elements. Immediately after that, on line B, the
attr function was called on this selection to set the class attribute to red box for all
three div elements. As shown in this example, the selection and manipulation code is very
generic, and will not change if now we have more than three div elements on the page. This
seems to be an insignificant convenience for now, but in later chapters we will show how this
convenience can make your visualization code simpler and easier to maintain.

Iterating through a selection
Sometimes it is handy to be able to iterate through each element within a selection and
modify each element differently according to their position. In this recipe, we will show you
how this can be achieved using D3 selection iteration API.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
selection-iteration.html

How to do it...
D3 selection object provides simple iterator interface to perform iteration in a similar fashion
as how you will iterate through a JavaScript array. In this example we will iterate through three
selected div elements we worked with in the previous recipe and annotate them with an
index number.

<div></div>
<div></div>
<div></div>

<script type="text/javascript">

Be Selective

30

d3.selectAll("div") // <-- A
 .attr("class", "red box") // <-- B
 .each(function (d, i) { // <-- C
 d3.select(this).append("h1").text(i); // <-- D
 });
</script>

Selections are essentially arrays albeit with some enhancement. We will
explore raw selection in its array form and how to work with it in later sections.

The preceding code snippet produces the following visual:

0 1 2

Selection iteration

How it works...
This example is built on top of what we have already seen in the previous section. Additional
to selecting all the div elements on the page at line A and setting their class attributes at
line B, in this example we call the each function on the selection to demonstrate how you can
iterate through a multi-element selection and process each element respectively.

This form of calling a function on another function's return is called Function
Chaining. If you are unfamiliar with this kind of invocation pattern, please
review Chapter 1, Getting Started with D3.js, where the topic was explained.

The selection.each(function) function: The each function takes an iterator function as its
parameter. The given iterator function can receive two optional parameters d and i with one
more hidden parameter passed in as the this reference which points to the current DOM
element object. The first parameter d represents the datum bound to this particular element
(if this sounds confusing to you, don't worry we will cover data binding in depth in the next
chapter). The second parameter i is the index number for the current element object being
iterated through. This index is zero-based meaning it starts from zero and increments each
time a new element is encountered.

Chapter 2

31

The selection.append(name) function: Another new function introduced in this example is the
append function. This function creates a new element with the given name and appends it as
the last child of each element in the current selection. It returns a new selection containing
the newly appended element. Now with this knowledge, let's take a closer look at the code
example in this recipe.

d3.selectAll("div") // <-- A
 .attr("class", "red box") // <-- B
 .each(function (d, i) { // <-- C
 d3.select(this).append("h1").text(i); // <-- D
 });

The iterator function is defined on line C with both d and i parameters. Line D is a little bit
more interesting. At the beginning of line D, the this reference is wrapped by the d3.select
function. This wrapping essentially produces a single element selection containing the current
DOM Element. Once wrapped, the standard D3 selection manipulation API can then be used on
d3.select(this). After that the append("h1") function is called on the current element
selection which appends a newly created h1 element to the current element. Then it simply sets
the textual content of this newly created h1 element to the index number of the current element.
This produces the visual of numbered boxes as shown in this recipe. Again you should notice
that the index starts from 0 and increments 1 for each element.

The DOM element object itself has a very rich interface. If you are interested
to know more about what it can do in an iterator function, please refer to
the DOM element API at https://developer.mozilla.org/en-US/
docs/DOM/element.

Performing subselection
It is quite common that you will need to perform scoped selection when working on
visualization. For example, selecting all div elements within a particular section element
is one use case of such scoped selection. In this recipe, we will demonstrate how this can be
achieved with different approaches and their advantages and disadvantages.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
sub-selection.html

Be Selective

32

How to do it...
The following code example selects two different div elements using two different styles of
subselection supported by D3.

<section id="section1">
 <div>
 <p>blue box</p>
 </div>
</section>
<section id="section2">
 <div>
 <p>red box</p>
 </div>
</section>

<script type="text/javascript">
 d3.select("#section1 > div") // <-- A
 .attr("class", "blue box");

 d3.select("#section2") // <-- B
 .select("div") // <-- C
 .attr("class", "red box");
</script>

This code generates the following visual output:

blue box red box

Subselection

How it works...
Though producing the same visual effect, this example demonstrates two very different
subselection techniques. We will discuss them separately here so you can understand their
pros and cons as well as when to use one versus the other.

Selector level-3 combinators: On line A, d3.select is used with a special looking string
which consists of one tag name connected with another one using a greater-than sign
(U+003E, >). This syntax is called combinators (the greater-than sign here indicates it is a
child combinator). Level-3 selector supports a few different kinds of structural combinators.
Here we are going to give a quick introduction to the most common ones.

Chapter 2

33

The descendant combinator: This combinator has the syntax like selector selector.

The descendant combinator, as suggested by its name, is used to describe a loose parent-
child relationship between two selections. The reason why it is called loose parent-child
relationship is that the descendant combinatory does not care if the second selection is
a child or a grandchild or a great-grandchild of the parent selection. Let's look at some
examples to illustrate this loose relationship concept.

<div>

The quick red fox jumps over the lazy brown dog

</div>

Using the following selector:

div em

It will select the em element since div is the ancestor of the em element and em is a
descendent of the div element.

Child combinator: This combinator has the syntax like selector > selector.

The child combinator offers a more restrictive way to describe a parent-child relationship
between two elements. A child combinator is defined using a greater-than sign (U+003E, >)
character separating two selectors.

The following selector:

span > em

It will select the em element since em is a direct child of the span element in our example.
While the selector div > em will not produce any valid selection since em is not a direct child
of the div element.

The level-3 selector also supports sibling combinators however since it
is less common we are not going to cover it here; interested readers can
refer to W3C level-3 selector documentation http://www.w3.org/TR/
css3-selectors/#sibling-combinators

The W3C level-4 selector offers some interesting additional combinators,
that is, following-sibling and reference combinators that can yield some very
powerful target selection capability; see http://dev.w3.org/csswg/
selectors4/#combinators for more details.

Be Selective

34

The D3 subselection: On line B and C, a different kind of subselection technique was used.
In this case a simple D3 selection was made first on line B selecting section #section2
element. Immediately afterwards another select was chained to select a div element
on line C. This kind of chained selection defines a scoped selection. In plain English, this
basically means to select a div element that is nested under #section2. In semantics,
this is essentially similar to using a descendant combinator #section2 div. However, the
advantage of this form of subselection is that since the parent element is separately selected
therefore it allows you to handle the parent element before selecting the child element. To
demonstrate this, let's take a look at the following code snippet:

d3.select("#section2") // <-- B
 .style("font-size", "2em") // <-- B-1
 .select("div") // <-- C
 .attr("class", "red box");

As shown in the preceding code snippet, now you can see before we select the div element,
we can apply a modifier function to #section2 on line B-1. This flexibility will be further
explored in the next section.

Function chaining
As we have seen so far, the D3 API is completely designed around the idea of function
chaining. Therefore it almost forms a Domain Specific Language (DSL) for building HTML/
SVG elements dynamically. In this code example, we will take a look at how the entire body
structure of the previous example can be constructed using D3 alone.

If DSL is a new concept for you, I highly recommend checking out this
excellent explanation on DSL by Martin Fowler in the form of an excerpt from
his book Domain-Specific Languages. The excerpt can be found at http://
www.informit.com/articles/article.aspx?p=1592379.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
function-chain.html

Chapter 2

35

How to do it...
Let's see how function chain can be used to produce concise and readable code that
produces dynamic visual content.

<script type="text/javascript">
 var body = d3.select("body"); // <-- A

 body.append("section") // <-- B
 .attr("id", "section1") // <-- C
 .append("div") // <-- D
 .attr("class", "blue box") // <-- E
 .append("p") // <-- F
 .text("dynamic blue box"); // <-- G

 body.append("section")
 .attr("id", "section2")
 .append("div")
 .attr("class", "red box")
 .append("p")
 .text("dynamic red box");
</script>

This code generates the following visual output (similar to what we saw in the
previous chapter):

dynamic blue box dynamic red box

Function chain

How it works...
Despite the visual similarity to the previous example, the construction process of the DOM
elements is significantly different in this example. As demonstrated by the code example
there is no static HTML element on the page contrary to the previous recipe where both the
section and div elements existed.

Be Selective

36

Let's examine closely how these elements were dynamically created. On line A, a general
selection was made to the top level body element. The body selection result was cached
using a local variable called body. Then at line B, a new element section was appended
to the body. Remember that the append function returns a new selection that contains the
newly appended element therefore on line C the id attribute can then be set on a newly
created section element to section1. Afterwards on line D a new div element was created
and appended to #section1 with its CSS class set to blue box on line E. Next step,
similarly on line F a paragraph element was appended to the div element with its textual
content set to dynamic blue box on line G.

As illustrated by this example, this chaining process can continue to create any structure
of arbitrary complexity. As a matter of fact, this is how typically D3 based data visualization
structure was created. Many visualization projects simply contain only a HTML skeleton while
relying on D3 to create the rest. Getting comfortable with this way of function chaining is
critical if you want to become efficient with the D3 library.

Some of D3's modifier functions return a new selection, such as the select,
append, and insert functions. It is a good practice to use different levels
of indentation to differentiate which selection your function chain is being
applied on.

Manipulating the raw selection
Sometimes, though not very often, having access to D3 raw selection array might be beneficial
in development whether it's for debugging purposes or for integrating with other JavaScript
libraries which require access to raw DOM elements; in this recipe, we will show you ways to
do that. We will also see some internal structure of a D3 selection object.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter2/
raw-selection.html

Chapter 2

37

How to do it...
Of course you can achieve this by using the nth-child selector or selection iterator
function via each, but there are cases where these options are just too cumbersome
and inconvenient. This is when you might find dealing with raw selection array as a more
convenient approach. In this example, we will see how raw selection array can be accessed
and leveraged.

<table class="table">
 <thead>
 <tr>
 <th>Time</th>
 <th>Type</th>
 <th>Amount</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>10:22</td>
 <td>Purchase</td>
 <td>$10.00</td>
 </tr>
 <tr>
 <td>12:12</td>
 <td>Purchase</td>
 <td>$12.50</td>
 </tr>
 <tr>
 <td>14:11</td>
 <td>Expense</td>
 <td>$9.70</td>
 </tr>
 </tbody>
</table>

<script type="text/javascript">
 var rows = d3.selectAll("tr");// <-- A

 var headerElement = rows[0][0];// <-- B

 d3.select(headerElement).attr("class","table-header");// <--C

 d3.select(rows[0][1]).attr("class","table-row-odd"); //<-- D
 d3.select(rows[0][2]).attr("class","table-row-even"); //<-- E
 d3.select(rows[0][3]).attr("class","table-row-odd"); //<-- F
</script>

www.allitebooks.com

http://www.allitebooks.org

Be Selective

38

This recipe generates the following visual output:

Time Type Amount

10:22

12:12

14:11

Purchase

Purchase

Expense

$10.00

$12.50

$9.70

Raw selection manipulation

How it works...
In this example, we went through an existing HTML table to color the table. This is not
intended to be a good example of how you would color odd versus even rows in a table using
D3. Instead, this example is designed to show how raw selection array can be accessed.

A much better way to color odd and even rows in a table would be using the
each function and then relying on the index parameter i to do the job.

On line A, we select all rows and store the selection in the rows variable. D3 selection is
stored in a two-dimensional JavaScript array. The selected elements are stored in an array
then wrapped in a single element array. Thus in order to access the first selected element, you
need to use rows[0][0] and the second element can be accessed with rows[0][1]. As we
can see on line B, the table header element can be accessed using rows[0][0] and this will
return a DOM element object. Again as we have demonstrated in previous sections, any DOM
element can then be selected directly using d3.select as shown on line C. Line D, E, and F
demonstrate how each element in selection can be directly indexed and accessed.

Raw selection access could be handy in some cases; however since it relies on direct access
to D3 selection array it creates a structural dependency in your code. In other words, if in
future releases of D3 this structure ever changes, it will break your code that relies on it.
Hence, it is advised to avoid raw selection manipulation unless absolutely necessary.

This approach is usually not necessary however it might become handy under
certain circumstances such as in your unit-test cases when knowing the
absolute index for each element quickly and gaining a reference to them could
be convenient. We will cover unit-tests in a later chapter in more details.

3
Dealing with Data

In this chapter we will cover:

 f Binding array as data

 f Binding object literals as data

 f Binding functions as data

 f Working with arrays

 f Filtering with data

 f Sorting with data

 f Loading data from server

Introduction
In this chapter, we are going to explore the most essential question in any data visualization
project, how data can be represented both in programming constructs, and its visual
metaphor. Before we start on this topic, some discussion on what data visualization is is
necessary. In order to understand what data visualization is, first we need to understand the
difference between data and information.

Data are raw facts. The word raw indicates that the facts have not yet been
processed to reveal their meaning...Information is the result of processing raw data
to reveal its meaning.

(Rob P., S. Morris, and Coronel C. 2009)

This is how data and information are traditionally defined in the digital information world.
However, data visualization provides a much richer interpretation of this definition since
information is no longer the mere result of processed raw facts but rather a visual metaphor
of the facts. As suggested by Manuel Lima in his Information Visualization Manifesto that
design in the material world, where form is regarded to follow function.

Dealing with Data

40

The same data set can generate any number of visualizations which may lay equal claim
in terms of its validity. In a sense, visualization is more about communicating the creator's
insight into data than anything else. On a more provocative note, Card, McKinlay, and
Shneiderman suggested that the practice of information visualization can be described as:

The use of computer-supported, interactive, visual representations of abstract data
to amplify cognition.

(Card S. & Mackinly J. and Shneiderman B. 1999)

In the following sections, we will explore various techniques D3 provides to bridge the data
with the visual domain. It is the very first step we need to take before we can create a
cognition amplifier with our data.

The enter-update-exit pattern
The task of matching each datum with its visual representation, for example, drawing a
single bar for every data point you have in your data set, updating the bars when the data
points change, and then eventually removing the bars when certain data points no longer
exist, seems to be a complicated and tedious task. This is precisely why D3 was designed
to provide an ingenious way of simplifying the implementation of this connection. This way
of defining the connection between data and its visual representation is usually referred to
as the enter-update-exit pattern in D3. This pattern is profoundly different from the typical
imperative method most developers are familiar with. However, the understanding of this
pattern is crucial to your effectiveness with D3 library, and therefore, in this section, we will
focus on explaining the concept behind this pattern. First, let's take a look at the following
conceptual illustration of the two domains:

A
(Data)

B
(Visual)

Data and Visual Set

In the previous illustration, the two circles represent two joined sets. Set A depicts your data
set while set B represents the visual elements. This is essentially how D3 sees the connection
between your data and visual elements. You might be asking how elementary set theory is
going to help your data visualization effort here. Let me explain.

Chapter 3

41

Firstly, let us consider the question, how can I find all visual elements that currently represent
its corresponding data point? The answer is A∩B; this denotes the intersection of sets A and
B, the elements that exist in both Data and Visual domains.

A
(Data)

B
(Visual)

Update Mode

The shaded area represents the intersection between the two sets—A and B. In D3, the
selection.data function can be used to select this intersection—A∩B.

The selection.data(data) function, on a selection, sets up the connection between
the data domain and visual domain as we discussed above. The initial selection forms the
visual set B while the data provided in the data function forms the data set A respectively.
The return result of this function is a new selection (a data-bound selection) of all elements
existing in this intersection. Now, you can invoke the modifier function on this new selection
to update all the existing elements. This mode of selection is usually referred to as the
Update mode.

The second question we need to answer here is how can I locate data that has not yet been
visualized. The answer is the set difference of A and B, denoted as A\B, or visually, the
following illustration:

A
(Data)

B
(Visual)

Enter Mode

The shaded area in set A represents the data points that have not yet been visualized. In
order to gain access to this A\B subset, the following functions need to be performed on a
data-bound D3 selection (a selection returned by the data function).

Dealing with Data

42

The selection.data(data).enter() function returns a new selection representing
the A\B subset, which contains all the data that has not yet been represented in the visual
domain. The regular modifier function can then be chained to this new selection method to
create new visual elements representing the given data elements. This mode of selection is
simply referred to as the Enter mode.

The last case in our discussion covers the visual elements that exist in our data set but no
longer have any corresponding data element associated with them. You might ask how this
kind of visual element can exist in the first place. This is usually caused by removing the
elements from the data set. If you initially visualized all data elements within your data set,
after that you have removed some data elements. Now, you have certain visual elements that
are no longer representing any valid data point in your data set. This subset can be discovered
by using an inverse of the Update difference, denoted as B\A.

A
(Data)

B
(Visual)

Exit Mode

The shaded area in the previous illustration represents the difference we discussed here. The
subset can be selected using the selection.exit function on a data-bound selection.

The selection.data(data).exit function, when invoked on a data-bound D3 selection,
computes a new selection which contains all visual elements that are no longer associated
with any valid data element. As a valid D3 selection object, the modifier function can then
be chained to this selection to update and remove these visual elements that are no longer
needed as part of our visualization. This mode of selection is called the Exit mode.

Together, the three different selection modes cover all possible cases of interaction between
the data and visual domain. The enter-update-exit pattern is the cornerstone of any D3-driven
visualization. In the following recipes of this chapter, we will cover the topics on how these
selection methods can be utilized to generate data-driven visual elements efficiently and easily.

Chapter 3

43

Binding an array as data
One of the most common and popular ways to define data in D3 visualization is through the
use of JavaScript arrays. For example, say you have multiple data elements stored in an array,
and you want to generate corresponding visual elements to represent each and every one of
them. Additionally, when the data array gets updated, you want your visualization to reflect
such changes immediately. In this recipe, we will accomplish this common approach.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
array-as-data.html

How to do it...
The first and most natural solution that might come to mind is iterating through the data array
elements and generating their corresponding visual elements on the page. This is definitely a
valid solution and it will work with D3, however, the enter-update-exit pattern we discussed in
the introduction provides a much easier and more efficient way to generate visual elements.
Let's have a look at how we do that:

var data = [10, 15, 30, 50, 80, 65, 55, 30, 20, 10, 8]; // <- A

function render(data) { // <- B
 // Enter
 d3.select("body").selectAll("div.h-bar") // <- C
 .data(data) // <- D
 .enter() // <- E
 .append("div") // <- F
 .attr("class", "h-bar")
 .append("span"); // <- G

 // Update
 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .style("width", function (d) { // <- H
 return (d * 3) + "px";
 })
 .select("span") // <- I
 .text(function (d) {
 return d;
 });

 // Exit

Dealing with Data

44

 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .exit() // <- J
 .remove();
 }

 setInterval(function () { // <- K
 data.shift();
 data.push(Math.round(Math.random() * 100));

 render(data);
 }, 1500);

 render(data);

This recipe generates the following visual output:

10
15

30
50

80
65

55
30

20
10
8

Data as Array

How it works...
In this example, data (a list of integers in this case) is stored in a simple JavaScript array as
shown on the line marked as A with an arrow left of it. The render function is defined on the
line marked as B so that it can be repeatedly invoked to update our visualization. The Enter
selection implementation starts on the line marked as C, which selects all div elements on
the web page with h-bar CSS class. You are probably wondering why we are selecting these
div elements since they don't even exist on the web page yet. This is in fact true; however,
the selection at this point is used to define the visual set we discussed in the introduction.
By issuing this selection that we made in the previous line we are essentially declaring that
there should be a set of div.h-bar elements on the web page to form our visual set. On the
line marked as D, we invoke the data function on this initial selection to bind the array as our
data set to the to-be-created visual elements. Once the two sets are defined, the enter()
function can be used to select all data elements that are not yet visualized. When the render
function is invoked for the very first time, it returns all elements in the data array, as shown in
the following code snippet:

Chapter 3

45

 d3.select("body").selectAll("div.h-bar") // <- C
 .data(data) // <- D
 .enter() // <- E
 .append("div") // <- F
 .attr("class", "h-bar")
 .append("span"); // <- G

On line F, a new div element is created and appended to the body element of each data
element selected in the enter function; this essentially creates one div element for each
data element. Finally, on line G, an element called span is created and appended to the
div element and we set its CSS class to h-bar. At this point, we have basically created the
skeleton of our visualization including empty div and span elements. Next step is to change
the visual attributes of our elements based on the given data.

D3 injects a property to the DOM element named __data__ to make data
sticky with visual elements so when selections are made using a modified
data set, D3 can compute the difference and intersection correctly. You can
see this property easily if you inspect the DOM element either visually using a
debugger or programmatically.

As illustrated by the preceding screenshot, this is a very useful fact to know
when you are debugging your visualization implementation.

In the Update section of array-as-data.html, the first two lines are identical to what
we have done in the Enter section, and this essentially defines our data set and visual set
respectively. The major difference here is on line H. Instead of calling the enter function,
as we did in the code mentioned under Enter in the previous paragraphs, in the Update
mode we directly apply modifier functions to the selection made by the data function. In the
Update mode, data function returns the intersection between the data set and visual set
(A∩B). On line H, we apply a dynamic style attribute width to be three times the integer value
associated with each visual element shown in the following code snippet:

 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .style("width", function (d) { // <- H
 return (d * 3) + "px";
 })
 .select("span") // <- I
 .text(function (d) {
 return d;
 });

Dealing with Data

46

All D3 modifier functions accept this type of dynamic function to compute its value on the
fly. This is precisely what it means to "data drive" your visualization. Hence, it is crucial to
understand what this function is designed to achieve in our example. This function receives a
parameter d, which is the datum associated with the current element. In our example, the first
div bar has the value 10 associated as its datum, while the second bar has 15, and so on.
Therefore, this function essentially computes a numeric value that is three times the datum
for each bar and returns it as the width in pixels.

Another interesting point worth mentioning here is on line I, where we mention the span
attribute. The child span element can also use dynamic modifier functions and has access
to the same datum propagated from its parent element. This is the default behavior of D3
data binding. Any element you append to a data-bound element automatically inherits the
parent's datum.

The dynamic modifier function actually accepts two parameters d and
i. The first parameter d is the associated datum we have discussed here
and i is a zero-based index number for the current element. Some recipes
in the previous chapter have relied on this index, and in the rest of this
chapter, we will see other recipes that utilize this index in different ways.

This is the raw HTML code resulted from this update process:

<div class="h-bar" style="width: 30px;">
10
</div>
<div class="h-bar" style="width: 45px;">
15
</div>
....
<div class="h-bar" style="width: 24px;">
8
 </div>

Elements created and appended in the enter mode, that is, on line F
and G, are automatically added to the update set. So, there is no need
to repeat visual attributes modification logic in both enter and update
section of code.

Chapter 3

47

The last section—Exit section—is fairly simple as shown here:

 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .exit() // <- J
 .remove();

The selection returned by the exit() function is just like any other
selection. Therefore, although remove is the most common action
used against the exit selection, you can also apply other modifiers or
transitions to this selection. We will explore some of these options in
later chapters.

On line J, the exit() function is called to compute the set difference of all visual elements
that are no longer associated with any data. Finally, the remove() function is called on this
selection to remove all the elements selected by the exit() function. This way, as long as we
call the render() function after we change our data, we can always ensure that our visual
representation and data are kept synchronized.

Now, the last block of code is as follows:

setInterval(function () { // <- K
 data.shift();
 data.push(Math.round(Math.random() * 100));
 render(data);
 }, 1500);

On line K, a simple function called function() was created to remove the top element in
the data array using the shift function, while appending a random integer to the data array
using the push() function every 1.5 seconds. Once the data array is updated, the render()
function is called again to update our visualization keeping it synchronized with the new data
set. This is what gives our example its animated bar chart look.

Binding object literals as data
With a more complex visualization, each element we have in a data array might not be a
primitive integer value or a string, but a JavaScript object themselves. In this recipe, we will
discuss how this more complex data structure can be leveraged to drive your visualization
using D3.

Dealing with Data

48

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
object-as-data.html

How to do it...
JavaScript object literal is probably the most common data structure you will encounter when
loading data sources on the Web. In this recipe, we will look at how these JavaScript objects
can be leveraged to generate rich visualization. Here is how to do it in code:

var data = [// <- A
 {width: 10, color: 23},{width: 15, color: 33},
 {width: 30, color: 40},{width: 50, color: 60},
 {width: 80, color: 22},{width: 65, color: 10},
 {width: 55, color: 5},{width: 30, color: 30},
 {width: 20, color: 60},{width: 10, color: 90},
 {width: 8, color: 10}
];

var colorScale = d3.scale.linear()
.domain([0, 100]).range(["#add8e6", "blue"]); // <- B

 function render(data) {
 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .enter().append("div")
 .attr("class", "h-bar")
 .append("span");

 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .exit().remove();

 d3.select("body").selectAll("div.h-bar")
 .data(data)
 .attr("class", "h-bar")
 .style("width", function (d) { // <- C
 return (d.width * 5) + "px"; // <- D
 })
 .style("background-color", function(d){
 return colorScale(d.color); // <- E
 })

Chapter 3

49

 .select("span")
 .text(function (d) {
 return d.width; // <- F
 });
 }

 function randomValue() {
 return Math.round(Math.random() * 100);
 }

 setInterval(function () {
 data.shift();
 data.push({width: randomValue(), color: randomValue()});
 render(data);
 }, 1500);

 render(data);

This recipe generates the following visualization:

10
15

30
50

80
65

55
30

20
10
8

Data as Object

How it works...
In this recipe, instead of simple integers as in the previous recipe, now our data array is filled
with objects (see the line marked as A with an arrow left to it). Each data object contains two
attributes—width and color—that are both integers in this case.

This recipe is built on top of the previous recipe so if you are not familiar
with the fundamental enter-update-exit selection pattern, please review
the previous recipe first.

Dealing with Data

50

 var data = [// <- A

 {width: 10, color: 23},{width: 15, color: 33},
...
 {width: 8, color: 10}
];

On line B, we have a complicated-looking color scale defined. Scales,
including color scale, will be discussed in depth in the next chapter,
so for now let us just assume this is a scale function we can use to
produce CSS-compatible color code given some integer input value.
This is sufficient for the purpose of this recipe.

The major difference between this recipe and the previous one is how data is handled as
shown on line C:

function (d) { // <- C
return (d.width * 5) + "px"; // <- D
}

As we can see in the preceding code snippet, in this recipe the datum associated with each
visual element is actually an object, not an integer. Therefore, we can access the d.width
attribute on line D.

If your object has functions of its own, you can also access them here in a
dynamic modifier function. This is a convenient way to add some data-specific
helper functions in your data source. However, beware that since dynamic
functions are usually invoked numerous times during visualization, the
function you rely on should be implemented as efficiently as possible. If this
is not possible, then it is best to preprocess your data before binding them to
your visualization process.

Similarly on line E, the background-color style can be computed using the d.color
attribute with the color scale we defined earlier:

.style("background-color", function(d){
 return colorScale(d.color); // <- E
})
.select("span")
 .text(function (d) {
 return d.width; // <- F
 });

Chapter 3

51

The child element span again inherits its parent's associated datum, and hence, it also has
access to the same datum object in its dynamic modifier function on line F setting the textual
content to d.width attribute.

This recipe demonstrates how JavaScript objects can easily be bound to visual elements using
exactly the same method discussed in the previous recipe. This is one of the most powerful
capabilities of the D3 library; it allows you to re-use the same pattern and method to handle
different types of data, simple or complex. We will see more examples on this topic in the
next recipe.

Binding functions as data
One of the benefits of D3's excellent support for functional style JavaScript programming is
that it allows functions to be treated as data as well. This particular feature can offer some
very powerful capabilities under certain circumstances. This is a more advanced recipe. Don't
worry about it if you are new to D3 and having some difficulty understanding it at first. Over
time, this kind of usage will become natural to you.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
function-as-data.html

How to do it...
In this recipe, we will explore the possibility of binding functions themselves as data to your
visual elements. This capability is extremely powerful and flexible if used correctly:

<div id="container"></div>

<script type="text/javascript">
 var data = []; // <- A

 var next = function (x) { // <- B
 return 15 + x * x;
 };

 var newData = function () { // <- C
 data.push(next);
 return data;
 };

 function render(){

Dealing with Data

52

 var selection = d3.select("#container")
 .selectAll("div")
 .data(newData); // <- D

 selection.enter().append("div").append("span");

 selection.exit().remove();

 selection.attr("class", "v-bar")
 .style("height", function (d, i) {
 return d(i)+"px"; // <- E
 })
 .select("span")
 .text(function(d, i){
 return d(i); } // <- F
);
 }

 setInterval(function () {
 render();
 }, 1500);

 render();
</script>

This preceding code produces the following bar chart:

15 16 19 24 31 40 51 64 79 98 115 138 159 184 211 240 271 304 339

Data as Function

Chapter 3

53

How it works...
In this recipe, we chose to visualize the output of formula 15 + x * x using a series of
vertical bars, each of them annotated with its representing integral value. This visualization
adds a new bar to the right of the previous one every one and a half seconds. We can of
course implement this visualization using the techniques we have discussed in the previous
two recipes. So we generated an array of integers using the formula, then just appended a
new integer from n to n+1 every 1.5 seconds before re-rendering the visualization. However, in
this recipe, we decided to take a more functional approach.

This time we started with an empty data array on line A. On line B, a simple function is defined
to calculate the result of this formula 15+x^2. Then on line C, another function is created to
generate the current data set which contains n+1 references to the next function. Here is the
code for functional data definition:

 var data = []; // <- A

 var next = function (x) { // <- B
 return 15 + x * x;
 };

 var newData = function () { // <- C
 data.push(next);
 return data;
 };

This seems to be a strange setup to achieve our visualizational goal. Let's see how we
can leverage all these functions in our visualization code. On line D, we bind our data to a
selection of div elements just as we did in previous recipes. However, this time the data is
not an array but rather the newData function:

 var selection = d3.select("#container")
 .selectAll("div")
 .data(newData); // <- D

D3 is pretty flexible when it comes to data. If you provide a function to the data function,
D3 will simply invoke the given function and use the returned value of this function as a
parameter of the data function. In this case, the data being returned by the newData
function is an array of function references. As the result of this, now in our dynamic modifier
function, on line E and F, the datum d that is being passed into these functions are actually
references to the next function, as shown in the following code:

 selection.attr("class", "v-bar")
 .style("height", function (d, i) {
 return d(i)+"px"; // <- E
 })
 .select("span")

Dealing with Data

54

 .text(function(d, i){
 return d(i); } // <- F
);

As a reference to a function, d can now be invoked with index i as the parameter, which in
turn generates the output of the formula needed for our visualization.

In JavaScript, functions are special objects, so semantically this is exactly
the same as binding objects as data. Another note on this topic is that data
can also be considered as functions. Constant values such as integers can
be thought of as a static function that simply returns what it receives with
no modification made.

This technique might not be the most commonly-used technique in visualization, but when
used properly, it is extremely flexible and powerful, especially when you have a fluid data set.

Datum function typically needs to be idempotent to make sense.
Idempotence is the property of being able to apply the same function
with the same inputs multiple times without changing the result
beyond the initial application. For more detail on idempotence visit:
http://en.wikipedia.org/wiki/Idempotence

Working with arrays
Most of our data is stored in arrays, and we spend a lot of our effort working with arrays
to format and restructure data. This is why D3 provides a rich set of array-oriented utilities
functions, making this task a lot easier. In this recipe, we will explore some of the most
common and helpful utilities in this aspect.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
working-with-array.html

How to do it...
The following code example shows some of the most common and helpful array utility
functions offered by the D3 library and their effects:

<script type="text/javascript">

 // Static html code were omitted due to space constraint

Chapter 3

55

 var array = [3, 2, 11, 7, 6, 4, 10, 8, 15];

 d3.select("#min").text(d3.min(array));
 d3.select("#max").text(d3.max(array));
 d3.select("#extent").text(d3.extent(array));
 d3.select("#sum").text(d3.sum(array));
 d3.select("#median").text(d3.median(array));
 d3.select("#mean").text(d3.mean(array));
 d3.select("#asc").text(array.sort(d3.ascending));
d3.select("#desc").text(array.sort(d3.descending));
d3.select("#quantile").text(
d3.quantile(array.sort(d3.ascending), 0.25)
);
d3.select("#bisect").text(
d3.bisect(array.sort(d3.ascending), 6)
);

 var records = [
 {quantity: 2, total: 190, tip: 100, type: "tab"},
 {quantity: 2, total: 190, tip: 100, type: "tab"},
 {quantity: 1, total: 300, tip: 200, type: "visa"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 1, total: 100, tip: 0, type: "cash"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 2, total: 90, tip: 0, type: "tab"},
 {quantity: 2, total: 200, tip: 0, type: "cash"},
 {quantity: 1, total: 200, tip: 100, type: "visa"}
];

 var nest = d3.nest()
 .key(function (d) { // <- A
 return d.type;
 })
 .key(function (d) { // <- B
 return d.tip;
 })
 .entries(records); // <- C

 d3.select("#nest").html(printNest(nest, ""));

Dealing with Data

56

 function printNest(nest, out, i) {
 if(i === undefined) i = 0;

 var tab = "";
 for(var j = 0; j < i; ++j)
 tab += " ";

 nest.forEach(function (e) {
 if (e.key)
 out += tab + e.key + "
";
 else
 out += tab + printObject(e) + "
";

 if (e.values)
 out = printNest(e.values, out, ++i);
 else
 return out;
 });

 return out;
 }

 function printObject(obj) {
 var s = "{";
 for (var f in obj) {
 s += f + ": " + obj[f] + ", ";
 }
 s += "}";
 return s;
 }
</script>

The preceding code produces the following output:

d3.min => 2
d3.max => 15
d3.extent => 2,15
d3.sum => 66
d3.median => 7
d3.mean => 7.333333333333333
array.sort(d3.ascending) => 2,3,4,6,7,8,10,11,15
array.sort(d3.descending) => 15,11,10,8,7,6,4,3,2
d3.quantile(array.sort(d3.ascending), 0.25) => 4
d3.bisect(array.sort(d3.ascending), 6) => 4

Chapter 3

57

tab
 100
 {quantity: 2, total: 190, tip: 100, type: tab, }
 {quantity: 2, total: 190, tip: 100, type: tab, }
 0
 {quantity: 2, total: 90, tip: 0, type: tab, }
 {quantity: 2, total: 90, tip: 0, type: tab, }
 {quantity: 2, total: 90, tip: 0, type: tab, }
 {quantity: 2, total: 90, tip: 0, type: tab, }
 {quantity: 2, total: 90, tip: 0, type: tab, }
 {quantity: 2, total: 90, tip: 0, type: tab, }
visa
 200
 {quantity: 1, total: 300, tip: 200, type: visa, }
 100
 {quantity: 1, total: 200, tip: 100, type: visa, }
cash, }
 0
 {quantity: 1, total: 100, tip: 0, type: cash, }
 {quantity: 2, total: 200, tip: 0, type: cash, }

How it works...
D3 provides a variety of utility functions to help perform operations on JavaScript arrays. Most
of them are pretty intuitive and straightforward, however, there are a few intrinsic ones. We
will discuss them briefly in this section.

Given our array as [3, 2, 11, 7, 6, 4, 10, 8, 15]:

 f d3.min: This function retrieves the smallest element, that is, 2

 f d3.max: This function retrieve the largest element, that is, 15

 f d3.extent: This function retrieves both the smallest and the largest element, that
is, [2, 15]

 f d3.sum: This function retrieves the addition of all elements in the array, that is, 66

 f d3.medium: This function finds the medium, that is, 7

 f d3.mean: This function calculates the mean value, that is, 7.33

 f d3.ascending / d3.descending: The d3 object comes with a built-in comparator
function that you can use to sort the JavaScript array
d3.ascending = function(a, b) { return a < b ? -1 : a >
 b ? 1 : 0; }
d3.descending = function(a, b) { return b < a ? -1 : b
 > a ? 1 : 0; }

Dealing with Data

58

 f d3.quantile: This function calculates the quantile on an already sorted array in
ascending order, that is, quantile of 0.25 is 4

 f d3.bisect: This function finds an insertion point that comes after (to the right of) any
existing element of an already sorted array, that is, bisect (array, 6) produce 4

 f d3.nest: D3's nest function can be used to build an algorithm that transforms a
flat array-based data structure into a hierarchical nested structure, that is, particularly
suitable for some types of visualization. D3's nest function can be configured using
the key function chained to nest, as seen on lines A and B:

 var nest = d3.nest()
 .key(function (d) { // <- A
 return d.type;
 })
 .key(function (d) { // <- B
 return d.tip;
 })
 .entries(records); // <- C

Multiple key functions can be provided to generate multiple levels of nesting. In our
case the nesting consists of two levels, first by the type amount and then by the tip
amount, as demonstrated in the output below:
tab
 100
 {quantity: 2, total: 190, tip: 100, type: tab, }
 {quantity: 2, total: 190, tip: 100, type: tab, }

Finally, the entries() function is used to supply the flat array-based data set as
shown on line C.

Filtering with data
Imagine you need to filter D3 selection based on the associated data elements so that you
can hide/show different sub-datasets based on the user's input. D3 selection provides a filter
function to perform this kind of data-driven filtering. In this recipe, we will show you how this
can be leveraged to filter visual elements in a data-driven fashion.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
data-filter.html

Chapter 3

59

How to do it...
The following example code shows how data-based filtering can be leveraged to highlight
different visual elements based on its categorization:

<script type="text/javascript">
 var data = [// <-A
 {expense: 10, category: "Retail"},
 {expense: 15, category: "Gas"},
 {expense: 30, category: "Retail"},
 {expense: 50, category: "Dining"},
 {expense: 80, category: "Gas"},
 {expense: 65, category: "Retail"},
 {expense: 55, category: "Gas"},
 {expense: 30, category: "Dining"},
 {expense: 20, category: "Retail"},
 {expense: 10, category: "Dining"},
 {expense: 8, category: "Gas"}
];
 function render(data, category) {
 d3.select("body").selectAll("div.h-bar") // <-B
 .data(data)
 .enter()
 .append("div")
 .attr("class", "h-bar")
 .append("span");

 d3.select("body").selectAll("div.h-bar") // <-C
 .data(data)
 .exit().remove();

 d3.select("body").selectAll("div.h-bar") // <-D
 .data(data)
 .attr("class", "h-bar")
 .style("width", function (d) {
 return (d.expense * 5) + "px";}
)
 .select("span")
 .text(function (d) {
 return d.category;
 });

 d3.select("body").selectAll("div.h-bar")
 .filter(function (d, i) { // <-E

Dealing with Data

60

 return d.category == category;
 })
 .classed("selected", true);
 }

 render(data);

 function select(category) {
 render(data, category);
 }
</script>

<div class="control-group">
 <button onclick="select('Retail')">
 Retail
 </button>
 <button onclick="select('Gas')">
 Gas
 </button>
 <button onclick="select('Dining')">
 Dining
 </button>
 <button onclick="select()">
 Clear
 </button>
</div>

The preceding code generates the following visual output once the Dinning button is clicked:

Retail
Gas

Retail
Dining

Gas
Retail

Gas
Dining

Retail
Dining
Gas

Retail Gas Dining Clear

Data-based Filtering

Chapter 3

61

How it works...
In this recipe, we have a data set consisting of a list of personal expense records with
expense and category as attributes, which is shown on the block of code marked as
A. On line B, C, and D, a set of horizontal bars (HTML div) were created using the standard
enter-update-exit pattern to represent the expense records. So far, this recipe is similar to the
Binding object literals as data recipe. Now let's take a look at line E:

filter(function (d, i) { // <-E
 return d.category == category;
})

D3 selection.filter function takes a function as its parameter. It applies the function
against every element in the existing selection. The given function for filter takes two
parameters with a hidden reference:

 f d: It is the datum associated with the current element

 f i: It is a zero-based index for the current element

 f this: This has the hidden reference points to the current DOM element

D3 selection.filter function expects the given function to return a Boolean value. If
the returned value is true, the corresponding element will be included into the new selection
being returned by the filter function. In our example, the filter function essentially
selects all bars that match the user-selected category and applies a CSS class selected to
each one of them. This method provides you a powerful way to filter and generate data-driven
sub-selection, which you can further manipulate or dissect to generate focused visualization.

D3 selection.filter function treats the returned value using JavaScript
truthy and falsy tests, thus not exactly expecting a strict Boolean value. What
this means is that false, null, 0, "", undefined, and NaN (not a number) are all
treated as false while other things are considered true.

Sorting with data
In many cases, it is desirable to sort your visual elements according to the data they represent
so that you can highlight the significance of different elements visually. In this recipe, we will
explore how this can be achieved in D3.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
data-sort.html

Dealing with Data

62

How to do it...
Let's see how data-driven sorting and further manipulation can be performed using D3. In this
example, we will sort the bar chart we created in the previous recipe based on either expense
(width) or category using user's input:

<script type="text/javascript">
 var data = [// <-A
 {expense: 10, category: "Retail"},
 {expense: 15, category: "Gas"},
 {expense: 30, category: "Retail"},
 {expense: 50, category: "Dining"},
 {expense: 80, category: "Gas"},
 {expense: 65, category: "Retail"},
 {expense: 55, category: "Gas"},
 {expense: 30, category: "Dining"},
 {expense: 20, category: "Retail"},
 {expense: 10, category: "Dining"},
 {expense: 8, category: "Gas"}
];

 function render(data, comparator) {
 d3.select("body").selectAll("div.h-bar") // <-B
 .data(data)
 .enter().append("div")
 .attr("class", "h-bar")
 .append("span");

 d3.select("body").selectAll("div.h-bar") // <-C
 .data(data)
 .exit().remove();

 d3.select("body").selectAll("div.h-bar") // <-D
 .data(data)
 .attr("class", "h-bar")
 .style("width", function (d) {
 return (d.expense * 5) + "px";
 })
 .select("span")
 .text(function (d) {
 return d.category;
 });

 if(comparator)
 d3.select("body")
 .selectAll("div.h-bar")

Chapter 3

63

 .sort(comparator); // <-E
 }

 var compareByExpense = function (a, b) { // <-F
 return a.expense < b.expense?-1:1;
 };
 var compareByCategory = function (a, b) { // <-G
 return a.category < b.category?-1:1;
 };

 render(data);

 function sort(comparator) {
 render(data, comparator);
 }
</script>

<div class="control-group">
 <button onclick="sort(compareByExpense)">
 Sort by Width
 </button>
 <button onclick="sort(compareByCategory)">
 Sort by Category
 </button>
 <button onclick="sort()">
 Clear
 </button>
</div>

This preceding code generates sorted horizontal bars as shown in the following screenshot:

Gas
Dining
Retail

Gas
Retail

Dining
Retail

Dining
Gas

Retail
Gas

Sort by CategorySort by Width Clear

Data-based Sorting

Dealing with Data

64

How it works...
In this recipe, we set up a simple row-based visualization (in line B, C, and D) of some
simulated personal expense records containing two attributes: expense and category that
are defined on line A. This is exactly the same as the previous recipe and quite similar to what
we have done in the Binding object literals as data recipe. Once the basics are done, we then
select all existing bars on line E and perform sorting using D3 selection.sort function:

d3.select("body")
 .selectAll("div.h-bar")
 .sort(comparator); // <-E

The selection.sort function accepts a comparator function:

var compareByExpense = function (a, b) { // <-F
 return a.expense < b.expense?-1:1;
};
var compareByCategory = function (a, b) { // <-G
 return a.category < b.category?-1:1;
};

The comparator function receives two data elements a and b to compare, returning either a
negative, positive, or zero value. If the value is negative, a will be placed before b; if positive,
a will be placed after b; otherwise, a and b are considered equal and the order is arbitrary.
The sort() function returns a new selection with all elements sorted in an order which is
determined by the specified comparator function. The newly-returned selection can then be
manipulated further to generate the desired visualization.

Because a and b are placed arbitrarily when they are equal, D3
selection.sort is not guaranteed to be stable, however, it is guaranteed
to be consistent with your browser's built-in sort method on arrays.

Loading data from a server
It is probably very rare that you will only be visualizing static local data. The power of data
visualization usually lays on the ability to visualize dynamic data typically generated by a
server-side program. Since this is a common use case, D3 comes with some handy helper
functions to make this task as easy as possible. In this recipe, we will see how a remote data
set can be loaded dynamically, and we will update an existing visualization once loaded.

Chapter 3

65

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter3/
asyn-data-load.html

How to do it...
In the code example of the asyn-data-load.html file, we will load data dynamically from
the server on user's request, and once the data is loaded, we also update our visualization to
reflect the new expanded data set. Here is the code where we do that:

<script type="text/javascript">
 var data = [// <-A
 {expense: 10, category: "Retail"},
 {expense: 15, category: "Gas"},
 {expense: 30, category: "Retail"},
 {expense: 50, category: "Dining"},
 {expense: 80, category: "Gas"},
 {expense: 65, category: "Retail"},
 {expense: 55, category: "Gas"},
 {expense: 30, category: "Dining"},
 {expense: 20, category: "Retail"},
 {expense: 10, category: "Dining"},
 {expense: 8, category: "Gas"}
];

 function render(data) {
 d3.select("#chart").selectAll("div.h-bar") // <-B
 .data(data)
 .enter().append("div")
 .attr("class", "h-bar")
 .append("span");

 d3.select("#chart").selectAll("div.h-bar") // <-C
 .data(data)
 .exit().remove();

 d3.select("#chart").selectAll("div.h-bar") // <-D
 .data(data)
 .attr("class", "h-bar")

Dealing with Data

66

 .style("width", function (d) {
 return (d.expense * 5) + "px";
 })
 .select("span")
 .text(function (d) {
 return d.category;
 });
 }

 render(data);

 function load(){ // <-E
 d3.json("data.json", function(error, json){ // <-F
 data = data.concat(json);
 render(data);
 });
 }
</script>

<div class="control-group">
 <button onclick="load()">Load Data from JSON feed</button>
</div>

Here is what our data.json file looks like:

[
 {"expense": 15, "category": "Retail"},
 {"expense": 18, "category": "Gas"},
 ...
 {"expense": 15, "category": "Gas"}
]

Chapter 3

67

This recipe generates the following visual output after clicking the Load Data from JSON feed
button once:

Retail
Gas

Retail
Dining

Gas
Retail

Gas
Dining

Retail
Dining
Gas

Retail
Gas

Retail
Gas

Retail
Gas

Dining
Dining

Dining
Retail

Gas

Load Data from JSON feed

Data Loading from Server

How it works...
In this recipe, we initially have a local data set defined on the line marked as A, and a row-
based visualization generated by lines B, C, and D. The load function is defined on line E that
responds to the user's click on the Load Data from JSON feed button, which loads the data
from a separate file (data.json) served by the server. This is achieved by using the d3.json
function as shown on line F:

 function load(){ // <-E
 d3.json("data.json", function(error, json){ // <-F
 data = data.concat(json);
 render(data);
 });
 }

Dealing with Data

68

Since loading a remote data set from a JSON file could take some time, it is performed
asynchronously. Once loaded, the data set will be passed to the given handler function, which
is specified on line F. In this function, we simply concatenate the newly loaded data with our
existing data set, then re-render the visualization to update the display.

Similar functions are also provided by D3 to make the loading of CSV,
TSV, TXT, HTML, and XML data a simple task.

If a more customized and specific control is required, the d3.xhr function can be used to
further customize the MIME type and request headers. Behind the scenes, d3.json and
d3.csv are both using d3.xhr to generate the actual request.

Of course this is by no means the only way to load remote data from the server. D3 does not
dictate how data should be loaded from the remote server. You are free to use your favorite
JavaScript libraries, for example, jQuery or Zepto.js to issue an Ajax request and load a remote
data set.

4
Tipping the Scales

In this chapter we will cover:

 f Using quantitative scales

 f Using time scale

 f Using ordinal scale

 f Interpolating string

 f Interpolating colors

 f Interpolating compound object

 f Implementing custom interpolator

Introduction
As a data visualization developer, one key task that you need to perform over and over is to
map values from your data domain to visual domain, for example, mapping your most recent
purchase of a fancy tablet of $453.00 to a 653px-long bar, and your last night's pub bill
of $23.59 to a 34px-long bar, respectively. In a sense, this is what data visualization is all
about—mapping data elements to their visual metaphor in an efficient and accurate manner.
Because this is an absolutely essential task in data visualization and animation (animation
will be discussed in Chapter 6, Transition with Style, in detail), D3 provides rich and robust
support on this topic, which is the focus of this chapter.

Tipping the Scales

70

What are scales?
D3 provides various constructs called scales to help you perform this kind of mapping.
Proper understanding of these constructs conceptually is crucial to become an effective
visualization developer. This is because scales are not only used to perform the mapping we
have mentioned previously, but also to serve as fundamental building blocks for many other
D3 constructs, such as transition and axes.

What are these scales anyway?

In short, scales can be thought of as mathematical functions. Mathematical functions differ
from functions defined in imperative programming languages, such as JavaScript functions. In
mathematics, a function is defined as mapping between two sets:

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly
one element of B to each element of A. We write f(a) = b if b is the unique element
of B assigned by the function f to the element a of A.

(Rosen K. H. 2007)

Despite the dryness of this definition, we still could not help but notice how nicely it fits the
task we need to perform—mapping elements from the data domain to visual domain.

Another fundamentally important concept we need to illustrate here is the domain and range
of a given function.

If f is a function from A to B, we say that A is the domain of f and B is the codomain
of f. If f(a) = b, we say that b is the image of a and a is a preimage of b. The range,
or image, of f is the set of all images of elements of A. Also, if f is a function from A
to B, we say that f maps A to B.

(Rosen K. H. 2007)

To help us understand this concept, let's take a look at the following illustration:

a

A

b= (a)f

B

f

f

Function f maps A to B

Chapter 4

71

We can clearly see now, in the preceding illustration for function f, the domain is set A and
the range is set B. Imagine if set A represents our data domain and B represents the visual
domain, then a function f defined here is essentially a scale in D3 that maps elements from
set A to set B.

For the mathematically inclined readers, scale function in data visualization
are usually one-to-one but not onto functions. This is a useful insight to
know but not critical to the purpose of this book. Therefore, we will not
discuss it further here.

Now, we have discussed the conceptual definition of scale functions in D3, so let's take a look
at how it can be used to help us develop our visualization project.

Using quantitative scales
In this recipe, we will examine the most commonly-used scales provided by D3—the
quantitative scales including linear, power, and logarithmic scales.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
quantitative-scales.html

How to do it...
Let's take a look at the following code example:

<div id="linear" class="clear">n</div>
<div id="linear-capped" class="clear">
 1 <= a*n + b <= 20
</div>
<div id="pow" class="clear">n^2</div>
<div id="pow-capped" class="clear">
 1 <= a*n^2 + b <= 10
</div>
<div id="log" class="clear">log(n)</div>
<div id="log-capped" class="clear">
 1 <= a*log(n) + b <= 10
</div>

Tipping the Scales

72

<script type="text/javascript">
 var max = 11, data = [];
 for (var i = 1; i < max; ++i) data.push(i);

 var linear = d3.scale.linear() // <-A
 .domain([1, 10]) // <-B
 .range([1, 10]); // <-C
 var linearCapped = d3.scale.linear()
 .domain([1, 10])
 .range([1, 20]); // <-D

 var pow = d3.scale.pow().exponent(2); // <-E
 var powCapped = d3.scale.pow() // <-F
 .exponent(2)
 .domain([1, 10])
 .rangeRound([1, 10]); // <-G

 var log = d3.scale.log(); // <-H
 var logCapped = d3.scale.log() // <-I
 .domain([1, 10])
 .rangeRound([1, 10]);

 function render(data, scale, selector) {
 d3.select(selector).selectAll("div.cell")
 .data(data)
 .enter().append("div").classed("cell", true);

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .style("display", "inline-block")
 .text(function (d) {
 return d3.round(scale(d), 2);
 });
 }

 render(data, linear, "#linear");
 render(data, linearCapped, "#linear-capped");
 render(data, pow, "#pow");

Chapter 4

73

 render(data, powCapped, "#pow-capped");
 render(data, log, "#log");
 render(data, logCapped, "#log-capped");
</script>

The preceding code generates the following output in your browser:

1 2 3 4 5 6 7 8 10

1 3.11 5.22 7.33 9.44 11.56 13.67 15.78 17.89 20

1 4 9 16 25 36 49 64 81 100

1 1 2 2 3 4 5 7 8 10

0 0.3 0.48 0.6 0.7 0.78 0.85 0.9 0.95 1

1 4 5 6 7 8 9 9 10 10

9 n

1<=a*n + b<= 20

n^2

1 <=a*n^2 + b<= 10

log(n)

1 <=a*log(n) + b <= 10

Quantitative scale output

How it works...
In this recipe, we have demonstrated some of the most common scales provided by D3.

Linear Scale

In the preceding code example, we have our data array filled with integers from 0 to 10—
as shown on the line marked as A—we created a linear scale by calling the d3.scale.
linear() function. This returns a linear quantitative scale with the default domain set
to [0, 1] and the default range set to [0, 1]. Thus the default scale is essentially the
identity function for numbers. Therefore, this default function is not that useful to us, but
typically needs to be further customized by using its domain and range functions on line B
and C. In this case, we set them both to [1, 10]. This scale basically defines the function
f(n) = n.

 var linear = d3.scale.linear() // <-A
 .domain([1, 10]) // <-B
 .range([1, 10]); // <-C

1 2 3 4 5 6 7 8 109 n

Identity scale

Tipping the Scales

74

The second linear scale is a little bit more interesting and it illustrates the mapping between
two sets better. On line D, we set the range as [1, 20], which is different from its domain.
Hence, now this function is essentially representing the following equations:

 f f(n) = a * n + b

 f 1 <= f(n) <= 20

This is by far the most common case when using D3 scales because your data set will be an
identical match of your visual set.

 var linearCapped = d3.scale.linear()
 .domain([1, 10])
 .range([1, 20]); // <-D

1 3.11 5.22 7.33 9.44 11.56 13.67 15.78 17.89 20 1<=a*n + b<= 20

Linear scale

In this second scale, D3 will automatically calculate and assign the value of constants a and b
to satisfy the equation.

Some basic algebraic calculation will tell you that a is approximately 2.11
and b is -1.11, as in the previous example.

Pow Scale

The second scale we have created is a power scale. On line E, we defined a power scale with
exponent of 2. The d3.scale.pow() function returns a default power scale function with
its exponent set as 1. This scale effectively defines the function f(n) = n^2.

 var pow = d3.scale.pow().exponent(2); // <-E

1 4 9 16 25 36 49 64 81 100 n^21 4 9 16 25 36 49 64 81 100 n^2

Simple power scale

On line F, a second power scale was defined, this time with a different range set on line G with
rounding; the rangeRound() function works pretty much the same as the range() function,
which sets the range for a scale. However, the rangeRound function rounds the output
number so that there are no decimal fractions. This is very handy since scales are commonly
used to map elements from the data domain to visual domain. So, the output of a scale is
very likely to be a number describing some visual characteristics, for example, the number of
pixels. Avoiding sub-pixel numbers is a useful technique that prevents anti-alias in rendering.

Chapter 4

75

The second power scale defines the following function f(n) = a*n^2 + b, 1 <= f(n) <= 10.

 var powCapped = d3.scale.pow() // <-F
 .exponent(2)
 .domain([1, 10])
 .rangeRound([1, 10]); // <-G

1 1 2 2 3 4 5 7 8 10 1 <=a*n^2 + b<= 10

Power scale

Similar to the linear scale, D3 will automatically find the suitable constants a and b to satisfy
the constraints defined by domain and range on a power scale.

Log Scale

On line H, a third kind of quantitative scale was created using the d3.scale.log() function.
The default log scale has a base of 10. Line H essentially defines the following mathematical
function f(n) = log(n).

 var log = d3.scale.log(); // <-H

0 0.3 0.48 0.6 0.78 085 0.9 0.95 10.7 log(n)

Simple log scale

On line I, we customized the log scale to have a domain of [1, 10] and a rounded range of
[1, 10], which defines the following constrained mathematical function f(n) = a*log(n) + b,
1 <= f(n) <= 10.

 var logCapped = d3.scale.log() // <-I
 .domain([1, 10])
 .rangeRound([1, 10]);

1 4 5 6 7 8 9 9 10 10 1 <=a*log(n) + b <= 10

Log scale

There's more...
D3 also provides other additional quantitative scales including quantize, threshold, quantile, and
identity scales. Due to limited scope in this book and their relatively less common usage, they
are not discussed here, however, the basic understanding of scales discussed and explained
here will definitely help your understanding of other additional quantitative scales provided by
the D3 library. For more information on other types of quantitative scales please visit https://
github.com/mbostock/d3/wiki/Quantitative-Scales#wiki-quantitative

Tipping the Scales

76

Using the time scale
Often, we perform analysis on a data set that is time- and date-sensitive, therefore, D3
provides a built-in time scale to help perform this type of mapping. In this recipe, we will learn
how to use D3 time scale.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
time-scale.html

How to do it...
First, let's take a look at the following code example:

<div id="time" class="clear">
 Linear Time Progression

 Mapping [01/01/2013, 12/31/2013] to [0, 900]

</div>

<script type="text/javascript">
 var start = new Date(2013, 0, 1), // <-A
 end = new Date(2013, 11, 31),
 range = [0, 1200],
 time = d3.time.scale().domain([start, end]) // <-B
 .rangeRound(range), // <-C
 max = 12,
 data = [];

 for (var i = 0; i < max; ++i){ // <-D
 var date = new Date(start.getTime());
 date.setMonth(start.getMonth() + i);
 data.push(date);
 }

 function render(data, scale, selector) { // <-E
 d3.select(selector).selectAll("div.fixed-cell")
 .data(data)
 .enter()
 .append("div").classed("fixed-cell", true);

 d3.select(selector).selectAll("div.fixed-cell")

Chapter 4

77

 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.fixed-cell")
 .data(data)
 .style("margin-left", function(d){ // <-F
 return scale(d) + "px";
 })
 .html(function (d) { // <-G
 var format = d3.time.format("%x"); // <-H
 return format(d) + "
" + scale(d) + "px";
 });
 }

 render(data, time, "#time");
</script>

This recipe generates the following visual output:

Linear Time Progression
Mapping [01/01/2013, 12/31/2013] to [0, 900]

01/01/2013
0

02/01/2013
102

03/01/2013
195

04/01/2013
297

05/01/2013
395

06/01/2013
498

07/01/2013
597

08/01/2013
699

09/01/2013
801

10/01/2013
900

11/01/2013
1002

12/01/2013
1101

Time scale

How it works...
In this recipe, we have a Date range defined on line A between January 1, 2013 and
December 31, 2013.

var start = new Date(2013, 0, 1), // <-A
 end = new Date(2013, 11, 31),
 range = [0, 900],
 time = d3.time.scale().domain([start, end]) // <-B
 .rangeRound(range), // <-C

The JavaScript Date object starts its month from 0 and day from 1.
Therefore, new Date(2013, 0, 1) gives you January 1, 2013 while
new Date(2013, 0, 0) actually gives you December 31, 2012.

This range was then used to create a D3 time scale on line B using the d3.time.scale
function. Similar to quantitative scales, time scale also supports separate domain and range
definition, which is used to map date- and time-based data points to visual range. In this
example, we set the range of the scale to [0, 900]. This effectively defines a mapping from
any date-and-time value in time range between January 1, 2013 and December 31, 2013 to a
number between 0 and 900.

www.allitebooks.com

http://www.allitebooks.org

Tipping the Scales

78

With the time scale defined, we can now map any given Date object by calling the scale
function, for example, time(new Date(2013, 4, 1)) will return 395 and time(new
Date(2013, 11, 15)) will return 1147, and so on.

On line D, we create our data array consisting 12 months from January to December in 2013:

 for (var i = 0; i < max; ++i){ // <-D
 var date = new Date(start.getTime());
 date.setMonth(start.getMonth() + i);
 data.push(date);
 }

Then, on line E, we created 12 cells representing each month in a year using the
render function.

 To spread the cells horizontally, line F performs a mapping from the month to the margin-
left CSS style using the time scale we defined:

.style("margin-left", function(d){ // <-F
 return scale(d) + "px";
})

Line G generates the label to demonstrating what the scale-based mapping produces in
this example:

.html(function (d) { // <-G
 var format = d3.time.format("%x"); // <-H
 return format(d) + "
" + scale(d) + "px";
});

To generate human-readable strings from a JavaScript Date object, we used a D3 time
formatter on line H. D3 ships with a powerful and flexible time-formatting library, which is
extremely useful when dealing with the Date object.

There's more...
Here are some of the most useful d3.time.format patterns:

 f %a: This is the abbreviated weekday name
 f %A: This is the full weekday name
 f %b: This is the abbreviated month name
 f %B: This is the full month name
 f %d: This is the zero-padded day of the month as a decimal number [01,31]
 f %e: This is the space-padded day of the month as a decimal number [1,31]
 f %H: This is the hour (24-hour clock) as a decimal number [00,23]
 f %I: This is the hour (12-hour clock) as a decimal number [01,12]

Chapter 4

79

 f %j: This is the day of the year as a decimal number [001,366]

 f %m: This is the month as a decimal number [01,12]

 f %M: This is the minute as a decimal number [00,59]

 f %L: This is the milliseconds as a decimal number [000, 999]

 f %p: This is the either AM or PM

 f %S: This is the second as a decimal number [00,61]

 f %x: This is the date, as "%m/%d/%Y"

 f %X: This is the time, as "%H:%M:%S"

 f %y: This is the year without century as a decimal number [00,99]

 f %Y: This is the year with century as a decimal number

See also
 f For the complete reference on D3 time format pattern visit the following link:

https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format

Using the ordinal scale
In some cases, we might need to map our data to some ordinal values, for example, ["a",
"b", "c"] or ["#1f77b4", "#ff7f0e", "#2ca02c"]. So, how can we perform this
kind of mapping using D3 scales? This recipe is dedicated to address this kind of question.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
ordinal-scale.html

How to do it...
This kind of ordinal mapping is quite common in data visualization. For example, you might
want to map certain data points through categorization into some textual value or perhaps
into RGB color code, which in turn can be used in CSS styling. D3 offers a specialized scale
implementation to handle this kind of mapping. We will explore its usage here. Here is the
code of the ordinal.scale.html file:

<div id="alphabet" class="clear">
 Ordinal Scale with Alphabet
 Mapping [1..10] to ["a".."j"]

Tipping the Scales

80

</div>
<div id="category10" class="clear">
 Ordinal Color Scale Category 10
 Mapping [1..10] to category 10 colors
</div>
<div id="category20" class="clear">
 Ordinal Color Scale Category 20
 Mapping [1..10] to category 20 colors
</div>
<div id="category20b" class="clear">
 Ordinal Color Scale Category 20b
 Mapping [1..10] to category 20b colors
</div>
<div id="category20c" class="clear">
 Ordinal Color Scale Category 20c
 Mapping [1..10] to category 20c colors
</div>

<script type="text/javascript">
 var max = 10, data = [];

 for (var i = 0; i < max; ++i) data.push(i); // <-A

 var alphabet = d3.scale.ordinal() // <-B
 .domain(data)
 .range(["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]);

 function render(data, scale, selector) { // <-C
 d3.select(selector).selectAll("div.cell")
 .data(data)
 .enter().append("div").classed("cell", true);

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .style("display", "inline-block")
 .style("background-color", function(d){ // <-D
 return scale(d).indexOf("#")>=0?scale(d):"white";
 })
 .text(function (d) { // <-E

Chapter 4

81

 return scale(d);
 });
 }

 render(data, alphabet, "#alphabet"); // <-F
 render(data, d3.scale.category10(), "#category10");
 render(data, d3.scale.category20(), "#category20");
 render(data, d3.scale.category20b(), "#category20b");
 render(data, d3.scale.category20c(), "#category20c"); // <-G
</script>

The preceding code outputs the following in your browser:

e f g h i ja b c d

Ordinal Color Scale Category 10
Mapping [1..10] to category 10 colors

#2ca02c #d62728 #17becf#9467bd #8c564b #e377c2 #7f7f7f #bcbd22#1f77b4 #ff7f0e

#ff7f0e #ffbb78 #c5b0d5#2ca02c #98df8a #d62728 #ff9896 #9467bd#1f77b4 #aec7e8

#6b6ecf #9c9ede #bd9e39#637939 #8ca252 #b5cf6b #cedb9c #8c6d31#393b79 #5254a3

#9ecae1 #c6dbef #74c476#e6550d #fd8d3c #fdae6b #fdd0a2 #31a354#3182bd #6baed6

Ordinal Color Scale Category 20
Mapping [1..10] to category 20 colors

Ordinal Color Scale Category 20b
Mapping [1..10] to category 20b colors

Ordinal Color Scale Category 20c
Mapping [1..10] to category 20c colors

Ordinal Scale with Alphabet
Mapping [1..10] to [“a”...“j”]

Ordinal scale

How it works...
In the above code example, a simple data array containing integers from 0 to 9 is defined on
line A:

for (var i = 0; i < max; ++i) data.push(i); // <-A
var alphabet = d3.scale.ordinal() // <-B
 .domain(data)
.range(["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]);

Then an ordinal scale was created using the d3.scale.ordinal function on line B. The
domain of this scale was set to our integer array data while range is set to a list of alphabets
from a to j.

With this scale defined, we can perform the mapping by simply invoking the scale function, for
example, alphabet(0) will return a, alphabet(4) will return e, and so on.

Tipping the Scales

82

On line C, the render function was defined to generate a number of div elements on the
page to represent the 10 elements in a data array. Each div has its background-color set
to scale function's output or white if the output is not an RGB color string:

.style("background-color", function(d){ // <-D
 return scale(d).indexOf("#")>=0 ? scale(d) : "white";
})

On line E, we also set the text of each cell to display scale function's output:

.text(function (d) { // <-E
 return scale(d);
});

Now, with all the structures in place, from line F to G, the render function was repetitively
called with different ordinal scales to produce different visual outputs. On line F, calling
render with the alphabet ordinal scale produces the following output:

e f g h i ja b c d

Alphabetic ordinal scale

While on line G, calling the render function with the built-in d3.scale.category20c
ordinal color scale produces the following output:

#9ecae1 #c6dbef #74c476#e6550d #fd8d3c #fdae6b #fdd0a2 #31a354#3182bd #6baed6

Color ordinal scale

Because assigning different colors to different elements in visualization is a common task,
for example, assigning different colors in Pie and Bubble charts, D3 provides a number of
different built-in ordinal color scales as we have seen in this recipe.

It is quite easy to build your own simple custom ordinal color scale. Just create an ordinal scale
with the range set to the colors you want to use, for example:

d3.scale.ordinal()
.range(["#1f77b4", "#ff7f0e", "#2ca02c"]);

Interpolating a string
In some cases, you might need to interpolate numbers embedded in a string; perhaps a CSS
style for font.

Chapter 4

83

In this recipe, we will examine how you can do that using D3 scale and interpolation. However,
before we jump right into string interpolation, a bit of background research on interpolator
is due and the following section will cover what interpolation is and how D3 implements
interpolator functions.

Interpolator
In the first three recipes, we have gone over three different D3 scale implementations, now it
is time to delve a little deeper into D3 scales. You are probably already asking the question,
"How different scale knows what value to use for different inputs?" In fact this question can be
generalized to:

We are given the values of a function f(x) at different points x0, x1, … ,xn. We want
to find approximate values of the function f(x) for "new" x's that lie between these
points . This process is called interpolation.

Kreyszig E & Kreyszig H & Norminton E. J. (2010)

Interpolation is not only important in scale implementation but also essential to many other
core D3 capabilities, for example, animation and layout management. It is because of this
essential role, D3 has designed a separate and re-usable construct called interpolator so
that this common cross-functional concern can be addressed in a centralized and consistent
fashion. Let's take a simple interpolator as an example:

var interpolate = d3.interpolateNumber(0, 100);
interpolate(0.1); // => 10
interpolate(0.99); //=> 99

In this simple example, we created a D3 number interpolator with a range of [0, 100]. The
d3.interpolateNumber function returns an interpolate function which we can use
to perform number-based interpolations. The interpolate function is an equivalent to the
following code:

function interpolate(t) {
 return a * (1 - t) + b * t;
}

In this function, a represents the start of the range and b represents the end of the range.
The parameter t passed into the interpolate() function, is a float-point number ranging
from 0 to 1, and it signifies how far the return value is from a.

D3 provides a number of built-in interpolators. Due to limited scope in this book, we will focus
on some of the more interesting interpolators for the next few recipes; we are ending our
discussion on simple number interpolation here. Nevertheless, the fundamental approach
and mechanism remains the same whether it is a number or an RGB color code interpolator.

Tipping the Scales

84

For more details on number and round interpolation, please refer to the
D3 reference documents at https://github.com/mbostock/d3/
wiki/Transitions#wiki-d3_interpolateNumber

Now with general interpolation concepts behind, let's take a look at how string interpolator
works in D3.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
string-interpolation.html

How to do it...
String interpolator finds the numbers embedded in the string, then performs interpolation
using D3 number interpolator:

<div id="font" class="clear">
 Font Interpolation

</div>

<script type="text/javascript">
 var max = 11, data = [];

 var sizeScale = d3.scale.linear() // <-A
 .domain([0, max])
 .range([// <-B
 "italic bold 12px/30px Georgia, serif",
 "italic bold 120px/180px Georgia, serif"
]);

 for (var i = 0; i < max; ++i){ data.push(i); }

 function render(data, scale, selector) { // <-C
 d3.select(selector).selectAll("div.cell")
 .data(data)
 .enter().append("div").classed("cell", true)
 .append("span");

 d3.select(selector).selectAll("div.cell")

Chapter 4

85

 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .style("display", "inline-block")
 .select("span")
 .style("font", function(d,i){
 return scale(d); // <-D
 })
 .text(function(d,i){return i;}); // <-E
 }

 render(data, sizeScale, "#font");
</script>

The preceding code produces the following output:

Font Interpolation

0 1 2 3 4 5 6 7 8 9 10
String interpolation

How it works...
In this example, we created a linear scale on line A with range specified between two strings
representing start and end font styles:

var sizeScale = d3.scale.linear() // <-A
 .domain([0, max])
 .range([// <-B
 "italic bold 12px/30px Georgia, serif",
 "italic bold 120px/180px Georgia, serif"
]);

As you can see in the code of the string-interpolation.html file, the font style strings
contain font-size numbers 12px/30px and 120px/180px, which we want to interpolate
in this recipe.

Tipping the Scales

86

On line C, the render() function simply creates 10 cells containing each one's index
numbers (line E) styled using interpolated font style string calculated on line D.

.style("font", function(d,i){
 return scale(d); // <-D
})
.text(function(d,i){return i;}); // <-E

There's more...
Though we demonstrated string interpolation in D3 using a CSS font style as an example, D3
string interpolator is not only limited handling CSS styles. It can basically handle any string,
and interpolates the embedded number as long as the number matches the following
Regex pattern:

/[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g

When generating a string using interpolation, very small values, when
stringified, may get converted to scientific notation, for example, 1e-7. To avoid
this particular conversion, you need to keep your value larger than 1e-6.

Interpolating colors
It is sometimes necessary to interpolate colors when you are interpolating values that do not
contain numbers but rather RGB or HSL color code. This recipe addresses the question how
can you define scales for color codes and perform interpolation on them?

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
color-interpolation.html

How to do it...
Color interpolation is such a common operation in visualization that D3 actually provides four
different kinds of interpolators dedicated for color supporting—RGB, HSL, L*a*b*, and HCL
color space. In this recipe, we will demonstrate how color interpolation can be performed in
RGB color space. However, all other color interpolators work in the same way.

Chapter 4

87

D3 color interpolate function always returns interpolated color in RGB space
no matter what the original color space it is since not all browsers support
HSL or L*a*b* color spaces.

<div id="color" class="clear">
 Linear Color Interpolation

</div>
<div id="color-diverge" class="clear">
 Poly-Linear Color Interpolation

</div>

<script type="text/javascript">
 var max = 21, data = [];

 var colorScale = d3.scale.linear() // <-A
 .domain([0, max])
 .range(["white", "#4169e1"]);

 function divergingScale(pivot) { // <-B
 var divergingColorScale = d3.scale.linear()
 .domain([0, pivot, max]) // <-C
 .range(["white", "#4169e1", "white"]);
 return divergingColorScale;
 }

 for (var i = 0; i < max; ++i) data.push(i);

 function render(data, scale, selector) { // <-D
 d3.select(selector).selectAll("div.cell")
 .data(data)
 .enter()
 .append("div")
 .classed("cell", true)
 .append("span");

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .style("display", "inline-block")
 .style("background-color", function(d){

Tipping the Scales

88

 return scale(d); // <-E
 })
 .select("span")
 .text(function(d,i){return i;});
 }

 render(data, colorScale, "#color");
 render(data, divergingScale(5), "#color-diverge");
</script>

The preceding code produces the following visual output:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Poly-Linear Color Interpolation

Linear Color Interpolation

Pivot at 5 Pivot at 10 Pivot at 15 Pivot at 20

17 18 19 20

17 18 19 20

Color interpolation

How it works...
The first step in this recipe is defining a linear color scale on line A with its range set as
["white", "#4169e1"].

var colorScale = d3.scale.linear() // <-A
 .domain([0, max])
 .range(["white", "#4169e1"]);

As we have demonstrated earlier, D3 color interpolator is pretty smart when it comes to color
space. Similar to your browser, it understands both color keywords and hexadecimal values.

One new technique used in this recipe, that we haven't encountered yet, is the poly-linear
scale, which is defined in the divergingScale function on line B.

function divergingScale(pivot) { // <-B
 var divergingColorScale = d3.scale.linear()
 .domain([0, pivot, max]) // <-C
 .range(["white", "#4169e1", "white"]);
 return divergingColorScale;
}

Chapter 4

89

A poly-linear scale is a scale with non-uniformed linear progression. It is achieved by providing
a poly-linear domain on a linear scale as we can see on line C. You can think of a poly-linear
scale as stitching two linear scales with different domains together. So this poly-linear color
scale is effectively the two following linear scales combined together.

d3.scale.linear()
 .domain([0, pivot]).range(["white", "#4169e1"]);
d3.scale.linear()
.domain([pivot, max]).range(["#4169e1", "white "]);

No surprise in the rest of the recipe. The render() function defined on line D generates
20 cells that are numbered by its index and colored using the output of two color scales we
defined earlier. Clicking the buttons on the web page (such as Pivot at 5) will show you the
effect of pivoting at different positions in a poly-linear color scale.

See also
 f For a complete list of supported color keywords in CSS3, please refer to W3C official

reference http://www.w3.org/TR/css3-color/#html4

Interpolating compound objects
There will be cases when what you need to interpolate in your visualization is not a simple
value but rather an object consisting of multiple and different values, for example, a
rectangular object with width, height, and color attributes. Fortunately, D3 has a built-in
support for this type of compound object interpolation.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
compound-interpolation.html

How to do it...
In this recipe, we will examine how compound object interpolation is performed in D3. The
code for the compound-interpolation.html file is as follows:

<div id="compound" class="clear">
 Compound Interpolation

</div>

Tipping the Scales

90

<script type="text/javascript">
 var max = 21, data = [];

 var compoundScale = d3.scale.pow()
 .exponent(2)
 .domain([0, max])
 .range([
 {color:"#add8e6", height:"15px"}, // <-A
 {color:"#4169e1", height:"150px"} // <-B
]);

 for (var i = 0; i < max; ++i) data.push(i);

 function render(data, scale, selector) { // <-C
 d3.select(selector).selectAll("div.v-bar")
 .data(data)
 .enter().append("div").classed("v-bar", true)
 .append("span");

 d3.select(selector).selectAll("div.v-bar")
 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.v-bar")
 .data(data)
 .classed("v-bar", true)
 .style("height", function(d){ // <-D
 return scale(d).height;
 })
 .style("background-color", function(d){ // <-E
 return scale(d).color;
 })
 .select("span")
 .text(function(d,i){return i;});
 }

 render(data, compoundScale, "#compound");
</script>

Chapter 4

91

The preceding code generates the following visual output:

Compound Interpolation

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 1 19 20

Compound object interpolation

How it works...
This recipe is different from the previous recipes of this chapter by the fact that the scale we use
in this recipe has a range defined using two objects rather than simple primitive data types:

var compoundScale = d3.scale.pow()
 .exponent(2)
 .domain([0, max])
 .range([
 {color:"#add8e6", height:"15px"}, // <-A
 {color:"#4169e1", height:"150px"} // <-B
]);

We can see on line A and B that the start and end of the scale range are two objects which
contain two different kinds of values; one for RGB color and the other one for CSS height style.
When you interpolate this kind of a scale containing compound range, D3 will iterate through
each of the fields inside an object and recursively apply the simple interpolation rule on each
one of them. Thus, in other words, for this example, D3 will interpolate the color field using
color interpolation from #add8e6 to #4169e1 while using string interpolation on height field
from 15px to 150px.

The recursive nature of this algorithm allows D3 to interpolate on even
nested objects. Therefore you can interpolate on an object like this:

{
 color:"#add8e6",
 size{
height:"15px",
width: "25px"
 }
}

Tipping the Scales

92

A compound scale function, when invoked, returns a compound object that matches the given
range definition:

.style("height", function(d){
 return scale(d).height; // <-D
})
.style("background-color", function(d){
 return scale(d).color; // <-E
})

As we can see on line D and E, the returned value is a compound object, and this is why we
can access its attribute to retrieve the interpolated values.

Though it is not a common case, if the start and end of your compound
scale range do not have identical attributes, D3 won't complain but rather
it will just treat the missing attribute as a constant. The following scale will
render the height to be 15px for all the div elements:

var compoundScale = d3.scale.pow()
 .exponent(2)
 .domain([0, max])
 .range([
 {color:"#add8e6", height:"15px"}, // <-A
 {color:"#4169e1"} // <-B
]);

Implementing a custom interpolator
In some rare cases, you might find that the built-in D3 interpolators are not enough to handle
your visualization requirement. In such situations, you can choose to implement your own
interpolator with specific logic to handle your needs. In this recipe, we will examine this
approach and demonstrate some interesting use cases.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter4/
custom-interpolator.html

Chapter 4

93

How to do it...
Let's take a look at two different examples of custom interpolator implementation. In the first
example, we will implement a custom function capable of interpolating price in dollars, while in
the second one we will implement custom interpolator for alphabets. Here is the code to this
implementation:

<div id="dollar" class="clear">
 Custom Dollar Interpolation

</div>
<div id="alphabet" class="clear">
 Custom Alphabet Interpolation

</div>

<script type="text/javascript">
 d3.interpolators.push(function(a, b) { // <-A
 var re = /^\$([0-9,.]+)$/, // <-B
 ma, mb, f = d3.format(",.02f");
 if ((ma = re.exec(a)) && (mb = re.exec(b))) { // <-C
 a = parseFloat(ma[1]);
 b = parseFloat(mb[1]) - a; // <-D
 return function(t) { // <-E
 return "$" + f(a + b * t); // <-F
 };
 }
 });

 d3.interpolators.push(function(a, b) { // <-G
 var re = /^([a-z])$/, ma, mb; // <-H
 if ((ma = re.exec(a)) && (mb = re.exec(b))) { // <-I
 a = a.charCodeAt(0);
 var delta = a - b.charCodeAt(0); // <-J
 return function(t) { // <-K
 return String.fromCharCode(Math.ceil(a - delta * t));
 };
 }
 });

 var dollarScale = d3.scale.linear()
 .domain([0, 11])
 .range(["$0", "$300"]); // <-L

 var alphabetScale = d3.scale.linear()
 .domain([0, 27])
 .range(["a", "z"]); // <-M

 function render(scale, selector) {
 var data = [];

Tipping the Scales

94

 var max = scale.domain()[1];

 for (var i = 0; i < max; ++i) data.push(i);

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .enter()
 .append("div")
 .classed("cell", true)
 .append("span");

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .exit().remove();

 d3.select(selector).selectAll("div.cell")
 .data(data)
 .style("display", "inline-block")
 .select("span")
 .text(function(d,i){return scale(d);}); // <-N
 }

 render(dollarScale, "#dollar");
 render(alphabetScale, "#alphabet");
</script>

The preceding code generates the following visual output:

Custom Dollar Interpolation

Custom Alphabet Interpolation

e

f g h i j

a b c d

n

x

o p q r s

y

k

t

l

u

m

v

n

w

z

$0.00 $23.08 $46.15 $69.23 $92.31

$184.62$161.54$138.46$115.38

$207.69 $230.77 $253.85 $276.92

Custom interpolation

Chapter 4

95

How it works...
The first custom interpolator we encounter in this recipe is defined on line A. The custom
interpolator function is a bit more involved, so, let's take a closer look at how it works:

d3.interpolators.push(function(a, b) { // <-A
 var re = /^\$([0-9,.]+)$/, // <-B
 ma, mb, f = d3.format(",.02f");
 if ((ma = re.exec(a)) && (mb = re.exec(b))) { // <-C
 a = parseFloat(ma[1]);
 b = parseFloat(mb[1]) - a; // <-D
 return function(t) { // <-E
 return "$" + f(a + b * t); // <-F
 };
 }
 });

This custom interpolator in the following link was directly extracted from
D3 Wiki:

https://github.com/mbostock/d3/wiki/
Transitions#wiki-d3_interpolators

On the line A, we push an interpolator function into d3.interpolators. This is a global
interpolator registry array that contains all known registered interpolators. By default, this
registry contains the following interpolators:

 f Number interpolator

 f String interpolator

 f Color interpolator

 f Object interpolator

 f Array interpolator

Any new custom interpolator implementation can be pushed to the tail of the interpolators
array which then becomes globally available. An interpolator function is expected to be a
factory function that takes the start of the range (a) and the end of the range (b) as its input
parameters while returning an implementation of the interpolate function as seen on line E.
You might be wondering how D3 knows which interpolator to use when a certain string value
is presented. The key to this lies on line B. Typically we use a variable called re defined as a
regex pattern of /^\$([0-9,.]+)$/, which is then used to match both parameter a and b
for any number with a leading dollar sign. If both parameters match the given pattern then
the matching interpolate function is constructed and returned; otherwise D3 will continue
iterating through d3.interpolators array to find a suitable interpolator.

Tipping the Scales

96

Instead of an array, d3.interpolators is actually better considered as a FILO stack (though
not exactly implemented as a stack), where new interpolators can be pushed to the top of the
stack. When selecting an interpolator, D3 will pop and check each suitable interpolator from the
top. Therefore, in this case, the interpolator pushed later in the stack takes precedence.

The anonymous interpolate() function created on line E takes a single parameter t with
a value ranging from 0 to 1 indicating how far off the interpolated value is from base a.

return function(t) { // <-E
 return "$" + f(a + b * t); // <-F
 };

You can think of it as a percentage of how far the desired value has traveled from a to b. With
that in mind, it becomes clear that in line F it performs the interpolation and calculates the
desired value based on the offset t, which effectively interpolates a price string.

One thing to watch out for here is that the b parameter's value has been
changed on line D from the end of the range to the difference between a
and b.

b = parseFloat(mb[1]) - a; // <-D

This is generally considered a bad practice for readability. So, in your own
implementations you should avoid modifying input parameters' value in a
function.

On the line G, a second custom interpolator was registered to handle single-character
lowercase alphabets from a to z:

d3.interpolators.push(function(a, b) { // <-G
 var re = /^([a-z])$/, ma, mb; // <-H
 if ((ma = re.exec(a)) && (mb = re.exec(b))) { // <-I
 a = a.charCodeAt(0);
 var delta = a - b.charCodeAt(0); // <-J
 return function(t) { // <-K
 return String.fromCharCode(Math.ceil(a - delta * t));
 };
 }
});

We quickly noticed that this interpolator function follows a very similar pattern with the
previous one. Firstly, it has a regex pattern defined on line H that matches single lowercase
alphabets. After the matching is conducted on line I, the start and end of the range a and
b were both converted from character values into integer values. A difference between
a and b was calculated on line J. The interpolate function again follows exactly the same
formula as the first interpolator as shown on line K.

Chapter 4

97

Once these custom interpolators are registered with D3, we can define scales with
corresponding ranges without doing any additional work and we will be able to interpolate
their values:

var dollarScale = d3.scale.linear()
 .domain([0, 11])
 .range(["$0", "$300"]); // <-L

var alphabetScale = d3.scale.linear()
 .domain([0, 27])
 .range(["a", "z"]); // <-M

As expected, the dollarScale function will automatically use the price interpolator,
while the alphabetScale function will use our alphabet interpolator, respectively. No
additional work is required when invoking the scale function to obtain the value we need,
as demonstrated on line N:

.text(function(d,i){
 return scale(d);} // <-N
);

In isolation, custom interpolator does not appear to be a very important concept; however,
later on when exploring other D3 concepts in Chapter 6, Transition with Style, we will explore
more powerful techniques when custom interpolator is combined with other D3 constructs to
achieve interesting custom effects.

See also
 f If the regular expression used in this chapter is a new concept or a well-known tool in

your toolbox and you need a little bit of dusting, you can find a lot of useful resources
at http://www.regular-expressions.info

5
Playing with Axes

In this chapter we will cover:

 f Working with basic axes

 f Customizing ticks

 f Drawing grid lines

 f Dynamic rescaling of axes

Introduction
D3 was initially released without the built-in support of the Axis component. This situation
did not last long; since axes are the universal building blocks in many Cartesian coordinate
system-based visualization projects, it quickly became clear that D3 needs to provide built-
in support for axes. Therefore, it was introduced quite early on and is continuously being
enhanced ever since it was released. In this chapter, we will explore the usage of the Axis
component and some related techniques.

Working with basic axes
In this recipe, we will focus on introducing the basic concepts and supports of the Axis component
in D3 while covering different types and features of Axis as well as their SVG structures.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter5/
basic-axes.html

Playing with Axes

100

How to do it...
Let's first take a look at the following code sample:

<div class="control-group">
 <button onclick="renderAll('bottom')">
 horizontal bottom
 </button>
 <button onclick="renderAll('top')">
 horizontal top
 </button>
 <button onclick="renderAll('left')">
 vertical left
 </button>
 <button onclick="renderAll('right')">
 vertical right
 </button>
</div>

<script type="text/javascript">
 var height = 500,
 width = 500,
 margin = 25,
 offset = 50,
 axisWidth = width - 2 * margin,
 svg;

 function createSvg(){ // <-A
 svg = d3.select("body").append("svg") // <-B
 .attr("class", "axis") // <-C
 .attr("width", width)
 .attr("height", height);
 }

 function renderAxis(scale, i, orient){
 var axis = d3.svg.axis() // <-D
 .scale(scale) // <-E
 .orient(orient) // <-F
 .ticks(5); // <-G

 svg.append("g")
 .attr("transform", function(){ // <-H
 if(["top", "bottom"].indexOf(orient) >= 0)
 return "translate("+margin+","+i*offset+")";

Chapter 5

101

 else
 return "translate("+i*offset+", "+margin+")";
 })
 .call(axis); // <-I
 }

 function renderAll(orient){
 if(svg) svg.remove();

 createSvg();

 renderAxis(d3.scale.linear()
 .domain([0, 1000])
 .range([0, axisWidth]), 1, orient);
 renderAxis(d3.scale.pow()
 .exponent(2)
 .domain([0, 1000])
 .range([0, axisWidth]), 2, orient);
 renderAxis(d3.time.scale()
 .domain([new Date(2012, 0, 1), new Date()])
 .range([0, axisWidth]), 3, orient);
 }
</script>

The preceding code produces a visual output with only the four buttons shown in the following
screenshot. Once you click on horizontal bottom, it shows the following:

Horizontal Axis

Playing with Axes

102

Vertical Axis

How it works...
The first step in this recipe is to create the svg element which will be used to render our axes.
This is done by the createSvg function, which is defined on line A, and using D3 append
and attr modifier functions shown on line B and C.

This is the first recipe in this book that uses SVG instead of HTML element
since D3 Axis component only supports SVG. If you are not familiar with
SVG standard, don't worry; we will cover it in detail in Chapter 7, Getting into
Shape. While for the purpose of this chapter, some of the basic and limited
SVG concepts will be introduced when they are used by D3 Axis component.

Let's look at how we created the SVG canvas in the following code:

var height = 500,
 width = 500,
 margin = 25,
 offset = 50,
 axisWidth = width - 2 * margin,
 svg;

function createSvg(){ // <-A
 svg = d3.select("body").append("svg") // <-B
 .attr("class", "axis") // <-C
 .attr("width", width)
 .attr("height", height);
}

Chapter 5

103

Now we are ready to render the axes on this svg canvas. The renderAxis function is
designed to do exactly just that. On line D, we first create an Axis component using the
d3.svg.axis function:

var axis = d3.svg.axis() // <-D
 .scale(scale) // <-E
 .orient(orient) // <-F
 .ticks(5); // <-G

D3 Axis is designed to work out of the box with D3 quantitative, time, and ordinal scales. Axis
scale is provided using the scale() function (see line E). In this example, we render three
different axes with the following scales:

d3.scale.linear().domain([0, 1000]).range([0, axisWidth])
d3.scale.pow().exponent(2).domain([0, 1000]).range([0, axisWidth])
d3.time.scale()
 .domain([new Date(2012, 0, 1), new Date()])
 .range([0, axisWidth])

The second customization we have done with the axis object is its orient. Orient tells D3
how this axis will be placed (orientation), therefore, how it should be rendered, whether
horizontally or vertically. D3 supports four different orient configurations for an axis:

 f top: A horizontal axis with labels placed on top of the axis

 f bottom: A horizontal axis with labels placed at the bottom of the axis

 f left: A vertical axis with labels placed on the left hand side of the axis

 f right: A vertical axis with labels placed on the right hand side of the axis

On line G, we set the number of ticks to 5. This tells D3, ideally how many ticks we want to
render for this axis, however, D3 might choose to render slightly more or less ticks based on
the available space and its own calculation. We will explore Axis ticks configuration in detail in
the next recipe.

Once the axis is defined, the final step in this creation process is to create a svg:g container
element, which will then be used to host all SVG structures that are required to render an axis:

svg.append("g")
 .attr("transform", function(){ // <-H
 if(["top", "bottom"].indexOf(orient) >= 0)
 return "translate(" + margin + ","+ i * offset + ")";
 else
 return "translate(" + i * offset + ", " + margin + ")";
 })
 .call(axis); // <-I

Playing with Axes

104

Having a g element to contain all SVG elements related to an axis is not
only a good practice but also a requirement of D3 axis component.

Most of the logic in this code snippet is related to the calculation of where to draw the axis on
svg canvas using the transform attribute (see line H). In the preceding code example, to
shift the axis using offsets we used the translate SVG transformation, which allows us to
shift an element using a distance parameter that is defined with the coordinates in x and y.

SVG transformation will be discussed in detail in Chapter 7, Getting into
Shape, or you can refer to the following URL for more information on this
topic:
http://www.w3.org/TR/SVG/coords.
html#TranslationDefined

The more relevant part of this code is on line I, where the d3.selection.call function
is used with the axis object being passed in as the parameter. The d3.selection.
call function invokes the given function (in our case the axis object) with the current
selection passed in as an argument. In other words, the function being passed into the
d3.selection.call function should have the following form:

function foo(selection) {
 ...

}

The d3.selection.call function also allows you to pass in additional
arguments to the invoking function. For more information visit the
following link:
https://github.com/mbostock/d3/wiki/Selections#wiki-
call

Once the D3 Axis component is called, it will take care of the rest and automatically create all
necessary SVG elements for an axis (see line I). For example, the horizontal-bottom time axis
in the example shown in this recipe shown in this recipe has the following complicated SVG
structure automatically generated, which we don't really need to know much about:

Chapter 5

105

Horizontal bottom time Axis SVG structure

Customizing ticks
We already saw how to use the ticks function in the previous recipe. This is the simplest
ticks-related customization you can do on a D3 axis. In this recipe, we will cover some of the
most common and useful ticks-related customizations with D3 axis.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter5/
ticks.html

How to do it...
In the following code example, we will customize the sub-ticks, padding, and formatting of its
label. Let's take a look at the code snippet first:

<script type="text/javascript">
 var height = 500,
 width = 500,
 margin = 25,
 axisWidth = width - 2 * margin;

 var svg = d3.select("body").append("svg")
 .attr("class", "axis")
 .attr("width", width)

Playing with Axes

106

 .attr("height", height);

var scale = d3.scale.linear()
 .domain([0, 100])
 .range([0, axisWidth]);

 var axis = d3.svg.axis()
 .scale(scale)
 .ticks(5)
 .tickSubdivide(5) // <-A
 .tickPadding(10) // <-B
 .tickFormat(function(v){ // <-C
 return v + "%";
 });

 svg.append("g")
 .attr("transform", function(){
 return "translate(" + margin + "," + margin + ")";
 })
 .call(axis);
</script>

The preceding code generates the following visual output:

Customized Axis ticks

How it works...
The focus of this recipe is the highlighted lines after the ticks function. As we have
mentioned before, the ticks function provides D3 a hint on how many ticks an axis should
contain. After setting the number of ticks, in this recipe, we continue to customize the ticks
through further function calls. On line A, the ticksSubdivide function is used to similarly
provide a hint to D3 on the number of subdivides an axis should render between each tick.
Then on line B, the tickPadding function was used to specify the amount of space (in
pixels) between tick labels and the axis. Finally, a custom function called tickFormat was
provided on line C to append a percentage sign to the value.

Chapter 5

107

For more information on the aforementioned functions and other
ticks-related customizations visit the D3 Wiki at the following URL:
https://github.com/mbostock/d3/wiki/SVG-
Axes#wiki-ticks

Drawing grid lines
Quite often, we need horizontal and vertical grid lines to be drawn in consistency with ticks on
both x and y axes. As we have shown in the previous recipe, typically we don't have or don't
want to have precise control of how ticks are rendered on D3 axes. Therefore, we might not
know how many ticks are present and their values, before they are rendered. This is especially
true if you are building a re-usable visualization library where it is impossible to know the tick
configuration ahead of time. In this recipe, we will explore some useful techniques of drawing
consistent grid lines on Axis without actually needing to know the tick values.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter5/
grid-line.html

How to do it...
First, let's take a look at how we draw grid lines in code:

<script type="text/javascript">
 var height = 500,
 width = 500,
 margin = 25;

 var svg = d3.select("body").append("svg")
 .attr("class", "axis")
 .attr("width", width)
 .attr("height", height);

 function renderXAxis(){
 var axisLength = width - 2 * margin;

 var scale = d3.scale.linear()
 .domain([0, 100])

Playing with Axes

108

 .range([0, axisLength]);

 var xAxis = d3.svg.axis()
 .scale(scale)
 .orient("bottom");

 svg.append("g")
 .attr("class", "x-axis")
 .attr("transform", function(){ // <-A
 return "translate(" + margin + "," + (height - margin)
+ ")";
 })
 .call(xAxis);

 d3.selectAll("g.x-axis g.tick") // <-B
 .append("line") // <-C
 .classed("grid-line", true)
 .attr("x1", 0) // <-D
 .attr("y1", 0)
 .attr("x2", 0)
 .attr("y2", - (height - 2 * margin)); // <-E
 }

 function renderYAxis(){
 var axisLength = height - 2 * margin;

 var scale = d3.scale.linear()
 .domain([100, 0])
 .range([0, axisLength]);

 var yAxis = d3.svg.axis()
 .scale(scale)
 .orient("left");

 svg.append("g")
 .attr("class", "y-axis")
 .attr("transform", function(){
 return "translate(" + margin + "," + margin + ")";
 })
 .call(yAxis);

 d3.selectAll("g.y-axis g.tick")
 .append("line")
 .classed("grid-line", true)

Chapter 5

109

 .attr("x1", 0)
 .attr("y1", 0)
 .attr("x2", axisLength)
 .attr("y2", 0);
 }

 renderYAxis();
 renderXAxis();
</script>

The previous code generates the following visual output:

Axes and grid lines

Playing with Axes

110

How it works...
In this recipe, two axes x and y were created in the renderXAxis and renderYAxis
functions, respectively. Let's take a look at how the x axis was rendered.

Once we understand how to render x axis and its grid lines, the logic used to render y axis can
be easily understood since they are almost identical. The x axis and its scale were defined
with no complications, as we have already demonstrated a number of times throughout this
chapter. An svg:g element was created to contain the x axis structures. This svg:g element
was placed at the bottom of the chart using a translate transformation, as shown on line A:

.attr("transform", function(){ // <-A
 return "translate(" + margin + "," + (height - margin) + ")";
})

It is important to remember that the translate transformation changes the frame of reference
for coordinates when it comes to any of its sub-elements. For example, within this svg:g
element, if we create a point with its coordinates set as (0, 0), then when we draw this
point on the SVG canvas, it will be actually placed as (margin, height – margin). This
is because all subelements within the svg:g element are automatically transformed to this
base coordinate, hence, the shift of the frame of reference. Equipped with this understanding,
let's see how dynamic grid lines can be generated after the axis is rendered:

d3.selectAll("g.x-axis g.tick") // <-B
 .append("line") // <-C
 .classed("grid-line", true)
 .attr("x1", 0) // <-D
 .attr("y1", 0)
 .attr("x2", 0)
 .attr("y2", - (height - 2 * margin)); // <-E

Once the axis has been rendered, we can select all the ticks elements on an axis by selecting
the g.tick, since each of them is grouped by its own svg:g element (see line B). Then on
line C, we append a new svg:line element to each svg:g tick element. SVG line element is
the simplest shape provided by the SVG standard. It has four main attributes:

 f x1 and y1 attributes define the point of origin of this line

 f x2 and y2 attributes define the point of destination

In our case, here we simply set x1, y1, and x2 to 0, since each g.tick element has already
been translated to its position on the axis, therefore, we only need to change the y2 attribute
in order to draw a vertical grid line. The y2 attribute is set to –(height – 2 * margin).
The reason why the coordinate is negative was because the entire g.x-axis has been
shifted down to (height – margin), as mentioned in the previous code. Therefore, in
absolute coordinate terms y2 = (height – margin) – (height – 2 * margin) =
margin, which is the top of the vertical grid line we want to draw from the x axis.

Chapter 5

111

In SVG coordinates, (0, 0) denotes the top-left corner of the SVG canvas.

This is what the x axis in SVG structure with associated grid line looks like:

x axis with grid lines SVG structure

As we can see in the preceding screenshot, an svg:line element representing the grid line
was added into the "g.tick" svg:g container element as discussed earlier in this section.

The y axis grid lines are generated using the identical technique; the only difference is that
instead of setting the y2 attribute on the grid lines, as we did for the x axis, we change the x2
attribute, since the lines are horizontal (see line F):

d3.selectAll("g.y-axis g.tick")
 .append("line")
 .classed("grid-line", true)
 .attr("x1", 0)
 .attr("y1", 0)
 .attr("x2", axisLength) // <-F
 .attr("y2", 0);

Dynamic rescaling of axes
In some cases, the scale used by axes might change when triggered by user interaction
or changes from data feeds. For example, a user might change the time range for the
visualization. This kind of change also needs to be reflected by rescaling the axes. In this
recipe, we will explore how this can be achieved dynamically while also redrawing the grid
lines associated with each tick.

Playing with Axes

112

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter5/
rescaling.html

How to do it...
Here is the code showing how to perform dynamic rescaling:

<script type="text/javascript">
 var height = 500,
 width = 500,
 margin = 25,
 xAxis, yAxis, xAxisLength, yAxisLength;

 var svg = d3.select("body").append("svg")
 .attr("class", "axis")
 .attr("width", width)
 .attr("height", height);

 function renderXAxis(){
 xAxisLength = width - 2 * margin;

 var scale = d3.scale.linear()
 .domain([0, 100])
 .range([0, xAxisLength]);

 xAxis = d3.svg.axis()
 .scale(scale)
 .tickSubdivide(1)
 .orient("bottom");

 svg.append("g")
 .attr("class", "x-axis")
 .attr("transform", function(){
 return "translate(" + margin + ","
 + (height - margin) + ")";
 })
 .call(xAxis);
 }

Chapter 5

113

 function rescale(){ // <-A
 var max = Math.round(Math.random() * 100);

 xAxis.scale().domain([0, max]); // <-B
 svg.select("g.x-axis")
 .transition()
 .call(xAxis); // <-C

 renderXGridlines();
 }

 function renderXGridlines(){
 var lines = d3.selectAll("g.x-axis g.tick")
 .select("line.grid-line")
 .remove(); // <-D

 lines = d3.selectAll("g.x-axis g.tick")
 .append("line")
 .classed("grid-line", true)

 lines.attr("x1", 0)
 .attr("y1", 0)
 .attr("x2", 0)
 .attr("y2", - yAxisLength);
 }

 renderXAxis();
 renderXGridlines();
</script>

Playing with Axes

114

The preceding code generates the following effects:

Dynamic axes rescaling

Due to limited scope in this book, the y axis-related code has been omitted
from the code example in this recipe. See the code example available
online for a complete reference.

How it works...
As soon as you click the ReScale button on the screen, you will notice both the axes rescale
while all the ticks as well as grid lines get redrawn accompanied with a smooth transition
effect. In this section, we will focus on how rescaling works and leave the transition effect for
the next chapter Transition with Style. Most of the heavy lifting in this recipe is done by the
rescale function defined on line A.

function rescale(){ // <-A
 var max = Math.round(Math.random() * 100);

 xAxis.scale().domain([0, max]); // <-B
 svg.select("g.x-axis")
 .transition()
 .call(xAxis); // <-C

 renderXGridlines();
}

Chapter 5

115

To rescale an axis, we simply change its domain (see line B). If you recall, the scale domain
represents the data domain, while its range corresponds to visual domain. Therefore, visual
range should remain constant since we are not resizing the SVG canvas. Once updated, we
call the xAxis again by passing in the svg:g element for the x axis (see line C); this simple
call will take care of the axis updating, hence, our job is done with the axis. In the next step, we
also need to update and redraw all the grid lines since the domain change will also change all
the ticks:

function renderXGridlines(){
 var lines = d3.selectAll("g.x-axis g.tick")
 .select("line.grid-line")
 .remove(); // <-D

 lines = d3.selectAll("g.x-axis g.tick")
 .append("line")
 .classed("grid-line", true)

 lines.attr("x1", 0)
 .attr("y1", 0)
 .attr("x2", 0)
 .attr("y2", - yAxisLength);
}

This is achieved by removing every grid line by calling the remove() function, as shown on
line D, and then recreating the grid lines for all the new ticks on rescaled axes. This approach
effectively keeps all grid lines consistent with the ticks during rescaling.

6
Transition with Style

In this chapter we will cover:

 f Animating a single element
 f Animating multiple elements
 f Using ease
 f Using tweening
 f Using transition chaining
 f Using transition filter
 f Listening to transitional events
 f Implementing custom interpolator
 f Working with timer

Introduction

"A picture is worth a thousand words."

This age-old wisdom is arguably one of the most important cornerstones of data visualization.
Animation on the other hand is generated using a series of still images in quick succession.
Human eye-and-brain complex, through positive afterimage, phi phenomenon, and beta
movement is able to create an illusion of continuous imagery. As Rick Parent put it perfectly in
his brilliant work Computer Animation Algorithms and Techniques:

Images can quickly convey a large amount of information because the human
visual system is a sophisticated information processor. It follows, then, that moving
images have the potential to convey even more information in a short time. Indeed,
the human visual system has evolved to provide for survival in an ever-changing
world; it is designed to notice and interpret movement.

-Parent R. 2012

Transition with Style

118

This is indeed the main goal of animation used in data visualization projects. In this chapter,
we will focus on the mechanics of D3 transition, covering topics from the basics to more
advanced ones, such as custom interpolation and timer-based transition. Mastering transition
is not only going to add many bells and whistles to your otherwise dry visualization, but will
also provide a powerful toolset to your visualization and otherwise hard-to-visualize attributes,
such as trending and differences.

What is Transition?
D3 transition offers the ability to create computer animation with HTML and SVG elements on
a web page. D3 transition implements an animation called Interpolation-based Animation.
Computer's are especially well equipped for value interpolation, and therefore, most of the
computer animations are interpolation-based. As its name suggests, the foundation for such
animation capability is value interpolation.

If you recall, we have already covered D3 interpolators and interpolation functions in detail in
Chapter 4, Tipping the Scales. Transition is built on top of interpolation and scales to provide
the ability to change values over time, which produces animation. Each transition can be
defined using a start and end value (also called key frames in animation), while different
algorithms and interpolators will fill in the intermediate values frame-by-frame (also called
"in-betweening" or simply "tweening"). At the first glance, if you are not already familiar with
animation algorithms and techniques, this seems to be a somewhat less controlled way
of creating an animation. However, it is quite the opposite in reality; interpolation-based
transitions can provide direct and specific expectations about the motion produced down to
each and every frame, thus offering tremendous control to the animator with simplicity. In fact,
D3 transition API is so well-designed that, in most cases, only a couple of lines of code are
enough to implement animations you need in a data visualization project. Now, let's get our
hands dirty and try out some transitions to further improve our understanding on this topic.

Animating a single element
In this recipe, we will first take a look at the simplest case of transition—interpolating
attributes on a single element over time to produce a simple animation.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
single-element-transition.html

Chapter 6

119

How to do it...
The code necessary to perform this simple transition is extremely short; good news for
any animator:

<script type="text/javascript">
 var body = d3.select("body"),
 duration = 5000;

 body.append("div") // <-A
 .classed("box", true)
 .style("background-color", "#e9967a") // <-B
 .transition() // <-C
 .duration(duration) // <-D
 .style("background-color", "#add8e6") // <-E
 .style("margin-left", "600px") // <-F
 .style("width", "100px")
 .style("height", "100px");
</script>

This code produces a moving, shrinking, and color-changing square, as shown in the
following screenshot:

Single element transition

How it works...
You might be surprised to see that the extra code we have added to enable this animation is
only on line C and D:

 body.append("div") // <-A
 .classed("box", true)
 .style("background-color", "#e9967a") // <-B
 .transition() // <-C
 .duration(duration) // <-D

Transition with Style

120

First on line C, we call the d3.selection.transition function to define a transition.
Then, the transition function returns a transition-bound selection that still represents the
same element(s) in the current selection. But now, it is equipped with additional functions and
allows further customization of the transitional behavior. Line C returns a transition-bound
selection of the div element we created on line A.

On line D, we set the duration of the transition to 5000 milliseconds using the duration()
function. This function also returns the current transition-bound selection, thus allowing
function chaining. As we have mentioned at the start of this chapter, interpolation-based
animations usually only require specifying the start and end values while letting interpolators
and algorithms fill the intermediate values over time. D3 transition treats all values set before
calling the transition function as start values, with values set after the transition
function call as end values. Hence in our example:

.style("background-color", "#e9967a") // <-B

The background-color style defined on line B is treated as the start value for transition. All
styles set in the following lines are treated as end values:

.style("background-color", "#add8e6") // <-E

.style("margin-left", "600px") // <-F

.style("width", "100px")

.style("height", "100px");

At this point, you might be asking, why these start and end values are not symmetric?. D3
transition does not require every interpolated value to have explicit start and end values. If the
start value is missing, then it will try to use the computed style, and if the end value is missing
then the value will be treated as a constant. Once the transition starts, D3 will automatically
pick the most suitable registered interpolator for each value. In our example, an RGB color
interpolator will be used in line E, while a string interpolator—which internally uses number
interpolators to interpolate embedded numbers—will be used for the rest of the style values.
Here we will list the interpolated style values with their start and end values:

 f background-color: The start value #e9967a is greater than end value #add8e6

 f margin-left: The start value is a computed style and is greater than end value
600px

 f width: The start value is a computed style and it's greater than the end value 100px

 f height: The start value is a computed style and greater than the end value 100px

Chapter 6

121

Animating multiple elements
A more elaborate data visualization requires animating multiple elements instead of a single
element, as demonstrated in the previous recipe. More importantly, these transitions often
need to be driven by data and coordinated with other elements within the same visualization.
In this recipe, we will see how a data-driven multielement transition can be created to
generate a moving bar chart. New bars are added over time while the chart shifts from right to
left with a smooth transition.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
multi-element-transition.html

How to do it...
As expected, this recipe is slightly larger than the previous one, however, not by that much.
Let's take a look at the code:

<script type="text/javascript">
 var id= 0,
 data = [],
 duration = 500,
 chartHeight = 100,
 chartWidth = 680;

for(var i = 0; i < 20; i++){
 push(data);
}

 function render(data) {
 var selection = d3.select("body")
 .selectAll("div.v-bar")
 .data(data, function(d){return d.id;}); // <-A

 // enter
 selection.enter()
 .append("div")
 .attr("class", "v-bar")
 .style("position", "fixed")

Transition with Style

122

 .style("top", chartHeight + "px")
 .style("left", function(d, i){
 return barLeft(i+1) + "px"; // <-B
 })
 .style("height", "0px") // <-C
 .append("span");

 // update
 selection
 .transition().duration(duration) // <-D
 .style("top", function (d) {
 return chartHeight - barHeight(d) + "px";
 })
 .style("left", function(d, i){
 return barLeft(i) + "px";
 })
 .style("height", function (d) {
 return barHeight(d) + "px";
 })
 .select("span")
 .text(function (d) {return d.value;});

 // exit
 selection.exit()
 .transition().duration(duration) // <-E
 .style("left", function(d, i){
 return barLeft(-1) + "px"; //<-F
 })
 .remove(); // <-G
 }

 function push(data) {
 data.push({
 id: ++id,
 value: Math.round(Math.random() * chartHeight)
 });
 }

function barLeft(i) {
 // start bar position is i * (barWidth + gap)
 return i * (30 + 2);
 }

 function barHeight(d) {

Chapter 6

123

 return d.value;
 }

 setInterval(function () {
 data.shift();
 push(data);
 render(data);
 }, 2000);

 render(data);

 d3.select("body")
 .append("div")
 .attr("class", "baseline")
 .style("position", "fixed")
 .style("top", chartHeight + "px")
 .style("left", "0px")
 .style("width", chartWidth + "px");
</script>

The preceding code generates a sliding bar chart in your web browser, as shown in the
following screenshots:

Sliding bar chart

How it works...
On the surface, this example seems to be quite complex with complicated effects. Every
second a new bar needs to be created and animated while the rest of the bars need to slide
over precisely. The beauty of D3 set-oriented functional API is that it works exactly the same
way no matter how many elements you are manipulating; therefore, once you understand the
mechanics, you will realize this recipe is not so much different than the previous one.

Transition with Style

124

First step, we created a data-bound selection for a number of vertical bars (on line A), which
can then be used in a classic enter-update-exit D3 pattern:

var selection = d3.select("body")
 .selectAll("div.v-bar")
 .data(data, function(d){return d.id;}); // <-A

One thing we have not touched so far is the second parameter in the d3.selection.data
function. Here, we know that this function is called an object-identity function. The purpose
of using this function is to provide object constancy. What it means in simple terms is that
we want the binding between data and visual element to be stable. In order to achieve object
constancy, each datum needs to have a unique identifier. Once the ID is provided, D3 will
ensure if a div element is bound to {id: 3, value: 45}. Then, the next time when the
update selection is computed, the same div element will be used for the datum with the
same id, though this time the value might get changed, for example, {id: 3, value:
12}. Object constancy is crucial in this recipe; without object constancy, the sliding effect will
not work.

If you are interested to know more about object constancy,
please check this excellent writing by Mike Bostock, the
creator of D3 at the following link:

http://bost.ocks.org/mike/constancy/

The second step is to create these vertical bars with the d3.selection.enter function and
compute the left position for each bar based on the index number (see line B):

 // enter
 selection.enter()
 .append("div")
 .attr("class", "v-bar")
 .style("position", "fixed")
 .style("top", chartHeight + "px")
 .style("left", function(d, i){
 return barLeft(i+1) + "px"; // <-B
 })
 .style("height", "0px") // <-C
 .append("span");

Chapter 6

125

Another point worth mentioning here is that in the enter section, we have not called
transition yet, which means any value we specify here will be used as the start value in a
transition. If you notice on line C, bar height is set to 0px. This enables the animation of
bars growing from zero height to the target height. At the same time, the same logic is
applied to the left position of the bar (see line B) and was set to barLeft(i+1), thus
enabling the sliding transition we desired.

 // update
 selection
 .transition().duration(duration) // <-D
 .style("top", function (d) {
 return chartHeight - barHeight(d) + "px";
 })
 .style("left", function(d, i){
 return barLeft(i) + "px";
 })
 .style("height", function (d) {
 return barHeight(d) + "px";
 })
 .select("span")
 .text(function (d) {return d.value;});

After completing the enter section, now we can take care of the update section, where the
transition is defined. First of all, we want to introduce transition for all updates, therefore, we
invoke the transition function before any style change is applied (see line D). Once the
transition-bound selection is created, we applied the following style transitions:

 f "top": chartHeight + "px" > chartHeight - barHeight(d)+"px"

 f "left": barLeft(i+1) + "px" > barLeft(i) + "px"

 f "height": "0px" > barHeight(d) + "px"

The aforementioned three style transitions are all you need to do to handle new bars as well
as every existing bar and their sliding effect. Finally, the last case we need to handle here
is the exit case, when a bar is no longer needed. So, we want to keep the number of bars
constant on the page. This is handled in the exit section:

 // exit
 selection.exit()
 .transition().duration(duration) // <-E
 .style("left", function(d, i){
 return barLeft(-1) + "px"; // <-F
 })
 .remove(); // <-G

Transition with Style

126

So far in this book, prior to this chapter, we have always called the remove() function
immediately after the d3.selection.exit function. This immediately removes the
elements that are no longer needed. In fact, the exit() function also returns a selection,
and therefore, can be animated before calling the remove() function. This is exactly what we
did here, starting a transition on line E using the exit selection; then we animated the left
value with the following transition change:

 f left: barLeft(i) + "px" > barLeft(i-1) + "px"

Since we are always removing the left-most bar, this transition moves the bar left and out of
the SVG canvas, then removes it.

The exit transition is not necessarily limited to simple transitions, such
as the one we have shown in this recipe. In some visualization, it could be
as elaborate as the update transition.

Once the render function is in place with the defined transition, all that is left is to simply
update the data and re-render our bar chart every second using the setInterval function.
Now this completes our example.

Using ease
Transition can be thought of as a function of time. It is a function that maps time progression
into numeric value progression, which then results in object motion (if the numeric value is
used for positioning) or morphing (if the value is used to describe other visual attributes). Time
always travels at a constant pace; in other words time progression is uniform (unless you are
doing visualization near a black hole of course), however, the resulting value progression does
not need to be uniform. Easing is a standard technique to provide flexibility and control to this
kind of mapping. When a transition generates a uniform value progression, it is called linear
easing. D3 provides support for different types of easing capabilities, and in this recipe, we
will explore different built-in D3 easing functions, as well as how to implement custom easing
functions with D3 transition.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
easing.html

Chapter 6

127

How to do it...
In the following code example, we will demonstrate how transition easing can be customized
on an element-by-element basis:

<script type="text/javascript">
 var data = [// <-A
 "linear", "cubic", "cubic-in-out",
 "sin", "sin-out", "exp", "circle", "back",
 "bounce",
 function(t){ // <-B
 return t * t;
 }
],
 colors = d3.scale.category10();

 d3.select("body").selectAll("div")
 .data(data) // <-C
 .enter()
 .append("div")
 .attr("class", "fixed-cell")
 .style("top", function (d, i) {
 return i * 40 + "px";
 })
 .style("background-color", function (d, i) {
 return colors(i);
 })
 .style("color", "white")
 .style("left", "500px")
 .text(function (d) {
 if(typeof d === 'function') return "custom";
 return d;
 });

 d3.selectAll("div").each(function(d){
 d3.select(this)
 .transition().ease(d) // <-D
 .duration(1500)
 .style("left", "10px");
 });
</script>

Transition with Style

128

The preceding code produces a set of moving boxes with different easing effects. The
following screenshot is captured at the time the easing effect takes place:

Different easing effects

How it works...
In this recipe, we have shown a number of different built-in D3 ease functions and their
effects on transition. Let's take a look at how it is done. First, we have created an array to
store different ease modes we want to demonstrate:

var data = [// <-A
 "linear",
 "cubic",
 "cubic-in-out",
 "sin",
 "exp",
 "circle",
 "back",
 "bounce",
 function(t){ // <-B
 return t * t;
 }

]

Chapter 6

129

While all the built-in ease functions are defined simply using their name, the last element
of this array is a custom easing function (quadric easing). Then afterwards, a set of div
elements created using this data array and a transition with different easing functions was
created for each of the div element, respectively, moving them from ("left", "500px")
to ("left", "10px").

d3.selectAll("div").each(function(d){
 d3.select(this)
 .transition().ease(d) // <-D
 .duration(1500)
 .style("left", "10px");
 });

At this point, you might be asking, Why did we not just specify easing using a function as we
normally would have done for any other D3 attributes?

 .transition().ease(function(d){return d;}) // does not work
 .duration(1500)
 .style("left", "10px");

The reason is that it does not work on the ease() function. What we have shown on line D is
a workaround of this limitation, though in real-world projects it is fairly rare that you will need
to customize easing behavior on a per-element basis.

Note that it is not possible to customize the easing function per-element or
per-attribute;

D3 Wiki (2013, August)

Another way to get around this limitation is by using custom tweening,
which we will cover in the next recipe.

As seen on line D, specifying different ease function for D3 transition is very straight forward;
all you need to do is call the ease() function on a transition-bound selection. If the pass-in
parameter is a string, then D3 will try to find the matching function using the name; if not
found it will default to linear. On top of named built-in ease functions, D3 also provides ease
mode modifiers that you can combine with any ease function to achieve additional effects, for
example, sin-out or quad-out-in. Available ease mode modifiers:

 f in: default

 f out: reversed

 f in-out: reflected

 f out-in: reversed and reflected

Transition with Style

130

The default ease effect used by D3 is cubic-in-out.

For the list of supported D3 ease functions please refer to the following
link:

https://github.com/mbostock/d3/wiki/
Transitions#wiki-d3_ease

When a custom ease function is used, the function is expected to take the current parametric
time value as its parameter in the range of [0, 1].

function(t){ // <-B
 return t * t;
}

In our example, we have implemented a simple quadric easing function, which is actually
available as a built-in D3 ease function, and is named as quad.

For more information on easing and Penner's equations (most of the
modern JavaScript framework implementations including D3 and jQuery)
check out the following link:

http://www.robertpenner.com/easing/

Using tweening
Tween comes from the word "inbetween", which is a common practice performed in traditional
animation where after key frames were created by the master animator, less experienced
animators were used to generate frames in between the key frames. This phrase is borrowed
in modern computer-generated animation and it refers to the technique or algorithm
controlling how the "inbetween" frames are generated. In this recipe, we will examine how the
D3 transition supports tweening.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
tweening.html

Chapter 6

131

How to do it...
In the following code example, we will create a custom tweening function to animate a button
label through nine discrete integral numbers:

<script type="text/javascript">
 var body = d3.select("body"), duration = 5000;

 body.append("div").append("input")
 .attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "0")
 .style("width", "150px")
 .transition().duration(duration).ease("linear")
 .style("width", "400px")
 .attr("value", "9");

 body.append("div").append("input")
 .attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "0")
 .transition().duration(duration).ease("linear")
 .styleTween("width", widthTween) // <- A
 .attrTween("value", valueTween); // <- B

 function widthTween(a){
 var interpolate = d3.scale.quantize()
 .domain([0, 1])
 .range([150, 200, 250, 350, 400]);

 return function(t){
 return interpolate(t) + "px";
 };
 }

 function valueTween(){
 var interpolate = d3.scale.quantize() // <-C
 .domain([0, 1])
 .range([1, 2, 3, 4, 5, 6, 7, 8, 9]);

 return function(t){ // <-D
 return interpolate(t);
 };
 }
</script>

Transition with Style

132

The preceding code generates two buttons morphing at a very different rate, and the following
screenshot is taken while this process is going on:

Tweening

How it works...
In this recipe, the first button was created using simple transition with linear easing:

body.append("div").append("input")
 .attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "0")
 .style("width", "150px")
 .transition().duration(duration).ease("linear")
 .style("width", "400px")
 .attr("value", "9");

The transition changes the button's width from "150px" to "400px", while changing its value
from "0" to "9". As expected, this transition simply relies on continuous linear interpolation
of these values using D3 string interpolator. In comparison, the second button has the effect
of changing these values in chunks. Moving from 1 to 2, then to 3, and so on up to 9. This is
achieved using D3 tweening support with attrTween and styleTween functions. Let's first
take a look at how the button value tweening works:

.transition().duration(duration).ease("linear")
 .styleTween("width", widthTween) // <- A
 .attrTween("value", valueTween); // <- B

In the preceding code snippet, we can see that instead of setting the end value for the value
attribute as we have done in the case of the first button, we use attrTween function and
offered a tweening function valueTween, which is implemented as the following:

function valueTween(){
 var interpolate = d3.scale.quantize() // <-C
 .domain([0, 1])
 .range([1, 2, 3, 4, 5, 6, 7, 8, 9]);

 return function(t){ // <-D
 return interpolate(t);
 };
}

Chapter 6

133

In D3, a tween function is expected to be a factory function, which constructs the actual
function that will be used to perform the tweening. In this case, we have defined a quantize
scale that maps the domain [0, 1] to a discrete integral range of [1, 9], on line C. The
actual tweening function defined on line D simply interpolates the parametric time value using
the quantize scale which generates the jumping integer effect.

Quantize scales are a variant of linear scale with a discrete range rather
than continuous. For more information on quantize scales, please visit the
following link:

https://github.com/mbostock/d3/wiki/Quantitative-
Scales#wiki-quantize

There's more...
At this point we have touched upon all three concepts related to transition: ease, tween, and
interpolation. Typically, D3 transition is defined and driven through all the three levels shown
in the following sequence diagram:

Ease

Tween

Interpolation

Transition

Drivers of transition

As we have shown through multiple recipes, D3 transition supports customization in all three
levels. This gives us tremendous flexibility to customize the transition behavior exactly the way
we want.

Though custom tween is usually implemented using interpolation, there
is no limit to what you can do in your own tween function. It is entirely
possible to generate custom tween without using D3 interpolator at all.

Transition with Style

134

We used linear easing in this recipe to highlight the effect of tweening, however, D3 fully
supports eased tweening, meaning that you can combine any of the ease functions we have
demonstrated in the previous recipe with your custom tween to generate even more complex
transition effects.

Using transition chaining
The first four recipes in this chapter are focused on single transition controls in D3,
including custom easing and tweening functions. However, sometimes regardless of how
much easing or tweening you do, a single transition is just not enough, for instance, you
want to simulate teleporting a div element by first squeezing the div element into a beam,
then passing the beam to a different position on the web page, and finally restoring the
div to its original size. In this recipe, we will see exactly how this type of transition can be
achieved using transition chaining.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
chaining.html

How to do it...
Our simple teleportation transition code is surprisingly short:

<script type="text/javascript">
 var body = d3.select("body");

 function teleport(s){
 s.transition().duration(300) // <-A
 .style("width", "200px")
 .style("height", "1px")
 .transition().duration(100) // <-B
 .style("left", "600px")
 .transition().duration(300) // <-C
 .style("left", "800px")
 .style("height", "80px")
 .style("width", "80px");
 }

 body.append("div")
 .style("position", "fixed")
 .style("background-color", "steelblue")

Chapter 6

135

 .style("left", "10px")
 .style("width", "80px")
 .style("height", "80px")
 .call(teleport); // <-D
</script>

The preceding code performs a div teleportation:

DIV teleportation via transition chaining

How it works...
This simple teleportation effect was achieved by chaining a few transitions together. In D3,
when transitions are chained, they are guaranteed to be executed only after the previous
transition reaches its completion state. Now, let's see how this is done in the code:

function teleport(s){
 s.transition().duration(300) // <-A
 .style("width", "200px")
 .style("height", "1px")
 .transition().duration(100) // <-B
 .style("left", "600px")
 .transition().duration(300) // <-C
 .style("left", "800px")
 .style("height", "80px")
 .style("width", "80px");
};

The first transition was defined and initiated on line A (compression), then on line B a
second transition (beaming) was created, and finally the third transition is chained on line C
(restoration). Transition chaining is a powerful yet simple technique to orchestrate a complex
transition effect by stitching simple transitions together. Finally in this recipe, we have also
shown a basic example on re-usable composite transition effect by wrapping the teleportation
transition in a function and then applying it on a selection using the d3.selection.call
function (see line D). Re-usable transition effect is essential to following the DRY (Don't Repeat
Yourself) principle, especially when the animation in your visualization becomes more elaborate.

Transition with Style

136

Using transition filter
Under some circumstances, you might find it necessary to selectively apply transition to
a subset of a certain selection. In this recipe, we will explore this effect using data-driven
transition filtering techniques.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
filtering.html

How to do it...
In this recipe, we will move a set of div elements (or boxes) across the web page from right to
left. After moving all the boxes to the left, we selectively move only the boxes that are marked
with Cat back, so they won't fight each other. Let's see the following code:

<script type="text/javascript">
 var data = ["Cat", "Dog", "Cat", "Dog", "Cat", "Dog", "Cat",
"Dog"],
 duration = 1500;

 d3.select("body").selectAll("div")
 .data(data)
 .enter()
 .append("div")
 .attr("class", "fixed-cell")
 .style("top", function (d, i) {
 return i * 40 + "px";
 })
 .style("background-color", "steelblue")
 .style("color", "white")
 .style("left", "500px")
 .text(function (d) {
 return d;
 })
 .transition() // <- A
 .duration(duration)
 .style("left", "10px")
 .filter(function(d){return d == "Cat";}) // <- B
 .transition() // <- C
 .duration(duration)
 .style("left", "500px");
</script>

Chapter 6

137

Here is what the page looks like after the transition:

Transition filtering

How it works...
The initial setup of this recipe is quite simple, since we want to keep the plumbing as minimal
as possible which will help you focus on the core of the technique. We have a data array
containing interlaced strings of "Cat" and "Dog". Then a set of div boxes are created
for the data and a transition was created (see line A) to move all the boxes across the web
page to the left-hand side. So far, it is a simple example of a multi-element transition with no
surprises yet:

.transition() // <- A

.duration(duration)
 .style("left", "10px")
.filter(function(d){return d == "Cat";}) // <- B
.transition() // <- C
.duration(duration)
 .style("left", "500px");

Then on line B, d3.selection.filter function is used to generate a subselection
containing only the "cat" boxes. Remember, D3 transition is still a selection (transition-bound
selection), therefore, the d3.selection.filter function works exactly the same way as
on a regular selection. Once the subselection is generated by the filter function, we can
apply a secondary transition (see line C) to this subselection alone. The filter function
returns a transition-bound subselection; therefore, the second transition created on line C
is actually generating a transition chain. It will only be triggered after the first transition
reaches its completion. By using combinations of transition chaining and filtering we can
generate some really interesting data-driven animations; it is a useful tool to have in any
data visualizer's toolset.

www.allitebooks.com

http://www.allitebooks.org

Transition with Style

138

See also
 f For recipes on D3 data-driven selection filtering, please see the Filtering with data

recipe Chapter 3, Dealing with Data

 f Read about API doc for the selection.filter function at https://github.
com/mbostock/d3/wiki/Selections#wiki-filter

Listening to transitional events
Transition chaining gives you the ability to trigger secondary transitions after the initial
transition reaches its completion state; however, sometimes you might need to trigger certain
action other than a transition, or maybe do something else during the transition. This is what
transition event listeners are designed for, they are the topic of this recipe.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
events.html

How to do it...
In this recipe, we will demonstrate how to display different captions on an animated div
element based on its transition state. Obviously, this example can easily be extended to
perform more meaningful tasks using the same technique:

<script type="text/javascript">
 var body = d3.select("body"), duration = 3000;

 var div = body.append("div")
 .classed("box", true)
 .style("background-color", "steelblue")
 .style("color", "white")
 .text("waiting") // <-A
 .transition().duration(duration) // <-B
 .delay(1000) // <-C
 .each("start", function(){ // <-D
 console.log(arguments);
 d3.select(this).text(function (d, i) {
 return "transitioning";
 });
 })

Chapter 6

139

 .each("end", function(){ // <-E
 d3.select(this).text(function (d, i) {
 return "done";
 });
 })
 .style("margin-left", "600px");
</script>

The preceding code produces the following visual output where a box appears with waiting
label; it moves to the right with the label changed to transitioning and when it's done, it stops
moving and changes its label to done:

Transition event handling

How it works...
In this recipe, we constructed a single div element with a simple horizontal-movement
transition, which, when initiated, also changes the label based on what transition state it is in.
Let's first take a look at how we manage to display the waiting label:

var div = body.append("div")
 .classed("box", true)
 .style("background-color", "steelblue")
 .style("color", "white")
 .text("waiting") // <-A
 .transition().duration(duration) // <-B
 .delay(1000) // <-C

The waiting label is set on line A before the transition is defined on line B, however, we also
specified a delay for the transition thus showing the waiting label before the transition is
initiated. Next, let's find out how we were able to display the transitioning label during
the transition:

.each("start", function(){ // <-D
 d3.select(this).text(function (d, i) {
 return "transitioning";
 });
})

Transition with Style

140

This is achieved by calling the each() function and selecting its first parameter set as
"start" event name with an event listener function passed in as the second parameter. The
this reference of the event listener function points to the current selected element, hence,
can be wrapped by D3 and further manipulated. The transition "end" event is handled in an
identical manner:

.each("end", function(){ // <-E
 d3.select(this).text(function (d, i) {
 return "done";
 });
})

The only difference here is that the event name is passed into the each() function.

Implementing a custom interpolator
In Chapter 4, Tipping the Scales, we explored how custom interpolators can be implemented
in D3. In this recipe, we will demonstrate how this technique can be combined with D3
transition to generate special transition effects by leveraging custom interpolation.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
custom-interpolator-transition.html

This recipe builds on top of what we have discussed in the Implementing a custom
interpolator recipe in Chapter 4, Tipping the Scales. If you are not familiar with the concept of
custom interpolation, please review the related recipe before proceeding with this one.

How to do it...
Let's look at the code of the custom-interpolator-transition.html file and see how
it works:

 <script type="text/javascript">
 d3.interpolators.push(function(a, b) { // <-A
 var re = /^([a-z])$/, ma, mb;
 if ((ma = re.exec(a)) && (mb = re.exec(b))) {
 a = a.charCodeAt(0);
 var delta = a - b.charCodeAt(0);
 return function(t) {
 return String.fromCharCode(Math.ceil(a - delta * t));
 };

Chapter 6

141

 }
 });

 var body = d3.select("body");

 var countdown = body.append("div").append("input");

 countdown.attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "a") // <-B
 .transition().ease("linear") // <-C
 .duration(4000).delay(300)
 .attr("value", "z"); // <-D
</script>

The preceding code generates one ticking box that starts from a and finishes at z:

Transition with custom interpolation

How it works...
First thing we did in this recipe is register a custom interpolator that is identical to the
alphabet interpolator we discussed in Chapter 4, Tipping the Scales:

d3.interpolators.push(function(a, b) { // <-A
 var re = /^([a-z])$/, ma, mb;
 if ((ma = re.exec(a)) && (mb = re.exec(b))) {
 a = a.charCodeAt(0);
 var delta = a - b.charCodeAt(0);
 return function(t) {
 return String.fromCharCode(Math.ceil(a - delta * t));
 };
 }
});

Transition with Style

142

Once the custom interpolator is registered, the transition part has pretty much no custom
logic at all. Since it's based on the value that needs to be interpolated and transitioned upon,
D3 will automatically pick the correct interpolator to perform the task:

countdown.attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "a") // <-B
 .transition().ease("linear") // <-C
 .duration(4000).delay(300)
 .attr("value", "z"); // <-D

As we can see in the preceding code snippet, the start value is "a", defined on line B.
Afterwards, a standard D3 transition is created on line C and finally all we had to do is set the
end value to "z" on line D, then D3 and our custom interpolator takes care of the rest.

Working with timer
So far in this chapter we have discussed various topics on D3 transition. At this point
you might be asking the question, What is powering D3 transition that is generating the
animated frames?

In this recipe, we will explore a low-level D3 timer function that you can leverage to create
your own custom animation from scratch.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter6/
timer.html

How to do it...
In this recipe, we will create a custom animation that does not rely on D3 transition or
interpolation at all; essentially a custom animation created from scratch. Let's look at the
following code:

<script type="text/javascript">
 var body = d3.select("body");

 var countdown = body.append("div").append("input");

 countdown.attr("type", "button")
 .attr("class", "countdown")
 .attr("value", "0");

Chapter 6

143

 function countup(target){ // <-A
 d3.timer(function(){ // <-B
 var value = countdown.attr("value");
 if(value == target) return true; // <-C
 countdown.attr("value", ++value); // <-D
 });
 }

 function reset(){
 countdown.attr("value", 0);
 }
</script>

<div class="control-group">
 <button onclick="countup(100)">
 Start
 </button>
 <button onclick="reset()">
 Clear
 </button>
</div>

The preceding code generates a box where a timer is set to 0, and by clicking on Start the
timer increases until it reaches 100 and stops, as shown in the following:

Custom timer-based animation

How it works...
In this example, we have constructed a custom animation that moves integer from 0 to 100.
For such a simple animation, of course we could have accomplished it using D3 transition and
tweening. However, a simple example like this avoids any distraction from the technique itself.
Additionally, even in this simple example, the timer-based solution is arguably simpler and
more flexible than a typical transition-based solution. The power house of this animation lies
in the countup function (see line A):

function countup(target){ // <-A
 d3.timer(function(){ // <-B

Transition with Style

144

 var value = countdown.attr("value");
 if(value == target) return true; // <-C
 countdown.attr("value", ++value); // <-D
 });
 }

As we have shown in this example, the key to understanding this recipe lies in the
d3.timer function.

This d3.timer(function, [delay], [mark]) starts a custom timer function and
invokes the given function repeatedly, until the function returns true. There is no way to
stop the timer once it is started, so the programmer must make sure the function eventually
returns true. Optionally, you can also specify a delay as well as a mark. The delay starts
from the mark and when the mark is not specified, Date.now will be used as the mark. The
following illustration shows the temporal relationship we discussed here:

Now Mark Delay

In our implementation, the custom timer function increases button caption by one, every
time it is called (see line D) and returns true when the value reaches 100, and therefore the
the timer is terminated (see line C).

Internally, D3 transition uses the same timer function to generate its animation. At this point,
you might be asking what is the difference between using d3.timer and using animation
frame directly. The answer is that the d3.timer actually uses animation frame if the browser
supports it, otherwise, it is smart enough to fall back to use the setTimeout function, thus
freeing you from worrying about browser's support.

See also
 f For more information on d3.timer, please visit its API at the following link:

https://github.com/mbostock/d3/wiki/Transitions#wiki-d3_timer

7
Getting into Shape

In this chapter we will cover:

 f Creating simple shapes

 f Using a line generator

 f Using line interpolation

 f Changing line tension

 f Using an area generator

 f Using area interpolation

 f Using an arc generator

 f Implementing arc transition

Introduction
Scalable Vector Graphics (SVG) is a mature World Wide Web Consortium (W3C) standard
designed for user interactive graphics on the Web and Mobile platform. Similar to HTML,
SVG can coexist happily with other technologies like CSS and JavaScript in modern browsers
forming the backbone of many web applications. In today's Web, you can see use cases of
SVG everywhere from digital map to data visualization. So far in this book we have covered
most of the recipes using HTML elements alone, however, in real-world projects, SVG is
the de facto standard for data visualization; it is also where D3's strength really shines. In
this chapter, we will cover the basic concept of SVG as well as D3's support for SVG shape
generation. SVG is a very rich topic. Volumes of books can be and have been devoted to this
topic alone, hence, we are not planning or even going to try to cover all SVG-related topics,
rather we'll focus on D3 and data visualization related techniques and features.

Getting into Shape

146

What is SVG?
As its name suggests, SVG is about graphics. It is a way to describe graphical image with
scalable vectors. Let's see two of the main SVG advantages:

Vector
SVG image is based on vectors instead of pixels. With the pixel-based approach, an image is
composed of a bitmap with x and y as its coordinates filled with color pigmentations. While
with the vector-based approach, each image consists of a set of geometric shapes described
using simple and relative formulae filled with certain texture. As you can imagine, this later
approach fits naturally with data visualization requirement. It is much simpler to visualize
your data with lines, bar, and circles in SVG versus trying to manipulate color pigmentations
in a bitmap.

Scalability
The second signature capability of SVG is scalability. Since SVG graphic is a group of
geometric shapes described using relative formulas, it can be rendered and re-rendered
with different sizes and zoom levels without losing precision. On the other hand, when
bitmap-based images are resized to a large resolution, they suffer the effect of pixelation,
which occurs when the individual pixels become visible, while SVG does not have this
drawback. See the following figure to get a better picture of what we just read:

SVG versus bitmap pixelation

As a data visualizer, using SVG gives you the benefit of being able to display your visualization
on any resolution without losing the crispiness of your eye-catching creation. On top of that,
SVG offers you some additional advantages such as:

 f Readability: SVG is based on XML, a human-readable markup language

 f Open standard: SVG was created by W3C and is not a proprietary vendor standard

 f Adoption: All modern browsers support SVG standard, even on mobile platform

 f Interoperability: SVG works well with other web technologies, such as CSS and
JavaScript; D3 itself is a perfect demonstration of this capability

 f Lightweight: Compared to bitmap-based images, SVG is a lot lighter, taking up much
less space

Chapter 7

147

Because of all these capabilities we have mentioned so far, SVG has become the de facto
standard for data visualization on the Web. From this chapter onwards, all recipes in this book
will be illustrated using SVG as its most important part, with which the true power of D3 can
be professed.

Some older browsers do not support SVG natively. If your target users are
using legacy browsers, please check SVG compatibility before deciding
whether SVG is the right choice for your visualization project. Here is a link
you can visit to check you browser's compatibility:

http://caniuse.com/svg

Creating simple shapes
In this recipe, we will explore a few simple built-in SVG shape formulae and their attributes.
These simple shapes are quite easy to generate and are usually created manually using
D3 when necessary. Though these simple shapes are not the most useful shape generator
to know when working with D3, occasionally they could be handy when drawing peripheral
shapes in your visualization project.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
simple-shapes.html

How to do it...
In this recipe, we will draw four different shapes in four different colors using native SVG
shape elements:

<script type="text/javascript">
 var width = 600,
 height = 500;

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)
 .attr("width", width);

 svg.append("line") // <-A
 .attr("x1", 0)
 .attr("y1", 200)

Getting into Shape

148

 .attr("x2", 100)
 .attr("y2", 100);

 svg.append("circle") // <-B
 .attr("cx", 200)
 .attr("cy", 150)
 .attr("r", 50);

 svg.append("rect")
 .attr("x", 300) // <-C
 .attr("y", 100)
 .attr("width", 100) // <-D
 .attr("height", 100)
 .attr("rx", 5); // <-E

 svg.append("polygon")
 .attr("points", "450,200 500,100 550,200"); // <-F
</script>

The preceding code generates the following visual output:

Simple SVG shapes

How it works...
We have drawn four different shapes: a line, a circle, a rectangle, and a triangle in this
example using SVG built-in shape elements.

A little refresher on SVG coordinate system

SVG x and y coordinate system originates from the top-left corner (0, 0) of the canvas and
ends on the lower-right corner (<width>, <height>).

 f line: A line element creates a simple straight line with coordinate attributes x1 and
y1 as its start point and x2, y2 as its end point (see line A).

 f circle: The append() function draws a circle with coordinate attributes cx and cy
defining the center of the circle while the attribute r defines the radius of the circle
(see line B).

Chapter 7

149

 f rect: The append() function draws a rectangle with coordinate attributes x and
y defining the top-left corner of the rectangular (see line C), attributes width and
height for controlling the size of the rectangle, and the attributes rx and ry can be
used to introduce rounded corners. The attributes rx and ry control the x- and y-axis
radius of the ellipse used to round off the corners of the rectangle (see line E).

 f polygon: To draw a polygon, a set of points that makes up the polygon need to be
defined using a points attribute (see line F). The points attribute accepts a list of
point coordinates separated by space:

svg.append("polygon")
 .attr("points", "450,200 500,100 550,200"); // <-F

All SVG shapes can be styled using style attributes directly or through CSS similar to HTML
elements. Furthermore, they can be transformed and filtered using SVG transformation
and filter support, however, due to limited scope in this book, we will not cover these topics
in detail. In the rest of this chapter, we will focus on D3-specific supports on SVG shape
generation instead.

There's more...
SVG also supports ellipse and polyline elements, however, due to their similarity to
circle and polygon we will not cover them in detail in this book. For more information on
SVG shape elements, please visit http://www.w3.org/TR/SVG/shapes.html.

D3 SVG shape generators
The "swiss army knife" among SVG shape elements is svg:path. A path defines the outline of
any shape which can then be filled, stroked, or clipped. Every shape we have discussed so far
can be mathematically defined using svg:path alone. SVG path is a very powerful construct
and has its own mini-language and grammar. The svg:path mini-language is used to set the
"d" attribute on an svg:path element, which consists of the following commands:

 f moveto: Command M(absolute)/m(relative) moveto (x y)+

 f closepath: Z(absolute)/z(relative) closepath

 f lineto: L(absolute)/l(relative) lineto (x y)+, H(absolute)/h(relative) horizontal lineto x+,
V(absolute)/v(relative) vertical lineto y+

 f Cubic Bézier: C(absolute)/c(relative) curve to (x1 y1 x2 y2 x y)+, S(absolute)/
s(relative) shorthand curve to (x2 y2 x y)+

 f Quadratic Bézier curve: Q(absolute)/q(relative) quadratic Bézier curve to (x1 y1 x y)+,
T(absolute)/t(relative) shorthand quadratic Bézier curve to (x y)+

 f Elliptical curve: A(absolute)/a(relative) elliptical arc (rx ry x-axis-rotation large-arc-flag
sweep-flag x y)+

Getting into Shape

150

As directly using paths is not a very pleasant method due to its cryptic language, therefore,
in most cases, some kind of software, for example, Adobe Illustrator or Inkscape is required
to assist us in creating the SVG path element visually. Similarly, D3 ships with a set of SVG
shape generator functions that can be used to generate data-driven path formulae; this is
how D3 truly revolutionizes the field of data visualization by combining the power of SVG with
intuitive data-driven approach. This is also going to be the focus for the rest of this chapter.

See also
 f Please refer to http://www.w3.org/TR/SVG/Overview.html for more

information on SVG-related topics

 f For a complete reference on SVG path formula language and its grammar please visit
http://www.w3.org/TR/SVG/paths.html

Using a line generator
D3 line generator is probably one of the most versatile generators. Though it is called a "line"
generator, it has little to do with the svg:line element. In contrast, it is implemented using the
svg:path element. Like svg:path, D3 line generator is so flexible that you can effectively
draw any shape using line alone, however, to make your life easier, D3 also provides other
more specialized shape generators, which will be covered in later recipes in this chapter. In this
recipe, we will draw multiple data-driven lines using the d3.svg.line generator.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
line.html

How to do it...
Now, let's see the line generator in action:

<script type="text/javascript">
 var width = 500,
 height = 500,
 margin = 50,
 x = d3.scale.linear() // <-A
 .domain([0, 10])

Chapter 7

151

 .range([margin, width - margin]),
 y = d3.scale.linear() // <-B
 .domain([0, 10])
 .range([height - margin, margin]);

 var data = [// <-C
 [
 {x: 0, y: 5},{x: 1, y: 9},{x: 2, y: 7},
 {x: 3, y: 5},{x: 4, y: 3},{x: 6, y: 4},
 {x: 7, y: 2},{x: 8, y: 3},{x: 9, y: 2}
],

 d3.range(10).map(function(i){
 return {x: i, y: Math.sin(i) + 5};
 })
];

 var line = d3.svg.line() // <-D
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)
 .attr("width", width);

 svg.selectAll("path.line")
 .data(data)
 .enter()
 .append("path") // <-E
 .attr("class", "line")
 .attr("d", function(d){return line(d);}); // <-F

 // Axes related code omitted
 ...
</script>

Getting into Shape

152

The preceding code draws multiple lines along with the x and y axes:

D3 line generator

How it works...
In this recipe, the data we used to draw the lines are defined in a two-dimensional array:

var data = [// <-C
 [
 {x: 0, y: 5},{x: 1, y: 9},{x: 2, y: 7},
 {x: 3, y: 5},{x: 4, y: 3},{x: 6, y: 4},
 {x: 7, y: 2},{x: 8, y: 3},{x: 9, y: 2}
],

 d3.range(10).map(function(i){
 return {x: i, y: Math.sin(i) + 5};
 })
];

The first data series is defined manually and explicitly, while the second series is
generated using a mathematical formula. Both of these cases are quite common in data
visualization projects. Once the data is defined, then in order to map data points to its visual
representation, two scales were created for the x and y coordinates:

x = d3.scale.linear() // <-A
 .domain([0, 10])
 .range([margin, width - margin]),

Chapter 7

153

y = d3.scale.linear() // <-B
 .domain([0, 10])
 .range([height - margin, margin]);

Notice that the domains for these scales were set to be large enough to include all data points
in both the series, while the range were set to represent the canvas area without including the
margins. The y-axis range is inverted since we want our point of origin at the lower-left corner of
the canvas instead of the SVG-standard upper-left corner. Once both data and scales are set, all
we need to do is generate the lines to define our generator using the d3.svg.line function:

var line = d3.svg.line() // <-D
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

The d3.svg.line function returns a D3 line generator function which you can further
customize. In our example, we simply stated for this particular line generator the x coordinate,
which will be calculated using the x scale mapping, while the y coordinate will be mapped
by the y scale. Using D3 scales, to map coordinates, is not only convenient but also a widely
accepted best practice (separation of concerns). Though, technically you can implement these
functions using any approach you prefer. Now the only thing left to do is actually create the
svg:path elements.

svg.selectAll("path.line")
 .data(data)
 .enter()
 .append("path") // <-E
 .attr("class", "line")
 .attr("d", function(d){return line(d);}); // <-F

Path creation process was very straightforward. Two svg:path elements are created using
the data array we defined (on line E). Then the d attribute for each path element was set using
the line generator we created previously by passing in the data d as its input parameter. The
following screenshot shows what the generated svg:path elements look like:

Generated SVG path elements

Finally two axes are created using the same x and y scales we defined earlier. Due to limited
scope in this book, we have omitted the axes-related code in this recipe and in the rest of this
chapter, since they don't really change and also are not the focus of this chapter.

Getting into Shape

154

See also
 f For detailed information on D3 axes support please visit Chapter 5, Play with Axes

Using line interpolation
By default, the D3 line generator uses linear interpolation mode, however, D3 supports a
number of different line interpolation modes. Line interpolation determines how data points
will be connected, for example, by a straight line (linear interpolation) or a curved line (cubic
interpolation). In this recipe, we will show you how these interpolation modes can be set
along with their effects.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
line-interpolation.html

This recipe is built on top of what we have done in the previous recipe, so, if you are not
yet familiar with basic line generator functions, please review the previous recipe first
before proceeding.

How to do it...
Now, let's see how different line interpolation modes can be used:

 var width = 500,
 height = 500,
 margin = 30,
 x = d3.scale.linear()
 .domain([0, 10])
 .range([margin, width - margin]),
 y = d3.scale.linear()
 .domain([0, 10])
 .range([height - margin, margin]);

 var data = [
 [
 {x: 0, y: 5},{x: 1, y: 9},{x: 2, y: 7},
 {x: 3, y: 5},{x: 4, y: 3},{x: 6, y: 4},
 {x: 7, y: 2},{x: 8, y: 3},{x: 9, y: 2}
],
 d3.range(10).map(function(i){

Chapter 7

155

 return {x: i, y: Math.sin(i) + 5};
 })
];

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)
 .attr("width", width);

 renderAxes(svg);

 render("linear");

 renderDots(svg);

 function render(mode){
 var line = d3.svg.line()
 .interpolate(mode) // <-A
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

 svg.selectAll("path.line")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "line");

 svg.selectAll("path.line")
 .data(data)
 .attr("d", function(d){return line(d);});
 }

 function renderDots(svg){ // <-B
 data.forEach(function(set){
 svg.append("g").selectAll("circle")
 .data(set)
 .enter().append("circle") // <-C
 .attr("class", "dot")
 .attr("cx", function(d) { return x(d.x); })
 .attr("cy", function(d) { return y(d.y); })
 .attr("r", 4.5);
 });
 }
// Axes related code omitted

Getting into Shape

156

The preceding code generates the following line chart in your browser with configurable
interpolation modes:

Line interpolation

How it works...
Overall, this recipe is similar to the previous one. Two lines are generated using pre-defined
data set. However, in this recipe, we allow the user to select a specific line interpolation mode,
which is then set using the interpolate function on line generator (see line A).

var line = d3.svg.line()
 .interpolate(mode) // <-A
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

Chapter 7

157

The following interpolation modes are supported by D3:

 f linear: Linear segments, that is, polyline

 f linear-closed: Closed linear segments, that is, polygon

 f step-before: Alternated between the vertical and horizontal segments, as in a
step function

 f step-after: Alternated between the horizontal and vertical segments, as in a
step function

 f basis: A B-spline, with control point duplication on the ends

 f basis-open: An open B-spline; may not intersect the start or end

 f basis-closed: A closed B-spline, as in a loop

 f bundle: Equivalent to basis, except the tension parameter is used to straighten
the spline

 f cardinal: A Cardinal spline, with control point duplication on the ends.

 f cardinal-open: An open Cardinal spline; may not intersect the start or end, but will
intersect other control points

 f cardinal-closed: A closed Cardinal spline, as in a loop

 f monotone: Cubic interpolation that preserves monotonicity in y

Additionally, in the renderDots function (see line B) we have also created a small circle for
each data point to serve as reference points. These dots are created using svg:circle
elements, as shown on line C:

function renderDots(svg){ // <-B
 data.forEach(function(set){
 svg.append("g").selectAll("circle")
 .data(set)
 .enter().append("circle") // <-C
 .attr("class", "dot")
 .attr("cx", function(d) { return x(d.x); })
 .attr("cy", function(d) { return y(d.y); })
 .attr("r", 4.5);
 });
}

Changing line tension
If Cardinal interpolation mode (cardinal, cardinal-open, cardinal-closed) is used, then line
can be further modified using tension settings. In this recipe, we will see how tension can be
modified and its effect on line interpolation.

Getting into Shape

158

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
line-tension.html

How to do it...
Now, let's see how line tension can be changed and what effect it has on line generation:

<script type="text/javascript">
 var width = 500,
 height = 500,
 margin = 30,
 duration = 500,
 x = d3.scale.linear()
 .domain([0, 10])
 .range([margin, width - margin]),
 y = d3.scale.linear()
 .domain([0, 1])
 .range([height - margin, margin]);

 var data = d3.range(10).map(function(i){
 return {x: i, y: (Math.sin(i * 3) + 1) / 2};
 });

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)
 .attr("width", width);

 renderAxes(svg);

 render([1]);

 function render(tension){
 var line = d3.svg.line()
 .interpolate("cardinal")

Chapter 7

159

 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

 svg.selectAll("path.line")
 .data(tension)
 .enter()
 .append("path")
 .attr("class", "line");

 svg.selectAll("path.line")
 .data(tension) // <-A
 .transition().duration(duration).ease("linear") // <-B
 .attr("d", function(d){
 return line.tension(d)(data); // <-C
 });

 svg.selectAll("circle")
 .data(data)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("cx", function(d) { return x(d.x); })
 .attr("cy", function(d) { return y(d.y); })
 .attr("r", 4.5);
}
// Axes related code omitted
 ...
</script>
<h4>Line Tension:</h4>
<div class="control-group">
 <button onclick="render([0])">0</button>
 <button onclick="render([0.2])">0.2</button>
 <button onclick="render([0.4])">0.4</button>
 <button onclick="render([0.6])">0.6</button>
 <button onclick="render([0.8])">0.8</button>
 <button onclick="render([1])">1</button>
</div>

Getting into Shape

160

The preceding code generates a Cardinal line chart with configurable tension:

Line Tension

How it works...
Tension sets the Cardinal spline interpolation tension to a specific number in the range of [0,
1]. Tension can be set using the tension function on line generator (see line C):

svg.selectAll("path.line")
 .data(tension) // <-A
 .transition().duration(duration).ease("linear") // <-B
 .attr("d", function(d){
 return line.tension(d)(data);} // <-C
);

Chapter 7

161

Additionally, we also initiated a transition on line B to highlight the tension effect on line
interpolation. If the tension is not set explicitly, Cardinal interpolation sets tension to 0.7 by
default.

Using an area generator
Using D3 line generator, we can technically generate an outline of any shape, however, even
with different interpolation-support, directly drawing an area using line (as in an area chart) is
not an easy task. This is why D3 also provides a separate shape generator function specifically
designed for drawing area.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
area.html

How to do it...
In this recipe, we will add a filled area to a pseudo line chart effectively turning it into an
area chart:

<script type="text/javascript">
 var width = 500,
 height = 500,
 margin = 30,
 duration = 500,
 x = d3.scale.linear() // <-A
 .domain([0, 10])
 .range([margin, width - margin]),
 y = d3.scale.linear()
 .domain([0, 10])
 .range([height - margin, margin]);

 var data = d3.range(11).map(function(i){ // <-B
 return {x: i, y: Math.sin(i)*3 + 5};
 });

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)

Getting into Shape

162

 .attr("width", width);

 renderAxes(svg);

 render("linear");

 renderDots(svg);

 function render(){
 var line = d3.svg.line()
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

 svg.selectAll("path.line")
 .data([data])
 .enter()
 .append("path")
 .attr("class", "line");

 svg.selectAll("path.line")
 .data([data])
 .attr("d", function(d){return line(d);});

 var area = d3.svg.area() // <-C
 .x(function(d) { return x(d.x); }) // <-D
 .y0(y(0)) // <-E
 .y1(function(d) { return y(d.y); }); // <-F

 svg.selectAll("path.area") // <-G
 .data([data])
 .enter()
 .append("path")
 .attr("class", "area")
 .attr("d", function(d){return area(d);}); // <-H
 }

 // Dots rendering code omitted

 // Axes related code omitted
 ...
</script>

Chapter 7

163

The preceding code generates the following visual output:

Area generator

How it works...
Similar to the Using a line generator recipe earlier in this chapter, we have two scales defined
to map data to visual domain on x and y coordinates (see line A), in this recipe:

x = d3.scale.linear() // <-A
 .domain([0, 10])
 .range([margin, width - margin]),
 y = d3.scale.linear()
 .domain([0, 10])
 .range([height - margin, margin]);

 var data = d3.range(11).map(function(i){ // <-B
 return {x: i, y: Math.sin(i)*3 + 5};
 });

Getting into Shape

164

On line B, data is generated by a mathematical formula. Area generator is then created using
the d3.svg.area function (see line C):

var area = d3.svg.area() // <-C
 .x(function(d) { return x(d.x); }) // <-D
 .y0(y(0)) // <-E
 .y1(function(d) { return y(d.y); }); // <-F

As you can see, D3 area generator is—similar to the line generator—designed to work in a
2D homogenous coordinate system. With the x function defining an accessor function for x
coordinate (see line D), which simply maps data to the visual coordinate using the x scale we
defined earlier. For the y coordinate, we provided the area generator two different accessors;
one for the lower bound (y0) and the other for the higher bound (y1) coordinates. This is the
crucial difference between area and line generator. D3 area generator supports higher and
lower bound on both x and y axes (x0, x1, y0, y1), and the shorthand accessors (x and y) if
the higher and lower bounds are the same. Once the area generator is defined, the method of
creating an area is almost identical to the line generator.

svg.selectAll("path.area") // <-G
 .data([data])
 .enter()
 .append("path")
 .attr("class", "area")
 .attr("d", function(d){return area(d);}); // <-H

Area is also implemented using the svg:path element (see line G). D3 area generator is
used to generate the "d" formula for the svg:path element on line H with data "d" as its
input parameter.

Using area interpolation
Similar to the D3 line generator, area generator also supports identical interpolation mode,
hence, it can be used in combination with the line generator in every mode.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
area-interpolation.html

Chapter 7

165

How to do it...
In this recipe, we will show how interpolation mode can be configured on an area generator.
This way matching interpolated area can then be created with corresponding line:

 var width = 500,
 height = 500,
 margin = 30,
 x = d3.scale.linear()
 .domain([0, 10])
 .range([margin, width - margin]),
 y = d3.scale.linear()
 .domain([0, 10])
 .range([height - margin, margin]);

 var data = d3.range(11).map(function(i){
 return {x: i, y: Math.sin(i)*3 + 5};
 });

 var svg = d3.select("body").append("svg");

 svg.attr("height", height)
 .attr("width", width);

 renderAxes(svg);

 render("linear");

 renderDots(svg);

 function render(mode){
 var line = d3.svg.line()
 .interpolate(mode) // <-A
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

 svg.selectAll("path.line")
 .data([data])
 .enter()
 .append("path")
 .attr("class", "line");

 svg.selectAll("path.line")
 .data([data])
 .attr("d", function(d){return line(d);});

 var area = d3.svg.area()

Getting into Shape

166

 .interpolate(mode) // <-B
 .x(function(d) { return x(d.x); })
 .y0(height - margin)
 .y1(function(d) { return y(d.y); });

 svg.selectAll("path.area")
 .data([data])
 .enter()
 .append("path")
 .attr("class", "area")

 svg.selectAll("path.area")
 .data([data])
 .attr("d", function(d){return area(d);});
}
// Dots and Axes related code omitted

The preceding code generates a pseudo area chart with configurable interpolation mode:

Area interpolation

Chapter 7

167

How it works...
This recipe is similar to the previous one except that in this recipe the interpolation mode is
passed in based on the user's selection:

var line = d3.svg.line()
 .interpolate(mode) // <-A
 .x(function(d){return x(d.x);})
 .y(function(d){return y(d.y);});

var area = d3.svg.area()
 .interpolate(mode) // <-B
 .x(function(d) { return x(d.x); })
 .y0(y(0))
 .y1(function(d) { return y(d.y); });

As you can see, the interpolation mode is configured on both lines along with the area
generator through the interpolate function (see lines A and B). Since D3 line and area
generator supports the same set of interpolation mode, they can always be counted on to
generate matching line and area as seen in this recipe.

There's more...
D3 area generator also supports the same tension configuration when interpolated using
Cardinal mode, however, since it is identical to line generator's tension support, and due to
limited scope in this book we will not cover area tension here.

See also
 f Please refer to https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-

area for more information on area generator functions

Using an arc generator
Among the most common shape generators—besides the line and area generator—D3 also
provides the arc generator. At this point, you might be wondering, Didn't SVG standard
already include circle element? Isn't that enough?

The simple answer to this is "no". The D3 arc generator is a lot more versatile than the simple
svg:circle element. the D3 arc generator is capable of creating not only circles but also
annulus (donut-like), circular sector, and annulus sector, all of which we will learn in this
recipe. More importantly, an arc generator is designed to generate, as its name suggests, an
arc (in others words, not a full circle or even a sector but rather arcs of arbitrary angle).

Getting into Shape

168

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
arc.html

How to do it...
In this recipe we will use arc generator to generate multi-slice circle, annulus (donut), circular
sectors, and annulus sectors.

<script type="text/javascript">
var width = 400,
height = 400,
// angles are in radians
 fullAngle = 2 * Math.PI, // <-A
 colors = d3.scale.category20c();

var svg = d3.select("body").append("svg")
 .attr("class", "pie")
 .attr("height", height)
 .attr("width", width);

function render(innerRadius, endAngle){
 if(!endAngle) endAngle = fullAngle;

 var data = [// <-B
 {startAngle: 0, endAngle: 0.1 * endAngle},
 {startAngle: 0.1 * endAngle, endAngle: 0.2 * endAngle},
 {startAngle: 0.2 * endAngle, endAngle: 0.4 * endAngle},
 {startAngle: 0.4 * endAngle, endAngle: 0.6 * endAngle},
 {startAngle: 0.6 * endAngle, endAngle: 0.7 * endAngle},
 {startAngle: 0.7 * endAngle, endAngle: 0.9 * endAngle},
 {startAngle: 0.9 * endAngle, endAngle: endAngle}
];

 var arc = d3.svg.arc().outerRadius(200) // <-C
 .innerRadius(innerRadius);

 svg.select("g").remove();

 svg.append("g")
 .attr("transform", "translate(200,200)")

Chapter 7

169

 .selectAll("path.arc")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function(d, i){return colors(i);})
 .attr("d", function(d, i){
 return arc(d, i); // <-D
});
}

render(0);
</script>

<div class="control-group">
 <button onclick="render(0)">Circle</button>
 <button onclick="render(100)">Annulus(Donut)</button>
 <button onclick="render(0, Math.PI)">Circular Sector</button>
 <button onclick="render(100, Math.PI)">Annulus Sector</button>
</div>

The preceding code produces the following circle, which you can change into an arc, a sector,
or an arc sector by clicking on the buttons, for example, Annulus(Donut) generates the second
shape:

Arc generator

How it works...
The most important part of understanding the D3 arc generator is its data structure. D3 arc
generator has very specific requirements when it comes to its data, as shown on line B:

var data = [// <-B
 {startAngle: 0, endAngle: 0.1 * endAngle},
 {startAngle: 0.1 * endAngle, endAngle: 0.2 * endAngle},

Getting into Shape

170

 {startAngle: 0.2 * endAngle, endAngle: 0.4 * endAngle},
 {startAngle: 0.4 * endAngle, endAngle: 0.6 * endAngle},
 {startAngle: 0.6 * endAngle, endAngle: 0.7 * endAngle},
 {startAngle: 0.7 * endAngle, endAngle: 0.9 * endAngle},
 {startAngle: 0.9 * endAngle, endAngle: endAngle}
];

Each row of the arc data has to contain two mandatory fields, startAngle and endAngle.
The angles have to be in the range [0, 2 * Math.PI] (see line A). D3 arc generator will
use these angles to generate corresponding slices, as shown earlier in this recipe.

Along with the start and end angles, arc data set can contain any number of
additional fields, which can then be accessed in D3 functions to drive other
visual representation.

If you are thinking that calculating these angles based on the data you have is going to be a
big hassle, you are absolutely correct. This is why D3 provides specific layout manager to help
you calculate these angles, and which we will cover in the next chapter. For now, let's focus on
understanding the basic mechanism behind the scenes so that when it is time to introduce
the layout manager or if you ever need to set the angles manually, you will be well-equipped to
do so. D3 arc generator is created using the d3.svg.arc function:

var arc = d3.svg.arc().outerRadius(200) // <-C
 .innerRadius(innerRadius);

The d3.svg.arc function optionally has outerRadius and innerRadius settings. When
innerRadius is set, the arc generator will produce an image of annulus (donut) instead of a
circle. Finally, the D3 arc is also implemented using the svg:path element, and thus similar
to the line and area generator, d3.svg.arc generator function can be invoked (see line D) to
generate the d formula for the svg:path element:

svg.append("g")
 .attr("transform", "translate(200,200)")
 .selectAll("path.arc")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function(d, i){return colors(i);})
 .attr("d", function(d, i){
 return arc(d, i); // <-D
 });

Chapter 7

171

One additional element worth mentioning here is the svg:g element. This element does
not define any shape itself, but serves rather as a container element used to group other
elements, in this case, the path.arc elements. Transformation applied to the g element is
applied to all the child elements while its attributes are also inherited by its child elements.

Implementing arc transition
One area where arc differs significantly from other shapes, such as line and area, is its
transition. For most of the shapes we covered so far, including simple SVG built-in shapes, you
can rely on D3 transition and interpolation to handle their animation. However, this is not the
case when dealing with arc. We will explore the arc transition technique in this recipe.

Getting Ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter7/
arc-transition.html

How to do it...
In this recipe, we will animate a multi-slice annulus transitioning each slice starting from angle
0 to its final desired angle and eventually reaching a full annulus:

<script type="text/javascript">
var width = 400,
 height = 400,
 endAngle = 2 * Math.PI,
 colors = d3.scale.category20c();

var svg = d3.select("body").append("svg")
 .attr("class", "pie")
 .attr("height", height)
 .attr("width", width);

function render(innerRadius) {

 var data = [
 {startAngle: 0, endAngle: 0.1 * endAngle},
 {startAngle: 0.1 * endAngle, endAngle: 0.2 * endAngle},
 {startAngle: 0.2 * endAngle, endAngle: 0.4 * endAngle},
 {startAngle: 0.4 * endAngle, endAngle: 0.6 * endAngle},
 {startAngle: 0.6 * endAngle, endAngle: 0.7 * endAngle},
 {startAngle: 0.7 * endAngle, endAngle: 0.9 * endAngle},

Getting into Shape

172

 {startAngle: 0.9 * endAngle, endAngle: endAngle}
];

 var arc = d3.svg.arc().outerRadius(200).innerRadius(innerRadius);

 svg.select("g").remove();

 svg.append("g")
 .attr("transform", "translate(200,200)")
 .selectAll("path.arc")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function (d, i) {
 return colors(i);
 })
 .transition().duration(1000)
 .attrTween("d", function (d) { // <-A
 var start = {startAngle: 0, endAngle: 0}; // <-B
 var interpolate = d3.interpolate(start, d); // <-C
 return function (t) {
 return arc(interpolate(t)); // <-D
 };
 });
}

render(100);
</script>

The preceding code generates an arc which starts rotating and eventually becomes a
complete annulus:

]
Arc transition with tweening

Chapter 7

173

How it works...
When confronted with the requirement of such transition, your first thought might be using the
vanilla D3 transition while relying on built-in interpolations to generate the animation. Here is
the code snippet which will do just that:

svg.append("g")
 .attr("transform", "translate(200,200)")
 .selectAll("path.arc")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function (d, i) {
 return colors(i);
 })
 .attr("d", function(d){
 return arc({startAngle: 0, endAngle: 0});
 })
 .transition().duration(1000).ease("linear")
 .attr("d", function(d){return arc(d);});

As shown with highlighted lines in the preceding code snippet, with this approach we initially
created slice path with both startAngle and endAngle set to zero. Then, through transition
we interpolated the path "d" attribute to its final angle using the arc generator function
arc(d). This approach seems to make sense, however, what it generates is the transition
shown in the following:

Arc transition without tweening

This is obviously not the animation we want. The reason for this strange transition is that
by directly creating a transition on the svg:path attribute "d", we are instructing D3 to
interpolate this string:

d="M1.2246063538223773e-14,-200A200,200 0 0,1 1.2246063538223773e-
14,-200L6.123031769111886e-15,-100A100,100 0 0,0
6.123031769111886e-15,-100Z"

Getting into Shape

174

To this string linearly:

d="M1.2246063538223773e-14,-200A200,200 0 0,1 117.55705045849463,-
161.80339887498948L58.778525229247315,-80.90169943749474A100,100 0
0,0 6.123031769111886e-15,-100Z"

Hence, this particular transition effect.

Though this transition effect is not what we desire in this example, this is
still a good showcase of how flexible and powerful built-in D3 transition is.

In order to achieve the transition effect we want, we need to leverage the D3 attribute
tweening (for detailed description on tweening, see the Using tweening recipe of Chapter 6,
Transition with Style):

svg.append("g")
 .attr("transform", "translate(200,200)")
 .selectAll("path.arc")
 .data(data)
 .enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function (d, i) {
 return colors(i);
 })
 .transition().duration(1000)
 .attrTween("d", function (d) { // <-A
 var start = {startAngle: 0, endAngle: 0}; // <-B
 var interpolate = d3.interpolate(start, d); // <-C
 return function (t) {
 return arc(interpolate(t)); // <-D
 };
 });

Here, instead of transitioning the svg:path attribute "d" directly, we created a tweening
function on line A. As you can recall, D3 attrTween expects a factory function for a tween
function. In this case, we start our tweening from angle zero (see line B). Then we create a
compound object interpolator on line C, which will interpolate both start and end angles for
each slice. Finally on line D, the arc generator is used to generate a proper svg:path formula
using already interpolated angles. This is how a smooth transition of properly-angled arcs can
be created through custom attribute tweening.

Chapter 7

175

There's more...
D3 also provides support for other shape generators, for example, symbol, chord, and
diagonal. However, due to their simplicity and the limited scope in this book we will not cover
them individually here, although we will cover them as parts of other more complex visual
constructs in the following chapters. More importantly, with well-grounded understanding of
these shape generators that we introduced in this chapter, you should be able to pick up other
D3 shape generators without much trouble.

See also
 f For more information on transition and tweening, refer to the Using tweening recipe

in Chapter 6, Transition with Style

8
Chart Them Up

In this chapter we will cover:

 f Creating a line chart

 f Creating an area chart

 f Creating a scatter plot chart

 f Creating a bubble chart

 f Creating a bar chart

Introduction
In this chapter, we will turn our attention to one of the oldest and well trusted companions
in data visualization—charts. Charts are a well defined and well understood graphical
representation of data; the following definition just confirms it:

(In charts) the data is represented by symbols, such as bars in a bar chart, lines in
a line chart, or slices in a pie chart.

Jensen C. & Anderson L. (1991)

When charts are used in data visualization, their well understood graphical semantics and
syntax relieve the audience of your visualization from the burden of learning the meaning
of the graphical metaphor. Hence they can focus on the data itself and the information
generated through visualization. The goal of this chapter is not only to introduce some of the
commonly used chart types but also demonstrate how the various topics and techniques we
have learned so far can be combined and leveraged in producing sleek interactive charts
using D3.

Chart Them Up

178

Recipes in this chapter are much longer than the recipes we have encountered so far since
they are designed to implement fully functional reusable charts. I have tried to break it into
different segments and with consistent chart structures to ease your reading experience.
However, it is still highly recommended to open the companion code examples in your browser
and your text editor while going through this chapter to minimize potential confusion and
maximize the benefit.

D3 chart convention: Before we dive into creating our first reusable chart in D3, we need
to cover some charting conventions commonly accepted in the D3 community otherwise we
might risk creating charting libraries that confuse our user instead of helping them.

As you would have imagined, D3 charts are most commonly implemented
using SVG instead of HTML; however, the convention we discuss here would
also apply to HTML-based charts albeit the implementation detail will be
somewhat different.

Let's first take a look at the following diagram:

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

origin

translate(margin.left, margin.top)

D3 chart convention

To see this convention explained by the creator of D3 please visit http://
bl.ocks.org/mbostock/3019563

As shown in this diagram the point of origin (0, 0) in an SVG image is at its top-leftmost corner
as expected, however, the most important aspect of this convention pertains to how chart
margins are defined and furthermore where the axes are placed.

Chapter 8

179

 f Margins: First of all, let us see the most important aspect of this convention—the
margins. As we can see for each chart there are four different margin settings: left,
right, top, and bottom margins. A flexible chart implementation should allow its user
to set different values for each of these margins and we will see in later recipes how
this can be achieved.

 f Coordinate translation: Secondly, this convention also suggests that the coordinate
reference of the chart body (grey area) should be defined using a SVG translate
transformation translate(margin.left, margin.top). This translation
effectively moves the chart body area to the desired point, and one additional benefit
of this approach is, by shifting the frame of reference for chart body coordinates, it
simplifies the job of creating sub-elements inside the chart body since the margin
size becomes irrelevant. For any sub-element inside the chart body, its point of origin
(0, 0) is now the top-leftmost corner of the chart body area.

 f Axes: Lastly, the final aspect of this convention is regarding how and where chart
axes are placed. As shown by this diagram chart axes are placed inside chart
margins instead of being part of the chart body. This approach has the advantage of
treating axes as peripheral elements in a chart, hence not convoluting the chart body
implementation and additionally making axes rendering logic chart-independent and
easily reusable.

Now let's create our first reusable D3 chart with all the knowledge and techniques we learned
so far.

Creating a line chart
Line chart is a common, basic chart type that is widely used in many fields. This chart consists
of a series of data points connected by straight line segments. A line chart is also typically
bordered by two perpendicular axes: the x axis and y axis. In this recipe, we will see how
this basic chart can be implemented using D3 as a reusable JavaScript object that can be
configured to display multiple data series on a different scale. Along with that we will also
show the technique of implementing a dynamic multi-data-series update with animation.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter8/
line-chart.html

It is highly recommended to have the companion code example open while reading this
recipe.

Chart Them Up

180

How to do it...
Let's take a look at the code that implements this chart type. Due the length of the recipe we
will only show the outline of the code here while diving into the details in the following How it
works... section.

<script type="text/javascript">
// First we define the chart object using a functional objectfunction
lineChart() { // <-1A
...
 // main render function
 _chart.render = function () { // <-2A
 ...
 };

 // axes rendering function
 function renderAxes(svg) {
 ...
 }
 ...

 // function to render chart body
 function renderBody(svg) { // <-2D
 ...
 }

 // function to render lines
 function renderLines() {
 ...
 }

 // function to render data points
 function renderDots() {

 }

 return _chart; // <-1E
}

This recipe generates the following chart:

Chapter 8

181

Line chart

How it works...
As we can see, this recipe is significantly more involved than anything we have encountered so
far, so now I will break it into multiple detailed sections with different focuses.

Chart object and attributes: First, we will take a look at how this chart object is created and
how associated attributes can be retrieved and set on the chart object.

function lineChart() { // <-1A
 var _chart = {};

 var _width = 600, _height = 300, // <-1B
 _margins = {top: 30, left: 30, right: 30, bottom: 30},
 _x, _y,
 _data = [],
 _colors = d3.scale.category10(),
 _svg,
 _bodyG,
 _line;
 ...
 _chart.height = function (h) {// <-1C
 if (!arguments.length) return _height;
 _height = h;
 return _chart;
 };

Chart Them Up

182

 _chart.margins = function (m) {
 if (!arguments.length) return _margins;
 _margins = m;
 return _chart;
 };
...
 _chart.addSeries = function (series) { // <-1D
 _data.push(series);
 return _chart;
 };
...
 return _chart; // <-1E
}

...

var chart = lineChart()
 .x(d3.scale.linear().domain([0, 10]))
 .y(d3.scale.linear().domain([0, 10]));

data.forEach(function (series) {
 chart.addSeries(series);
});

chart.render();

As we can see, the chart object is defined using a function called lineChart on line 1A
following the functional object pattern we have discussed in the Understanding D3-Style
JavaScript recipe in Chapter 1, Getting Started with D3.js. Leveraging the greater flexibility
with information hiding offered by the functional object pattern, we have defined a series of
internal attributes all named starting with an underscore (line 1B). Some of these attributes
are made public by offering accessor function (line 1C). Publically accessible attributes are:

 f width: Chart SVG total width in pixels

 f height: Chart SVG total height in pixels

 f margins: Chart margins

 f colors: Chart ordinal color scale used to differentiate different data series

 f x: x axis scale

 f y: y axis scale

Chapter 8

183

The accessor functions are implemented using the technique we introduced in Chapter
1, Getting Started with D3.js, effectively combining both getter and setter functions in
one function, which behaves as a getter when no argument is given and a setter when an
argument is present (line 1C). Additionally, both lineChart function and its accessors,
return a chart instance thus allowing function chaining. Finally, the chart object also offers an
addSeries function which simply pushes a data array (series) into its internal data storage
array (_data), see line 1D.

Chart body frame rendering: After covering the basic chart object and its attributes, the next
aspect of this reusable chart implementation is the chart body svg:g element rendering and
its clip path generation.

_chart.render = function () { // <-2A
 if (!_svg) {
 _svg = d3.select("body").append("svg") // <-2B
 .attr("height", _height)
 .attr("width", _width);

 renderAxes(_svg);

 defineBodyClip(_svg);
 }

 renderBody(_svg);
};
...
function defineBodyClip(svg) { // <-2C
 var padding = 5;

 svg.append("defs")
 .append("clipPath")
 .attr("id", "body-clip")
 .append("rect")
 .attr("x", 0 - padding)
 .attr("y", 0)
 .attr("width", quadrantWidth() + 2 * padding)
 .attr("height", quadrantHeight());
 }

function renderBody(svg) { // <-2D
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", "translate("

Chart Them Up

184

 + xStart() + ","
 + yEnd() + ")") // <-2E
 .attr("clip-path", "url(#body-clip)");

 renderLines();

 renderDots();
}
...

The render function defined on line 2A is responsible for creating the svg:svg element and
setting its width and height (line 2B). After that, it creates an svg:clipPath element that
covers the entire chart body area. The svg:clipPath element is used to restrict the region
where paint can be applied. In our case we use it to restrict where the line and dots can be
painted (only within the chart body area). This code generates the following SVG element
structure that defines the chart body:

For more information on clipping and masking please visit http://www.
w3.org/TR/SVG/masking.html

The renderBody function defined on line 2D generates the svg:g element which wraps all
the chart body content with a translation set according to the chart margin convention we
have discussed in the previous section (line 2E).

Render axes: Axes are rendered in the function renderAxes (line 3A).

function renderAxes(svg) { // <-3A
 var axesG = svg.append("g")
 .attr("class", "axes");

 renderXAxis(axesG);

 renderYAxis(axesG);
}

As discussed in the previous chapter, both x and y axes are rendered inside the chart margin
area. We are not going into details about axes rendering since we have discussed this topic in
much detail in Chapter 5, Playing with Axes.

Chapter 8

185

Render data series: Everything we discussed so far in this recipe is not unique to this chart
type alone but rather it is a shared framework among other Cartesian coordinates based chart
types. Finally, now we will discuss how the line segments and dots are created for multiple
data series. Let's take a look at the following code fragments that are responsible for data
series rendering.

function renderLines() {
 _line = d3.svg.line() // <-4A
 .x(function (d) { return _x(d.x); })
 .y(function (d) { return _y(d.y); });

 _bodyG.selectAll("path.line")
 .data(_data)
 .enter() // <-4B
 .append("path")
 .style("stroke", function (d, i) {
 return _colors(i); // <-4C
 })
 .attr("class", "line");

 _bodyG.selectAll("path.line")
 .data(_data)
 .transition() // <-4D
 .attr("d", function (d) { return _line(d); });
}

function renderDots() {
 _data.forEach(function (list, i) {
 bodyG.selectAll("circle." + i) // <-4E
 .data(list)
 .enter()
 .append("circle")
 .attr("class", "dot _" + i);

 bodyG.selectAll("circle." + i)
 .data(list)
 .style("stroke", function (d, i) {
 return _colors(i); // <-4F
 })
 .transition() // <-4G
 .attr("cx", function (d) { return _x(d.x); })
 .attr("cy", function (d) { return _y(d.y); })
 .attr("r", 4.5);
 });
}

Chart Them Up

186

The line segments and dots are generated using techniques we introduced in Chapter 7,
Getting into Shape. The d3.svg.line generator was created on line 4A to create svg:path
that maps the data series. The Enter-and-Update pattern is used to create the data line
(line 4B). Line 4C sets a different color for each data line based on its index. Lastly, line 4E
sets the transition in the update mode to move the data line smoothly on each update. The
renderDots function performs a similar rendering logic that generates a set of svg:circle
elements representing each data point (line 4E), coordinating its color based on the data
series index (line 4F), and finally also initiates a transition on line 4G, so the dots can move
with the line whenever the data is updated.

As illustrated by this recipe, creating a reusable chart component involves actually quite
a bit of work. However, more than two-thirds of the code is required in creating peripheral
graphical elements and accessors methods. Therefore in a real-world project you can extract
this logic and reuse a large part of this implementation for other charts; though we did not do
this in our recipes in order to reduce the complexity, so you can quickly grasp all aspects of
chart rendering. Due to limited scope in this book, in later recipes we will omit all peripheral
rendering logic while only focusing on the core logic related to each chart type.

Creating an area chart
An area chart or an area graph is very similar to a line chart and largely implemented based
on the line chart. The main difference between an area chart and a line chart is that in the
area chart, the area between the axis and the line are filled with colors or textures. In this
recipe we will explore techniques of implementing a type of area chart known as Layered Area
Chart.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter8/
area-chart.html

How to do it...
Since an area chart implementation is largely based on the line chart implementation and it
shares a lot of common graphical elements such as the axes and the clip path, therefore in
this recipe we will only show the code concerning the area chart implementation specifics:

...
function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")

Chapter 8

187

 .attr("transform", "translate("
 + xStart() + ","
 + yEnd() + ")")
 .attr("clip-path", "url(#body-clip)");

 renderLines();

 renderAreas();

 renderDots();
}

function renderLines() {
 _line = d3.svg.line()
 .x(function (d) { return _x(d.x); })
 .y(function (d) { return _y(d.y); });

 _bodyG.selectAll("path.line")
 .data(_data)
 .enter()
 .append("path")
 .style("stroke", function (d, i) {
 return _colors(i);
 })
 .attr("class", "line");

 _bodyG.selectAll("path.line")
 .data(_data)
 .transition()
 .attr("d", function (d) { return _line(d); });
}

function renderDots() {
 _data.forEach(function (list, i) {
 bodyG.selectAll("circle." + i)
 .data(list)
 .enter().append("circle")
 .attr("class", "dot _" + i);

 bodyG.selectAll("circle." + i)
 .data(list)
 .style("stroke", function (d, i) {
 return _colors(i);
 })

Chart Them Up

188

 .transition()
 .attr("cx", function (d) { return _x(d.x); })
 .attr("cy", function (d) { return _y(d.y); })
 .attr("r", 4.5);
 });
}

function renderAreas() {
 var area = d3.svg.area() // <-A
 .x(function(d) { return _x(d.x); })
 .y0(yStart())
 .y1(function(d) { return _y(d.y); });

 _bodyG.selectAll("path.area")
 .data(_data)
 .enter() // <-B
 .append("path")
 .style("fill", function (d, i) {
 return _colors(i);
 })
 .attr("class", "area");

 _bodyG.selectAll("path.area")
 .data(_data)
 .transition() // <-C
 .attr("d", function (d) { return area(d); });
}
...

This recipe generates the following layered area chart:

Layered area chart

Chapter 8

189

How it works...
As we mentioned before, since the area chart implementation is based on our line chart
implementation, a large part of the implementation is identical to the line chart. In fact the
area chart needs to render the exact line and dots implemented in the line chart. The crucial
difference lies in renderAreas function. In this recipe we rely on the area generation
technique discussed in Chapter 7, Getting into Shape. The d3.svg.area generator was
created on line A with its upper line created to match the line while its lower line (y0) fixed on
x-axis.

var area = d3.svg.area() // <-A
 .x(function(d) { return _x(d.x); })
 .y0(yStart())
 .y1(function(d) { return _y(d.y); });

Once the area generator is defined, a classic Enter-and-Update pattern is employed to create
and update the areas. In the Enter case (line B), an svg:path element was created for each
data series and colored using its series index so it will have matching color with our line and
dots (line C).

_bodyG.selectAll("path.area")
 .data(_data)
 .enter() // <-B
 .append("path")
 .style("fill", function (d, i) {
 return _colors(i); // <-C
 })
 .attr("class", "area");

Whenever the data is updated, as well as for newly created areas, we start a transition (line D)
to update the area svg:path elements' d attribute to the desired shape (line E).

_bodyG.selectAll("path.area")
 .data(_data)
 .transition() // <-D
 .attr("d", function (d) {
 return area(d); // <-E
 });

Since we know that the line chart implementation animates both line and dots when updated,
therefore our area update transition here effectively allows the areas to be animated and
moved in accordance with both lines and dots in our chart.

Chart Them Up

190

Finally, we also add the CSS style for path.area to decrease its opacity so areas become
see-through; hence allowing the layered effect we desire.

.area {
 stroke: none;
 fill-opacity: .2;
}

Creating a scatter plot chart
A scatter plot or scatter graph is another common type of diagram used to display data points
on Cartesian coordinates with two different variables. Scatter plot is especially useful when
exploring the problem of clustering and classification. In this recipe, we will learn how to
implement a multi-series scatter plot chart in D3.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter8/
scatterplot-chart.html

How to do it...
A scatter plot is another chart which uses Cartesian coordinates. Thus, a large part of its
implementation is very similar to the charts we have introduced so far, therefore the code
concerning peripheral graphical elements are again omitted to save space in this book.
Please review the companion code for the complete implementation.

...
_symbolTypes = d3.scale.ordinal() // <-A
 .range(["circle",
 "cross",
 "diamond",
 "square",
 "triangle-down",
 "triangle-up"]);
...

Chapter 8

191

function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", "translate("
 + xStart() + ","
 + yEnd() + ")")
 .attr("clip-path", "url(#body-clip)");

 renderSymbols();
}

function renderSymbols() { // <-B
 _data.forEach(function (list, i) {
 bodyG.selectAll("path." + i)
 .data(list)
 .enter()
 .append("path")
 .attr("class", "symbol _" + i);

 bodyG.selectAll("path." + i)
 .data(list)
 .classed(_symbolTypes(i), true)
 .transition()
 .attr("transform", function(d){
 return "translate("
 + _x(d.x)
 + ","
 + _y(d.y)
 + ")";
 })
 .attr("d",
 d3.svg.symbol().type(_symbolTypes(i)));
 });
}
...

Chart Them Up

192

This recipe generates a scatter plot chart:

Scatter plot chart

How it works...
The content of the scatter plot chart is mainly rendered by the renderSymbols function on
line B. You probably have already noticed that the renderSymbols function implementation
is very similar to the renderDots function we discussed in the Creating a line chart recipe.
This is not by accident since both are trying to plot data points on Cartesian coordinates with
two variables (x and y). In the case of plotting dots, we were creating svg:circle elements,
while in scatter plot we need to create d3.svg.symbol elements. D3 provides a list of
predefined symbols that can be generated easily and rendered using an svg:path element.
On line A we defined an ordinal scale to allow mapping of data series index to different symbol
types:

_symbolTypes = d3.scale.ordinal() // <-A
 .range(["circle",
 "cross",
 "diamond",

Chapter 8

193

 "square",
 "triangle-down",
 "triangle-up"]);

Plotting the data points with symbols is quite straight-forward. First we loop through the data
series array and for each data series we create a set of svg:path elements representing
each data point in the series.

_data.forEach(function (list, i) {
 bodyG.selectAll("path." + i)
 .data(list)
 .enter()
 .append("path")
 .attr("class", "symbol _" + i);
 ...
});

Whenever data series are updated, as well as for newly created symbols, we apply the
update with transition (line C) placing them on the right coordinates with an SVG translation
transformation (line D).

bodyG.selectAll("path." + i)
 .data(list)
 .classed(_symbolTypes(i), true)
 .transition() // <-C
 .attr("transform", function(d){
 return "translate(" // <-D
 + _x(d.x)
 + ","
 + _y(d.y)
 + ")";
 })
 .attr("d",
 d3.svg.symbol() // <-E
 .type(_symbolTypes(i))
);

Finally, the d attribute of each svg:path element is generated using the d3.svg.symbol
generator function as shown on line E.

Chart Them Up

194

Creating a bubble chart
A bubble chart is a typical visualization capable of displaying three data dimensions.
Every data entity with its three data points is visualized as a bubble (or disk) on Cartesian
coordinates, with two different variables represented using x axis and y axis, similar to the
scatter plot chart. While the third dimension is represented using the radius of the bubble
(size of the disk). Bubble chart is particularly useful when used to facilitate understanding of
relationships between data entities.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter8/
bubble-chart.html

How to do it...
In this recipe we will explore techniques and ways of implementing a typical bubble chart
using D3. The following code example shows the important implementation aspects of a
bubble chart with accessors and peripheral graphic implementation details omitted.

...
var _width = 600, _height = 300,
 _margins = {top: 30, left: 30, right: 30, bottom: 30},
 _x, _y, _r, // <-A
 _data = [],
 _colors = d3.scale.category10(),
 _svg,
 _bodyG;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);

 renderAxes(_svg);

 defineBodyClip(_svg);
 }

 renderBody(_svg);
};

Chapter 8

195

...
function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", "translate("
 + xStart()
 + ","
 + yEnd() + ")")
 .attr("clip-path", "url(#body-clip)");
 renderBubbles();
}

function renderBubbles() {
 _r.range([0, 50]); // <-B

 _data.forEach(function (list, i) {
 bodyG.selectAll("circle." + i)
 .data(list)
 .enter()
 .append("circle") // <-C
 .attr("class", "bubble _" + i);

 bodyG.selectAll("circle." + i)
 .data(list)
 .style("stroke", function (d, j) {
 return _colors(j);
 })
 .style("fill", function (d, j) {
 return _colors(j);
 })
 .transition()
 .attr("cx", function (d) {
 return _x(d.x); // <-D
 })
 .attr("cy", function (d) {
 return _y(d.y); // <-E
 })
 .attr("r", function (d) {
 return _r(d.r); // <-F
 });
 });
}
...

Chart Them Up

196

This recipe generates the following visualization:

Bubble chart

How it works...
Overall, bubble chart implementation follows the same pattern as other chart
implementations introduced in this chapter so far. However, since in bubble chart we want to
visualize three different dimensions (x, y, and radius) instead of two, therefore a new scale _r
was added in this implementation (line A).

var _width = 600, _height = 300,
 _margins = {top: 30, left: 30, right: 30, bottom: 30},
 _x, _y, _r, // <-A
 _data = [],
 _colors = d3.scale.category10(),
 _svg,
 _bodyG;

Most of the bubble chart related implementation details are handled by the renderBubbles
function. It starts with setting the range on the radius scale (line B). Of course we can also
make the radius range configurable in our chart implementation; however, for simplicity we
chose to set it explicitly here:

function renderBubbles() {
 _r.range([0, 50]); // <-B

 _data.forEach(function (list, i) {
 bodyG.selectAll("circle." + i)
 .data(list)
 .enter()
 .append("circle") // <-C
 .attr("class", "bubble _" + i);

Chapter 8

197

 bodyG.selectAll("circle." + i)
 .data(list)
 .style("stroke", function (d, j) {
 return _colors(j);
 })
 .style("fill", function (d, j) {
 return _colors(j);
 })
 .transition()
 .attr("cx", function (d) {
 return _x(d.x); // <-D
 })
 .attr("cy", function (d) {
 return _y(d.y); // <-E
 })
 .attr("r", function (d) {
 return _r(d.r); // <-F
 });
 });
}

Once the range is set, then we iterated through our data series and for each series we created
a set of svg:circle elements (line C). Finally we handled the newly created bubble as well
as its update in the last section, where svg:circle elements are colored and placed to the
correct coordinates using its cx and cy attributes (line D and E). In the end, the bubble size is
controlled using its radius attribute r mapped using the _r scale we defined earlier (line F).

In some bubble chart implementations, the implementer also leverages
the color of each bubble to visualize a fourth data dimension, though some
believe this kind of visual representation is hard to grasp and superfluous.

Creating a bar chart
A bar chart is a visualization that uses either horizontal (row charts) or vertical (column
charts) rectangular bars with length proportional to the values that they represent. In this
recipe we will implement a column chart using D3. A column chart is capable of visually
representing two variables at the same time with its y axis; in other words, the bar height, and
its x axis. The x axis values can be either discrete or continuous (for example, a histogram).
In our example we choose to visualize continuous values on the x axis and hence effectively
implementing a histogram. However, the same techniques can be applied when working with
discrete values.

Chart Them Up

198

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter8/
bar-chart.html

How to do it...
The following code example shows the important implementation aspects of a histogram with
accessors and peripheral graphic implementation details omitted.

...
var _width = 600, _height = 250,
 _margins = {top: 30, left: 30, right: 30, bottom: 30},
 _x, _y,
 _data = [],
 _colors = d3.scale.category10(),
 _svg,
 _bodyG;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);

 renderAxes(_svg);

 defineBodyClip(_svg);
 }

 renderBody(_svg);
};
...

Chapter 8

199

function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", "translate("
 + xStart()
 + ","
 + yEnd() + ")")
 .attr("clip-path", "url(#body-clip)");

 renderBars();
 }

function renderBars() {
 var padding = 2; // <-A

 _bodyG.selectAll("rect.bar")
 .data(_data)
 .enter()
 .append("rect") // <-B
 .attr("class", "bar");

 _bodyG.selectAll("rect.bar")
 .data(_data)
 .transition()
 .attr("x", function (d) {
 return _x(d.x); // <-C
 })
 .attr("y", function (d) {
 return _y(d.y); // <-D
 })
 .attr("height", function (d) {
 return yStart() - _y(d.y); // <-E
 })
 .attr("width", function(d){
 return Math.floor(quadrantWidth() / _data.length) - padding;
 });
}
...

Chart Them Up

200

This recipe generates the following visualization:

Bar chart (histogram)

How it works...
One major difference here is that the bar chart implementation does not support multiple
data series. Therefore instead of using a 2-dimensional array storing multiple data series
as we did with other charts so far, in this implementation, the _data array simply stores
a single set of data points directly. Main bar chart related visualization logic resides in the
renderBars function.

function renderBars() {
 var padding = 2; // <-A
 ...
}

In the first step, we defined the padding between bars (line A), so later on we can
automatically calculate the width of each bar. Afterwards we generate an svg:rect element
(the bars) for each data point (line B).

_bodyG.selectAll("rect.bar")
 .data(_data)
 .enter()
 .append("rect") // <-B
 .attr("class", "bar");

Then in the update section we place each bar at the correct coordinates using its x and y
attributes (line C and D) and extend each bar all the way down to touch the x axis with an
adaptive height calculated on line E.

_bodyG.selectAll("rect.bar")
 .data(_data)
 .transition()

Chapter 8

201

 .attr("x", function (d) {
 return _x(d.x); // <-C
 })
 .attr("y", function (d) {
 return _y(d.y); // <-D
 })
 .attr("height", function (d) {
 return yStart() - _y(d.y); // <-E
 })

Finally we calculate the optimal width for each bar using the number of bars as well as the
padding value we have defined earlier.

.attr("width", function(d){
 return Math.floor(quadrantWidth() / _data.length) - padding;
});

Of course in a more flexible implementation, we can make the padding configurable instead of
being fixed to 2 pixels.

See also
Before planning to implement your own reusable chart for your next visualization project,
make sure you also check out the following open source reusable chart projects based on D3:

 f NVD3: http://nvd3.org/.

 f Rickshaw: http://code.shutterstock.com/rickshaw/.

9
Lay Them Out

In this chapter we will cover:

 f Building a pie chart

 f Building a stacked area chart

 f Building a treemap

 f Building a tree

 f Building an enclosure diagram

Introduction
The D3 layout is the focus of this chapter—a concept we have not encountered before. As
expected, D3 layouts are algorithms that calculate and generate placement information for
a group of elements. However there are a few critical properties worth mentioning before we
dive deeper into the specifics:

 f Layouts are data: Layouts are purely data centric and data driven, they do not
generate any graphical or display related output directly. This allows them to be used
and reused with SVG or canvas or even when there is no graphical output

 f Abstract and reusable: Layouts are abstract, allowing a high degree of flexibility and
reusability. You can combine and reuse layouts in various different interesting ways.

 f Layouts are different: Each layout is different. Every layout provided by D3 focuses
on a very special graphical requirement and data structure.

 f Stateless: Layouts are mostly stateless by design to simplify their usage. What
statelessness means here is that generally layouts are like functions, they can be
called multiple times with different input data and generate different layout output.

Layouts are interesting and powerful concepts in D3. In this chapter we will explore some of
the most commonly used layouts in D3 by creating fully functional visualization leveraging
these layouts.

Lay Them Out

204

Building a pie chart
A pie chart or a circle graph is a circular graph containing multiple sectors used to illustrate
numerical proportion. We will explore techniques, involving D3 pie layout, to build a fully
functional pie chart in this recipe. In Chapter 7, Getting into Shape, it becomes clear that
using the D3 arc generator directly is a very tedious job. Each arc generator expects the
following data format:

var data = [
 {startAngle: 0, endAngle: 0.6283185307179586},
 {startAngle: 0.6283185307179586, endAngle: 1.2566370614359172},
 ...
 {startAngle: 5.654866776461628, endAngle: 6.283185307179586}
];

This essentially requires the calculation of the angle partition for each slice out of an entire
circle of 2 * Math.PI. Obviously this process can be automated by an algorithm which is
exactly what d3.layout.pie is designed for. In this recipe, we will see how pie layout can be
used to implement a fully functional pie chart.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter9/
pie-chart.html.

How to do it...
A pie chart or a circle graph is a circular diagram divided into sectors (slices). Pie charts
are popular in many fields and widely used to demonstrate relationships between different
entities though not without criticism. Let's take a look at how a pie chart is implemented using
d3.pie.layout first.

<script type="text/javascript">
 function pieChart() {
 var _chart = {};

 var _width = 500, _height = 500,
 _data = [],
 _colors = d3.scale.category20(),
 _svg,
 _bodyG,
 _pieG,

Chapter 9

205

 _radius = 200,
 _innerRadius = 100;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);
 }

 renderBody(_svg);
 };

 function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body");

 renderPie();
 }

 function renderPie() {
 var pie = d3.layout.pie()
 .sort(function (d) {
 return d.id;
 })
 .value(function (d) {
 return d.value;
 });

 var arc = d3.svg.arc()
 .outerRadius(_radius)
 .innerRadius(_innerRadius);

 if (!_pieG)
 _pieG = _bodyG.append("g")
 .attr("class", "pie")
 .attr("transform", "translate(" + _radius + "," +
 _radius + ")");

 renderSlices(pie, arc);

 renderLabels(pie, arc);

Lay Them Out

206

 }

 function renderSlices(pie, arc) {
 // explained in detail in the'how it works...' section
 ...
 }

 function renderLabels(pie, arc) {
 // explained in detail in the 'how it works...' section
 ...
 }
 ...
 return _chart;
}
...
</script>

This recipe generates the following pie chart:

Donut chart

Chapter 9

207

How it works...
This recipe is built over what we have learned in the Chapter 7, Getting into Shape. One major
difference is that we rely on d3.layout.pie to transform the raw data into arcs data for us.
The pie layout was created on line A with both sort and value accessors specified.

var pie = d3.layout.pie() // <-A
 .sort(function (d) {
 return d.id;
 })
 .value(function (d) {
 return d.value;
 });

The sort function tells the pie layout to sort slices by its ID field, so that we can maintain
stable order amongst slices. Without the sorting, by default the pie layout will order the slices
by value resulting in the swapping of slices whenever we update the pie chart. The value
function is used to provide value accessor which in our case returns the value field. When
rendering slices, now with the pie layout, we directly set the pie layout as data (remember
layouts are data) to generate the arc svg:path elements (line B).

function renderSlices(pie, arc) {
 var slices = _pieG.selectAll("path.arc")
 .data(pie(_data)); // <-B

 slices.enter()
 .append("path")
 .attr("class", "arc")
 .attr("fill", function (d, i) {
 return _colors(i);
 });

 slices.transition()
 .attrTween("d", function (d) {
 var currentArc = this.__current__;//<-C

 if (!currentArc)
 currentArc = {startAngle: 0,
 endAngle: 0};

 var interpolate = d3.interpolate(
 currentArc, d);
 this.__current__ = interpolate(1);//<-D
 return function (t) {

Lay Them Out

208

 return arc(interpolate(t));
 };
 });
}

The rest of the rendering logic is pretty much the same as what we have learned in Chapter
7, Getting into Shape, with one exception on line C. On line C we retrieve the current arc value
from the element so the transition can start from the current angle instead of zero. Then on
line D we reset the current arc value to the latest one so the next time when we update the pie
chart data we can repeat the stateful transition.

Technique – stateful visualization
Technique of value injection on a DOM element is a common approach to
introduce statefulness to your visualization. In other words, if you need your
visualizations to remember what their previous states are, you can save
them in DOM elements.

Finally we also need to render labels on each slice so our user can understand what each
slice is representing. This is done by the renderLabels function.

function renderLabels(pie, arc) {
 var labels = _pieG.selectAll("text.label")
 .data(pie(_data)); // <-E

 labels.enter()
 .append("text")
 .attr("class", "label");

 labels.transition()
 .attr("transform", function (d) {
 return "translate("
 + arc.centroid(d) + ")"; //<-F
 })
 .attr("dy", ".35em")
 .attr("text-anchor", "middle")
 .text(function (d) {
 return d.data.id;
 });
}

Once again we use the pie layout as data to generate the svg:text elements. The placement
of the labels is calculated using arc.centroid (line F). Additionally, the label placement is
animated through the transition so they can be moved with arcs in unison.

Chapter 9

209

There's more...
Pie charts are very widely used in many different domains. However, they have also been
widely criticized due to the fact that they are difficult for human eyes to compare different
sections of a given pie chart as well as their low information density. Therefore, it is highly
recommended to limit the number of sections to less than 3, with 2 to be ideal. Otherwise,
you can always use a bar chart or a small table to replace a pie chart in places with better
precision and communicative power.

See also
 f The Using arc generators recipe in Chapter 7, Getting into Shape

 f The Implementing arc transition recipe in Chapter 7, Getting into Shape

Building a stacked area chart
In the Creating an area chart recipe in Chapter 8, Chart Them Up, we have explored how
a basic layered area chart can be implemented using D3. In this recipe, we will build over
what we have learned in the area chart recipe to implement a stacked area chart. Stacked
area chart is a variation of the standard area chart in which different areas are stacked on
top of each other giving your audience not only the ability to compare different data series
individually but also their relationship to the total in proportion.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter9/
stacked-area-chart.html.

How to do it...
This recipe is built over what we have implemented in Chapter 8, Chart Them Up, therefore
in the following code example only the parts that are particularly relevant to the stacked area
chart are included:

<script type="text/javascript">
function stackedAreaChart() {
 var _chart = {};

 var _width = 900, _height = 450,
 _margins = {top: 30, left: 30, right: 30, bottom: 30},

Lay Them Out

210

 _x, _y,
 _data = [],
 _colors = d3.scale.category10(),
 _svg,
 _bodyG,
 _line;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);

 renderAxes(_svg);

 defineBodyClip(_svg);
 }

 renderBody(_svg);
};
...
function renderBody(svg) {
 if (!_bodyG)
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", "translate("
 + xStart() + ","
 + yEnd() + ")")
 .attr("clip-path", "url(#body-clip)");

 var stack = d3.layout.stack() //<-A
 .offset('zero');
 stack(_data); //<-B

 renderLines(_data);

 renderAreas(_data);
}

function renderLines(stackedData) {
 // explained in details in the'how it works...' section

Chapter 9

211

...
}

function renderAreas(stackedData) {
 // explained in details in the 'how it works...' section
...
}
...

This recipe generates the following visualization:

Stacked area chart

How it works...
The main difference between this recipe and standard area chart as well as the focus on this
recipe is the stacking. The stacking effect as illustrated in this recipe was achieved through
d3.layout.stack created on line A.

var stack = d3.layout.stack() //<-A
 .offset('zero');
stack(_data); //<-B

Lay Them Out

212

The only customization we have done on stack layout is setting its offset to zero. D3 stack
layout supports a few different offset modes which determine what stacking algorithm to use;
this is something that we will explore in this and the next recipe. In this case we use the zero
offset stacking which generates a zero base-lined stacking algorithm, which is exactly what we
want in this recipe. Next, on line B, we invoked the stack layout on the given data array which
generates the following layout data:

Stacked data

As shown, the stack layout automatically calculates a baseline y0 for each datum in our three
different data series. Now with this stacked dataset in hand, we can easily generate stacked
lines.

function renderLines(stackedData) {
 _line = d3.svg.line()
 .x(function (d) {
 return _x(d.x); //<-C
 })
 .y(function (d) {
 return _y(d.y + d.y0); //<-D
 });
 _bodyG.selectAll("path.line")
 .data(stackedData)
 .enter()
 .append("path")
 .style("stroke", function (d, i) {
 return _colors(i);
 })
 .attr("class", "line");

 _bodyG.selectAll("path.line")
 .data(stackedData)
 .transition()
 .attr("d", function (d) {

Chapter 9

213

 return _line(d);
 });
}

A D3 line generator function was created with its x value directly mapped to the x (line C) and
its y value mapped to y + y0 (line D). This is all you need to do for line stacking. The rest of
the renderLines function is essentially the same as in the basic area chart implementation.
The area stacking logic is slightly different:

function renderAreas(stackedData) {
 var area = d3.svg.area()
 .x(function (d) {
 return _x(d.x); //<-E
 })
 .y0(function(d){return _y(d.y0);}) //<-F
 .y1(function (d) {
 return _y(d.y + d.y0); //<-G
 });
 _bodyG.selectAll("path.area")
 .data(stackedData)
 .enter()
 .append("path")
 .style("fill", function (d, i) {
 return _colors(i);
 })
 .attr("class", "area");

 _bodyG.selectAll("path.area")
 .data(_data)
 .transition()
 .attr("d", function (d) {
 return area(d);
 });
}

Similar to the line rendering logic when rendering area, the only place we need to change is in
the d3.svg.area generator setting. For areas the x value is still directly mapped to x (line E)
with its y0 directly mapped with y0 and finally again y1 is the sum of y and y0 (line G).

As we have seen so far, D3 stack layout is nicely designed to be compatible with different
D3 SVG generator functions. Hence, using it to generate the stacking effect is quite
straightforward and convenient.

Lay Them Out

214

There's more...
Let's take a look at a couple of variations of the stacked area chart.

Expanded area chart
We have mentioned that d3.layout.stack supports different offset modes. In addition to
the zero offset we have seen so far, another very useful offset mode for area chart is called
expand. With the expand mode, stack layout will normalize different layers to fill the range of
[0, 1]. If we change the offset mode in this recipe and the y axis domain to [0, 1], we will get
the expanded (normalized) area chart shown below.

Expanded area chart

For the complete companion code example please visit: https://github.com/NickQiZhu/
d3-cookbook/blob/master/src/chapter9/expanded-area-chart.html.

Streamgraph
Another interesting variation of stacked area chart is called streamgraph. Streamgraph is
a stacked area chart displayed around a central axis creating a flowing and organic shape.
Streamgraph was initially developed by Lee Byron and popularized by its use in a New York
Times article on movie box office revenues in 2008. The D3 stack layout has built-in support
for this kind of stacking algorithm therefore changing a zero based stacked area chart to
streamgraph is trivial. The key difference is that streamgraph uses wiggle as its layout
offset mode.

Chapter 9

215

Streamgraph

For the complete companion code example please visit: https://github.com/
NickQiZhu/d3-cookbook/blob/master/src/chapter9/streamgraph.html.

See also
 f d3.layout.stack offers several additional functions to customize its behavior;

for more information on stack layout visit https://github.com/mbostock/d3/
wiki/Stack-Layout

 f The Creating an area chart recipe in Chapter 8, Chart Them Up

Building a treemap
Treemaps were introduced by Ben Shneiderman in 1991. A treemap displays hierarchical tree-
structured data as a set of recursively subdivided rectangles. In other words, it displays each
branch of the tree as a large rectangle which is then tiled with smaller rectangles representing
sub-branches. This process continuously repeats itself till it reaches the leaves of the tree.

For more information on treemaps, see this paper by Ben Shneiderman at
http://www.cs.umd.edu/hcil/treemap-history/

Before we dive into the code example, let's first define what we mean by hierarchical data.

Lay Them Out

216

So far we have learned many types of visualizations capable of representing flat data
structure usually stored in one or two dimensional arrays. In the rest of this chapter, we
will switch our focus onto another common type of data structure in data visualization—the
hierarchical data structure. Instead of using arrays, as in the case of flat data structures,
hierarchical data are usually structured as a rooted tree. The following JSON file shows a
typical hierarchical data you would expect in a data visualization project:

{
 "name": "flare",
 "children": [
 {
 "name": "analytics",
 "children": [
 {
 "name": "cluster",
 "children": [
 {"name": "AgglomerativeCluster", "size": 3938},
 {"name": "CommunityStructure", "size": 3812},
 {"name": "MergeEdge", "size": 743}
]
 },
 {
 "name": "graph",
 "children": [
 {"name": "BetweennessCentrality", "size": 3534},
 {"name": "LinkDistance", "size": 5731}
]
 },
 {
 "name": "optimization",
 "children": [
 {"name": "AspectRatioBanker", "size": 7074}
]
 }
]
]
}

This is a shortened version of a popular hierarchical dataset used in the D3 community for
demonstration purposes. This data is extracted from a popular flash based data visualization
library—Flare, created by the UC Berkeley Visualization Lab. It shows the size and hierarchical
relationship amongst different packages within the library.

Chapter 9

217

See the official Flare site for more information on the project:
http://flare.prefuse.org/.

As we can see quite easily this particular JSON feed is structured as a typical singly-linked rooted
tree with each node having a single parent and multiple child nodes stored in the children
array. This is the most natural way to organize your hierarchical data in order to be consumed
by the D3 hierarchical layouts. For the rest of this chapter, we will use this particular dataset for
exploring different hierarchical data visualization techniques D3 has to offer.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter9/
treemap.html.

How to do it...
Now let's see how we can use the D3 treemap layout to visually represent this kind of
hierarchical data.

function treemapChart() {
 var _chart = {};

 var _width = 1600, _height = 800,
 _colors = d3.scale.category20c(),
 _svg,
 _nodes,
 _x = d3.scale.linear().range([0, _width]),
 _y = d3.scale.linear().range([0, _height]),
 _valueAccessor = function (d) {
 return 1;
 },
 _bodyG;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);
 }

 renderBody(_svg);

Lay Them Out

218

 };

 function renderBody(svg) {
 // explained in details in the 'how it works...' section
 ...

 renderCells(cells);
 }

 function renderCells(cells){
 // explained in details in the 'how it works...' section
 ...
 }

 // accessors omitted
 ...

 return _chart;
}

d3.json("flare.json", function (nodes) {
 var chart = treemapChart();
 chart.nodes(nodes).render();
});

This recipe generates the following treemap visualization:

Treemap

Chapter 9

219

How it works...
At this point you might be surprised how little code is needed to implement a complex data
visualization like this. This is because most of the heavy lifting is done by d3.layout.
treemap.

function renderBody(svg) {
 if (!_bodyG) {
 _bodyG = svg.append("g")
 .attr("class", "body");

 _treemap = d3.layout.treemap() //<-A
 .round(false)
 .size([_width, _height])
 .sticky(true);
 }

 _treemap.value(_valueAccessor); //<-B

 var nodes = _treemap.nodes(_nodes) //<-C
 .filter(function (d) {
 return !d.children; //<-D
 });

 var cells = svg.selectAll("g") //<-E
 .data(nodes);

 renderCells(cells);
 }

The treemap layout is defined on line A with some basic custom settings:

 f round(false): If rounding is on, the treemap layout will round to exact pixel
boundaries. This is great when you want to avoid antialiasing artifacts in SVG.

 f size([_width, _height]): It sets the layout boundary to the size of this SVG.

 f sticky(true): In sticky mode, the treemap layout will try to preserve the relative
arrangement of nodes (rectangles in our case) across the transition.

 f value(_valueAccessor): One feature this recipe offers is the ability to switch the
treemap value accessor on the fly. Value accessor is used by a treemap to access
value field on each node. In our case, it can be either one of the following functions:
function(d){ return d.size; } // visualize package size
function(d){ return 1; } // visualize package count

Lay Them Out

220

 f To apply a treemap layout on Flare JSON datafeed, we simply set the nodes on the
treemap layout to the root node in our JSON tree (line C). Treemap nodes are then
further filtered to remove parent nodes (nodes that have children) on line D since we
only want to visualize the leaf nodes while using coloring to highlight the package
grouping in this treemap implementation. The layout data generated by treemap
layout contains the following structure:

Treemap node object

As shown, the treemap layout has annotated and calculated quite a few attributes for each
node using its algorithm. Many of these attributes can be useful when visualizing and in this
recipe we mostly care about the following attributes:

 f x: Cell x coordinate

 f y: Cell y coordinate

 f dx: Cell width

 f dy: Cell height

On line E, a set of svg:g elements were created for the given nodes. The function
renderCells is then responsible for creating rectangles and its labels:

function renderCells(cells){
 var cellEnter = cells.enter().append("g")
 .attr("class", "cell");

 cellEnter.append("rect")
 cellEnter.append("text");

 cells.transition().attr("transform", function (d) {
 return "translate("+d.x+","+d.y+")"; //<-F
 })
 .select("rect")
 .attr("width", function (d) {return d.dx - 1;})

Chapter 9

221

 .attr("height", function (d) {return d.dy - 1;})
 .style("fill", function (d) {
 return _colors(d.parent.name); //<-G
 });

 cells.select("text") //<-H
 .attr("x", function (d) {return d.dx / 2;})
 .attr("y", function (d) {return d.dy / 2;})
 .attr("dy", ".35em")
 .attr("text-anchor", "middle")
 .text(function (d) {return d.name;})
 .style("opacity", function (d) {
 d.w = this.getComputedTextLength();
 return d.dx > d.w ? 1 : 0; //<-I
);

 cells.exit().remove();
}

Each rectangle is placed at its location (x, y) determined by the layout on line F, and then
its width and height are set to dx and dy. On line G, we colored every cell using its parent's
names therefore making sure all children belonging to the same parent are colored the same
way. From line H onward we created the label (svg:text) element for each rectangle and
setting its text to the node name. One aspect worth mentioning here is that in order to avoid
displaying label for the cells that are smaller than the label itself, the opacity of label is set to
0 if the label is larger than the cell width (line I).

Technique – auto-hiding label
What we have seen here on line I is a useful technique in visualization to
implement auto-hiding labels. This technique can be considered generally
in the following form:

.style("opacity", function (d) {
 d.w = this.getComputedTextLength();
 return d.dx > d.w ? 1 : 0;
)

See also
 f This recipe is inspired by Mike Bostock's treemap layout example, which you can find

at http://mbostock.github.io/d3/talk/20111018/treemap.html

Lay Them Out

222

Building a tree
When working with hierarchical data structures, a tree (tree graph) is probably one of the
most natural and common visualizations typically leveraged to demonstrate structural
dependencies between different data elements. Tree is an undirected graph in which any two
nodes (vertices) are connected by one and only one simple path. In this recipe, we will learn
how to implement a tree visualization using tree layout.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter9/
tree.html.

How to do it...
Now let's see d3.layout.tree in action:

function tree() {
 var _chart = {};

 var _width = 1600, _height = 800,
 _margins = {top:30, left:120, right:30, bottom:30},
 _svg,
 _nodes,
 _i = 0,
 _tree,
 _diagonal,
 _bodyG;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);
 }

 renderBody(_svg);
 };

 function renderBody(svg) {
 if (!_bodyG) {
 _bodyG = svg.append("g")
 .attr("class", "body")

Chapter 9

223

 .attr("transform", function (d) {
 return "translate(" + _margins.left
 + "," + _margins.top + ")";
 });
 }

 _tree = d3.layout.tree()
 .size([
 (_height - _margins.top - _margins.bottom),
 (_width - _margins.left - _margins.right)
]);

 _diagonal = d3.svg.diagonal()
 .projection(function (d) {
 return [d.y, d.x];
 });

 _nodes.x0 = (_height-_margins.top-_margins.bottom) / 2;
 _nodes.y0 = 0;

 render(_nodes);
 }

 function render(source) {
 var nodes = _tree.nodes(_nodes);

 renderNodes(nodes, source);

 renderLinks(nodes, source);
 }

 function renderNodes(nodes, source) {
 // will be explained in the 'how it works...' section
 ...
 }

 function renderLinks(nodes, source) {
 // will be explained in the 'how it works...' section
 ...
 }

 // accessors omitted
 ...

 return _chart;
}

Lay Them Out

224

This recipe generates the following tree visualization:

Tree

How it works...
As we have mentioned before, this recipe is built over the D3 tree layout. d3.layout.tree is
specifically designed to convert a hierarchical data structure into a visual layout data suitable
for generating tree graph. Our tree layout instance is defined as the following:

_tree = d3.layout.tree()
 .size([
 (_height - _margins.top - _margins.bottom),
 (_width - _margins.left - _margins.right)
]);

Chapter 9

225

The only setting we provided here is the size of our visualization, which is the size of our SVG
image minus the margins. d3.layout.tree will then take care of the rest and calculate
every node's position accordingly. To use the tree layout, you simply invoke its nodes function.

var nodes = _tree.nodes(_nodes);

If you peek into the nodes layout data, it contains node data looking like this:

Tree layout data

One new D3 SVG shape generator we need for this recipe that is worth mentioning is
d3.svg.diagonal. The diagonal generator is designed to create svg:path that connects
two points. In this recipe, we use diagonal generator with tree layout links function to
generate a path connecting every node in the tree.

_diagonal = d3.svg.diagonal()
 .projection(function (d) {
 return [d.y, d.x];
 });

In this case we configure our diagonal generator to project using Cartesian orientation and
simply reply on the x and y coordinates calculated by the tree layout for positioning. The
actual rendering was performed by the following functions. First let's take a look at the
renderNodes function:

function renderNodes(nodes, source) {
 nodes.forEach(function (d) {
 d.y = d.depth * 180;
 });

Lay Them Out

226

Here we loop through all the nodes and artificially assign a 180-pixel spacing between them.
You probably are wondering why we are using the y coordinate instead of x. The reason is that
in this recipe we want to render a horizontal tree instead of a vertical one; therefore we have
to reverse the x and y coordinates here.

 var node = _bodyG.selectAll("g.node")
 .data(nodes, function (d) {
 return d.id || (d.id = ++_i);
 });

Now we bind the nodes that were generated by the tree layout as data to generate the tree
node element. At this point, we also assign an ID to each node using an index to obtain
object constancy.

 var nodeEnter = node.enter().append("svg:g")
 .attr("class", "node")
 .attr("transform", function (d) {
 return "translate(" + source.y0
 + "," + source.x0 + ")";
 });

At this point, we create the nodes and move them to the same point of origin as set in the
renderBody function.

 nodeEnter.append("svg:circle")
 .attr("r", 1e-6);

 var nodeUpdate = node.transition()
 .attr("transform", function (d) {
 return "translate(" + d.y + "," + d.x + ")";
 });

 nodeUpdate.select("circle")
 .attr("r", 4.5);

Now we start a transition in the update section to move the nodes to their proper position.

 var nodeExit = node.exit().transition()
 .attr("transform", function (d) {
 return "translate(" + source.y
 + "," + source.x + ")";
 })
 .remove();

 nodeExit.select("circle")
 .attr("r", 1e-6);

 renderLabels(nodeEnter, nodeUpdate, nodeExit);
}

Chapter 9

227

At last, we handle the exit case and remove the nodes after a brief animation of the collapsing
effect. The renderLabels function is quite simple so we will not cover it in detail here.
Please see the complete online code companion for details.

Now let's take a look at the more interesting renderLinks function.

function renderLinks(nodes, source) {
 var link = _bodyG.selectAll("path.link")
 .data(_tree.links(nodes), function (d) {
 return d.target.id;
 });

First, we generate the data binding using the links function on d3.layout.tree. The
links function, which returns an array of link objects containing the {source, target}
fields that point to the appropriate tree nodes.

 link.enter().insert("svg:path", "g")
 .attr("class", "link")
 .attr("d", function (d) {
 var o = {x: source.x0, y: source.y0};
 return _diagonal({source: o, target: o});
 });

In the enter section, the svg:path elements were created to visually represent the links
between source and target nodes. To generate the d attribute for the path element we rely
on the d3.svg.diagonal generator we defined earlier. During creation we temporarily set
the links to zero length paths by setting both source and target to the same point of origin. So
when later we transition the link to its proper length, it will generate the expanding effect.

 link.transition()
 .attr("d", _diagonal);

Now we transition the links to its proper length and position using the links data generated by
the tree layout.

 link.exit().transition()
 .attr("d", function (d) {
 var o = {x: source.x, y: source.y};
 return _diagonal({source: o, target: o});
 })
 .remove();

When we remove the nodes again,we rely on the same trick of setting the link to its parent's
position with zero length in order to simulate the collapsing effect.

Lay Them Out

228

See also
 f d3.layout.tree offers several functions allowing customization. For more details,

please check out its API documentation at https://github.com/mbostock/d3/
wiki/Tree-Layout.

 f The d3.svg.diagonal generator is capable of projection using Cartesian
orientation, radial and other orientations. For more details, please see its
API documentation at https://github.com/mbostock/d3/wiki/SVG-
Shapes#wiki-diagonal.

 f The Animating multiple elements recipe in Chapter 6, Transition with Style, for
explanations on object constancy.

 f This recipe is inspired by Mike Bostock's tree layout example, which you can find at
http://mbostock.github.io/d3/talk/20111018/tree.html.

Building an enclosure diagram
An enclosure diagram is an interesting visualization of hierarchical data structures that
uses the recursive circle packing algorithm. It uses containment (nesting) to represent
hierarchy. Circles are created for each leaf node in a data tree while its size is proportional to
a particular quantitative dimension of each data element. In this recipe, we will learn how to
implement this kind of visualization using D3 pack layout.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter9/
pack.html

How to do it...
In this recipe, let's see how we can implement an enclosure diagram using d3.layout.
pack.

function pack() {
 var _chart = {};

 var _width = 1280, _height = 800,
 _svg,
 _r = 720,
 _x = d3.scale.linear().range([0, _r]),
 _y = d3.scale.linear().range([0, _r]),
 _nodes,

Chapter 9

229

 _bodyG;

 _chart.render = function () {
 if (!_svg) {
 _svg = d3.select("body").append("svg")
 .attr("height", _height)
 .attr("width", _width);
 }

 renderBody(_svg);
 };

 function renderBody(svg) {
 if (!_bodyG) {
 _bodyG = svg.append("g")
 .attr("class", "body")
 .attr("transform", function (d) {
 return "translate("
 + (_width - _r) / 2 + ","
 + (_height - _r) / 2
 + ")";
 });
 }

 var pack = d3.layout.pack()
 .size([_r, _r])
 .value(function (d) {
 return d.size;
 });

 var nodes = pack.nodes(_nodes);

 renderCircles(nodes);

 renderLabels(nodes);
 }

 function renderCircles(nodes) {
 // will be explained in the 'how it works...' section
 ...
 }

 function renderLabels(nodes) {
 // omitted

Lay Them Out

230

 ...
 }

 // accessors omitted
 ...

 return _chart;
}

This recipe generates the following visualization:

Enclosure diagram

Chapter 9

231

How it works...
First thing we need to take care of in this recipe is to define our layout; in this case we need to
use the d3.layout.pack layout.

var pack = d3.layout.pack()
 .size([_r, _r])
 .value(function (d) {
 return d.size;
 });

var nodes = pack.nodes(_nodes);

Now we set the size of the layout using the outer circle's radius and set the value to use the
Flare package size, which in turn will determine each circle's size; hence, effectively making
each circle's size proportional to the package size in our data feed. Once layout is created,
we feed our data elements through its nodes function generating the layout data with the
following structure:

Pack layout data

Circle rendering is done in the renderCircle function:

function renderCircles(nodes) {
 var circles = _bodyG.selectAll("circle")
 .data(nodes);

 circles.enter().append("svg:circle");

Lay Them Out

232

Then we simply bind the layout data and create the svg:circle elements for each node.

 circles.transition()
 .attr("class", function (d) {
 return d.children ? "parent" : "child";
 })
 .attr("cx", function (d) {return d.x; })
 .attr("cy", function (d) {return d.y; })
 .attr("r", function (d) {return d.r; });

For update, we set cx, cy, and radius to the value that the pack layout has calculated for us
for each circle.

 circles.exit().transition()
 .attr("r", 0)
 .remove();
}

Finally when removing the circle, we reduce the size of the circle down to zero first, before
removing them to generate a more smooth transition. Label rendering in this recipe is pretty
straight forward with some help from the auto-hiding technique we introduced in this chapter,
so we will not cover the function in detail here.

See also
 f d3.layout.pack offers several functions allowing customization. For more details,

please check out its API documentation at https://github.com/mbostock/d3/
wiki/Pack-Layout

 f The Building a treemap recipe for auto label hiding technique.

 f This recipe is inspired by Mike Bostock's pack layout example, which you can find at
http://mbostock.github.io/d3/talk/20111018/pack.html.

10
Interacting with

your Visualization

In this chapter we will cover:

 f Interacting with the mouse
 f Interacting with a multi-touch device
 f Implementing zoom and pan behavior
 f Implementing the drag behavior

Introduction
The ultimate goal of visualization design is to optimize applications so that they
help us perform cognitive work more efficiently.

Ware C. (2012)

The goal of data visualization is to help the audience gain information from a large quantity
of raw data quickly and efficiently through metaphor, mental model alignment, and cognitive
magnification. So far in this book we have introduced various techniques to leverage D3
library implementing many types of visualization. However, we haven't touched a crucial
aspect of visualization: human interaction. Various researches have concluded the unique
value of human interaction in information visualization.

Visualization combined with computational steering allows faster analyses of
more sophisticated scenarios...This case study adequately demonstrate that the
interaction of a complex model with steering and interactive visualization can
extend the applicability of the modelling beyond research

Barrass I. & Leng J (2011)

Interacting with your Visualization

234

In this chapter we will focus on D3 human visualization interaction support, or as mentioned
earlier learn how to add computational steering capability to your visualization.

Interacting with mouse events
The mouse is the most common and popular human-computer interaction control found
on most desktop and laptop computers. Even today, with multi-touch devices rising to
dominance, touch events are typically still emulated into mouse events; therefore making
application designed to interact via mouse usable through touches. In this recipe we will learn
how to handle standard mouse events in D3.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter10/
mouse.html

How to do it...
In the following code example we will explore techniques of registering and handling
mouse events in D3. Although, in this particular example we are only handling click and
mousemove, the techniques utilized here can be applied easily to all other standard mouse
events supported by modern browsers:

<script type="text/javascript">
 var r = 400;

 var svg = d3.select("body")
 .append("svg");

 var positionLabel = svg.append("text")
 .attr("x", 10)
 .attr("y", 30);

 svg.on("mousemove", function () { //<-A
 printPosition();
 });

 function printPosition() { //<-B
 var position = d3.mouse(svg.node()); //<-C
 positionLabel.text(position);
 }

Chapter 10

235

 svg.on("click", function () { //<-D
 for (var i = 1; i < 5; ++i) {
 var position = d3.mouse(svg.node());

 var circle = svg.append("circle")
 .attr("cx", position[0])
 .attr("cy", position[1])
 .attr("r", 0)
 .style("stroke-width", 5 / (i))
 .transition()
 .delay(Math.pow(i, 2.5) * 50)
 .duration(2000)
 .ease('quad-in')
 .attr("r", r)
 .style("stroke-opacity", 0)
 .each("end", function () {
 d3.select(this).remove();
 });
 }
 });
</script>

This recipe generates the following interactive visualization:

Mouse Interaction

Interacting with your Visualization

236

How it works...
In D3, to register an event listener, we need to invoke the on function on a particular
selection. The given event listener will be attached to all selected elements for the specified
event (line A). The following code in this recipe attaches a mousemove event listener which
displays the current mouse position (line B):

svg.on("mousemove", function () { //<-A
 printPosition();
});

function printPosition() { //<-B
 var position = d3.mouse(svg.node()); //<-C
 positionLabel.text(position);
}

On line C we used d3.mouse function to obtain the current mouse position relative to the
given container element. This function returns a two-element array [x, y]. After this we also
registered an event listener for mouse click event on line D using the same on function:

svg.on("click", function () { //<-D
 for (var i = 1; i < 5; ++i) {
 var position = d3.mouse(svg.node());

 var circle = svg.append("circle")
 .attr("cx", position[0])
 .attr("cy", position[1])
 .attr("r", 0)
 .style("stroke-width", 5 / (i)) // <-E
 .transition()
 .delay(Math.pow(i, 2.5) * 50) // <-F
 .duration(2000)
 .ease('quad-in')
 .attr("r", r)
 .style("stroke-opacity", 0)
 .each("end", function () {
 d3.select(this).remove(); // <-G
 });
 }
});

Once again, we retrieved the current mouse position using d3.mouse function and then
generated five concentric expanding circles to simulate the ripple effect. The ripple effect
was simulated using geometrically increasing delay (line F) with decreasing stroke-width
(line E). Finally when the transition effect is over, the circles were removed using transition
end listener (line G). If you are not familiar with this type of transition control please review
Chapter 6, Transition with Style, for more details.

Chapter 10

237

There's more...
Although, we have only demonstrated listening on the click and mousemove events in
this recipe, you can listen on any event that your browser supports through the on function.
The following is a list of mouse events that are useful to know when building your interactive
visualization:

 f click: Dispatched when user clicks a mouse button

 f dbclick: Dispatched when a mouse button is clicked twice

 f mousedown: Dispatched when a mouse button is pressed

 f mouseenter: Dispatched when mouse is moved onto the boundaries of an element
or one of its descendent elements

 f mouseleave: Dispatched when mouse is moved off of the boundaries of an element
and all of its descendent elements

 f mousemove: Dispatched when mouse is moved over an element

 f mouseout: Dispatched when mouse is moved off of the boundaries of an element

 f mouseover: Dispatched when mouse is moved onto the boundaries of an element

 f mouseup: Dispatched when a mouse button is released over an element

See also
 f Chapter 6, Transition with Style, for more details on the ripple effect technique used

in this recipe

 f W3C DOM Level 3 Events specification for a complete list of event types: http://
www.w3.org/TR/DOM-Level-3-Events/

 f d3.mouse API document for more details on mouse detection: https://github.
com/mbostock/d3/wiki/Selections#wiki-d3_mouse

Interacting with a multi-touch device
Today, with the proliferation of multi-touch devices, any visualization targeting mass
consumption needs to worry about its interactability not only through the traditional pointing
device, but through multi-touches and gestures as well. In this recipe we will explore touch
support offered by D3 to see how it can be leveraged to generate some pretty interesting
interaction with multi-touch capable devices.

Interacting with your Visualization

238

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter10/
touch.html.

How to do it...
In this recipe we will generate a progress-circle around the user's touch and once the progress
is completed then a subsequent ripple effect will be triggered around the circle. However,
if the user prematurely ends his/her touch, then we shall stop the progress-circle without
generating the ripples:

<script type="text/javascript">
 var initR = 100,
 r = 400,
 thickness = 20;

 var svg = d3.select("body")
 .append("svg");

 d3.select("body")
 .on("touchstart", touch)
 .on("touchend", touch);

 function touch() {
 d3.event.preventDefault();

 var arc = d3.svg.arc()
 .outerRadius(initR)
 .innerRadius(initR - thickness);

 var g = svg.selectAll("g.touch")
 .data(d3.touches(svg.node()), function (d) {
 return d.identifier;
 });

 g.enter()
 .append("g")
 .attr("class", "touch")
 .attr("transform", function (d) {
 return "translate(" + d[0] + "," + d[1] + ")";
 })
 .append("path")
 .attr("class", "arc")

Chapter 10

239

 .transition().duration(2000)
 .attrTween("d", function (d) {
 var interpolate = d3.interpolate(
 {startAngle: 0, endAngle: 0},
 {startAngle: 0, endAngle: 2 * Math.PI}
);
 return function (t) {
 return arc(interpolate(t));
 };
 })
 .each("end", function (d) {
 if (complete(g))
 ripples(d);
 g.remove();
 });

 g.exit().remove().each(function () {
 this.__stopped__ = true;
 });
 }

 function complete(g) {
 return g.node().__stopped__ != true;
 }

 function ripples(position) {
 for (var i = 1; i < 5; ++i) {
 var circle = svg.append("circle")
 .attr("cx", position[0])
 .attr("cy", position[1])
 .attr("r", initR - (thickness / 2))
 .style("stroke-width", thickness / (i))
 .transition().delay(Math.pow(i, 2.5) * 50).
duration(2000).ease('quad-in')
 .attr("r", r)
 .style("stroke-opacity", 0)
 .each("end", function () {
 d3.select(this).remove();
 });
 }
 }
</script>

Interacting with your Visualization

240

This recipe generates the following interactive visualization on a touch enabled device:

Touch Interaction

How it works...
Event listener for touch events are registered through D3 selection's on function similar to
what we have done with mouse events in the previous recipe:

d3.select("body")
 .on("touchstart", touch)
 .on("touchend", touch);

One crucial difference here is that we have registered our touch event listener on the body
element instead of the svg element since with many OS and browsers there are default touch
behaviors defined and we would like to override it with our custom implementation. This is
done through the following function call:

d3.event.preventDefault();

Once the touch event is triggered we retrieve multiple touch point data using the d3.touches
function as illustrated by the following code snippet:

var g = svg.selectAll("g.touch")
 .data(d3.touches(svg.node()), function (d) {
 return d.identifier;
 });

Instead of returning a two-element array as what d3.mouse function does, d3.touches
returns an array of two-element arrays since there could be multiple touch points for each
touch event. Each touch position array has data structure that looks like the following:

Touch Position Array

Chapter 10

241

Other than the [x, y] position of the touch point each position array also carries an identifier to
help you differentiate each touch point. We used this identifier here in this recipe to establish
object constancy. Once the touch data is bound to the selection the progress circle was
generated for each touch around the user's finger:

 g.enter()
 .append("g")
 .attr("class", "touch")
 .attr("transform", function (d) {
 return "translate(" + d[0] + "," + d[1] + ")";
 })
 .append("path")
 .attr("class", "arc")
 .transition().duration(2000).ease('linear')
 .attrTween("d", function (d) { // <-A
 var interpolate = d3.interpolate(
 {startAngle: 0, endAngle: 0},
 {startAngle: 0, endAngle: 2 * Math.PI}
);
 return function (t) {
 return arc(interpolate(t));
 };
 })
 .each("end", function (d) { // <-B
 if (complete(g))
 ripples(d);
 g.remove();
 });

This is done through a standard arc transition with attribute tweening (line A) as explained
in Chapter 7, Getting into Shape. Once the transition is over if the progress-circle has not
yet been canceled by the user then a ripple effect similar to what we have done in the
previous recipe was generated on line B. Since we have registered the same event listener
touch function on both touchstart and touchend events, we can use the following lines
to remove progress-circle and also set a flag to indicate that this progress circle has been
stopped prematurely:

 g.exit().remove().each(function () {
 this.__stopped__ = true;
 });

We need to set this stateful flag since there is no way to cancel a transition once it is started;
hence, even after removing the progress-circle element from the DOM tree the transition will
still complete and trigger line B.

Interacting with your Visualization

242

There's more...
We have demonstrated touch interaction through the touchstart and touchend events;
however, you can use the same pattern to handle any other touch events supported by your
browser. The following list contains the proposed touch event types recommended by W3C:

 f touchstart: Dispatched when the user places a touch point on the touch surface

 f touchend: Dispatched when the user removes a touch point from the touch surface

 f touchmove: Dispatched when the user moves a touch point along the touch surface

 f touchcancel: Dispatched when a touch point has been disrupted in an
implementation-specific manner

See also
 f Chapter 6, Transition with Style, for more details on object constancy and the ripple

effect technique used in this recipe

 f Chapter 7, Getting into Shape, for more details on the progress-circle attribute tween
transition technique used in this recipe

 f W3C Touch Events proposed recommendation for a complete list of touch event
types: http://www.w3.org/TR/touch-events/

 f d3.touch API document for more details on multi-touch detection: https://
github.com/mbostock/d3/wiki/Selections#wiki-d3_touches

Implementing zoom and pan behavior
Zooming and panning are common and useful techniques in data visualization, which work
particularly well with SVG based visualization since vector graphic does not suffer from
pixelation as its bitmap counterpart would. Zooming is especially useful when dealing with
large data set when it is impractical or impossible to visualize the entire data set, thus a zoom
and drill-down approach needs to be employed. In this recipe we will explore D3's built-in
support for both zooming and panning.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter10/
zoom.html.

Chapter 10

243

How to do it...
In this recipe we will implement geometric zooming and panning using D3 zoom support. Let's
see how this is done in code:

<script type="text/javascript">
 var width = 960, height = 500, r = 50;

 var data = [
 [width / 2 - r, height / 2 - r],
 [width / 2 - r, height / 2 + r],
 [width / 2 + r, height / 2 - r],
 [width / 2 + r, height / 2 + r]
];

 var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height)
 .call(
 d3.behavior.zoom()
 .scaleExtent([1, 10])
 .on("zoom", zoom)
)
 .append("g");

 svg.selectAll("circle")
 .data(data)
 .enter().append("circle")
 .attr("r", r)
 .attr("transform", function (d) {
 return "translate(" + d + ")";
 });

 function zoom() {
 svg.attr("transform", "translate("
 + d3.event.translate
+ ")scale(" + d3.event.scale + ")");
 }
</script>

Interacting with your Visualization

244

This recipe generates the following zooming and panning effect:

Original

Zoom

Pan

Chapter 10

245

How it works...
At this point you might be surprised to see how little code is necessary to implement this fully-
functional zoom and pan effect with D3. If you have this recipe open in your browser, you will
also notice zooming and panning reacts perfectly well to both mouse wheel and multi-touch
gesture. Most of the heavy lifting is done by D3 library. What we have to do here is to simply
define what zoom behavior is. Let's see how this is done in the code. Firstly, we need to define
zoom behavior on a SVG container:

var svg = d3.select("body").append("svg")
 .attr("style", "1px solid black")
 .attr("width", width)
 .attr("height", height)
 .call(// <-A
 d3.behavior.zoom() // <-B
 .scaleExtent([1, 10]) // <-C
 .on("zoom", zoom) // <-D
)
 .append("g");

As we can see on line A, a d3.behavior.zoom function was created (line B) and invoked on
the svg container. d3.behavior.zoom will automatically create event listeners to handle
the low-level zooming and panning gesture on the associated SVG container (in our case
the svg element itself). The low-level zoom gesture will then be translated to a high-level D3
zoom event. The default event listeners support both mouse and touch events. On line C we
define scaleExtent with a 2-element array [1, 10] (a range). The scale extent defines how
much zoom should be allowed (in our case we allow 10X zoom). Finally, on line D we register a
custom zoom event handler to handle D3 zoom events. Now, let's take a look at what job this
zoom event handler performs:

function zoom() {
 svg.attr("transform", "translate("
 + d3.event.translate
 + ")scale(" + d3.event.scale + ")");
}

In the zoom function we simply delegate the actual zooming and panning to SVG
transformation. To further simplify this task D3 zoom event has also calculated necessary
translate and scale. So all we need to do is embed them into SVG transform attribute. Here
are the properties contained in a zoom event:

 f scale: A number representing the current scale

 f translate: A two-element array representing the current translation vector

Interacting with your Visualization

246

At this point you might be asking what is the point of having this zoom function. Why can't D3
take care of this step for us? The reason is that D3 zoom behavior is not designed specifically
for SVG, but rather designed as a general zoom behavior support mechanism. Therefore, this
zoom function implements the translation of general zoom and pan events into SVG specific
transformation.

There's more...
The zoom function is also capable of performing additional tasks other than simple coordinate
system transformation. For example, a common technique is to load additional data when the
user issues a zoom gesture, hence implementing the drill-down capability in zoom function.
A well-known example is a digital map; as you increase zoom level on a map, more data and
details then can be loaded and illustrated.

See also
 f Chapter 2, Be Selective, for more details on d3.selection.call function and

selection manipulation

 f W3C SVG Coordinate system transformations specification for more information on
how zoom and pan effect was achieved in SVG: http://www.w3.org/TR/SVG/
coords.html#EstablishingANewUserSpace

 f d3.behavior.zoom API document for more details on D3 zoom support: https://
github.com/mbostock/d3/wiki/Zoom-Behavior#wiki-zoom

Implementing drag behavior
Another common behavior in interactive visualization that we will cover in this chapter is drag.
Drag is useful to provide capabilities in visualization allowing graphical rearrangement or
even user input through force, which we will discuss in the next chapter. In this recipe we will
explore how drag behavior is supported in D3.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter10/
drag.html.

Chapter 10

247

How to do it...
Here, we will produce four circles that can be dragged using D3 drag behavior support and
additionally with SVG boundary detection while dragging. Now, let's see how to implement this
in code:

<script type="text/javascript">
 var width = 960, height = 500, r = 50;

 var data = [
 [width / 2 - r, height / 2 - r],
 [width / 2 - r, height / 2 + r],
 [width / 2 + r, height / 2 - r],
 [width / 2 + r, height / 2 + r]
];

 var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height)
 .append("g");

 var drag = d3.behavior.drag()
 .on("drag", move);

 svg.selectAll("circle")
 .data(data)
 .enter().append("circle")
 .attr("r", r)
 .attr("transform", function (d) {
 return "translate(" + d + ")";
 })
 .call(drag);

 function move(d) {
 var x = d3.event.x,
 y = d3.event.y;

 if(inBoundaries(x, y))
 d3.select(this)
 .attr("transform", function (d) {
 return "translate(" + x + ", " + y + ")";
 });
 }

 function inBoundaries(x, y){
 return (x >= (0 + r) && x <= (width - r))
 && (y >= (0 + r) && y <= (height - r));
 }
</script>

Interacting with your Visualization

248

This recipe generates drag behavior on the following four circles:

Original

Dragged

How it works...
As we can see, similar to D3 zoom support, drag support follows a similar pattern. The
main drag capability is provided by d3.behavior.drag function (line A). D3 drag behavior
automatically creates appropriate low-level event listeners to handle drag gestures on the
given element then translates low-level events to high-level D3 drag events. Both mouse and
touch events are supported:

var drag = d3.behavior.drag() // <-A
 .on("drag", move);

In this recipe we are interested in the drag event and it is handled by our move function.
Similar to the zoom behavior, D3 drag behavior support is event driven, therefore, allowing
maximum flexibility in implementation, supporting not only SVG but also the HTML5 canvas.
Once defined, the behavior can be attached to any element by calling it on a given selection:

svg.selectAll("circle")
 .data(data)
 .enter().append("circle")
 .attr("r", r)
 .attr("transform", function (d) {
 return "translate(" + d + ")";

Chapter 10

249

 })
 .call(drag); // <-B

Next, in the move function we simply use SVG transformation to move the dragged element to
proper location (line D) based on the information conveyed by the drag event (line C):

 function move(d) {
 var x = d3.event.x, // <-C
 y = d3.event.y;

 if(inBoundaries(x, y))
 d3.select(this)
 .attr("transform", function (d) { // <-D
 return "translate(" + x + ", " + y + ")";
 });
}

One additional condition we check here is to calculate the SVG boundaries constraint so the
user cannot drag an element outside of the SVG. This is achieved by the following check:

 function inBoundaries(x, y){
 return (x >= (0 + r) && x <= (width - r))
 && (y >= (0 + r) && y <= (height - r));
}

There's more...
Other than the drag event, D3 drag behavior also supports two other event types. The
following list shows all supported drag event types and their attributes:

 f dragstart: Triggered when a drag gesture starts.

 f drag: Fired when the element is dragged. d3.event will contain x and y properties
representing the current absolute drag coordinates of the element. It will also contain
dx and dy properties representing the element's coordinates relative to its position at
the beginning of the gesture.

 f dragend: Triggered when a drag gesture has finished.

See also
 f Chapter 2, Be Selective, for more details on d3.selection.call function and

selection manipulation

 f d3.behavior.drag API document for more details on D3 drag support https://
github.com/mbostock/d3/wiki/Drag-Behavior#wiki-drag

11
Using Force

In this chapter we will cover:

 f Using gravity and charge

 f Generating momentum

 f Setting the link constraint

 f Using force to assist visualization

 f Manipulating force

 f Building a force-directed graph

Introduction
Use the force, Luke!

A master's words of wisdom to his apprentice

In this chapter we are going to cover one of the most fascinating aspects of D3: force. Force
simulation is one of the most awe-inspiring techniques that you can add to your visualization.
Through a number of highly interactive and fully-functional examples, we will help you explore
not only the typical application of D3 force (for example, the force-directed graph), but also
other essential aspects of force manipulation.

D3 force simulation support was created not as a separate capability, but rather as an
additional D3 layout. As we have mentioned in Chapter 9, Lay Them Out, D3 layouts are
non-visual data oriented layout management programs designed to be used with different
visualization. Force layout was originally created for the purpose of implementing a specific
visualization type called force-directed graph. Its implementation uses standard verlet
integration based particle motion simulation with support for simple constraints.

Using Force

252

In other words, D3 implements a numeric method that is capable of loosely simulating
Newton's equation of motion on particle level and with simple constraints simulated as links
between particles. This kind of layout, of course, was ideal in implementing a force-directed
graph; however, we will also discover through recipes in this chapter that force layout is
capable of generating many other interesting visualization effects due to its flexibility in
custom force manipulation. The application of the techniques introduced in this chapter
go even beyond the data visualization realm and has practical applications in many other
domains, for example, user interface design. Of course, we will also cover the classical
application of force layout: the force-directed graph in this chapter.

Using gravity and charge
In this recipe we will introduce you to the first two fundamental forces: gravity and charge.
As we have mentioned before, one objective of force layout's design is to loosely simulate
Newton's equation of motion with particles, and one major feature of this simulation is the
force of charge. Additionally, force layout also implements pseudo gravity or more accurately
a weak geometric constraint typically centered on the SVG that can be leveraged to keep your
visualization from escaping the SVG canvas. In the following example we will learn how these
two fundamental, and sometimes opposing forces, can be leveraged to generate various
effects with a particle system.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
gravity-and-charge.html.

How to do it...
In the following example we will experiment with the force layout gravity and charge settings
so you can better understand different opposing forces involved and their interaction:

<script type="text/javascript">
 var w = 1280, h = 800,
 force = d3.layout.force()
 .size([w ,h])
 .gravity(0)
 .charge(0)
 .friction(0.7);

 var svg = d3.select("body")

Chapter 11

253

 .append("svg")
 .attr("width", w)
 .attr("height", h);

 force.on("tick", function () {
 svg.selectAll("circle")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;});
 });

 svg.on("mousemove", function () {
 var point = d3.mouse(this),
 node = {x: point[0], y: point[1]}; // <-A

 svg.append("circle")
 .data([node])
 .attr("class", "node")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;})
 .attr("r", 1e-6)
 .transition()
 .attr("r", 4.5)
 .transition()
 .delay(7000)
 .attr("r", 1e-6)
 .each("end", function () {
 force.nodes().shift(); // <-B
 })
 .remove();

 force.nodes().push(node); // <-C
 force.start(); // <-D
 });

 function changeForce(charge, gravity) {
 force.charge(charge).gravity(gravity);
 }
</script>

<div class="control-group">
 <button onclick="changeForce(0, 0)">
 No Force
 </button>
 <button onclick="changeForce(-60, 0)">

Using Force

254

 Mutual Repulsion
 </button>
 <button onclick="changeForce(60, 0)">
 Mutual Attraction
 </button>
 <button onclick="changeForce(0, 0.02)">
 Gravity
 </button>
 <button onclick="changeForce(-30, 0.1)">
 Gravity with Repulsion
 </button>
</div>

This recipe generates a force-enabled particle system that is capable of operating in the
modes shown in the following diagram:

No Force Mutual Repulsion Mutual Attraction Gravity Gravity with Repulsion

Force Simulation Modes

How it works...
Before we get our hands dirty with the preceding code example, let's first dig a little bit deeper
into the concept of gravity, charge, and friction so we can have an easier time understanding
all the magic number settings we will use in this recipe.

Charge
Charge is specified to simulate mutual n-body forces among the particles. A negative value
results in a mutual node repulsion while a positive value results in a mutual node attraction.
The default value for charge is -30. Charge value can also be a function that will be evaluated
for each node whenever the force simulation starts.

Gravity
Gravity simulation in force layout is not designed to simulate physical gravity, which can be
simulated using positive charge. Instead, it is implemented as a weak geometric constraint
similar to a virtual spring connecting to each node from the center of the layout. The default
gravitational strength is set to 0.1. As the nodes get further away from the center the
gravitational strength gets stronger in linear proportion to the distance while near the center
of the layout the gravitational strength is almost zero. Hence, gravity will always overcome
repulsive charge at some point, therefore, preventing nodes from escaping the layout.

Chapter 11

255

Friction
Friction in D3 force layout does not represent a standard physical coefficient of friction,
but it is rather implemented as a velocity decay. At each tick of the simulation particle,
velocity is scaled down by a specified friction. Thus a value of 1 corresponds to a frictionless
environment while a value of 0 freezes all particles in place since they lose their velocity
immediately. Values outside the range of [0, 1] are not recommended since they might
destabilize the layout.

Alright, now with the dry definition behind us, let's take a look at how these forces can be
leveraged to generate interesting visual effects.

Setting up zero force layout
First, we simply set up force layout with neither gravity nor charge. The force layout can be
created using the d3.layout.force function:

var w = 1280, h = 800,
 force = d3.layout.force()
 .size([w ,h])
 .gravity(0)
 .charge(0)
 .friction(0.7);

Here, we set the size of the layout to the size of our SVG graphic, which is a common approach
though not mandatory. In some use cases you might find it useful to have a layout larger or
smaller than your SVG. At the same time, we disable both gravity and charge while setting the
friction to 0.7. With this setting in place, we then create additional nodes represented as
svg:circle on SVG whenever the user moves the mouse:

svg.on("mousemove", function () {
 var point = d3.mouse(this),
 node = {x: point[0], y: point[1]}; // <-A

 svg.append("circle")
 .data([node])
 .attr("class", "node")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;})
 .attr("r", 1e-6)
 .transition()
 .attr("r", 4.5)
 .transition()
 .delay(7000)
 .attr("r", 1e-6)
 .each("end", function () {
 force.nodes().shift(); // <-B

Using Force

256

 })
 .remove();

 force.nodes().push(node); // <-C
 force.start(); // <-D
});

Node object was created initially on line A with its coordinates set to the current mouse location.
Like all other D3 layouts, force layout is not aware and has no visual elements. Therefore, every
node we create needs to be added to the layout's nodes array on line C and removed when visual
representation of these nodes was removed on line B. On line D we call the start function to start
force simulation. With zero gravity and charge the layout essentially lets us place a string of nodes
with our mouse movement as shown in the following screenshot:

No Gravity or Charge

Setting up mutual repulsion
In the next mode, we will set the charge to a negative value while still keeping gravity to zero
in order to generate a mutual repulsive force field:

function changeForce(charge, gravity) {
 force.charge(charge).gravity(gravity);
}
changeForce(-60, 0);

These lines tell force layout to apply -60 charge on each node and update the node's {x,
y} coordinate accordingly, based on the simulation result on each tick. However, only doing
this is still not enough to move the particles on SVG since the layout has no knowledge of
the visual elements. Next, we need to write some code to connect the data that are being
manipulated by force layout to our graphical elements. Following is the code to do that:

force.on("tick", function () {
 svg.selectAll("circle")

Chapter 11

257

 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;});
});

Here, we register a tick event listener function that updates all circle elements to its new
position based on the force layout's calculation. Tick listener is triggered on each tick of
the simulation. At each tick we set the cx and cy attribute to be the x and y values on d.
This is because we have already bound the node object as datum to these circle elements,
therefore, they already contain the new coordinates calculated by force layout. This effectively
establishes force layout's control over all the particles.

Other than tick, force layout also supports some other events:

 f start: Triggered when simulation starts

 f tick: Triggered on each tick of the simulation

 f end: Triggered when simulation ends

This force setting generates the following visual effect:

Mutual Repulsion

Setting up mutual attraction
When we change the charge to a positive value, it generates mutual attraction among the
particles:

function changeForce(charge, gravity) {
 force.charge(charge).gravity(gravity);
}
changeForce(60, 0);

Using Force

258

This generates the following visual effect:

Mutual Attraction

Setting up gravity
When we turn on gravity and turn off charge then it generates a similar effect as the mutual
attraction; however, you can notice the linear scaling of gravitational pull as the mouse moves
away from the center:

function changeForce(charge, gravity) {
 force.charge(charge).gravity(gravity);
}
changeForce(0, 0.02);

With gravity alone this recipe generates the following effect:

Gravity

Chapter 11

259

Using gravity with repulsion
Finally, we can turn on both gravity and mutual repulsion. The result is an equilibrium of forces
that keeps all particles somewhat stable neither escaping the layout nor colliding with each
other:

function changeForce(charge, gravity) {
 force.charge(charge).gravity(gravity);
}
changeForce(-30, 0.1);

Here is what this force equilibrium looks like:

Gravity with Repulsion

See also
 f Verlet integration: http://en.wikipedia.org/wiki/Verlet_integration

 f Scalable, Versatile and Simple Constrained Graph Layout: http://www.csse.
monash.edu.au/~tdwyer/Dwyer2009FastConstraints.pdf

 f Physical simulation: http://www.gamasutra.com/resource_
guide/20030121/jacobson_pfv.htm

 f The content of this chapter is inspired by Mike Bostock's brilliant talk on D3 Force:
http://mbostock.github.io/d3/talk/20110921/

 f Chapter 10, Interacting with your Visualization, for more details on how to interact
with the mouse in D3

 f D3 Force Layout API document for more details on force layout: https://github.
com/mbostock/d3/wiki/Force-Layout

Using Force

260

Generating momentum
In our previous recipe we have touched upon force layout node object and its {x, y}
attributes, which determine where a node locates on the layout. In this recipe we will discuss
another interesting aspect of physical motion simulation: momentum. D3 force layout has
built-in support for momentum simulation which relies on the {px, py} attributes on the
node object. Let's see how this can be done in the example described in this recipe.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
momentum-and-friction.html.

How to do it...
In this recipe we will modify the previous recipe by first disabling both gravity and charge then
giving newly added node some initial velocity. As a result now the faster you move the mouse
higher the initial velocity and momentum will be for each node. Here is the code to do that:

<script type="text/javascript">
 var force = d3.layout.force()
 .gravity(0)
 .charge(0)
 .friction(0.95);

 var svg = d3.select("body").append("svg:svg");

 force.on("tick", function () {
 // omitted, same as previous recipe
 ...
 });

 var previousPoint;

 svg.on("mousemove", function () {
 var point = d3.mouse(this),
 node = {
 x: point[0],
 y: point[1],
 px: previousPoint ? previousPoint[0] : point[0],

Chapter 11

261

 py: previousPoint ? previousPoint[1] : point[1]
 };

 previousPoint = point;

 // omitted, same as previous recipe
 ...
 });
</script>

This recipe generates a particle system with initial directional velocity proportional to the
user's mouse movement as shown in the following screenshot:

Momentum

How it works...
The overall structure of this recipe is very similar to the previous one. It also generates
particles as the user moves the mouse around. Moreover, once the force simulation starts,
the particle position is fully controlled by force layout in its tick event listener function.
However, in this recipe we have turned off both gravity and charge so that we can focus more
clearly on momentum alone. We left some friction so the velocity decay making simulation
look more realistic. Here is our force layout configuration:

var force = d3.layout.force()
 .gravity(0)
 .charge(0)
 .friction(0.95);

Using Force

262

The major difference in this recipe is that we keep track of not only the current mouse
position, but also the previous mouse position. Additionally, whenever the user moves the
mouse we generate a node object containing the current location {x, y} as well as the
previous location {px, py}:

 var previousPoint;

 svg.on("mousemove", function () {
 var point = d3.mouse(this),
 node = {
 x: point[0],
 y: point[1],
 px: previousPoint ? previousPoint[0] : point[0],
 py: previousPoint ? previousPoint[1] : point[1]
 };

 previousPoint = point;
 ...
 }

Since user mouse location is sampled on fixed interval, the faster the user moves the mouse
the further apart these two positions will be. This property plus the directional information
gained from these two positions are nicely translated automatically by force layout into initial
momentum for each particle we create as we have demonstrated in this recipe.

Besides the {x, y, px, py} attributes we have discussed so far, force layout node object
also supports some other useful attributes that we will list here for your reference:

 f index: Zero-based index of the node within the nodes array.

 f x: The x-coordinate of the current node position.

 f y: The y-coordinate of the current node position.

 f px: The x-coordinate of the previous node position.

 f py: The y-coordinate of the previous node position.

 f fixed: A Boolean indicating if the node position is locked.

 f weight: The node weight; the number of associated links. Links are used to connect
nodes in a force layout, which we will cover in depth in the next recipe.

See also
 f The Interacting with mouse events recipe in Chapter 10, Interacting with your

Visualization, for more details on how to interact with the mouse in D3

 f D3 Force Layout Nodes API for more details on force layout node attributes
https://github.com/mbostock/d3/wiki/Force-Layout#wiki-nodes

Chapter 11

263

Setting the link constraint
So far we have covered some important aspects of the force layout such as gravity, charge,
friction, and momentum. In this recipe we will discuss another critical functionality: links. As
we have mentioned in the introduction section, D3 force layout implements a scalable simple
graph constraint, and in this recipe we will demonstrate how link constraint can be leveraged
in conjunction with other forces.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
link-constraint.html.

How to do it...
In this recipe, whenever the user clicks their mouse we will generate a force-directed ring of
particles constrained by links between nodes. Here is how it is implemented:

<script type="text/javascript">
 var force = d3.layout.force()
 .gravity(0.1)
 .charge(-30)
 .friction(0.95)
 .linkDistance(20)
 .linkStrength(1);

 var duration = 60000; // in milliseconds

 var svg = d3.select("body").append("svg:svg");

 force.size([1100, 600])
 .on("tick", function () {
 // omitted, will be discussed in details later
 ...
 });

 function offset() {
 return Math.random() * 100;
 }

 function createNodes(point) {
 var numberOfNodes = Math.round(Math.random() * 10);
 var nodes = [];

Using Force

264

 for (var i = 0; i < numberOfNodes; ++i) {
 nodes.push({
 x: point[0] + offset(),
 y: point[1] + offset()
 });
 }

 return nodes;
 }

 function createLinks(nodes) {
 // omitted, will be discussed in details later
 ...
 }

 svg.on("click", function () {
 var point = d3.mouse(this),
 nodes = createNodes(point),
 links = createLinks(nodes);

 nodes.forEach(function (node) {
 svg.append("circle")
 .data([node])
 .attr("class", "node")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;})
 .attr("r", 1e-6)
 .call(force.drag)
 .transition()
 .attr("r", 7)
 .transition()
 .delay(duration)
 .attr("r", 1e-6)
 .each("end", function () {force.nodes().shift();})
 .remove();
 });

 links.forEach(function (link) {
 // omitted, will be discussed in details later
 ...
 });

 nodes.forEach(function (n) {force.nodes().push(n);});
 links.forEach(function (l) {force.links().push(l);});

 force.start();
 });
</script>

Chapter 11

265

This recipe generates force-directed particle rings on a mouse click as shown in the following
screenshot:

Force-Directed Particle Rings

How it works...
Link constraint adds another useful dimension to force assisted visualization. In this recipe we
set up our force layout with the following parameters:

var force = d3.layout.force()
 .gravity(0.1)
 .charge(-30)
 .friction(0.95)
 .linkDistance(20)
 .linkStrength(1);

Besides gravity, charge, and friction, this time we have two additional parameters: link
distance and link strength. Both parameters are exclusively link related:

 f linkDistance: Could be a constant or a function; defaults to 20 pixels. Link
distances are evaluated when the layout starts, and it is implemented as weak
geometric constraints. For each tick of the layout, the distance between each pair of
linked nodes is computed and compared to the target distance; the links are then
moved towards each other or away from each other.

 f linkStength: Could be a constant or a function; defaults to 1. Link strength sets
the strength (rigidity) of links with value in the range of [0, 1]. Link strength is also
evaluated on layout start.

Using Force

266

When the user clicks their mouse, a random number of nodes are being created and put under
force layout's control similar to what we have done in the previous recipes. The major addition in
this recipe is the link creation and its control logic is shown in the following code snippet:

 function createLinks(nodes) {
 var links = [];
 for (var i = 0; i < nodes.length; ++i) { // <-A
 if(i == nodes.length - 1)
 links.push(
 {source: nodes[i], target: nodes[0]}
);
 else
 links.push(
 {source: nodes[i], target: nodes[i + 1]}
);
 }
 return links;
 }
...
svg.on("click", function () {
 var point = d3.mouse(this),
 nodes = createNodes(point),
 links = createLinks(nodes);
 ...

 links.forEach(function (link) {
 svg.append("line") // <-B
 .data([link])
 .attr("class", "line")
 .attr("x1", function (d) {
 return d.source.x;
 })
 .attr("y1", function (d) {
 return d.source.y;
})
 .attr("x2", function (d) {
 return d.target.x;
 })
 .attr("y2", function (d) {
 return d.target.y;
 })

Chapter 11

267

 .transition()
 .delay(duration)
 .style("stroke-opacity", 1e-6)
 .each("end", function () {
 force.links().shift();
 })
 .remove();
 });

 nodes.forEach(function (n) {force.nodes().push(n);});
 links.forEach(function (l) { // <-C
 force.links().push(l);
 });

 force.start();
}

In the createLinks function, n-1 link objects were created connecting a set of nodes into
a ring (for loop on line A). Each link object must have two attributes specified as source
and target, telling force layout which pair of nodes are connected by this link object. Once
created, we decided to visualize the links in this recipe using svg:line element (line B). We
will see in the next recipe that this does not have to always be the case. As a matter of fact,
you can use pretty much anything; you can imagine to visualize (including hiding them, but
retain the links for layout computation) the links as long as it makes sense for the audience
of your visualization. After that we also need to add link objects to force layout's links array
(on line C) so they can be put under force layout's control. Finally, we need to translate the
positioning data generated by force layout to SVG implementation in the tick function for
each link similar to what we did for the nodes:

force.size([1100, 600])
 .on("tick", function () {
 svg.selectAll("circle")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;});

 svg.selectAll("line")
 .attr("x1", function (d) {return d.source.x;})
 .attr("y1", function (d) {return d.source.y;})
 .attr("x2", function (d) {return d.target.x;})
 .attr("y2", function (d) {return d.target.y;});
 });

Using Force

268

As we can see here, D3 force layout has again done most of the heavy lifting, therefore, all we
need to do is simply set {x1, y1} and {x2, y2} on the svg:line elements in the tick
function. For reference, the following screenshot is what a link object looks like after it has
been manipulated by force layout:

Link Object

One last additional technique worth mentioning in this recipe is force-enabled dragging. All
nodes generated by this recipe are "draggable" and force layout automatically re-computes all
forces and constraints as user drags the rings around as shown in the following screenshot:

Dragging with Force Layout

Chapter 11

269

D3 force layout has dragging built-in, hence, this fancy effect is quite easily achieved by simply
calling force.drag on the svg:circle selection (line D):

nodes.forEach(function (node) {
 svg.append("circle")
 .data([node])
 .attr("class", "node")
 ...
 .call(force.drag) // <-D
 .transition()
 ...
 .each("end", function () {force.nodes().shift();})
 .remove();
 });

See also
 f Scalable, Versatile and Simple Constrained Graph Layout: http://www.csse.

monash.edu.au/~tdwyer/Dwyer2009FastConstraints.pdf

 f force.links(): https://github.com/mbostock/d3/wiki/Force-
Layout#wiki-links

 f force.linkDistance(): https://github.com/mbostock/d3/wiki/Force-
Layout#wiki-linkDistance

 f force.linkStrength(): https://github.com/mbostock/d3/wiki/Force-
Layout#wiki-linkStrength

 f force.drag: https://github.com/mbostock/d3/wiki/Force-
Layout#wiki-drag

Using force to assist visualization
So far we have learned to use force layout visualizing particles and links similar to how
you would use force layout in its classic application, the forced-directed graph. This kind
of visualization is what force layout was designed for in the first place. However, this is by
no means the only way to utilize force in your visualization. In this recipe we will explore
techniques that I call force-assisted visualization. With this technique you can add some
randomness and arbitrariness into your visualization by leveraging force.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
arbitrary-visualization.html.

Using Force

270

How to do it...
In this recipe we will generate bubbles on user mouse click. The bubbles are made of
svg:path elements filled with gradient color. The svg:path elements are not strictly
controlled by force layout though they are influenced by force, therefore, giving them the
randomness required to simulate a bubble in real-life:

<svg>
 <defs>
 <radialGradient id="gradient" cx="50%" cy="50%" r="100%"
 fx="50%" fy="50%">
 <stop offset="0%" style="stop-color:blue;stop-
 opacity:0"/>
 <stop offset="100%" style="stop-
 color:rgb(255,255,255);stop-opacity:1"/>
 </radialGradient>
 </defs>
</svg>

<script type="text/javascript">
 var force = d3.layout.force()
 .gravity(0.1)
 .charge(-30)
 .friction(0.95)
 .linkDistance(20)
 .linkStrength(0.5);

 var duration = 10000;

 var svg = d3.select("svg");

 var line = d3.svg.line()
 .interpolate("basis-closed")
 .x(function(d){return d.x;})
 .y(function(d){return d.y;});

 force.size([svg.node().clientWidth, svg.node().clientHeight])
 .on("tick", function () {
 // omitted, will be discussed in details later
 ...
 });

 function offset() {
 return Math.random() * 100;
 }

Chapter 11

271

 function createNodes(point) {
 // omitted, same as previous recipe
 ...
 }

 function createLinks(nodes) {
 // omitted, same as previous recipe
 ...
 }

 svg.on("click", function () {
 // omitted, will be discussed in details later
 ...
 });
</script>

This recipe generates force assisted bubbles on user mouse click as shown in the following
screenshot:

Force Assisted Bubbles

Using Force

272

How it works...
This recipe is built on top of what we have done in the previous recipe, therefore, its overall
approach is quite similar to the last recipe in which we created force controlled particle rings
on user mouse click. The major difference between this recipe and the last one is in this one
we decided to use d3.svg.line generator to create the svg:path element that outlines
our bubbles instead of using svg:circle and svg:line:

var line = d3.svg.line() // <-A
 .interpolate("basis-closed")
 .x(function(d){return d.x;})
 .y(function(d){return d.y;});
...
svg.on("click", function () {
 var point = d3.mouse(this),
 nodes = createNodes(point),
 links = createLinks(nodes);

 var circles = svg.append("path")
 .data([nodes])
 .attr("class", "bubble")
 .attr("fill", "url(#gradient)") // <-B
 .attr("d", function(d){return line(d);}) // <-C
 .transition().delay(duration)
 .attr("fill-opacity", 0)
 .attr("stroke-opacity", 0)
 .each("end", function(){d3.select(this).remove();});

 nodes.forEach(function (n) {force.nodes().push(n);});
 links.forEach(function (l) {force.links().push(l);});

 force.start();
});

On line A we created a line generator with basis-closed interpolation mode since this
gives us the smoothest outline for our bubble. Whenever user clicks the mouse a svg:path
element was created connecting all nodes (line C). Additionally, we also fill the bubble with our
pre-defined gradient to give it a nice glow (line B). Finally, we also need to implement the force
based positioning in the tick function:

force.size([svg.node().clientWidth, svg.node().clientHeight])
 .on("tick", function () {
 svg.selectAll("path")
 .attr("d", line);
 });

Chapter 11

273

In the tick function we simply re-invoke the line generator function to update the d attribute
for each path thus animating the bubbles using force layout computation.

See also
 f SVG Gradients and Patterns: http://www.w3.org/TR/SVG/pservers.html

 f The Using line generator recipe in Chapter 7, Getting into Shape, for more
information on D3 line generator

Manipulating force
So far we have explored many interesting aspects and applications of D3 force layout;
however, in all of these prior recipes we simply apply force layout's computation (gravity,
charge, friction, and momentum) directly to our visualization. In this recipe we will go one step
further to implement custom force manipulation, hence creating our own type of force.

In this recipe we will first generate five sets of colored particles then we assign corresponding
colors and categorical force pull to user's touch, hence pulling only the particles that
match the color. Since this recipe is a bit complex, I will give an example here: if I touch the
visualization with my first finger it will generate a blue circle and pull all blue particles to that
circle, while my second touch will generate an orange circle and only pull the orange particles.
This type of force manipulation is commonly referred to as categorical multi-foci.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
multi-foci.html.

How to do it...
Here is how you can achieve this in code:

<script type="text/javascript">
 var svg = d3.select("body").append("svg:svg"),
 colors = d3.scale.category10(),
 w = 900,
 h = 600;

 svg.attr("width", w).attr("height", h);

 var force = d3.layout.force()
 .gravity(0.1)

Using Force

274

 .charge(-30)
 .size([w, h]);

 var nodes = force.nodes(),
 centers = [];

 for (var i = 0; i < 5; ++i) {
 for (var j = 0; j < 50; ++j) {
 nodes.push({x: w / 2 + offset(),
 y: h / 2 + offset(),
 color: colors(i), // <-A
 type: i}); // <-B
 }
 }

 function offset() {
 return Math.random() * 100;
 }

 svg.selectAll("circle")
 .data(nodes).enter()
 .append("circle")
 .attr("class", "node")
 .attr("cx", function (d) {return d.x;})
 .attr("cy", function (d) {return d.y;})
 .attr("fill", function(d){return d.color;})
 .attr("r", 1e-6)
 .transition()
 .attr("r", 4.5);

 force.on("tick", function(e) {
 // omitted, will discuss in detail
 ...
 });

 d3.select("body")
 .on("touchstart", touch)
 .on("touchend", touch);

 function touch() {
 // omitted, will discuss in detail
 ...
 }

 force.start();
</script>

Chapter 11

275

This recipe generates multi-categorical foci on touch as shown in the following screenshot:

Multi-Categorical Foci on Touch

How it works...
The first step of this recipe is to create colored particles and standard force equilibrium
between gravity and repulsion. All node objects contain separate color and type ID attributes
(line A and B) so they can be easily identified later. Next, we need to create a svg:circle
element on user touch to represent the touch point:

function touch() {
 d3.event.preventDefault();

 centers = d3.touches(svg.node());

 var g = svg.selectAll("g.touch")
 .data(centers, function (d) {
 return d.identifier;
 });

 g.enter()
 .append("g")
 .attr("class", "touch")
 .attr("transform", function (d) {
 return "translate(" + d[0] + "," + d[1] + ")";

Using Force

276

 })
 .append("circle")
 .attr("class", "touch")
 .attr("fill", function(d){
 return colors(d.identifier);
 })
 .transition()
 .attr("r", 50);

 g.exit().remove();

 force.resume();
}

Once the touch point is identified, all custom force magic is implemented in the tick
function. Now, let's take a look at the tick function:

force.on("tick", function(e) {
 var k = e.alpha * .2;
 nodes.forEach(function(node) {
 var center = centers[node.type];
 if(center){
 node.x += (center[0] - node.x) * k; // <-C
 node.y += (center[1] - node.y) * k; // <-D
 }
 });

 svg.selectAll("circle")
 .attr("cx", function(d) { return d.x; })
 .attr("cy", function(d) { return d.y; });
});

The first new concept we encounter here is the alpha parameter. Alpha is an internal cooling
parameter used by force layout. Alpha starts with 0.1 and moves towards 0 as layout ticks.
In simpler terms the higher the alpha value the more chaotic the forces are and as alpha
approaches 0 the layout becomes more stable. In this implementation we leverage the alpha
value to make our custom force implementation cool down in synchronous with other built-in
forces, since the movements of the particles are calculated with k coefficient (a derivative of
alpha) on line C and D moving them closer to the matching touch point.

See also
 f The Interacting with a multi-touch device recipe in Chapter 10, Interacting with your

Visualization, for more information on D3 multi-touch support

Chapter 11

277

Building a force-directed graph
At last, we will show how to implement a force-directed graph, the classic application of D3
force layout. However, we believe with all the techniques and knowledge you have gained so
far from this chapter implementing force-directed graph should feel quite straightforward.

Getting ready
Open your local copy of the following file in your web browser:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter11/
force-directed-graph.html.

How to do it...
In this recipe we will visualize the flare data set as a force-directed tree (tree is a special type
of graph):

<script type="text/javascript">
 var w = 1280,
 h = 800,
 z = d3.scale.category20c();

 var force = d3.layout.force()
 .size([w, h]);

 var svg = d3.select("body").append("svg")
 .attr("width", w)
 .attr("height", h);

 d3.json("/data/flare.json", function(root) {
 var nodes = flatten(root),
 links = d3.layout.tree().links(nodes); // <-B

 force
 .nodes(nodes)
 .links(links)
 .start();

 var link = svg.selectAll("line")
 .data(links)
 .enter().insert("line")

Using Force

278

 .style("stroke", "#999")
 .style("stroke-width", "1px");

 var node = svg.selectAll("circle.node")
 .data(nodes)
 .enter().append("circle")
 .attr("r", 4.5)
 .style("fill", function(d) {
 return z(d.parent && d.parent.name);
})
 .style("stroke", "#000")
 .call(force.drag);

 force.on("tick", function(e) {
 link.attr("x1", function(d) { return d.source.x; })
 .attr("y1", function(d) { return d.source.y; })
 .attr("x2", function(d) { return d.target.x; })
 .attr("y2", function(d) { return d.target.y; });

 node.attr("cx", function(d) { return d.x; })
 .attr("cy", function(d) { return d.y; });
 });
 });

 function flatten(root) { // <-A
 var nodes = [];
 function traverse(node, depth) {
 if (node.children) {
 node.children.forEach(function(child) {
 child.parent = node;
 traverse(child, depth + 1);
 });
 }
 node.depth = depth;
 nodes.push(node);
 }
 traverse(root, 1);
 return nodes;
 }
</script>

Chapter 11

279

This recipe visualizes hierarchical flare data set as a force-directed tree:

Force-Directed Graph (Tree)

How it works...
As we can already see, this recipe is pretty short and a quarter of the code was actually
devoted to data processing. This is due to the fact that force-directed graph is what force
layout was designed for in the first place. Thus there is really not much to do other than simply
apply the layout with correct data structure. First, we flatten the hierarchical data set in flatten
function (line A) since this is what force layout expects. Second, we leverage the d3.layout.
tree.links function to generate proper linkage between tree nodes. The d3.layout.
tree.links function returns an array of link objects representing links from parent to
child for each given node object, in other words, builds the tree structure. Once the data is
properly formatted the rest of this recipe applies standard force layout usage with hardly any
customization at all.

See also
 f The Building a tree recipe in Chapter 9, Lay Them Out, for more information on D3

tree layout

 f For more information on force-directed graphs, visit the site: http://
en.wikipedia.org/wiki/Force-directed_graph_drawing

12
Know your Map

In this chapter we will cover:

 f Projecting the US map

 f Projecting the world map

 f Building a choropleth map

Introduction
The ability to project and correlate data points to geographic regions is crucial in many types
of visualizations. Geographic visualization is a complex topic with many competing standards
emerging and maturing for today's web technology. D3 provides few different ways to visualize
geographic and cartographic data. In this chapter we will introduce basic D3 cartographic
visualization techniques and how to implement a fully-functional choropleth map (a special
purpose colored map) in D3.

Projecting the US map
In this recipe we are going to start with projecting the US map using D3 geo API, while also
getting familiar with a few different JSON data formats for describing geographic data. Let's
first take a look at how geographic data are typically presented and consumed in JavaScript.

GeoJSON
The first standard JavaScript geographic data format we are going to touch upon is called
GeoJSON. GeoJSON format differs from other GIS standards in that it was written and is
maintained by an Internet working group of developers.

Know your Map

282

GeoJSON is a format for encoding a variety of geographic data structure. A
GeoJSON object may represent geometry, a feature, or a collection of features.
GeoJSON supports the following geometry types: Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection. Features in
GeoJSON contain a geometry object and additional properties, and a feature
collection represents a list of features.

Source: http://www.geojson.org/

GeoJSON format is a very popular standard for encoding GIS information and is supported by
numerous open source as well as commercial softwares. GeoJSON format uses latitude and
longitude points as its coordinates, therefore, it requires any software, including D3, to find
the proper projection, scale and translation method in order to visualize its data. The following
GeoJSON data describes the state of Alabama in feature coordinates:

{
 "type":"FeatureCollection",
 "features":[{
 "type":"Feature",
 "id":"01",
 "properties":{"name":"AL"},
 "geometry":{
 "type":"Polygon",
 "coordinates":[[
 [-87.359296,35.00118],
 [-85.606675,34.984749],
 [-85.431413,34.124869],
 [-85.184951,32.859696],
 ...
 [-88.202745,34.995703],
 [-87.359296,35.00118]
]]
 }]
}

GeoJSON is currently the de facto GIS information standard for JavaScript project and is well
supported by D3; however, before we jump right into D3 geographic visualization using this
data format, we want to also introduce you to another emerging technology closely related to
GeoJSON.

Chapter 12

283

TopoJSON

TopoJSON is an extension of GeoJSON that encodes topology. Rather than
representing geometries discretely, geometries in TopoJSON files are stitched
together from shared line segments called arcs. TopoJSON eliminates redundancy,
offering much more compact representations of geometry than with GeoJSON;
typical TopoJSON files are 80% smaller than their GeoJSON equivalents. In addition,
TopoJSON facilitates applications that use topology, such as topology-preserving
shape simplification, automatic map coloring, and cartograms.

TopoJSON Wiki https://github.com/mbostock/topojson

TopoJSON was created by D3's author Mike Bostock and designed to overcome some of the
drawbacks in GeoJSON while providing a similar feature set when describing geographic
information. In most cases concerning cartographic visualization TopoJSON can be a drop-in
replacement for GeoJSON with much smaller footprint and better performance. Therefore,
in this chapter we will use TopoJSON instead of GeoJSON. Nevertheless, all techniques
discussed in this chapter will work perfectly fine with GeoJSON as well. We will not list
TopoJSON example here since its arcs based format is not very human readable. However, you
can easily convert your shapefiles (popular open source geographic vector format file) into
TopoJSON using ogr2ogr command line tool provided by GDAL (http://www.gdal.org/
ogr2ogr.html).

Now equipped with this background information let's see how we can make a map in D3.

Getting ready
Open your local copy of the following file in your web browser hosted on your local HTTP server:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter12/
usa.html

How to do it...
In this recipe we will load US TopoJSON data and render them using D3 Geo API. Here is the
code sample:

<script type="text/javascript">
 var width = 960, height = 500;

 // use default USA Albers projection
 var path = d3.geo.path();

 var svg = d3.select("body").append("svg")

Know your Map

284

 .attr("width", width)
 .attr("height", height);

 var g = svg.append('g')
 .call(d3.behavior.zoom()
 .scaleExtent([1, 10])
 .on("zoom", zoom));

 d3.json("/data/us.json", function (error, topology) { // <-A
 g.selectAll("path")
 .data(topojson.feature(topology,
 topology.objects.states).features)
 .enter().append("path")
 .attr("d", path);
 });

 function zoom() {
 g.attr("transform", "translate("
 + d3.event.translate
 + ")scale(" + d3.event.scale + ")");
 }
</script>

This recipe projects US map with Albers USA mode:

US map projected with Albers USA mode

Chapter 12

285

How it works...
As you can see, the code required to project a US map using TopoJSON and D3 is quite short,
especially the part concerning map projection. This is because both D3 geographic API and
TopoJSON library are built explicitly to make this kind of job as easy as possible for developers.
To make a map, first you need to load the TopoJSON data file (line A). The following screenshot
shows what the topology data looks like once loaded:

Topology data from TopoJSON

Once the topology data is loaded, all we have to do is to use the TopoJSON library topojson.
feature function to convert topology arcs into coordinates similar to what GeoJSON format
provides as shown in the following screenshot:

Feature collection converted using topojson.feature function

Then d3.geo.path will automatically recognize and use the coordinates to generate
svg:path highlighted in the following code snippet:

var path = d3.geo.path();
...
g.selectAll("path")
 .data(topojson.feature(topology,
 topology.objects.states).features)
 .enter().append("path")
 .attr("d", path);

Know your Map

286

That's it! This is all you need to do to project a map in D3 using TopoJSON. Additionally, we
have also attached a zoom handler to the parent svg:g element:

var g = svg.append('g')
 .call(d3.behavior.zoom()
 .scaleExtent([1, 10])
 .on("zoom", zoom));

This allows the user to perform simple geometric zoom on our map.

See also
 f GeoJSON v1.0 specification: http://www.geojson.org/geojson-spec.html

 f TopoJSON Wiki: https://github.com/mbostock/topojson/wiki

 f More on making map from shapefiles to TopoJSON:
http://bost.ocks.org/mike/map/

 f Chapter 3, Dealing with Data, for more information on asynchronous data loading

 f Chapter 10, Interacting with your Visualization, for more information on how to
implement zooming

 f Mike Bostock's post on Albers USA projection on which this recipe is based
http://bl.ocks.org/mbostock/4090848

Projecting the world map
What if our visualization project is not just about US, but rather concerns the whole world? No
worries, D3 comes with various built-in projection modes that work well with the world map
that we will explore in this recipe.

Getting ready
Open your local copy of the following file in your web browser hosted on your local HTTP server:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter12/
world.html

How to do it...
In this recipe we will project the world map using various different D3 built-in projection
modes. Here is the code sample:

<script type="text/javascript">
 var width = 300, height = 300,

Chapter 12

287

 translate = [width / 2, height / 2];

 var projections = [// <-A
 {name: 'azimuthalEqualArea', fn:
 d3.geo.azimuthalEqualArea()
 .scale(50)
 .translate(translate)},
 {name: 'conicEquidistant', fn: d3.geo.conicEquidistant()
 .scale(35)
 .translate(translate)},
 {name: 'equirectangular', fn: d3.geo.equirectangular()
 .scale(50)
 .translate(translate)},
 {name: 'mercator', fn: d3.geo.mercator()
 .scale(50)
 .translate(translate)},
 {name: 'orthographic', fn: d3.geo.orthographic()
 .scale(90)
 .translate(translate)},
 {name: 'stereographic', fn: d3.geo.stereographic()
 .scale(35)
 .translate(translate)}
];

 d3.json("/data/world-50m.json", function (error, world) {//<-B
 projections.forEach(function (projection) {
 var path = d3.geo.path() // <-C
 .projection(projection.fn);

 var div = d3.select("body")
 .append("div")
 .attr("class", "map");

 var svg = div
 .append("svg")
 .attr("width", width)
 .attr("height", height);

 svg.append("path") // <-D
 .datum(topojson.feature(world,
 world.objects.land))
 .attr("class", "land")
 .attr("d", path);

Know your Map

288

 svg.append("path") // <-E
 .datum(topojson.mesh(world,
 world.objects.countries))
 .attr("class", "boundary")
 .attr("d", path);

 div.append("h3").text(projection.name);
 });
 });
</script>

This recipe generates world maps with different projection modes as shown in the following
screenshot:

World Map Projection

Chapter 12

289

How it works...
In this recipe we first define an array containing six different D3 projection modes on line A. A
world topology data was loaded on line B. Similar to the previous recipe we have a d3.geo.
path generator defined on line C; however, in this recipe we customized the projection mode
for geo path generator calling its projection function. The rest of the recipe is almost
identical to what we have done in the previous recipe. The topojson.feature function was
used to convert topology data into geographic coordinates so d3.geo.path can generate
svg:path required for map rendering (line D and E).

See also
 f D3 wiki Geo Projection page (https://github.com/mbostock/d3/wiki/Geo-

Projections) for more information on different projection modes as well as on how
raw custom projection can be implemented

Building a choropleth map
Choropleth map is a thematic map, in other words, a specially designed map not a general
purpose one, which is designed to show measurement of statistical variable on the map using
different color shades or patterns; or sometimes referred as geographic heat-map in simpler
terms. We have already seen in the previous two recipes that geographic projection in D3
consists of a group of svg:path elements, therefore, they can be manipulated as any other
svg elements including coloring. We will explore this feature in geo-projection and implement
a Choropleth map in this recipe.

Getting ready
Open your local copy of the following file in your web browser hosted on your local HTTP server:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/chapter12/
choropleth.html

How to do it...
In a choropleth map different geographic regions are colored according to their corresponding
variables, in this case based on 2008 unemployment rate in US by county. Now, let's see how
to do it in code:

<script type="text/javascript">
 var width = 960, height = 500;

 var color = d3.scale.threshold() // <-A

Know your Map

290

 .domain([.02, .04, .06, .08, .10])
 .range(["#f2f0f7", "#dadaeb", "#bcbddc",
 "#9e9ac8", "#756bb1", "#54278f"]);

 var path = d3.geo.path();

 var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height);

var g = svg.append("g")
...
 d3.json("/data/us.json", function (error, us) {
 d3.tsv("/data/unemployment.tsv", function (error,
 unemployment) {
 var rateById = {};
 unemployment.forEach(function (d) { // <-B
 rateById[d.id] = +d.rate;
 });

 g.append("g")
 .attr("class", "counties")
 .selectAll("path")
 .data(topojson.feature(us,
 us.objects.counties).features)
 .enter().append("path")
 .attr("d", path)
 .style("fill", function (d) {
 return color(rateById[d.id]); // <-C
 });

 g.append("path")
 .datum(topojson.mesh(us, us.objects.states,
 function(a, b) { return a !== b; }))
 .attr("class", "states")
 .attr("d", path);
 });
});
...
</script>

Chapter 12

291

This recipe generates the following choropleth map:

Choropleth Map of 2008 Unemployment Rate

How it works...
In this recipe we loaded two different data sets: one for the US topology and the other
containing unemployment rate by county in 2008. This technique is generally considered as
layering and is not necessarily limited to only two layers. The unemployment data are stitched
to counties by their ID (line B and C). Region coloring is achieved by using a threshold scale
(line A). One last point worth mentioning is the topojson.mesh function used to render state
borders. topojson.mesh is useful for rendering strokes in complicated objects efficiently
since it only renders shared edge by multiple features once.

See also
 f TopoJSON Wiki for more information on mesh function: https://github.com/

mbostock/topojson/wiki/API-Reference#wiki-mesh

 f D3 Wiki for more information on threshold scale: https://github.com/
mbostock/d3/wiki/Quantitative-Scales#wiki-threshold

 f Mike Bostock's post on choropleth map which this recipe is based on: http://
bl.ocks.org/mbostock/4090848

13
Test Drive your

Visualization

In this chapter we will cover:

 f Getting Jasmine and setting up the test environment

 f Test driving your visualization – chart creation

 f Test driving your visualization – SVG rendering

 f Test driving your visualization – pixel-perfect bar rendering

Introduction
Whenever we program as a professional programmer it is always important to test the program
we write in order to make sure it functions as designed and produces the expected outcome.
D3 data visualization mainly consists of JavaScript programs hence just like any other program
we write, data visualization needs to be tested to make sure it represents the underlying
data accurately. Obviously, we can perform our validation through visual examination and
manual testing, which is always a critical part of the process of building data visualization
since visual observation gives us a chance to verify not only the correctness, but also the
aesthetics, usability, and many other useful aspects. However, manual visual inspection can
be quite subjective, therefore, in this chapter we will focus our effort on automated unit testing.
Visualization well covered by unit tests can free the creator from the manual labor of verifying
correctness by hand additionally, allowing him/her to focus more on the aesthetics, usability,
and other important aspects where it is hard to automate with machine.

Test Drive your Visualization

294

Introduction to unit testing
Unit testing is a method in which a smallest unit of the program is tested and verified by
another program called the test case. The logic behind unit testing is that at unit level the
program is typically simpler and more testable. If we can verify if every unit in the program
is correct then putting these correct units together will give us a higher confidence that the
integrated program is also correct. Furthermore, since unit tests are typically cheap and
fast to execute, a group of unit test cases can be quickly and frequently executed to provide
feedback whether our program is performing correctly or not.

Software testing is a complex topic and so far we have only scratched the surface; however,
due to limited scope in this chapter, we will have to stop our introduction now and dive into
developing unit tests.

For more information on testing please check out the following links:

 f Unit test: http://en.wikipedia.org/wiki/Unit_testing

Test driven development: http://en.wikipedia.org/wiki/Test-
driven_development

Code coverage: http://en.wikipedia.org/wiki/Code_coverage

Getting Jasmine and setting up the test
environment

Before we start writing our unit test cases we need to set up an environment where our test
cases can be executed to verify our implementation. In this recipe, we will show how this
environment and necessary libraries can be set up for a visualization project.

Getting ready
Jasmine (http://pivotal.github.io/jasmine/) is a behavior-driven development
(BDD) framework for testing JavaScript code.

BDD is a software development technique that combines Test Driven
Development (TDD) with domain driven design.

We chose Jasmine as our testing framework because of its popularity in JavaScript community
as well as its nice BDD syntax. You can download the Jasmine library from:

https://github.com/pivotal/jasmine/downloads

Chapter 13

295

Once downloaded you need to unzip it into the lib folder. Besides the lib folder we also
need to create the src and spec folders for storing source files as well as test cases (in
BDD terminology test cases are called specification). See the following screenshot for the
folder structure:

Testing Directory Structure

How to do it...
Now, we have Jasmine in our library, next thing to do is to set up an HTML page that will
include Jasmine library as well as our source code plus test cases so they can be executed
to verify our program. This file is called SpecRunner.html in our setup which includes the
following code:

<head>
 <meta charset="utf-8">
 <title>Jasmine Spec Runner</title>

 <link rel="stylesheet" type="text/css" href="lib/jasmine-
 1.3.1/jasmine.css">
 <script type="text/javascript" src="lib/jasmine-
 1.3.1/jasmine.js"></script>
 <script type="text/javascript" src="lib/jasmine-1.3.1/jasmine-
 html.js"></script>
 <script type="text/javascript" src="../../lib/d3.js"></script>

 <!-- include source files here... -->
 <script type="text/javascript"
 src="src/bar_chart.js"></script>
 <!-- include spec files here... -->
 <script type="text/javascript"
 src="spec/spec_helper.js"></script>
 <script type="text/javascript"
 src="spec/bar_chart_spec.js"></script>

Test Drive your Visualization

296

 <script type="text/javascript">
 (function () {
 var jasmineEnv = jasmine.getEnv();
 jasmineEnv.updateInterval = 1000;

 var htmlReporter = new jasmine.HtmlReporter();

 jasmineEnv.addReporter(htmlReporter);

 jasmineEnv.specFilter = function (spec) {
 return htmlReporter.specFilter(spec);
 };

 var currentWindowOnload = window.onload;

 window.onload = function () {
 if (currentWindowOnload) {
 currentWindowOnload();
 }
 execJasmine();
 };

 function execJasmine() {
 jasmineEnv.execute();
 }

 })();
 </script>

</head>

How it works...
This code follows standard Jasmine spec runner structure and generates execution report
directly into our HTML page. Now, you have a fully functional test environment set up for your
visualization development. If you open the SpecRunner.html file with your browser you will
see a blank page at this point; however, if you check out our code sample you will see the
following report:

Chapter 13

297

Jasmine Report

See also
 f Jasmine Reference Document: http://pivotal.github.io/jasmine/

Test driving your visualization – chart
creation

With test environment ready, we can move on and develop a simple bar chart very similar to
what we have done in the Creating a bar chart recipe in Chapter 8, Chart Them Up, though
this time in a test-driven fashion. You can see how the bar chart looks if you open the tdd-
bar-chart.html page:

Test Driven Bar Chart

Test Drive your Visualization

298

By now we all know very well how to implement a bar chart using D3; however, building a bar
chart is not the focus of this recipe. Instead, we want to show how we can build test cases
every step of the way and verify automatically that our bar chart implementation is doing what
it is supposed to do. The source code of this recipe was built using test driven development
method; however, we will not show you every step in the TDD process due to limited scope in
this book. Instead, we have grouped multiple steps into three larger sections with different
focuses in this chapter and this recipe is the first step we take.

How to do it...
First step we need to take is to make sure our bar chart implementation exists and can
receive the data. The starting point of our development could be arbitrary and we decide to
drive from this simplest function to set up the skeleton for our object. Here is what the test
case looks like:

describe('BarChart', function () {
 var div,
 chart,
 data = [
 {x: 0, y: 0},
 {x: 1, y: 3},
 {x: 2, y: 6}
];

 beforeEach(function () {
 div = d3.select('body').append('div');
 chart = BarChart(div);
 });

 afterEach(function () {
 div.remove();
 });

 describe('.data', function () {
 it('should allow setting and retrieve chart data',
 function () {
 expect(chart.data(data).data()).toBe(data);
 });
});
});

Chapter 13

299

How it works...
In this first test case we used a few Jasmine constructs:

 f describe: This function defines a suite of test cases; within describe a sub-suite can
be nested and test cases can be defined

 f it: This function defines a test case

 f beforeEach: This function defines a pre-execution hook which will execute the given
function before the execution of each test case

 f afterEach: This function defines a post-execution hook which will execute the given
function after the execution of each test case

 f expect: This function defines an expectation in your test case which can then be
chained with matchers (for example, toBe and toBeEmpty) to perform assertion in
your test case

In our example we use the beforeEach hook to set up a div container for each test case
and then remove div after execution in afterEach hook to improve the isolation between
different test cases. The test case itself is almost trivial; it checks if the bar chart can take
data and also return data attribute correctly. At this point if we run our SpecRunner, it will
display a red message complaining there is no BarChart object, so let's create our object
and function:

function BarChart(p) {
var that = {};
var _parent = p, data;
that.data = function (d) {
 if (!arguments.length) return _data;
 _data = d;
 return that;
};

return that;
}

Now, if you run SpecRunner.html again it will give you a happy green message showing our
only test case is passing.

Test driving your visualization – SVG
rendering

Now we have the basic skeleton of our bar chart object created, and we feel that we are
ready to try to render something, so in this second iteration we will try to generate the
svg:svg element.

Test Drive your Visualization

300

How to do it...
Rendering the svg:svg element should not only simply add the svg:svg element to the
HTML body, but also translate the width and height setting on our chart object to proper SVG
attributes. Here is how we express our expectation in our test cases:

describe('.render', function () {
 describe('svg', function () {
 it('should generate svg', function () {
 chart.render();
 expect(svg()).not.toBeEmpty();
 });

 it('should set default svg height and width',
 function () {
 chart.render();
 expect(svg().attr('width')).toBe('500');
 expect(svg().attr('height')).toBe('350');
 });

 it('should allow changing svg height and width',
 function () {
 chart.width(200).height(150).render();
 expect(svg().attr('width')).toBe('200');
 expect(svg().attr('height')).toBe('150');
 });
 });
});

function svg() {
 return div.select('svg');
}

How it works...
At this point, all of these tests will fail since we don't even have the render function; however,
it clearly articulates that we expect the render function to generate the svg:svg element
and setting the width and height attributes correctly. The second test case also makes
sure that if the user does not provide the height and width attributes we will supply a
set of default values. Here is how we will implement the render method to satisfy these
expectations:

...
var _parent = p, _width = 500, _height = 350
 _data;

Chapter 13

301

 that.render = function () {
 var svg = _parent
 .append("svg")
 .attr("height", _height)
 .attr("width", _width);
 };

 that.width = function (w) {
 if (!arguments.length) return _width;
 _width = w;
 return that;
 };

 that.height = function (h) {
 if (!arguments.length) return _height;
 _height = h;
 return that;
};
...

At this point our SpecRunner.html is once again all green and happy. However, it's still not
doing much since all it does is generate an empty svg element on the page and not even
use the data at all.

Test driving your visualization – pixel-perfect
bar rendering

In this iteration we will finally generate the bars using the data we have. Through our test
cases we will make sure all bars are not only rendered but rendered with pixel-perfect
precision.

How to do it...
Let's see how we test it:

describe('chart body', function () {
 it('should create body g', function () {
 chart.render();
 expect(chartBody()).not.toBeEmpty();
 });

 it('should translate to (left, top)', function () {
 chart.render();

Test Drive your Visualization

302

 expect(chartBody().attr('transform')).
 toBe('translate(30,10)')
 });
 });

 describe('bars', function () {
 beforeEach(function () {
 chart.data(data).width(100).height(100)
 .x(d3.scale.linear().domain([0, 3]))
 .y(d3.scale.linear().domain([0, 6]))
 .render();
 });

 it('should create 3 svg:rect elements', function () {
 expect(bars().size()).toBe(3);
 });

 it('should calculate bar width automatically',
 function () {
 bars().each(function () {
 expect(d3.select(this).attr('width')).
 toBe('18');
 });
 });

 it('should map bar x using x-scale', function () {
 expect(d3.select(bars()[0][0]).
 attr('x')).toBe('0');
 expect(d3.select(bars()[0][1]).
 attr('x')).toBe('20');
 expect(d3.select(bars()[0][2]).
 attr('x')).toBe('40');
 });

 it('should map bar y using y-scale', function () {
 expect(d3.select(bars()[0][0]).
 attr('y')).toBe('60');
 expect(d3.select(bars()[0][1]).
 attr('y')).toBe('30');
 expect(d3.select(bars()[0][2]).
 attr('y')).toBe('0');
 });

 it('should calculate bar height based on y',
 function () {
 expect(d3.select(bars()[0][0]).

Chapter 13

303

 attr('height')).toBe('10');
 expect(d3.select(bars()[0][1]).
 attr('height')).toBe('40');
 expect(d3.select(bars()[0][2]).
 attr('height')).toBe('70');
 });
 });

 function chartBody() {
 return svg().select('g.body');
 }

 function bars() {
 return chartBody().selectAll('rect.bar');
}

How it works...
In the preceding test suite we describe our expectations of having the chart body svg:g
element correctly transform and correct number of bars with appropriate attributes (width, x,
y, height) set. The implementation is actually going to be shorter than our test case which is
quite common in well tested implementation:

...
var _parent = p, _width = 500, _height = 350,
 _margins = {top: 10, left: 30, right: 10, bottom: 30},
 _data,
 _x = d3.scale.linear(),
 _y = d3.scale.linear();

that.render = function () {
 var svg = _parent
 .append("svg")
 .attr("height", _height)
 .attr("width", _width);

 var body = svg.append("g")
 .attr("class", 'body')
 .attr("transform", "translate(" + _margins.left + ","
 + _margins.top + ")")

 if (_data) {
 _x.range([0, quadrantWidth()]);
 _y.range([quadrantHeight(), 0]);

Test Drive your Visualization

304

 body.selectAll('rect.bar')
 .data(_data).enter()
 .append('rect')
 .attr("class", 'bar')
 .attr("width", function () {
 return quadrantWidth() / _data.length -
 BAR_PADDING;
 })
 .attr("x", function (d) {return _x(d.x); })
 .attr("y", function (d) {return _y(d.y); })
 .attr("height", function (d) {
 return _height - _margins.bottom - _y(d.y);
 });
 }
};
...

I think you are getting the picture and now you can repeat this cycle over and over to drive
your implementation. D3 visualization is built on HTML and SVG and both are simple mark-
up languages that can be verified easily. Well thought-out test suite can make sure your
visualization is pixel-perfect even sub-pixel perfect.

See also
 f Test driven development: http://en.wikipedia.org/wiki/Test-driven_

development

Building Interactive
Analytics in Minutes

In this appendix we will cover:

 f The crossfilter.js library

 f Dimensional charting – dc.js

Introduction
Congratulations! You have finished an entire book on data visualization with D3. Together we
have explored various topics and techniques. At this point you will probably agree that building
interactive, accurate, and aesthetically appealing data visualization is not a trivial matter
even with the help of a powerful library like D3. It typically takes days or even weeks to finish
a professional data visualization project even without counting the effort usually required on
the backend. What if you need to build an interactive analytics quickly, or a proof-of-concept
before a full-fledged visualization project can be commenced, and you need to do that not in
weeks or days, but minutes. In this appendix we will introduce you to two JavaScript libraries
that allow you to do that: building quick in-browser interactive multidimensional data analytics
in minutes.

Building Interactive Analytics in Minutes

306

The crossfilter.js library
Crossfilter is also a library created by D3's author Mike Bostock, initially used to power
analytics for Square Register.

Crossfilter is a JavaScript library for exploring large multivariate datasets in browser.
Crossfilter supports extremely fast (<30ms) interaction with coordinated views,
even with datasets containing a million or more records.

-Crossfilter Wiki (August 2013)

In other words, Crossfilter is a library that you can use to generate data dimensions on large
and typically flat multivariate datasets. So what is a data dimension? A data dimension can
be considered as a type of data grouping or categorization while each dimensional data
element is a categorical variable. Since this is still a pretty abstract concept, let's take a look
at the following JSON dataset and see how it can be transformed into dimensional dataset
using Crossfilter. Assume that we have the following flat dataset in JSON describing payment
transactions in a bar:

[
 {"date": "2011-11-14T01:17:54Z", "quantity": 2, "total": 190,
 "tip": 100, "type": "tab"},
 {"date": "2011-11-14T02:20:19Z", "quantity": 2, "total": 190,
 "tip": 100, "type": "tab"},
 {"date": "2011-11-14T02:28:54Z", "quantity": 1, "total": 300,
 "tip": 200, "type": "visa"},
..
]

Sample dataset borrowed from Crossfilter Wiki: https://github.com/
square/crossfilter/wiki/API-Reference.

How many dimensions do we see here in this sample dataset? The answer is: it has as many
dimensions as the number of different ways that you can categorize the data. For example,
since this data is about customer payment, which is observation on time series, obviously
the "date" is a dimension. Secondly, the payment type is naturally a way to categorize data;
therefore, "type" is also a dimension. The next dimension is bit tricky since technically we
can model any of the field in the dataset as dimension or its derivatives; however, we don't
want to make anything as a dimension which does not help us slice the data more efficiently
or provide more insight into what the data is trying to say. The total and tip fields have very
high cardinality, which usually is an indicator for poor dimension (though tip/total, that is,
tip in percentage could be an interesting dimension); however, the "quantity" field is likely
to have a relatively small cardinality assuming people don't buy thousands of drinks in this
bar, therefore, we choose to use quantity as our third dimension. Now, here is what the
dimensional logical model looks like:

Appendix

307

Date

Dataset

Type Quantity

Dimensional Dataset

These dimensions allow us to look at the data from a different angle, and if combined will
allow us to ask some pretty interesting questions, for example:

 f Are customers who pay by tab more likely to buy in larger quantity?

 f Are customers more likely to buy larger quantity on Friday night?

 f Are customers more likely to tip when using tab versus cash?

Now, you can see why dimensional dataset is such a powerful idea. Essentially, each
dimension gives you a different lens to view your data, and when combined, they can quickly
turn raw data into knowledge. A good analyst can quickly use this kind of tool to formulate a
hypothesis, hence gaining knowledge from data.

How to do it...
Now, we understand why we would want to establish dimensions with our dataset; let's see
how this can be done using Crossfilter:

var timeFormat = d3.time.format.iso;
var data = crossfilter(json); // <-A

var hours = data.dimension(function(d){
 return d3.time.hour(timeFormat.parse(d.date)); // <-B

Building Interactive Analytics in Minutes

308

});
var totalByHour = hours.group().reduceSum(function(d){
 return d.total;
});

var types = data.dimension(function(d){return d.type;});
var transactionByType = types.group().reduceCount();

var quantities = data.dimension(function(d){return d.quantity;});
var salesByQuantity = quantities.group().reduceCount();

How it works...
As shown in the preceding section, creating dimensions and groups are quite straight-forward
in Crossfilter. First step before we can create anything is to feed our JSON dataset, loaded
using D3, through Crossfilter by calling the crossfilter function (line A). Once that's done,
you can create your dimension by calling the dimension function and pass in an accessor
function that will retrieve the data element that can be used to define the dimension. In
the case for type we will simply pass in function(d){return d.type;}. You can also
perform data formatting or other task in dimension function (for example, date formatting on
line B). After creating the dimensions, we can perform the categorization or grouping by using
the dimension, so totalByHour is a grouping that sums up total amount of the sale for
each hour, while salesByQuantity is a grouping of counting the number of transactions by
quantity. To better understand how group works, we will take a look at what the group object
looks like. If you invoke the all function on the transactionsByType group you will get the
following objects back:

Crossfilter Group Objects

We can clearly see that transactionByType group is essentially a grouping of the data
element by its type while counting the total number of data elements within each group since
we had called reduceCount function when creating the group.

The following are the description for functions we used in this example:

 f crossfilter: Creates a new crossfilter with given records if specified. Records can
be any array of objects or primitives.

 f dimension: Creates a new dimension using the given value accessor function.
The function must return naturally-ordered values, that is, values that behave
correctly with respect to JavaScript's <, <=, >=, and > operators. This typically means
primitives: Booleans, numbers, or strings.

Appendix

309

 f dimension.group: Creates a new grouping for the given dimension, based on the
given groupValue function, which takes a dimension value as input and returns the
corresponding rounded value.

 f group.all: Returns all groups, in ascending natural order by key.

 f group.reduceCount: A shortcut function to count the records; returns this group.

 f group.reduceSum: A shortcut function to sum records using the specified value
accessor function.

At this point we have everything we want to analyze. Now, let's see how this can be done in
minutes instead of hours or days.

There's more...
We have only touched a very limited number of Crossfilter functions. Crossfilter provides
a lot more capability when it comes to how dimension and group can be created; for
more information please check out its API reference: https://github.com/square/
crossfilter/wiki/API-Reference.

See also
 f Data Dimension: http://en.wikipedia.org/wiki/Dimension_(data_

warehouse)

 f Cardinality: http://en.wikipedia.org/wiki/Cardinality

Dimensional charting – dc.js
Visualizing Crossfilter dimensions and groups is precisely the reason why dc.js was created.
This handy JavaScript library was created by your humble author and is designed to allow you
to visualize Crossfilter dimensional dataset easily and quickly.

Getting ready
Open your local copy of the following file as reference:

https://github.com/NickQiZhu/d3-cookbook/blob/master/src/appendix-a/
dc.html

Building Interactive Analytics in Minutes

310

How to do it...
In this example we will create three charts:

 f A line chart for visualizing total amount of transaction on time series

 f A pie chart to visualize number of transactions by payment type

 f A bar chart showing number of sales by purchase quantity

Here is what the code looks like:

<div id="area-chart"></div>
<div id="donut-chart"></div>
<div id="bar-chart"></div>
…
dc.lineChart("#area-chart")
 .width(500)
 .height(250)
 .dimension(hours)
 .group(totalByHour)
 .x(d3.time.scale().domain([
 timeFormat.parse("2011-11-14T01:17:54Z"),
 timeFormat.parse("2011-11-14T18:09:52Z")
]))
 .elasticY(true)
 .xUnits(d3.time.hours)
 .renderArea(true)
 .xAxis().ticks(5);

 dc.pieChart("#donut-chart")
 .width(250)
 .height(250)
 .radius(125)
 .innerRadius(50)
 .dimension(types)
 .group(transactionByType);

 dc.barChart("#bar-chart")
 .width(500)
 .height(250)
 .dimension(quantities)
 .group(salesByQuantity)
 .x(d3.scale.linear().domain([0, 7]))

Appendix

311

 .y(d3.scale.linear().domain([0, 12]))
 .centerBar(true);

 dc.renderAll();

This generates a group of coordinated interactive charts:

Interactive dc.js charts

When you click or drag your mouse across these charts you will see the underlying Crossfilter
dimensions being filtered accordingly on all charts:

Filtered dc.js charts

How it works...
As we have seen through this example, dc.js is designed to generate standard chart-based
visualization on top of Crossfilter. Each dc.js chart is designed to be interactive so user
can apply dimensional filter by simply interacting with the chart. dc.js is built entirely on
D3, therefore, its API is very D3-like and I am sure with the knowledge you have gained from
this book you will feel quite at home when using dc.js. Charts are usually created in the
following steps.

1. First step creates a chart object by calling one of the chart creation functions while
passing in a D3 selection for its anchor element, which in our example is the div
element to host the chart:
<div id="area-chart"></div>
...
dc.lineChart("#area-chart")

Building Interactive Analytics in Minutes

312

2. Then we set the width, height, dimension, and group for each chart:

chart.width(500)
 .height(250)
 .dimension(hours)
 .group(totalByHour)

For coordinate charts rendered on a Cartesian plane you also need to set the x and y
scale:
chart.x(d3.time.scale().domain([
 timeFormat.parse("2011-11-14T01:17:54Z"),
 timeFormat.parse("2011-11-14T18:09:52Z")
])).elasticY(true)

In this first case, we explicitly set the x axis scale while letting the chart automatically
calculate the y-scale for us. While in the next case we set both x and y scale explicitly.

chart.x(d3.scale.linear().domain([0, 7]))
 .y(d3.scale.linear().domain([0, 12]))

There's more...
Different charts have different functions for customizing their look-and-feel and you can see
the complete API reference at https://github.com/NickQiZhu/dc.js/wiki/API.

Leveraging crossfilter.js and dc.js allows you to build sophisticated data analytics
dashboard fairly quickly. The following is a demo dashboard for analyzing the NASDAQ 100
Index for the last 20 years http://nickqizhu.github.io/dc.js/:

Appendix

313

dc.js NASDAQ demo

At the time of writing this book, dc.js supports the following chart types:

 f Bar chart (stackable)

 f Line chart (stackable)

 f Area chart (stackable)

 f Pie chart

 f Bubble chart

 f Composite chart

 f Choropleth map

 f Bubble overlay chart

For more information on the dc.js 'library please check out our Wiki page at
https://github.com/NickQiZhu/dc.js/wiki.

Building Interactive Analytics in Minutes

314

See also
The following are some other useful D3 based reusable charting libraries. Although, unlike
dc.js they are not designed to work with Crossfilter natively nevertheless they tend to be
richer and more flexible when tackling general visualization challenges:

 f NVD3: http://nvd3.org/

 f Rickshaw: http://code.shutterstock.com/rickshaw/

Index
A
advantages, SVG

adoption 148
interoperability 148
lightweight 148
open standard 148
readability 148
scalability 148
vector 148

Aight
about 10
URL 10

animation 119
arbitrary 64
arc generator

about 169
using 170-173

arc transition
about 173
implementing 173-176

area chart
about 188
creating 188-192

area generator
about 163
using 163-166

area interpolation
using 167-169

array
binding, as data 43-47

arrays
working with 54-58

axes
about 181
rescaling, dynamically 113-117

Axis component 101

B
Backbone.js 13
bar chart

about 199
creating 200, 202, 299-301

basic axes
working with 101-106

behavior-driven development (BDD) 296
BioVisualize

about 21
URL 21

bubble chart
about 196
creating 196-199

C
cartographic visualization techniques 283
charge

about 254, 256
using 254, 256

chart attributes 183
chart body frame rendering 185
chart object 183
charts

about 179
area chart 188
bar chart 199
bubble chart 196
creating 312, 313
line chart 181
scatter plot 192

child combinator 33

316

choropleth map
about 291
building 291-293

click event 236, 239
clipping

URL, for info 186
closepath command 151
cognition amplifier 40
cognitive magnification 235
colors

interpolating 88-91
combinators 32
comparator function 64
compound objects

interpolating 91-94
coordinate translation 181
countup function

listening to 145
createSvg function 104
Crossfilter

about 308
working 310

crossfilter.js library 308
CSS 147
CSS3 selector

basics 24, 25
CSS selector

used, for selecting single element 25-27
Cubic Bézier 151
custom interpolator

implementing 94-99, 142, 143

D
D3

about 7
code, searching 21
code, sharing 21
help, obtaining 22
URLs 8

D3 API
about 22
URL 22

D3 chart convention
about 180
axes 181
coordinate translation 181

margins 181
URL 180

D3 development environment
setting up 8, 9
source code, obtaining 10, 11

D3 gallery
about 21
URL 21

D3 Google group
about 22
URL 22

D3.js
about 7
URL, for downloading 9

D3.js, on Stack Overflow
URL 22

D3 layout
about 205
properties 205

d3.layout.tree 230
D3 plugins

about 21
URL 21

d3.selectAll function 28
d3.select command 26
D3-style JavaScript

about 15
function chaining 20
functions, are objects 17
static variable scoping 19
variable-parameter function 20
working 17

D3 subselection 34
d3.svg.diagonal generator 230
d3.svg.line function 155
D3 SVG shape generators 151
d3.time.format patterns 80
D3 transition 120
D3 tutorials page

about 21
URL 21

d3.v3.js file 9
d3.v3.min.js file 9
data

about 39
array, binding as 43-47

317

functions, binding as 51-53
loading, from server 64-67
object literals, binding as 47-51

Data-Driven Documents. See D3
data-driven filtering 58, 61
data-driven sorting 61-64
data() function 53
data visualization 8, 39, 235
dbclick event 239
delay 146
dependencies field 13
descendant combinator 33
devDependencies field 13
dimensional charting 311
divergingScale function 90
domain 72
Domain Specific Language (DSL) 34
drag 248
drag behavior

implementing 248-251
dragend event 251
drag event 251
drag event types

drag 251
dragend 251
dragstart 251

dragstart event 251
DRY principle 137
duration() function 122
dynamic modifier function 46

E
ease

using 128-132
eased tweening 136
ease() function 131
ease mode modifiers 131
easing 128
Elliptical curve 151
enclosure diagram

about 230
building 230-234

enter() function 44
enter-update-exit pattern 40-42
exit() function 47, 128
expanded area chart 216

F
falsy tests 61
Flare site

URL 219
force

about 253
manipulating 275- 278
used, for assisting visualization 271-275

force-directed graph
building 279, 281

force-directed graph 253
force layout 253
force simulation 253
friction 257
function chaining 20, 30, 34, 35, 36
functions

about 72
binding, as data 51-53

G
geographic visualization 283
GeoJSON 283, 284
Git 11
GitHub

about 10
URL 10

GitHub, for Mac
URL 11

GitHub, for Windows
URL 11

gravity
about 254, 256
setting up 260
using 254, 256
using, with replusion 261

grid lines
drawing 109-113

H
hierarchical data 217
HTML 147
http-server module

about 15
installing 15

human interaction 235

318

I
idempotent 54
identity function 75
images 119
imperative method 40
information 39
interpolate() function 85, 98, 169
Interpolation-based animation 120
interpolation modes

basis 159
basis-closed 159
basis-open 159
bundle 159
cardinal 159
cardinal-closed 159
cardinal-open 159
linear 159
linear-closed 159
monotone 159
step-after 159
step-before 159

interpolator 85

J
Jasmine

about 296
obtaining 296

Jasmine constructs
afterEach function 301
beforeEach function 301
describe function 301
expect function 301
it function 301

Jasmine Reference Document
URL 299

JavaScript 147
jQuery 13, 23
JS Bin

about 22
URL 22

JS Fiddle
about 22
URL 22

K
key frames 120

L
Layered Area Chart 188
linear easing 128
linear interpolation mode 156
linear scale 75, 76
line chart

about 181
creating 182-188

line generator
about 152
using 152-155

line interpolation
using 156-159

line tension
modifying 159-163

lineto command 151
link constraint

setting 265-271
linkDistance parameter 267
linkStength parameter 267
local HTTP server

setting up 14
log scale 77
low-level D3 timer function

working with 144-146

M
margins 181
mark 146
masking

URL, for info 186
mathematical functions 72
mental model alignment 235
metaphor 235
momentum

generating 262-264
mouse 236
mousedown event 239
mouseenter event 239

319

mouse events
click 239
dbclick 239
interacting with 236-238
mousedown 239
mouseenter 239
mouseleave 239
mousemove 239
mouseout 239
mouseover 239
mouseup 239

mouseleave event 239
mousemove event 236, 238, 239
mouseout event 239
mouseover event 239
mouseup event 239
moveto command 151
multiple elements

animating 123-128
selecting 28, 29

multi-touch device
interacting with 240-243

mutual attraction
setting up 259

mutual repulsion
setting up 258, 259

N
Node.js

about 10
URL, for downloading 12

Node.js HTTP Server 15
Node Packaged Modules (NPM) 11
NPM-based development environment

local HTTP server, setting up 14
Node.js HTTP Server 15
Python Simple HTTP Server 14
setting up 12-14

npm command 12
npm install command 13, 15
NPM package JSON file documentation

URL 13
NVD3

URL 203

O
object-identity function 126
object literals

binding, as data 47-51
one-to-one functions 73
onto functions 73
ordinal scale

using 81-84

P
package.json file 13
panning

about 244
implementing 245-248

physical simulation
URL 261

picture 119
pie chart

about 206
building 206-210

pie layout 206
pixelation 148
pixel-perfect bar rendering 303-306
poly-linear scale 90
power scale 76
Protovis 8
pseudo-classical pattern 19
push() function 47
Python Simple HTTP Server 14

Q
Quadratic Bézier curve 151
quadric easing 131
quantitative scales

linear scale 75, 76
log scale 77
power scale 76
using 73-77

R
range 72
rangeRound() function 76

320

raw selection
manipulating 36-38

Regex pattern 88
remove() function 47, 117, 128
render axes 186
renderAxis function 105
renderBars function 202
renderBody function 186, 228
renderBubbles function 198
renderCircle function 233
render data series 187
renderDots function 159, 194
render() function 18, 47
renderLabels function 229
renderLinks function 229
renderNodes function 227
replusion

gravity, using with 261
Rickshaw

URL 203

S
Scalable Vector Graphics. See SVG
scale() function 105
scales 72
scatter plot chart

about 192
creating 192, 194

selection
about 23
iterating through 29-31

selection.append(name) function 31
selection.attr function 26
selection.classed function 26
selection.data(data).enter() function 42
selection.data(data).exit function 42
selection.data(data) function 41
selection.each(function) function 30
selection.exit function 42
selection.filter function 61
selection.html function 27
selection.sort funciton 64
selection.style function 27
selection.text function 27
selector 23

server
data, loading from 64-67

simple shapes
creating 149, 150

single element
animating 121, 122
selecting, CSS selector used 25-27

Sizzle
URL 25

Sizzle selector engine
about 10
URL 10

software testing 296
sort() function 64, 209
stacked area chart

about 211
building 211-215

Stack Overflow 22
stateful visualization 210
static variable scoping 19
streamgraph 216
string

interpolating 84-88
subselection

performing 31-34
SVG

about 147
advantages 148, 149

SVG coordinate system 150
SVG rendering 301, 302
SVG structures 101

T
Test Driven Development (TDD) 296
test environment

setting up 297, 298
tickFormat function 108
tick function 275
tickPadding function 108
ticks

customizing 107, 108
ticks function 107, 108
ticksSubdivide function 108
time scale

using 78-80

321

TopoJSON 285
touchcancel event 244
touchend event 244
touch events 236
touch event types

about 244
touchcancel 244
touchend 244
touchmove 244
touchstart 244

touchmove event 244
touchstart event 244
transitional events

listening to 140, 141
transition chaining

about 136
using 136, 137

transition filter
using 138, 139

tree
about 224
building 224-229

treemap
about 217
building 218-223
URL 217

truthy tests 61
Tween 132
tweening

using 133-135

U
Underscore.js 13
unit testing 296
US map

projecting 283-288

V
variable-parameter function 20
vector 148
verlet integration 253
Verlet integration

URL 261
visualization

assisting, force used 271-275

W
W3C 23
W3C level-3 selector API

URL, for documentation 25
W3C selector API

limitations 23
world map

projecting 288-291
World Wide Web Consortium (W3C) 147

Z
Zepto.js 13, 23
zero force layout

setting up 257, 258
zooming

about 244
implementing 245-248

Thank you for buying

Data Visualization with D3.js Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Data Visualization: a
successful design process
ISBN: 978-1-84969-346-2 Paperback: 206
pages

A structured design approch to equip you with the
knowledge of how to successfully accomplish any data
visualization challenge efficienty and effectively

1. A portable, versatile, and flexible data
visualization design approach that will help you
navigate the complex path towards success

2. Explains the many different reasons for creating
visualizations and identifies the key parameters
which lead to very different design options

3. Thorough explanation of the many visual variables
and visualization taxonomy to provide you with a
menu of creative options

Tableau Data Visualization
Cookbook
ISBN: 978-1-84968-978-6 Paperback: 172 pages

Over 70 recipes for creating visual stories with your data
using Tableau

1. Quickly create impressive and effective graphics
which would usually take hours in other tools

2. Lots of illustrations to keep you on track

3. Includes examples that apply to a general
audience

Please check www.PacktPub.com for information on our titles

HTML5 Graphing and Data
Visualization Cookbook
ISBN: 978-1-84969-370-7 Paperback: 344 pages

Learn how to create interactve HTML5 charts and
graphs with canvas, JavaScript, and open source tools

1. Build interactive visualizations of data from
scratch with integrated animations and events

2. Draw with canvas and other html5 elements that
improve your ability to draw directly in the browser

3. Work and improve existing 3rd party charting
solutions such as Google Maps

Google Visualization API
Essentials
ISBN: 978-1-84969-436-0 Paperback: 252 pages

Make sense of your data: make it visual with the Google
Visualization API

1. Wrangle all sorts of data into a visual format,
without being an expert programmer

2. Visualize new or existing spreadsheet data
through charts, graphs, and maps

3. Full of diagrams, core concept explanations, best
practice tips, and links to working book examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with D3.js
	Introduction
	Setting up a simple D3 development environment
	Setting up an NPM-based development environment
	Understanding D3-style JavaScript

	Chapter 2: Be Selective
	Introduction
	Selecting a single element
	Selecting multiple elements
	Iterating through a selection
	Performing subselection
	Function chaining
	Manipulating the raw selection

	Chapter 3: Dealing with Data
	Introduction
	Binding an array as data
	Binding object literals as data
	Binding functions as data
	Working with arrays
	Filtering with data
	Sorting with data
	Loading data from a server

	Chapter 4: Tipping the Scales
	Introduction
	Using quantitative scales
	Using the time scale
	Using the ordinal scale
	Interpolating a string
	Interpolating colors
	Interpolating compound objects
	Implementing a custom interpolator

	Chapter 5: Playing with Axes
	Introduction
	Working with basic axes
	Customizing ticks
	Drawing grid lines
	Dynamic rescaling of axes

	Chapter 6: Transition with Style
	Introduction
	Animating a single element
	Animating multiple elements
	Using ease
	Using tweening
	Using transition chaining
	Using transition filter
	Listening to transitional events
	Implementing a custom interpolator
	Working with timer

	Chapter 7: Getting into Shape
	Introduction
	Creating simple shapes
	Using a line generator
	Using line interpolation
	Changing line tension
	Using an area generator
	Using area interpolation
	Using an arc generator
	Implementing arc transition

	Chapter 8: Chart Them Up
	Introduction
	Creating a line chart
	Creating an area chart
	Creating a scatter plot chart
	Creating a bubble chart
	Creating a bar chart

	Chapter 9: Lay Them Out
	Introduction
	Building a pie chart
	Building a stacked area chart
	Building a treemap
	Building a tree
	Building an enclosure diagram

	Chapter 10: Interacting with
your Visualization
	Introduction
	Interacting with mouse events
	Interacting with a multi-touch device
	Implementing zoom and pan behavior
	Implementing drag behavior

	Chapter 11: Using Force
	Introduction
	Using gravity and charge
	Generating momentum
	Setting the link constraint
	Using force to assist visualization
	Manipulating force
	Building a force-directed graph

	Chapter 12: Know your Map
	Introduction
	Projecting the US map
	Projecting the world map
	Building a choropleth map

	Chapter 13: Test Drive your Visualization
	Introduction
	Getting Jasmine and setting up the test environment
	Test driving your visualization – chart creation
	Test driving your visualization – SVG rendering
	Test driving your visualization – pixel-perfect bar rendering

	Appendix: Building Interactive Analytics in Minutes
	Introduction
	The crossfilter.js library
	Dimensional charting – dc.js

	Index

