
Developing
Applications with
Azure Active Directory

Principles of Authentication and
Authorization for Architects
and Developers
—
Manas Mayank
Mohit Garg

www.allitebooks.com

http://www.allitebooks.org

Developing
Applications with

Azure Active Directory
Principles of Authentication

and Authorization for
Architects and Developers

Manas Mayank
Mohit Garg

www.allitebooks.com

http://www.allitebooks.org

Developing Applications with Azure Active Directory: Principles of
Authentication and Authorization for Architects and Developers

ISBN-13 (pbk): 978-1-4842-5039-6		 ISBN-13 (electronic): 978-1-4842-5040-2
https://doi.org/10.1007/978-1-4842-5040-2

Copyright © 2019 by Manas Mayank and Mohit Garg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Siddhi Chavan
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5039-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Manas Mayank
Hyderabad, India

Mohit Garg
Hyderabad, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5040-2
http://www.allitebooks.org

To my parents, Mrs. Ranjana Poddar and
Mr. B.B. Poddar. No words could do justice

to all that you have done.

To my sisters, Santwana Poddar and
Anima Poddar, you both are the best

that happened to me.

—Manas Mayank

This book is dedicated to my parents,
Pawan Kumar Garg and Saroj Garg.

Without their sacrifices, I wouldn’t have
accomplished whatever I have in my life.

I would also like to dedicate this to my wife,
Samiksha Gupta, who is always standing by

my side and supporting me during tough times.

—Mohit Garg

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction to Azure Active Directory��������������������������������1

Authentication��2

Authorization��3

Azure Active Directory��4

Tokens��5

SPN���10

OAuth��11

OpenID Connect��11

Federated Identity��11

Single Sign-On��12

Pass-Through Authentication���12

Tenant���12

Multitenancy���13

Claims-Based Authentication���13

Azure AD B2B��14

Azure AD B2C��15

Summary���16

About the Authors���xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: OAuth Flows and OpenID Connect��������������������������������������17

OAuth 2.0���18

OAuth 2.0 Grant Types��21

Authorization Code Grant��22

Implicit Grant��30

Resource Owner Password Credentials Grant��35

Client Credentials���38

OpenID Connect���42

OpenID Connect Metadata Document���42

Authentication Flow Using OpenID Connect���43

Tokens��44

Validating Tokens��46

Summary���46

Chapter 3: User-Based Authentication for Web Apps��������������������������47

Single-Page Application���48

Running the Application���50

Creating a Single-Page Application��52

Running the Application���60

Web App/Web API Authentication���62

Running the Application���64

Creating a Web App��66

Creating a Web API���78

Web App: HTTP Triggered Azure Function Authentication������������������������������������84

Running the Application���86

Creating a Web App��88

Creating an HTTP Triggered Azure Function���88

Table of ContentsTable of Contents

vii

Web App/Web API/Web API 2 (On-Behalf-Of)���94

Running the Application���96

Creating a Web App and a Web API 2��99

Creating a Web API���99

Multi-Factor Authentication���104

The Need for Multi-Factor Authentication��104

Configuring Multi-Factor Authentication for Azure AD����������������������������������105

Summary���108

Chapter 4: User-Based Authentication for Native Applications���������109

Authentication Using Code Grant Flow���110

Windows Console Application��112

Running the Application���112

Web API��113

Console App��114

Creating a Console App��115

Creating a Web API���117

Windows Presentation Foundation (WPF)��123

Running the Application���124

Web API��124

WPF App���125

Creating a WPF App��126

Creating a Web API���128

Universal Windows Platform (UWP)��131

Running the Application���132

HTTP Triggered Azure Function Endpoint��133

UWP App���134

Creating a UWP App��135

Creating an HTTP Triggered Azure Function���137

Table of ContentsTable of Contents

viii

Android Application��143

Running the Application���144

HTTP Triggered Azure Function Endpoint��144

Android App��145

Creating an Android App���146

Creating an HTTP Triggered Azure Function���148

Summary���151

Chapter 5: Daemon Application Authentication���������������������������������153

Client Credential Authentication Flow��153

Running Your Application��155

Web API��155

Console App��156

Creating a Console App��157

Creating a Web API���159

Client Credential Authentication Flow Using a Certificate����������������������������������164

Running Your Application��166

Web API��167

Console App��168

Creating a Console App��169

Creating a Web API���172

Summary���173

Chapter 6: Active Directory Custom Data Extensions������������������������175

Custom Data Extensions��175

Microsoft Graph with Azure AD���176

Running Your Application���180

Registering Your Application���180

Creating a Console Application���181

Calling Microsoft Graph to the Extend Resource Instance���������������������������182

Table of ContentsTable of Contents

ix

Open Extensions��183

Create���183

Read���184

Update��185

Delete���186

Schema Extensions��187

Adding a Schema���188

Add-Update Schema Extension Value���190

Read Schema Extension Value���192

Remove Schema Extension Value���193

Summary���194

Chapter 7: Authenticating External Users���195

Azure Active Directory B2B��196

Configuring Azure AD for B2B Collaboration��197

Setting up Our Solution��198

Configuring to Support a Guest Inviter���201

Adding a Partner User as a Guest Inviter��204

Adding Google as an Identity Provider��209

Sending an Invitation to the End User��213

Configuring Code���215

Summary���218

Chapter 8: Multitenancy��219

Multitenancy Models��220

Setting up Our Solution��222

Configuring a User from Another AAD Tenant���223

Configuring an Application to Support Multitenancy������������������������������������224

Table of ContentsTable of Contents

x

Configuring the Applications��227

Restricting the Azure AD Tenants��235

Multitenancy in an Application���236

Summary���245

Chapter 9: Introduction to Authorization���247

Setting up a Solution��248

Policy-Based Authorization��249

Role-Based Authorization���252

Security Groups��255

Claims-Based Authorization���258

Customizing Azure AD Claims���261

Resource-based Authorization���266

Summary���275

Index��277

Table of ContentsTable of Contents

xi

About the Authors

Manas Mayank is currently working as a

senior consultant with Microsoft. He has

13 years of experience in designing and

developing software systems. An avid learner,

he loves knowing the hows and whys of a

software’s design. He also likes to explore

the latest technologies. Manas specializes

in end-to-end delivery of cloud-based

applications. More of a software purist, Manas

is a proponent of designing clean, simple, and efficient architecture.

Performance optimizations is one of his fortes. He holds a master’s

degree in information technology from IIIT-Bangalore. Outside of work,

he is a sports enthusiast. Find him at www.linkedin.com/in/manas-

mayank-b966505. 

Mohit Garg is currently working as a

software engineer at Microsoft. He has more

than eight years of experience in Azure

technologies, including .NET Core, Azure

AD, Azure Data Factory, WebJobs, Functions,

Azure Storage, Azure SQL, Azure Cosmos

DB, and Service Fabrice. He is a Microsoft

Certified Azure Developer, and he loves

exploring the latest technologies. You can

reach Mohit Garg at mohitgarg2@gmail.com or www.linkedin.com/in/

mohit-garg-36880022  

http://www.linkedin.com/in/manas-mayank-b966505
http://www.linkedin.com/in/manas-mayank-b966505
http://www.linkedin.com/in/mohit-garg-36880022
http://www.linkedin.com/in/mohit-garg-36880022

xiii

About the Technical Reviewer

Vidya Vrat Agarwal is a software architect,

author, blogger, Microsoft MVP, C# Corner

MVP, speaker, and mentor. He is a TOGAF

certified architect and a Certified Scrum

Master (CSM). He is currently working as a

principal architect at T-Mobile Inc. USA.

He started working on Microsoft .NET with its

first beta release. Vidya is passionate about

people, process, and technology and loves

to contribute to the .NET community.

He lives in Redmond, WA, with his wife,

Rupali, two daughters—Pearly and Arshika, and puppy Angel. He blogs

at www.MyPassionFor.Net and can be reached at vidya_mct@yahoo.com or

on Twitter @dotnetauthor.  

http://www.mypassionfor.net/

xv

Acknowledgments

I have to start by thanking my awesome wife, Samiksha Gupta. From the

first day of writing this book till last day, she has supported me very well.

She was as important in getting this book done as I was. Thank you so

much, dear.

I would like to thank Mr. Shrenik Jhaveri, Ranjiv Sharma, and Krishna

Chaitanya Telikicherla for guiding me to learn Azure technologies and

Azure AD. They believed in me and constantly guided me to learn. Without

their support, this book may have not been possible.

I would also like to thank my elder sister Priyanka Garg, my brother-

in-law Satya Kejriwal, my younger brother Sahil Garg, and my best friends,

Deep lal Sharma, Chandra Pratap Singh, Shanshu Garg, and Lucky Garg,

who trusted me and encouraged me to do hard work.

I would also like to thank all the managers at Microsoft—Ashwani

Sharma, Manish Sangha, Anil Emmadi, Naveen Konduri, and Pramod

Walvekar—for always encouraging me to learn new technologies and to

work hard. You all helped me to give a better shape to my career.

I would also like to thank my colleagues at Microsoft: Apoorv Gupta,

Jebarson Jebamony, Piyush Jain, Prasad Ganganagunta, Rishabh Verma,

Sachin Gupta, Kuldeep Singh, Kshitij, and Chaitanya Cheruvu. I have

learned a lot from each and every one of you. Special thanks to Manas

Mayank and Rahul Sawhney for motivating me to write this book.

I would also like to thank my teachers at Chitkara University for

helping me to explore my potential. Thank you very much.

xvi

Thanks to team at Apress Smriti Srivastava and Shrikant Vishwakarma

for giving opportunity to us to write this book. Thanks to Vidya Vrat and

Siddhi Chavan for doing the technical review.

—Mohit Garg

I would like to start by thanking members of my family: Bhagwan

Kumar and Sanjay Poddar. Special mention of the kids: Shambhavi Poddar,

Akshaj Poddar, Arush Poddar. Keep smiling.

Rahul Sawhney and Mohit Garg: if it were not for you, this book would

not have been possible.

Thanks to my besties for being there: Dineshwar Singh, Vineet

Anshuman, Amrita Dev, and Yogesh Sharma.

To the best people I had the opportunity to learn from: Sumeet

Deshpande, Gaurav Joshi, Subhavya Sharma, Apoorv Gupta, Manojkumar

Damodaran Nambisan, and Vagmi Mudumbai. Thank you.

I would like to extend my thanks to my managers and colleagues for

their support: Abhishek Ghosh, Akash Sarabhai, Jebarson Jebamony,

Rishabh Verma and Raviteja Jarugu.

Thanks to the faculty of my alma mater, IIIT – Bengaluru (Bangalore).

Thanks to the Apress team for helping shape this book: Smriti

Srivastava and Shrikant Vishwakarma. Thanks to Siddhi Chavan and Vidya

Vrat for your feedback.

— Manas Mayank

AcknowledgmentsAcknowledgments

xvii

Introduction

Any enterprise application worth its salt will have some kind of

authentication built into it. Azure Active Directory is one of the top

cloud-based identity providers on the market. It goes beyond being a

traditional identity provider. Developers and architects are traditionally

aware of basic authentication mechanisms, like username and password,

certificate-based authentication, and so forth. This tends to influence

decision-making when choosing the most appropriate authentication

mechanisms for their cloud-based applications. The Internet is full of

subject matter, further compounding the understanding needed for

designing authentication.

This book concentrates on concepts using simple examples in its quest

to bridge the distance between developers and IT infra, helping you to

make the right design decisions. It is a one-stop source for getting around

most relevant concepts pertaining to Azure Active Directory.

1© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_1

CHAPTER 1

Introduction to Azure
Active Directory
The need for centralized management of users and devices over networks

led to the advent of directory services. The users and devices that need

to be authenticated over a network are referred to as resources. Directory

services act as a single point that provides information about all the

resources on a network.

As most of you are aware, Microsoft’s implementation of on-premises

directory services is called Active Directory. In this book, we will use the

abbreviation AD to refer to Active Directory in general.

With the surge of solutions based on cloud-based services, there was a

need for directory services that are accessible over the cloud and that are

not limited to an organization’s network. Microsoft’s offering for identity

and access management over the cloud is called Azure Active Directory

(AAD). The terms Azure AD and AAD are used interchangeably for Azure

Active Directory. Azure AD provides a ready-made solution to handle

authentication for your cloud-based applications or mobile apps.

This book talks about how to develop applications using Azure Active

Directory. In this chapter, we introduce Azure Active Directory and

some key terms related to it. This will help you understand the concepts

necessary for developing an application.

2

To summarize, we will define the following concepts:

•	 Authentication

•	 Authorization

•	 Azure Active Directory

•	 Tokens

•	 SPN

•	 OAuth

•	 OpenID Connect

•	 Federated identity

•	 Single sign-on

•	 Pass-through authentication

•	 Tenants

•	 Multitenancy

•	 Claims-based authentication

•	 Azure AD B2B

•	 Azure AD B2C

�Authentication
Authentication is a process for identifying a user’s identity. Authentication

can be divided into two phases.

•	 Identification. During identification, the identity of the

user is established using a username, email ID, mobile

number, and so forth. This information is then checked

to make sure that the user is valid.

Chapter 1 Introduction to Azure Active Directory

3

•	 Validation. As part of the authentication process,

the user provides credentials to identify themselves.

These credentials could be in the form of a username/

password, certificate, biometric information, a one-

time password, and so forth.

Authentication can be divided into three categories based on the

security level.

•	 Single-factor authentication. This is the traditional or

simplest form of authentication, in which users enter

their credentials. If the credentials are correct, then the

user is authenticated to use the application.

•	 Two-factor authentication. This is a more secure way

of authentication in which user credentials and another

factor are needed for authentication. This could be a

mobile one-time password (OTP), a security question, and

so forth. User credentials with an additional factor make it

nearly impossible for hackers to hack your credentials.

•	 Multi-factor authentication. This is the most secure

and advanced way of authentication. In addition to your

credentials, two or more additional factors are involved.

None of the factors should have any relationship

between them; they should be independent.

�Authorization
Authorization is a process for verifying access permissions or privileges,

and determining the access level that the logged-in identity has access to.

Generally, authorization is the second step after authentication.

After the identity is established, a process fetches the roles/permissions/

privileges related to the established identity and the required content is

Chapter 1 Introduction to Azure Active Directory

4

shown based on the user permissions. In short, authentication is the

process of identifying who you are, whereas authorization is the process of

determining what actions you can perform.

Authorization can be divided into two categories based on the way that

permissions are given to the identity.

•	 Allow authorization. The identity has access to only

those permissions that are listed; it does not have

access if permission is not provided. This means that

the permissions that the identity has access to are white

listed, and the remaining permissions are automatically

denied.

•	 Deny authorization. The identity has access to

all permissions except the ones that are not given.

This means that the permissions the user doesn’t

have access to are black listed, and the rest of the

permissions are automatically allowed.

�Azure Active Directory
Authentication is one of the important components in developing any

enterprise application. Simple authentication for an application is

rudimentary to implement. We can use a simple username and password

combination stored in a database. But implementing enterprise-level

authentication without using any identity provider can be very complex.

You need to manage users, passwords, expiration policies, password policy

management, and access management at the very least.

Things become more complicated if you use advanced concepts

required for authentication, such as multi-factor authentication,

one-time passwords, biometrics, and so forth. Developing these involves

huge development and infrastructure costs. Moreover, maintenance and

support costs are also very high. This is where established solutions like

Chapter 1 Introduction to Azure Active Directory

5

Azure AD are most effective. Before delving deeper into Azure AD, let’s

discuss some key terms related to Azure Active Directory.

�Tokens
An online dictionary meaning of a token is “a tangible representation of a

fact.” In the context of authentication, a token represents facts about the

identity of a user or a resource. The set of facts is provided by directory

services, which for us is Azure AD.

Tokens are used for exchanging identity information; they are signed to

make them secure. They are signed using private keys and can be validated by

using public keys. Tokens are valid for only a specific period to avoid misuse.

Tokens can be represented in various industry-wide formats. JSON

Web Token (JWT) and Security Assertion Markup Language (SAML) are the

most commonly used formats for tokens. As soon as user authentication is

successful, the identity provider gives a token in response, which is valid for

a specific time and signed using private keys. That token can be exchanged

with other trusted systems to get access for a specific time.

A JWT token is most commonly used for integration with Azure Active

Directory. As obvious by its name, a JWT token represents the user in JSON

(JavaScript Object Notation) format. Here is a sample JWT token:

"eyJ0eXAiOiJKV1QiLCJhbGciOiJ………………………..71846CA77+9G++/

vUjvv71q77+977+9xrMoDQo="

You must be wondering why this token is in plain string format and

not in a JSON format. It is because the token is transformed using Base64

encoding. You need to do transformation using Base64 to see the actual

JSON format.

After transformation of this token, the retrieved string is divided into

three parts separated by ".". The following is a brief overview of the

various fields within a token. We touch on these fields over the course of

the book.

Chapter 1 Introduction to Azure Active Directory

6

•	 Headers. Information about the type of token and the

algorithm used to sign the token.

{

 "typ": "JWT",

 "alg": "RS256",

 "x5t": "-sxMJMLCIDWMTPvZyJ6tx-CDxw0",

 "kid": "-sxMJMLCIDWMTPvZyJ6tx-CDxw0"

}

•	 typ: Type of token.

•	 alg: Encryption Algorithm is RS256.

•	 x5t: Thumbprint of public key used to sign the

token.

•	 kid: Like x5t. No longer part of Azure AD 2.0.

•	 Payload. Actual JWT token body.

{

 "aud": "https://your-resource",

 "iss": �"https://sts.windows.net/72f988bf-86f1-41af-

91ab-2d7cd011db47/",

 "iat": 1548737381,

 "nbf": 1548737381,

 "exp": 1548741279,

 "acr": "1",

 �"aio":"AVQAq/8KAAAA+sqxpQ0JBRhDY9/

dmeELZJlGFvbDbfdGFB7DnFbhx5tgXdEAOxCtjF8k

bYceM1COSkKIfBSNozYM7avIzYz0VaN/OFG22kCroWvC/

il4QcU=",

 "amr": [

 "wia",

 "mfa"

Chapter 1 Introduction to Azure Active Directory

7

],

 "appid": "5c6035f3-e94f-4ed3-821c-40870f6cf1f3",

 "appidacr": "2",

 "family_name": "Scott",

 "given_name": "James",

 "in_corp": "true",

 "ipaddr": "167.220.238.5",

 "name": "Mohit Garg",

 "oid": "dc5e633a-7058-474c-8f1c-435538e7d290",

 "onprem_sid": �"S-1-5-21-2146773085-903363285-

719344707-2044714",

 "scp": "Employees.Read.All user_impersonation",

 "sub": "caF45MyAn57WqX5Omoeh9epNQ6lFKp5_xdVkj0ReGIs",

 "tid": "72f988bf-86f1-41af-91ab-2d7cd011db47",

 "unique_name": "*****@microsoft.com",

 "upn": "*****@microsoft.com",

 "uti": "ktKZuwI7pkSYiAtHyiIHAA",

 "ver": "1.0"

}

•	 aud. Contains the audience for which the token has

been generated. It is a unique ID assigned to your

application in Azure Active Directory, a.k.a. the

application ID.

•	 iss. Identifies the issuer of the token. It’s a security

token service URL appended by the tenant ID. The

tenant ID is a unique identifier to identify an

instance of AAD.

•	 iat. Stands for issued at and means the time at

which the token is issued. It’s a UNIX timestamp.

Chapter 1 Introduction to Azure Active Directory

8

•	 nbf. Stands for not before and means the token

should not be accepted before this time. It is a

UNIX timestamp.

•	 exp. Stands for expiration time and means the UNIX

timestamp after which the token is not valid.

•	 acr. Stands for authentication context class to

validate if the end user authentication meets the

requirement of ISO/IES 29115 standards. A 1 means

it meets and 0 means it doesn’t.

•	 aio. Internal to Azure AD to verify if the token can

be reused or not. An end user should not use this

token.

•	 amr. A JSON array of claims contains the

information about how the subject of the token will

be authenticated.

•	 appid. Stands for application ID. It contains the

ID of the application that has sent the request for

generation of the token.

•	 appidacr. Indicates the mechanism used for

authentication. We will discuss this in later

chapters.

•	 family_name. Provides the last name of the user

identity.

•	 given_name. Provides first name of the user

identity.

•	 in_corp. A boolean claim that specifies if the

request is from a corporate network or not.

Chapter 1 Introduction to Azure Active Directory

9

•	 ipaddr. Stands for IP address. It provides the

Internet Protocol address of the user.

•	 name. Provides the name of the user, which is used

for display purposes, and it is mutable.

•	 oid. Stands for object identifier. It is a unique

identifier for an object in Azure Active Directory. It

is in the form of GUID. It can be used as a unique

key in a database to identify the user.

onprem_sid. If on-premise authentication is

used, then the claim has this identifier. It is

used for legacy applications. SID is outside the

scope of this book. For more information, please

refer to https://docs.microsoft.com/en-us/

windows/desktop/SecAuthZ/sid-components.

•	 scp. Stands for scopes and means a set of scopes

exposed by the application for which the request

user or client has access to. Scopes are returned in a

space separated string.

•	 sub. Stands for subject. It’s a unique string for the

combination of a user and an application. It is

immutable and can be used as a unique key in a

database for authorization purposes. It is different

from an object identifier, which is unique for each user.

•	 tid. Stands for tenant ID. This is discussed later in

this chapter.

•	 unique_name. Present only in Azure AD v1. A claim

name is both unique and not unique. It is a human-

readable value that identifies the subject; it should

be used only for display purposes.

Chapter 1 Introduction to Azure Active Directory

https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/sid-components
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/sid-components

10

•	 upn. Stands for user principal name. This is

discussed later in this chapter.

•	 uti. An internal claim used by Azure AD to

revalidate a token. An end user should not use this

token.

•	 ver. Stands for version. Indicates the version of the

access token. It can be either 1.0 or 2.0.

•	 Signature. Signed token content for validating the

authenticity using a public key. A token issued by Azure

AD is signed with an asymmetric encryption algorithm,

as shown in Figure 1-1.

Note A token is not in human-readable format, because it is a raw
material required for validation of the token.

�SPN
SPN stands for service principal name. To access any resource that is

secured by Azure Active Directory, you need a security principal. A

security principal defines the permissions and access policies, which

in turn help to enable Azure AD core features like authentication and

authorization. The security principal defined for an application is known

as a service principal. The SPN is required to access resources secured by

Azure AD. Access resources secured by Azure AD using an application

service principal are explained later in this book.

Figure 1-1.  Encrypted token

Chapter 1 Introduction to Azure Active Directory

11

�OAuth
OAuth stands for open authorization. It’s an open standard for token-

based authentication and authorization. It allows you to authorize

third-party applications by sharing a token containing logged-in user

information instead of the actual username and password. It was first

released in December 2007 as OAuth Core 1.0.

The second version of the OAuth standard (OAuth 2.0) was released

five years later. It is not backward compatible with OAuth 1.0. OAuth 2.0

has new authorization flows for web applications, mobile applications,

desktop applications, and smart devices.

Please refer to https://oauth.net/2/ to read more about OAuth and

OAuth 2.0.

�OpenID Connect
OpenID Connect, also known as OIDC, is built on top of the OAuth 2.0

protocol. It defines standards for authentication based on JSON and HTTP

protocols. It helps verify the identity of the logged-in user compared to the

authorization it has over resources. It can provide basic information about

the logged-in user using the REST API.

OIDC allows different types of clients, including web clients, mobile

clients, and JavaScript clients to perform authentication and to request and

receive information about logged-in users and authenticated sessions.

Please refer to https://openid.net/connect/ to learn more about

OpenID Connect.

�Federated Identity
Consider a scenario where a single user might need to authenticate in

multiple organizations. Each of these organizations has different identity

providers. A user’s credentials are stored in its parent identity management

Chapter 1 Introduction to Azure Active Directory

https://oauth.net/2/
https://openid.net/connect/

12

system. Other identity providers can trust the parent identity management

system and allow the user to be validated in multiple organizations. A

federation refers to the protocols used to achieve this scenario. The user

identity provided by such a system is called a federated identity.

�Single Sign-On
Single sign-on, or SSO, allows users to use one set of credentials to log

in to multiple applications. After authenticating, users do not need to

reauthenticate for other applications. This streamlines user experiences

and gives administrators better control over user identities. Protocols like

OAuth and OpenID Connect can work on applications in various platforms

to provide a seamless single sign-on experience.

�Pass-Through Authentication
Pass-through authentication allows users to authenticate against an on-

prem Active Directory using AAD. Azure AD doesn’t save the username

and password. Whenever a user tries to sign in, Azure AD forwards

the request to an on-prem Active Directory so that the user can be

authenticated.

�Tenant
In layman’s terms, tenant means a person who possesses a property or

land from a landlord. Similarly, in the world of identity management, a

tenant is a representation of an organization in the identity management

system. Multiple organizations can register and create their own tenant in

Azure Active Directory. A tenant can have multiple users from the same

organization.

Chapter 1 Introduction to Azure Active Directory

13

�Multitenancy
Multitenancy refers to a single application consumed by users from

different organizations. One tenant develops the application and can invite

other tenants to use the same application. Multitenancy is a huge topic

that is discussed in a chapter later in this book.

�Claims-Based Authentication
Claims are a set of information that describes a given resource’s identity.

It’s a set of key/value pairs related to the logged-in identity (user or app),

for example, the user’s principal name, email address, groups, first name,

last name, and so forth.

In the context of Azure Active Directory, applications get claims after

successful authentication using OAuth 2.0 and OpenID Connect. In web

applications, claims are stored in a cookie in a secured manner to perform

claims-based authentication for further requests.

Microsoft released claims-based authentication with .NET Framework

3.0. The basic authentication flow shown in Figure 1-2 is for claims-based

authentication using Azure Active Directory.

	 1.	 The user makes a request to the web application.

	 2.	 The user is redirected to the Azure AD login page.

	 3.	 After successful authentication, Azure AD redirects

the user with a token that has user-related claims.

	 4.	 The claims are stored in cookie in a secure fashion.

	 5.	 The web application does the authentication using

claims and returns the response if the claims are

valid.

Chapter 1 Introduction to Azure Active Directory

14

�Azure AD B2B
B2B refers to business to business. If you need to securely share your

company’s applications and services with other companies or guest users,

you can use Azure AD B2B. You have full control over your organization’s

data. You can invite users from another organization, also using Azure

AD. Organizations not using Azure Active Directory can be added as a

guest user in the tenant. Partner users use their own identity management

solution. There is no need for any additional overhead from your

organization to maintain partner users.

Azure
Active Directory

Web App

Request

Redirection to login

Response with token containing claims

Request

Response

Authentication using claims

Figure 1-2.  Basic authentication flow

Chapter 1 Introduction to Azure Active Directory

15

Invited users are able to use their own credentials to log in to your

application and services. You can customize your solution for inviting

users by using Azure AD B2B invite APIs.

The following are the advantages of using Azure AD B2B collaboration.

•	 You can invite any user with a valid email address. It is

not mandatory to be an Azure AD user.

•	 There is no need to manage external user accounts or

their identity providers.

•	 After the invitation, there is no need to sync accounts or

manage policies.

•	 External AD users are able to use the same credentials.

There is no need to manage different credentials for

different applications.

•	 If an invited user doesn’t have any associated AD or

live account, an account will be created for them after

accepting the invitation.

Developing applications using the Azure Active Directory business-to-

business collaboration is explained later.

�Azure AD B2C
B2C stands for business-to-customer collaboration. If you need to create

a customer-facing application, you should use Azure AD B2C. Azure B2C

is based on similar components as AAD, but its core purpose is to provide

identity management for an organization’s customers. Users of Azure AD

B2C are able to log in with an existing identity (from external providers

like Facebook, Twitter, Google, Outlook, LinkedIn, etc.). There is no need

for a separate Azure AD user account; the same identity (username and

password) can be used to log in.

Chapter 1 Introduction to Azure Active Directory

16

�Summary
Various Azure services can integrate with Azure AD and use it as an

identity provider. Azure AD is used as an identity provider by Microsoft

SaaS services like Office 365. It can also be integrated with third-party SaaS

solutions like Salesforce. In addition to SaaS solutions, Azure AD can be

used with Azure VMs and various Azure PaaS services. Furthermore, Azure

AD can be synchronized with on-premises Active Directory.

This chapter focused on introducing readers to the fundamentals

of authentication and Azure AD in a simple language. We started

by introducing the meaning of authentication and authorization

to understand the purpose of Azure Active Directory and related

technologies, such as Azure AD B2B and Azure AD B2C. We also touched

on various standards, such OAuth, OpenID, and OpenID Connect. Before

getting deeper into any technology, you should understand its various

standards and protocols.

We shall continue our journey by learning more about OAuth

standards in the next chapter.

Chapter 1 Introduction to Azure Active Directory

17© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_2

CHAPTER 2

OAuth Flows and
OpenID Connect
In Chapter 1, we defined key terms related to Azure Active Directory.

Before getting into the practical details of any technology, you must

understand the standards that the technology is based upon. In this

chapter, we will cover the following topics.

•	 OAuth 2.0

•	 OAuth 2.0 Grant Types

•	 Authorization code

•	 Implicit

•	 Resource owner password credentials

•	 Client credentials

•	 OpenID Connect

•	 OpenID Connect metadata documents

•	 Authentication flows using OpenID Connect

•	 Tokens

•	 Validating tokens

To integrate applications with Azure AD, you must first understand the

OAuth and OpenID Connect standards.

18

�OAuth 2.0
OAuth 2.0 standards are not backward compatible with OAuth 1.0. The

differences between the two are beyond the scope of this book. We will

concentrate on the latest OAuth 2.0 standards.

To understand the need for OAuth, let’s consider a real-world scenario.

Assume that you work for an organization that provides authorized access

to employees over secured areas. Employees swipe smart cards provided

by the organization’s security team to gain access to secured physical

spaces. When a visitor comes to see an employee, the visitor provides her

information, and the employee provides her credentials (along with the

employee’s smart card) to the representative of the security team. Security

personnel then issue a temporary visiting identity card to the visitor,

allowing her to enter the physical premises for a limited period. This real-

world scenario is roughly represented by the sequence diagram shown in

Figure 2-1.

Visitor Employee Security
Department

Organization
Premises

Request to Visit

Employee's Credentials

Employee's Credentials and Visitor's Details

Temporary Identity Card

Temporary Identity Card

Employee's Workspace Access

Figure 2-1.  Visitor access scenario

Chapter 2 OAuth Flows and OpenID Connect

19

If a third party (the client) needs to access a user’s (the resource

owner) resources from the server hosting the user’s resources (a resource

server), they will get a separate set of credentials (a token) from another

server (an authorization server) that is trusted by the resource server.

OAuth was designed to allow access to user resources by using another

set of credentials of the user’s credentials. Older systems needed users to

provide their credentials (for example, username and password), explicitly

to the third party trying to access the user’s resources. The OAuth protocol

evolved to address these concerns and has the following advantages over

earlier standards.

•	 Earlier standards of storing username/password with a

third party gave the third party unlimited access to the

user’s resources.

•	 Revoking access equated to changing the password.

•	 Risk from security perspective as password would be

stored at multiple places

The sequence diagram shown in Figure 2-2 depicts the OAuth flow.

Client Resource
Owner

Authorization
Server

Resource
Server

(Step 1) Authorization Request

(Step 2) Authorization Grant

(Step 3) Authorization Grant

(Step 4) Access Token

(Step 5) Access Token

(Step 6) Protected Resource

Figure 2-2.  OAuth flow

Chapter 2 OAuth Flows and OpenID Connect

20

As depicted in Figure 2-2, the following are the actors or roles in

OAuth flow.

•	 Client. An application trying to access a user’s

resources on behalf of the user. It does so by using

tokens. We discuss tokens in a subsequent section.

•	 Resource owner. The user or application that is the

owner of a resource. The resource is stored on the

resource server.

•	 Authorization server. After authenticating the

resource owner, provides the token to the client for

accessing the resource.

•	 Resource server. The server that hosts a resource

owned by the resource owner.

If we map our real-world visitor scenario, the sequence diagram could

be merged, as shown in Figure 2-3.

Client
(Visitor)

Resource
Owner

(Employee)

Authorization
Server (Security

Department)

Resource Server
(Organization

Premises)

Authorization Request (Request to Visit)

Authorization Grant (Employee's Credentials)

Authorization Grant (Employee's Credentials and visitor's details)

Access Token (Temporary Identity Card)

Access Token (Temporary Identity Card)

Protected Resource (Employee's workspace)

Figure 2-3.  Merged sequence diagram

Chapter 2 OAuth Flows and OpenID Connect

21

We will use the basic OAuth flow sequence diagram (see Figure 2-2) as

a reference for explaining each of the steps.

OAuth 2.0 Grant Types
The client accesses the resource owner’s resources by using an access

token. For the client to get this access token, it must receive authorization

from the resource owner. These credentials, which represent the resource

owner’s authorization, are called an authorization grant. An authorization

grant defines how an application gets an access token. It is used in steps 2

and 3 of the basic OAuth flow, as highlighted in Figure 2-4.

OAuth specification defines four different authorization grant types or

four different ways of getting access tokens. These types define the process

used to get an access token.

•	 Authorization code

•	 Implicit

Client Resource
Owner

Authorization
Server

Resource
Server

(Step 1) Authorization Request

(Step 4) Access Token

(Step 5) Access Token

(Step 6) Protected Resource

(Step 2) Authorization Grant

(Step 3) Authorization Grant

Figure 2-4.  Basic OAuth flow

Chapter 2 OAuth Flows and OpenID Connect

22

•	 Resource owner password credentials

•	 Client credentials

We discuss each of these grant types in this chapter. This chapter also

introduces OAuth 2.0 standards. Azure AD–specific details are covered in

subsequent chapters.

�Authorization Code Grant
An authorization code grant is one of the most common grant flows used.

It deals with scenarios where the client application is deployed on a web

server and the actual code is not exposed publicly.

The following criteria can be used as general preconditions for

choosing an authorization code grant.

•	 The client application is a web app served from a web

server.

•	 The client application can interact with the resource

owner agent, generally a web browser.

•	 The client application can securely save the client ID

and client secret, without publicly exposing them. We

talk about client IDs and client secrets in later sections.

•	 The client application can react to the resource owner’s

actions.

•	 The client application is capable of receiving requests

from the authorization server, generally via redirection.

The diagram shown in Figure 2-5 details the process of an

authorization code flow. The following are the actors in the authorization

code flow (the corresponding actors from the previous section are in

parentheses).

Chapter 2 OAuth Flows and OpenID Connect

23

•	 User (resource owner). The owner of the resource.

The user interacts with the client application via a user

agent (browser).

•	 Client application (client). This is a web application

trying to access a secured resource. The client

application can also be a native app.

•	 OAuth 2 Authorization endpoint/Token endpoint
(authorization server). Different authorization server

endpoints used to get different kinds of tokens.

•	 Web API (resource server). API providing the resource

owned by the resource owner.

Native App
OAuth 2

Authorization
Endpoint

OAuth 2 Token
Endpoint Web APIUser

Start the application

Request for login

Login Pop Up

Enter Credentials in login pop-up

Returns the authorization code

Request bearer access token
by providing authorization

code for Web API

Call Web API by adding access
token in authorization header

Return access token
and refresh token

Validate
access token

Return the data
to the native app

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Web API by adding new access
token in authorization header

Figure 2-5.  Process for authorization code flow

Chapter 2 OAuth Flows and OpenID Connect

24

The following are the steps for an authorization code grant.

	 1.	 The user tries to access and log in through the client

application URL.

	 2.	 The client application redirects the unauthenticated

user to the authorization endpoint of the

authorization server. The client constructs a request

URI in the following format.

https://aad-tenant/authorize?

response_type=code

 &client_id=client123

 �&redirect_uri=https%3A%2F%2Fclient-application%2Fcallback

 &scope=read+write

 &state=abc

Table 2-1 describes the significance of each of the

parameters.

Table 2-1.  Parameter Descriptions

Sr. No. Parameter Required/
Optional

Description

1. response_type Required Should be set to “code” for code grant flow.

2. client_id Required The client application must be registered

with the authorization server to access

secured resources. The client_id is a

unique ID, by which the authorization server

uniquely identifies the client application,

which is provided by the authorization

server. We discuss the process of

registration on Azure AD in Chapter 3.

(continued)

Chapter 2 OAuth Flows and OpenID Connect

25

Sr. No. Parameter Required/
Optional

Description

3. redirect_uri Optional After authenticating the resource owner,

the authorization server redirects the

browser to this URI.

4. Scope Optional Scope is a list of case-sensitive strings

delimited by space. It defines the

permissions requested by the client.

Possible values for the scope are

predefined on the authorization server.

5. State Recommended A random string included by the client

in the request. The authorization server

includes this string when redirecting a

user agent to the client application. The

client validates if the string is the same as

the request. It is used to avoid cross-site

request forgery (CSRF).

Table 2-1.  (continued)

	 3.	 The authorization server redirects the user to log in

and prompts the user to authenticate.

	 4.	 The user enters his credentials for authentication.

	 5.	 Assuming that user authentication is successful,

the authorization server redirects the user agent

to the URI, which is specified in the redirect_uri

parameter in step 3. The response format is as follows.

https:// client-application/callback?

code=xyz123

&state=abc

Chapter 2 OAuth Flows and OpenID Connect

26

Table 2-2 describes the significance of each of the

parameters.

Table 2-2.  Parameter Descriptions

S.No. Parameter Required/ Optional Description

1. code Required This is the authorization code generated

by the authorization server; it can be used

only once. The code should have a limited

lifetime; the maximum recommended

lifetime is 10 minutes. It is generated

for the combination of the client_id and

redirect_uri parameters of the request

(see step 2).

2. state Required The same value that was sent in the

request parameter (see step 2).

	 6.	 After receiving the authorization code in the

previous step, the client application requests

an access token from the token endpoint of the

authorization server by using a post request and

exchanging the authorization code. The format of

the request is as follows.

https://aad-tenant/token

The parameters of the post request are shown in

Table 2-3.

Chapter 2 OAuth Flows and OpenID Connect

27

	 7.	 If the authorization token request is successful, the

authorization server sends the response back to the

client application. The response is in the following

format.

Table 2-3.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. grant_type Required Should be set to authorization_code.

2. code Required The authorization code, as received in the

authorization response in step 5.

3. redirect_uri Required Same as the authorization code request in

step 2. Should be included if it was present

in the original authorization code request.

4. client_id Required Unique ID, by which the authorization server

uniquely identifies the client application. The

same as the authorization request in step 2.

5. client_secret Required The client application is registered with

the authorization server. As part of the

completion of the registration process, the

authorization server generates client_id and

client_secret for the client application. While

client_id uniquely identifies the application

and can be publicly visible, client_secret

is confidential. Consider client_id and

client_secret equivalent to a username and

password, respectively.

Chapter 2 OAuth Flows and OpenID Connect

28

 {

 "access_token": "abc123",

 "token_type": "bearer",

 "expires_in": 3600,

 "refresh_token": "xyz890",

 "scope": "read write"

 }

Table 2-4 shows the significance of each of the

parameters.

Table 2-4.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. access_token Required The access token returned by the

authorization server. We discuss token IDs in

later sections.

2. token_type Required The only value supported by Azure AD is

“bearer”. It signifies the type of token

understood by the client. Further information

is beyond the scope of this book.

3. expires_in Recommended The lifetime (in seconds) that a token is

valid. The token expires after this period.

4. refresh_token Optional After the token expires, a refresh token

could be utilized to get a new access token.

They are long-lasting and bound to the client

application to which they were issued.

5. scope Optional The same as the scope specified by the

client in the authorization code request in

step 2.

Chapter 2 OAuth Flows and OpenID Connect

29

	 8.	 After getting the access code, the client uses the

access token to access the Web API. We briefly

touched on tokens in Chapter 1. Headers of all

requests to the API should include the Authorization

header.

"Authorization: Bearer eyJ0..."

Depending on the validating token, the API could

either allow access to the resource or throw an error.

	 9.	 If the access token has expired or is invalid, the

client application can request another access token

by sending a refresh token. The client does so by

sending a post request to the token endpoint of the

authorization server. The request’s parameters are

described in Table 2-5.

Table 2-5.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. grant_type Required Should be set to refresh_token.

2. refresh_

token

Required The refresh token sent by the authorization

server to the client application. This is the

same as refresh_token, which is received

while requesting the access token in step 7.

3. scope Optional Considered the same as the original request,

if not included. You can’t add a value that

was not in the original request for the

access token.

Chapter 2 OAuth Flows and OpenID Connect

30

	 10.	 In the event of a successful request, the

authorization server returns the response in the

same format as when the request for the access

token was made (the same as step 7.)

�Implicit Grant
This flow is typically used by applications implemented using scripting

languages like JavaScript. The secured resource is directly accessed using

the scripting language. An implicit grant is a variant of an authorization

code grant flow. But instead of having separate requests for getting the

authorization code and the access token, the access token is received after

authorizing with the “authorize” endpoint. There is no separate client_id

and client_secret authentication. Since the access token is exposed to the

resource owner and the other application on the client device, an implicit

grant is considered less secure. Since it is less secure, an implicit grant flow

does not use a refresh token.

The following criteria are the general rules for choosing an implicit

grant.

•	 The client application accesses resources by using

scripting languages like JavaScript. Single-page

applications are recommended to use this flow.

•	 Client applications are a hybrid of post-back-based web

applications. They also use AJAX calls to refresh pages

from different resource APIs.

•	 The client application can react to the resource owner’s

actions.

•	 The client application is capable of receiving requests

from the authorization server, generally via redirection.

Chapter 2 OAuth Flows and OpenID Connect

31

The diagram shown in Figure 2-6 details the process flow for an

implicit grant. The following are the actors for the implicit grant flow (the

mapping of the actors defined in Figure 2-3 are in parentheses).

•	 User (resource owner). The owner of the resource.

The user interacts with the client application via a user

agent (browser).

•	 Client application (client). A web application trying

to access a secured resource. The client application is

JavaScript-based (or SPA).

•	 OAuth 2 Authorization endpoint (authorization
server). The endpoint of the authorization server used

to get access tokens.

•	 Web API (resource server). API providing the resource

owned by the resource owner.

Figure 2-6.  Process flow for implicit grant

Chapter 2 OAuth Flows and OpenID Connect

32

The following are the steps for an implicit grant.

	 1.	 The user tries to access and log in through the client

application URL.

	 2.	 The client application redirects the unauthenticated

user to the authorization endpoint of the

authorization server. The client constructs a request

URI in the following format.

https://aad-tenant/authorize?

response_type=token

 &client_id=client123

 �&redirect_uri=https%3A%2F%2Fclient-application%2Fcallback

 &scope=read+write

 &state=abc

Table 2-6 describes the significance of each of the

parameters.

Table 2-6.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. response_type Required Should be set to “token” for an implicit grant

flow vs. “code” for a code grant flow.

2. client_id Required The client application must be registered with

the authorization server to access secured

resources. The client_id is a unique ID by which

the authorization server uniquely identifies

the client application. It is provided by the

authorization server. We discuss the process of

registration on Azure AD in Chapter 3.

(continued)

Chapter 2 OAuth Flows and OpenID Connect

33

S.No. Parameter Required/
Optional

Description

3. redirect_uri Optional After authenticating the resource owner, the

authorization server redirects the browser to

this URI.

4. scope Optional Scope is a list of case-sensitive strings

delimited by space. It defines the

permissions being requested by the client.

Possible values for the scope are predefined

on the authorization server.

5. state Recommended This is a random string included by the client in

the request. The authorization server includes

this string when redirecting a user agent to the

client application. The client validates the string

the same as the request. This is used to avoid

cross-site request forgery.

	 3.	 The authorization server redirects the user to log in

and prompts the user to authenticate.

	 4.	 The user enters his credentials for authentication.

	 5.	 Assuming that user authentication is successful, the

authorization server redirects the user agent to the

URI specified in the redirect_uri, as follows.

https:// client-application/callback#

access_token =xyz123

& token_type =bearer

Table 2-6.  (continued)

Chapter 2 OAuth Flows and OpenID Connect

34

&expires_in=3600

&scope= read+write

&state=abc

Note that there is no refresh token returned.

Table 2-7 describes the significance of each of the

parameters.

Table 2-7.  Parameter Description

S.No. Parameter Required/
Optional

Description

1. access_token Required The implicit grant flow returns the access

token instead of the authorization code. Also,

note that the token is returned as a query

fragment (vs. a query parameter).

2. token_type Required The only value supported by Azure AD is

“bearer”. It signifies the type of token

understood by the client. Further information

is beyond the scope of this book.

3. expires_in Recommended The lifetime (in seconds) that a token is

valid. The token expires after this period.

4. scope Optional Considered the same as the original request,

if not included. We can’t add a value that

was not in the original request for the

access token.

5. state Required The same value that was sent in the request

parameter (see step 2).

	 6.	 After getting the access token, the client uses the

access token to access the Web API.

Chapter 2 OAuth Flows and OpenID Connect

35

�Resource Owner Password Credentials Grant
The resource owner password credentials grant, or simply password grant,

is one of the simplest grant flows. This grant requires the resource owner

to provide a username and password to the client application. Since the

resource owner’s credentials are exposed to the client application, the

resource owner should trust the client application. A password grant is

generally used for internal client applications; it should not be used with

third-party applications. The following are use cases for which a password

grant is applicable.

•	 The resource owner has a trust relationship with the

client application.

•	 The services and applications trying to access a

resource API belong to the same resource API provider.

•	 Migrate older username and password–based

applications to use OAuth.

•	 Secure client application devices using a username and

password by storing the access token (with a specific

expiration time) and using an access token to access

the resource API, instead of prompting for a username

and password on each login.

The diagram shown in Figure 2-7 details the process flow for a

password grant. The following are the actors for the password grant flow

(the mapping to the actors defined in Figure 2-3 is in parentheses).

•	 User (resource owner). The owner of the resource.

The user interacts with the client application via a user

agent (browser).

•	 Client application (client). This is a web application

trying to access a secured resource.

Chapter 2 OAuth Flows and OpenID Connect

36

•	 OAuth 2 Authorization endpoint (authorization
server). The endpoint of the authorization server used

to get the access token.

•	 Web API (resource server). API providing the resource

owned by the resource owner.

Client
Application

OAuth 2 Token
Endpoint Web APIUser

Start the application

Login Pop Up

Enter credentials in login pop-up

Send user credentials

Call Web API by adding access
token in authorization header

Return access token
and refresh token

Validate
access token

Return the data
to the client

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Web API by adding new access
token in authorization header

Figure 2-7.  Process flow for password grant

The following are the steps for a password grant.

	 1.	 The user tries to access and log in through the client

application URL.

	 2.	 The client application displays a form to enter the

username and password.

Chapter 2 OAuth Flows and OpenID Connect

37

	 3.	 The user enters her username and password and

tries to log in.

	 4.	 The client application sends a post request to the

Web API with the parameters shown in Table 2-8.

Table 2-8.  Parameter Descriptions

S.No. Parameter Required/ Optional Description

1. grant_type Required Should be set to “password”.

2. username Required The username for the resource name.

3. password Required The password for the resource name.

4. scope Optional Scope is a list of case-sensitive strings

delimited by space. It defines the

permissions being requested by the

client. Possible values for scope are

predefined on the authorization server.

	 5.	 If the authorization token request is successful, the

authorization server sends the response back to the client

application. The response is in the following format.

 {

 "access_token": "abc123",

 "token_type": "bearer",

 "expires_in": 3600,

 "refresh_token": "xyz890",

 "scope": "read write"

 }

Table 2-9 describes the significance of each of the

parameters.

Chapter 2 OAuth Flows and OpenID Connect

38

	 6.	 After getting the access token, the client uses the

access token to access the Web API.

�Client Credentials
At times, the client application needs to access a resource as itself. In

such a scenario, the client application will not need any user-specific

credentials. For example, the application might want to display certain

information that is common for all users but specific to the client

application itself.

Table 2-9.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. access_

token

Required The access token returned by the

authorization server.

2. token_type Required Signifies the type of token understood by

the client. Further information is beyond the

scope of this book.

3. expires_in Recommended The lifetime (in seconds) that a token is valid.

The token expires after this period.

4. refresh_

token

Optional After the token expires, a refresh token could

be utilized to get a new access token. They

are long-lasting and bound to the client

application to which they were issued.

5. scope Optional The same as the scope specified by the client

in post request in step 4.

Chapter 2 OAuth Flows and OpenID Connect

39

The following are the steps for a client credentials grant.

	 1.	 Client application sends a post request to the token

endpoint of the Web API to get an access token.

The parameters of the post request are described in

Table 2-10.

The diagram shown in Figure 2-8 details the process flow for a

password grant. The following are the actors for the password grant flow

(the mapping to the actors defined in Figure 2-2 is in parentheses).

•	 Client application (client). A web application trying to

access a secured resource.

•	 OAuth 2 Authorization endpoint (authorization
server). The endpoint of the authorization server used

to get the access token.

•	 Web API (resource server). API providing the resource

owned by the resource owner.

Client
Application

OAuth 2 Token
Endpoint Web API

Request for access token
using client ID and secret

Return access token

Call Web API by adding access
token in authorization header

Validate
access token

Return the data
to the

client application

Figure 2-8.  Process flow for password grant

Chapter 2 OAuth Flows and OpenID Connect

40

Table 2-10.  Parameter Descriptions

S.No. Parameter Required/ Optional Description

1. grant_type Required Should be set to client_credentials.

2. client_id Required A unique ID by which the authorization

server uniquely identifies the client

application.

3. client_

secret

Required The client application is registered

with the authorization server. As part

of registration process completion,

the authorization server generates

client_id and client_secret for the

client application. While the client_id

uniquely identifies the application and

can be publicly visible, client_secret

is confidential. Consider client_id and

client_secret equivalent to username and

password, respectively.

4. scope Optional Scope is a list of case-sensitive strings

delimited by space. It defines the

permissions being requested by the

client. Possible values for the scope are

predefined on the authorization server.

Chapter 2 OAuth Flows and OpenID Connect

41

	 2.	 If the request is successful, the authorization server

sends the response back to the client application.

The response is in the following format.

 {

 "access_token": "abc123",

 "token_type": "bearer",

 "expires_in": 3600,

 "scope": "read write"

 }

Table 2-11 indicates the significance of each of the

parameters.

Table 2-11.  Parameter Descriptions

S.No. Parameter Required/
Optional

Description

1. access_

token

Required The access token returned by the

authorization server.

2. token_type Required The only value supported by Azure AD is

“bearer”. It signifies the type of token

understood by the client. Further information

is beyond the scope of this book.

3. expires_in Recommended The lifetime (in seconds) that a token is

valid. The token expires after this period.

4. scope Optional The same as the scope specified by the

client in post request in step 1.

	 3.	 After getting the access token, the client uses it to

access the Web API.

Chapter 2 OAuth Flows and OpenID Connect

42

�OpenID Connect
OpenID Connect, also known as OIDC, is a simple identity layer on top

of the OAuth 2.0 protocol. It helps verify the identity of the logged in user

based on the authentication performed by an authorization server. It can

also get basic information about the logged-in user by using the REST API.

OIDC allows different types of clients—including web clients, mobile

clients, and JavaScript clients—to perform authentication and to request

and receive information about logged-in users and authenticated sessions.

�OpenID Connect Metadata Document
OpenID Connect offers a metadata document that provides all the

necessary information required for logging in. This document

can be obtained for any tenant from the following URL in Azure AD:

https://login.microsoftonline.com/{tenant}/.well-known/openid-

configuration.

The following is a sample metadata document.

{

"authorization_endpoint": "https://login.microsoftonline.com/

{tenantId}/oauth2/authorize",

"token_endpoint": "https://login.microsoftonline.com/

{tenantId}/oauth2/token",

 "token_endpoint_auth_methods_supported": [

 "client_secret_post",

 "private_key_jwt",

 "client_secret_basic"

],

.....................

}

Chapter 2 OAuth Flows and OpenID Connect

https://login.microsoftonline.com/{tenant}/.well-known/openid-configuration
https://login.microsoftonline.com/{tenant}/.well-known/openid-configuration

43

�Authentication Flow Using OpenID Connect
A basic authentication flow using OpenID Connect involves a web

application in which the user logs in and a Web API that is accessed by

using an access token.

The sequence diagram shown in Figure 2-9 explains the basic

authentication flow in detail.

User OAuth 2 Auth
Endpoint Web APIBrowser

User navigate to web page

Web App

Browser send request to web app

Redirect user to login

User enter credentials

submit credentials

Returns ID token and authorization code

Validate ID token and
sets claims in cookie

Request bearer access token
by providing authorization

code for Web API

Return access token
and refresh token

Call Web API by adding access
token in authorization header

Validate
access token

Return the data
to the web app

Returns the data

OAuth 2 Token
Endpoint

Figure 2-9.  Basic authentication flow

The following are the steps involved.

	 1.	 The user navigates to the URL in the browser.

	 2.	 The browser sends a request to the web page.

	 3.	 The user is redirected to a login page.

	 4.	 The user enters her credentials and submits them in

the browser.

	 5.	 The browser submits the credentials to the OAuth 2

Authorization endpoint.

Chapter 2 OAuth Flows and OpenID Connect

44

	 6.	 On successful verification of the credentials, the

OAuth 2 endpoint issues an ID token and an

authorization code to the web application.

	 7.	 The web app validates the ID token and sets the

claims in a cookie.

	 8.	 The web app requests a bearer access token for

the Web API by using an authorization code to the

OAuth 2 token endpoint.

	 9.	 The Web API validates the access token by getting

public keys from the OAuth endpoint.

	 10.	 On successful validation, the API returns the data to

the user via the web app.

�Tokens
We introduced you to JWT tokens in Chapter 1. Azure Active Directory

makes use of JWT tokens in various authentication flows. Basically, there

are three types of tokens.

•	 ID token. During authentication with OpenID Connect,

ID tokens are sent to client applications to authenticate

the user. For a web application, ID tokens are stored in

a cookie to authenticate further client requests from the

same session.

ID tokens validate the user and get additional

information (claims) about the authenticated

user. Information inside can be used to show the

display name, get the unique identifier for further

authorizations, and so forth. The ID token for JSON

is similar to what we explained in Chapter 1.

Chapter 2 OAuth Flows and OpenID Connect

45

•	 Access token. Access tokens access Web APIs secured

by Azure Active Directory. When authenticating with an

OpenID Connect authentication flow, the access token

is returned with an ID token. The ID token is stored in

a cookie, whereas an access token can instantly access

a Web API, or it can be stored in a server-side cache

to call the Web API for further requests from the same

user.

Access tokens authenticate the Web API. After

successful validation, the application gets

information about the user and the client from

which the request is coming. Based on the request

can be served.

The access token is valid for one hour. After one

hour, if the user still wants to access the Web API, he

needs log in again, or a refresh token can be stored

in the cache to generate the access token again.

•	 Refresh token. An access token is valid for one hour,

which can’t be extended. To avoid re-logging in every

hour, refresh tokens are maintained. Refresh tokens

are also issued by Azure Active Directory along with ID

tokens and access tokens.

The validity of a refresh token is a sliding 5 days to

a maximum of 90 days. As its name suggests, the

purpose of a refresh token is to refresh an access

token. A refresh token should not be used for any

other purpose.

Chapter 2 OAuth Flows and OpenID Connect

46

�Validating Tokens
An ID token and an access token should be validated, but there is no need

to validate a refresh token.

The first step in validating an access or ID token is to validate the

signature. Signature validation verifies that there was no tampering during

transit.

Azure AD libraries validate the signature by using public keys available

from the tenant URL and the OpenID Connect metadata document,

which is at https://login.microsoftonline.com/common/.well-known/

openid-configuration. This is a JSON document that has the information

required for signature validation.

Other things that should be validated are the expiry, audience, and

resources for which the access token is generated. By using claims from the

access token and the ID token, further authorization can be performed.

�Summary
In this chapter, we covered the various standards used by Azure Active

Directory. We started by discussing OAuth 2.0 grant flows to OpenID

Connect, and then described different types of tokens. Starting in

Chapter 3, we discuss the implementation of these standards in Azure AD,

and we delve into code.

Chapter 2 OAuth Flows and OpenID Connect

https://login.microsoftonline.com/common/.well-known/openid-configuration
https://login.microsoftonline.com/common/.well-known/openid-configuration

47© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_3

CHAPTER 3

User-Based
Authentication
for Web Apps
In Chapter 2, we introduced OpenID Connect, OAuth 2, and basic

authentication flows supported by OAuth 2. In this chapter, we will use

those authentication flows to develop user-based authentication for a web

application using Azure Active Directory. The following authentication

scenarios are covered in this chapter.

•	 Single-page application

•	 Web app/Web API

•	 Web app/Azure Function HTTP endpoint

•	 Web app/Web API 1/Web API 2

We also discuss the need for multi-factor authentication and how to

enable it for users in Azure Active Directory.

48

�Single-Page Application
Single-page applications (SPAs) are web apps that load a single HTML

page and dynamically update that page as the user interacts with the

app. SPAs use AJAX and HTML5 to create fluid and responsive web apps,

without constant page reloads. However, this means much of the work

happens on the client side in JavaScript. It has multiple web pages, which

are loaded dynamically through JavaScript and APIs. Gmail, Facebook,

GitHub, and so forth, are the best examples of single-page applications.

The biggest advantage of single-page applications is that no reloading of

pages means no wait time.

Single-page applications heavily rely on client-side JavaScript. SPAs

are backed by the Web API, where actual business logic and database

transactions are handled. Implementing authentication for a JavaScript-

based, client-side library is bit tricky, but Azure Active Directory

Authentication Library for JavaScript (ADAL JS) makes it very simple.

ADAL JS is an open source library that can be downloaded from https://

github.com/AzureAD/azure-activedirectory-library-for-js.

ADAL JS makes use of implicit grant flows to implement authentication

for single-page applications. The JavaScript client communicates with

Azure Active Directory to authenticate the user and get an ID token, which

authenticates the Web API. The token is cached in local storage and used

for subsequent requests. Figure 3-1 is a diagram of the sequence of events

that happen when authenticating single-page applications using Azure

Active Directory.

Chapter 3 User-Based Authentication for Web Apps

https://github.com/AzureAD/azure-activedirectory-library-for-js
https://github.com/AzureAD/azure-activedirectory-library-for-js

49

The following sequence of events are performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application returns the web page with the

JavaScript-based ADAL JS.

	 3.	 The user clicks a sign-in button or performs a secure

operation.

	 4.	 The request is sent to an Azure AD authorization

endpoint.

	 5.	 The user is redirected to the login page.

	 6.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

User Browser Azure Active Directory
Authorization Endpoint Web App/API

Navigates to web site

Navigate to web site

Response from web app with ADAL JS

User clicks sign-in

Request to send to Azure AD
authorization endpoint

Login Screen

User enters credentials

Sign in Request

Response with ID Token

Request to web app with ID token
in authorization header

Response from web app on successful
token validation

Token
Validation

Figure 3-1.  Sequence diagram for single-page application authentication

Chapter 3 User-Based Authentication for Web Apps

50

	 7.	 On successful validation of the credentials, the

Azure AD authorization endpoint returns the

response with an ID token.

	 8.	 The ID token is stored in local storage.

	 9.	 The request with an ID token in the authorization

header is sent to the API inside the same web app.

	 10.	 The API, which is secured by Azure Active Directory

authentication, validates the token.

	 11.	 On successful validation, a response is returned.

�Running the Application
To develop a single-page application using Azure Active Directory

authentication, you need the following software and completed

prerequisites.

•	 Visual Studio 2017 (If you don’t have a license, you can

use the Community edition.)

•	 .NET Core 2.1 SDK

•	 an Azure subscription and an Azure AD tenant

•	 a user account in your Azure AD tenant

The first step is to register the application with Azure AD. The following

is a step-by-step demonstration of registering your application with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

51

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter http://localhost:53342 as the redirect URL,

and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is a client ID for your

application and required for logging in.

	 9.	 Grant permissions to your application in API

Permissions and click the Grant Admin Consent

button. Click Yes to confirm.

	 10.	 To find the tenant ID, go to App Registrations.

Click Endpoints. Fetch the tenant ID

from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml. The tenant ID is always a

valid GUID.

	 11.	 By default, implicit grant flow is disabled in Azure

apps. To enable implicit grant flow, go to the app

and click Manifest. Open the inline Manifest editor.

Search for “oauth2AllowImplicitFlow” and change

the value from false to true. Click Save.

The configurations are ready. The next step is to create a single-page

application and enable Azure Active Directory authentication for it.

Chapter 3 User-Based Authentication for Web Apps

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml

52

�Creating a Single-Page Application
To create a single-page application, follow these steps.

	 1.	 Create a Web API MVC application using .NET

Core 2.0.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.

org).

	 3.	 Add the AzureAdOptions class to read the config, as

shown in the following format.

public class AzureAdOptions

 {

public string ClientId { get; set; }

public string ClientSecret { get; set; }

public string Instance { get; set; }

public string Domain { get; set; }

public string TenantId { get; set; }

 }

•	 Add the configuration in appsettings.json in the

following format. Fill in the configuration values as per

the registration done in the previous step.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "Domain": "domain",

 "TenantId": "tenantId",

 "ClientId": "resourceId"

 }

Chapter 3 User-Based Authentication for Web Apps

http://www.nuget.org
http://www.nuget.org

53

	 4.	 Add the Extension method to configure the JWT

options, as follows.

 �public static class AzureAdServiceCollection

Extensions

{

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder)

=> builder.AddAzureAdBearer(_ => { });

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder,

Action<AzureAdOptions> configureOptions)

{

builder.Services.Configure(configureOptions);

builder.Services.AddSingleton<IConfigureOptions

<JwtBearerOptions>, ConfigureAzureOptions>();

builder.AddJwtBearer();

return builder;

}

private class ConfigureAzureOptions: IConfigureNamed

Options<JwtBearerOptions>

{

private readonly AzureAdOptions _azureOptions;

public ConfigureAzureOptions(IOptions<AzureAdOptions>

azureOptions)

{

_azureOptions = azureOptions.Value;

}

public void Configure(string name, JwtBearerOptions

options)

Chapter 3 User-Based Authentication for Web Apps

54

{

options.Audience = _azureOptions.ClientId;

options.Authority = $"{_azureOptions.Instance}{_

azureOptions.TenantId}";

}

public void Configure(JwtBearerOptions options)

{

Configure(Options.DefaultName, options);

}

}

}

This code configures the JWT Bearer authentication

scheme. The client ID from AppSettings acts as the

audience. The AddJwtBearer method is provided by

Microsoft.AspNetCore.Authentication.Jwt Bearer.

This method automatically downloads the public

key based on the tenant ID provided, reads the

token in the header, and validates it using public

keys. If the validation is successful, claims obtained

from the JWT token are added in the user claims

context; otherwise, a 401 error is returned.

	 5.	 Add the following code in startup.cs to read the

configuration. Call the preceding extension method

to pass the configuration.

services.AddAuthentication(sharedOptions =>

{

 �sharedOptions.DefaultScheme = JwtBearerDefaults.

AuthenticationScheme;

})

.AddAzureAdBearer(options => Configuration.

Bind("AzureAd", options));

Chapter 3 User-Based Authentication for Web Apps

55

	 6.	 Add a home controller to emit an index page in

HTML. Add Reference to ADAL JS Library.

	 7.	 Add a value controller to add API methods. These

API methods are called from JS. Mark these API

methods with the Authorize attribute, which makes

sure that only authorized users can access this

method; unauthorized users get a 401 response.

	 8.	 Create an app.js file and store the necessary

configurations to communicate with Azure AD. Add

login and logout button handlers, as follows.

window.config = {

 instance: 'https://login.microsoftonline.com/',

 tenant: '35d622d5-3f93-42b1-8984-3e2606dbe321',

 �clientId: '0170d69b-717f-4164-8185-69c58f9892b8',

 postLogoutRedirectUri: window.location.origin,

 cacheLocation: 'localStorage'

};

var authContext = new AuthenticationContext(config);

// Register NavBar Click Handlers

$signOutButton.click(function () {

authContext.logOut();

});

$signInButton.click(function () {

 authContext.login();

});

	 9.	 ADAL JS library is responsible for redirecting the

user to the login page, handling login and logout,

and managing, storing, and fetching the ID token.

Chapter 3 User-Based Authentication for Web Apps

56

	 10.	 Add a home controller in JavaScript. On request, it

acquires a token from Azure AD and sends a request

to the value controller by adding a bearer ID token

in the header. Please refer to the following code to

acquire a token and send the request to the value

controller.

$("#ViewData").click(function (event) {

 clearErrorMessage();

 // Acquire Token for Backend

 �authContext.acquireToken(authContext.config.

clientId, function (error, token) {

 // Handle ADAL Errors

 if (error || !token) {

 �printErrorMessage('ADAL Error

Occurred: ' + error);

 return;

 }

 // Get values

 $.ajax({

 type: "GET",

 url: "/api/Values",

 headers: {

 �'Authorization': 'Bearer ' +

token

 }

 }).done(function (data) {

 �$("#lblData").text("values returned

from API are: " + data[0] + ", " +

data[1]);

 console.log('Get Call Sucessfull');

Chapter 3 User-Based Authentication for Web Apps

57

 }).fail(function () {

 console.log('Fail to get values');

 �printErrorMessage('Error in Getting

Values');

 });

 });

 });

If you face any difficulty with these steps, please download the code

from the GitHub repository at https://github.com/aadfordevelopers/

AadDemos/tree/master/SinglePageApplication.

To run the sample code, download it from GitHub and add the

configuration to the code. Follow these steps to add the configuration.

	 1.	 Open web.config from the downloaded sample.

	 2.	 Add a tenant ID, which was obtained in the

previous step.

	 3.	 Add a client ID in the audience field.

	 4.	 Open the app and go to Scripts ➤ App.js ➤

windows.config.

	 5.	 Add a tenant and a client ID to the windows.config

section.

Your sample is ready to run. Press F5. You are redirected to the index

page, as shown in Figure 3-2.

Figure 3-2.  Sample home page

Chapter 3 User-Based Authentication for Web Apps

https://github.com/aadfordevelopers/AadDemos/tree/master/SinglePageApplication
https://github.com/aadfordevelopers/AadDemos/tree/master/SinglePageApplication

58

Click the Login button. You are redirected to the login page. Log in

with your account. After successful validation, the ID token is received and

saved in local storage. The Login button is hidden, and the Logout button

appears. When you are logged in, your user email address is displayed in

the header, as shown in Figure 3-3.

Click the Home Page button. You then see a Get Data button. Click this

button, and the Azure AD library will read the ID token from local storage

and send a request to the Web API controller with a bearer ID token in the

authorization header. The API validates the token and returns the data,

which is shown on the screen, as seen in Figure 3-4.

Figure 3-3.  Sample home page after logging in

Figure 3-4.  Sample home page showing the Get Data button

In this section, you learned about authenticating a single-page

application and calling its own API using Azure Active Directory and

ADAL JS.

Now let’s look at how you can call a different API from a single-page

application. To do this, we will extend the same application, but there is a

slight change in the sequence diagram, as shown in Figure 3-5.

Chapter 3 User-Based Authentication for Web Apps

59

The following sequence of events are performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application redirects the user to the login

page provided by Azure AD.

	 3.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

	 4.	 On successful validation of the credentials, the

Azure AD authorization endpoint returns the

authorization code.

	 5.	 The web app requests the request bearer access

token and the refresh token from the Azure AD

token endpoint using the authorization code. After

receiving the tokens, the web app caches the tokens

in the user session.

User Browser Azure Active Directory
Authorization Endpoint Web App

User navigates to web site

Navigate to web site

Response from web app with ADAL JS

User clicks sign-in

Request to send to Azure AD
authorization endpoint

Login Screen

User enters credentials

Sign in Request

Response With ID token

Request to Web API with ID token
in authorization header

Response from web app on successful
token validation

Token

Web API

Validation

Figure 3-5.  Sequence diagram for single-page application
authentication with a different API

Chapter 3 User-Based Authentication for Web Apps

60

	 6.	 The request with an access token in the

authorization header is sent to the Web API.

	 7.	 The Web API, which is secured by Azure Active

Directory authentication, validates the token.

	 8.	 On successful validation, the response is returned to

the web app.

	 9.	 If the access token is expired, the web app sends a

request to the Azure AD token endpoint to fetch a

new access token by using a refresh token.

�Running the Application
The first step is to register a new Web API application on Azure AD.

	 1.	 Create a new app in the Azure AD app registration by

following the same steps you followed for the web app.

	 2.	 Note the application ID. It acts as a resource ID in

single-page applications and as a client ID in the

Web API.

	 3.	 To communicate with the Web API, a single-page

app in Azure AD should delegate access to the new

Web API app. To do this, follow these steps.

	 a.	 Go to the single-page application app in Azure Active

Directory apps.

	 b.	 Go to API Permission ➤ Add a Permission. Select an API.

	 c.	 Search the newly added Web API and select the user

impersonation permission.

	 d.	 Grant admin consent by clicking the Grant Admin Consent

button.

Chapter 3 User-Based Authentication for Web Apps

61

�Adding a Web API

To create a Web API, follow these steps.

	 1.	 Create a Web API MVC application using .NET

Core 2.0.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.org).

	 3.	 Move the following code snippets from the

single-page application to the Web API.

	 a.	 AzureAdOptions

	 b.	 AzureAdOptions configuration from appsettings.json

	 c.	 Extension method for JWT Bearer authentication

	 d.	 Code snippet in startup file

	 e.	 Value controller

	 4.	 Add the client ID and tenant ID in appsettings.json.

	 5.	 Update the configuration in app.js to add the

resource for the Web API, as follows.

window.config = {

 instance: 'https://login.microsoftonline.com/',

 tenant: '35d622d5-3f93-42b1-8984-3e2606dbe321',

 resourceId: 'bd5c52b2-8d57-4a67-b371-298c023c95a8',

 clientId: '0170d69b-717f-4164-8185-69c58f9892b8',

 postLogoutRedirectUri: window.location.origin,

 cacheLocation: 'localStorage'

 };

If you face any difficulty in following these steps, please download the

code from the GitHub repository at

Chapter 3 User-Based Authentication for Web Apps

http://www.nuget.org

62

https://github.com/aadfordevelopers/AadDemos/tree/master/

SinglePageApplicationWithAPI.

Update the sample with the configuration, as shown. Your sample is

ready to run. Press F5. Everything is the same as in the previous demo,

except the response comes from the newly added Web API. Make sure that

both projects are marked as a startup project.

Note  Calling a cross-origin API from a JavaScript client is not a
recommended approach. If there is a need to call an external API,
rather than calling the external API directly from JavaScript, it should
be called via the web app using the on-behalf-of flow, which is
explained later in this chapter.

�Web App/Web API Authentication
In the context of this book, a web app refers to a .NET Core 2.1 web

application, and a Web API refers to the .NET Core 2.1 Web API. The Azure

Active Directory Authentication Library (ADAL) uses the OpenID Connect

OAuth 2 code grant flow to authenticate web apps and the Web API.

The code grant flow was explained in Chapter 2 in the context of native

apps/Web API authentication. With a web app, the user is authenticated by

providing credentials, and in return, the web app receives authentication

code from Azure AD. The authentication code fetches the access and

refresh tokens for the Web API. Both the access token and the refresh

token are cached in the user session (in memory or distributed cache).

Whenever there is a need to call the Web API, the access token is fetched

from the cache; if it has expired, then the access token is refreshed using

the refresh token from Azure AD. The diagram in Figure 3-6 shows the

sequence of events that happen when authenticating a web app/Web API

using Azure Active Directory.

Chapter 3 User-Based Authentication for Web Apps

https://github.com/aadfordevelopers/AadDemos/tree/master/SinglePageApplicationWithAPI
https://github.com/aadfordevelopers/AadDemos/tree/master/SinglePageApplicationWithAPI

63

The following sequence of events are performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application redirects the user to the login

page provided by Azure AD.

	 3.	 The user clicks the sign-in button or performs a

secure operation.

	 4.	 The user is redirected to the login page.

	 5.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

Web App
Azure AD

Authorization
Endpoint

Azure AD Token
Endpoint Web APIUser

Navigate to web app

Request for login

Redirected to Login page

Enter credentials

Returns the authorization code

Request bearer access token
by providing authorization

code for Web API

Call Web API by adding access
token in authorization header

Return access token
and refresh token

Validate
access token

Return the data
to the web app

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Web API by adding new access
token in authorization header

Figure 3-6.  Sequence diagram for web app/Web API
authentication

Chapter 3 User-Based Authentication for Web Apps

64

	 6.	 On successful validation of the credentials, the

Azure AD authorization endpoint returns the

authorization code.

	 7.	 A request for a bearer access token and a refresh

token are sent to the Azure AD token endpoint using

an authorization code.

	 8.	 The request with an access token in the

authorization header is sent to the Web API.

	 9.	 The Web API, which is secured by Azure Active

Directory authentication, validates the token.

	 10.	 On successful validation, a response is returned.

�Running the Application
The prerequisites are the same as those for the previous demonstrations.

The first step is to register both the web app and the Web API application

with Azure AD and fill in the configurations accordingly. The following is

a step-by-step demonstration of registering a Web API application with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44364 as the redirect

URL, and choose Web in the drop-down menu.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

65

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission and click the Grant Admin Consent

button. Click Yes to confirm.

Here is a step-by-step demonstration of registering a web app with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory from the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44351/ as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for authentication.

	 9.	 Go to API Permission ➤ Add a Permission. Select

an API.

	 10.	 Search the newly added Web API and select the user

impersonation permission.

	 11.	 Grant admin consent by clicking the Grant Admin

Consent button.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

66

	 12.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. This key is no longer visible after

you close the tile.

The configurations are ready. The next step is to create the web app

and the Web API and enable Azure Active Directory authentication for it.

�Creating a Web App
Follow these steps to create a web app.

	 1.	 Create a web app MVC application using .NET Core

2.0 with the default template.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.

org).

	 3.	 Add the AzureAdOptions class to read the config, as

shown the following format.

public class AzureAdOptions

 {

 public string ClientId { get; set; }

 public string ClientSecret { get; set; }

 public string Instance { get; set; }

 public string Domain { get; set; }

 public string TenantId { get; set; }

 public string CallbackPath { get; set; }

Chapter 3 User-Based Authentication for Web Apps

http://www.nuget.org
http://www.nuget.org

67

 public string Authority

 {

 get

 {

 return $"{Instance}{TenantId}";

 }

 }

 public string ResourceId { get; set; }

 public string APIBaseAddress { get; set; }

 �public static AzureAdOptions Settings { set;

get; }

 }

	 4.	 Add the configurations to appsettings.json in the

following format. Fill in the configuration values as

per the registration done in the previous step.

"AzureAd": {

 // Coordinates of the Azure AD Tenant

 �"Instance": "https://login.microsoftonline.com/",

 "Domain": "mohitgargoutlook.onmicrosoft.com",

 "TenantId": �"35d622d5-3f93-42b1-8984-

3e2606dbe321",

 // Coordinates of the Web app

 �"ClientId": "7d2c3ba9-3058-4b56-967c-

5ad77b6241fa",

 "CallbackPath": "/signin-oidc",

 "ClientSecret": �"1HJih5gw6fIsfM93NG/

IIA6pqdSZbeTcum8qCtPcWaA=",

Chapter 3 User-Based Authentication for Web Apps

68

 // Coordinates of the Web API

 "ResourceId": �"c6b7b3ff-80c6-45f6-aa97-5f70ff89

65d9", // ClientId of the Web API

 "APIBaseAddress": "https://localhost:44300"

 }

	 5.	 Add the TokenSessionCache class and inherit this

class from the token cache. The TokenSessionCache

class provides methods to store user-related access

and refresh tokens in the user session and to clear

all the tokens at logout or session expiry. Please refer

to the following code.

public class TokenSessionCache : TokenCache

{

 �private static readonly object FileLock = new

object();

 string UserObjectId = string.Empty;

 string CacheId = string.Empty;

 ISession Session = null;

 �public TokenSessionCache(string userId,

ISession session)

 {

 UserObjectId = userId;

 CacheId = UserObjectId + "_TokenCache";

 Session = session;

 this.AfterAccess = AfterAccessNotification;

 this.BeforeAccess = BeforeAccessNotification;

 Load();

 }

Chapter 3 User-Based Authentication for Web Apps

69

 public void Load()

 {

 lock (FileLock)

 {

 this.Deserialize(Session.Get(CacheId));

 }

 }

 public void Persist()

 {

 lock (FileLock)

 {

 // �reflect changes in the persistent store

 Session.Set(CacheId, this.Serialize());

 // �once the write operation took place,

restore the HasStateChanged bit to false

 this.HasStateChanged = false;

 }

 }

 // Empties the persistent store.

 public override void Clear()

 {

 base.Clear();

 Session.Remove(CacheId);

 }

Chapter 3 User-Based Authentication for Web Apps

70

�public override void DeleteItem(TokenCacheItem item)

 {

 base.DeleteItem(item);

 Persist();

 }

 // �Triggered right before ADAL needs to access the

cache.

 // �Reload the cache from the persistent store in

case it changed since the last access.

 �void BeforeAccessNotification(TokenCacheNotificati

onArgs args)

 {

 Load();

 }

 // Triggered right after ADAL accessed the cache.

 �void AfterAccessNotification(TokenCache

NotificationArgs args)

 {

 // �if the access operation resulted in a cache

update

 if (this.HasStateChanged)

 {

 Persist();

 }

 }

}

	 6.	 Add the Extension method to configure the web app

authentication.

Chapter 3 User-Based Authentication for Web Apps

71

public static AuthenticationBuilder AddAzureAd(this

AuthenticationBuilder builder, Action<AzureAdOptions>

configureOptions)

 {

 builder.Services.Configure(configureOptions);

 �builder.Services.AddSingleton<IConfigure

Options<OpenIdConnectOptions>,

ConfigureAzureOptions>();

 builder.AddOpenIdConnect();

 return builder;

 }

	 7.	 Define ConfigureAzureOptions as follows to assign

the configuration.

private class ConfigureAzureOptions : IConfigureNamedO

ptions<OpenIdConnectOptions>

 {

 �private readonly AzureAdOptions _

azureOptions;

 �public ConfigureAzureOptions(IOptions

<AzureAdOptions> azureOptions)

 {

 _azureOptions = azureOptions.Value;

 }

 �public void Configure(string name,

OpenIdConnectOptions options)

 {

 �options.ClientId = _azureOptions.

ClientId;

 �options.Authority = _azureOptions.

Authority;

Chapter 3 User-Based Authentication for Web Apps

72

 options.UseTokenLifetime = true;

 �options.CallbackPath = _azureOptions.

CallbackPath;

 options.RequireHttpsMetadata = false;

 �options.ClientSecret = _azureOptions.

ClientSecret;

 �options.Resource = _azureOptions.

ResourceId;

 options.ResponseType = "id_token code";

 // Subscribing to the OIDC events

 �options.Events.

OnAuthorizationCodeReceived =

OnAuthorizationCodeReceived;

 }

 �public void Configure(OpenIdConnectOptions

options)

 {

 Configure(Options.DefaultName, options);

 }

 }

	 8.	 The Response type default value is ID_token,

which means it will only call the OnTokenValidated

event. Override the value of the response code

to id_token_code. This means it will call the

OnAuthorizationCodeReceived event after the

OnTokenValidated event, which makes sure

Context.Principal has a value before calling

AuthorizationCodeReceived.

Chapter 3 User-Based Authentication for Web Apps

73

	 9.	 Define the OnAuthorizationCodeReceived method

as follows.

private async Task OnAuthorizationCodeReceived

(AuthorizationCodeReceivedContext context)

 {

 �string userObjectId = (context.

Principal.FindFirst("http://schemas.

microsoft.com/identity/claims/

objectidentifier"))?.Value;

 �var authContext = new Authentication

Context(context.Options.Authority,

new TokenSessionCache(userObjectId,

context.HttpContext.Session));

 �var credential = new ClientCredential

(context.Options.ClientId, context.

Options.ClientSecret);

 �var authResult = await authContext.

AcquireTokenByAuthorizationCodeAsync

(context.TokenEndpointRequest.Code,

 �new Uri(context.TokenEndpoint

Request.RedirectUri, UriKind.

RelativeOrAbsolute), credential,

context.Options.Resource);

 // �Notify the OIDC middleware that

we already took care of code

redemption.

 �context.HandleCodeRedemption

(authResult.AccessToken, context.

ProtocolMessage.IdToken);

 }

Chapter 3 User-Based Authentication for Web Apps

74

	 10.	 Call the AddAzureAd extension method in

the startup file as follows to configure the

authentication.

services.AddAuthentication(sharedOptions =>

 {

 �sharedOptions.DefaultScheme = Cookie

AuthenticationDefaults.AuthenticationScheme;

 �sharedOptions.DefaultChallengeScheme =

OpenIdConnectDefaults.AuthenticationScheme;

 })

 .AddAzureAd(options =>

 {

 Configuration.Bind("AzureAd", options);

 AzureAdOptions.Settings = options;

 })

 .AddCookie();

	 11.	 By default, a session stores all the data in the

memory cache. Storing an access token in the

memory cache is never recommended. As in case of

server restart, memory cache will not persist. Also in

case of load balancer scenario’s, memory cache will

not be replicated across servers. Absence of memory

cache will ask user again for login. To avoid frequent

login, the session should be stored in a distributed

cache like Redis or a database like SQL Server.

The SQL Server distributed cache can be configured

without writing any additional code. To configure

the SQL Server cache, add the following lines of

code in startup.

Chapter 3 User-Based Authentication for Web Apps

75

services.AddDistributedSqlServerCache(options =>

 {

 options.ConnectionString =

 _config["ConnectionString"];

 options.SchemaName = "dbo";

 options.TableName = "TestCache";

 });

	 12.	 Add an account controller and add methods to

handle sign-in and sign-out requests and redirect

the user to the signed-out and access-denied pages.

	 a.	 Sign-in. The following code redirects the user to the sign-in

page.

 �var redirectUrl = Url.Action(nameof(HomeController.

Index), "Home");

 return Challenge(

 �new AuthenticationProperties { Redirect

Uri = redirectUrl, AllowRefresh = true },

 �OpenIdConnectDefaults.Authentication

Scheme);

	 b.	 Sign out. Adds a sign-out method that removes all cached

entries for the user and sends an OpenID Connect sign-out

request.

string userObjectID = User.FindFirst("http://

schemas.microsoft.com/identity/claims/

objectidentifier").Value;

 �var authContext = new AuthenticationCont

ext(AzureAdOptions.Settings.Authority,

 �new TokenSessionCache(userObjectID,

HttpContext.Session));

Chapter 3 User-Based Authentication for Web Apps

76

 authContext.TokenCache.Clear();

 // Let Azure AD sign-out

 �var callbackUrl = Url.

Action(nameof(SignedOut), "Account",

values: null, protocol: Request.Scheme);

 return SignOut(

 �new AuthenticationProperties

{ RedirectUri = callbackUrl,

AllowRefresh = true },

 �CookieAuthenticationDefaults.

AuthenticationScheme,

 �OpenIdConnectDefaults.Authentication

Scheme);

	 c.	 Signed out. Redirects the user to a signed-out view if the

user is not authenticated. Adds a view with HTML to show a

signed-out message.

If (User.Identity.IsAuthenticated)

 {

 // �Redirect to home page if the user

is authenticated.

 �return RedirectToAction(nameof

(HomeController.Index), "Home");

 }

 return View();

	 d.	 Access Denied. Adds a method to redirect the user to an

access-denied view if the user doesn’t have access to the

requested resource.

Chapter 3 User-Based Authentication for Web Apps

77

	 13.	 Adds a controller to send a request to the API. To

send the request, add an access token in the

authorization header of the HTTP request. An

access token is fetched from the user session, and

if the access token has expired, an access token is

fetched from Azure AD by using a refresh token. If

both tokens are expired, then the user is redirected

to the login page. Please refer to the following code.

string userObjectID = (User.FindFirst("http://schemas.

microsoft.com/identity/claims/objectidentifier"))?.Value;

 �AuthenticationContext authContext

= new AuthenticationContext(Azure

AdOptions.Settings.Authority, new

TokenSessionCache(userObjectID,

HttpContext.Session));

 �ClientCredential credential = new

ClientCredential(AzureAdOptions.

Settings.ClientId, AzureAdOptions.

Settings.ClientSecret);

 �result = await authContext.Acquir

eTokenSilentAsync(AzureAdOptions.

Settings.ResourceId, credential,

new UserIdentifier(userObjectID,

UserIdentifierType.UniqueId));

Put this code block in Try Block to catch the

exception. The code fetches the token from the

cache or from Azure AD, depending on the expiry

status. If both tokens are expired, then it raises an

exception. The following code redirects the user to

the login page.

Chapter 3 User-Based Authentication for Web Apps

78

catch (Exception ex)

 {

 �if (HttpContext.Request.Query["reauth"]

== "True")

 {

 �// If Reauth is required challenge

for login again

 �return new ChallengeResult

(OpenIdConnectDefaults.

AuthenticationScheme);

 }

 }

�Creating a Web API
After creating the web app, follow these steps to create the Web API.

	 1.	 Create a Web API MVC application using .NET

Core 2.0.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet

(www.nuget.org).

	 3.	 Add the AzureAdOptions class to read the config, as

shown in the following format.

public class AzureAdOptions

 {

public string ClientId { get; set; }

public string ClientSecret { get; set; }

public string Instance { get; set; }

public string Domain { get; set; }

public string TenantId { get; set; }

 }

Chapter 3 User-Based Authentication for Web Apps

http://www.nuget.org

79

	 4.	 Add the configuration in appsettings.json in the

following format. Fill in the configuration values as

per the registration done in the previous step.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "Domain": "domain",

 "TenantId": "tenantId",

 "ClientId": "resourceId"

 }

	 5.	 Add the Extension method to configure the JWT

options, as follows.

 �public static class AzureAdServiceCollection

Extensions

{

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder)

=> builder.AddAzureAdBearer(_ => { });

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder,

Action<AzureAdOptions> configureOptions)

{

builder.Services.Configure(configureOptions);

builder.Services.AddSingleton<IConfigureOptions

<JwtBearerOptions>, ConfigureAzureOptions>();

builder.AddJwtBearer();

return builder;

}

private class ConfigureAzureOptions: IConfigureNamed

Options<JwtBearerOptions>

Chapter 3 User-Based Authentication for Web Apps

80

{

private readonly AzureAdOptions _azureOptions;

public ConfigureAzureOptions(IOptions<AzureAdOptions>

azureOptions)

{

_azureOptions = azureOptions.Value;

}

public void Configure(string name, JwtBearerOptions

options)

{

options.Audience = _azureOptions.ClientId;

options.Authority = $"{_azureOptions.Instance}{

_azureOptions.TenantId}";

}

public void Configure(JwtBearerOptions options)

{

Configure(Options.DefaultName, options);

}

}

}

This code configures the JWT Bearer authentication

scheme. The client ID from AppSettings acts as the

audience. The AddJwtBearer method is provided by

Microsoft.AspNetCore.Authentication.JwtBearer.

This method automatically downloads the public

key based on the tenant ID provided, reads the

token in the header, and validates it using public

keys. If the validation is successful, then claims

obtained from the JWT token are added in the user

claims context; otherwise, a 401 error is returned.

Chapter 3 User-Based Authentication for Web Apps

81

	 6.	 Add the following code in startup.cs to read the

configuration and call the preceding extension

method to pass the configuration.

services.AddAuthentication(sharedOptions =>

{

 �sharedOptions.DefaultScheme = JwtBearer

Defaults.AuthenticationScheme;

})

.AddAzureAdBearer(options => Configuration.Bind

("AzureAd", options));

Your Web API is now secured by Azure AD. Add a controller and

expose a Web API method.

If you face any difficulty in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI.

To run the sample code, download it from GitHub and add the

configuration in the code. Follow these steps to add the configuration.

	 1.	 Open the web app’s appsettings.json from the

downloaded sample.

	 2.	 Add the tenant ID, client ID, and client secret, which

were generated in the previous step.

	 3.	 Add the Web API’s client ID as a resource ID.

	 4.	 Open the Web API’s appsettings.json from the

downloaded sample.

	 5.	 Add the tenant ID and client ID to the Web API,

which were obtained in the previous step.

Now your sample is ready to run. Press F5. You will be redirected to

the index page. Make sure that both projects are marked as the startup

projects. Figure 3-7 shows the Home screen in the browser.

Chapter 3 User-Based Authentication for Web Apps

https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI
https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI

82

Figure 3-7.  Home screen

Click the Login button. You are redirected to the login page. Log in

with your account. After successful authentication, the web app receives

the authentication code. With the help of the authentication code, the ID

token, access token, and refresh token are generated and saved in the user

session on the server. The Login button is hidden, and the Logout button

appears. When you are logged in, your user email address is displayed in

the header, as shown in Figure 3-8.

Chapter 3 User-Based Authentication for Web Apps

83

Click the Fetch Values tab. The request goes to the web app controller

and verifies whether the user is authenticated. If not, the user is directed

to the Login page. If the user is successfully authenticated, then the Azure

AD library reads the access token from the cache and verifies whether the

token is valid. If it is not valid, then the token is refreshed using the refresh

token. A valid access token is added in the authentication header and the

HTTP call is sent to the API. The API validates the token and returns the

data, which is shown on the screen (see Figure 3-9).

Figure 3-8.  Home screen after login

Figure 3-9.  Data returned from the API

Chapter 3 User-Based Authentication for Web Apps

84

�Web App: HTTP Triggered Azure Function
Authentication
Azure Functions is a serverless compute that is triggered by an event.

There are different types of functions provided by Azure. One of them is

the HTTP triggered function in Azure, which acts as a serverless API.

To authenticate the Azure Function HTTP triggered function is a

little tricky but not tough. It can be authenticated like the web app/

Web API authentication. OAuth 2 code grant flow using OpenID

Connect authentication is used for web app/HTTP triggered function

authentication.

The user is authenticated by providing credentials, and in return, the

web app receives authentication code from Azure AD. The authentication

code fetches the access and refresh tokens for Azure Function. Both the

access token and the refresh token are cached in the user session (in

memory or distributed cache). Whenever there is a need to call Azure

Function, the access token is fetched from the cache; if it has expired, then

it is refreshed by using the refresh token from Azure AD.

Figure 3-10 is a diagram showing the sequence of events that happen

when authenticating a web app/HTTP triggered function using Azure

Active Directory.

Chapter 3 User-Based Authentication for Web Apps

85

The following sequence of events are performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application redirects the user to the Login

page provided by Azure AD.

	 3.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

	 4.	 On successful validation of the credentials,

the Azure AD authorization endpoint returns the

authorization code.

Web App
Azure AD

Authorization
Endpoint

Azure AD Token
Endpoint

Azure Function
HTTP EndpointUser

Navigate to web app

Request for login

Redirected to Login page

Enter credentials

Returns the authorization code

Request bearer access token
by providing authorization

code

Call Azure function HTTP endpoint
by adding access

token in authorization header

Return access token
and refresh token

Validate
access token

Return the data
to the web app

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Azure function HTTP endpoint by adding new access
token in authorization header

Figure 3-10.  Sequence diagram for web app: HTTP triggered Azure
function authentication

Chapter 3 User-Based Authentication for Web Apps

86

	 5.	 The web app requests the request bearer access

token and the refresh token from the Azure AD

token endpoint using the authorization code. After

receiving the tokens, the web app caches the tokens

in the user session.

	 6.	 The request with an access token in the

authorization header is sent to the HTTP triggered

Azure function endpoint.

	 7.	 The Azure Function endpoint, which is secured by

Azure Active Directory authentication, validates the

token.

	 8.	 On successful validation, a response is returned to

the web app.

	 9.	 If the access token has expired, the web app sends

a request to the Azure AD token endpoint to fetch a

new access token by using a refresh token.

�Running the Application
The prerequisites are the same as in previous demonstrations. The first

step is to register both the web app and the Azure AD Function application

with Azure AD and fill in the configurations accordingly. The following

is a step-by-step demonstration of registering the HTTP triggered Azure

Function app with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

87

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44364 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission. Click the Grant Admin Consent button.

Click Yes to confirm.

Here is the step-by-step demonstration of registering the web app with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44351/ as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for authentication.

	 9.	 Go to API Permission ➤ Add a Permission. Select

an API.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

88

	 10.	 Search the newly added HTTP triggered Azure

Function app and select the user impersonation

permission.

	 11.	 Grant admin consent by clicking the Grant Admin

Consent button.

	 12.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. This key is not visible again after

you close the tile.

The configurations are ready. The next step is to create a web app and

the HTTP triggered Azure function and enable Azure Active Directory

authentication for it.

�Creating a Web App
Refer to the previous section to create a web app.

�Creating an HTTP Triggered Azure Function
The next step is to create an HTTP triggered Azure function endpoint.

	 1.	 Go to http://portal.azure.com.

	 2.	 Create the Function app with default options. Make

sure the runtime stack is .NET.

	 3.	 In the Azure Function app, add the HTTP triggered

Azure function.

	 4.	 Use the same default C# code that is already there.

Only change the object result to $“Hello, {name}.

This is the response from Azure Function.”

Chapter 3 User-Based Authentication for Web Apps

http://portal.azure.com

89

	 5.	 Note the Azure AD Function app URL by clicking the

Get Function URL link.

	 6.	 Click Integrate. In the “Authorization level” menu,

select Anonymous (see Figure 3-11).

	 7.	 Go to the Function app. Select the platform features,

and then select Authentication/Authorization.

	 8.	 Enable App Service Authentication.

	 9.	 Choose Azure Active Directory as the authentication

provider. Refer to Figure 3-12.

Figure 3-11.  Authorization screen for HTTP triggered Azure
function

Chapter 3 User-Based Authentication for Web Apps

90

	 10.	 Add the client ID, which generated in a previous

step, when registering the Azure Function app with

Azure AD.

Figure 3-12.  Authentication/Authorization for Azure Function

Chapter 3 User-Based Authentication for Web Apps

91

	 11.	 Add the issuer URL as https://login.windows.

net/{tenantId}.

	 12.	 In the “Action to take when the request is not

authenticated” drop-down menu, select “Log in

with Azure Active Directory”.

	 13.	 Click Save. Refer to Figure 3-13.

Figure 3-13.  Azure Active Directory authentication configuration for
Azure Function

If you face any difficulty in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/WebApp-FunctionAPI.

Chapter 3 User-Based Authentication for Web Apps

https://login.windows.net/{tenantId}
https://login.windows.net/{tenantId}
https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-FunctionAPI
https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-FunctionAPI

92

To run the sample code, download it from GitHub and add the

configuration in the code. Follow these steps to add the configuration.

	 1.	 Open the web app’s appsettings.json from the

downloaded sample.

	 2.	 Add the tenant ID, client ID, and client secret, which

were generated in the previous step.

	 3.	 Add the Azure Function app’s client ID as the

resource ID.

	 4.	 Add APIBaseAddress as the Function app URL,

which was generated in the previous step.

The sample is ready to run. Press F5. You are redirected to the index

page, as shown in Figure 3-14.

Figure 3-14.  Web app index page

Chapter 3 User-Based Authentication for Web Apps

93

Click the Login button. You are redirected to the Login page. Log in

with your account. After successful authentication, the web app receives

the authentication code. With the help of the authentication code, the ID

token, access token, and refresh token are generated and saved in the user

session on the server. The Login button is hidden, and the Logout button

appears. When you are logged in, your user email address is displayed in

the header, as shown in Figure 3-15.

Click the Fetch Values tab. The request goes to the web app controller

and verifies whether the user is authenticated. If not, the user is directed

to the Login page. If the user is successfully authenticated, then the Azure

AD library reads the access token from the cache and verifies whether the

token is valid. If it is not valid, then the token is refreshed using a refresh

token. A valid access token is added to the authentication header. The

HTTP call is sent to the HTTP triggered Azure function endpoint. Azure

Function validates the token and returns the data, which is shown on the

screen (see Figure 3-16).

Figure 3-15.  Web app screen after login

Chapter 3 User-Based Authentication for Web Apps

94

�Web App/Web API/Web API 2 (On-Behalf-Of)
This authentication flow is the extension of a code grant flow in which a

web app and the Web API is involved. If there is a need to communicate

with other APIs (say, Web API 2) from the Web API, then the OAuth 2.0

on-behalf-of flow is used. On-behalf-of means a request to a second Web

API is raised on behalf of the logged-in user identity.

The user is authenticated by providing credentials, and in return,

the web app receives an authentication code from Azure AD. The

authentication code fetches an access token and a refresh token for the

Web API. Both the access token and the refresh token are cached in the

user session (in memory or distributed cache). Whenever there is a need to

call the Web API access token, it is fetched from the cache; if it has expired,

then it is refreshed using a refresh token from Azure AD. After validating

the access token, the Web API generates an on-behalf-of access token

for the second API using user assertion and client credentials. The user

assertion contains the username, user access token, and grant type.

Figure 3-17 is a diagram showing the sequence of events that happen

when authenticating the on-behalf-of flow using Azure Active Directory.

Figure 3-16.  Showing data from Azure Function

Chapter 3 User-Based Authentication for Web Apps

95

The following sequence of events are performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application redirects the user to the login

page provided by Azure AD.

	 3.	 The user clicks the sign-in button or performs a

secure operation.

	 4.	 The user is redirected to the Login page.

	 5.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

Web App
Azure AD

Authorization
Endpoint

Azure AD Token
Endpoint Web APIUser

Navigate to web app

Request for login

Redirected to Login page

Enter credentials

Returns the authorization code

Request bearer access token
by providing authorization

code for Web API

Call Web API by adding access
token in authorization header

Return access token
and refresh token

Validate
access token

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Web API by adding new access
token in authorization header

Web API 2

Request on-behalf-of access token
using access token

Return access token
and refresh token

Call Web API 2 by adding access
token in authorization header

Validate
access token

Data From Web API 2

Data From Web API

Figure 3-17.  Sequence diagram for on-behalf-of authentication flow

Chapter 3 User-Based Authentication for Web Apps

96

	 6.	 On successful validation of the credentials, the

Azure AD authorization endpoint returns the

authorization code.

	 7.	 A request for a bearer access token and refresh

token are sent to the Azure AD token endpoint using

the authorization code.

	 8.	 The request with an access token in the

authorization header is sent to the Web API.

	 9.	 The Web API, which is secured by Azure Active

Directory authentication, validates the token.

	 10.	 On successful validation, the Web API requests

bearer access for Web API 2 using the user assertion

and its own credentials.

	 11.	 The request with an access token in the

authorization header is sent to Web API 2.

	 12.	 On successful validation, Web API 2 returns the

response.

�Running the Application
The prerequisites are the same as in previous demonstrations. The first

step is to register the web app, Web API, and Web API 2 with Azure AD and

generate the configurations accordingly. The following is a step-by-step

demonstration of registering Web API 2 with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

97

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44364 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

Here is a step-by-step demonstration of registering the Web API with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New App Registration.

	 5.	 Enter the name of your Web API and select the

application type: Web app/API.

	 6.	 Enter https://localhost:44330 as the application

URL and click Create.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 The Web API generates on behalf of the token for

Web API 2. So, it should have access to the Web API

with admin consent.

	 9.	 Go to API Permission ➤ Add a Permission. Select

an API.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

98

	 10.	 Search the newly added Web API and select the user

impersonation permission.

	 11.	 Grant admin consent by clicking the Grant Admin

Consent button.

	 12.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. This key is not visible again after

you close the tile.

Here is a step-by-step demonstration of registering the web app with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory from the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44351/ as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for authentication.

	 9.	 Go to API Permission ➤ Add a Permission. Select

an API.

Chapter 3 User-Based Authentication for Web Apps

https://portal.azure.com

99

	 10.	 Search the newly added Web API. Select the user

impersonation permission, because the web app

generates an access token for the Web API.

	 11.	 Grant admin consent by clicking the Grant Admin

Consent button.

	 12.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. This key is not visible again after

you close the tile.

The configurations are ready. The next step is to create a web

app, a Web API, and a Web API 2 and enable Azure Active Directory

authentication for it.

�Creating a Web App and a Web API 2
Refer to the “Web App/Web API 2 Authentication” section to create a web

app and Web API 2.

�Creating a Web API
To create the Web API 2, follow the same steps in previous demonstrations.

Next, make the following changes.

	 1.	 Change the Configure method in the static class

to change the SaveSigninToken value to true.

SaveSigninToken true means the API will store the

token in bootstrap context, which is required to

generate the on-behalf-of access token.

public void Configure(string name, JwtBearerOptions

options)

 {

Chapter 3 User-Based Authentication for Web Apps

100

 �options.Audience = _azureOptions.

ClientId;

 �options.Authority = $"{_azureOptions.

Instance}{_azureOptions.TenantId}";

 �options.TokenValidationParameters =

new TokenValidationParameters() {

SaveSigninToken = true };

 }

	 2.	 In the API controller, instead of returning the data,

call the Web API 2 by adding the on-behalf-of token

in the authorization header and return the response

from Web API 2. To generate the on-behalf-of token,

use the following code.

var userAccessToken = HttpContext.User.Identities.

First().BootstrapContext.ToString();

 var claims = HttpContext.User.Claims;

 �string userName = claims.Where(m => m.Type

== ClaimTypes.Upn).Any() ? claims.First(m =>

m.Type == ClaimTypes.Upn).Value : claims.

First(m => m.Type == ClaimTypes.Email).

Value;

 �UserAssertion userAssertion = new

UserAssertion(userAccessToken,

"urn:ietf:params:oauth:grant-type:jwt-

bearer", userName);

 �string userObjectID = (User.

FindFirst("http://schemas.microsoft.com/

identity/claims/objectidentifier"))?.Value;

 �AuthenticationContext authContext = new Aut

henticationContext(AzureAdOptions.Settings.

Authority);

Chapter 3 User-Based Authentication for Web Apps

101

 �ClientCredential credential = new Client

Credential(AzureAdOptions.Settings.

ClientId, AzureAdOptions.Settings.

ClientSecret);

 �var result = await authContext.AcquireToke

nAsync(AzureAdOptions.Settings.ResourceId,

credential, userAssertion);

This code prepares the user assertion. With the help of user

assertion and client credentials, it sends a request to Azure AD to fetch

the access token.

If you face any difficulty in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI-OnBehalfOf.

To run the sample code, download it from GitHub and add the

configuration to the code. Follow these steps to add the configuration.

	 1.	 Open Web API 2 appsettings.json from the

downloaded sample.

	 2.	 Add the tenant ID and client ID, which were

obtained in the previous step.

	 3.	 Open Web API appsettings.json from the

downloaded sample.

	 4.	 Add the tenant ID, client ID, and client secret, which

were generated in the previous step.

	 5.	 Add the Web API 2 client ID as the resource ID.

	 6.	 Open the web app’s appsettings.json from the

downloaded sample.

	 7.	 Add the tenant ID, client ID, and client secret, which

were generated in the previous step.

	 8.	 Add the Web API client ID as the resource ID.

Chapter 3 User-Based Authentication for Web Apps

https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI-OnBehalfOf
https://github.com/aadfordevelopers/AadDemos/tree/master/WebApp-WebAPI-OnBehalfOf

102

Your sample is ready to run. Press F5. You are redirected to the index

page, which shows up in the browser, as shown in Figure 3-18. Make sure

both projects are marked as the startup project.

Click the Login button. You are redirected to the Login page. Log in

with your account. After successful authentication, the web app receives

the authentication code. With the help of the authentication code, the ID

token, access token, and refresh token are generated and saved in the user

session on the server. The Login button is hidden, and the Logout button

appears. When you are logged in, your user email address is displayed in

the header, as shown in Figure 3-19.

Figure 3-18.  Home screen

Chapter 3 User-Based Authentication for Web Apps

103

Click the Fetch Values tab. The request goes to the web app controller

and verifies whether the user is authenticated. If not, the user is directed

to the Login page. If the user is successfully authenticated, then the Azure

AD library reads the access token from the cache and verifies whether the

token is valid. If it is not valid, then the token is refreshed using a refresh

token. A valid access token is added in the authentication header and the

HTTP call is sent to the API. The API validates the token, and on successful

validation, the Web API sends the request to the Azure AD authorization

endpoint to fetch the access token for Web API 2 by using user assertion.

The access token is added to the authorization header. The HTTP call is

sent to Web API 2. On successful validation by Web API 2, a response is

returned to the Web API and from the Web API to the web app, as shown in

Figure 3-20.

Figure 3-19.  Home Screen showing logged in user

Chapter 3 User-Based Authentication for Web Apps

104

�Multi-Factor Authentication
Multi-factor authentication (MFA) is the most secure and advanced way

to authenticate. In addition to your credentials, one or more factors are

involved for authentication. None of the factors has any relationship

between them; they are independent. Factors like one-time password

(OTP), security questions, request approval by an Android or iOS

application, or by a phone call and so forth to provide additional security.

�The Need for Multi-Factor Authentication
In the world of information technology, cyber attacks are increasing day

after day. Therefore, it is essential to save our web apps from security

attacks. Single-factor authentication using a username and password for a

web app is not enough to secure it from cyber attacks because of following

reasons.

•	 Passwords are easily guessable.

•	 The same password is used for multiple web sites.

•	 Password theft.

•	 Password “remember” features across devices. If the

device is compromised, then all the web apps for which

a password is secured are compromised automatically.

Figure 3-20.  Result from API 2

Chapter 3 User-Based Authentication for Web Apps

105

•	 Saving all passwords in a single location to refer to

whenever required.

•	 A lot of support is required if the complexity of a

password is increased.

•	 Passwords can be cracked using brute force.

In short, password-based, single-factor authentication is not secure

enough to protect a web application from cyber attacks. It may be good for

applications that don’t require high levels of security, but otherwise, multi-

factor authentication is a necessity.

�Configuring Multi-Factor Authentication
for Azure AD
Microsoft Azure provides multi-factor authentication support for the web

applications secured by Azure Active Directory. MFA can only be enabled

for Work or School Account users. MFA cannot be enabled for external

users because their login policies are managed by their tenant admin.

The following is a step-by-step guide on enabling multi-factor

authentication in a web app secured by Azure Active Directory.

	 1.	 Go to http://portal.azure.com.

	 2.	 Go to Azure Active Directory.

	 3.	 Click Users in the left navigation tab.

	 4.	 Add a new user by using the New User button.

	 5.	 Click the Multi-Factor Authentication tab. You will

see the screen shown in Figure 3-21.

Chapter 3 User-Based Authentication for Web Apps

http://portal.azure.com

106

	 6.	 Select the newly added user (MFA Demo) and

click the Enable button to enable multi-factor

authentication.

	 7.	 After enabling, if you select the same user again, you

see a page with Disable, Enforce, and Manage User

Settings options, as shown in Figure 3-22.

Figure 3-21.  Multi-Factor authentication configuration screen

Figure 3-22.  Multi-factor authentication configuration screen

Chapter 3 User-Based Authentication for Web Apps

107

	 8.	 Enable means that MFA is enabled but may or

may not be enforced. If the user completed the

MFA registration or the admin enforced multi-

factor authentication, then only multi-factor

authentication is enforced.

	 9.	 To change the multi-factor authentication settings,

click Service Settings. The settings are shown in

Figure 3-23.

Figure 3-23.  Multi-factor authentication Settings screen

Enabling multi-factor authentication for Azure AD users is super

easy and doesn’t take much time. It enhances the security of your

authentication to a great extent. It is always preferable to enable

multi-factor authentication.

Chapter 3 User-Based Authentication for Web Apps

108

�Summary
This chapter discussed how to enable Azure AD authentication for

different types of web applications. We started by authenticating single-

page applications using implicit flow, and then moved to web app/Web

API authentication using code grant flow and API/API 2 authentication

using on-behalf-of flow. We also covered how Azure Function is used as an

HTTP endpoint and how to enable Azure AD authentication for an HTTP

triggered Azure Function endpoint.

We discussed why multi-factor authentication is required and how we

can enable users who belong to our Active Directory.

Now let’s move on to user authentication for native apps, such as a

console application, WPF, UWP, or Android.

Chapter 3 User-Based Authentication for Web Apps

109© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_4

CHAPTER 4

User-Based
Authentication for
Native Applications
In Chapter 3, we discussed user authentication on web applications in

detail. In this chapter, we focus on user-based authentication for native

applications by using the authentication flows and OpenID Connect

concepts explained in Chapter 2.

Applications that are designed to run on a specific platform or device

are known as native applications. In today’s constantly evolving world,

a lot of devices run on different operating systems. The most popular

operating systems are Windows, Android, and iOS. Microsoft Azure AD

supports authentication for all the apps built on these operating systems:

console, Windows Presentation Foundation, Universal Windows Platform

for Windows, Android apps for Android, and iOS apps for the iPhone

OS. In this chapter, we cover authentication for the following types of

native applications.

•	 Windows console application: Web API

•	 Windows Presentation Foundation (WPF): Web API

110

•	 Universal Windows Platform (UWP): Azure Function

HTTP endpoint

•	 Android: Azure Function HTTP endpoint

�Authentication Using Code Grant Flow
To authenticate native applications, Microsoft Azure AD uses the

authorization code grant flow specified in the OAuth 2.0 protocol. Code

grant flow was discussed in Chapter 2. Now we will focus on how native

apps can be authenticated by using code grant flow.

When running the native app and doing a secure operation, the user is

redirected to a web-based login pop-up window, in which the user enters

her credentials. On successful validation of the credentials, the native

application receives an authentication code. With the authentication

code, the access token and refresh token are fetched from the Azure AD

authorization endpoint. The access token connects the Web APIs secured

by Azure AD.

Figure 4-1 is a diagram showing the sequence of events that happen

when authenticating native applications using Azure Active Directory.

Chapter 4 User-Based Authentication for Native Applications

111

The following events are performed during authentication.

	 1.	 The user runs the native application.

	 2.	 A request for authorization code is sent to Azure AD.

	 3.	 The user is redirected to a browser pop-up window

asking for credentials.

	 4.	 After the user logs in and the credentials are

successfully validated, Azure AD returns the access

token and the refresh token.

	 5.	 A request with an access token in the authorization

header is sent to the Web API.

	 6.	 The Web API is secured by Azure Active Directory

authentication, which validates the token.

User Native App Azure Active Directory
Authorization Endpoint

Start the application
and perform a secured operation

User enters credentials

Sign in Request

Get authoprization code

Request to Web API with access token
in authorization header

Response from Web API on successful
token validation

Web API

Request authorization code

Ask for login using browser pop up

Browser pops up from Azure AD
asking for login

Request access token using
authorization code

access token and
Refresh Token

After Access token expiration use
Refresh token to acquire

new access token

Token
Validation

Figure 4-1.  Sequence diagram for native app authentication

Chapter 4 User-Based Authentication for Native Applications

112

	 7.	 On successful validation, a response is returned to

the native app.

	 8.	 If the access token has expired, the native app sends

a request to the Azure AD token endpoint to fetch a

new access token through the refresh token.

Now let’s move to authenticating native applications through using the

protocol flow.

�Windows Console Application
A console application is a Windows program that runs on a command

prompt via a command-line user interface. Today, most console

applications are designed to need no user interaction, like a background

process. Azure WebJobs are developed on top of console applications only.

There are some applications designed to need little user interaction. There

are certain scenarios where we need a little user interaction.

To install certificates on a developer’s machine, for example, there are

one-click executables that install all the required certificates kept in a key

vault. The user only needs to run that executable and log in using their

credentials. After successful verification, certificates are downloaded and

installed automatically.

There are other scenarios in which user validation should be done

before executing the console app. To achieve this, Azure AD provides

authentication for console applications.

�Running the Application
To develop a Windows console application using Azure Active Directory

authentication, you need the following software and completed

prerequisites.

Chapter 4 User-Based Authentication for Native Applications

113

•	 Visual Studio 2017 (If you don’t have a license, you can

use the Community edition.)

•	 .NET Core 2.1 SDK

•	 an Azure subscription and Azure AD tenant

•	 a user account in your Azure AD tenant

The first step is to register both the console app and the Web API

application with Azure AD and fill in the configuration accordingly.

�Web API
This is a step-by-step demonstration of registering the Web API with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44300 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission and click the Grant Admin Consent

button. Click Yes to confirm.

Chapter 4 User-Based Authentication for Native Applications

https://portal.azure.com

114

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant

ID from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

The tenant ID is always a valid GUID.

�Console App
The following is a step-by-step demonstration of registering a console

application with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left

navigation pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 Go to API Permission ➤ Add a Permission.

Select an API.

	 9.	 Search the newly added Web API and select the user

impersonation permission.

	 10.	 Grant admin consent by clicking the Grant Admin

Consent button.

Chapter 4 User-Based Authentication for Native Applications

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

115

	 11.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. The key will not be visible again

after you close the tile.

Now the configurations are ready. The next step is to create a

Windows console app and the Web API and enable Azure Active Directory

authentication for it.

�Creating a Console App
After registering your application, follow these steps to create a console

application.

	 1.	 Create a console application using the .NET

Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.org).

	 3.	 Add variables to configure the console app to get an

access token, as follows.

private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

 private static string clientId = "client_id";

 �private static string clientSecret = "client_

secret";

 �static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

 private static string resourceId = "resource_id";

 private static string baseAddress = "api_Url";

Chapter 4 User-Based Authentication for Native Applications

http://www.nuget.org

116

	 4.	 Add a method that generates a token for the Web

API, as follows.

authContext = new AuthenticationContext(authority);

 AuthenticationResult result = null;

 try

 {

 �result = await authContext.AcquireToken

Async(resourceId, clientId, redirect

URI, new PlatformParameters(PromptBeha

vior.Auto));

 }

 catch (Exception ex)

 {

 console.WriteLine("An error occurred.");

 }

A platform parameter takes input as a prompt

behavior. It has four values.

•	 Auto. Acquiring a token prompts the user for

credentials only when necessary. If a token that

meets the requirements is already cached, then the

user is not prompted.

•	 Always. The user is prompted for credentials even if

there is a token that meets the requirements already

in the cache.

•	 Never. The user is not prompted for credentials.

If prompting is necessary, then the AcquireToken

request will fail.

Chapter 4 User-Based Authentication for Native Applications

117

•	 Refresh. Reauthorizes (through displaying a web

view) the resource usage, making sure that the

resulting access token contains updated claims.

If user logon cookies are available, the user is not

asked for credentials again, and the logon dialog

dismisses automatically.

The next step calls the Web API to do the operation. Let’s create the

Web API, which is secured by Azure AD.

�Creating a Web API
After creating a Windows console app, follow these steps to create

a Web API.

	 1.	 Create a Web API MVC application using .NET

Core 2.0.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.

org).

	 3.	 Add the AzureAdOptions class to read the config, as

shown in the following format.

public class AzureAdOptions

 {

public string ClientId { get; set; }

public string ClientSecret { get; set; }

public string Instance { get; set; }

public string Domain { get; set; }

public string TenantId { get; set; }

 }

Chapter 4 User-Based Authentication for Native Applications

http://www.nuget.org
http://www.nuget.org

118

	 4.	 Add configurations in appsettings.json in the

following format. Fill in the configuration values as

per the registration done in the previous step.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "Domain": "domain",

 "TenantId": "tenantId",

 "ClientId": "resourceId"

 }

	 5.	 Add the Extension method to configure the JWT

options, as follows.

 �public static class AzureAdServiceCollection

Extensions

{

public static AuthenticationBuilder AddAzureAdBearer

(this AuthenticationBuilder builder)

=> builder.AddAzureAdBearer(_ => { });

public static AuthenticationBuilder AddAzure

AdBearer(this AuthenticationBuilder builder,

Action<AzureAdOptions> configureOptions)

{

builder.Services.Configure(configureOptions);

builder.Services.AddSingleton<IConfigureOptions

<JwtBearerOptions>, ConfigureAzureOptions>();

builder.AddJwtBearer();

return builder;

}

private class ConfigureAzureOptions: IConfigureNamed

Options<JwtBearerOptions>

Chapter 4 User-Based Authentication for Native Applications

119

{

private readonly AzureAdOptions _azureOptions;

public ConfigureAzureOptions(IOptions<AzureAdOptions>

azureOptions)

{

_azureOptions = azureOptions.Value;

}

public void Configure(string name, JwtBearerOptions

options)

{

options.Audience = _azureOptions.ClientId;

options.Authority = $"{_azureOptions.Instance}{_

azureOptions.TenantId}";

}

public void Configure(JwtBearerOptions options)

{

Configure(Options.DefaultName, options);

}

}

}

This code configures the JWT Bearer authentication

scheme. The client ID from AppSettings acts as the

audience. The AddJwtBearer method is provided by

Microsoft.AspNetCore.Authentication.Jwt Bearer.

This method automatically downloads the public

key based on the tenant ID provided, reads the

token in the header, and validates it using public

keys. If the validation is successful, then claims

obtained from the JWT token are added in the user

claims context; otherwise, a 401 error is returned.

Chapter 4 User-Based Authentication for Native Applications

120

	 6.	 Add the following code in startup.cs to read the

configuration and call the Extension method to pass

the configuration.

services.AddAuthentication(sharedOptions =>

{

 �sharedOptions.DefaultScheme = JwtBearer

Defaults.AuthenticationScheme;

})

.AddAzureAdBearer(options => Configuration.Bind

("AzureAd", options));

Your Web API is secured by Azure AD. Add a controller and expose a

Web API method.

If you face any difficulty in following these steps, please download the

code from the GitHub repository at

https://github.com/aadfordevelopers/AadDemos/tree/master/

consoleAppAuthentication.

To run the sample code, download it and add the configuration in the

code. Follow these steps to add the configuration.

	 1.	 Open the Web API’s appsettings.json from the

downloaded sample.

	 2.	 Add the tenant ID and client ID, which were

obtained in the previous step.

	 3.	 Open the Windows console app’s program.cs from

the downloaded sample.

	 4.	 Add the tenant ID, resource ID, and client ID, which

were obtained in the previous steps.

Now your sample is ready to run. Press F5. The Command prompt

screen is shown (see Figure 4-2). Make sure that both projects are marked

as startup projects.

Chapter 4 User-Based Authentication for Native Applications

https://github.com/aadfordevelopers/AadDemos/tree/master/consoleAppAuthentication
https://github.com/aadfordevelopers/AadDemos/tree/master/consoleAppAuthentication

121

Press Enter. A call will go to the Microsoft Azure AD authorization

endpoint, which will ask the user to log in using a web pop-up window, as

shown in Figure 4-3.

Figure 4-2.  Console app command-line interface

Chapter 4 User-Based Authentication for Native Applications

122

The user enters credentials and submits them. On successful

validation of the credentials, Azure AD issues the authorization code. The

authorization code in the console app requests an access token. After

receiving an access token from AD, a request is sent to the Web API to fetch

the data. The Web API validates the access token; on successful validation,

data is returned and shown on the screen (see Figure 4-4).

Figure 4-3.  Login screen in web pop-up window

Chapter 4 User-Based Authentication for Native Applications

123

�Windows Presentation Foundation (WPF)
Windows Presentation Foundation (WPF) was launched in 2006 with .NET

Framework 3.0. WPF is the upgraded name for Avalon. It is a graphical

subsystem for Microsoft Windows to render UI. WPF uses an XAML

(Extensible Application Markup Language)–based language to define and

render the UI. In December 2018, Microsoft announced WPF as an open

source project on GitHub.

WPF is widely used to develop desktop applications in the industry.

Lots of companies have invested heavily in desktop applications in

WPF. WPF applications are used in manufacturing, auditing, and finance.

To connect to the Web API from WPF, Microsoft Azure AD provides

Azure AD authentication for WPF. Since WPF is a native Windows desktop

app, the same protocol flow explained at the start of this chapter is used.

Figure 4-4.  Response from API

Chapter 4 User-Based Authentication for Native Applications

124

�Running the Application
The prerequisites are the same as those mentioned in previous

demonstrations. The first step is to register both the WPF app and the Web

API application with Azure AD and fill in the configurations accordingly.

�Web API
This is a step-by-step demonstration of registering the Web API with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44300 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission and click the Grant Admin Consent

button. Click Yes to confirm.

Chapter 4 User-Based Authentication for Native Applications

https://portal.azure.com

125

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant

ID from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

The tenant ID is always a valid GUID.

�WPF App
This is a step-by-step demonstration of registering a WPF application with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left

navigation pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 Go to API Permission ➤ Add a Permission. Select

an API.

	 9.	 Search the newly added Web API and select the user

impersonation permission.

	 10.	 Grant admin consent by clicking the Grant Admin

Consent button.

Chapter 4 User-Based Authentication for Native Applications

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

126

	 11.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. The key will not be visible again

after you close the tile.

Now the configurations are ready. The next step is to create a WPF app

and the Web API and enable Azure Active Directory authentication for it.

�Creating a WPF App
After registering your application, follow these steps to create a WPF

application.

	 1.	 Create a WPF application using the .NET

Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.org).

	 3.	 Add variables to configure the WPF app to get an

access token, as follows.

private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

 private static string clientId = "client_id";

 �private static string clientSecret = "client_

secret";

 �static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

 �private static string resourceId = "resource_

id";

 private static string baseAddress = "api_Url";

Chapter 4 User-Based Authentication for Native Applications

http://www.nuget.org

127

	 4.	 Add a button and a textbox in MainWindow.xaml.cs.

	 5.	 Clicking the button fetches the access token from

Azure AD. Use the following code.

private void Button_Click(object sender,

RoutedEventArgs e)

 {

 �authContext = new AuthenticationContext

(authority);

 txtData.Text = "Fetching Data......";

 GetData();

 }

GetData function internally will call the Azure AD to

fetch the access token.

AuthenticationResult result = null;

 try

 {

 �result = await authContext.AcquireToken

Async(resourceId, clientId, redirect

URI, new PlatformParameters(Prompt

Behavior.Auto));

 }

 catch (Exception ex)

 {

 txtData.Text = "An error occurred.";

 }

The platform parameters value is the same as it is in

the console app.

Chapter 4 User-Based Authentication for Native Applications

128

	 6.	 After fetching the access token, send an HTTP

request to the Web API by adding an access token in

the authorization header. This displays the result in

the textbox.

�Creating a Web API
After creating a WPF app, follow the same steps as previously shown to

create a Web API.

If you face any difficulty in following these steps, please download the

code from the GitHub repository at

https://github.com/aadfordevelopers/AadDemos/tree/master/

WpfAuthentication.

To run the sample code, download it and add the configuration in the

code. Follow these steps to add the configuration.

	 1.	 Open the Web API’s appsettings.json from the

downloaded sample.

	 2.	 Add the tenant ID and client ID, which were

obtained in the previous step.

	 3.	 Open the WPF app’s MainWindow.xaml.cs from the

downloaded sample.

	 4.	 Add the tenant ID, resource ID, and client ID, which

were obtained in previous steps.

Now your sample is ready to run. Press F5. The WPF Home screen is

shown (see Figure 4-5). Make sure that both projects are marked as startup

projects.

Chapter 4 User-Based Authentication for Native Applications

https://github.com/aadfordevelopers/AadDemos/tree/master/WpfAuthentication
https://github.com/aadfordevelopers/AadDemos/tree/master/WpfAuthentication

129

Click the “Fetch Data from API” button. The call goes to the Microsoft

Azure AD authorization endpoint, which asks the user to log in using a

web pop-up window, as shown in Figure 4-6.

Figure 4-5.  WPF Home screen

Chapter 4 User-Based Authentication for Native Applications

130

The user enters the credentials and submits them. On successful

validation of the credentials, Azure AD issues the authorization code.

The authorization code in the WPF app requests an access token. After

receiving the access token from AD, the request is sent to the Web API to

fetch the data. The Web API validates the access token, and on successful

validation, the data is returned and shown on screen (see Figure 4-7).

Figure 4-6.  Login screen in web pop-up window

Chapter 4 User-Based Authentication for Native Applications

131

�Universal Windows Platform (UWP)
There are different types of devices running on Windows 10, such as

mobile devices, tablets, surface devices, laptops, TVs, and so forth.

Designing an app for each device again and again would take a lot of

development effort. To solve this problem, Microsoft came up with

Universal Windows Platform (UWP) applications, which are designed to

run on any device using the Windows 10 OS.

Figure 4-7.  Data from API

Chapter 4 User-Based Authentication for Native Applications

132

UWP also uses XAML. With UWP, you can design beautifully polished

applications that automatically adapt to the device on which it is running.

With UWP, you can design applications for IoT devices, mobile devices,

PCs, tablets, surface devices, Xbox, HoloLens, and any other device

running on Windows 10. UWP aligns with the One Windows Platform

Microsoft policy. The following are some of the features provided by UWP.

•	 Adaptive user interface

•	 Natural user input based on the device

•	 One SDK

•	 One store and one dev center

UWP applications can be written in many different languages,

including C#, C++, Visual Basic, and JavaScript. In this chapter, we will

develop a small UWP app based on C# and XAML, which will fetch data

from an HTTP triggered function secured by Azure Active Directory. We

are using an HTTP triggered Azure function instead of the Web API; a UWP

application cannot communicate with a localhost API due to enhanced

security.

�Running the Application
To develop a Universal Windows Platform application using Azure Active

Directory authentication, you need the following software and completed

prerequisites.

•	 Visual Studio 2017 (If you don’t have a license, you can

use the Community edition.)

•	 .NET Core 2.1 SDK

Chapter 4 User-Based Authentication for Native Applications

133

•	 UWP SDK (This is installed using a Visual Studio

installer. Open the Visual Studio 2017 installer from

the Start menu by typing “Visual Studio Installer” or by

opening Visual Studio and going to Tools ➤ Get Tools

and Features. Look for UWP and install all the SDKs

related to UWP.)

•	 an Azure subscription and an Azure AD tenant

•	 a user account in your Azure AD tenant

The first step is to register both the UWP app and Azure AD Function

application with Azure AD and fill in the configurations accordingly.

�HTTP Triggered Azure Function Endpoint
The following is a step-by-step demonstration of registering an HTTP

triggered Azure Function app with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left

navigation pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44364 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

Chapter 4 User-Based Authentication for Native Applications

https://portal.azure.com

134

	 9.	 Grant permissions to your application in API

Permission and click the Grant Admin Consent

button. Click Yes to confirm.

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant

ID from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

The tenant ID is always a valid GUID.

�UWP App
The following is a step-by-step demonstration of registering a UWP

application with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 Go to API Permission ➤ Add a Permission. Select an API.

	 9.	 Search the newly added HTTP triggered Azure

function app and select the user impersonation

permission.

Chapter 4 User-Based Authentication for Native Applications

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

135

	 10.	 Grant admin consent by clicking the Grant Admin

Consent button.

	 11.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. The key will not be visible again

after you close the tile.

Now the configurations are ready. The next step is to create a UWP app

and an HTTP triggered Azure function and enable Azure Active Directory

authentication for it.

�Creating a UWP App
After registering your application, follow these steps to create a UWP

application.

	 1.	 Create a UWP application using the .NET

Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.Active

Directory package from NuGet (www.nuget.org).

	 3.	 Add variables to configure the UWP app to get an

access token, as follows.

private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

 private static string clientId = "client_id";

 �private static string clientSecret = "client_

secret";

 �static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

Chapter 4 User-Based Authentication for Native Applications

http://www.nuget.org

136

 private static string resourceId = "resource_id";

 private static string baseAddress = "api_Url";

private Uri redirectURI = null;

	 4.	 Fetch the redirect URI value using the following

code in the constructor.

redirectURI = Windows.Security.Authentication.

Web.WebAuthenticationBroker.GetCurrentApplication

CallbackUri();

	 5.	 While running the application, add a breakpoint

on the preceding line, note the redirect URI, and

update the same in the Azure portal. This is because

a reply URI or redirect URI is generated at run

time; the same should be updated in the Azure app

registration.

	 6.	 Add a button and textbox in MainWindow.xaml.cs.

	 7.	 Clicking the button fetches the access token from

Azure AD. Use the following code.

private void Button_Click(object sender, Routed

EventArgs e)

 {

 GetData();

 }

GetData is an async function that internally calls

Azure AD to fetch the access token.

AuthenticationResult result = null;

 try

 {

Chapter 4 User-Based Authentication for Native Applications

137

 �result = await authContext.AcquireToken

Async(resourceId, clientId,

redirectURI, new PlatformParameters

(PromptBehavior.Auto));

 }

 catch (Exception ex)

 {

 txtData.Text = "An error occurred.";

 }

The platform parameters value is the same as the

one in the console app.

	 8.	 After fetching an access token, send the HTTP

request to the Web API by adding an access token in

the authorization header. This displays the result in

the textbox.

�Creating an HTTP Triggered Azure Function
The next step is to create and configure an HTTP triggered Azure function

endpoint.

	 1.	 Go to http://portal.azure.com.

	 2.	 Create a function app with default options. Make

sure the runtime stack is .NET.

	 3.	 In the Azure function app, add an HTTP trigger

Azure function.

	 4.	 Use the default C# code that is already there; only

change the object result to $“Hello, {name}. This is a

response from the Azure function.”

Chapter 4 User-Based Authentication for Native Applications

http://portal.azure.com

138

	 5.	 Note the Azure AD function app URL by clicking the

“Get function” link.

	 6.	 Click Integrate and select Anonymous as the

authorization level, as shown in Figure 4-8.

	 7.	 Go to Function app ➤ Platform Features, and then

Select Authentication/Authorization.

	 8.	 Enable app service authentication.

	 9.	 Choose Azure Active Directory as the authentication

provider (see Figure 4-9).

Figure 4-8.  Authorization screen for HTTP triggered Azure
function

Chapter 4 User-Based Authentication for Native Applications

139

	 10.	 Add the client ID, which you generated in the

previous step when registering the Azure function

app with Azure AD.

	 11.	 Add the issuer URL as https://login.windows.

net/{tenantId}.

Figure 4-9.  Authentication/Authorization for Azure Function

Chapter 4 User-Based Authentication for Native Applications

https://login.windows.net/{tenantId}
https://login.windows.net/{tenantId}

140

	 12.	 In the “Action to take when the request is not

authenticated” drop-down menu, select “Log in

with Azure Active Directory”.

	 13.	 Click Save (see Figure 4-10).

Figure 4-10.  Azure Active Directory authentication configuration for
Azure Function

If you face any difficulty in following these steps, please download the

code from GitHub at https://github.com/mohit797/AadDemos/tree/

master/UWPAuthentication.

Before opening the solution, make sure that you have installed the

latest version of Visual Studio 2019 SDKs for UWP.

Chapter 4 User-Based Authentication for Native Applications

https://github.com/mohit797/AadDemos/tree/master/UWPAuthentication
https://github.com/mohit797/AadDemos/tree/master/UWPAuthentication

141

To run the sample code, download it and follow these steps to add the

configuration.

	 1.	 Open MainPage.xaml.cs from the downloaded

sample.

	 2.	 Add the tenant ID, resource ID, and client ID, which

were obtained in previous steps.

Now your sample is ready to run. Press F5. The UWP app screen is

shown in Figure 4-11.

Click the “Fetch Data from API” button. The call goes to the Microsoft

Azure AD authorization endpoint, which asks the user to log in using a

web pop-up window, as shown in Figure 4-12.

Figure 4-11.  UWP Home screen

Chapter 4 User-Based Authentication for Native Applications

142

The user enters the credentials and submits them. On successful

validation of the credentials, Azure AD issues the authorization code.

The authorization code in the UWP app requests an access token. After

receiving the access token from AD, the request is sent to the HTTP

triggered Azure function to fetch the data. The Azure function validates the

access token. On successful validation, the data is returned and shown on

the screen (see Figure 4-13).

Figure 4-12.  Login using web pop-up window

Chapter 4 User-Based Authentication for Native Applications

143

�Android Application
Android is one of the most popular and most used mobile and tablet

operating systems in the world. A lot of applications are developed in

Android on a daily basis. Windows and iOS are two other operating

systems that are equally popular.

Developing the same application for these three operating systems

consumes a lot of human effort if developed separately. Microsoft came up

with a platform that can deliver native apps for Android, iOS, and Windows

by using a single .NET code base called Xamarin.

Applications using Xamarin can be developed on Windows or Mac.

Apps developed with Xamarin offer the following features.

•	 Native UI

•	 Native API access

•	 Native performance

Next, we discuss how Android apps are authenticated using Xamarin

and Microsoft Azure Active Directory. Android fetches the data from an

HTTP triggered Azure function secured by Azure AD.

Figure 4-13.  Data from HTTP triggered Azure function

Chapter 4 User-Based Authentication for Native Applications

144

�Running the Application
To develop an Android application using Xamarin and Azure Active

Directory authentication, you need the following software and completed

prerequisites.

•	 Visual Studio 2017 (If you don’t have a license, you can

use the Community edition).

•	 .NET Core 2.1 SDK

•	 Xamarin SDK (It can be installed using a Visual Studio

installer. You can open the Visual Studio 2017 installer

either from the Start menu by typing “Visual Studio

Installer” or by opening Visual Studio and then Tools ➤

Get Tools and Features. Look for Xamarin and install all

the SDKs related to Android development.)

•	 an Azure Subscription and an Azure AD tenant

•	 a user account in your Azure AD tenant

The first step is to register both the Android app and the Azure

AD Function application with Azure AD and fill in the configurations

accordingly.

�HTTP Triggered Azure Function Endpoint
The following is a step-by-step demonstration of registering an HTTP

triggered Azure Function app with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

Chapter 4 User-Based Authentication for Native Applications

https://portal.azure.com

145

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44364 as the redirect

URL, and choose Web in the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission and click the Grant Admin Consent

button. Click Yes to confirm.

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant

ID from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

The tenant ID is always a valid GUID.

�Android App
The following is a step-by-step demonstration of registering an Android

application with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left

navigation pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

Chapter 4 User-Based Authentication for Native Applications

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

146

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 Go to API Permission ➤ Add a Permission.

Select an API.

	 9.	 Search the newly added HTTP triggered Azure

function app and select the user impersonation

permission.

	 10.	 Grant admin consent by clicking the Grant Admin

Consent button.

	 11.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click Add. Copy the key and save it

in a secured place. The key will not be visible again

after you close the tile.

Now the configurations are ready. The next step is to create an Android

app and an HTTP triggered Azure function and enable Azure Active

Directory authentication for it.

�Creating an Android App
After registering your application, follow these steps to create an Android

application.

	 1.	 Create an Android application using the .NET

Framework.

	 2.	 Add a .NET Standard Class Library project and install

the Microsoft.IdentityModel.Clients.ActiveDirectory

package from NuGet (www.nuget.org).

Chapter 4 User-Based Authentication for Native Applications

http://www.nuget.org

147

	 3.	 Refer to the project in Android Project.

	 4.	 Add a static class in the Class library project.

	 5.	 Add variables in the static class to configure the

Android app to get an access token, as follows.

const string clientId = "clientId";

const string authority = "https://login.microsoft

online.com/common/";

const string resourceId = "resourceId";

const string baseAddress = "https://azurefunctionauth.

azurewebsites.net/api/HttpTrigger1";

static Uri redirectURI = new Uri("https://login.

microsoftonline.com/common/oauth2/nativeclient");

	 6.	 Add a method in the static class, which accepts

platform parameters as input and gets the access

token from Azure AD. Use the following code.

AuthenticationContext authContext = new Authentication

Context(authority);

AuthenticationResult result = await authContext.

AcquireTokenAsync(resourceId, clientId, redirectURI,

platformParameters);

	 7.	 The platform parameters value is the same as the

one in the console app.

	 8.	 Add a button and a textbox in the Android app.

In the Activity class, clicking the button fetches

the access token by passing platform parameters

like "new PlatformParameters(this)". this

refers to the Activity class, which inherits from

AppCompatActivity.

Chapter 4 User-Based Authentication for Native Applications

148

	 9.	 To receive the authentication callback after

entering the username and password, the following

code is required in the Activity class. It sets the

authentication response from the web view for an

acquisition token.

protected override void OnActivityResult(int

requestCode, Result resultCode, Intent data)

 {

 �base.OnActivityResult(requestCode,

resultCode, data);

 �AuthenticationAgentContinuationHelper.

SetAuthenticationAgentContinuationEvent

Args(requestCode, resultCode, data);

 }

�Creating an HTTP Triggered Azure Function
The next step is to create an HTTP triggered Azure function endpoint.

Follow the same steps to create an HTTP triggered Azure function that

were used for developing an UWP application.

If you face any difficulty in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/AndroidAuthentication.

Before opening the solution, make sure that you have installed the latest

version of the Visual Studio 2019 SDKs for the Xamarin Android platform.

To run the sample code, download it and follow these steps to add the

configuration.

	 1.	 Open FetchDataFromAPI.cs from the downloaded

sample.

	 2.	 Add the tenant ID, resource ID, and client ID, which

were obtained in previous steps.

Chapter 4 User-Based Authentication for Native Applications

https://github.com/aadfordevelopers/AadDemos/tree/master/AndroidAuthentication
https://github.com/aadfordevelopers/AadDemos/tree/master/AndroidAuthentication

149

Now your sample is ready to run. To run the sample, connect your

Android mobile device to your laptop using a USB cable. The mobile device

needs to be running (at a minimum) version 8.1 (Oreo) with developer

options on. Or, set up an Android emulator with version 8.1 (Oreo).

Note S etting up an Android emulator or an installing emulator is
not within the scope of this book. Please refer to https://docs.
microsoft.com/en-us/xamarin/android/ for further help.

To demo this solution, we have installed the app on a mobile device

running version 9.0. When users open the app in Android, they see the

screen shown in Figure 4-14.

Figure 4-14.  Android app Home screen

Click the Fetch Data button. The call goes to the Microsoft Azure AD

authorization endpoint, which redirects the user to the Login page, as

shown in Figure 4-15.

Chapter 4 User-Based Authentication for Native Applications

https://docs.microsoft.com/en-us/xamarin/android/
https://docs.microsoft.com/en-us/xamarin/android/

150

The user enters the credentials and submits them. On successful

validation of the credentials, Azure AD issues the authorization code.

The authorization code in the Android app requests an access token.

After receiving an access token from AD, the request is sent to the HTTP

triggered Azure function to fetch the data. The Azure function validates the

access token, and on successful validation, the data is returned and shown

on the screen (see Figure 4-16).

Figure 4-15.  Login screen inside Android application

Chapter 4 User-Based Authentication for Native Applications

151

�Summary
This chapter showed you how to enable user-based Azure AD

authentication for native applications. All native applications follow an

authorization code grant flow in an OAuth 2.0 specification. We started

with a console application and WPF application. We moved on to

Universal Windows Platform for all Windows devices, and then to Android

authentication using Xamarin, which can be extended to iOS and Windows

applications as well.

In the next chapter, we discuss authentication for daemon applications

(applications authenticating without any user interaction).

Figure 4-16.  Data from HTTP triggered Azure function

Chapter 4 User-Based Authentication for Native Applications

153© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_5

CHAPTER 5

Daemon Application
Authentication
In the previous chapters, we discussed various, user-based, authentication

scenarios for different web applications and native applications. In this

chapter, we focus on daemon application authentication. A daemon

application is a background process or application that runs without user

interaction.

Azure WebJobs, Azure Functions, background processes, and so forth,

are applications that run without direct user interaction. To secure the

communication of these background applications with other Web APIs, a

client credential flow from OAuth 2.0 (explained in Chapter 2) can be used

with Microsoft Azure AD. In this chapter, we cover daemon authentication

using the following methods.

•	 Client credential authentication

•	 Certificate-based client credential authentication

�Client Credential Authentication Flow
A client credential authentication flow is used when there is a need for

running a background or headless job, or for running a process in the

application’s identity instead of the user’s identity. The following are some

examples of where client credential authentication flow is needed.

154

•	 Azure Functions

•	 Azure WebJobs

•	 Integration tests

•	 A web app communicating with the Web API in an

application’s context (to get user-independent data and

application-dependent data).

Figure 5-1 is a diagram showing the sequence of events that happen

when authenticating daemon applications using Azure Active Directory.

Any
Application

Azure Active Directory
Authorization Endpoint

Request to Web API with access token
in authorization header

Response from Web API on successful
token validation

Web API

Request access token using
client ID and client secret

Access Token

Token
Validation

Figure 5-1.  Sequence diagram for daemon application
authentication

The following sequence of events are performed during

authentication.

	 1.	 As soon as the background process starts, the

request is sent to Azure AD with the client ID and

client secret to get the access token.

	 2.	 The request with the access token in the

authorization header is sent to the Web API.

Chapter 5 Daemon Application Authentication

155

	 3.	 The Web API is secured by Azure Active Directory

authentication, which validates the token.

	 4.	 On successful validation, the response is returned to

call the application.

�Running Your Application
To develop a Windows console application using Azure Active Directory

daemon authentication, you need the following software and completed

prerequisites.

•	 Visual Studio 2017 (If you don’t have a license, you can

use the Community edition for learning.)

•	 .NET Core 2.1 SDK

•	 an Azure subscription and Azure AD tenant

•	 a user account in your Azure AD tenant

To run the application and do the authentication using client

credential flow, you need to register both the console app and the

Web API application with Azure AD. The next section is a step-by-step

demonstration of registering your applications with Azure AD.

�Web API
The following is a step-by-step demonstration of registering the Web API

with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

Chapter 5 Daemon Application Authentication

https://portal.azure.com

156

	 4.	 Click New Registration.

	 5.	 Enter the name for your application, which can be

changed later.

	 6.	 Enter https://localhost:44300 as the redirect

URL, and choose Web from the drop-down menu.

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission. Click the Grant Admin Consent button.

Click Yes to confirm.

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant

ID from any URL. A sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

Tenant ID is always a valid GUID.

�Console App
Please follow these steps to register a console app with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

Chapter 5 Daemon Application Authentication

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

157

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 8.	 For client credential flow, the user impersonation

permission is not required because there is no user

involved.

	 9.	 Generate the client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration and click Add.

	 10.	 Copy the key and save it in a secure place. This key

will not be visible again after you close the tile.

The configurations are ready. The next step is to create the

Windows console app and Web API and enable Azure Active Directory

authentication for it.

�Creating a Console App
After registering your application, follow these steps to create a console

application.

	 1.	 Create a console application using .NET Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.

ActiveDirectory package from NuGet (www.nuget.org).

	 3.	 Add variables to configure the console app to get the

access token, as shown next.

 �private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

Chapter 5 Daemon Application Authentication

http://www.nuget.org

158

 private static string clientId = "client_id";

 �private static string clientSecret = "client_

secret";

 �static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

 �private static string resourceId =

"resource_id";

 private static string baseAddress = "api_Url";

	 4.	 Add a method that will generate a token for the Web

API, as shown next.

authContext = new AuthenticationContext(authority);

 AuthenticationResult result = null;

 try

 {

 �ClientCredential clientCredential =

new ClientCredential(clientId,

clientSecret);

 �var authResult = autheContext.

AcquireTokenAsync(resourceId,

clientCredential).Result;

 }

 catch (Exception ex)

 {

 Console.WriteLine("An error occurred.");

 }

The next step is to call a Web API to do the operation. Let’s create a

Web API that is secured by Azure AD.

Chapter 5 Daemon Application Authentication

159

�Creating a Web API
After creating the Windows console app, follow these steps to create

a Web API.

	 1.	 Create a Web API MVC application using .NET Core

2.0.

	 2.	 Install the Microsoft.IdentityModel.Clients.Active

Directory package from NuGet (www.nuget.org).

	 3.	 Add the AzureAdOptions class to read the config, as

shown in the following format.

public class AzureAdOptions

 {

public string ClientId { get; set; }

public string ClientSecret { get; set; }

public string Instance { get; set; }

public string Domain { get; set; }

public string TenantId { get; set; }

 }

	 4.	 Add the configuration in appsettings.json in the

following format. Fill the configuration values as per

the registration done in the previous step.

"AzureAd": {

 "Instance": "https://login.microsoftonline.com/",

 "Domain": "domain",

 "TenantId": "tenantId",

 "ClientId": "resourceId"

 }

Chapter 5 Daemon Application Authentication

http://www.nuget.org

160

	 5.	 Add the Extension method to configure the JWT

options, as shown next.

 �public static class AzureAdServiceCollection

Extensions

{

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder)

=> builder.AddAzureAdBearer(_ => { });

public static AuthenticationBuilder

AddAzureAdBearer(this AuthenticationBuilder builder,

Action<AzureAdOptions> configureOptions)

{

builder.Services.Configure(configureOptions);

builder.Services.AddSingleton<IConfigureOptions

<JwtBearerOptions>, ConfigureAzureOptions>();

builder.AddJwtBearer();

return builder;

}

private class ConfigureAzureOptions: IConfigureNamed

Options<JwtBearerOptions>

{

private readonly AzureAdOptions _azureOptions;

public ConfigureAzureOptions(IOptions<AzureAdOptions>

azureOptions)

{

_azureOptions = azureOptions.Value;

}

public void Configure(string name, JwtBearerOptions

options)

Chapter 5 Daemon Application Authentication

161

{

options.Audience = _azureOptions.ClientId;

options.Authority = $"{_azureOptions.Instance}{_

azureOptions.TenantId}";

}

public void Configure(JwtBearerOptions options)

{

Configure(Options.DefaultName, options);

}

}

}

This code configures the JWT bearer authentication scheme. The client

ID from appsettings.json acts as the audience.

The AddJwtBearer method is provided by Microsoft.AspNetCore.

Authentication.JwtBearer. This method automatically downloads the

public key based on the tenant ID.

Read the token from the header and validate it using public keys. If the

validation is successful, then claims obtained from the JWT token will be

added in the user claims context; otherwise, a 401 error will be returned.

	 6.	 Add the following code to startup.cs to read the

configuration and call the extension method to pass

the configuration.

services.AddAuthentication(sharedOptions =>

{

 sharedOptions.DefaultScheme =

JwtBearerDefaults.AuthenticationScheme;

})

.AddAzureAdBearer(options => Configuration.

Bind("AzureAd", options));

Chapter 5 Daemon Application Authentication

162

Your Web API is secured by Azure AD. Add a controller and expose a

Web API method.

If you face any difficulties in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/ClientCredential.

To run the sample code, download it as directed and add the

configuration. Follow these steps to add the configuration.

	 1.	 Open appsettings.json in the Web API from the

downloaded sample.

	 2.	 Add the tenant ID and the client ID obtained in the

previous step.

	 3.	 Open program.cs from the Windows console app in

the downloaded sample.

	 4.	 Add the tenant ID, resource ID, and client ID

obtained in the previous steps.

Now your sample is ready to run. Press F5. The Command Prompt

screen appears, as shown in Figure 5-2. Make sure that both projects are

marked as a startup project.

Chapter 5 Daemon Application Authentication

https://github.com/aadfordevelopers/AadDemos/tree/master/ClientCredential
https://github.com/aadfordevelopers/AadDemos/tree/master/ClientCredential

163

Press Enter. The call goes to the Microsoft Azure AD authorization

endpoint using a client credential flow. On the successful validation of the

credentials, Azure AD will issue an access token. After receiving the access

token from AD, a request is sent to the Web API to fetch the data. The

Web API validates the access token; on successful validation, the data is

returned, as shown in Figure 5-3.

Figure 5-2.  Console app command-line interface

Chapter 5 Daemon Application Authentication

164

Even though the client credential flow is totally secure, if a secret is

leaked, the APIs could be easily compromised without anyone knowing.

The user will not discover this until after the damage is done. Instead of

using a client secret in the client credential flow, a better approach is to use

certificates. Certificates can be installed on a local machine or reside in an

Azure key vault.

�Client Credential Authentication Flow Using
a Certificate
In certificate-based client credential flow, the certificate acts as a client

secret. During the authentication process, it reads the certificate from the

local machine and passes the certificate to Azure AD to receive the access

token. Certificates are linked to the Azure AD app.

Figure 5-3.  Response from API

Chapter 5 Daemon Application Authentication

165

The diagram in Figure 5-4 shows the sequence of events that happen

when performing certificate-based client credential authentication for

daemon applications using Azure Active Directory.

Application Azure Active Directory
Authorization Endpoint

Request to Web API with access token
in authorization header

Response from Web API on successful
token validation

Token
Validation

Web API

Request access token using
client ID and client secret

Access Token

Read certificate
from local store

using thumbprint

Figure 5-4.  Sequence diagram for client credential app
authentication using certificates

The following sequence of events are performed during

authentication.

	 1.	 The background process tries to find the certificate

from the local store by using a thumbprint.

	 2.	 The request is sent to Azure AD with the client ID

and certificate to get an access token.

	 3.	 The request for an access token in the authorization

header is sent to the Web API.

Chapter 5 Daemon Application Authentication

166

	 4.	 The Web API secured by Azure Active Directory

authentication validates the token.

	 5.	 On successful validation, a response is returned to

call the application.

�Running Your Application
To run the application and authenticate using a client credential flow, you

need to register both the console app and the Web API application with

Azure AD. Also, you need to generate a certificate and link it to the Azure

AD client app by using a manifest.

Here is a step-by-step demonstration of generating a certificate and

registering your applications with Azure.

	 1.	 Open Windows PowerShell from the Start menu.

	 2.	 Execute the following PowerShell command:

"$cert=New-SelfSignedCertificate -Subject

"CN=CertificateClient" -CertStoreLocation

"Cert:\CurrentUser\My" -KeyExportPolicy

Exportable -KeySpec Signature"

The command creates a self-signed certificate in

your local computer under the current user. The

certificate key is exportable. Certificate keys are

exported and added in the Azure app manifest.

	 3.	 Execute the following commands to export the keys

from the certificate in the same PowerShell window.

•	 $cerRawData = $cert.RawData

•	 $value = [System.Convert]::ToBase64String($

cerRawData)

•	 $hash = $cert.GetCertHash()

Chapter 5 Daemon Application Authentication

167

•	 $base64Thumbprint = [System.Convert]::ToBas

e64String($hash)

•	 $keyid = [System.Guid]::NewGuid().

ToString()

•	 $jsonObj = @{customKeyIdentifier=$base64Thu

mbprint;keyId=$keyid;type="AsymmetricX509Ce

rt";usage="Verify";value=$value}

•	 $certificateKeys=ConvertTo-Json @($jsonObj)

| Out-File "certificateKeys.txt"

The certificate keys are saved on your local machine; they are in

JSON format.

Now you need to upload these keys in the client app manifest.

The steps in the next section create the app and upload the keys in the

manifest. Before that, the API Azure AD application should be there.

�Web API
Here is the step-by-step demonstration of registering the Web API with

Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your application, which can be

changed later.

	 6.	 Enter https://localhost:44300 as the redirect

URL, and choose Web from the drop-down menu.

Chapter 5 Daemon Application Authentication

https://portal.azure.com

168

	 7.	 Click Register.

	 8.	 Copy the application ID. It is the client ID for your

application and required for token validation.

	 9.	 Grant permissions to your application in API

Permission. Click the Grant Admin Consent button.

Click Yes to confirm.

	 10.	 To find the tenant ID, go to App Registrations,

click Endpoints, and fetch the tenant ID

from any URL. The sample format is at

https://login.microsoftonline.com/

{tenantId}/federationmetadata/2007-06/

federationmetadata.xml.

The tenant ID is always a valid GUID.

�Console App
The following is a step-by-step demonstration of registering a console

application with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left

navigation pane.

	 3.	 Click App Registrations.

	 4.	 Click New App Registration.

	 5.	 Enter the name of your native app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID for your

application and required for token validation.

Chapter 5 Daemon Application Authentication

https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://login.microsoftonline.com/{tenantId}/federationmetadata/2007-06/federationmetadata.xml
https://portal.azure.com

169

	 8.	 For a client credential flow using certificates, user

impersonation permission is not required because

there is no user involved.

	 9.	 Now upload the keys generated in the previous step

in the manifest. Go to Manifest ➤ Edit.

	 10.	 An editor opens. Find the keyCredentials JSON

element. The value of this element should be empty,

like this [].

	 11.	 Copy and paste the certificate keys (obtained in the

previous step) to replace the square brackets.

	 12.	 Click Save.

After registering the console app with Azure Active Directory, you

need to add the configuration to the code. Follow these steps to add the

configuration.

	 1.	 Open program.cs from the downloaded sample.

	 2.	 Add the tenant ID, resource ID, client ID, and the

certificate name, which was obtained in previous steps.

Now your sample is ready to run. It will have the same output shown in

the previous flow.

�Creating a Console App
After registering your application, follow these steps to create a console

application.

	 1.	 Create a console application using the .NET

Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.Active

Directory package from NuGet (www.nuget.org).

Chapter 5 Daemon Application Authentication

http://www.nuget.org

170

	 3.	 Add variables to configure the console app to get an

access token, as shown next.

 �private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

 private static string clientId = "client_id";

private static string certName = "certName";

static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

 private static string resourceId = "resource_id";

 private static string baseAddress = "api_Url";

	 4.	 Add a method that will read a certificate from the

local store, as shown next.

�private static X509Certificate2 ReadCertificate

FromStore(string certName)

{

 X509Certificate2 cert = null;

 �X509Store store = new X509Store(StoreName.My,

StoreLocation.CurrentUser);

 store.Open(OpenFlags.ReadOnly);

 �X509Certificate2Collection certCollection = store.

Certificates;

 // Find unexpired certificates.

 �X509Certificate2Collection currentCerts =

certCollection.Find(X509FindType.FindByTimeValid,

DateTime.Now, false);

 // �From the collection of unexpired certificates,

find the ones with the correct name.

Chapter 5 Daemon Application Authentication

171

 �X509Certificate2Collection signingCert = current

Certs.Find(X509FindType.FindBySubjectDistinguished

Name, certName, false);

 // �Return the first certificate in the collection,

has the right name and is current.

 �cert = signingCert.OfType<X509Certificate2>().

OrderByDescending(c => c.NotBefore).

FirstOrDefault();

 store.Close();

 return cert;

}

This function takes the certificate name as

input and returns it in X509Certificate2 format.

The certificate name should be passed in the

CN={CertificateName} format. The following is a

step-by-step explanation.

	 a.	 Create an instance of X509Store for the current user to locate

all the certificates in the local store in read-only mode.

	 b.	 Populate all the valid certificates in a variable.

	 c.	 Iterate all the valid certificates and find the desired certificate

by certificate name.

	 5.	 Add a method that generates a token for the Web

API by using a certificate, as shown next.

authContext = new AuthenticationContext(authority);

 AuthenticationResult result = null;

X509Certificate2 cert = ReadCertificateFromStore

(certName);

 try

 {

Chapter 5 Daemon Application Authentication

172

 �ClientCredential clientCredential = new

ClientCredential(clientId, cert);

 �var authResult = autheContext.AcquireToken

Async(resourceId, clientCredential).Result;

 }

 catch (Exception ex)

 {

 Console.WriteLine("An error occurred.");

 }

The next step is to call the Web API to do the operation. Let’s create a

Web API that is secured by Azure AD.

�Creating a Web API
After creating the Windows console app, follow the same steps to create

a .NET Core Web API secured by Azure AD, as done in the client

credentials flow.

If you face any difficulties in following these steps, please download

the code from the GitHub repository at https://github.com/

aadfordevelopers/AadDemos/tree/master/CertificateClient.

To run the sample code, download it as directed. Configure the console

application and the Web API.

To configure the console application, follow these steps.

	 1.	 Open program.cs from the downloaded sample.

	 2.	 Add the tenant ID, resource ID, client ID, and the

certificate name, which you obtained in previous

steps.

Chapter 5 Daemon Application Authentication

https://github.com/aadfordevelopers/AadDemos/tree/master/CertificateClient
https://github.com/aadfordevelopers/AadDemos/tree/master/CertificateClient

173

To configure the Web API, follow these steps.

	 1.	 Open appsettings.json from the downloaded

sample.

	 2.	 Add the tenant ID and client ID, which were

obtained in previous step.

Now your sample is ready to run. The output of this sample is the same

as the client credential flow, but instead of generating a token using a

client and secret, a token is generated using a client and certificate.

�Summary
In this chapter, you learned how to call Web APIs secured by Azure

Active Directory from background or daemon applications using a client

credential flow. You also learned client credential flow using a certificate

instead of a client secret.

Chapter 6 focuses on custom data extensions using Microsoft Graph.

Chapter 5 Daemon Application Authentication

175© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_6

CHAPTER 6

Active Directory
Custom Data
Extensions
In previous chapters, we discussed various user-based and application-

based authentication scenarios for different web applications and native

applications. This chapter focuses on custom data extensions.

�Custom Data Extensions
By default, Azure AD provides some predefined properties for resources

such as the user, group, organization, and so forth. These predefined

properties include name, description, ID, phone number, and so forth.

But, these properties may not be enough for some business needs, and you

may want to add custom properties. For example, you may want to add

users’ hobbies to the user resource. This custom data can be extended to

resources by using custom data extensions.

176

�Microsoft Graph with Azure AD
Microsoft Graph is a gateway that provides various APIs to access Azure

Active Directory resources and Office 365 resources. In the context of

this chapter, we will use the Microsoft Graph API for Azure AD to access

various resources (user, group, etc.) and extend them.

There are two types of extensions offered by Microsoft Graph.

•	 Open extensions. Allows you to add untyped data

directly to the resource instance.

•	 Schema extension. Allows you to define a schema on

the resource; by using a schema, you can extend the

resource instance.

With the help of the Microsoft Graph API, custom data can be extended

on the resource instance. To authenticate the Microsoft Graph API, Azure

AD supports the following OAuth 2.0 authentication flows.

•	 Code grant flow. This flow authentication is done in

the context of the user.

•	 Client credential flow. This flow authentication is done

using a client credential flow. You can use either a client

ID and a client secret, or a client ID and a certificate to

generate an access token for the Graph API.

Both flows have pros and cons. Based on your business needs, you can

decide which flow should be used; for example,

•	 If the number of users is low and no one else is able to

read or update the data using Microsoft Graph, then

you should use a code grant flow.

•	 If you want to open your application to all users to read

and to update the data using Microsoft Graph, then you

should use a client credential flow.

Chapter 6 Active Directory Custom Data Extensions

177

In both flows, the Azure AD app should delegate access to Microsoft

Graph API’s required operation. Other authentication flows (e.g., implicit

grant flow or an on-behalf-of flow) can also be used to access the Microsoft

Graph API.

Figure 6-1 is a diagram showing the sequence of events that happen

when authenticating the Graph API using code grant flow authentication.

Web App
Azure AD

Authorization
Endpoint

Azure AD Token
Endpoint

Microsoft
Graph APIUser

Navigate to web app

Request for login

Redirected to login page

Enter credentials

Returns the authorization code

Request bearer access token
by providing authorization

code for Web API

Call Microsoft Graph API by adding access
token in authorization header

Return access token
and refresh token

Validate
access token

Return the data
to the web app

On access token expiration, request new access
token using refresh token

Return new access token
and refresh token

Call Microsoft Graph API by adding new access
token in authorization header

Figure 6-1.  Sequence diagram for Microsoft Graph API
authentication using the code grant flow

The following is the sequence of events performed during

authentication.

	 1.	 The user navigates to the web application.

	 2.	 The web application redirects the user to the login

page provided by Azure AD.

	 3.	 The user enters credentials and submits the sign-in

request to the Azure Active Directory authorization

endpoint.

Chapter 6 Active Directory Custom Data Extensions

178

	 4.	 On successful validation of the credentials, the

Azure AD authorization endpoint returns the

authorization code.

	 5.	 The web app requests the request bearer access

token and refresh token from the Azure AD token

endpoint using the authorization code. After

receiving the tokens, the web app caches the tokens

in the user session.

	 6.	 The request with an access token in the

authorization header is sent to the Microsoft

Graph API.

	 7.	 On successful validation, the Microsoft Graph API

returns the response to the web app.

	 8.	 If the access token is expired, the web app sends a

request to the Azure AD token endpoint to fetch a

new access token using the refresh token.

The diagram in Figure 6-2 shows the sequence of events that

happen when authenticating the Graph API using client credential flow

authentication.

Chapter 6 Active Directory Custom Data Extensions

179

The following is the sequence of events performed during

authentication.

	 1.	 As soon as the background process starts, the

request is sent to Azure AD with a client ID and a

client secret to get an access token.

	 2.	 The request with an access token in the

authorization header is sent to the Microsoft

Graph API.

	 3.	 The Microsoft Graph API is secured by Azure Active

Directory authentication, which validates the token.

	 4.	 On successful validation, a response is returned to

call the application.

Console
Application

Azure Active Directory
Authorization Endpoint

Request to Microsoft Graph API with access token
in authorization header

Response from Microsoft Graph API on successful
token validation

Microsoft
Graph API

Request access token using
client ID and client secret

Access Token

Token
Validation

Figure 6-2.  Sequence diagram for Microsoft Graph API
authentication using client credential flow

Chapter 6 Active Directory Custom Data Extensions

180

�Running Your Application
To run your application and call the Microsoft Graph API, the first step

is to register your app with Azure AD. You need to give delegate access

to the Microsoft Graph API. Please follow the steps in the next section to

configure your app in Azure.

�Registering Your Application
Please follow these steps to register a console app with Azure AD.

	 1.	 Go to https://portal.azure.com.

	 2.	 Go to Azure Active Directory in the left navigation

pane.

	 3.	 Click App Registrations.

	 4.	 Click New Registration.

	 5.	 Enter the name of your app.

	 6.	 Click Register.

	 7.	 Copy the application ID. It is the client ID of your

application and required for token validation.

	 8.	 Click API Permission, and then click Add a

Permission.

	 9.	 Click Microsoft Graph and select Application

Permission.

	 10.	 Choose the required permissions. For the user,

it is User.ReadWrite.All. This is similar for other

resource types.

Chapter 6 Active Directory Custom Data Extensions

https://portal.azure.com

181

	 11.	 Grant administration consent by clicking the Grant

Admin Consent button.

	 12.	 Generate a client secret. Go to Certificate and

Secrets ➤ New Client Secret ➤ Give Description

and Duration. Click the Add button. Copy the key

and save it at a secured place. This key is not visible

after you close this tile.

Our application is ready to read and update in Microsoft Azure

AD. Now let’s create a console app.

�Creating a Console Application
After registering your application, follow these steps to create a console

application.

	 1.	 Create a console application by using the .NET

Framework.

	 2.	 Install the Microsoft.IdentityModel.Clients.Active

Directory package from NuGet (www.nuget.org).

	 3.	 Add variables to configure the console app and to

get an access token, as shown next.

 �private static string aadInstance = "https://login.

microsoftonline.com/{0}";

 private static string tenant = "tenant_id";

 private static string clientId = "client_id";

 �private static string clientSecret = "client_

secret";

 �static string authority = String.Format(CultureInfo.

InvariantCulture, aadInstance, tenant);

Chapter 6 Active Directory Custom Data Extensions

http://www.nuget.org

182

 �private static string resourceId = "https://

graph.microsoft.com";

 �private static string graphAPIUrl = "https://graph.

microsoft.com";

	 4.	 Add a method to generate a token for the Graph API,

as shown next.

public static string GetAccessTokenForGraphAPI

(string clientId, string clientSecret, string

resourceId, string authority)

 {

 �var autheContext = new AuthenticationContext

(authority);

 �ClientCredential clientCredential = new

ClientCredential(clientId, clientSecret);

var authResult = autheContext.

AcquireTokenAsync(resourceId, clientCredential).Result;

 return authResult.AccessToken;

 }

The next step is to call the Microsoft Graph API to do the operation.

�Calling Microsoft Graph to the Extend Resource
Instance
As discussed, that resource instance can be extended using open

extensions and schema extensions. API URLs and syntax are nearly the

same for all the resources, such as users, groups, organization, and so

forth. Here we explain the schema extension in the context of the user.

Chapter 6 Active Directory Custom Data Extensions

183

�Open Extensions
By using open extensions, untyped data can be directly added to the

resource instance. Custom data added through custom extensions can

be accessed using the extensions navigation property of the resource

instance. The extensionName property is a predefined property, and the

name should be unique in the tenant.

Microsoft recommends naming a property name by using the reverse

domain, such as com.your_domain.propertyName. If you want to add a

property birth date, for example, then the name of the property should be

com.your_domain_birthDate.

Let’s proceed with a CRUD (create read update delete) operation for an

extension property called birthDate.

�Create
To create an open extension on the user, send a POST request to Microsoft

Graph, as shown next.

public static bool AddOpenExtension(string userId, DateTime

birthDate, string extensionName, string accessToken)

 {

 �string jsonString = $"{{ \"@odata.

type\":\"microsoft.graph.openTypeExtension\",

\"extensionName\":\"{extensionName}\",\"date\":

\"{birthDate.ToShortDateString()}\"}}";

 HttpClient client = new HttpClient();

 �HttpRequestMessage request = new HttpRequest

Message(HttpMethod.Post, graphAPIUrl + $"/v1.0/

users/{userId}/extensions");

 �request.Content = new StringContent(jsonString,

Encoding.UTF8, "application/json");

Chapter 6 Active Directory Custom Data Extensions

184

 �request.Headers.Authorization = new

AuthenticationHeaderValue("Bearer",

accessToken);

 �HttpResponseMessage response = client.

SendAsync(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 �Console.WriteLine(response.Content.

ReadAsStringAsync().Result);

 return true;

 }

 return false;

}

This method takes the user ID (the user object ID in Microsoft AD), the

value of the extension property, the extension name, and the access token

as input. It sends the POST request to Microsoft Graph v1 at https://

graph.microsoft.com/v1.0/{userId}/extensions. If the request is

successful, then it returns the status as 201.

�Read
To read an open extension on the user, send a GET request to Microsoft

Graph, as shown next.

public static bool ReadOpenExtension(string userId, string

extensionName, string accessToken)

 {

 HttpClient client = new HttpClient();

 �HttpRequestMessage request = new HttpRequestMessage

(HttpMethod.Get, graphAPIUrl + $"/v1.0/users/

{userId}/extensions/{extensionName}");

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/{userId}/extensions
https://graph.microsoft.com/v1.0/{userId}/extensions

185

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 �Console.WriteLine(response.Content.ReadAsString

Async().Result);

 return true;

 }

 return false;

}

This method takes the user ID (user object ID in Microsoft AD), the

extension name, and the access token as input. It sends the GET request

to Microsoft Graph v1 at https://graph.microsoft.com/v1.0/{userId}/

extensions/{extensionName}. If the request is successful, then it returns

the status as 200; in the body, the value of the open extension is returned.

�Update
To update an open extension for the user, send a PATCH request to

Microsoft Graph, as shown next.

public static bool UpdateOpenExtension(string userId, DateTime

birthDate, string extensionName, string accessToken)

 {

 �string jsonString = $"{{ \"date\":\"{birthDate.

ToShortDateString()}\"}}";

 HttpClient client = new HttpClient();

 var method = new HttpMethod("PATCH");

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}
https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}

186

 �HttpRequestMessage request = new HttpRequestMessage

(method, graphAPIUrl + $"/v1.0/users/{userId}/

extensions/{extensionName}");

 �request.Content = new StringContent(jsonString,

Encoding.UTF8, "application/json");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 return true;

 }

 return false;

 }

This method takes the user ID (user object ID in Microsoft AD), the

value of the extension property, the extension name, and the access token

as input. It sends the PATCH request to Microsoft Graph v1 at https://

graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}.

If the request is successful, then it returns the status as 204 without any

content.

�Delete
To delete an open extension for the user, send a DELETE request to

Microsoft Graph, as shown next.

public static bool DeleteOpenExtension(string userId, string

extensionName, string accessToken)

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}
https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}

187

 {

 HttpClient client = new HttpClient();

 �HttpRequestMessage request = new HttpRequestMessage

(HttpMethod.Delete, graphAPIUrl + $"/v1.0/users/

{userId}/extensions/{extensionName}");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 return true;

 }

 return false;

 }

This method takes the user ID (user object ID in Microsoft AD),

extension name, and access token as input. It sends the DELETE request

to Microsoft Graph v1 at https://graph.microsoft.com/v1.0/{userId}/

extensions/{extensionName}. If the request is successful, then it returns

the status as 204 and deletes the open extension.

�Schema Extensions
With schema extensions, schema data can be added to the resource type,

and then strongly typed custom data can be added to the resource instance

by using a defined schema. Typed data helps with filtering, authorization,

input validation, and so forth.

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}
https://graph.microsoft.com/v1.0/{userId}/extensions/{extensionName}

188

A schema extension definition ID should be unique in the tenant.

Microsoft recommends two ways to define the ID.

•	 If you have your registered domain, then your ID

should be domain_schemaName.

•	 If you don’t have a domain, then your ID is your

schemaName. Microsoft Graph automatically prepends it

with a random eight characters and _. It looks like this:

Jhdscvbf_schemaName.

Before executing a CRUD (create read update delete) operation

on a schema extension, we need to add a schema. Also, deleting is not

possible in a schema extension for a resource instance; you need to mark

the extension property as null. Let’s look at an example of adding vehicle

information that is owned by a user. Vehicle information can have the

following attributes: type, color, fuel type, and so forth.

�Adding a Schema
A schema can be defined in resources as a user, group, organization, and

so forth. The application that defines the schema acts as the owner of the

schema. A schema internally maintains three states.

•	 InDevelopment. The initial state of the schema

extension. Another app can use it provided it is in the

same directory.

•	 Available. After development is complete, the

owner can mark the state as available so that other

applications can use it.

Chapter 6 Active Directory Custom Data Extensions

189

•	 Deprecated. If a schema extension is no longer valid,

then the owner can mark it as deprecated. The schema

extension is no longer available for read, update, or

delete operations. Apps are still able to update the

schema extension value for resource instances.

The state can only be changed by the owner of the application.

To Define the schema, Let’s take an example of a user who owns a

vehicle. We will store the vehicle information which is owned by user.

Before defining the schema for vehicle information, let’s look at the data

types supported by the schema extension.

•	 Binary. Max limit is 256 bytes

•	 Boolean. True or false

•	 DateTime. Stores value in UTC in ISO 8601 format

•	 Integer. 32-bit integer

•	 String. Max limit is 256 characters

To create a schema extension on a user instance, send a POST request

to Microsoft Graph, as shown next.

public static bool CreateSchema(string schemaName, string

accessToken, string clientId)

 {

 �string jsonString = $"{{ \"id\":\"{schemaName}\",\"

description\":\"Vehicle Information owned by user\",

\"targetTypes\":[\"User\"],\"status\":\

"InDevelopment\",\"owner\":\"{clientId}\",

\"properties\":[{{\"name\":\"vehicleType\",

\"type\":\"String\"}},{{\"name\":\"color\",\"type\":

\"String\"}},{{\"name\":\"fuelType\",\"type\":

\"String\"}}]}}";

 HttpClient client = new HttpClient();

Chapter 6 Active Directory Custom Data Extensions

190

 �HttpRequestMessage request = new HttpRequestMessage

(HttpMethod.Post, graphAPIUrl + "/v1.0/

schemaExtensions");

 �request.Content = new StringContent(jsonString,

Encoding.UTF8, "application/json");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 �Console.WriteLine(response.Content.

ReadAsStringAsync().Result);

 return true;

 }

 return false;

}

This method takes the schema name, access token, and client ID

(the owner) as input. It sends the POST request to Microsoft Graph v1 at

https://graph.microsoft.com/v1.0/schemaExtensions. If the request is

successful, then it returns the status as 201, and the schema is created on

the user resource type.

�Add-Update Schema Extension Value
To add or update the schema extension value for a resource instance, send

a PATCH request to Microsoft Graph, as shown next.

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/schemaExtensions

191

 �public static bool AddUpdateSchemaExtensionValue

(string schemaName, string accessToken, string

verhicleType, string color, string fuelType, string

userId)

 {

 �string jsonString = $"{{\"{schemaName}\":{{\"vehicle

Type\":\"{verhicleType}\",\"color\":\"{color}\",

\"fuelType\":\"{fuelType}\"}}}}";

 HttpClient client = new HttpClient();

 var method = new HttpMethod("PATCH");

 �HttpRequestMessage request = new HttpRequestMessage

(method, graphAPIUrl + $"/v1.0/users/{userId}");

 �request.Content = new StringContent(jsonString,

Encoding.UTF8, "application/json");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.

SendAsync(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 return true;

 }

 return false;

 }

This method takes the schema name, access token, user ID (user

object ID in Microsoft AD), and the value of various parameters of the

schema extension as input. It sends the PATCH request to Microsoft

Graph v1 at https://graph.microsoft.com/v1.0/users/{userId}. If the

request is successful, then it returns the status as 204 without any content.

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/users/{userId}

192

�Read Schema Extension Value
To read a schema extension value on a user instance, send a GET request

to Microsoft Graph, as shown next.

public static bool ReadSchemaExtension(string userId, string

extensionName, string accessToken)

 {

 HttpClient client = new HttpClient();

 �HttpRequestMessage request = new HttpRequestMessage

(HttpMethod.Get, graphAPIUrl + $"/v1.0/users/

{userId}?$select=id,{schemaName}");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 �Console.WriteLine(response.Content.ReadAsString

Async().Result);

 return true;

 }

 return false;

 }

This method takes the user ID (user object ID in Microsoft AD),

extension name, and access token as input. It sends the GET request to

Microsoft Graph v1 at https://graph.microsoft.com/v1.0/users/{user

Id}?$select=id,{schemaName}. If the request is successful, then it returns

the status code as 200 and in the body, ID and value of schema extension.

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/users/{userId}?$select=id
https://graph.microsoft.com/v1.0/users/{userId}?$select=id

193

�Remove Schema Extension Value
A schema extension value can’t be deleted from a resource instance; it can

only be marked as null. To mark the value as null for a schema extension

for the user, send a PATCH request to Microsoft Graph, as shown next.

public static bool RemoveSchemaExtensionValue(string

schemaName, string accessToken, string userId)

 {

 string jsonString = $"{{\"{schemaName}\": null}}";

 HttpClient client = new HttpClient();

 var method = new HttpMethod("PATCH");

 �HttpRequestMessage request = new HttpRequestMessage

(method, graphAPIUrl + $"/v1.0/users/{userId}");

 �request.Content = new StringContent(jsonString,

Encoding.UTF8, "application/json");

 �request.Headers.Authorization = new Authentication

HeaderValue("Bearer", accessToken);

 �HttpResponseMessage response = client.SendAsync

(request).Result;

 string responseResult = string.Empty;

 if (response.IsSuccessStatusCode)

 {

 return true;

 }

 return false;

 }

Chapter 6 Active Directory Custom Data Extensions

194

This method takes the schema name, access token, and user ID

(user object ID in Microsoft AD) as input. It sends the PATCH request

to Microsoft Graph v1 at https://graph.microsoft.com/v1.0/users/

{userId}. If the request is successful, it returns the status as 204 without

any content, and marks the value of the schema extension property as null.

Note T he full code related to custom data extensions has
been uploaded to GitHub and can be accessed at https://
github.com/aadfordevelopers/AadDemos/tree/master/
CustomDataExtensions. The same code can be extended for other
resource types as well. Syntaxes remain same.

�Summary
This chapter covered how to extend a resource instance with custom data

using Microsoft Graph and OAuth 2.0 authentication flows. You learned

how to extend custom data using open extensions and schema extensions.

In the next chapter, we discuss how to invite and authenticate external

users with Azure AD B2B.

Chapter 6 Active Directory Custom Data Extensions

https://graph.microsoft.com/v1.0/users/{userId}
https://graph.microsoft.com/v1.0/users/{userId}
https://github.com/aadfordevelopers/AadDemos/tree/master/CustomDataExtensions
https://github.com/aadfordevelopers/AadDemos/tree/master/CustomDataExtensions
https://github.com/aadfordevelopers/AadDemos/tree/master/CustomDataExtensions

195© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_7

CHAPTER 7

Authenticating
External Users
In previous chapters, we discussed how a user can authenticate with Azure

AD and access different types of applications (or resources) secured by

Azure AD. In all such applications, the user was a valid registered user in

the same Azure AD tenant, and in which the application being accessed

was registered as well.

There could be scenarios in which you might want to provide access to

users who are not registered with the application’s Azure AD tenant. These

users are categorized under B2B integration, in which users at another

enterprise are trying to access an application. These users have a valid

account with another domain service.

Based on the type of user defined, Azure AD provides another

service—Azure AD B2B. In this chapter, we discuss the following in detail.

•	 Azure Active Directory B2B

•	 Configuring Azure AD for B2B collaboration

•	 Setting up our solution

•	 Configuring to support a guest inviter

•	 Adding a partner user as a guest inviter

•	 Adding Google as an identity provider

196

•	 Sending an invitation to the end user

•	 Configuring code

�Azure Active Directory B2B
Azure Active Directory B2B supports users from another domain to access

the resources secured by Azure Active Directory. Please note that an

Azure AD Premium P1 or P2 license is needed to fully utilize the features

mentioned in this section. Refer to MSDN to enable a trial version of Azure

AD Premium. The following are the key features of Azure B2B.

•	 The organization owns the resource, or the application

wants to provide access to external users to a specific

resource. The user can be an independent individual

with his or her own personal account or can be an

employee of a partner organization with an account in

the organization’s directory service.

•	 Azure B2B works on invitation and redemption,

rather than integrating using standards like OAuth

or federation. Users are sent a request to access an

application, and they access it after redeeming the

request. Users are added to the tenant of the resource

owner and access applications in the same manner as

other users. Note that users are added as guest users in

the AAD tenant.

•	 The partner accounts are managed by their identity

provider. The policies for the user are defined by the

identity provider.

Chapter 7 Authenticating External Users

197

•	 The users are provided access through a portal or

PowerShell, or they can sign up themselves by using a

custom-built self-service portal. Building a self-service

portal is beyond the scope of this book. The code

for it, however, is at the following GitHub repository:

https://github.com/Azure/active-directory-

dotnet-graphapi-b2bportal-web.

�Configuring Azure AD for B2B Collaboration
We will look at how to use B2B collaboration through an example scenario.

Let’s consider the following scenario.

The admin from a resource owner tenant (let’s call it an enterprise

tenant) wants to share her resource applications with contracted users

at another organization. The admin from the enterprise tenant delegates

the addition of a new user to a user at the partner tenant. The partner

organization uses another Azure AD tenant as their identity provider (let’s

call this a partner tenant). The application also allows Google to be used

as the identity provider. The application involved is an MVC application

calling a Web API (the application uses an authorization code grant flow).

Let’s start by creating an enterprise AD tenant and a partner AD tenant.

	 1.	 Go to the Azure portal. In the navigation pane, click

Create a Resource.

	 2.	 In the search box, type Azure Active Directory and

select the same option.

	 3.	 On the blade displayed, click the Create button.

Enter the relevant details and click Create. We

are creating a couple of tenants for our scenario:

an enterprise tenant (azureadfordevsenterprise.

onmicrosoft.com) and a partner tenant

(azureadfordevspartner.onmicrosoft.com).

Chapter 7 Authenticating External Users

https://github.com/Azure/active-directory-dotnet-graphapi-b2bportal-web
https://github.com/Azure/active-directory-dotnet-graphapi-b2bportal-web

198

	 4.	 Go to the partner tenant and create a

user in the partner tenant: (partneruser@

azureadfordevspartner.onmicrosoft.com). This

partner tenant user will be inviting other guests.

�Setting up Our Solution
We will create applications using Visual Studio and register the same in our

enterprise tenant. We will use authorization code grant flow. Our solution

will contain three projects: an MVC web app trying to access APIs in a Web

API project, and a library containing code specific to Azure AD settings.

	 1.	 Go to Visual Studio and create a new project. Select

the ASP.NET Core Web Application template. Name

the project EnterpriseApp. Rename the solution

created to AzureADEnterprise.

Figure 7-1.  Creating Azure AD tenants

Chapter 7 Authenticating External Users

199

	 2.	 In the New ASP.NET Core Web Application pop-up

window, select the project type API and click the

Change Authentication button. This displays the

Change Authentication dialog.

	 3.	 Select the “Work or School Accounts” option.

In the drop-down menu, select Cloud – Single

Organization. Enter the name of the enterprise

tenant in the Domain field and press OK.

Figure 7-2.  Change authentication for project

	 4.	 Press OK in the main projection creation dialog.

	 5.	 Similarly, create an MVC web app by choosing the

Web Application (Model-View-Controller) option

in the dialog (see Figure 7-3). Let’s name our MVC

project AppUI.

Chapter 7 Authenticating External Users

200

	 6.	 Let’s also create a .NET Core library project in the

same solution. Name the project CommonLibrary.

	 7.	 We will come back to modifying our code at a later

stage. For now, go to your Azure enterprise tenant,

and then go to the Azure Active Directory service.

Go to App Registrations under the Manage section.

Notice that the applications that we created in

the preceding steps are listed here. The name of

the applications seen in Figure 7-4 were changed

manually in the Azure portal.

Figure 7-3.  Create API project

Chapter 7 Authenticating External Users

201

�Configuring to Support a Guest Inviter
A guest inviter is a user from a partner tenant who has the rights to invite

other users to use the resources. We will use the partner user we created

earlier. Follow these steps to support users from a partner tenant.

	 1.	 Go to Azure portal ➤ Users ➤ User settings ➤

Manage external collaboration settings.

Figure 7-4.  Applications registered on Azure tenant

Chapter 7 Authenticating External Users

202

	 2.	 Update the settings, as shown in Figure 7-6. These

settings ensure that users with a “guest inviter” role

can send invitations.

	 3.	 Set “Guest users permissions are limited” to No.

This allows users from other domains (guest users)

to have elevated rights. Set “Admins and users in the

guest inviter role can invite” to Yes.

Figure 7-5.  Accessing external collaboration settings

Chapter 7 Authenticating External Users

203

Figure 7-6.  External collaboration settings

Chapter 7 Authenticating External Users

204

	 4.	 Let’s assume that all of our users are from specific

domains. For our scenario, users are from the

gmail.com domain or our partner tenant domain

(azureadfordevspartner.onmicrosoft.com). To

mandate the same, choose the “Allow invitations

only to the specified domains” option and add

gmail.com and azureadfordevspartner.onmicrosoft.

com (as shown in Figure 7-6). Press Save.

�Adding a Partner User as a Guest Inviter
We will now add user from partner tenant and give her rights to invite

other users.

	 1.	 Go to Users ➤ All Users and click New guest user. In

the New Guest User screen, add your partner guest

inviter account and press Invite.

	 2.	 Go to Users ➤ All Users and click the user created

in step 1. This loads the profile page for the user.

Initially, the “Invitation accepted” property is set

to No. Update other user-related properties as

applicable. Select “Directory role” in the Manage

submenu.

Chapter 7 Authenticating External Users

205

	 3.	 On the Directory Role page, click the “Add

assignment” button. This shows the Directory Roles

menu. Select the “Guest inviter” role and press the

Select button. This assigns the selected role to the user.

Figure 7-7.  Partner user settings

Chapter 7 Authenticating External Users

206

	 4.	 Go to the enterprise tenant. Under Azure AD,

select Enterprise applications ➤ All applications ➤

Enterprise API ➤ Users and groups. Click the Add

user button. In the Add Assignment blade, select

Users and groups.

	 5.	 Search for the partner user added in step 1 and press

Select. This adds the partner user to the application.

	 6.	 Repeat steps 4 and 5 for the MVC application.

Figure 7-8.  Adding a guest inviter role to partner user

Chapter 7 Authenticating External Users

207

	 7.	 Go to https://account.activedirectory.

windowsazure.com/r. Log in with the partner

user credentials by using a fully qualified name

(partneruser@azureadfordevspartner.onmicrosoft.

com). This displays the My Apps or the Access panel

of the current user, which the user has access to

within her organization. Please refer to https://

docs.microsoft.com/en-us/azure/active-

directory/user-help/my-apps-portal-end-user-

overview for further information.

Figure 7-9.  Adding a partner user

Chapter 7 Authenticating External Users

https://account.activedirectory.windowsazure.com/r
https://account.activedirectory.windowsazure.com/r
https://docs.microsoft.com/en-us/azure/active-directory/user-help/my-apps-portal-end-user-overview
https://docs.microsoft.com/en-us/azure/active-directory/user-help/my-apps-portal-end-user-overview
https://docs.microsoft.com/en-us/azure/active-directory/user-help/my-apps-portal-end-user-overview
https://docs.microsoft.com/en-us/azure/active-directory/user-help/my-apps-portal-end-user-overview

208

	 8.	 Click the username of the signed-in user (in the top-

right corner) and notice the Organizations section

in the menu; both the partner and the enterprise AD

are displayed.

Figure 7-10.  Partner user access panel login

	 9.	 Select Azure AD for Devs Enterprise. Notice that

both the Enterprise API and the Enterprise UI are

displayed. The application may not immediately

appear on the access panel. Sign off and sign back in

on a different browser instance if this happens.

Chapter 7 Authenticating External Users

209

	 10.	 Hover over the application name and click the three

dots menu. Notice that the Manage Apps option is

available for both applications.

We have configured the partner user to allow her to add other users of

the application. We will come back to adding end users, but before we do

that, we need to add other settings and configure our code. In addition,

the “Invitation accepted” property is now set to Yes. These configurations

allow the partner user to send invitations to other users.

�Adding Google as an Identity Provider
The partner user can now invite other users to access the applications.

Azure AD allows users to authenticate using Google as an identity provider.

This allows partner users to send invitations to Gmail users. The invited

Gmail users can use their Google credentials to sign in. The following are

the steps needed to add Google as an identity provider.

	 1.	 Go to https://console.developers.google.com

and log in with Google credentials. This lands on a

dashboard page. Create a new project for integrating

with Azure AD B2B by clicking the Create button.

Enter the name of the project, AzureADB2B, and

create a new project.

Figure 7-11.  Partner user’s access panel

Chapter 7 Authenticating External Users

https://console.developers.google.com/

210

	 2.	 Select the project and go to its dashboard.

	 3.	 Go to the Credentials tab and select the “OAuth

client ID” option from the “Create credentials”

drop-down menu.

Figure 7-12.  Google create credentials

	 4.	 Click the “Configure consent screen” button.

Figure 7-13.  Google configure consent

Chapter 7 Authenticating External Users

211

	 5.	 On the Credentials screen, enter the name of the

application and other details. In the “Authorized

domains” field, enter microsoftonline.com. Click

the Save button.

Figure 7-14.  Google enter credentials

	 6.	 On the “Create OAuth client ID” screen, select Web

Application as the application type and add the following

URLs in the “Authorized redirect URIs” section:

•	 https://login.microsoftonline.com

•	 https://login.microsoftonline.com/

te/<tenant id>/oauth2/authresp, where the

tenant ID is Azure Active Directory

Chapter 7 Authenticating External Users

https://login.microsoftonline.com

212

	 7.	 Click the Create button.

	 8.	 A prompt displays the client ID and the client secret.

Copy this information.

	 9.	 Go to Azure AD ➤ Organizational relationships ➤

Identity providers ➤ Google. Add the client ID and

the client secret and click Save.

Figure 7-15.  Google create OAuth client

Chapter 7 Authenticating External Users

213

The Azure portal shows Google added as a social identity provider.

Figure 7-16.  Add Google as identity provider

Figure 7-17.  Google added as identity provider

�Sending an Invitation to the End User
Let’s send an invitation to our end user. We added a partner user to our

tenant as a guest inviter. This allows the partner user to send invitations

to external users. For this scenario, let’s try sending the invitation to a user

with a Gmail ID.

Chapter 7 Authenticating External Users

214

	 1.	 Go back to the access panel and log in with the

credentials of the partner user.

	 2.	 Click the API’s three dots menu and go to Manage

Apps. This loads the Apps page. Note that the users

of the application are listed on the right side of the

page.

	 3.	 Click the + icon displayed in the top right-hand

corner of the page. This loads the “Add members”

dialog.

	 4.	 In the search textbox, enter the Gmail user, and then

click the Add button. This sends an invitation to the

Gmail user.

	 5.	 Log in to the relevant Gmail account and go the mail

sent by Azure AD. Click the Get Started button.

Figure 7-18.  Invitation mail for enterprise tenant

Chapter 7 Authenticating External Users

215

	 6.	 Accept the review permissions. Users are redirected

to their access panel. Users can go back to the

panel at https://account.activedirectory.

windowsazure.com/r?tenantId=<tenand id>,

where tenant ID the tenant ID of enterprise Azure

AD tenant.

The end user can now access the application. First, let’s go back to our

code to get it up and running.

�Configuring Code
The application will follow the authorization code grant flow. It will be in

line with the solution described in Chapter 3. Let’s tweak the code for this

solution.

	 1.	 Go to Visual Studio and open the

AzureADEnterprise.sln solution that you created

previously.

	 2.	 Under the API project, find Startup.cs and

change the authentication mechanism in the

ConfigureServices method.

services.AddAuthentication(sharedOptions =>

 {

 �sharedOptions.DefaultScheme =

JwtBearerDefaults.AuthenticationScheme;

 })

 .AddJwtBearer(options =>

 {

 options.Audience = "<client-id>";

 �options.Authority = "https://login.

microsoftonline.com/<tenand-id>";

Chapter 7 Authenticating External Users

216

 �options.TokenValidationParameters = new

TokenValidationParameters

 {

 ValidateIssuer = true,

 SaveSigninToken = true,

 };

 });

<client-id> is the application ID of the API

application and <tenant-id> is the tenant ID of the

enterprise Azure AD tenant.

	 3.	 Go to ValuesController.cs and change the default

Get method. This method now just returns a string.

[HttpGet]

 public ActionResult<string> Get()

 {

 return "About link clicked!";

 }

	 4.	 Locate your MVC project and go to HomeController.

Locate the About method and add the following code:

string userObjectID = (User.FindFirst("http://schemas.

microsoft.com/identity/claims/objectidentifier"))?.Value;

 �AuthenticationContext authContext =

new AuthenticationContext(AzureAd

Options.Settings.Authority, new Token

SessionCache(userObjectID, HttpContext.

Session));

 �ClientCredential credential = new

ClientCredential(AzureAdOptions.

Settings.ClientId, AzureAdOptions.

Settings.ClientSecret);

Chapter 7 Authenticating External Users

217

 �result = await authContext.Acquir

eTokenSilentAsync(AzureAdOptions.

Settings.ResourceId, credential,

new UserIdentifier(userObjectID,

UserIdentifierType.UniqueId));

HttpClient client = new HttpClient();

 �HttpRequestMessage request = new Http

RequestMessage(HttpMethod.Get, AzureAd

Options. Settings.ResourceBasePath +

"/api/values");

 �request.Headers.Authorization = new Auth

enticationHeaderValue("Bearer", result.

AccessToken);

 �HttpResponseMessage response = await

client.SendAsync(request);

 �ViewData["Message"] = await response.

Content.ReadAsStringAsync();

We are calling the Get method of ValuesController

from our MVC controller. The rest of the code

remains the same as defined in the “Web App/Web

API Authentication” section in Chapter 3.

	 5.	 Run the application and log in with your Gmail

credentials.

	 6.	 Click the About link on the home page. This calls

the About method in the HomeController of the

MVC app, which further calls the Get method of the

ValuesController of the API app. This displays the

string returned from the API.

Chapter 7 Authenticating External Users

218

�Summary
In this chapter, you saw how to enable an Azure AD tenant to allow access

to external users. You also enabled Google as an identity provider. You

created an inviter for guest users. The flow that we defined is relevant to a

single Azure AD tenant. In the next chapter, you learn how to enable users

from multiple tenants to access your application.

Figure 7-19.  End user’s About page

Chapter 7 Authenticating External Users

219© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_8

CHAPTER 8

Multitenancy
In Chapter 7, we discussed how to utilize Azure AD to support external

users by using Azure AD B2C and Azure AD B2B. We will continue our

discussion on supporting external users of other Azure AD accounts. The

users will be authenticated by their respective Azure AD tenant. We will do

so by using multitenancy.

We cover the following topics in this chapter.

•	 Multitenancy models

•	 Setting up our solution

•	 Configuring a user from another AAD tenant

•	 Configuring an application to support multitenancy

•	 Configuring applications

•	 Restricting Azure AD tenants

•	 Multitenancy in an application

Before we get into other details, let’s first discuss the meaning of

multitenancy and its types.

220

�Multitenancy Models
Most of the application examples that we investigated in previous chapters

referred to a single tenant. In the context of Azure AD, this signified that

users belonged to a single Azure AD instance or tenant. In most scenarios,

this indicates that users belong to a single organization.

Multitenancy refers to a scenario in which users from a different

organization use the same application instance. Multitenancy by itself is

a broad topic and could address at the application level or the database

level. The following are some multitenancy models.

•	 A standalone application accessing a standalone

database. We create different sets of application

and database combinations for different tenant

organizations. Initial development efforts have fewer

sets, but as the number of tenant organizations

increase, it could become a nightmare from a

maintenance perspective.

•	 Applications with the same database for each
tenant. In this scenario, all the data for all the tenants

are stored in the same set of database tables. The

data is segregated at the row level by a key. This key

uniquely signifies the tenants. This pattern is best in

scenarios in which there are a significant number of

tables with applicable common data, regardless of the

tenants. Also, adding a new customer does not require

significant effort from the database. This pattern is

challenging to implement when converting existing

single-tenant applications to support multitenancy. In

addition, due to the size of some transactional tables,

storing data for multiple tenants can quickly increase.

Chapter 8 Multitenancy

221

This pattern is not suitable if the data for each tenant

needs to be physically segregated. Such requirements

may be mandated from a security point of view.

•	 Applications with the same database but a different
set of tables for each tenant. We can also write logic

to dynamically interpret the set of tables applicable

to each customer. Adding a new customer involves

updating the same database with a new set of tables.

The data is physically co-located and logically

segregated by the tables.

•	 Applications with a different database for each
tenant. The data is stored on a different database server

for each customer. The schema for each customer can

be independently customized. The data is fetched from

a different database instance for every tenant. There

could be performance implications due to changing the

database connection for every request.

•	 Hybrid approach. This model entails a combination

of the preceding approaches. For example, you might

store data for multiple customers in the same tables.

In addition, another set of customers could have data

stored in a different database instance.

Azure AD supports multitenancy for the applications secured by it.

The focus of this chapter is on authenticating users registered in different

Azure AD tenants. These authenticated users will try to access the same set

of applications that are registered on another Azure AD tenant. Let’s start

with configuring our application to explain multitenancy support in

Azure AD.

Chapter 8 Multitenancy

222

�Setting up Our Solution
Refer to the MVC and API apps described in Chapter 7. These applications

were configured to run on a single tenant. After a user logs in, Azure AD

issues an ID token to the MVC application. This token has a set of claims

for the user. One of the claims, iss, refers to the tenant that issued the token

(issuer). You can check the same by debugging the application when the

authorization code is received by the MVC application, as indicated in the

screenshot of code shown in Figure 8-1.

This happens because our application is configured to authenticate

users for a single tenant only. In the next, section we enable users from

multiple Azure AD tenants to access the application. We need a user from

another Azure AD tenant for this.

We will create code structure similar to what we did in the B2B

scenario in Chapter 7. Our application has three projects: an MVC

web app, an API app, and a library project. Create these using a Visual

Studio template for creating an ASP.NET Core web application. The

authentication should be set to the “Work or School Accounts” option. For

now, let’s choose Cloud – Single Organization. Use our previous Azure AD

tenant: azureadfordevsenterprise.onmicrosoft.com. Name the projects

MultitenantUI, MultitenantAPI, and CommonLibrary for the MVC web

app, API app, and library project, respectively.

Figure 8-1.  iss claim for single tenant application

Chapter 8 Multitenancy

223

�Configuring a User from Another AAD Tenant
We need to create a user in another Azure AD tenant.

	 1.	 Create another Azure AD tenant for a hypothetical

partner organization (azureadfordevspartner.

onmicrosoft.com), as discussed in the B2B flow in

Chapter 7.

	 2.	 Switch to the new directory and add a new user (a

partner user) in the new tenant.

Figure 8-2.  Solution structure

Chapter 8 Multitenancy

224

A new user named partneruser is added to the tenant.

�Configuring an Application to Support Multitenancy
We will extend our application to support users from a different Azure AD

tenant. Both applications (MVC and API) are registered in our enterprise

tenant (azureadfordevsenterprise.onmicrosoft.com). We will make

changes to allow a partner user to access these applications.

	 1.	 Go to the Azure AD enterprise account and search

for your MVC application. Click the application.

	 2.	 Go to the Authentication option under the

Manage menu.

Figure 8-3.  Create partner user

Chapter 8 Multitenancy

225

	 3.	 In the window displayed, look for “Supported

account types” and select the Accounts option in

any organizational directory. This allows users from

other Azure AD tenants to access the applications.

	 4.	 Repeat the same set of steps for the API.

	 5.	 Switch back to your code and go to the OpenID

Connect options (OpenIDConnectConfig.cs). In

the Configure method, set the Authority option to

https://login.microsoftonline.com/common.

public void Configure(string name, OpenIdConnectOptions

options)

{

 options.ClientId = azureADSettings.ClientId;

Figure 8-4.  Enable multitenancy

Chapter 8 Multitenancy

https://login.microsoftonline.com/common

226

 // Single tenant authority as used previously

 // options.Authority = azureADSettings.Authority;

 // �Multi-tenant authority cannot be specific to a

tenant instance, and should point to https://

login.microsoftonline.com/common

 �options.Authority = "https://login.microsoftonline.

com/common";

...

}

In a single tenant scenario, we validate the user against a single AD

instance and set this variable to a specific tenant (as in our previous

single tenant): https://login.microsoftonline.com/<tenant-id>. In

multitenancy, the user’s Azure AD tenant is discovered during the time of

user sign-in.

	 6.	 In this method, disable the token validating the

issuer of the token.

options.TokenValidationParameters.ValidateIssuer =

false;

	 7.	 Try running the applications from Visual Studio and

logging in with the partner user’s credentials which

were created earlier. You might encounter error, as

seen in Figure 8-5.

Chapter 8 Multitenancy

https://login.microsoftonline.com/<tenant-id>

227

This leads us to consent. We will make changes to get around this error.

�Configuring the Applications
The earlier error clearly indicates that the application might access

resources in a partner’s tenant. Accessing some of these resources requires

permissions from the admin.

	 1.	 Go to the main enterprise Azure AD tenant

and search for your MVC application. Click the

application.

Figure 8-5.  Consent approval error

Chapter 8 Multitenancy

228

	 2.	 Note the application ID (80b6df7a-1f6d-4743-922c-

bf01fa7aa3dd) and object ID (1ba6afb7-7fad-4312-

bf7c-bd4ad404b378) properties .

	 3.	 Under the Manage menu, click API permissions.

Check for the permissions granted to the

application. The blade has an “API permissions” grid

that lists all the permissions. Click the individual

permissions. The “Admin consent required” field

indicates if the consent of the admin user is needed

to access the resource. For all Graph API–related

permissions, refer to https://docs.microsoft.

com/en-us/previous-versions/azure/ad/graph/

howto/azure-ad-graph-api-permission-scopes

to find out if admin permission is needed to access

that resource. In our scenario, the Directory.Read.

All permission needs admin consent.

Figure 8-6.  IDs of the application

Chapter 8 Multitenancy

https://docs.microsoft.com/en-us/previous-versions/azure/ad/graph/howto/azure-ad-graph-api-permission-scopes
https://docs.microsoft.com/en-us/previous-versions/azure/ad/graph/howto/azure-ad-graph-api-permission-scopes
https://docs.microsoft.com/en-us/previous-versions/azure/ad/graph/howto/azure-ad-graph-api-permission-scopes

229

	 4.	 There are couple of ways to enable access to our

partner user. You can remove the Directory.Read.

All permission and try to access the application for

now. The rule of the thumb is to give an application

the minimal amount of permissions that it needs.

This is important from a security perspective. The

other option is to sign in as an administrator to

provide consent.

	 5.	 We will access the API from the web app under the

user’s context. In enterprise Azure AD, go to “App

registrations”. Click your MVC application and

from the menu, select “API permissions”. Click the

“Add a permission” button, which opens a sidebar

with the “Request API permissions” heading.

Select “APIs my organization uses” and search for

MultitenantAPI. Click the “Delegated permissions”

tab, select the permission, and save.

Figure 8-7.  API permissions

Chapter 8 Multitenancy

230

	 6.	 Go to back to Partner Azure AD ➤ Enterprise

Applications ➤ All Applications. Note that there are

no applications added yet (given we created it for

our example).

Figure 8-8.  Web-app delegated user

Figure 8-9.  Applications in a partner tenant

Chapter 8 Multitenancy

231

	 7.	 Ensure that the user can consent. This can be done

by going to Partner AD ➤ Enterprise Applications ➤

User settings. Set the “Users can consent to the apps

accessing company data on their behalf” option to Yes.

Figure 8-10.  Users allowed to consent

	 8.	 Since the API application is always accessed through

MVC, we can combine the consent approval by

the partner users for both the API and MVC. To do

so, go to our enterprise Azure AD tenant ➤ App

Registrations. Click the MultitenantAPI application

and select Manifest. The metadata for the API

application is displayed in JSON format. Look for

the key called knownClientApplications and set its

value to the application ID of the MVC application.

Click the Save button.

"knownClientApplications": ["80b6df7a-1f6d-4743-922c-

bf01fa7aa3dd"]

	 9.	 Repeat the same steps in the API for Azure AD. Add

code that calls the API from the About method of

HomeController.cs in the MVC project.

Chapter 8 Multitenancy

232

 public async Task<IActionResult> About()

 {

 �string userObjectID = (User.FindFirst("http://

schemas.microsoft.com/identity/claims/

objectidentifier"))?.Value;

 // Single tenant authority

 �// AuthenticationContext authContext = new Authe

// nticationContext(AzureADSettings.AzureSettings.

// Authority);

 �// Multi-tenant authority cannot be specific to a

// tenant instance, and should point to https://login.

// microsoftonline.com/common

 �AuthenticationContext authContext = new Authentication

Context("https://login.microsoftonline.com/common");

 �ClientCredential credential = new ClientCrede

ntial(AzureADSettings.AzureSettings.ClientId,

AzureADSettings.AzureSettings.ClientSecret);

 �var result = await authContext.AcquireTokenAs

ync(AzureADSettings.AzureSettings.ResourceId,

credential);

 HttpClient client = new HttpClient();

 �HttpRequestMessage request = new

HttpRequestMessage(HttpMethod.Get, AzureADSettings.

AzureSettings.ResourceBasePath + "/api/values");

 �request.Headers.Authorization = new AuthenticationH

eaderValue("Bearer", result.AccessToken);

 �HttpResponseMessage response = await client.

SendAsync(request);

 �ViewData["Message"] = await response.Content.

ReadAsAsync<string>();

 return View();

 }

Chapter 8 Multitenancy

233

	 10.	 Run the applications again from Visual Studio and

log in with the partner user. The application will

show the user’s consent screen.

Figure 8-11.  Request for consent

	 11.	 Click the OK button to allow the user to log in to the

application.

Chapter 8 Multitenancy

234

	 12.	 Go back to Partner AD ➤ Enterprise Applications

➤ All Applications. Note that our applications were

added. In addition, pay attention to the application

ID (80b6df7a-1f6d-4743-922c-bf01fa7aa3dd) and

object ID (25aec4ea-c848-4132-b1b9-12fb2b67c4dc)

properties. Compare these to the values in step 1.

You will notice that the application ID value is the

same in both places; but the values for the object ID

are different. The application ID property refers to

the application instance that was registered on the

Azure AD tenant. When a partner user consents to

an application, a representation of the application is

created in the partner AD tenant. This representational

object is denoted by the object ID and is called a

service principal. A service principal is also created

in the tenant in which the application was originally

registered (enterprise tenant in our case).

Figure 8-12.  Partner user logged in

Chapter 8 Multitenancy

235

�Restricting the Azure AD Tenants
Note that in the preceding steps, we set options.

TokenValidationParameters.ValidateIssuer = false. This ensures that

our application will not validate the user’s tenant. This setting allows users

from any Azure AD tenant to access our application. In most scenarios, we

only want to restrict application access from users from certain tenants.

Follow these steps to enable this.

	 1.	 Open your MVC code in Visual Studio. Go to the

OpenID Connect options (OpenIdConnectConfig.

cs) and set options.TokenValidationParameters.

ValidateIssuer = true, in the Configure method.

	 2.	 OpenID Connect configurations provide a delegate

that is utilized for validating the issuer.

public void Configure(string name, OpenIdConnectOptions

options)

{

...

 options.TokenValidationParameters.ValidateIssuer = true;

 �options.TokenValidationParameters.IssuerValidator =

ValidateIssuer;

...

}

	 3.	 Add an implementation for the ValidateIssuer method.

private string ValidateIssuer(string issuer,

SecurityToken, TokenValidationParameters

validationParameters)

 {

 �if (validIssuers.Contains(issuer?.ToLower

Invariant()))

Chapter 8 Multitenancy

236

 {

 return issuer;

 }

 �throw new SecurityTokenInvalidIssuer

Exception($"Invalid tenant: {issuer}")

 {

 InvalidIssuer = issuer

 };

 }

validIssuers could be defined in the following code. In a real-world

application, it should be populated through a database/configurations or

another persistence mechanism.

 �private readonly List<string> validIssuers = new

List<string>()

 {

 �"https://sts.windows.net/ce3e874c-a6b4-4300-807e-

00d6db764856/",

 �"https://sts.windows.net/9ffc2d15-ffdd-4a44-9f6b-

1b11df8bb417/"

 };

If the issuer is not valid, we throw SecurityTokenInvalidIssuerException.

�Multitenancy in an Application
In the previous section, we discussed how to set up a multitenant

application in Azure AD. We also talked about various patterns for

multitenancy. We will try to take the pattern of having different

databases for each tenant and integrate it to Azure AD. The objective is to

Chapter 8 Multitenancy

237

demonstrate how multitenant applications can leverage Azure AD. We will

dynamically connect the database, depending on the tenant to which the

user belongs. We will use the same solution as in earlier sections.

Let’s start by creating very simple databases, one each for Enterprise

and Partner. Let’s call them EnterpriseDB and PartnerDB, respectively.

	 1.	 Create the same Employees table in both databases.

Use the same script for both databases. Each table

contains information about employees from each

respective organization.

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[Employees](

 [EmployeeId] [int] IDENTITY(1,1) NOT NULL,

 [FirstName] [nvarchar](50) NOT NULL,

 [SecondName] [nvarchar](50) NULL,

 [Department] [nvarchar](50) NULL,

 CONSTRAINT [PK_Employees] PRIMARY KEY CLUSTERED

(

 [EmployeeId] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_

LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

	 2.	 Insert sample data in both tables.

Chapter 8 Multitenancy

238

	 3.	 Add similar data in the employees table of the

partner tenant.

	 4.	 We will use the EntityFramework Core (EF Core)

database approach to access our database tables. In

our API project, add a reference to EF Core–related

NuGet packages.

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.SqlServer.Design

Microsoft.EntityFrameworkCore.Tools

	 5.	 Create a folder called DAL in the API project.

From Visual Studio Server Explorer, connect to

EnterpriseDB.

	 6.	 From the Visual Studio menu, select Tools ➤ NuGet

Package Manger ➤ Package Manager Console. Run

the following command.

Figure 8-14.  Employees table in Partner database

Figure 8-13.  Employees table in Enterprise database

Chapter 8 Multitenancy

239

PM> Scaffold-DbContext "Server=.;Database=

EnterpriseDB;Trusted_Connection=True;" Microsoft.

EntityFrameworkCore.SqlServer -OutputDir DAL

	 7.	 This generates Employees.cs with the Employees

entity and a class for the database context,

EnterpriseDBContext.cs.

public partial class Employees

 {

 public int EmployeeId { get; set; }

 public string FirstName { get; set; }

 public string SecondName { get; set; }

 public string Department { get; set; }

 }

	 8.	 Rename the EnterpriseDBContext class

TenantDBContext. We will use the same database

context object to access both databases. In

TenantDBContext, add a method to get a list of all

the employees from the database.

public async Task<List<Employees>> GetEmployees()

 {

 �return await this.Employees.

ToListAsync<Employees>();

 }

As explained earlier, we will change the database context (or the

connection string), depending on the tenant that the user belongs to. To

achieve this, we need a place to maintain this mapping with a tenant and

a database connection string. Ideally, this should be done in a secure

persistence, like Azure Key Vault.

Chapter 8 Multitenancy

240

For our purposes, let’s create a class that holds the mapping

between the tenant ID and the connection string; let’s call this class

TenantConnectionMapper. It exposes one method that returns the

connection string on the basis of the tenant ID.

public class TenantConnectionMapper

 {

 �// Dictionary holding the mapping between and AD tenant

// and corresponding connection string.

 �private readonly Dictionary<string, string>

connectionMapper = new Dictionary<string, string>();

 public TenantConnectionMapper()

 {

 �connectionMapper.Add("ce3e874c-a6b4-4300-807e-

00d6db764856", "Server=.;Database=EnterpriseDB;

Trusted_Connection=True;");

 �connectionMapper.Add("9ffc2d15-ffdd-4a44-9f6b-

1b11df8bb417", "Server=.;Database=PartnerDB;

Trusted_Connection=True;");

 }

 �// This is for demo purpose. In real world scenario

// this method will get connection string from a secure

// persistence.

 public string GetConnectionString(string tenant)

 {

 if (connectionMapper.Keys.Contains(tenant))

 {

 return connectionMapper[tenant];

 }

Chapter 8 Multitenancy

241

 return string.Empty;

 }

 }

	 1.	 Add another class, DBConnectionFactory. This class

is responsible for getting a database connection

object (DBConnection) on the basis of the user’s

tenant ID. The tenant ID could be extracted from

the claims in the user token. The user’s claims can

be extracted from each HTTP request by using

HttpContextAccessor, as mentioned in the following

code.

public class DBConnectionFactory

 {

 �private readonly IHttpContextAccessor httpContext

Accessor;

 �private readonly TenantConnectionMapper tenant

ConnectionMapper;

 �public DBConnectionFactory(IHttpContextAccess

or httpContextAccessor, TenantConnectionMapper

tenantConnectionMapper)

 {

 �this.httpContextAccessor = httpContext

Accessor;

 �this.tenantConnectionMapper = tenant

ConnectionMapper;

 }

Chapter 8 Multitenancy

242

 public DbConnection GetDbConnection()

 {

 �var tenantId = httpContextAccessor.

HttpContext.User.Claims

 �.FirstOrDefault(x => x.Type == "http://

schemas.microsoft.com/identity/claims/

tenantid")?.Value;

 �string connectionString = this.

tenantConnectionMapper.

GetConnectionString(tenantId);

 return new SqlConnection(connectionString);

 }

 }

	 2.	 This method exposes a method called

GetDbConnection; the purpose of this

method is to get the connection string from

TenantConnectionMapper, depending on the tenant.

	 3.	 Go back to the TenantDBContext class and add a

constructor, which accepts the connectionFactory

object and assigns it to a variable.

private readonly DBConnectionFactory connectionFactory;

 �public TenantDBContext(DBConnectionFactory

connectionFactory)

 {

 this.connectionFactory = connectionFactory;

 }

	 4.	 Change the OnConfiguring method as follows. This

enables the database context to be set dynamically

during runtime from the connection factory.

Chapter 8 Multitenancy

243

protected override void OnConfiguring(DbContextOptions

Builder optionsBuilder)

 {

 if (!optionsBuilder.IsConfigured)

 {

 �optionsBuilder.UseSqlServer(this.

connectionFactory.GetDbConnection());

 }

 }

	 5.	 In your API’s startup class, go to the

ConfigureServices method and register the

following types.

services.AddSingleton<IHttpContextAccessor,

HttpContextAccessor>();

 �services.AddSingleton<TenantConnection

Mapper>();

 services.AddTransient<DBConnectionFactory>();

 services.AddTransient<TenantDBContext>();

	 6.	 Go to ValuesController and change the default Get.

[HttpGet]

public async Task<ActionResult<string>> Get()

{

 �var token = this.HttpContext.Request.Headers

["Authorization"];

 var employees = await dbContext.GetEmployees();

 return "About link clicked. Found employees:

" + string.Join(", ", employees?.Select(x => x.

FirstName + " " + x.SecondName)) ;

}

Chapter 8 Multitenancy

244

	 7.	 Ensure that you inject a database context object to

the constructor of your controller.

public ValuesController(TenantDBContext dbContext)

 {

 this.dbContext = dbContext;

 }

	 8.	 Call this controller method by clicking the About

link in your UI, as you did in Chapter 7. Run the

application from Visual Studio.

	 9.	 Log in as a partner user and click the About link.

You will notice the employees of the partner tenant

listed on the UI.

Figure 8-15.  Employees in the PartnerDB

Figure 8-16.  Employees in the EnterpriseDB

Sign in as an enterprise user and click the About link to get data from

EnterpriseDB and display it on the UI.

Chapter 8 Multitenancy

245

We conceptually demonstrated how our applications can leverage

the multitenancy feature in Azure AD. The same concepts are applicable

to other patterns of multitenancy as well. Detailed discussions on

multitenancy is beyond the scope of this book.

�Summary
We introduced various patterns of multitenancy. We discussed

multitenancy in the context of Azure AD. We went through a demo

application on how to leverage Azure’s multitenancy to support an

application’s multitenant model.

We have covered authentication through the course of this book.

We discussed how Azure AD can be integrated to support various

authentication scenarios. In the last chapter, we touch on authorization

and how can we use Azure AD for it.

Chapter 8 Multitenancy

247© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2_9

CHAPTER 9

Introduction to
Authorization
Throughout this book, we have discussed authentication and the

process of authenticating users for different scenarios. We talked about

authenticating users in different types of applications and through various

types of providers. Authentication deals with identifying who the user

is. It provides the user an identity and determines if the user can access

the application. An application might want to restrict what a user can do

within the application. This process of defining the permissions that a user

has is called authorization. Whereas authentication deals with the who,

authorization deals with the what.

Permissions can be determined on various criteria, such as the roles

that have been assigned to the user, whether the user belongs to a certain

organization, and so forth. We must be aware of the identity of the user in

scenarios like these. To be provided specific permissions or authorization,

the user must be authenticated and their identity must be established.

Authorization can be at granularized at two levels.

•	 Data. Identifies which type or subset of data that

the user can access. For example, in a multitenancy

scenario, a user should only see data related to their

organization.

248

•	 Application. Defines which specific features or parts

of the application that a user has valid access to. Also

defines which operations (i.e., create, read, update,

delete) a user with access can do.

This chapter introduces the concepts of authorization. A detailed

design of an application’s authorization framework is dependent on the

requirements of the application, which is beyond the scope of this book.

We will discuss the following authorization mechanisms.

•	 Policy-based authorization

•	 Role-based authorization

•	 Security groups

•	 Claims-based authorization

•	 Resource-based authorization

Let’s start by setting up our solution.

�Setting up a Solution
Create a new project using the MVC template from Chapter 7. Ensure that

you change the authentication to “Work or School Accounts” and check

the “Read directory data” option (see Figure 9-1).

Chapter 9 Introduction to Authorization

249

Add a reference to OpenID Connect and ADAL-related libraries. We

are using only the MVC web application to learn about the concepts of

authorization. The same concepts could be extended for API controllers.

We are using the same Azure AD tenant—azureadfordevsenterprise.

onmicrosoft.com—in the examples. Confirm that the application is

registered in Azure AD tenant. Let’s start learning the concepts and

creating our demo applications.

�Policy-Based Authorization
ASP.NET Core provides abstraction for authorization mechanisms

through policies. Policies are extendible and can be used with different

authorization schemes. They decouple authorization from the controllers.

Policies are based primarily on three types.

•	 Requirement. Encapsulates the data required for an

authorization rule. The user identity is validated against

the data parameters of a requirement. A requirement

must implement the IAuthorizationRequirement

Figure 9-1.  Adding authentication during project creation

Chapter 9 Introduction to Authorization

250

interface. This is an empty interface with no methods

and is used as a type, which, if implemented, signifies

an authorization requirement. There are built-in

requirements in ASP.NET Core. For example, we

can define the requirements for the department an

employee belongs to.

public class EmployeeDepartmentRequirement :

IAuthorizationRequirement

{

public string DepartmentName { get; set; }

public EmployeeDepartmentRequirement(string

departmentName)

{

this.DepartmentName = departmentName;

}

}

•	 AuthorizationPolicy. Signifies the policy that needs

to be evaluated. A policy is a basic building block

for authorization rules. It can have one or more

requirements associated with it. All the requirements

associated with a policy must succeed for a policy to

succeed. Policies are added in ConfigureServices in

Startup.cs. For example, we might want to have a policy

specific to the HR admin. We will use the requirement

we defined earlier and check if the user has the role of

an admin. Let’s name our policy HRAdminPolicy.

services.AddAuthorization(options =>

{

options.AddPolicy("HRAdminPolicy", policy => policy.

Requirements.Add(new EmployeeDepartmentRequirement("HR")));

Chapter 9 Introduction to Authorization

251

options.AddPolicy("HRAdminPolicy", policy => policy.

RequireRole("admin"));

});

Policies can be applied to a controller or a method.

The following shows how a policy could be applied

for our scenario.

[Authorize(Policy = "HRAdminPolicy")]

public class HRAdminOperationsController : Controller

{

}

•	 AuthorizationHandler. Evaluates if a requirement

is successful or not. The logic for authorization is

encapsulated within it. A requirement could have one

or more handlers associated with it. An authorization

handler should inherit from an abstract class (Authori

zationHandler<TRequirement>), where TRequirement

is the type of requirement this handler caters to. This

class has a HandleRequirementAsync method that

has to be overridden in your code and contains logic

to validate the requirement. In our scenario, we can

define handler as follows.

public class EmployeeDepartmentHandler : Authorization

Handler<EmployeeDepartmentRequirement>

 {

 �protected override Task HandleRequirementA

sync(AuthorizationHandlerContext context,

EmployeeDepartmentRequirement requirement)

 {

Chapter 9 Introduction to Authorization

252

// Logic to check the department of the employee. For

// time being we will just let this requirement succeed.

context.Succeed(requirement);

 return Task.CompletedTask;

 }

 }

The handler must be registered in ConfigureServices

method of Startup.cs.

services.AddSingleton<IAuthorizationHandler,

EmployeeDepartmentHandler>();

Policy-based authorization can be used with other authorization

mechanisms. It forms the basis for all the other mechanisms that we

discuss this chapter.

�Role-Based Authorization
Role-based authorization has been used since legacy applications. Users

can have a specific role assigned to them. The actions define the role

needed to access them. For example, a user could belong to either an

admin or an employee role. Some controllers allow access to users in

an admin role. Traditionally, we check whether the user is assigned the

specific role needed to access a controller. We will use policies for checking

a user role. Let’s start by defining the valid roles for our application and

assigning the admin role to the user we created earlier: Enterprise User

(enterpriseuser@azureadfordevsenterprise.onmicrosoft.com).

	 1.	 Go to your enterprise Azure AD tenant

(azureadfordevsenterprise.onmicrosoft.com) in the

Azure portal.

Chapter 9 Introduction to Authorization

253

	 2.	 Go to “App registrations” and under the Manage

menu, click Manifest. Click the same. This displays

metadata for the application in JSON format.

	 3.	 Locate the appRoles element, change the value as

follows, and save.

"appRoles": [

 {

 "allowedMemberTypes": [

 "User"

],

 "description": "Administrators ",

 �"displayName":

"Administrators",

 �"id": "68e9f85b-d6ab-4894-aae7-

483307986d26",

 "isEnabled": true,

 "lang": null,

 "origin": "Application",

 "value": "admin"

 },

 {

 "allowedMemberTypes": [

 "User"

],

 "description": "Employees",

 "displayName": "Employees",

 �"id": "e6729ca2-e876-466d-aecb-

1b9c6a24de47",

 "isEnabled": true,

 "lang": null,

Chapter 9 Introduction to Authorization

254

 "origin": "Application",

 "value": "employee"

 }

]

This basically adds two roles to our application:

admin and employee.

	 4.	 Go to Enterprise applications ➤ All applications and

locate the application that you registered earlier in

this chapter (AuthorizationDemo) and click it.

	 5.	 Go to “Users and groups” under Manage and click

the checkbox in front of Enterprise User. Click the

Edit button. This loads the Edit Assignment blade.

	 6.	 Choose Select Role to load the Select Role blade.

This shows the two roles that you just added in the

manifest.

Figure 9-2.  Assigning an app role to user

	 7.	 Select the Administrators option, click the Select

button, and then click the Assign button. This adds

the role to the user of the application.

	 8.	 Go to Visual Studio. Put a breakpoint on the

OnAuthorizationCodeReceived method of the OpenID

Connect configuration class. Run your solution.

Chapter 9 Introduction to Authorization

255

	 9.	 Check the claims on the ClaimsPrincipal of the

context. You will find admin in the role claim.

This allows the policy to succeed, and the user is

authorized.

�Security Groups
In the previous section, we gave a role explicitly to the user. Providing each

user role explicitly could be quite cumbersome. As with other security

systems, we can define security groups and add users to relevant security

groups. We can then provide appropriate roles to these security groups.

Let’s start by defining the security groups for our system and then make

changes in our code to honor this. We will have two security groups:

AdminGroup and EmployeeGroup.

	 1.	 In the Azure portal, go to Groups ➤ All groups and

click the “New group” button. This opens the “New

group” blade.

	 2.	 Enter the relevant details for AdminGroup and

click Create. Be sure to add the enterprise user as

a member. Change the admin role to an employee

role. This is necessary to validate that the user is

given a role due to being part of a group rather than

the role being assigned explicitly.

Figure 9-3.  Role claim for the user

Chapter 9 Introduction to Authorization

256

	 3.	 Copy the object ID of the group created. Refer to

Figure 9-5. We will use this later in our code.

Figure 9-5.  Object ID for security group

Figure 9-4.  Create security group

	 4.	 Create another group for employees and add users.

Copy the object ID for this group as well.

Chapter 9 Introduction to Authorization

257

	 5.	 Go to “App registrations” and under the Manage

menu, click Manifest. On the manifest, locate the

groupMembershipClaims element to SecurityGroup

and save. This makes the security group part of the

user claims.

"groupMembershipClaims": "SecurityGroup"

	 6.	 Go to Visual Studio and locate the Startup.cs

class. Under the ConfigureServices method, add

an authorization policy for the security group, as

follows.

services.AddAuthorization(options =>

 {

 �options.AddPolicy("AdminGroupPolicy",

policy => policy.RequireClaim("groups",

"0a611d07-7b30-4bf2-8d60-

263d3f008188"));

 });

The GUID in the code is the object ID for the group

we created earlier. In the actual code, this GUID

should be fetched from another mechanism.

For example, you might get it from the Graph

API or store it in a database table or in another

configuration.

	 7.	 Go to Visual Studio. Put a breakpoint on the

OnAuthorizationCodeReceived method of the

OpenID Connect configuration class.

Chapter 9 Introduction to Authorization

258

	 8.	 Add the policy to your HomeController and run the code.

[Authorize(Policy = "AdminGroupPolicy")]

public class HomeController : Controller

{

...

}

	 9.	 Check the claims on the ClaimsPrincipal of the

context. The object ID for the admin security group

is in the groups claim. This allows the policy to

succeed, and the user is authorized.

�Claims-Based Authorization
As discussed in Chapter 1, claims are a dictionary of key/value pair.

The claims are associated with an identity and provide information

relevant to the identity. Some of the claims are added by the identity

provider authenticating the user. Application code could also add claims

to an identity. This set of claims could be added in an application using

external storage, like a database or Azure AD itself. We can then make

authorization decisions based on the claims the user’s identity has.

Figure 9-6.  Groups claim for a user

Chapter 9 Introduction to Authorization

259

Let’s start tweaking our code to validate claims. We will continue with the

same example of validating an administrator for HR operations and check

if our user has a claim for the HR department.

	 1.	 Go back to the Visual Studio solution and find our

code with OpenID Connect configurations. Add the

event handler to OIDC options.

options.Events.OnTokenValidated = TokenValidated;

	 2.	 Add the following code in the TokenValidated event

handler. This event is raised as soon as the user’s

identity is established and validated.

private async Task TokenValidated(TokenValidatedContext

context)

 {

 string claimKey = "DepartmentClaim";

 �// This value of the claim could be fetched

// from from external storage like

// database, depending on user's identity

 string claimValue = "HR";

 var claimsList = new List<Claim>

 {

 new Claim("DepartmentClaim", "HR")

 };

 �var claimsIdentity = new ClaimsIdentity

(claimsList);

 �context.Principal.AddIdentity

(claimsIdentity);

 }

Chapter 9 Introduction to Authorization

260

For simplicity, we are just adding a hard-coded

claim. In most scenarios, the user claim (e.g., a

department) could be fetched from an external

data source, like a database. This mapping of a

department with a user can be maintained using the

user’s ObjectId (which is fetched from context.User).

	 3.	 It is time to add the missing logic to our requirement

handler, EmployeeDepartmentHandler. Change the

HandleRequirementAsync method.

protected override Task HandleRequirementA

sync(AuthorizationHandlerContext context,

EmployeeDepartmentRequirement requirement)

 {

 �// Logic to check the department of the

// employee

 �if (context.User.

HasClaim("DepartmentClaim", requirement.

DepartmentName))

 {

 context.Succeed(requirement);

 }

 return Task.CompletedTask;

 }

	 4.	 Check that the department name in the user’s

claim is the same as the one specified during the

policy setup (HR in our scenario). The policy

succeeds, and the user is authorized. Put in a debug

breakpoint and verify the claims.

Chapter 9 Introduction to Authorization

261

�Customizing Azure AD Claims
In Chapter 6, you saw how to extend the schema of objects in Azure AD.

We also used Microsoft Graph. We can use the same principle to attach

the department name property to a user object in Azure AD. But we will

use an older version of Microsoft Graph called the Graph API, which is

still supported. This will also give us exposure to the Graph API. Let’s go

through the steps. This is done using the Graph API described in previous

chapters. To simplify, we will use Azure AD Graph Explorer. This website

allows us to make Graph API requests through its interface.

	 1.	 Go to the manifest of your application in the Azure

portal and note the ID element. This element is the

object ID of the application (not the application or

client ID).

	 2.	 Go to https://graphexplorer.azurewebsites.net/

and log in with the admin of your enterprise Azure AD

tenant. Note that this website does not work with live

credentials (MSA) at the time of writing this book.

Figure 9-7.  Claims validation for the user

Chapter 9 Introduction to Authorization

https://graphexplorer.azurewebsites.net/

262

	 3.	 In the query textbox, enter the URL in the following

format.

https://graph.windows.net/<tenant-name>/

applications/<application-objectid>/

extensionProperties, where <tenant-name>

is the name of your enterprise Azure tenant and

<application-objectid> is the ID we noted in step 1.

	 4.	 Ensure that the request made is POST by changing

the drop-down (see Figure 9-9). The text area

under the query is enabled for a POST request.

Add the following JSON there. The JSON simply

indicates that we need to define a property called

employeeDepartment of type String on the User

object in the application’s context.

{

 "name": "employeeDepartment",

 "dataType": "String",

 "targetObjects": [

 "User"

]

}

Chapter 9 Introduction to Authorization

https://graph.windows.net/<tenant-name>/applications/<application-objectid>/extensionProperties
https://graph.windows.net/<tenant-name>/applications/<application-objectid>/extensionProperties
https://graph.windows.net/<tenant-name>/applications/<application-objectid>/extensionProperties

263

	 5.	 Click the Go button. This will send the Graph API

request. If the request is successful, you will receive

a JSON response, as shown in Figure 9-8. Pay

attention to the name element in the response. Let’s

save it; we will be using it later.

"name": "extension_f0d560cb9de34f27bc405e99f910c540_

employeeDepartment"

	 6.	 We need to assign a value to the extension property

that we just added. Let’s do it for our enterprise user.

In Graph Explorer, change the query to update the

extension property for your user:

https://graph.windows.net/<tenant-name>/

users/<application-user>, where <application-

user> is the fully qualified name of the user. Change

the request type to PATCH from the drop-down

menu and enter the following JSON for your request.

Figure 9-8.  Graph explorer: adding extension property

Chapter 9 Introduction to Authorization

https://graph.windows.net/<tenant-name>/users/<application-user>
https://graph.windows.net/<tenant-name>/users/<application-user>

264

{

 �"extension_f0d560cb9de34f27bc405e99f910c540_

employeeDepartment": "HR"

}

	 7.	 Click Go. This updates the extension property of

your user with an HR value. You can confirm the

same firing with a GET request from Graph Explorer

by using the same URL: https://graph.windows.

net/<tenant-name>/users/<application-user>.

Figure 9-9.  Graph Explorer: getting user details

In an actual application, this must be done either

through PowerShell or code using the Graph API.

	 8.	 We now need to add this extension property as a

claim. Go to the manifest of your application in the

Azure portal and locate the optionalClaims element.

Set the value for the same, as follows.

Chapter 9 Introduction to Authorization

https://graph.windows.net/<tenant-name>/users/<application-user>
https://graph.windows.net/<tenant-name>/users/<application-user>

265

"optionalClaims": {

"idToken": [

{

"name": "extension_f0d560cb9de34f27bc405e99f910c540_

employeeDepartment",

"source": "user"

}

]

This basically tells your ID token to fetch the value of the extension

property depicted by the name attribute defined on the user object’s

instance.

	 9.	 Go back to your Visual Studio solution and change

the name of the claim to extn.employeeDepartment;

this is the claim that will be populated.

	 10.	 protected override Task HandleRequirement

Async(AuthorizationHandlerContext context,

EmployeeDepartmentRequirement requirement)

 {

 // Logic to check the department of the employee

 �if (context.User.HasClaim("extn.

employeeDepartment", requirement.DepartmentName))

 {

 context.Succeed(requirement);

 }

 return Task.CompletedTask;

 }

Chapter 9 Introduction to Authorization

266

	 11.	 Remove the TokenValidated event handler because

the claim is already added.

	 12.	 Run your solution after putting a debug breakpoint

on the method that we tweaked earlier. The claim is

populated for the relevant user.

�Resource-based Authorization
At times, the authorization strategy depends on the resource itself. The

resource being accessed defines the permissions needed to execute a

particular action on it. We need to check if the user trying to perform

an action on the resource has those permissions. If the user does have

those permissions, we allow the user to perform the action; otherwise, we

deny the action. Let’s look at an example. We will extend the example we

discussed in the previous section. Assume an organization needs to define

authorization on HR department–related operations on employee records.

The user could either read or write (edit) these records. The following are

the requirements.

Figure 9-10.  Claims using extension property

Chapter 9 Introduction to Authorization

267

•	 Any employee can see her or his own employee record.

•	 Only an HR employee can see the records of other

employees; other employees can’t see these records.

•	 No employee can edit an employee record.

We will use the policy-based authorization here as well. We will mock

the data where needed. Let’s start by defining our requirement.

public class ResourcePermissionsRequirement :

IAuthorizationRequirement

 {

 public string Resource { get; set; }

 public string Permission { get; set; }

 �public ResourcePermissionsRequirement(string resource,

string permission)

 {

 this.Resource = resource;

 this.Permission = permission;

 }

 }

The requirement has two properties.

•	 Resource. Defines the resource being accessed. In our

case, it could be defined as HROperations.

•	 Permission. Defines a valid permission in the resource.

Permissions could simply be defined as create, read,

update, or delete. We will use read or write as our valid

permissions. This implies that a user can either read or

write to HROperations.

Chapter 9 Introduction to Authorization

268

Let’s define policies for read and write in Startup.cs.

services.AddAuthorization(options =>

 {

 �options.AddPolicy("HROperationsReadPolicy",

policy => policy.Requirements.Add(new Reso

urcePermissionsRequirement("HROperations",

"read")));

 �options.AddPolicy("HROperationsWritePolicy",

policy => policy.Requirements.Add(new Reso

urcePermissionsRequirement("HROperations",

"write")));

 });

Define the entity that encapsulates the employee record. Properties are

self-explanatory.

public class EmployeeEntity

 {

 public int EmployeeId { get; set; }

 public string EmployeeName { get; set; }

 public string Department { get; set; }

 public string Designation { get; set; }

 }

Let’s define the handler, which accepts an entity as well. This is done

by making the handler inherit from AuthorizationHandler<TRequirement,

TEntity>, where TRequirement is the requirement on which the handler is

applicable, and TEntity is the type of entity on which an operation is

being done.

public class ResourcePermissionsHandler :

 �AuthorizationHandler<ResourcePermissionsRequirement,

EmployeeEntity>

Chapter 9 Introduction to Authorization

269

 {

 �protected override Task HandleRequirementA

sync(AuthorizationHandlerContext context,

ResourcePermissionsRequirement requirement,

EmployeeEntity employee)

 {

 �string employeeIdFromClaims = context.User.Claims.

FirstOrDefault(c => c.Type == "EmployeeId").Value;

 �if (context.User.HasClaim(requirement.Resource,

requirement.Permission) || employee.EmployeeId.

ToString() == employeeIdFromClaims)

 {

 context.Succeed(requirement);

 }

 return Task.CompletedTask;

 }

 }

We authorize if the user has the right claims. We define our claim as

a combination of resources and permissions. In addition to permissions

on the resource, we check if the employee ID of the logged-in user (which

we check through the EmployeeId claim) and the employee ID in the

employee entity (or employee record being accessed) is the same. If either

of the conditions match, we allow the authorization to succeed. Let’s now

look at how to invoke this handler.

Since our authorization strategy depends on the employee entity

(as an instance of the EmployeeEntity class), we can’t use policies

through controller or method-level attributes. Hence, the attribute (like

[Authorize(Policy = "HRAdminPolicy")], which we used previously) will

not suffice for our requirements. The decision to authorize has to be taken

in the controller code. ASP.NET Core uses the IAuthorizationService

interface for authorization. This interface could be accessed through

Chapter 9 Introduction to Authorization

270

dependency injection in the controller. We can call the following method

on this interface to execute our handler.

Task<AuthorizationResult> AuthorizeAsync(ClaimsPrincipal user,

object resource, string policyName);

Before we call this method, let’s mock our employee record service.

This service mocks an employee and returns an entity corresponding to

the employee. For simplicity, assume that the HR employee has employee

ID 1. The other IDs belong to other employees. We can define a simple

mock employee service as follows.

public class MockEmployeeService : IMockEmployeeService

 {

 public EmployeeEntity CreateMockEmployee(int employeeId)

 {

 if (employeeId == 1)

 {

 �return new EmployeeEntity() { Department =

"HR", Designation = "Manager", EmployeeId = 1,

EmployeeName = "HR Sharma" };

 }

 else

 {

 �return new EmployeeEntity() { Department =

"FINANCE", Designation = "Accountant", EmployeeId

= employeeId, EmployeeName = "FI Nance" };

 }

 }

 }

Now we will try to authorize actions in the

HRAdminOperationsController HR operations controller.

Chapter 9 Introduction to Authorization

271

Register the types with a DI container in Startup.cs.

services.AddSingleton<IAuthorizationHandler,

ResourcePermissionsHandler>();

services.AddSingleton<IMockEmployeeService,

MockEmployeeService>();

Inject the relevant interfaces and assign them to the local variables.

private readonly IAuthorizationService authorizationService;

 private readonly IMockEmployeeService mockEmployeeService;

 �public HRAdminOperationsController(IAuthorizationS

ervice authorizationService, IMockEmployeeService

mockEmployeeService)

 {

 this.authorizationService = authorizationService;

 this.mockEmployeeService = mockEmployeeService;

 }

Go to the Details method and tweak the code as follows.

public async Task<IActionResult> Details(int id)

 {

 �EmployeeEntity employeeEntity = this.

mockEmployeeService.CreateMockEmployee(id);

 �var result = await this.authorizationService.

AuthorizeAsync(this.User, employeeEntity,

"HROperationsReadPolicy");

 if (result.Succeeded)

 {

 return View();

 }

 return Forbid();

 }

Chapter 9 Introduction to Authorization

272

This is the method to read the employee records with the employee

ID specified by the id parameter. If the policy passes, we authorize the

request. Similarly, change the Edit-related controller as follows. The code

is self-explanatory.

public async Task<IActionResult> Edit(int id)

 {

 �EmployeeEntity = this.mockEmployeeService.

CreateMockEmployee(id);

 �var result = await this.authorizationService.

AuthorizeAsync(this.User, employeeEntity,

"HROperationsWritePolicy");

 if (result.Succeeded)

 {

 return View();

 }

 return Forbid();

 }

Let’s also mock adding claims in the OpenID Connect

configurations (ensure this method is added as an event handler for the

OnTokenValidated event).

private async Task TokenValidated(TokenValidatedContext context)

 {

 ClaimsIdentity = null;

 �if (context.Principal.HasClaim("extn.

employeeDepartment", "HR"))

 {

 claimsIdentity = this.GetHREmployeeClaim();

 }

 else

Chapter 9 Introduction to Authorization

273

 {

 claimsIdentity = this.GetOtherEmployeeClaim();

 }

 context.Principal.AddIdentity(claimsIdentity);

 }

 // Mock getting claims for HR employees

 private ClaimsIdentity GetHREmployeeClaim()

 {

 var claimsList = new List<Claim>

 {

 new Claim("DepartmentClaim", "HR"),

 new Claim("HROperations", "read"),

 new Claim("EmployeeId", "1")

 };

 var claimsIdentity = new ClaimsIdentity(claimsList);

 return claimsIdentity;

 }

 // Mock getting claims for non HR employees

 private ClaimsIdentity GetOtherEmployeeClaim()

 {

 var claimsList = new List<Claim>

 {

 new Claim("DepartmentClaim", "Finance"),

 new Claim("EmployeeId", "2")

 };

 var claimsIdentity = new ClaimsIdentity(claimsList);

 return claimsIdentity;

 }

Chapter 9 Introduction to Authorization

274

Let’s identify if the employee is part of HR, which depends on the

claim from the extension property we added in the claims-based

authorization section.

Run the code and log in with the user having the extension property

populated with the HR value (such as Enterprise User; we added the

value for the extension property in the last section) and try to access the

Edit controller by passing the ID as 1 (assumed to be HR) in the request

and again with 2 as the ID. You will note that edit controller authorized

in the first case but not in the second case. Try the same on the Details

controllers for both combinations. In addition, try all the combinations

with a non-HR user as well. The authorization logic works as expected.

Table 9-2.  For the Editing Employee Records

Operation URL Actor: HR Actor: non-HR

Editing HR

employee’s record

<app-url>/ HRAdminOperations/

Edit/1

Authorized Not

Authorized

Another

employee’s record

editing

<app-url>/ HRAdminOperations/

Edit/2

Not

Authorized

Authorized

Table 9-1.  For Getting the Details

Operation URL Actor: HR Actor: non-HR

Reading HR

employee’s record

<app-url>/ HRAdminOperations/

Details/1

Authorized Not

Authorized

Another employee’s

record reading

<app-url>/ HRAdminOperations/

Details/2

Authorized Authorized

Chapter 9 Introduction to Authorization

275

We can extend this resource-based authorization to other resources.

This combination of resources and permissions provides a powerful and

extendible mechanism for authorization.

�Summary
In this chapter, we introduced how to integrate your Azure AD–based

application with authorization. The concepts we discussed are relevant

to other identity providers as well. We discussed various mechanisms to

implement authorization. The choice of authorization should depend on

the actual application requirements. A complex authorization strategy for

a simplistic application requirement will add unnecessary complications.

The opposite is true as well.

Chapter 9 Introduction to Authorization

277© Manas Mayank and Mohit Garg 2019
M. Mayank and M. Garg, Developing Applications with Azure Active Directory,
https://doi.org/10.1007/978-1-4842-5040-2

Index

A
Access token, 21, 45
Active directory custom data

extensions
Microsoft Graph

events, 177–179
extensions types, 176

open extensions
create, 183, 184
delete, 186, 187
read, 184, 185
update, 185, 186

run application
creating console application,

181, 182
registration, 180, 181

schema
add, 188, 189
read value, 192
remove value, 193, 194
update value, 190, 191

AddJwtBearer method, 54, 80, 161
Android application

Android app, creation, 146, 147
features, 143
HTTP triggered Azure function,

creation, 148–150
HTTP triggered function, 144, 145

registration, 145, 146
run application, 144

Applications, configuration
API permissions, 228, 229
delegated permissions, 229, 230
HomeController.cs, 231, 232
IDs, 228
JSON format, 231
log in, 234
MVC, 231
partner Azure AD, 230
run, visual studio, 233
service principal, 234
user consent, 231

Authentication, 2, 3
Authorization, 3, 4
Authorization code grant

access token, 29
actors, 22
parameters

post request, 27
post request to token, 29
response format, 25–26
sever response, 27, 28
unauthenticated user, 24, 25

preconditions, 22
process flow, 23
user authentication, 25

https://doi.org/10.1007/978-1-4842-5040-2

278

Authorization grant
client credentials

post request, parameters,
39, 40

process flow, 39
response, parameters, 41

code grant (see Authorization
code grant)

defined, 21
implicit grant (see Implicit

grant)
OAuth flow, 21
resource owner password

credentials (see Password
grant)

types, 21
Azure active directory (AAD),

1, 4–5
Azure active directory

authentication library
(ADAL), 62, 249

Azure active directory
authentication library for
JavaScript (ADAL JS), 48

Azure active directory B2B
collaboration

AD tenants, 197, 198
enterprise tenant, 197
partner tenant, 197

key features, 196, 197
P1 or P2 license, 196

Azure function, 84

B
Business to business (B2B), 14–15,

195–197
Business-to-customer (B2C), 15

C
Claims-based authentication,

13–14
Claims-based authorization

Azure AD, customization, 261
extension property, 266
Graph API, 261
Graph explorer, 263, 264, 266
HR operations, 259, 260
user, 261

ConfigureServices method, 215,
243, 257

D
Daemon application

certificate-based client
credential flow

console API, 168, 169
console API, creation,

169–171
events, 165
run application, 166, 167
web API, 167, 168
web API, creation, 172

INDEX

279

client credential
authentication flow

console app, creation,
157, 158

events, 154
examples, 153
register console app,

156, 157
run application, 155
web API, 155, 156
web API, creation, 159,

162–164
Directory services, 1

E
Edit-related controller, 272
EmployeeDepartmentHandler, 260
External user authentication,

solution set up
application, Visual Studio

API project, 200
authentication, 199
enterprise tenant, 199
new project, 198
registered application,

200, 201
code configuration

About page, 217, 218
authentication mechanism,

215, 216
authorization code grant

flow, 215
AzureADEnterprise.sln, 215

get method, 216, 217
log in, Gmail

credentials, 217
guest inviter, support

external collaboration
settings, 201–203

partner user, 201
permissions, 202

identity provider (see Google,
identity provider)

invitation to end user, 213–215
partner user as guest inviter

access panel, 208–209
add partner user, 206, 207
Guest inviter role, 205, 206
Invitation accepted

property, 204

F
Federated identity, 11–12

G
GetDbConnection method, 242
Google, identity provider

add URLs, 211
Azure AD, 212
Azure AD B2B, 209
configure consent, 210
create credentials, 210
Gmail users, 209
OAuth client, 212
social identity provider, 213

Index

280

H
HandleRequirementAsync,

251, 260
HRAdminOperations

Controller, 270
HTTP triggered Azure function

AAD, 91
authentication/authorization,

89, 90
authorization screen, 89
Azure AD library, 93
configuration, 92
Function app, 88
HTTP call, 93
index page, 92
logged in, 93
returns data, 93, 94

HTTP triggered Azure function
authentication

creation (see HTTP triggered
Azure function)

events sequence, 84–86
OAuth 2, 84
registration, 86, 87
web app creation, 88

I
IAuthorizationService

interface, 269
Implicit grant

access token, 30, 34
process flow, 31
redirects user agent, 33, 34

request URI, parameters, 32, 33
rules, 30

J, K, L
JSON web token (JWT), 5

M
Multi-factor authentication

(MFA), 3, 104
configuration screen, 106
security attacks, 104
settings screen, 107
in web app, 105–107

Multitenancy, 13
models, 220, 221

Multitenancy, applications
DBConnectionFactory, 241, 242
enterprise database, 237,

238, 244
EntityFramework core, 238
partner database, 238, 244
TenantConnectionMapper,

240, 241
visual studio, 238

Multitenancy support, solution
AAD tenant, 223, 224
applications (see Applications,

configuration)
Azure AD tenants, 235, 236
code, 222
structure, 223
support application, 224–226

INDEX

281

N
Native applications

events, 111
types, 109
using AAD, 110

NuGet, 52, 61, 78, 115, 126, 135,
146, 238

O
OAuth 2.0

actors or roles, 20
advantages, 19
authorized access, 18
real-world visitor sequence, 20
sequence flow, 19
visitor access, real-world

scenario, 18
OnConfiguring method, 242
Open authorization (OAuth), 11,

19, 196
OpenID connect (OIDC), 11

authentication flow, 43, 44
clients, 42
metadata document, 42

P, Q
Pass-through authentication, 12
Password grant

post request to Web API,
parameters, 37

process flow, 35, 36
resource owner, 35
response format, parameters,

37, 38
use cases, 35

Policy-based authorization,
249–252

AuthorizationHandler, 251–252
AuthorizationPolicy, 250–251
requirement, 249–250

R
Resource-based authorization

properties, 267
requirements, 266

Resources, 1
Roles-based authorization,

252–255

S
Security assertion markup

language (SAML), 5
Security groups

AdminGroup, 255
creation, 256
EmployeeGroup, 255
object ID, 256
user, 258

Service principal name (SPN), 10
Single-factor authentication, 3, 104

Index

282

Single-page application (SPAs)
AJAX, 48
creation (see SPAs creation)
HTML5, 48
HTML page, 48
run application

Azure AD, register, 50, 51
create, Web API, 61, 62
register, Web API, 60
software, 50

sequence of events, 48–50
Web API, 48

Single sign-on (SSO), 12
SPAs creation

ADAL JS, 55
API methods, 55
authentication, 59, 60
AzureAdOptions class, 52
configuration, 57
different API, 58, 59
Extension method, 53
Get Data button, 58
home controller, 56
home page, 57
login and logout button, 55
login button, 58
Web API MVC application, 52

T
Tenant, 12, 42
Tokens

access token, 45
headers, 6

ID token, 44
JWT, 5
payload, 6, 7, 9, 10
refresh token, 45
signature, 10
signature validation, 46

TokenSessionCache class, 68
Two-factor authentication, 3

U
Universal windows platform (UWP)

application, creation, 135, 136
features, 132
HTTP triggered Azure function

authentication, 139, 140
authorization screen, 138
configuration, 137
data, 143
Home screen, 141
login, 142

registration, 134, 135
run application

Azure AD function
application, 133–134

UWP app, 134–135

V
ValuesController method, 243

W, X, Y, Z
Web API creation

access token, 83

INDEX

283

AddJwtBearer method, 80
AzureAdOptions, 78
configuration, 81
data from API, 83
Home screen, 81, 82
JWT options, 79, 80
login button, 82
.NET Core 2.0, 78

Web app creation
access denied, 76
access token, 77
AddAzureAd, 74
AzureAdOptions class, 66, 67
catch exception, 77
configurations, 67
ConfigureAzureOptions, 71, 72
.NET Core 2.0, 66
OnAuthorizationCodeReceived

method, 73
signed-out, 76
sign-in, 75
sign-out, 75
SQL server cache, 74
TokenSessionCache, 68, 70

Web App/Web API authentication
.NET Core 2.1, 62
register web API, 64
register web app, 65, 66
sequence of events, 62–64
web API (see Web API creation)
web app (see Web app creation)

Web app/Web API/Web API 2
(on-behalf-of)

access token, 94
authentication code, 94
create Web API 2

access token, 103
API controller, 100
configuration, 101
Configure method, 99
Home screen, 102, 103
HTTP call, 103
login page, 102
response form API 2,

103, 104
user assertion, 101

create Web app/Web API, 99
sequence of events,

authentication, 94–96
web API, registration, 97, 98
web API 2, registration, 96, 97
web app, registration, 98, 99

Windows Presentation
Foundation (WPF)

app, creation, 126, 127
creating web API

configuration, 128
data, 130
Home screen, 128
log in, 129

steps, 125
web API, 124

Index

284

Windows console application
app, creation, 115–117
create Web API

command-line
interface, 121

configuration, 120

login, 122
response, 123
steps, 117–119

registration, 114
run, 112
web API, 113, 114

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Azure Active Directory
	Authentication
	Authorization
	Azure Active Directory
	Tokens
	SPN
	OAuth
	OpenID Connect
	Federated Identity
	Single Sign-On
	Pass-Through Authentication
	Tenant
	Multitenancy
	Claims-Based Authentication
	Azure AD B2B
	Azure AD B2C

	Summary

	Chapter 2: OAuth Flows and OpenID Connect
	OAuth 2.0
	OAuth 2.0 Grant Types
	Authorization Code Grant
	Implicit Grant
	Resource Owner Password Credentials Grant
	Client Credentials

	OpenID Connect
	OpenID Connect Metadata Document
	Authentication Flow Using OpenID Connect

	Tokens
	Validating Tokens

	Summary

	Chapter 3: User-Based Authentication for Web Apps
	Single-Page Application
	Running the Application
	Creating a Single-Page Application
	Running the Application
	Adding a Web API

	Web App/Web API Authentication
	Running the Application
	Creating a Web App
	Creating a Web API

	Web App: HTTP Triggered Azure Function Authentication
	Running the Application
	Creating a Web App
	Creating an HTTP Triggered Azure Function

	Web App/Web API/Web API 2 (On-Behalf-Of)
	Running the Application
	Creating a Web App and a Web API 2
	Creating a Web API

	Multi-Factor Authentication
	The Need for Multi-Factor Authentication
	Configuring Multi-Factor Authentication for Azure AD

	Summary

	Chapter 4: User-Based Authentication for Native Applications
	Authentication Using Code Grant Flow
	Windows Console Application
	Running the Application
	Web API
	Console App
	Creating a Console App
	Creating a Web API

	Windows Presentation Foundation (WPF)
	Running the Application
	Web API
	WPF App
	Creating a WPF App
	Creating a Web API

	Universal Windows Platform (UWP)
	Running the Application
	HTTP Triggered Azure Function Endpoint
	UWP App
	Creating a UWP App
	Creating an HTTP Triggered Azure Function

	Android Application
	Running the Application
	HTTP Triggered Azure Function Endpoint
	Android App
	Creating an Android App
	Creating an HTTP Triggered Azure Function

	Summary

	Chapter 5: Daemon Application Authentication
	Client Credential Authentication Flow
	Running Your Application
	Web API
	Console App
	Creating a Console App
	Creating a Web API

	Client Credential Authentication Flow Using a Certificate
	Running Your Application
	Web API
	Console App
	Creating a Console App
	Creating a Web API

	Summary

	Chapter 6: Active Directory Custom Data Extensions
	Custom Data Extensions
	Microsoft Graph with Azure AD

	Running Your Application
	Registering Your Application
	Creating a Console Application
	Calling Microsoft Graph to the Extend Resource Instance

	Open Extensions
	Create
	Read
	Update
	Delete

	Schema Extensions
	Adding a Schema
	Add-Update Schema Extension Value
	Read Schema Extension Value
	Remove Schema Extension Value

	Summary

	Chapter 7: Authenticating External Users
	Azure Active Directory B2B
	Configuring Azure AD for B2B Collaboration
	Setting up Our Solution
	Configuring to Support a Guest Inviter
	Adding a Partner User as a Guest Inviter
	Adding Google as an Identity Provider
	Sending an Invitation to the End User

	Configuring Code
	Summary

	Chapter 8: Multitenancy
	Multitenancy Models
	Setting up Our Solution
	Configuring a User from Another AAD Tenant
	Configuring an Application to Support Multitenancy
	Configuring the Applications
	Restricting the Azure AD Tenants

	Multitenancy in an Application
	Summary

	Chapter 9: Introduction to Authorization
	Setting up a Solution
	Policy-Based Authorization
	Role-Based Authorization
	Security Groups
	Claims-Based Authorization
	Customizing Azure AD Claims

	Resource-based Authorization
	Summary

	Index

