
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Entity	Information	Life	Cycle	for	Big
Data

Master	Data	Management	and
Information	Integration

John	R.	Talburt

Yinle	Zhou

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Cover	image

Title	page

Copyright

Foreword

Preface

Acknowledgements

Chapter	1.	The	Value	Proposition	for	MDM	and	Big	Data
Definition	and	Components	of	MDM

The	Business	Case	for	MDM

Dimensions	of	MDM

The	Challenge	of	Big	Data

MDM	and	Big	Data	–	The	N-Squared	Problem

Concluding	Remarks

Chapter	2.	Entity	Identity	Information	and	the	CSRUD	Life	Cycle	Model
Entities	and	Entity	References

Managing	Entity	Identity	Information

Entity	Identity	Information	Life	Cycle	Management	Models

Concluding	Remarks

Chapter	3.	A	Deep	Dive	into	the	Capture	Phase
An	Overview	of	the	Capture	Phase

Building	the	Foundation

Understanding	the	Data

Data	Preparation

Selecting	Identity	Attributes

Assessing	ER	Results

Data	Matching	Strategies

Concluding	Remarks

Chapter	4.	Store	and	Share	–	Entity	Identity	Structures
Entity	Identity	Information	Management	Strategies

Dedicated	MDM	Systems

The	Identity	Knowledge	Base

MDM	Architectures

Concluding	Remarks

Chapter	5.	Update	and	Dispose	Phases	–	Ongoing	Data	Stewardship

www.allitebooks.com

kindle:embed:0005?mime=image/jpg
http://www.allitebooks.org

Data	Stewardship

The	Automated	Update	Process

The	Manual	Update	Process

Asserted	Resolution

EIS	Visualization	Tools

Managing	Entity	Identifiers

Concluding	Remarks

Chapter	6.	Resolve	and	Retrieve	Phase	–	Identity	Resolution
Identity	Resolution

Identity	Resolution	Access	Modes

Confidence	Scores

Concluding	Remarks

Chapter	7.	Theoretical	Foundations
The	Fellegi-Sunter	Theory	of	Record	Linkage

The	Stanford	Entity	Resolution	Framework

Entity	Identity	Information	Management

Concluding	Remarks

Chapter	8.	The	Nuts	and	Bolts	of	Entity	Resolution
The	ER	Checklist

Cluster-to-Cluster	Classification

Selecting	an	Appropriate	Algorithm

Concluding	Remarks

Chapter	9.	Blocking
Blocking

Blocking	by	Match	Key

Dynamic	Blocking	versus	Preresolution	Blocking

Blocking	Precision	and	Recall

Match	Key	Blocking	for	Boolean	Rules

Match	Key	Blocking	for	Scoring	Rules

Concluding	Remarks

Chapter	10.	CSRUD	for	Big	Data
Large-Scale	ER	for	MDM

The	Transitive	Closure	Problem

Distributed,	Multiple-Index,	Record-Based	Resolution

An	Iterative,	Nonrecursive	Algorithm	for	Transitive	Closure

Iteration	Phase:	Successive	Closure	by	Reference	Identifier

Deduplication	Phase:	Final	Output	of	Components

ER	Using	the	Null	Rule

The	Capture	Phase	and	IKB

The	Identity	Update	Problem

www.allitebooks.com

http://www.allitebooks.org

Persistent	Entity	Identifiers

The	Large	Component	and	Big	Entity	Problems

Identity	Capture	and	Update	for	Attribute-Based	Resolution

Concluding	Remarks

Chapter	11.	ISO	Data	Quality	Standards	for	Master	Data
Background

Goals	and	Scope	of	the	ISO	8000-110	Standard

Four	Major	Components	of	the	ISO	8000-110	Standard

Simple	and	Strong	Compliance	with	ISO	8000-110

ISO	22745	Industrial	Systems	and	Integration

Beyond	ISO	8000-110

Concluding	Remarks

Appendix	A.	Some	Commonly	Used	ER	Comparators

References

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Copyright

Acquiring	Editor:	Steve	Elliot

Editorial	Project	Manager:	Amy	Invernizzi

Project	Manager:	Priya	Kumaraguruparan

Cover	Designer:	Matthew	Limbert

Morgan	Kaufmann	is	an	imprint	of	Elsevier

225	Wyman	Street,	Waltham,	MA	02451,	USA

Copyright	©	2015	Elsevier	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,
electronic	or	mechanical,	including	photocopying,	recording,	or	any	information	storage
and	retrieval	system,	without	permission	in	writing	from	the	publisher.	Details	on	how	to
seek	permission,	further	information	about	the	Publisher’s	permissions	policies	and	our
arrangements	with	organizations	such	as	the	Copyright	Clearance	Center	and	the
Copyright	Licensing	Agency,	can	be	found	at	our	website:	www.elsevier.com/permissions.

This	book	and	the	individual	contributions	contained	in	it	are	protected	under	copyright	by
the	Publisher	(other	than	as	may	be	noted	herein).

	
Notices

Knowledge	and	best	practice	in	this	field	are	constantly	changing.	As	new	research	and
experience	broaden	our	understanding,	changes	in	research	methods,	professional
practices,	or	medical	treatment	may	become	necessary.

Practitioners	and	researchers	must	always	rely	on	their	own	experience	and	knowledge
in	evaluating	and	using	any	information,	methods,	compounds,	or	experiments	described
herein.	In	using	such	information	or	methods	they	should	be	mindful	of	their	own	safety
and	the	safety	of	others,	including	parties	for	whom	they	have	a	professional
responsibility.

To	the	fullest	extent	of	the	law,	neither	the	Publisher	nor	the	authors,	contributors,	or
editors,	assume	any	injury	and/or	damage	to	persons	or	property	as	a	matter	of	products
liability,	negligence	or	otherwise,	or	from	any	use	or	operation	of	any	methods,
products,	instructions,	or	ideas	contained	in	the	material	herein.

ISBN:	978-0-12-800537-8

British	Library	Cataloguing	in	Publication	Data

A	catalogue	record	for	this	book	is	available	from	the	British	Library

www.allitebooks.com

http://www.elsevier.com/permissions
http://www.allitebooks.org

Library	of	Congress	Cataloging-in-Publication	Data

A	catalog	record	for	this	book	is	available	from	the	Library	of	Congress

	
For	information	on	all	MK	publications	visit	our	website	at	www.mkp.com

www.allitebooks.com

http://www.mkp.com
http://www.allitebooks.org

Foreword

In	July	of	2015	the	Massachusetts	Institute	of	Technology	(MIT)	will	celebrate	the	20th
anniversary	of	the	International	Conference	on	Information	Quality.	My	journey	to
information	and	data	quality	has	had	many	twists	and	turns,	but	I	have	always	found	it
interesting	and	rewarding.	For	me	the	most	rewarding	part	of	the	journey	has	been	the
chance	to	meet	and	work	with	others	who	share	my	passion	for	this	topic.	I	first	met	John
Talburt	in	2002	when	he	was	working	in	the	Data	Products	Division	of	Acxiom
Corporation,	a	data	management	company	with	global	operations.	John	had	been	tasked
by	leadership	to	answer	the	question,	“What	is	our	data	quality?”	Looking	for	help	on	the
Internet	he	found	the	MIT	Information	Quality	Program	and	contacted	me.	My	book
Quality	Information	and	Knowledge	(Huang,	Lee,	&	Wang,	1999)	had	recently	been
published.	John	invited	me	to	Acxiom	headquarters,	at	that	time	in	Conway,	Arkansas,	to
give	a	one-day	workshop	on	information	quality	to	the	Acxiom	Leadership	team.

This	was	the	beginning	of	John’s	journey	to	data	quality,	and	we	have	been	traveling
together	on	that	journey	ever	since.	After	I	helped	him	lead	Acxiom’s	effort	to	implement
a	Total	Data	Quality	Management	program,	he	in	turn	helped	me	to	realize	one	of	my
long-time	goals	of	seeing	a	U.S.	university	start	a	degree	program	in	information	quality.
Through	the	largess	of	Acxiom	Corporation,	led	at	that	time	by	Charles	Morgan	and	the
academic	entrepreneurship	of	Dr.	Mary	Good,	Founding	Dean	of	the	Engineering	and
Information	Technology	College	at	the	University	of	Arkansas	at	Little	Rock,	the	world’s
first	graduate	degree	program	in	information	quality	was	established	in	2006.	John	has
been	leading	this	program	at	UALR	ever	since.	Initially	created	around	a	Master	of
Science	in	Information	Quality	(MSIQ)	degree	(Lee	et	al.,	2007),	it	has	since	expanded	to
include	a	Graduate	Certificate	in	IQ	and	an	IQ	PhD	degree.	As	of	this	writing	the	program
has	graduated	more	than	100	students.

The	second	part	of	this	story	began	in	2008.	In	that	year,	Yinle	Zhou,	an	e-commerce
graduate	from	Nanjing	University	in	China,	came	to	the	U.S.	and	was	admitted	to	the
UALR	MSIQ	program.	After	finishing	her	MS	degree,	she	entered	the	IQ	PhD	program
with	John	as	her	research	advisor.	Together	they	developed	a	model	for	entity	identity
information	management	(EIIM)	that	extends	entity	resolution	in	support	of	master	data
management	(MDM),	the	primary	focus	of	this	book.	Dr.	Zhou	is	now	a	Software
Engineer	and	Data	Scientist	for	IBM	InfoSphere	MDM	Development	in	Austin,	Texas,
and	an	Adjunct	Assistant	Professor	of	Electrical	and	Computer	Engineering	at	the
University	of	Texas	at	Austin.	And	so	the	torch	was	passed	and	another	journey	began.

I	have	also	been	fascinated	to	see	how	the	landscape	of	information	technology	has
changed	over	the	past	20	years.	During	that	time	IT	has	experienced	a	dramatic	shift	in
focus.	Inexpensive,	large-scale	storage	and	processors	have	changed	the	face	of	IT.
Organizations	are	exploiting	cloud	computing,	software-as-a-service,	and	open	source
software,	as	alternatives	to	building	and	maintaining	their	own	data	centers	and
developing	custom	solutions.	All	of	these	trends	are	contributing	to	the	commoditization

of	technology.	They	are	forcing	companies	to	compete	with	better	data	instead	of	better
technology.	At	the	same	time,	more	and	more	data	are	being	produced	and	retained,	from
structured	operational	data	to	unstructured,	user-generated	data	from	social	media.
Together	these	factors	are	producing	many	new	challenges	for	data	management,	and
especially	for	master	data	management.

The	complexity	of	the	new	data-driven	environment	can	be	overwhelming.	How	to	deal
with	data	governance	and	policy,	data	privacy	and	security,	data	quality,	MDM,	RDM,
information	risk	management,	regulatory	compliance,	and	the	list	goes	on.	Just	as	John
and	Yinle	started	their	journeys	as	individuals,	now	we	see	that	entire	organizations	are
embarking	on	journeys	to	data	and	information	quality.	The	difference	is	that	an
organization	needs	a	leader	to	set	the	course,	and	I	strongly	believe	this	leader	should	be
the	Chief	Data	Officer	(CDO).

The	CDO	is	a	growing	role	in	modern	organizations	to	lead	their	company’s	journey	to
strategically	use	data	for	regulatory	compliance,	performance	optimization,	and
competitive	advantage.	The	MIT	CDO	Forum	recognizes	the	emerging	criticality	of	the
CDO’s	role	and	has	developed	a	series	of	events	where	leaders	come	for	bidirectional
sharing	and	collaboration	to	accelerate	identification	and	establishment	of	best	practices	in
strategic	data	management.

I	and	others	have	been	conducting	the	MIT	Longitudinal	Study	on	the	Chief	Data
Officer	and	hosting	events	for	senior	executives	to	advance	CDO	research	and	practice.
We	have	published	research	results	in	leading	academic	journals,	as	well	as	the
proceedings	of	the	MIT	CDO	Forum,	MIT	CDOIQ	Symposium,	and	the	International
Conference	on	Information	Quality	(ICIQ).	For	example,	we	have	developed	a	three-
dimensional	cubic	framework	to	describe	the	emerging	role	of	the	Chief	Data	Officer	in
the	context	of	Big	Data	(Lee	et	al.,	2014).

I	believe	that	CDOs,	MDM	architects	and	administrators,	and	anyone	involved	with
data	governance	and	information	quality	will	find	this	book	useful.	MDM	is	now
considered	an	integral	component	of	a	data	governance	program.	The	material	presented
here	clearly	lays	out	the	business	case	for	MDM	and	a	plan	to	improve	the	quality	and
performance	of	MDM	systems	through	effective	entity	information	life	cycle
management.	It	not	only	explains	the	technical	aspects	of	the	life	cycle,	it	also	provides
guidance	on	the	often	overlooked	tasks	of	MDM	quality	metrics	and	analytics	and	MDM
stewardship.

Richard	Wang,					MIT	Chief	Data	Officer	and	Information	Quality	Program

Preface

The	Changing	Landscape	of	Information
Quality
Since	the	publication	of	Entity	Resolution	and	Information	Quality	(Morgan	Kaufmann,
2011),	a	lot	has	been	happening	in	the	field	of	information	and	data	quality.	One	of	the
most	important	developments	is	how	organizations	are	beginning	to	understand	that	the
data	they	hold	are	among	their	most	important	assets	and	should	be	managed	accordingly.
As	many	of	us	know,	this	is	by	no	means	a	new	message,	only	that	it	is	just	now	being
heeded.	Leading	experts	in	information	and	data	quality	such	as	Rich	Wang,	Yang	Lee,
Tom	Redman,	Larry	English,	Danette	McGilvray,	David	Loshin,	Laura	Sebastian-
Coleman,	Rajesh	Jugulum,	Sunil	Soares,	Arkady	Maydanchik,	and	many	others	have	been
advocating	this	principle	for	many	years.

Evidence	of	this	new	understanding	can	be	found	in	the	dramatic	surge	of	the	adoption
of	data	governance	(DG)	programs	by	organizations	of	all	types	and	sizes.	Conferences,
workshops,	and	webinars	on	this	topic	are	overflowing	with	attendees.	The	primary	reason
is	that	DG	provides	organizations	with	an	answer	to	the	question,	“If	information	is	really
an	important	organizational	asset,	then	how	can	it	be	managed	at	the	enterprise	level?”
One	of	the	primary	benefits	of	a	DG	program	is	that	it	provides	a	framework	for
implementing	a	central	point	of	communication	and	control	over	all	of	an	organization’s
data	and	information.

As	DG	has	grown	and	matured,	its	essential	components	become	more	clearly	defined.
These	components	generally	include	central	repositories	for	data	definitions,	business
rules,	metadata,	data-related	issue	tracking,	regulations	and	compliance,	and	data	quality
rules.	Two	other	key	components	of	DG	are	master	data	management	(MDM)	and
reference	data	management	(RDM).	Consequently,	the	increasing	adoption	of	DG
programs	has	brought	a	commensurate	increase	in	focus	on	the	importance	of	MDM.

Certainly	this	is	not	the	first	book	on	MDM.	Several	excellent	books	include	Master
Data	Management	and	Data	Governance	by	Alex	Berson	and	Larry	Dubov	(2011),
Master	Data	Management	in	Practice	by	Dalton	Cervo	and	Mark	Allen	(2011),	Master
Data	Management	by	David	Loshin	(2009),	Enterprise	Master	Data	Management	by
Allen	Dreibelbis,	Eberhard	Hechler,	Ivan	Milman,	Martin	Oberhofer,	Paul	van	Run,	and
Dan	Wolfson	(2008),	and	Customer	Data	Integration	by	Jill	Dyché	and	Evan	Levy	(2006).
However,	MDM	is	an	extensive	and	evolving	topic.	No	single	book	can	explore	every
aspect	of	MDM	at	every	level.

Motivation	for	This	Book
Numerous	things	have	motivated	us	to	contribute	yet	another	book.	However,	the	primary
reason	is	this.	Based	on	our	experience	in	both	academia	and	industry,	we	believe	that
many	of	the	problems	that	organizations	experience	with	MDM	implementation	and
operation	are	rooted	in	the	failure	to	understand	and	address	certain	critical	aspects	of
entity	identity	information	management	(EIIM).	EIIM	is	an	extension	of	entity	resolution
(ER)	with	the	goal	of	achieving	and	maintaining	the	highest	level	of	accuracy	in	the	MDM
system.	Two	key	terms	are	“achieving”	and	“maintaining.”

Having	a	goal	and	defined	requirements	is	the	starting	point	for	every	information	and
data	quality	methodology	from	the	MIT	TDQM	(Total	Data	Quality	Management)	to	the
Six-Sigma	DMAIC	(Define,	Measure,	Analyze,	Improve,	and	Control).	Unfortunately,
when	it	comes	to	MDM,	many	organizations	have	not	defined	any	goals.	Consequently
these	organizations	don’t	have	a	way	to	know	if	they	have	achieved	their	goal.	They	leave
many	questions	unanswered.	What	is	our	accuracy?	Now	that	a	proposed	programming	or
procedure	has	been	implemented,	is	the	system	performing	better	or	worse	than	before?
Few	MDM	administrators	can	provide	accurate	estimates	of	even	the	most	basic	metrics
such	as	false	positive	and	false	negative	rates	or	the	overall	accuracy	of	their	system.	In
this	book	we	have	emphasized	the	importance	of	objective	and	systematic	measurement
and	provided	practical	guidance	on	how	these	measurements	can	be	made.

To	help	organizations	better	address	the	maintaining	of	high	levels	of	accuracy	through
EIIM,	the	majority	of	the	material	in	the	book	is	devoted	to	explaining	the	CSRUD	five-
phase	entity	information	life	cycle	model.	CSRUD	is	an	acronym	for	capture,	store	and
share,	resolve	and	retrieve,	update,	and	dispose.	We	believe	that	following	this	model	can
help	any	organization	improve	MDM	accuracy	and	performance.

Finally,	no	modern	day	IT	book	can	be	complete	without	talking	about	Big	Data.
Seemingly	rising	up	overnight,	Big	Data	has	captured	everyone’s	attention,	not	just	in	IT,
but	even	the	man	on	the	street.	Just	as	DG	seems	to	be	getting	up	a	good	head	of	steam,	it
now	has	to	deal	with	the	Big	Data	phenomenon.	The	immediate	question	is	whether	Big
Data	simply	fits	right	into	the	current	DG	model,	or	whether	the	DG	model	needs	to	be
revised	to	account	for	Big	Data.

Regardless	of	one’s	opinion	on	this	topic,	one	thing	is	clear	–	Big	Data	is	bad	news	for
MDM.	The	reason	is	a	simple	mathematical	fact:	MDM	relies	on	entity	resolution,	and
entity	resolution	primarily	relies	on	pair-wise	record	matching,	and	the	number	of	pairs	of
records	to	match	increases	as	the	square	of	the	number	of	records.	For	this	reason,
ordinary	data	(millions	of	records)	is	already	a	challenge	for	MDM,	so	Big	Data	(billions
of	records)	seems	almost	insurmountable.	Fortunately,	Big	Data	is	not	just	matter	of	more
data;	it	is	also	ushering	in	a	new	paradigm	for	managing	and	processing	large	amounts	of
data.	Big	Data	is	bringing	with	it	new	tools	and	techniques.	Perhaps	the	most	important
technique	is	how	to	exploit	distributed	processing.	However,	it	is	easier	to	talk	about	Big
Data	than	to	do	something	about	it.	We	wanted	to	avoid	that	and	include	in	our	book	some
practical	strategies	and	designs	for	using	distributed	processing	to	solve	some	of	these

problems.

Audience
It	is	our	hope	that	both	IT	professionals	and	business	professionals	interested	in	MDM	and
Big	Data	issues	will	find	this	book	helpful.	Most	of	the	material	focuses	on	issues	of
design	and	architecture,	making	it	a	resource	for	anyone	evaluating	an	installed	system,
comparing	proposed	third-party	systems,	or	for	an	organization	contemplating	building	its
own	system.	We	also	believe	that	it	is	written	at	a	level	appropriate	for	a	university
textbook.

Organization	of	the	Material
Chapters	1	and	2	provide	the	background	and	context	of	the	book.	Chapter	1	provides	a
definition	and	overview	of	MDM.	It	includes	the	business	case,	dimensions,	and
challenges	facing	MDM	and	also	starts	the	discussion	of	Big	Data	and	its	impact	on
MDM.	Chapter	2	defines	and	explains	the	two	primary	technologies	that	support	MDM	–
ER	and	EIIM.	In	addition,	Chapter	2	introduces	the	CSRUD	Life	Cycle	for	entity	identity
information.	This	sets	the	stage	for	the	next	four	chapters.

Chapters	3,	4,	5,	and	6	are	devoted	to	an	in-depth	discussion	of	the	CSRUD	life	cycle
model.	Chapter	3	is	an	in-depth	look	at	the	Capture	Phase	of	CSRUD.	As	part	of	the
discussion,	it	also	covers	the	techniques	of	truth	set	building,	benchmarking,	and	problem
sets	as	tools	for	assessing	entity	resolution	and	MDM	outcomes.	In	addition,	it	discusses
some	of	the	pros	and	cons	of	the	two	most	commonly	used	data	matching	techniques	–
deterministic	matching	and	probabilistic	matching.

Chapter	4	explains	the	Store	and	Share	Phase	of	CSRUD.	This	chapter	introduces	the
concept	of	an	entity	identity	structure	(EIS)	that	forms	the	building	blocks	of	the	identity
knowledge	base	(IKB).	In	addition	to	discussing	different	styles	of	EIS	designs,	it	also
includes	a	discussion	of	the	different	types	of	MDM	architectures.

Chapter	5	covers	two	closely	related	CSRUD	phases,	the	Update	Phase	and	the	Dispose
Phase.	The	Update	Phase	discussion	covers	both	automated	and	manual	update	processes
and	the	critical	roles	played	by	clerical	review	indicators,	correction	assertions,	and
confirmation	assertions.	Chapter	5	also	presents	an	example	of	an	identity	visualization
system	that	assists	MDM	data	stewards	with	the	review	and	assertion	process.

Chapter	6	covers	the	Resolve	and	Retrieve	Phase	of	CSRUD.	It	also	discusses	some
design	considerations	for	accessing	identity	information,	and	a	simple	model	for	a
retrieved	identifier	confidence	score.

Chapter	7	introduces	two	of	the	most	important	theoretical	models	for	ER,	the	Fellegi-
Sunter	Theory	of	Record	Linkage	and	the	Stanford	Entity	Resolution	Framework	or	SERF
Model.	Chapter	7	is	inserted	here	because	some	of	the	concepts	introduced	in	the	SERF
Model	are	used	in	Chapter	8,	“The	Nuts	and	Bolts	of	ER.”	The	chapter	concludes	with	a
discussion	of	how	EIIM	relates	to	each	of	these	models.

Chapter	8	describes	a	deeper	level	of	design	considerations	for	ER	and	EIIM	systems.	It
discusses	in	detail	the	three	levels	of	matching	in	an	EIIM	system:	attribute-level,
reference-level,	and	cluster-level	matching.

Chapter	9	covers	the	technique	of	blocking	as	a	way	to	increase	the	performance	of	ER
and	MDM	systems.	It	focuses	on	match	key	blocking,	the	definition	of	match-key-to-
match-rule	alignment,	and	the	precision	and	recall	of	match	keys.	Preresolution	blocking
and	transitive	closure	of	match	keys	are	discussed	as	a	prelude	to	Chapter	10.

Chapter	10	discusses	the	problems	in	implementing	the	CSRUD	Life	Cycle	for	Big
Data.	It	gives	examples	of	how	the	Hadoop	Map/Reduce	framework	can	be	used	to
address	many	of	these	problems	using	a	distributed	computing	environment.

Chapter	11	covers	the	new	ISO	8000-110	data	quality	standard	for	master	data.	This
standard	is	not	well	understood	outside	of	a	few	industry	verticals,	but	it	has	potential
implications	for	all	industries.	This	chapter	covers	the	basic	requirements	of	the	standard
and	how	organizations	can	become	ISO	8000	compliant,	and	perhaps	more	importantly,
why	organizations	would	want	to	be	compliant.

Finally,	to	reduce	ER	discussions	in	Chapters	3	and	8,	Appendix	A	goes	into	more
detail	on	some	of	the	more	common	data	comparison	algorithms.

This	book	also	includes	a	website	with	exercises,	tips	and	free	downloads	of
demonstrations	that	use	a	trial	version	of	the	HiPER	EIM	system	for	hands-on	learning.
The	website	includes	control	scripts	and	synthetic	input	data	to	illustrate	how	the	system
handles	various	aspects	of	the	CSRUD	life	cycle	such	as	identity	capture,	identity	update,
and	assertions.	You	can	access	the	website	here:
http://www.BlackOakAnalytics.com/develop/HiPER/trial.

www.allitebooks.com

http://www.blackoakanalytics.com/develop/HiPER/trial
http://www.allitebooks.org

Acknowledgements

This	book	would	not	have	been	possible	without	the	help	of	many	people	and
organizations.	First	of	all,	Yinle	and	I	would	like	to	thank	Dr.	Rich	Wang,	Director	of	the
MIT	Information	Quality	Program,	for	starting	us	on	our	journey	to	data	quality	and	for
writing	the	foreword	for	our	book,	and	Dr.	Scott	Schumacher,	Distinguished	Engineer	at
IBM,	for	his	support	of	our	research	and	collaboration.	We	would	also	like	to	thank	our
employers,	IBM	Corporation,	University	of	Arkansas	at	Little	Rock,	and	Black	Oak
Analytics,	Inc.,	for	their	support	and	encouragement	during	its	writing.

It	has	been	a	privilege	to	be	a	part	of	the	UALR	Information	Quality	Program	and	to
work	with	so	many	talented	students	and	gifted	faculty	members.	I	would	especially	like
to	acknowledge	several	of	my	current	students	for	their	contributions	to	this	work.	These
include	Fumiko	Kobayashi,	identity	resolution	models	and	confidence	scores	in	Chapter	6;
Cheng	Chen,	EIS	visualization	tools	and	confirmation	assertions	in	Chapter	5	and	Hadoop
map/reduce	in	Chapter	10;	Daniel	Pullen,	clerical	review	indicators	in	Chapter	5	and
Hadoop	map/reduce	in	Chapter	10;	Pei	Wang,	blocking	for	scoring	rules	in	Chapter	9,
Hadoop	map/reduce	in	Chapter	10,	and	the	demonstration	data,	scripts,	and	exercises	on
the	book’s	website;	Debanjan	Mahata,	EIIM	for	unstructured	data	in	Chapter	1;	Melody
Penning,	entity-based	data	integration	in	Chapter	1;	and	Reed	Petty,	IKB	structure	for
HDFS	in	Chapter	10.	In	addition	I	would	like	to	thank	my	former	student	Dr.	Eric	Nelson
for	introducing	the	null	rule	concept	and	for	sharing	his	expertise	in	Hadoop	map/reduce
in	Chapter	10.	Special	thanks	go	to	Dr.	Laura	Sebastian-Coleman,	Data	Quality	Leader	at
Cigna,	and	Joshua	Johnson,	UALR	Technical	Writing	Program,	for	their	help	in	editing
and	proofreading.	Finally	I	want	to	thank	my	teaching	assistants,	Fumiko	Kobayashi,
Khizer	Syed,	Michael	Greer,	Pei	Wang,	and	Daniel	Pullen,	and	my	administrative
assistant,	Nihal	Erian,	for	giving	me	the	extra	time	I	needed	to	complete	this	work.

I	would	also	like	to	take	this	opportunity	to	acknowledge	several	organizations	that
have	supported	my	work	for	many	years.	Acxiom	Corporation	under	Charles	Morgan	was
one	of	the	founders	of	the	UALR	IQ	program	and	continues	to	support	the	program	under
Scott	Howe,	the	current	CEO,	and	Allison	Nicholas,	Director	of	College	Recruiting	and
University	Relations.	I	am	grateful	for	my	experience	at	Acxiom	and	the	opportunity	to
learn	about	Big	Data	entity	resolution	in	a	distributed	computing	environment	from	Dr.
Terry	Talley	and	the	many	other	world-class	data	experts	who	work	there.

The	Arkansas	Research	Center	under	the	direction	of	Dr.	Neal	Gibson	and	Dr.	Greg
Holland	were	the	first	to	support	my	work	on	the	OYSTER	open	source	entity	resolution
system.	The	Arkansas	Department	of	Education	–	in	particular	former	Assistant
Commissioner	Jim	Boardman	and	his	successor,	Dr.	Cody	Decker,	along	with	Arijit
Sarkar	in	the	IT	Services	Division	–	gave	me	the	opportunity	to	build	a	student	MDM
system	that	implements	the	full	CSRUD	life	cycle	as	described	in	this	book.

The	Translational	Research	Institute	(TRI)	at	the	University	of	Arkansas	for	Medical
Sciences	has	given	me	and	several	of	my	students	the	opportunity	for	hands-on	experience

with	MDM	systems	in	the	healthcare	environment.	I	would	like	to	thank	Dr.	William
Hogan,	the	former	Director	of	TRI	for	teaching	me	about	referent	tracking,	and	also	Dr.
Umit	Topaloglu	the	current	Director	of	Informatics	at	TRI	who	along	with	Dr.	Mathias
Brochhausen	continues	this	collaboration.

Last	but	not	least	are	my	business	partners	at	Black	Oak	Analytics.	Our	CEO,	Rick
McGraw,	has	been	a	trusted	friend	and	business	advisor	for	many	years.	Because	of	Rick
and	our	COO,	Jonathan	Askins,	what	was	only	a	vision	has	become	a	reality.

John	R.	Talburt,		and	Yinle	Zhou

CHAPTER	1

The	Value	Proposition	for	MDM	and	Big
Data

Abstract
This	chapter	gives	a	definition	of	master	data	management	(MDM)	and	describes	how	it	generates	value	for
organizations.	It	also	provides	an	overview	of	Big	Data	and	the	challenges	it	brings	to	MDM.

Keywords
Master	data;	master	data	management;	MDM;	Big	Data;
reference	data	management;	RDM

Definition	and	Components	of	MDM
Master	Data	as	a	Category	of	Data
Modern	information	systems	use	four	broad	categories	of	data	including	master	data,
transaction	data,	metadata,	and	reference	data.	Master	data	are	data	held	by	an
organization	that	describe	the	entities	both	independent	and	fundamental	to	the
organization’s	operations.	In	some	sense,	master	data	are	the	“nouns”	in	the	grammar	of
data	and	information.	They	describe	the	persons,	places,	and	things	that	are	critical	to	the
operation	of	an	organization,	such	as	its	customers,	products,	employees,	materials,
suppliers,	services,	shareholders,	facilities,	equipment,	and	rules	and	regulations.	The
determination	of	exactly	what	is	considered	master	data	depends	on	the	viewpoint	of	the
organization.

If	master	data	are	the	nouns	of	data	and	information,	then	transaction	data	can	be
thought	of	as	the	“verbs.”	They	describe	the	actions	that	take	place	in	the	day-to-day
operation	of	the	organization,	such	as	the	sale	of	a	product	in	a	business	or	the	admission
of	a	patient	to	a	hospital.	Transactions	relate	master	data	in	a	meaningful	way.	For
example,	a	credit	card	transaction	relates	two	entities	that	are	represented	by	master	data.
The	first	is	the	issuing	bank’s	credit	card	account	that	is	identified	by	the	credit	card
number,	where	the	master	data	contains	information	required	by	the	issuing	bank	about
that	specific	account.	The	second	is	the	accepting	bank’s	merchant	account	that	is
identified	by	the	merchant	number,	where	the	master	data	contains	information	required
by	the	accepting	bank	about	that	specific	merchant.

Master	data	management	(MDM)	and	reference	data	management	(RDM)	systems	are
both	systems	of	record	(SOR).	A	SOR	is	“a	system	that	is	charged	with	keeping	the	most
complete	or	trustworthy	representation	of	a	set	of	entities”	(Sebastian-Coleman,	2013).
The	records	in	an	SOR	are	sometimes	called	“golden	records”	or	“certified	records”
because	they	provide	a	single	point	of	reference	for	a	particular	type	of	information.	In	the
context	of	MDM,	the	objective	is	to	provide	a	single	point	of	reference	for	each	entity
under	management.	In	the	case	of	master	data,	the	intent	is	to	have	only	one	information
structure	and	identifier	for	each	entity	under	management.	In	this	example,	each	entity
would	be	a	credit	card	account.

Metadata	are	simply	data	about	data.	Metadata	are	critical	to	understanding	the	meaning
of	both	master	and	transactional	data.	They	provide	the	definitions,	specifications,	and
other	descriptive	information	about	the	operational	data.	Data	standards,	data	definitions,
data	requirements,	data	quality	information,	data	provenance,	and	business	rules	are	all
forms	of	metadata.

Reference	data	share	characteristics	with	both	master	data	and	metadata.	Reference	data
are	standard,	agreed-upon	codes	that	help	to	make	transactional	data	interoperable	within
an	organization	and	sometimes	between	collaborating	organizations.	Reference	data,	like
master	data,	should	have	only	one	system	of	record.	Although	reference	data	are
important,	they	are	not	necessarily	associated	with	real-world	entities	in	the	same	way	as
master	data.	RDM	is	intended	to	standardize	the	codes	used	across	the	enterprise	to

promote	data	interoperability.

Reference	codes	may	be	internally	developed,	such	as	standard	department	or	building
codes	or	may	adopt	external	standards,	such	as	standard	postal	codes	and	abbreviations	for
use	in	addresses.	Reference	data	are	often	used	in	defining	metadata.	For	example,	the
field	“BuildingLocation”	in	(or	referenced	by)	an	employee	master	record	may	require
that	the	value	be	one	of	a	standard	set	of	codes	(system	of	reference)	for	buildings	as
established	by	the	organization.	The	policies	and	procedures	for	RDM	are	similar	to	those
for	MDM.

Master	Data	Management
In	a	more	formal	context,	MDM	seems	to	suffer	from	lengthy	definitions.	Loshin	(2009)
defines	master	data	management	as	“a	collection	of	best	data	management	practices	that
orchestrate	key	stakeholders,	participants,	and	business	clients	in	incorporating	the
business	applications,	information	management	methods,	and	data	management	tools	to
implement	the	policies,	procedures,	services,	and	infrastructure	to	support	the	capture,
integration,	and	shared	use	of	accurate,	timely,	consistent,	and	complete	master	data.”
Berson	and	Dubov	(2011)	define	MDM	as	the	“framework	of	processes	and	technologies
aimed	at	creating	and	maintaining	an	authoritative,	reliable,	sustainable,	accurate,	and
secure	environment	that	represents	a	single	and	holistic	version	of	the	truth	for	master	data
and	its	relationships…”

These	definitions	highlight	two	major	components	of	MDM	as	shown	in	Figure	1.1.
One	component	comprises	the	policies	that	represent	the	data	governance	aspect	of	MDM,
while	the	other	includes	the	technologies	that	support	MDM.	Policies	define	the	roles	and
responsibilities	in	the	MDM	process.	For	example,	if	a	company	introduces	a	new
product,	the	policies	define	who	is	responsible	for	creating	the	new	entry	in	the	master
product	registry,	the	standards	for	creating	the	product	identifier,	what	persons	or
department	should	be	notified,	and	which	other	data	systems	should	be	updated.
Compliance	to	regulation	along	with	the	privacy	and	security	of	information	are	also
important	policy	issues	(Decker,	Liu,	Talburt,	Wang,	&	Wu,	2013).

FIGURE	1.1 	Components	of	MDM.

The	technology	component	of	MDM	can	be	further	divided	into	two	major
subcomponents,	the	entity	resolution	(ER)	process	and	entity	identity	information
management	(EIIM).

Entity	Resolution
The	base	technology	is	entity	resolution	(ER),	which	is	sometimes	called	record	linking,
data	matching,	or	de-duplication.	ER	is	the	process	of	determining	when	two	information
system	references	to	a	real-world	entity	are	referring	to	the	same,	or	to	different,	entities
(Talburt,	2011).	ER	represents	the	“sorting	out”	process	when	there	are	multiple	sources	of
information	that	are	referring	to	the	same	set	of	entities.	For	example,	the	same	patient
may	be	admitted	to	a	hospital	at	different	times	or	through	different	departments	such	as
inpatient	and	outpatient	admissions.	ER	is	the	process	of	comparing	the	admission
information	for	each	encounter	and	deciding	which	admission	records	are	for	the	same
patient	and	which	ones	are	for	different	patients.

ER	has	long	been	recognized	as	a	key	data	cleansing	process	for	removing	duplicate
records	in	database	systems	(Naumann	&	Herschel,	2010)	and	promoting	data	and
information	quality	in	general	(Talburt,	2013).	It	is	also	essential	in	the	two-step	process	of
entity-based	data	integration.	The	first	step	is	to	use	ER	to	determine	if	two	records	are
referencing	the	same	entity.	This	step	relies	on	comparing	the	identity	information	in	the
two	records.	Only	after	it	has	been	determined	that	the	records	carry	information	for	the
same	entity	can	the	second	step	in	the	process	be	executed,	in	which	other	information	in
the	records	is	merged	and	reconciled.

Most	de-duplication	applications	start	with	an	ER	process	that	uses	a	set	of	matching
rules	to	link	together	into	clusters	those	records	determined	to	be	duplicates	(equivalent
references).	This	is	followed	by	a	process	to	select	one	best	example,	called	a	survivor
record,	from	each	cluster	of	equivalent	records.	After	the	survivor	record	is	selected,	the
presumed	duplicate	records	in	the	cluster	are	discarded	with	only	the	single	surviving
records	passing	into	the	next	process.	In	record	de-duplication,	ER	directly	addresses	the

data	quality	problem	of	redundant	and	duplicate	data	prior	to	data	integration.	In	this	role,
ER	is	fundamentally	a	data	cleansing	tool	(Herzog,	Scheuren	&	Winkler,	2007).	However,
ER	is	increasingly	being	used	in	a	broader	context	for	two	important	reasons.

The	first	reason	is	that	information	quality	has	matured.	As	part	of	that,	many
organizations	are	beginning	to	apply	a	product	model	to	their	information	management	as
a	way	of	achieving	and	sustaining	high	levels	of	information	quality	over	time	(Wang,
1998).	This	is	evidenced	by	several	important	developments	of	recent	years,	including	the
recognition	of	Sustaining	Information	Quality	as	one	of	the	six	domains	in	the	framework
of	information	quality	developed	by	the	International	Association	for	Information	and
Data	Quality	(Yonke,	Walenta	&	Talburt,	2012)	as	the	basis	for	the	Information	Quality
Certified	Professional	(IQCP)	credential.

Another	reason	is	the	relatively	recent	approval	of	the	ISO	8000-110:2009	standard	for
master	data	quality	prompted	by	the	growing	interest	by	organizations	in	adopting	and
investing	in	master	data	management	(MDM).	The	ISO	8000	standard	is	discussed	in
more	detail	in	Chapter	11.

Entity	Identity	Information	Management
Entity	Identity	Information	Management	(EIIM)	is	the	collection	and	management	of
identity	information	with	the	goal	of	sustaining	entity	identity	integrity	over	time	(Zhou	&
Talburt,	2011a).	Entity	identity	integrity	requires	that	each	entity	must	be	represented	in
the	system	one,	and	only	one,	time,	and	distinct	entities	must	have	distinct	representations
in	the	system	(Maydanchik,	2007).	Entity	identity	integrity	is	a	fundamental	requirement
for	MDM	systems.

EIIM	is	an	ongoing	process	that	combines	ER	and	data	structures	representing	the
identity	of	an	entity	into	specific	operational	configurations	(EIIM	configurations).	When
these	configurations	are	all	executed	together,	they	work	in	concert	to	maintain	the	entity
identity	integrity	of	master	data	over	time.	EIIM	is	not	limited	to	MDM.	It	can	be	applied
to	other	types	of	systems	and	data	as	diverse	as	RDM	systems,	referent	tracking	systems
(Chen	et	al.,	2013a),	and	social	media	(Mahata	&	Talburt,	2014).

Identity	information	is	a	collection	of	attribute-value	pairs	that	describe	the
characteristics	of	the	entity	–	characteristics	that	serve	to	distinguish	one	entity	from
another.	For	example,	a	student	name	attribute	with	a	value	such	as	“Mary	Doe”	would	be
identity	information.	However,	because	there	may	be	other	students	with	the	same	name,
additional	identity	information	such	as	date-of-birth	or	home	address	may	be	required	to
fully	disambiguate	one	student	from	another.

Although	ER	is	necessary	for	effective	MDM,	it	is	not,	in	itself,	sufficient	to	manage
the	life	cycle	of	identity	information.	EIIM	is	an	extension	of	ER	in	two	dimensions,
knowledge	management	and	time.	The	knowledge	management	aspect	of	EIIM	relates	to
the	need	to	create,	store,	and	maintain	identity	information.	The	knowledge	structure
created	to	represent	a	master	data	object	is	called	an	entity	identity	structure	(EIS).

The	time	aspect	of	EIIM	is	to	assure	that	an	entity	under	management	in	the	MDM

www.allitebooks.com

http://www.allitebooks.org

system	is	consistently	labeled	with	the	same,	unique	identifier	from	process	to	process.
This	is	only	possible	through	an	EIS	that	stores	the	identity	information	of	the	entity	along
with	its	identifier	so	both	are	available	to	future	processes.	Persistent	entity	identifiers	are
not	inherently	part	of	ER.	At	any	given	point	in	time,	the	only	goal	of	an	ER	process	is	to
correctly	classify	a	set	of	entity	references	into	clusters	where	all	of	the	references	in	a
given	cluster	reference	the	same	entity.	If	these	clusters	are	labeled,	then	the	cluster	label
can	serve	as	the	identifier	of	the	entity.	Without	also	storing	and	carrying	forward	the
identity	information,	the	cluster	identifiers	assigned	in	a	future	process	may	be	different.

The	problem	of	changes	in	labeling	by	ER	processes	is	illustrated	in	Figure	1.2.
It	shows	three	records,	Records	1,	2,	and	3,	where	Records	1	and	2	are	equivalent
references	to	one	entity	and	Record	3	is	a	reference	to	a	different	entity.	In	the	first	ER
run,	Records	1,	2,	and	3	are	in	a	file	with	other	records.	In	the	second	run,	the	same
Records	1,	2,	and	3	occur	in	context	with	a	different	set	of	records,	or	perhaps	the	same
records	that	were	in	Run	1,	but	simply	in	a	different	order.	In	both	runs	the	ER	process
consistently	classifies	Records	1	and	2	as	equivalent	and	places	Record	3	in	a	cluster	by
itself.	The	problem	from	an	MDM	standpoint	is	that	the	ER	processes	are	not	required	to
consistently	label	these	clusters.	In	the	first	run,	the	cluster	comprising	Records	1	and	2	is
identified	as	Cluster	543	whereas	in	the	second	run	the	same	cluster	is	identified	as	Cluster
76.

ER	that	is	used	only	to	classify	records	into	groups	or	clusters	representing	the	same
entity	is	sometimes	called	a	“merge-purge”	operation.	In	a	merge-purge	process	the
objective	is	simply	to	eliminate	duplicate	records.	Here	the	term	“duplicate”	does	not
mean	that	the	records	are	identical,	but	that	they	are	duplicate	representations	of	the	same
entity.	To	avoid	the	confusion	in	the	use	of	the	term	duplicate,	the	term	“equivalent”	is
preferred	(Talburt,	2011)	–	i.e.	records	referencing	the	same	entity	are	said	to	be
equivalent.

FIGURE	1.2 	ER	with	consistent	classification	but	inconsistent	labeling.

The	designation	of	equivalent	records	also	avoids	the	confusion	arising	from	use	of	the
term	“matching”	records.	Records	referencing	the	same	entity	do	not	necessarily	have
matching	information.	For	example,	two	records	for	the	same	customer	may	have	different
names	and	different	addresses.	At	the	same	time,	it	can	be	true	that	matching	records	do

not	reference	the	same	entity.	This	can	occur	when	important	discriminating	information	is
missing,	such	as	a	generational	suffix	or	age.	For	example,	the	records	for	a	John	Doe,	Jr.
and	a	John	Doe,	Sr.	may	be	deemed	as	matching	records	if	one	or	both	records	omit	the	Jr.
or	Sr.	generation	suffix	element	of	the	name	field.

Unfortunately,	many	authors	use	the	term	“matching”	for	both	of	these	concepts,	i.e.	to
mean	that	the	records	are	similar	and	reference	the	same	entity.	This	can	often	be
confusing	for	the	reader.	Reference	matching	and	reference	equivalence	are	different
concepts,	and	should	be	described	by	different	terms.

The	ability	to	assign	each	cluster	the	same	identifier	when	an	ER	process	is	repeated	at
a	later	time	requires	that	identity	information	be	carried	forward	from	process	to	process.
The	carrying	forward	of	identity	information	is	accomplished	by	persisting	(storing)	the
EIS	that	represents	the	entity.	The	storage	and	management	of	identity	information	and	the
persistence	of	entity	identifiers	is	the	added	value	that	EIIM	brings	to	ER.

A	distinguishing	feature	of	the	EIIM	model	is	the	entity	identity	structure	(EIS),	a	data
structure	that	represents	the	identity	of	a	specific	entity	and	persists	from	process	to
process.	In	the	model	presented	here,	the	EIS	is	an	explicitly	defined	structure	that	exists
and	is	maintained	independently	of	the	references	being	processed	by	the	system.
Although	all	ER	systems	address	the	issue	of	identity	representation	in	some	way,	it	is
often	done	implicitly	rather	than	being	an	explicit	component	of	the	system.	Figure	1.3
shows	the	persistent	(output)	form	of	an	EIS	as	implemented	in	the	open	source	ER
system	called	OYSTER	(Talburt	&	Zhou,	2013;	Zhou,	Talburt,	Su	&	Yin,	2010”>).

During	processing,	the	OYSTER	EIS	exists	as	in-memory	Java	objects.	However,	at	the
end	of	processing,	the	EIS	is	written	as	XML	documents	that	reflect	the	hierarchical
structure	of	the	memory	objects.	The	XML	format	also	serves	as	a	way	to	serialize	the	EIS
objects	so	that	they	can	be	reloaded	into	memory	at	the	start	of	a	later	ER	process.

The	Business	Case	for	MDM
Aside	from	the	technologies	and	policies	that	support	MDM,	why	is	it	important?	And
why	are	so	many	organizations	investing	in	it?	There	are	several	reasons.

Customer	Satisfaction	and	Entity-Based	Data
Integration
MDM	has	its	roots	in	the	customer	relationship	management	(CRM)	industry.	The	CRM
movement	started	at	about	the	same	time	as	the	data	warehousing	(DW)	movement	in	the
1980s.	The	primary	goal	of	CRM	was	to	understand	all	of	the	interactions	that	a	customer
has	with	the	organization	so	that	the	organization	could	improve	the	customer’s
experience	and	consequently	increase	customer	satisfaction.	The	business	motivation	for
CRM	was	that	higher	customer	satisfaction	would	result	in	more	customer	interactions
(sales),	higher	customer	retention	rates	and	a	lower	customer	“churn	rate,”	and	additional
customers	would	be	gained	through	social	networking	and	referrals	from	more	satisfied
customers.

FIGURE	1.3 	Example	of	an	EIS	in	XML	format	created	by	the	OYSTER	ER	system.

If	there	is	one	number	most	businesses	understand,	it	is	the	differential	between
the	higher	cost	of	acquiring	a	new	customer	versus	the	lower	cost	of	retaining	an	existing

customer.	Depending	upon	the	type	of	business,	small	increases	in	customer	retention	can
have	a	dramatic	effect	on	net	revenues.	Loyal	customers	often	provide	a	higher	profit
margin	because	they	tend	to	continue	purchasing	from	the	same	company	without	the	need
for	extensive	marketing	and	advertising.	In	highly	competitive	markets	such	as	airlines
and	grocery	retailers,	loyalty	programs	have	a	high	priority.

The	underpinning	of	CRM	is	a	technology	called	customer	data	integration	(CDI)
(Dyché	&	Levy,	2006),	which	is	basically	MDM	for	customer	entities.	Certainly	customer
information	and	product	information	qualify	as	master	data	for	any	organization	selling	a
product.	Typically	both	customers	and	products	are	under	MDM	in	these	organizations.
CDI	technology	is	the	EIIM	for	CRM.	CDI	enables	the	business	to	recognize	the
interactions	with	the	same	customer	across	different	sales	channels	and	over	time	by	using
the	principles	of	EIIM.

CDI	is	only	one	example	of	a	broader	class	of	data	management	processes	affecting
data	integration	(Doan,	Halevy	&	Ives,	2012).	For	most	applications,	data	integration	is	a
two-step	process	called	entity-based	data	integration	(Talburt	&	Hashemi,	2008).	When
integrating	entity	information	from	multiple	sources,	the	first	step	is	to	determine	whether
the	information	is	for	the	same	entity.	Once	it	has	been	determined	the	information	is	for
the	same	entity,	the	second	step	is	to	reconcile	possibly	conflicting	or	incomplete
information	associated	with	a	particular	entity	coming	from	different	sources	(Holland	&
Talburt,	2008,	2010a;	Zhou,	Kooshesh	&	Talburt,	2012).	MDM	plays	a	critical	role	in
successful	entity-based	data	integration	by	providing	an	EIIM	process	consistently
identifying	references	to	the	same	entity.

Entity-based	data	integration	has	a	broad	range	of	applications	in	areas	such	as	law
enforcement	(Nelson	&	Talburt,	2008),	education	(Nelson	&	Talburt,	2011;	Penning	&
Talburt,	2012),	and	healthcare	(Christen,	2008;	Lawley,	2010).

Better	Service
Many	organizations’	basic	value	proposition	is	not	primarily	based	on	money.	For
example,	in	healthcare,	although	there	is	clearly	a	monetary	component,	the	primary
objective	is	to	improve	the	quality	of	people’s	lives	through	better	drugs	and	medical
treatments.	This	also	holds	true	for	many	government	and	nonprofit	agencies	where	the
primary	mission	is	service	to	a	particular	constituency.	MDM	systems	bring	value	to	these
organizations	as	well.

As	another	example,	law	enforcement	has	a	mission	to	protect	and	serve	the	public.
Traditionally,	criminal	and	law	enforcement	information	has	been	fragmented	across	many
agencies	and	legal	jurisdictions	at	the	city,	county,	district,	state,	and	federal	levels.
However,	law	enforcement	as	a	whole	is	starting	to	take	advantage	of	MDM.	The	tragic
events	of	September	11,	2001	brought	into	focus	the	need	to	“connect	the	dots”	across
these	agencies	and	jurisdictions	in	terms	of	linking	records	referencing	the	same	persons
of	interest	and	the	same	events.	This	is	also	a	good	example	of	Big	Data,	because	a	single
federal	law	enforcement	agency	may	be	managing	information	on	billions	of	entities.	The

primary	entities	are	persons	of	interest	identified	through	demographic	characteristics	and
biometric	data	such	as	fingerprints	and	DNA	profiles.	In	addition,	they	also	manage	many
nonperson	entities	such	as	locations,	events,	motor	vehicles,	boats,	aircrafts,	phones,	and
other	electronic	devices.	Linking	law	enforcement	information	for	the	same	entities	across
jurisdictions	with	the	ability	to	derive	additional	information	from	patterns	of	linkage	have
made	criminal	investigation	both	more	efficient	and	more	effective.

Reducing	the	Cost	of	Poor	Data	Quality
Each	year	United	States	businesses	lose	billions	of	dollars	due	to	poor	data	quality
(Redman,	1998).	Of	the	top	ten	root	conditions	of	data	quality	problems	(Lee,	Pipino,
Funk,	&	Wang,	2006),	the	number	one	cause	listed	is	“multiple	source	of	the	same
information	produces	different	values	for	this	information.”	Quite	often	this	problem	is
due	to	missing	or	ineffective	MDM	practices.	Without	maintenance	of	a	system	or	record
that	includes	every	master	entity	with	a	unique	and	persistent	identifier,	then	data	quality
problems	will	inevitably	arise.

For	example,	if	the	same	product	is	given	a	different	identifier	in	different	sales
transactions,	then	sales	reports	summarized	by	product	will	be	incorrect	and	misleading.
Inventory	counts	and	inventory	projections	will	be	off.	These	problems	can	in	turn	lead	to
the	loss	of	orders	and	customers,	unnecessary	inventory	purchases,	miscalculated	sales
commissions,	and	many	other	types	of	losses	to	the	company.	Following	the	principle	of
Taguchi’s	Loss	Function	(Taguchi,	2005),	the	cost	of	poor	data	quality	must	be	considered
not	only	in	the	effort	to	correct	the	immediate	problem	but	also	must	include	all	of	the
costs	from	its	downstream	effects.	Tracking	each	master	entity	with	precision	is
considered	fundamental	to	the	data	quality	program	of	almost	every	enterprise.

MDM	as	Part	of	Data	Governance
MDM	and	RDM	are	generally	considered	key	components	of	a	complete	data	governance
(DG)	program.	In	recent	years,	DG	has	been	one	of	the	fastest	growing	trends	in
information	and	data	quality	and	is	enjoying	widespread	adoption.	As	enterprises
recognize	information	as	a	key	asset	and	resource	(Redman,	2008),	they	understand	the
need	for	better	communication	and	control	of	that	asset.	This	recognition	has	also	created
new	management	roles	devoted	to	data	and	information,	most	notably	the	emergence	of
the	CDO,	the	Chief	Data	Officer	(Lee,	Madnick,	Wang,	Wang,	&	Zhang,	2014).	DG
brings	to	information	the	same	kind	of	discipline	governing	software	for	many	years.	Any
company	developing	or	using	third-party	software	would	not	think	of	letting	a	junior
programmer	make	even	the	smallest	ad	hoc	change	to	a	piece	of	production	code.	The
potential	for	adverse	consequences	to	the	company	from	inadvertently	introducing	a
software	bug,	or	worse	from	an	intentional	malicious	action,	could	be	enormous.
Therefore,	in	almost	every	company	all	production	software	changes	are	strictly	controlled
through	a	closely	monitored	and	documented	change	process.	A	production	software
change	begins	with	a	proposal	seeking	broad	stakeholder	approval,	then	moves	through	a
lengthy	testing	process	in	a	safe	environment,	and	finally	to	implementation.

Until	recently	this	same	discipline	has	not	been	applied	to	the	data	architecture	of	the
enterprise.	In	fact,	in	many	organizations	a	junior	database	administrator	(DBA)	may
actually	have	the	authority	to	make	an	ad	hoc	change	to	a	database	schema	or	to	a	record
layout	without	going	through	any	type	of	formal	change	process.	Data	management	in	an
enterprise	has	traditionally	followed	the	model	of	local	“ownership.”	This	means
divisions,	departments,	or	even	individuals	have	seen	themselves	as	the	“owners”	of	the
data	in	their	possession	with	the	unilateral	right	to	make	changes	as	suits	the	needs	of	their
particular	unit	without	consulting	other	stakeholders.

An	important	goal	of	the	DG	model	is	to	move	the	culture	and	practice	of	data
management	to	a	data	stewardship	model	in	which	the	data	and	data	architecture	are	seen
as	assets	controlled	by	the	enterprise	rather	than	individual	units.	In	the	data	stewardship
model	of	DG,	the	term	“ownership”	reflects	the	concept	of	accountability	for	data	rather
than	the	traditional	meaning	of	control	of	the	data.	Although	accountability	is	the
preferred	term,	many	organizations	still	use	the	term	ownership.	A	critical	element	of	the
DG	model	is	a	formal	framework	for	making	decisions	on	changes	to	the	enterprise’s	data
architecture.	Simply	put,	data	management	is	the	decisions	made	about	data,	while	DG	is
the	rules	for	making	those	decisions.

The	adoption	of	DG	has	largely	been	driven	by	the	fact	that	software	is	rapidly
becoming	a	commodity	available	to	everyone.	More	and	more,	companies	are	relying	on
free,	open	source	systems,	software-as-a-service	(SaaS),	cloud	computing	services,	and
outsourcing	of	IT	functions	as	an	alternative	to	software	development.	As	it	becomes	more
difficult	to	differentiate	on	the	basis	of	software	and	systems,	companies	are	realizing	that
they	must	derive	their	competitive	advantage	from	better	data	and	information	(Jugulum,
2014).

DG	programs	serve	two	primary	purposes.	One	is	to	provide	a	mechanism	for
controlling	changes	related	to	the	data,	data	processes,	and	data	architecture	of	the
enterprise.	DG	control	is	generally	exercised	by	means	of	a	DG	council	with	senior
membership	from	all	major	units	of	the	enterprise	having	a	stake	in	the	data	architecture.
Membership	includes	both	business	units	as	well	as	IT	units	and,	depending	upon	the
nature	of	the	business,	will	include	risk	and	compliance	officers	or	their	representatives.
Furthermore,	the	DG	council	must	have	a	written	charter	that	describes	in	detail	the
governance	of	the	change	process.	In	the	DG	model,	all	changes	to	the	data	architecture
must	first	be	approved	by	the	DG	council	before	moving	into	development	and
implementation.	The	purpose	of	first	bringing	change	proposals	to	the	DG	council	for
discussion	and	approval	is	to	try	to	avoid	the	problem	of	unilateral	change.	Unilateral
change	occurs	when	one	unit	makes	a	change	to	the	data	architecture	without	notification
or	consultation	with	other	units	who	might	be	adversely	affected	by	the	change.

The	second	purpose	of	a	DG	program	is	to	provide	a	central	point	of	communication
about	all	things	related	to	the	data,	data	processes,	and	data	architecture	of	the	enterprise.
This	often	includes	an	enterprise-wide	data	dictionary,	a	centralized	tracking	system	for
data	issues,	a	repository	of	business	rules,	the	data	compliance	requirements	from
regulatory	agencies,	and	data	quality	metrics.	Because	of	the	critical	nature	of	MDM	and

RDM,	and	the	benefits	of	managing	this	data	from	an	enterprise	perspective,	they	are
usually	brought	under	the	umbrella	of	a	DG	governance	program.

Better	Security
Another	important	area	where	MDM	plays	a	major	role	is	in	enterprise	security.
Seemingly	each	day	there	is	word	of	yet	another	data	breach,	leakage	of	confidential
information,	or	identity	theft.	One	of	the	most	notable	attempts	to	address	these	problems
is	the	Center	for	Identity	at	the	University	of	Texas,	Austin,	taking	an	interdisciplinary
approach	to	the	development	of	a	model	for	identity	threat	assessment	and	prediction
(Center	for	Identity,	2014).	Identity	and	the	management	of	identity	information	(EIIM)
both	play	a	key	role	in	systems	that	attempt	to	address	security	issues	through	user
authentication.	Here	again,	MDM	provides	the	support	needed	for	these	kinds	of	systems.

Measuring	Success
No	matter	what	the	motivations	are	for	adopting	MDM,	there	should	always	be	an
underlying	business	case.	The	business	case	should	clearly	establish	the	goals	of	the
implementation	and	metrics	for	how	to	measure	goal	attainment.	Power	and	Hunt	(2013)
list	“No	Metrics	for	Measuring	Success”	as	one	of	the	eight	worst	practices	in	MDM.	Best
practice	for	MDM	is	to	measure	both	the	system	performance,	such	as	false	positive	and
negative	rates,	and	also	business	performance,	such	as	return-on-investment	(ROI).

Dimensions	of	MDM
Many	styles	of	MDM	implementation	address	particular	issues.	Capabilities	and	features
of	MDM	systems	vary	widely	from	vendor	to	vendor	and	industry	to	industry.	However,
some	common	themes	do	emerge.

Multi-domain	MDM
In	general,	master	data	are	references	to	key	operational	entities	of	the	enterprise.	The
definition	for	entities	in	the	context	of	master	data	is	somewhat	different	from	the	general
definition	of	entities	such	as	in	the	entity-relation	(E-R)	database	model.	Whereas	the
general	definition	of	entity	allows	both	real-world	objects	and	abstract	concepts	to	be	an
entity,	MDM	is	concerned	with	real-world	objects	having	distinct	identities.

In	keeping	with	the	paradigm	of	master	data	representing	the	nouns	of	data,	major
master	data	entities	are	typically	classified	into	domains.	Sørensen	(2011)	classifies
entities	into	four	domains:	parties,	products,	places,	and	periods	of	time.	The	party	domain
includes	entities	that	are	persons,	legal	entities,	and	households	of	persons.	These	include
parties	such	as	customers,	prospects,	suppliers,	and	customer	households.	Even	within
these	categories	of	party,	an	entity	may	have	more	than	one	role.	For	example,	a	person
may	be	a	patient	of	a	hospital	and	at	the	same	time	a	nurse	(employee)	at	the	hospital.

Products	more	generally	represent	assets,	not	just	items	for	sale.	Products	can	also
include	other	entities,	such	as	equipment	owned	and	used	by	a	construction	company.	The
place	domain	includes	those	entities	associated	with	a	geographic	location	–	for	example,
a	customer	address.	Period	entities	are	generally	associated	with	events	with	a	defined
start	and	end	date	such	as	fiscal	year,	marketing	campaign,	or	conference.

As	technology	has	evolved,	more	vendors	are	providing	multi-domain	solutions.	Power
and	Lyngsø	(2013)	cite	four	main	benefits	for	the	use	of	multi-domain	MDM	including
cost-effectiveness,	ease	of	maintenance,	enabling	proactive	management	of	operational
information,	and	prevention	of	MDM	failure.

Hierarchical	MDM
Hierarchies	in	MDM	are	the	connections	among	entities	taking	the	form	of	parent–child
relationships	where	some	or	all	of	the	entities	are	master	data.	Conceptually	these	form	a
tree	structure	with	a	root	and	branches	that	end	with	leaf	nodes.	One	entity	may	participate
in	multiple	relations	or	hierarchies	(Berson	&	Dubov,	2011).

Many	organizations	run	independent	MDM	systems	for	their	domains:	for	example,	one
system	for	customers	and	a	separate	system	for	products.	In	these	situations,	any
relationships	between	these	domains	are	managed	externally	in	the	application	systems
referencing	the	MDM	systems.	However,	many	MDM	software	vendors	have	developed
architectures	with	the	capability	to	manage	multiple	master	data	domains	within	one
system.	This	facilitates	the	ability	to	create	hierarchical	relationships	among	MDM

entities.

Depending	on	the	type	of	hierarchy,	these	relationships	are	often	implemented	in	two
different	ways.	One	implementation	style	is	as	an	“entity	of	entities.”	This	often	happens
in	specific	MDM	domains	where	the	entities	are	bound	in	a	structural	way.	For	example,
in	many	CDI	implementations	of	MDM,	a	hierarchy	of	household	entities	is	made	up	of
customer	(person)	entities	containing	location	(address)	entities.	In	direct-mail	marketing
systems,	the	address	information	is	almost	always	an	element	of	a	customer	reference.	For
this	reason,	both	customer	entities	and	address	entities	are	tightly	bound	and	managed
concurrently.

However,	most	systems	supporting	hierarchical	MDM	relationships	define	the
relationships	virtually.	Each	set	of	entities	has	a	separately	managed	structure	and	the
relationships	are	expressed	as	links	between	the	entities.	In	CDI,	a	customer	entity	and
address	entity	may	have	a	“part	of”	relationship	(i.e.	a	customer	entity	“contains”	an
address	entity),	whereas	the	household	to	customer	may	be	a	virtual	relationship	(i.e.	a
household	entity	“has”	customer	entities).	The	difference	is	the	customers	in	a	household
are	included	by	an	external	link	(by	reference).

The	advantage	of	the	virtual	relationship	is	that	changes	to	the	definition	of	the
relationship	are	less	disruptive	than	when	both	entities	are	part	of	the	same	data	structure.
If	the	definition	of	the	household	entity	changes,	then	it	is	easier	to	change	just	that
definition	than	to	change	the	data	schema	of	the	system.	Moreover,	the	same	entity	can
participate	in	more	than	one	virtual	relationship.	For	example,	the	CDI	system	may	want
to	maintain	two	different	household	definitions	for	two	different	types	of	marketing
applications.	The	virtual	relationship	allows	the	same	customer	entity	to	be	a	part	of	two
different	household	entities.

Multi-channel	MDM
Increasingly,	MDM	systems	must	deal	with	multiple	sources	of	data	arriving	through
different	channels	with	varying	velocity,	such	as	source	data	coming	through	network
connections	from	other	systems	(e.g.	e-commerce	or	online	inquiry/update).	Multi-channel
data	sources	are	both	a	cause	and	effect	of	Big	Data.	Large	volumes	of	network	data	can
overwhelm	traditional	MDM	systems.	This	problem	is	particularly	acute	for	product
MDM	in	companies	with	large	volumes	of	online	sales.

Another	channel	that	has	become	increasingly	important,	especially	for	CDI,	is	social
media.	Because	it	is	user-generated	content,	it	can	provide	direct	insight	into	a	customer’s
attitude	toward	products	and	services	or	readiness	to	buy	or	sell	(Oberhofer,	Hechler,
Milman,	Schumacher	&	Wolfson,	2014).	The	challenge	is	that	it	is	largely	unstructured,
and	MDM	systems	have	traditionally	been	designed	around	the	processing	of	structured
data.

Multi-cultural	MDM
As	commerce	becomes	global,	more	companies	are	facing	the	challenges	of	operating	in

more	than	one	country.	From	an	MDM	perspective,	even	though	an	entity	domain	may
remain	the	same	–	e.g.	customer,	employee,	product,	etc.	–	all	aspects	of	their
management	can	be	different.	Different	countries	may	use	different	character	sets,
different	reference	layouts,	and	different	reference	data	to	manage	information	related	to
the	same	entities.	This	creates	many	challenges	for	MDM	systems	assuming	traditional
data	to	be	uniform.	For	example,	much	of	the	body	of	knowledge	around	data	matching
has	evolved	around	U.S.	language	and	culture.	Fuzzy	matching	techniques	such	as
Levenshtein	Edit	Distance	and	SOUNDEX	phonetic	matching	do	not	apply	to	master	data
in	China	and	other	Asian	countries.

Culture	is	not	only	manifested	in	language,	but	in	the	representation	of	master	data	as
well,	especially	for	party	data.	The	U.S.	style	of	first,	middle,	and	last	name	attributes	for
persons	is	not	always	a	good	fit	in	other	cultures.	The	situation	for	address	fields	can	be
even	more	complicated.	Another	complicating	factor	is	countries	often	having	different
regulations	and	compliance	standards	around	certain	data	typically	included	in	MDM
systems.

www.allitebooks.com

http://www.allitebooks.org

The	Challenge	of	Big	Data
What	Is	Big	Data?
Big	Data	has	many	definitions.	Initially	Big	Data	was	just	the	recognition	that,	as	systems
produced	and	stored	more	data,	the	volume	had	increased	to	the	point	that	it	could	no
longer	be	processed	on	traditional	system	platforms.	The	traditional	definition	of	Big	Data
simply	referred	to	volumes	of	data	requiring	new,	large-scale	systems/software	to	process
the	data	in	a	reasonable	time	frame.

Later	the	definition	was	revised	when	people	recognized	the	problem	was	not	just	the
volume	of	data	being	produced,	but	also	the	velocity	(transactional	speed)	at	which	it	was
produced	and	variety	(structured	and	unstructured)	of	data.	This	is	the	origin	of	the	so-
called	“Three	Vs”	definition,	which	sometimes	has	been	extended	to	four	Vs	by	including
the	“veracity”	(quality)	of	the	data.

The	Value-Added	Proposition	of	Big	Data
At	first	organizations	were	just	focused	on	developing	tools	allowing	them	to	continue
their	current	processing	for	larger	data	volumes.	However,	as	organizations	were	more
driven	to	compete	based	on	data	and	data	quality,	they	began	to	look	at	Big	Data	as	a	new
opportunity	to	gain	an	advantage.	This	is	based	largely	on	the	premise	that	large	volumes
of	data	contain	more	potential	insight	than	smaller	volumes.	The	thinking	was	that,	instead
of	building	predictive	models	based	on	small	datasets,	it	is	now	feasible	to	analyze	the
entire	dataset	without	the	need	for	model	development.

Google™	has	been	the	leader	in	the	Big	Data	revolution,	demonstrating	the	value	of	the
thick-data-thin-model	approach	to	problem	solving.	An	excellent	example	is	the	Google
Translate	product.	Previously	most	attempts	to	translate	sentences	and	phrases	from	one
language	to	another	consisted	of	building	sophisticated	models	of	the	source	and	target
and	implementing	them	as	natural	language	processing	(NLP)	applications.	The	Google
approach	was	to	build	a	large	corpus	of	translated	documents;	when	a	request	to	translate
text	is	received,	the	system	searches	the	corpus	to	see	if	the	same	or	similar	translation
was	already	available	in	the	corpus.	The	same	method	has	been	applied	to	replace	or
supplement	other	NLP	applications	such	as	named	entity	recognition	in	unstructured	text
(Osesina	&	Talburt,	2012;	Chiang	et	al.,	2008).

For	example,	given	a	large	volume	of	stock	trading	history	and	indicator	values,	which
of	the	indicators,	if	any,	are	highly	predictive	leading	indicators	of	the	stock	price?	A
traditional	approach	might	be	to	undertake	a	statistical	factor	analysis	on	some	sample	of
the	data.	However,	with	current	technologies	it	might	be	feasible	to	actually	compute	all	of
the	possible	correlations	between	the	combinations	of	indicators	at	varying	lead	times.

In	addition	to	allowing	companies	to	answer	the	same	directed	questions	as	before	for
much	larger	datasets	(supervised	learning),	Big	Data	is	now	giving	companies	the	ability
to	conduct	much	broader	undirected	searches	for	insights	not	previously	known
(unsupervised	learning)	(Provost	&	Fawcett,	2013).

Data	analysis	has	added	a	second	dimension	to	the	Big	Data	concept.	“Data	science”	is
the	new	term	combining	the	large	volume,	or	3V,	aspect	of	Big	Data	with	the	analytics
piece.	Even	though	the	term	should	refer	to	both,	sometimes	data	science	only	refers	to
one	or	the	other,	i.e.	the	tools	and	technology	for	processing	Big	Data	(the	engineering
side)	or	the	tools	and	techniques	for	analyzing	Big	Data	(the	data	analytics	side).

Challenges	of	Big	Data
Along	with	the	added	value	and	opportunities	it	brings,	Big	Data	also	brings	a	number	of
challenges.	The	obvious	challenge	is	storage	and	process	performance.	Fortunately,
technology	has	stepped	up	to	the	challenge	with	cheaper	and	larger	storage	systems,
distributed	and	parallel	computing	platforms,	and	cloud	computing.	However,	using	these
new	technologies	requires	changes	in	ways	of	thinking	about	data	processing/management
and	the	adoption	of	new	tools	and	methodologies.	Unfortunately,	many	organizations	tend
to	be	complacent	and	lack	the	sense	of	urgency	required	to	undergo	successful	change	and
transformation	(Kotter,	1996).

Big	Data	is	more	than	simply	a	performance	issue	to	be	solved	by	scaling	up
technology;	it	has	also	brought	with	it	a	paradigm	shift	in	data	processing	and	data
management	practices.	For	example,	Big	Data	has	had	a	big	impact	on	data	governance
programs	(Soares,	2013a,	2013b,	2014).	For	example,	the	traditional	system	design	is	to
move	data	to	a	program	or	process,	but	in	many	Big	Data	applications	it	can	be	more
efficient	to	move	processes	to	data.	Another	is	the	trend	toward	denormalized	data	stores.
Normalization	of	relational	databases	has	been	a	best	practice	for	decades	as	a	way	to
remove	as	much	data	redundancy	as	possible	from	the	system.	In	the	world	of	Big	Data
tools,	there	is	a	growing	trend	toward	allowing,	or	even	deliberately	creating,	data
redundancy	in	order	to	gain	performance.

The	Big	Data	paradigm	shift	has	also	changed	traditional	approaches	to	programming
and	development.	Developers	already	in	the	workforce	are	having	to	stop	and	learn	new
knowledge	and	skills	in	order	to	use	Big	Data	tools,	and	colleges	and	universities	require
time	to	change	their	curricula	to	teach	these	tools.	Currently,	there	is	a	significant	gap
between	industry–education	supply	and	demand.	The	people	training	in	Big	Data	tools	and
analysis	are	typically	referred	to	as	data	scientists,	and	many	schools	are	rebranding	their
programs	as	data	science.

MDM	and	Big	Data	–	The	N-Squared	Problem
Although	many	traditional	data	processes	can	easily	scale	to	take	advantage	of	Big	Data
tools	and	techniques,	MDM	is	not	one	of	them.	MDM	has	a	Big	Data	problem	with	Small
Data.	Because	MDM	is	based	on	ER,	it	is	subject	to	the	O(n2)	problem.	O(n2)	denotes	the
effort	and	resources	needed	to	complete	an	algorithm	or	data	process	growing	in
proportion	to	the	square	of	the	number	of	records	being	processed.	In	other	words,	the
effort	required	to	perform	ER	on	100	records	is	4	times	more	than	the	effort	to	perform	the
same	ER	process	on	50	records	because	1002	=	10,000	and	502	=	2,500	and	10,000/2,500
=	4.	More	simply	stated,	it	takes	4	times	more	effort	to	scale	from	50	records	to	100
records	because	(100/50)2	=	4.

Big	Data	not	only	brings	challenging	performance	issues	to	ER	and	MDM,	it	also
exacerbates	all	of	the	dimensions	of	MDM	previously	discussed.	Multi-domain,	multi-
channel,	hierarchical,	and	multi-cultural	MDM	are	impacted	by	the	growing	volume	of
data	that	enterprises	must	deal	with.	Although	the	problems	are	formidable,	ER	and	MDM
can	still	be	effective	for	Big	Data.	Chapters	9	and	10	focus	on	Big	Data	MDM.

Concluding	Remarks
Although	MDM	requires	addressing	a	number	of	technical	issues,	overall	it	is	a	business
issue	implemented	for	business	reasons.	The	primary	goal	of	MDM	is	to	achieve	and
maintain	entity	identity	integrity	for	a	domain	of	master	entities	managed	by	the
organization.	The	MDM	system	itself	comprises	two	components	–	a	policy	and
governance	component,	and	an	IT	component.	The	primary	IT	component	is	EIIM	which
is,	in	turn,	supported	by	ER.	EIIM	extends	the	cross-sectional,	one-time	matching	process
of	ER	with	a	longitudinal	management	component	of	persistent	EIS	and	entity	identifiers.

Except	for	External	Reference	Architecture,	the	other	principal	MDM	architectures
share	the	common	feature	of	a	central	hub.	Most	of	the	discussion	in	the	remaining
chapters	will	focus	on	the	operation	of	the	hub,	and	its	identity	knowledge	base	(IKB).

Big	Data	and	data	science	have	seemingly	emerged	overnight	with	great	promise	for
added	value.	At	the	same	time,	they	have	created	a	paradigm	shift	in	IT	in	a	short	time.
The	impacts	are	being	felt	in	all	aspects	of	the	organization,	and	everyone	is	struggling	to
understand	both	the	technology	and	how	best	to	extract	business	value.	The	impact	of	Big
Data	is	particularly	dramatic	for	MDM	and	the	implementation	of	MDM,	because	Big
Data	pushes	the	envelope	of	current	computing	technology.

CHAPTER	2

Entity	Identity	Information	and	the
CSRUD	Life	Cycle	Model

Abstract
Chapter	2	lays	the	foundation	for	the	book’s	theme	–	recognizing	and	understanding	the	role	of	life	cycle
management	in	the	context	of	entity	information	supporting	master	data	management.	The	chapter	defines	a	life
cycle	model	called	CSRUD	as	an	extension	and	adaptation	of	existing	models	for	general	information	life	cycle
management	to	the	specific	context	of	entity	identity	information.

Keywords
Entity	Identity	Information;	Information	Life	Cycle;	POSMAD;
CRUD;	CSRUD

Entities	and	Entity	References
For	the	purposes	of	this	book,	entities	are	defined	to	be	distinguishable	real-world	objects
such	as	people,	products,	or	places.	This	definition	does	not	include	concepts	or	types	as	is
often	the	case	in	defining	entities	in	other	contexts.	So	for	this	discussion,	person	as	a
concept	or	type	is	not	an	entity,	whereas	a	particular	person,	i.e.	an	instance	of	the	person
type,	is	an	entity.	This	approach	is	consistent	with	the	object-oriented	programming
distinction	between	a	class	and	an	object	as	a	specific	instance	of	a	class.	At	the	same
time,	being	an	object	or	instance	of	a	concept	or	type	should	not	be	confused	with	being
intangible	or	nontactile.	For	example,	events,	though	not	tactile	objects,	are	often
considered	entities.	The	key	point	is	that	each	entity	is	distinct	and	distinguishable	from
every	other	entity	of	the	same	type.

Having	said	that,	the	distinction	between	entity	and	entity	type	is	not	always	so	clear.
What	is	considered	an	entity	really	depends	upon	the	viewpoint	of	the	organization
defining	the	entity	and	the	design	of	its	information	system.	For	example,	consider	the
case	of	product	information.	A	particular	product	line,	such	as	a	Model	XYZ	Television,
might	be	considered	an	entity	as	distinct	from	a	Model	ABC	Toaster.	At	the	same	time,
there	are	actually	many	instances	of	each	product,	i.e.	many	XYZ	television	sets	and	ABC
toasters	each	labeled	with	a	unique	serial	number.	Each	television	and	each	toaster	can
also	be	considered	an	entity.	However,	most	organization’s	MDM	system	would	treat	each
product	line	as	an	entity	rather	than	each	product	instance,	although	other	systems
supported	by	the	MDM	system,	such	as	inventory,	may	be	concerned	with	tracking
products	at	the	instance	level.

Understanding	which	attributes	are	most	important	for	any	given	application	is	a	key
step	in	any	data	management	process	(Heien,	Wu,	&	Talburt,	2010).	In	the	context	of
MDM,	each	entity	type	has	a	set	of	attributes	taking	on	different	values	that	describe	the
entities’	characteristics.	For	student	entities	these	might	be	the	student’s	name,	date-of-
birth,	height,	or	weight.	Entity	attributes	with	the	combination	of	values	most	useful	for
distinguishing	one	entity	from	another	are	called	identity	attributes.

From	an	information	systems	perspective	it	is	important	to	make	a	clear	distinction
between	an	entity	and	a	reference	to	an	entity.	Information	systems	do	not	manipulate
physical	entities;	rather,	they	model	the	real	world	by	creating	and	storing	data	that
describe	or	reference	entities	in	the	real	world.

An	entity	reference	in	an	information	system	is	a	set	of	attribute-value	pairs	intended	to
describe	a	particular	real-world	entity	in	a	particular	context.	An	entity	may	have	zero	or
more	identities	within	a	given	domain.	For	example,	a	person	may	have	two	identities	in	a
school	system	because	he	or	she	is	both	a	student	and	an	employee	at	the	school.	An	entity
may	of	course	have	different	identities	in	different	domains.	For	example,	a	person	is	a
customer	in	Macy’s	and	has	another	identity	being	an	employee	at	IBM	(Josang	&	Pope,
2005).	An	entity	identity	expressed	in	a	certain	domain	is	referred	to	as	a	surrogate
identity.

In	a	school	information	system	a	student	walking	around	on	the	campus	is	the	entity,

and	the	various	records	in	the	school	administration	software	system	describing	the
student	are	the	entity	references.	This	usage	of	the	term	entity	is	at	odds	with	the	typical
database	modeling	terminology	in	which	each	row	of	a	student	table	would	be	called	an
entity	rather	than	an	entity	reference.

The	Unique	Reference	Assumption
An	important	assumption	in	the	discussion	of	entity	resolution	(ER)	is	the	“unique
reference	assumption.”	This	assumption	states:

“In	an	information	system,	every	entity	reference	is	always	created	to	refer	to	one,
and	only	one,	entity.”

The	reason	for	this	assumption	is	that,	in	practice,	an	information	system	reference	may
appear	to	be	ambiguous,	i.e.	it	could	refer	to	more	than	one	real-world	entity	or	possibly
not	to	any	entity.	A	salesperson	could	write	a	product	description	on	a	sales	order,	but
because	the	description	is	incomplete,	a	data-entry	operator	might	enter	the	correct
description,	but	enter	the	wrong	product	identifier.	Now	it	is	no	longer	clear	whether	the
newly	created	reference	in	the	information	system	refers	to	the	product	according	to	its
description	or	according	to	its	product	identifier.	Despite	this	problem,	it	was	the	intent	of
the	salesperson	to	record	the	description	of	a	specific	product.

Sebastian-Coleman	(2013)	describes	this	same	concept	in	terms	of	Shannon’s
Schematic	for	Communication	in	which	both	the	transmitter	or	creator	of	information	and
the	receiver	of	the	information	make	interpretations	introducing	noise	into	the
communication	channel.	Similarly,	Wang	and	Strong	(1996)	have	recognized
interpretability	and	understandability	as	key	dimensions	of	their	data	quality	framework.
The	degree	of	completeness,	accuracy,	timeliness,	believability,	consistency,	accessibility,
and	many	other	aspects	of	reference	data	can	dramatically	affect	the	outcome	of	an	ER
process.	This	is	one	of	the	many	reasons	why	ER	is	so	integral	to	the	field	of	information
quality.

The	Problem	of	Entity	Reference	Resolution
As	defined	in	the	previous	chapter,	ER	is	the	process	of	determining	whether	two
information	system	references	to	real-world	objects	are	referring	to	the	same	object	or	to
different	objects.	The	term	entity	is	used	because	of	the	references	to	real-world	objects	–
persons,	places,	or	things	–	and	resolution	because	ER	is	fundamentally	a	decision
process.	Technically	it	would	be	better	to	describe	it	as	entity	reference	resolution,	but	the
current	term	is	well-established.	Jonas	(2007)	prefers	the	term	“semantic	reconciliation.”

Although	ER	is	defined	as	a	decision	regarding	a	pair	of	references,	these	decisions	can
be	systematically	applied	to	a	larger	set	of	references	in	such	a	way	that	each	reference	is
ultimately	classified	into	a	cluster	of	references,	all	of	which	are	deemed	to	reference	the
same	entity.	These	clusters	will	form	a	partition	of	the	set	of	references	so	each	reference
will	be	classified	into	one	and	only	one	cluster.	Viewed	in	this	larger	context,	ER	is	also

defined	as	“the	process	of	identifying	and	merging	records	judged	to	represent	the	same
real-world	entity”	(Benjelloun	et	al.,	2009).	This	will	be	discussed	in	more	detail	in
Chapter	3.

The	Fundamental	Law	of	Entity	Resolution
The	fundamental	law	of	entity	resolution	recasts	the	data	quality	principle	of	entity
identity	integrity	into	the	vocabulary	of	ER.	When	an	ER	process	decides	two	references
are	equivalent,	the	decision	is	instantiated	in	the	system	through	a	special	attribute	added
to	each	reference	called	a	“link”	attribute.	The	absolute	value	of	the	link	attribute	is	not
important;	in	ER	what	is	important	is	its	relative	value,	i.e.	records	determined	to	be
equivalent	by	the	ER	process	are	given	the	same	link	values	and	records	determined	not	to
be	equivalent	are	given	different	link	values.	The	process	of	assigning	these	values	is
called	“linking”	and	two	references	sharing	the	same	link	value	are	said	to	be	“linked.”
Therefore,	the	fundamental	law	of	ER	can	be	stated	as

“An	entity	resolution	system	should	link	two	references	if	and	only	if	the	references
are	equivalent.”

Failure	to	obey	this	law	is	manifest	in	two	types	of	errors,	false	positive	and	false
negative	errors.	As	noted	earlier,	a	false	negative	error	occurs	when	the	ER	process	fails	to
link	two	references	that	are	equivalent,	and	a	false	positive	error	occurs	when	the	ER
process	links	two	references	that	are	not	equivalent.	The	evaluation	of	ER	process
outcomes	is	essentially	a	matter	of	counting	false	positive	and	false	negative	errors.

Internal	vs.	External	View	of	Identity
Entities	are	described	in	terms	of	their	characteristics	called	attributes.	The	values	of	these
attributes	provide	information	about	a	specific	entity.	Identity	attributes,	when	taken
together,	distinguish	one	entity	from	another.	Identity	attributes	for	people	are	things	like
name,	address,	date-of-birth,	and	fingerprints;	the	questions	often	asked	in	order	to
identify	a	person	requesting	a	driver’s	license	or	hospital	admission	provide	good
examples	of	identity	attributes.	For	a	product,	the	identity	attributes	might	be	model
number,	size,	manufacturer,	or	Universal	Product	Code	(UPC).

Fundamentally,	the	problem	of	ER	is	identity	management,	but	from	the	outside	looking
in.	Take	the	example	of	someone	being	admitted	to	the	hospital.	When	that	person
provides	the	admitting	information	about	identity,	they	are	mapping	or	projecting	some
small	portion	of	their	overall	identity	into	the	information	system.	Once	the	information	is
in	the	system	together	with	other	references	to	this	same	patient	and	to	other	patients,	an
ER	process	tries	to	infer	which	references	are	equivalent	and	which	are	not	equivalent
based	on	these	identity	clues.

One	way	to	describe	this	situation	is	in	terms	of	an	internal	view	versus	an	external
view	of	identity	(Talburt,	Zhou,	&	Shivaiah,	2009).	Figure	2.1	illustrates	the	basic
elements	of	name	and	address	contact	history	for	a	woman	born	“Mary	Smith.”	Because

www.allitebooks.com

http://www.allitebooks.org

these	are	records	of	where	this	woman	was	living,	it	is	also	called	an	occupancy	history.
Figure	2.1	shows	three	occupancy	records,	each	with	a	name,	an	address,	and	a	period	of
time	that	the	occupancy	was	valid.	Also	note	the	change	in	name	between	Occupancy	1
and	Occupancy	2.

There	are	two	ways	to	view	the	issue	of	identity	shown	in	Figure	2.1.	One	is	to	start
with	the	identity	based	on	biographical	information,	e.g.	Mary	Smith,	a	female	born	on
December	3,	1980,	in	Anytown,	NY,	to	parents	Robert	and	Susan	Smith,	and	to	follow	the
identity	through	its	various	representations	of	name	and	address.	This	internal	view	of
identity	as	shown	in	Figure	2.1	is	the	view	of	Mary	Smith	herself	and	might	well	be	the
view	of	a	sibling	or	other	close	relative,	someone	with	first-hand	knowledge	about	her
occupancy	history.

The	internal	view	of	identity	represents	a	closed	universe	model	in	which,	for	a	given
set	of	identity	attributes,	all	of	the	attribute	values	are	known	to	the	internal	viewer,	and
any	unknown	value	for	one	of	these	attributes	must	belong	to	a	different	identity.	An	ER
system	possessing	this	information	could	always	correctly	resolve	whether	any	given
name	and	address	reference	was	part	of	a	particular	identity	or	not.

On	the	other	hand,	an	external	view	of	identity	is	one	in	which	some	number	of	attribute
values	for	an	identity	have	been	collected,	but	it	is	not	certain	if	it	is	a	complete	collection
of	values	or	even	if	all	of	the	values	are	correct.	When	a	system	working	from	an	external
view	is	presented	with	a	reference,	the	system	must	always	decide	whether	the	reference
should	be	linked	to	an	existing	identity,	or	if	it	represents	a	new	identity	in	the	system.	An
external	view	of	identity	represents	an	open	universe	model	because,	unlike	the	internal
view,	the	system	cannot	assume	it	has	complete	and	correct	knowledge	of	all	identity
values.

FIGURE	2.1 	An	occupancy	history.

As	an	example,	suppose	a	system	has	only	Occupancy	Records	1	and	2	of	the	identity	in
Figure	2.1.	In	that	case	the	system’s	knowledge	of	this	identity	is	incomplete.	It	may	be
incomplete	because	Occupancy	Record	3	has	not	been	acquired	or	because	it	is	in	the
system	but	has	not	been	linked	to	Records	1	and	2.	In	the	latter	case,	the	system	would
treat	Record	3	as	part	of	a	different	identity.	Even	though	an	internal	viewer	would	know
that	the	Occupancy	Record	3	should	also	be	part	of	the	identity	in	Figure	2.1,	the	system
does	not	have	sufficient	information	to	make	that	decision.

In	addition	to	the	problem	of	creating	an	incomplete	view	of	an	identity,	the	system	may
assemble	an	inaccurate	view	of	an	identity.	When	presented	with	a	new	occupancy	record,

the	system	may	erroneously	link	it	with	an	existing	identity	to	which	it	does	not	belong.
Again,	this	speaks	to	the	close	ties	between	ER	and	IQ.	In	particular,	it	points	out	that	the
accuracy	of	data	integration	has	two	important	components.	First	is	the	accuracy	of	the
individual	records,	but	the	second	is	the	correct	aggregation	of	the	records	related	to	the
same	entity.

In	an	external	view	of	identity,	the	collection	of	attribute	values	that	have	been	linked
together	by	the	system	comprises	its	view	of	the	identity	of	the	entity.	In	other	words,	an
ER	system	based	on	an	external	view	builds	its	knowledge	about	entity	identities	piece-
by-piece.	The	external	view	of	identity	resembles	how	a	business	or	a	government	agency
would	use	ER	tools	in	an	effort	to	link	their	records	into	a	single	view	of	a	customer	or
agency	client.

All	ER	systems	use	identity	at	some	level	in	order	to	resolve	references,	but	not	all	ER
systems	implement	identity	management	functions.	For	example,	the	simplest	form	of	ER
is	the	merge-purge	process.	It	uses	identity	by	assuming	references	with	certain	closely
matching	attribute	values	are	equivalent	and	assigns	these	matching	references	the	same
link	identifier.	At	the	end	of	the	merge-purge	process,	the	system	forms	an	external	view
of	the	identity	of	each	entity	represented	in	the	file.	This	view	comprises	the	information
in	the	references	linked	together	in	the	same	cluster.	However,	after	the	merge-purge
process	has	ended,	the	identity	information	in	each	cluster	is	lost.	Merge-purge	systems	by
their	nature	do	not	retain	and	manage	entity	identities	for	future	processing.	Each	merge-
purge	process	starts	from	scratch	and	the	identity	knowledge	it	assembles	is	transient,
existing	only	during	the	processing	of	the	current	file.

Managing	Entity	Identity	Information
As	discussed	in	Chapter	1,	Entity	Identity	Information	Management	(EIIM)	is	the
extension	of	ER	that	focuses	on	storing	and	maintaining	information	relating	to	the
identity	of	the	entities	under	management.	In	EIIM,	each	entity	is	represented	by	a	single
knowledge	structure	called	an	entity	identity	structure	(EIS).	When	an	EIS	is	created,	it	is
assigned	a	unique	identifier	which	becomes	the	information	system’s	identifier	for	the
real-world	object	corresponding	to	the	EIS.

The	goal	of	EIIM	is	two-fold.	First	is	to	achieve	a	state	in	which	each	EIS	represents
one,	and	only	one,	real-world	entity,	and	different	real-world	entities	are	represented	by
different	EIS.	This	is	the	goal	of	entity	identity	integrity	as	stated	earlier.	The	second	goal
is	to	assure	that	when	an	EIS	that	is	created	to	represent	a	given	real-world	entity	is
assigned	a	unique	identifier,	the	EIS	will	continue	to	have	that	same	identifier	in	the
future.	This	is	the	goal	of	persistent	identifiers.	Despite	best	efforts,	achieving	these	goals
in	all	cases	is	almost	impossible,	especially	for	large	numbers	of	entities	and	entity
references.	Due	to	differences	in	source	data,	timing,	age	of	references,	and	other	factors
affecting	the	ability	to	correctly	link	references,	some	level	of	false	positive	and	false
negative	errors	will	inevitably	occur	in	any	automated	MDM	system.

A	false	positive	error	occurs	when	an	EIS	has	identity	information	for	more	than	one
real-world	entity.	A	false	positive	violates	the	goal	of	entity	identity	integrity	because	a
single	EIS	represents	more	than	one	real-world	entity.	It	may	also	cause	the	system	to
violate	the	goal	of	maintaining	persistent	identifiers.	When	the	information	in	the	EIS	is
separated	to	correctly	represent	the	identities	of	both	entities,	it	may	require	creating	a	new
EIS	for	each	entity.	The	entity	represented	by	the	new	EIS	will	have	a	new	identifier
creating	a	situation	where	the	identifier	for	an	identity	has	changed.	Entities	“split	out”
from	the	original	EIS	will	require	new	identifiers.	First,	they	were	represented	by	the	over-
merged	EIS,	and	then	after	the	correction,	they	are	represented	by	a	new	EIS	with	a
different	identifier.

The	false	negative	error	occurs	when	two	or	more	EIS	represent	the	same	real-world
entity.	Clearly	this	violates	entity	identity	integrity.	The	correction	for	this	problem	is	to
merge	the	EIS	representing	the	same	entity.	Because	each	EIS	should	have	only	one
identifier,	only	one	of	the	original	identifiers	can	survive	after	the	merger,	and	the	other
identifiers	must	be	retired.	Again	this	creates	a	situation	where	the	identifier	for	an	identity
has	changed.

Entity	Identity	Integrity
A	fundamental	constraint	of	any	database	system	is	that	different	rows	should	not	have	the
same	identity.	However,	in	most	database	models,	identity	is	defined	as	the	primary	key
value,	i.e.	no	two	rows	should	have	the	same	primary	key	value.	In	the	case	where	a	table
is	intended	to	represent	master	data,	this	simple	approach	to	identity	does	not	take	into
consideration	the	question	of	reference.	As	anyone	with	any	experience	with	database
systems	understands,	just	because	two	rows	in	a	table	have	different	primary	key	values,	it

does	not	necessarily	follow	that	they	are	references	to	different	entities.

In	a	master	data	table	each	entity	should	be	represented	by	one,	and	only	one,	row.	The
most	common	failure	of	a	master	data	table	stems	from	more	than	one	reference	to	the
same	object.	This	“over	representation”	of	entities	is	often	the	root	cause	of	many	data
quality	issues	in	database	systems.	This	kind	of	data	redundancy	in	customer,	student,
patient,	product,	account,	or	other	master	data	can	cascade	through	the	entire	system,
producing	many	other	problems.

In	most	database	tables,	the	primary	key	value	is	an	arbitrarily	assigned	value,	only
there	to	guarantee	the	value	is	unique	but	unrelated	to	the	values	of	the	entity’s	identity
attributes.	Assigning	a	primary	key	without	regard	for	the	represented	identity	may	obey
the	letter	of	the	primary	key	constraint,	but	it	violates	the	spirit	of	entity	identity	integrity.
Entity	identity	integrity	is	at	the	heart	of	MDM	processing.

Entity	identity	integrity	requires

•	Each	entity	in	a	domain	has	one	and	only	one	representation	in	the	system

•	Distinct	entities	have	distinct	representations	in	the	system

Figure	2.2	illustrates	the	state	of	entity	identity	integrity	in	which	each	real-world	object
has	only	one	reference	in	the	information	system,	and	different	objects	have	different
references.

Entity	identity	integrity	can	be	represented	as	a	one-to-one,	onto	(in	mathematical
terminology,	injective	and	surjective)	function	from	the	information	system	references	to
the	real-world	objects.

Huang,	Lee,	and	Wang	(1999)	describe	a	concept	similar	to	entity	identity	integrity
called	“proper	representation.”	Proper	representation,	shown	in	Figure	2.3,	is	less	stringent
than	entity	identity	integrity	because	it	only	requires	that	different	objects	have	different
references	but	does	not	require	each	object	to	have	only	one	reference.

FIGURE	2.2 	Entity	identity	integrity.

FIGURE	2.3 	Redundant	representation	(proper	representation).

In	proper	representation,	the	mapping	from	the	information	systems	references	to	the
real-world	objects	is	only	required	to	be	what	is	called	a	surjective	function.	A	surjective
function	is	one	in	which	every	element	in	the	range	of	the	function	(in	this	case	the	real-
world	objects)	has	at	least	one	element	in	the	domain	of	the	function	(in	this	case	the
system	references)	mapped	to	it.	Proper	representation	still	allows	for	multiple	references
to	the	same	object.	Huang	et	al.	(1999)	use	the	term	proper	representation	because	in
general	there	are	cases	where	it	is	desirable	to	have	many	references	to	the	same	object	in
an	information	system.	For	example,	when	a	table	is	holding	sales	transactions	for	a
product,	one	would	expect	that	there	would	be	many	different	sales	of	the	same	product.

However,	when	the	references	are	to	master	data,	then	proper	representation	really
means	redundant	representation	and	signals	the	occurrence	of	a	false	negative	error.	A
false	negative	occurs	in	an	MDM	system	when	there	are	two	distinct	references	to	the
same	entity.

Huang	et	al.	(1999)	also	describe	a	state	called	“ambiguous	representation”	shown	in
Figure	2.4.	Ambiguous	representation	occurs	when	two	or	more	distinct	objects	have	only
one	reference	in	the	information	system.	From	an	MDM	perspective	ambiguous
representation	represents	a	false	positive	error	in	which	one	reference	refers	to	two	distinct
objects.

As	noted	earlier,	every	MDM	system	of	any	size	will	have	some	level	of	false	negative
and	false	positive	errors.	Moreover,	these	errors	tend	to	be	inversely	related	because	the
decisions	are	largely	based	on	matching	or	similarity.	When	the	match	criteria	are	relaxed
in	order	to	correct	false	negatives	in	the	data,	it	may	create	a	situation	in	which	previously
true	negative	references	match	and	are	clustered	together	to	create	false	positives.
Similarly,	imposing	more	stringent	match	conditions	will	tend	to	reduce	false	positives,
but	may	in	turn	prevent	true	positive	links,	thereby	increasing	false	negatives.	Given	a
choice,	most	organizations	prefer	to	make	false	negative	errors	over	making	positive
errors.

FIGURE	2.4 	Ambiguous	representation.

There	are	several	reasons	for	this	tendency.	In	many	customer-based	applications,	a
false	negative	often	has	less	business	risk	than	a	false	positive.	For	example,	a	bank	would
rather	fail	to	recognize	that	two	accounts	are	owned	by	the	same	customer	than	to	have
two	different	customers	assigned	to	and	making	transactions	in	the	same	account.	The
same	example	also	illustrates	a	second	reason.	In	general,	it	is	easier	to	merge	transactions
for	the	same	entity	once	separated	by	different	identifiers	than	it	is	to	sort	out	transactions
belonging	to	different	entities	merged	together	by	the	same	entity	identifier.

A	third	reason	is	simply	a	matter	of	culture	and	expectation.	Unfortunately,	most
people,	including	system	managers,	are	somewhat	accustomed	to	poor	data	quality.	No
one	seems	to	be	surprised	when	a	system	fails	to	bring	together	master	records	that	are
dissimilar.	In	some	sense	it	is	easier	to	explain,	and	perhaps	there	is	more	forgiveness	for,
why	two	master	records	for	the	same	entity	were	not	brought	together	than	to	explain	why
two	master	records	were	incorrectly	merged.

A	meaningless	state	(Huang	et	al.,	1999)	occurs	when	the	SOR	contains	a	reference
unresolvable	to	any	real-world	object	(Figure	2.5).	Meaningless	states	can	occur	for
different	reasons.	One	is	a	lack	of	synchronization	over	time.	A	valid	reference	in	the	SOR
may	later	become	invalid	–	for	example,	a	reference	to	a	network	circuit	remaining	in	the
system	even	though	the	circuit	has	been	removed	and	no	longer	exists.	In	this	case,	the
decision	to	keep	the	reference	may	be	warranted	for	historical	or	archival	reasons.
However,	most	meaningless	states	arise	due	to	data	quality	errors	when	identifiers	and
identity	attribute	values	are	corrupted	by	people	and	processes.

An	incomplete	state	(Huang	et	al.,	1999)	exists	when	objects	in	the	domain	of	interest

do	not	have	corresponding	references	in	the	information	system	(Figure	2.6).
Incompleteness	can	manifest	in	an	MDM	system	for	different	reasons.	It	can	be	during	the
initial	implementation	of	the	system	when	the	existence	and	attribute	values	of	the	entities
have	yet	to	be	established	and	registered.	It	can	also	occur	when	a	new	entity	entering	a
system	has	delayed	or	failed	system	registration.

The	process	for	establishing	MDM	registry	entries	often	takes	two	forms,	a	formal
registration	and	discovery	by	transaction.	For	the	patient	example,	a	formal	process	of
admission	gathers	and	enters	registration	information	in	detail.	In	a	system	with	formal
registration,	no	transaction	can	be	recorded	for	an	entity	until	that	entity	has	been
registered	and	has	an	identifier.

FIGURE	2.5 	Meaningless	state.

FIGURE	2.6 	Incomplete	representation.

However,	other	MDM	system	designs	are	more	dynamic	and	allow	entities	to	be
discovered	through	transactions.	Discovery	is	often	used	for	customer	entities	in
businesses	with	no	formal	registration	process.	A	person	or	company	becomes	a	customer
by	simply	making	a	purchase.	As	purchase	transactions	are	processed,	the	system	tries	to
determine	if	the	purchaser	is	already	registered	as	a	customer	entity.	If	not,	the	system
establishes	a	new	entry	and	identifier	for	the	customer.	Because	a	transaction	will	tend	to
have	less	identifying	information	than	a	full	registration	record,	a	system	registering
entities	“on	the	fly”	in	this	way	typically	requires	more	stewardship	and	adjustment	than
one	in	which	entities	are	preregistered.	Systems	with	dynamic	registration	have	a	higher
probability	of	creating	false	negatives.	As	more	information	is	accumulated	in	subsequent
processes,	what	appeared	initially	to	be	a	new	entity	is	later	determined	to	be	a	previously
registered	entity	with	somewhat	different	identifying	information,	such	as	the	same
customer	with	a	new	address.

The	Need	for	Persistent	Identifiers
By	definition,	ER	attempts	to	achieve	entity	identity	integrity	at	a	particular	point	in	time;
that	is,	given	a	set	of	entity	references,	an	ER	process	successively	compares	and	sorts
entity	references	into	groups	representing	the	same	real-world	entity.	This	sorting	is
typically	followed	by	a	purging	process	through	which	duplicate	references	are	removed,
leaving	only	one	reference	for	each	entity.	ER	used	in	this	way	is	often	referred	to	as	a
“merge-purge”	process	in	which	various	files	are	reformatted	into	a	common	layout,
merged	into	a	single	file,	and	the	duplicate	or	redundant	(equivalent)	references	are

removed.

However,	achieving	entity	identity	integrity	at	a	single	point	in	time	is	not	sufficient	to
support	MDM.	Another	important	requirement	of	MDM	is	that	once	an	identifier	for	an
entity	is	established	in	the	information	system,	it	will	continue	to	have	the	same	identifier
over	time,	i.e.	master	data	objects	are	given	“persistent	identifiers.”	Although	some
operational	processes	can	operate	without	persistent	entity	identifiers,	the	lack	of
persistence	is	a	major	problem	for	data	warehouses	that	store	historical	data.	If
transactions	for	the	same	customer	or	patient	are	given	different	identifiers	at	different
times,	then	it	becomes	extremely	problematic	to	analyze	the	information	and	make
effective	decisions.	Lee	et	al.	(2006)	list	multiple	sources	of	the	same	information	as	the
first	of	the	top	ten	root	causes	of	data	quality	problems.

In	order	to	create	and	maintain	a	persistent	identifier,	an	ER	process	must	also	store	and
manage	the	identity	information	of	the	entity	object	so	the	same	object	can	be	recognized
and	given	the	same	identifier	in	subsequent	processes.	Thus,	MDM	requires	the
application	of	ER	processes	to	maintain	entity	identity	integrity	and	also	requires	entity
identity	information	management	(EIIM)	to	maintain	persistent	identifiers.

www.allitebooks.com

http://www.allitebooks.org

Entity	Identity	Information	Life	Cycle
Management	Models
As	has	long	been	recognized	in	the	field	of	information	management,	information	has	a
life	cycle.	Information	is	not	static;	it	changes	over	time.	Several	models	of	information
life	cycle	management	have	been	developed	and	a	few	of	these	are	discussed	here.

POSMAD	Model
English	(1999)	formulated	a	five-phase	information	life	cycle	model	of	plan,	acquire,
maintain,	dispose,	and	apply,	adapted	from	a	generalized	resource	management	model.
McGilvray	(2008)	later	extended	the	model	by	adding	a	“store	and	share”	phase	and
naming	it	the	POSMAD	life	cycle	model,	an	acronym	for

•	Plan	for	information

•	Obtain	the	information

•	Store	and	Share	the	information

•	Maintain	and	manage	the	information

•	Apply	the	information	to	accomplish	your	goals

•	Dispose	of	the	information	as	it	is	no	longer	needed

POSMAD	is	similar	to	the	CRUD	model	long	used	by	database	modelers	as	primarily	a
process	model	for	the	basic	database	operations	of	creating	rows	(C),	reading	rows	(R),
updating	rows	(U),	and	deleting	rows	(D).

The	Loshin	Model
Entity	information	also	has	a	life	cycle,	and	understanding	it	is	critical	to	successful	EIIM.
For	example,	Loshin	(2009)	has	described	a	five-phase	life	cycle	for	master	data	objects
similar	to	the	POSMAD	life	cycle	but	cast	in	MDM	and	EIIM	terminology.	The	five
phases	are

•	Establishment

•	Distribution

•	Access	and	Use

•	Deactivation	and	Retire

•	Maintain	and	Update

The	CSRUD	Model

Following	the	lead	of	the	CRUD	model,	another	five-phase	MDM	life	cycle	model	is
proposed	here	that	has	a	similar	operational	focus.	The	five	phases	of	CSRUD	are

•	Capture	–	the	initial	creation	of	EIS	for	the	system.	Capture	occurs	when	an	MDM
system	is	first	installed.	However,	there	is	almost	always	some	form	of	MDM,	either	in
a	dedicated	system	or	an	internal	ad	hoc	system	that	must	be	migrated	into	the	new
system.

•	Store	and	Share	–	the	saving	of	EIS	in	a	persistent	format	such	as	a	database	or	flat-file
format.

•	Resolution	and	Retrieve	–	the	actual	use	of	the	MDM	information	in	which	transactions
with	master	data	identifying	information	are	compared	(resolved)	against	the	EIS	in
order	to	determine	their	identity.	When	an	entity	reference	in	a	transaction	is	determined
to	be	associated	with	a	particular	EIS,	the	EIS	identifier	is	added	to	the	transaction.	For
this	reason,	the	process	is	sometimes	called	“link	append”	because	the	EIS	identifier
added	to	the	transaction	is	used	to	link	together	transactions	for	the	same	entity.

•	Update	–	the	adding	of	new	EIS	related	to	new	entities	and	updating	previously	created
EIS	with	new	information.	The	update	process	can	be	either	automated	or	manual.
Manual	updates	are	often	used	to	correct	false	positive	and	false	negative	errors
introduced	by	the	automated	update	process.

•	Dispose	–	the	retiring	of	EIS	from	the	system.	EIS	are	retired	for	two	reasons.	The	first	is
the	case	where	the	EIS	is	correct,	but	is	no	longer	active	or	relevant.	The	second	is	in
the	correction	of	false	negative	errors	where	two	or	more	EIS	are	merged	into	a	single
EIS.

Concluding	Remarks
The	key	take-away	from	Chapter	2	is	MDM	is	an	ongoing	process,	not	a	one-time	event.
Entity	identity	information	will	change,	and	the	MDM	system	needs	to	have	enough
functionality	to	take	these	changes	into	account.	The	MDM	system	should	be	able	to
address	all	five	phases	of	the	CSRUD	Life	Cycle	including	the	initial	design	and	capture
of	the	entity	identity	information,	storing	and	sharing	identity	information,	resolving
inquiries	for	entity	identity,	updating	entity	identity	information	as	it	changes,	and
retirement	of	entities	and	entity	identifiers.	Each	of	the	five	phases	will	be	discussed	at
length	in	the	next	chapters,	as	follows:

•	Chapter	3,	Capture	Phase

•	Chapter	4,	Store	and	Share	Phase

•	Chapter	5,	Update	Phase	and	Dispose	Phase

•	Chapter	6,	Resolve	and	Retrieve	Phase.

CHAPTER	3

A	Deep	Dive	into	the	Capture	Phase

Abstract
This	chapter	describes	the	start	of	the	CSRUD	Life	Cycle	with	initial	capture	and	storage	of	entity	identity
information.	It	also	discusses	the	importance	of	understanding	the	characteristics	of	the	data,	properly	preparing	the
data,	selecting	identity	attributes,	and	coming	up	with	matching	strategies.	Perhaps	most	importantly,	it	discusses
the	methods	and	techniques	for	evaluating	ER	outcomes.

Keywords
Data	profiling;	data	matching;	benchmarking;	truth	sets;	review
indicators

An	Overview	of	the	Capture	Phase
Figure	3.1	shows	the	overall	flow	of	the	capture	phase	of	the	CSRUD	life	cycle	model.
Entity	references	are	placed	into	a	staging	area	where	they	undergo	data	cleansing	and
data	standardization	based.	Next	they	are	processed	by	the	ER	engine	implementing	an	ER
algorithm	and	matching	rule.

Each	cluster	of	references	the	system	determines	are	for	the	same	entity	is	assigned	a
unique	identifier.	At	the	end	of	the	process	the	cluster	and	its	identifier	are	stored	as	an
entity	identity	structure	(EIS)	in	an	identity	knowledge	base	(IKB).

In	addition	to	the	IKB,	the	capture	process	has	two	other	important	outputs.	One	is	the
link	index,	and	the	other	consists	of	the	clerical	review	indicators.	The	link	index	is	simply
a	two-column	list.	The	items	in	the	first	column	are	the	identifiers	of	the	input,	and	the
items	in	the	second	column	are	the	EIS	identifiers	created	during	the	capture	process.	Each
row	corresponds	to	one	input	reference	where	the	first	entry	in	the	row	is	the	unique
identifier	of	the	reference	(from	the	client	system),	and	the	second	entry	is	the	identifier	of
the	EIS	to	which	the	reference	was	assigned	by	the	capture	process.	The	link	index	is
produced	so	that	the	client	can	append	the	entity	identifiers	to	the	original	references	for
further	processing	within	the	client	system.

FIGURE	3.1 	Schematic	of	the	capture	phase.

For	example,	if	the	input	references	are	enrollment	records	for	students	in	a	large	school
district,	the	link	index	would	show	which	student	(entity)	identifier	was	assigned	by	the
ER	process	to	each	enrollment	record.	If	each	record	represents	a	different	student,	then	all
of	the	student	identifiers	would	be	different	unless	the	ER	process	has	made	a	false
positive	error.	On	the	other	hand,	if	two	references	have	the	same	identifier,	they	may	be
positives	because	they	represent	the	same	transfer	student	between	schools	within	the
district.

The	second	output	shown	in	Figure	3.1	is	a	list	of	review	indicators.	Review	indicators
are	conditions	or	events	that	occurred	during	the	ER	process	and	alerted	a	data	steward	to

the	possibility	of	a	linking	error.	As	the	name	implies,	review	indicators	should	be
manually	reviewed	by	a	data	steward	or	other	domain	expert	to	determine	whether	or	not
an	error	was	actually	made	or	not.	Just	as	important,	if	the	person	determines	an	error	was
made,	then	the	system	should	provide	some	mechanism	to	help	the	person	correct	the
error.

Review	indicators	represent	an	important	aspect	of	ER	and	MDM	data	stewardship.
They	provide	an	important	input	into	the	update	phase	of	the	CSRUD	life	cycle.
Unfortunately,	review	indicators	along	with	formal	ER	results	assessment	are	the	two	most
neglected	aspects	of	MDM	implementations.	The	design	and	use	of	review	indicators	will
be	discussed	in	more	detail	as	part	of	the	update	phase	of	the	CSRUD	life	cycle	in	Chapter
5.

Building	the	Foundation
The	CSRUD	life	cycle	starts	with	the	initial	capture	of	entity	identity	information	from
entity	references.	Although	the	capture	phase	is	a	one-time	process,	it	involves	a	number
of	activities	that,	if	not	done	correctly,	will	hinder	the	future	performance	of	the	MDM
system.	The	capture	phase	is	similar	to	the	design	phase	of	a	software	development
project:	a	critical	first	step	laying	the	foundation	for	the	entire	system.

The	key	activities	and	steps	for	the	capture	phase	are:

1.	Assess	the	quality	of	the	data

2.	Plan	the	data	cleansing	process

3.	Select	candidates	for	both	primary	and	supporting	identity	attributes

4.	Select	and	set	up	the	method	or	methods	for	assessing	the	entity	identity	integrity	of	the
results

5.	Decide	on	the	matching	strategy

6.	Craft	an	initial	data-matching	rule

7.	Run	the	capture	with	the	rule	and	assess	the	results

8.	Analyze	the	false	positive	and	false	negative	errors	and	determine	their	causes

9.	Improve	the	matching	rule

10.	Repeat	Steps	6	through	9	until	an	acceptable	level	of	error	has	been	obtained.

Understanding	the	Data
The	capture	phase	starts	with	a	data	quality	assessment	of	each	source.	The	assessment
includes	profiling	the	sources	with	a	data	quality	profiling	tool	to	understand	the	structure
and	general	condition	of	the	data	and	also	visually	inspecting	the	records	in	order	to	find
specific	conditions	that	may	become	obstacles	to	the	ER	process.	The	assessment	will

•	Identify	which	attributes	are	present	in	each	source.	Some	attributes	may	be	present	in
some	sources,	but	not	others.	Even	when	the	same	attributes	or	types	of	attributes
appear	in	two	different	sources,	they	may	be	in	different	formats	or	structured
differently.	For	example,	one	source	may	have	the	entire	customer	name	in	a	single
unstructured	field,	whereas	another	source	has	the	customer	name	elements	(given
name,	family	name,	etc.)	in	separate	fields.

•	Generate	statistics,	such	as	uniqueness	and	missing	value	counts,	that	will	help	to	decide
which	attributes	will	have	the	highest	value	as	identity	attributes.	These	are	candidates
for	use	in	the	matching	rule.

•	Assess	the	extent	of	data	quality	problems	in	each	source,	such	as:

•	Missing	values,	including	null	values,	empty	strings,	blank	values,	and	place-holder
values,	e.g.	“LNU”	for	Last	Name	Unknown.

•	Inconsistent	representation	(variation)	of	values	whether	due	to	inconsistent	coding,
such	as	“Ark”	and	“AR”	as	codes	for	“Arkansas”	in	the	state	address	field,	or	due	to
inconsistent	formatting,	such	as	coding	some	telephone	numbers	as	“(501)	555-1234”
and	others	as	“501.555.1234”.	Here	the	most	useful	profiling	outputs	are	value
frequency	tables,	pattern	frequency	tables,	and	maximum	and	minimum	values
(outliers).

•	Misfielding,	such	as	a	person’s	given	name	in	the	surname	field,	or	an	email	address	in
a	telephone	field.

www.allitebooks.com

http://www.allitebooks.org

Data	Preparation
The	next	step	is	to	decide	on	which	data	cleansing	and	standardization	processes	can	be
applied	to	address	the	issues	found	by	the	assessment.	In	the	case	where	some	files	have
combined	related	attribute	values	into	a	single	unstructured	field	and	others	have	the	same
information	decomposed	into	separate	fields,	the	first	decision	is	whether	to	have	a
cleansing	step	attempting	to	parse	(separate)	elements	in	the	unstructured	field	or	combine
the	separate	fields	into	a	single	field.	The	decision	to	parse	unstructured	fields	will	depend
upon	the	complexity	of	the	field	and	the	availability	of	a	parsing	tool	to	accurately	identify
and	separate	the	components.	The	decision	to	combine	separate	fields	into	one	will	depend
upon	the	availability	of	a	comparator	algorithm	able	to	effectively	determine	the	similarity
of	compound,	multi-valued	fields.

The	choice	about	combined	versus	parsed	fields	also	ties	to	the	larger	issues	of	how
much	data	preparation	should	be	done	prior	to	ER	and	how	much	should	be	handled	by
the	ER	process	itself.	Separating	the	data	cleansing	and	transformation	processes	and
making	them	external	to	the	ER	process	may	be	simpler,	but	it	also	creates	a	dependency.
If	for	some	reason	the	data	cleansing	and	transformation	processes	are	not	applied,	or	if
they	are	applied	differently	at	different	times,	an	ER	process	running	the	same	input	data
using	the	same	match	rule	could	produce	dramatically	different	results.	That	said,	moving
data	cleansing	and	transformation	responsibility	into	the	ER	process	tends	to	increases	the
complexity	of	matching	rules,	and	if	matching	functions	have	more	steps	to	perform,
program	execution	times	could	increase.	With	the	advent	of	faster	and	cheaper	processors
the	trend	has	been	to	move	more	of	the	data	cleansing	and	transformation	processes	into
the	ER	matching	process	itself,	thereby	reducing	the	dependency	on	external	data
preparation	processes.

Selecting	Identity	Attributes
One	of	the	keys	to	success	in	any	data	quality	project	is	an	analysis	to	determine	the
critical	data	elements	(CDEs)	(Jugulum,	2014).	For	ER	the	CDEs	are	the	identity
attributes.	Identity	attributes	are	those	attributes	of	an	entity	reference	whose	values	are
most	helpful	in	distinguishing	one	entity	from	another.	The	values	of	some	attributes
provide	the	system	with	more	power	to	discriminate	among	entities	than	other	attributes.
For	customer	references,	name	and	address	information,	especially	in	combination,	are
often	the	primary	basis	for	identification.	However,	other	attributes	can	help	confirm	good
matches	or	prevent	unwise	matches.	For	example,	reliable	gender	information	may
prevent	matching	“J	Smith	(Male)”	with	“J	Smith	(Female)”	for	customers	John	and	Jan
Smith	at	the	same	address.	In	contrast,	reliable	telephone	information	might	reinforce	the
decision	to	accept	“John	Smith,	123	Main	St,	555-1234”	with	“John	Smith,	345	Oak	St,
555-1234”	as	the	same	customer	even	though	the	two	references	have	different	street
addresses.

Primary	identity	attributes	are	those	identity	attributes	whose	values	have	the	most
uniqueness	and	completeness.	For	example,	in	the	U.S.	one	of	the	most	powerful
discriminators	for	persons	is	the	federally	assigned	unique	social	security	number	(SSN)
for	each	individual.	However,	if	a	SSN	is	not	present	in	the	source,	then	it	cannot	be	used
in	an	ER	process.	Even	in	those	cases	where	SSN	might	be	present,	such	as	school
enrollment	records,	they	do	not	always	provide	a	perfect	matching	solution.	Often	SSN	are
erroneously	reported	or	entered	incorrectly	into	the	system.	Invalid	values	are	sometimes
deliberately	entered	when	the	data	capture	system	requires	a	SSN	value	to	be	present,	but
the	real	value	is	not	provided.	Because	it	is	rare	that	the	values	of	one	attribute	will
reliably	identify	all	entities,	in	almost	all	cases,	matching	rules	for	entity	references	use	a
combination	of	identity	attributes.

Supporting	identity	attributes	are	those	identity	attributes,	such	as	gender	or	age,	with
values	having	less	uniqueness	or	completeness.	Supporting	identity	attributes	are	used	in
combination	with	primary	identity	attributes	to	confirm	or	deny	matches.	For	example,	in
product	master	data	the	product	supplier	code	is	an	attribute	with	possibly	low	uniqueness
if	many	of	the	products	under	management	come	from	the	same	supplier.	In	this	case,	the
supplier	code	by	itself	would	have	limited	discriminating	power,	but	could	still	help	to
confirm	or	deny	a	match	on	other	attribute	values.

Three	commonly	used	measures	providing	insight	into	the	capability	of	an	identity
attribute	to	distinguish	between	entities	include:

•	Uniqueness

•	Entropy

•	Weight

Attribute	Uniqueness

The	uniqueness	of	an	attribute	in	a	given	table	or	dataset	is	the	ratio	of	the	count	of	unique
values	to	the	count	of	all	non-null	values	the	attribute	takes	on.	Most	profiling	tools
automatically	give	uniqueness	as	a	column	statistic.	If	an	attribute	takes	on	a	different
value	for	every	row	or	record	of	the	dataset,	then	its	uniqueness	will	be	100%.	On	the
other	hand,	an	attribute	like	student	gender,	which	only	takes	on	a	few	distinct	values,	will
have	an	extremely	low	uniqueness	value.

When	assessing	a	set	of	references	for	primary	and	secondary	attributes,	it	is	important
to	remember	the	most	desirable	measure	is	not	the	uniqueness	of	the	attribute’s	values
across	all	of	the	references,	but	the	uniqueness	of	its	values	with	respect	to	the	entities	the
references	represent.	Assuming	some	redundancy	in	references,	i.e.	cases	where	different
references	in	the	set	are	referring	to	the	same	entity,	then	in	those	cases	it	is	better	if	the
attribute	takes	on	the	same	value	for	equivalent	references.	In	other	words,	if	two
references	are	for	the	same	student,	then	having	the	same	first	name	value	in	both
references	is	a	good	thing	even	though	it	lowers	the	uniqueness	of	the	first	name	attribute
across	the	complete	set	of	references.	The	most	desirable	feature	of	an	identity	attribute	is
the	degree	to	which	it	has	the	same	value	for	equivalent	records	and	different	values	for
nonequivalent	references.	The	point	is	the	level	of	uniqueness	should	be	commensurate
with	the	expected	level	of	entity	reference	redundancy	in	the	set	of	references.	The	actual
measure	for	this	is	called	the	attribute	weight	as	defined	later	in	this	section.

Attribute	Entropy
Another	measure	often	used	to	evaluate	identity	attributes	is	entropy	as	defined	by
Shannon	(1948).	Although	similar	to	uniqueness,	entropy	takes	into	account	the	relative
frequency	of	the	unique	values	of	an	attribute.

In	this	formulation,	the	probability	of	a	value	(vj)	is	its	relative	frequency	in	the	dataset.
In	some	ways,	entropy	is	to	uniqueness	what	standard	deviation	is	to	the	mean	in	statistics.
The	more	diverse	the	set	of	values	an	attribute	takes	on,	the	higher	its	entropy	will	be.	In
the	case	of	an	attribute	having	a	constant	value,	the	probability	of	that	value	will	be	1,	and
because	the	log2(1)	=	0,	the	entropy	of	a	constant	value	attribute	will	be	0.

Unlike	uniqueness,	the	entropy	value	will	vary	with	the	distribution	of	values.	For
example,	consider	the	gender	attribute	for	a	dataset	comprising	100	references	to	students.
If	every	reference	has	a	non-null	gender	value	of	“M”	or	“F”,	then	the	uniqueness	measure
will	be	0.02	(2/100).	However,	the	entropy	measure	will	vary	depending	upon	the
distribution	of	values.	For	example,	if	there	are	an	equal	number	of	male	and	female
students	then	the	probability	of	“M”	and	“F”	are	both	0.5	(or	50%).	In	this	case,	the
entropy	of	the	gender	attribute	will	be

On	the	other	hand,	if	70%	of	the	students	are	female	and	30%	are	male,	then	the	entropy

will	be

Attribute	Weight
Fellegi	and	Sunter	(1969)	provided	a	formal	measure	of	the	power	of	an	identity	attribute
to	predict	equivalence,	i.e.	to	discriminate	between	equivalent	and	nonequivalent	pairs,	in
the	specific	context	of	entity	resolution.	Unlike	uniqueness	or	entropy,	the	attribute	weight
takes	into	account	the	variation	of	an	attribute’s	values	vis-à-vis	reference	equivalence.

To	see	how	this	works,	suppose	R	is	a	large	set	of	references	having	an	identity	attribute
x.	Further	suppose	S	is	a	representative	sample	from	R	for	which	the	equivalence	or
nonequivalence	of	each	pair	of	references	in	S	is	already	known.	A	sample	set	like	S	is
sometimes	called	a	Truth	Set,	Training	Set,	or	Certified	Record	Set,	for	the	larger	set	R.

If	D	represents	all	of	the	possible	distinct	pairs	of	references	in	S,	then	D	=	E∪N	where
E	is	the	set	of	equivalent	pairs	in	D,	and	N	is	the	set	of	nonequivalent	pairs	in	D.
According	to	Fellegi	and	Sunter	(1969),	the	discriminating	power	of	x	is	given	by

The	numerator	of	this	fraction	is	the	probability	equivalent	pairs	of	references	will	agree
on	the	value	of	attribute	x,	whereas	the	denominator	is	the	probability	nonequivalent	pairs
will	agree	on	x.	This	fraction	and	its	logarithmic	value	produce	large	positive	numbers
when	the	denominator	is	small,	meaning	agreement	on	x	is	a	good	indicator	for	equivalent
pairs.	In	the	case	of	equal	probability,	the	ratio	is	1	and	the	logarithmic	value	is	0.	If
agreement	on	x	is	more	likely	to	indicate	the	pairs	of	references	are	nonequivalent,	then
the	ratio	is	less	than	one	and	the	logarithmic	value	is	negative.	The	computation	of	the
weight	of	an	identity	attribute	is	fundamental	to	a	data-matching	technique	often	referred
to	as	“probabilistic”	matching,	a	topic	discussed	in	more	detail	later.

Assessing	ER	Results
If	the	goal	of	EIIM	is	to	attain	and	maintain	entity	identity	integrity	(obey	the
Fundamental	Law	of	ER),	then	it	is	important	to	be	able	to	measure	attainment	of	the	goal.
In	ER	this	measurement	is	somewhat	of	a	conundrum.	In	order	to	measure	the	degree	of
entity	identity	integrity	attainment,	it	is	necessary	to	know	which	references	are	equivalent
and	which	are	not	equivalent.	Of	course	if	one	already	knew	this	for	all	references,	then
ER	would	be	unnecessary	in	the	first	place.

Unfortunately,	in	many	organizations	the	assessment	of	ER	and	EIIM	results	is	done
poorly	if	at	all.	ER	and	MDM	managers	often	rely	entirely	on	inspection	of	the	match
groups	to	see	if	the	references	brought	together	have	a	reasonable	degree	of	similarity.
However,	as	an	approach	to	assessment,	inspecting	clusters	for	quality	of	match	is
inadequate	in	two	fundamental	ways.	First,	not	all	matching	references	are	equivalent,	and
second,	equivalent	references	do	not	always	match.

Just	inspecting	clusters	of	matching	references	does	not	actually	verify	that	the
references	are	equivalent.	Verification	of	equivalence	is	not	the	role	of	a	matching	expert;
it	should	be	done	by	a	domain	expert	who	is	in	a	position	to	know	if	the	references	really
are	for	the	same	real-world	object.	Furthermore,	cluster	inspection	leaves	out	entirely	the
consideration	of	equivalent	references	not	in	the	matching	group	under	inspection,	but	that
should	be	(Schumacher,	2010).	These	are	references	erroneously	placed	in	clusters	other
than	the	one	being	inspected.	In	order	to	have	a	realistic	assessment	of	ER	results,	the
visual	inspection	of	clusters	should	be	replaced	by,	or	at	least	supplemented	with,	other
more	comprehensive	and	systematic	methods.	Two	commonly	used	approaches	to	this
issue	often	used	together	are	truth	set	development	and	benchmarking	(Syed	et	al.,	2012).

Truth	Sets
A	truth	set	is	a	sample	of	the	reference	for	which	entity	identity	integrity	is	known	to	be
100%.	For	a	large	set	of	references	R,	a	truth	set	T	is	a	representative	sample	of	references
in	R	for	which	the	true	equivalence	or	nonequivalence	of	each	pair	of	references	has	been
verified.	This	verification	allows	the	references	to	be	correctly	linked	with	a	“True	Link.”
In	other	words,	two	references	in	T	have	the	same	true	link	if	and	only	if	they	refer	to	the
same	real-world	entity.	The	true	link	identifier	must	be	assigned	and	verified	manually	to
make	sure	each	cluster	of	references	with	the	same	true	link	value	reference	the	same
entity	and	that	clusters	with	different	true	link	values	reference	different	entities.

Assessment	using	the	truth	set	is	simply	a	matter	of	performing	ER	on	the	truth	set,	then
comparing	the	cluster	created	by	the	ER	matching	process	to	the	True	Link	clusters.	If	the
ER	link	clusters	coincide	exactly	with	the	True	Link	clusters,	then	the	ER	process	has
attained	entity	identity	integrity	for	the	references	in	the	truth	set.	If	a	cluster	created	by
the	ER	process	overlaps	with	two	or	more	truth	set	clusters,	then	the	ER	process	has
produced	some	level	of	linking	errors.	Measuring	the	degree	of	error	will	be	discussed	in
more	detail	later.

Benchmarking
Benchmarking,	on	the	other	hand,	is	the	process	of	comparing	one	ER	outcome	to	another
ER	outcome	acting	on	the	same	set	of	references.	Even	though	benchmarking	is	a	relative
measure,	it	is	useful	because	most	organizations	trying	to	develop	a	new	MDM	system
rarely	start	from	scratch.	Usually,	they	start	with	the	known	performance	of	a	legacy
system.	Benchmarking	is	similar	to	the	truth	set	approach	because	some	previous	ER
result	(set	of	clusters)	is	a	surrogate	for	the	truth	set.	The	difference	is,	when	a	new	ER
grouping	is	compared	to	the	benchmark	grouping	and	overlaps	are	found,	it	is	not
immediately	clear	if	the	new	grouping	is	more	or	less	correct	than	the	benchmark
grouping,	just	that	they	are	different.

Benchmarking	is	based	on	the	following	assumption:	when	both	systems	agree,	those
links	are	the	most	likely	to	be	correct.	This	assumption	allows	the	evaluation	process	to
focus	on	references	linked	differently	in	the	benchmark	than	in	the	new	process.	These
differences	must	still	be	verified,	but	this	method	considerably	reduces	the	review	and
verification	burden.	Where	there	are	a	large	number	of	differences,	a	random	sample	of
the	differences	of	manageable	size	can	be	taken	to	estimate	whether	the	differences
indicate	that	the	new	process	is	making	better	or	worse	linking	decisions	than	the
benchmark.

Benchmarking	and	truth	set	evaluation	are	often	used	together	because	neither	is	an
ideal	solution.	It	is	difficult	to	build	a	large	truth	set	because	of	the	need	to	actually	verify
the	correctness	and	completeness	of	the	links.	An	accurate	truth	set	cannot	be	built	by	the
visual	inspection	method.	It	requires	verification	by	data	experts	who	have	direct
knowledge	of	the	real-world	entities.	For	example,	when	managing	student	identities	for	a
school	system,	the	final	determination	whether	the	enrollment	records	are	for	the	same
student	should	be	made	by	the	teachers	or	administrators	at	the	school	the	student	attends.

Because	truth	sets	tend	to	be	relatively	small,	they	may	not	include	relatively	infrequent
data	anomalies	or	reference	configurations	particularly	problematic	for	the	ER	matching
rule.	The	obvious	advantage	of	the	benchmark	is	that	it	can	include	all	of	the	references	in
production	at	any	given	time.	The	disadvantage	of	the	benchmark	approach	is	its	lack	of
precision.	Even	though	links	made	by	both	systems	are	assumed	to	be	correct,	they	may
not	be.	Both	ER	processes	may	simply	be	making	the	same	mistakes.

Problem	Sets
Though	not	a	method	for	overall	assessment	of	ER	results,	collecting	and	setting	aside
problem	references	is	another	analysis	technique	commonly	used	to	supplement	both	truth
set	and	benchmark	evaluation.	Maydanchik	(2007)	and	others	advocate	for	the	systematic
collection	of	problem	records	violating	particular	data	quality	rules.	In	the	case	of	ER,
these	are	pairs	of	references	posing	particular	challenges	for	the	matching	rule.	These
pairs	of	references	are	often	collected	during	the	creation	of	a	truth	set,	when	making	a
benchmark	assessment,	or	from	matching	errors	reported	by	clients	of	the	system.

Even	though	the	correct	linking	for	problem	reference	pairs	is	known,	it	is	usually	not	a

good	idea	to	incorporate	them	into	the	truth	set.	Ideally,	the	truth	set	should	be
representative	of	the	overall	population	of	the	references	being	evaluated.	If	it	is
representative,	then	the	accuracy	of	the	ER	process	acting	on	the	truth	set	is	more	likely	to
reflect	the	overall	accuracy	of	the	ER	process.	Even	though	it	may	be	tempting	to	place
the	references	in	the	problem	set	into	the	truth	set	to	make	the	truth	set	larger,	adding	them
can	diminish	the	usefulness	of	the	truth	set	for	estimating	the	accuracy	of	the	ER	process.
Adding	problem	records	into	the	truth	set	will	tend	to	skew	estimates	of	the	ER	accuracy
lower	than	they	should	be.

The	Intersection	Matrix
Whether	using	the	truth	set	or	the	benchmarking	approach,	the	final	step	of	the	ER
assessment	is	to	compare	clusters	created	by	the	two	processes	running	against	the	same
set	of	references.	Table	3.1	shows	10	customer	references	in	a	truth	set	referencing	4
entities	(customers).	These	are	the	references	having	the	True	Link	values	“Cust1”,
“Cust2”,	“Cust3”,	and	“Cust4”.	At	the	same	time	these	records	have	been	linked	by	an	ER
process	with	six	link	values	of	“5”,	“36”,	“43”,	“56”,	“66”,	and	“74”.

Applying	links	to	a	set	of	references	always	generates	a	natural	partition	of	the
references	into	a	subset	of	references	sharing	the	same	link	value.	A	partition	of	the	set	S
is	a	set	of	nonempty,	nonoverlapping	subsets	of	S	that	cover	S,	i.e.	the	union	of	the	subsets
is	equal	to	S.

Table	3.1
References	with	Two	Sets	of	Links

Using	the	example	in	Table	3.1,	the	True	Link	creates	a	partition	T	of	S	into	4	subsets
where	each	subset	corresponds	to	a	unique	link	value

Similarly,	the	ER	process	creates	a	partition	P	of	S	having	six	subsets

Therefore,	the	comparison	of	ER	outcomes	is	essentially	a	problem	in	comparing	the
similarity	between	partitions	of	the	same	set.	One	way	to	organize	the	comparison
between	two	partitions	of	the	same	set	is	to	create	an	intersection	matrix	as	shown	in	Table
3.2.

The	rows	of	Table	3.2	correspond	to	the	partition	classes	(subsets)	of	the	P	partition	of
the	S	created	by	the	ER	process.	The	columns	correspond	to	the	partition	classes	of	the	T
partition	created	by	the	Truth	Links.	At	the	intersection	of	each	row	and	column	in	Table
3.2	are	two	numbers.	The	first	number	is	the	size	of	the	intersection	between	the	partition
classes	in	the	case	where	there	is	a	nonempty	intersection.	The	second	number	is	the	count
of	distinct	pairs	of	references	that	can	be	formed	using	the	references	in	the	intersection.
This	is	given	by	the	formula

Table	3.2
The	Intersection	Matrix	of	T	and	P

where	N	is	the	number	of	references	in	the	intersection.

The	last	row	of	the	matrix	is	labeled	E	because	it	summarizes	the	counts	of	equivalent
references	and	distinct	pairs	of	equivalent	references.	For	example,	the	second	column	has
4	equivalent	references	{R3,	R4,	R6,	R10}	that	can	form	6	pairs	(4×3/2).	Similarly,	the
last	column	is	labeled	L	because	it	summarizes	the	counts	of	references	linked	by	the	ER
process	and	possible	pairs	of	distinct	linked	references.	For	example,	the	second	row	has	3
linked	records	{R3,	R4,	R6},	which	can	form	3	distinct	pairs.	The	last	number	in	the
matrix	is	the	total	number	of	references	(10)	and	the	total	number	of	distinct	pairs	that	can
be	formed	from	all	references	(45).

The	intersection	matrix	in	Table	3.2	can	also	be	used	to	understand	the	distribution	of
true	and	false	positives	and	true	and	false	negatives.	Let	R	be	a	set	of	entity	references,

and	let	D	represent	the	set	of	all	possible	distinct	pairs	of	references	in	R.	In	the	example
of	Table	3.2,	R	has	10	elements	and	D	has	45	elements.	Following	the	Fundamental	Law
of	Entity	Resolution,	the	set	D	can	be	decomposed	into	four	nonoverlapping	subsets	TP,
TN,	FP,	and	FN	where

•	TP	is	the	set	of	True	Positive	resolutions.	A	pair	of	references	belongs	in	TP	if	the
references	are	equivalent	and	the	ER	process	has	linked	them	together.

•	TN	is	the	set	of	True	Negative	resolutions.	A	pair	of	references	belongs	in	TN	if	the
references	are	not	equivalent	and	the	ER	process	has	not	linked	them	together.

•	FP	is	the	set	of	False	Positive	resolutions.	A	pair	of	references	belongs	in	FP	if	the
references	are	not	equivalent	and	the	ER	process	has	linked	them	together.

•	FN	is	the	set	of	False	Negative	resolutions.	A	pair	of	references	belongs	in	FN	if	the
references	are	equivalent	and	the	ER	process	has	not	linked	them	together.

The	Fundamental	Law	of	ER	holds	when	FP	and	FN	are	empty.	Figure	3.2	illustrates
the	concepts	represented	as	a	Venn	diagram.

The	counts	for	each	of	these	sets	can	be	derived	from	the	intersection	matrix	shown	in
Table	3.2.	The	pair	counts	at	the	nonempty	cell	intersections	represent	TP	pairs	because
they	are	pairs	of	equivalent	records	now	linked	together.	Table	3.2	shows	the	5	true
positive	pairs	in	D.

The	number	of	equivalent	pairs	(E)	can	be	found	by	adding	the	pair	counts	in	the	last
row.

FIGURE	3.2 	The	decomposition	of	D	into	FP,	TP,	FN,	and	TN.

Similarly,	the	number	of	linked	pairs	(L)	can	be	found	by	adding	the	pair	counts	in	the

last	column.

From	these,	all	of	the	remaining	counts	can	now	be	calculated	as

Measurements	of	ER	Outcomes
The	TP,	TN,	FP,	and	FN	counts	provide	the	input	for	several	ER	measurements.	The	first
is	linking	(ER)	accuracy.

The	accuracy	measurement	is	a	rating	that	takes	on	values	in	the	(0,1)	interval.	When
FP=FN=Ø,	the	accuracy	value	will	be	1.0.	If	either	FP≠Ø	or	FN≠Ø,	the	value	will	be	less
than	1.0.	The	accuracy	calculation	coincides	with	the	Rand	Index	(Rand,	1971),	which	is
also	used	in	statistics	to	compare	two	clustering	results.

The	accuracy	measurement	incorporates	the	effects	of	both	FP	errors	and	FN	errors	in
the	same	calculation.	Often	ER	requirements	put	limits	on	each	type	of	error
independently	and	call	for	independent	measurements.	These	typically	are	measured	in
terms	of	“rates.”

The	false	negative	rate	is	the	ratio	of	the	actual	number	of	false	negatives	(FN)	to	the
total	number	possible.	An	ER	process	can	only	create	a	false	negative	error	when	it	fails	to
link	equivalent	pairs	of	references.	Therefore,	the	basis	for	the	ratio	is	the	total	number	of
equivalent	records	E	=	TP∪FN	(see	Figure	3.2).
Similarly,	the	false	positive	rate	is	the	ratio	of	the	actual	number	of	false	positives	(FP)

to	the	total	number	possible.	An	ER	process	can	only	create	a	false	positive	error	when	it
links	nonequivalent	pairs	of	references.	Therefore,	the	basis	for	the	ratio	is	the	total
number	of	nonequivalent	records	∼E=TN∪FP	(see	Figure	3.2).
Three	other	commonly	used	measurements	borrowed	from	the	field	of	data	mining	are

precision,	recall,	and	F-measure.

www.allitebooks.com

http://www.allitebooks.org

These	measurements	think	of	linking	as	a	classification	operation	in	data	mining.
Linking	precision	looks	only	at	reference	pairs	linked	by	the	ER	process,	then	asks	what
percentage	of	those	were	correct	links.	Precision	is	not	affected	by	failure	to	link
equivalent	records	(FN),	focusing	only	on	the	correctness	of	the	links	that	were	made.

Conversely,	recall	is	the	measure	of	how	many	pairs	of	references	that	should	have	been
linked	(E)	were	actually	linked	by	the	process.	Recall	ignores	improperly	linking
nonequivalent	records	(FP),	focusing	only	on	how	many	correct	links	were	made.	The	F-
Measure	combines	both	precision	and	recall	into	a	single	measure	by	computing	their
harmonic	mean.

Talburt-Wang	Index
The	Talburt-Wang	Index	or	TWi	is	another	measurement	combining	both	FP	and	FN
errors	into	one	number	(Hashemi,	Talburt,	&	Wang,	2006;	Talburt,	Kuo,	Wang,	&	Hess,
2004;	Talburt,	Wang	et	al.,	2007).	However,	its	computation	is	much	simpler	and	does	not
require	the	actual	calculation	of	the	TP,	TN,	FP,	PN	counts.	Instead	it	measures	the	number
of	overlaps	between	two	partitions	formed	by	different	linking	operations.	In	the	TWi	the
size	of	the	overlap	is	not	taken	into	account,	only	the	number	of	overlaps.	If	S	is	a	set	of
references,	and	A	and	B	represent	two	partitions	of	S	created	by	separate	ER	processes,
then	define	V,	the	set	of	overlaps	between	A	and	B	as

Then	the	Talburt-Wang	Index	is	defined	as

Applying	this	to	the	truth	set	evaluation	between	sets	T	and	P	as	shown	in	Table	3.2
gives

Two	important	characteristics	of	the	TWi	are

In	the	case	A	represents	the	partition	formed	by	a	truth	set,	then	the	TWi(A,	B)	is	an
alternative	measure	of	linking	accuracy.

The	utility	of	the	TWi	is	its	simplicity	of	calculation,	even	for	large	data	sets.	Suppose
that	S	is	a	set	of	references	and	that	S	has	been	partitioned	by	two	linking	processes,	i.e.
each	reference	in	S	has	two	link	identifiers.	If	S	is	sorted	in	primary	order	by	the	first	link
identifier	and	secondary	by	the	second	link	identifier,	then	the	three	values	for	the	TWi
can	be	calculated	in	one	pass	through	the	records.	The	overlaps	are	those	sequences	of
references	where	both	link	identifiers	are	the	same.

Table	3.3	shows	the	references	from	Table	3.1	sorted	in	primary	order	by	True	Link	and
secondary	by	ER	Link.	The	alternate	shading	of	the	rows	where	both	identifiers	are	the
same	indicates	the	6	overlaps	between	the	two	partitions.	If	the	number	of	unique	True
Links	is	known	and	the	number	of	unique	ER	links	is	known	from	previous	processing,
then	the	TWi	can	be	easily	calculated	by	counting	the	overlap	groups	in	the	sorted	file.

Other	Proposed	Measures
Two	other	proposed	measures	of	ER	outcomes	are	Pairwise	Comparison	and	Cluster
Comparison.	These	can	best	be	explained	by	a	simple	example.	Let

represent	a	set	of	8	entity	references.	Furthermore	suppose	that	the	references	in	R	have
been	resolved	by	two	different	ER	processes,	and	that	A	and	B	are	the	resulting	partitions
of	R	formed	by	each	process

Table	3.3
Table	3.1	Sorted	by	True	Link	Then	ER	Link

True	Link ER	Link
R9 Cust1 43
R1 Cust1 56
R2 Cust1 56
R10 Cust2 5
R3 Cust2 36
R4 Cust2 36
R6 Cust2 36
R5 Cust3 74
R8 Cust3 74
R7 Cust4 66

Menestrina,	Whang,	and	Garcia-Molina	(2010)	proposed	a	pairwise	method	where
“Pairs(A)”	is	the	set	of	all	distinct	pairs	within	the	partition	classes.	In	this	example

Then	the	pairwise	measures	are	defined	as

Menestrina	et	al.	(2010)	also	proposed	a	Cluster	Comparison	method	that	is	similar	to
Pairwise	Comparison,	but	instead	of	using	the	Pairs()	operator,	it	uses	the	intersection	of
the	partitions,	i.e.	the	partition	classes	A	and	B	have	in	common.	In	the	example	given,	the
two	partitions	A	and	B	only	share	the	partition	class	{h}.	Therefore

The	Cluster	Comparison	measures	are

Data	Matching	Strategies
Data	matching	is	at	the	heart	of	ER.	ER	systems	are	driven	by	the	Similarity	Assumption
stating:

“Given	two	entity	references,	the	more	similar	the	values	for	their	corresponding
identity	attributes,	the	more	likely	the	references	will	be	equivalent.”

For	this	reason,	the	terms	“data	matching”	or	“record	matching”	are	sometimes	used
interchangeably	with	“entity	resolution.”	Although	there	is	usually	a	strong	correlation
between	similarity	and	equivalence,	it	is	not	a	certainty,	only	an	increasing	likelihood.	As
noted	earlier,	not	all	equivalent	references	match,	and	not	all	matching	references	are
equivalent.

In	order	to	really	grasp	the	inner	workings	of	MDM,	it	is	important	to	understand	that
data	matching	takes	place	at	three	levels	in	an	ER	system:

1.	The	Attribute	level

2.	The	Reference	level

3.	The	Cluster	level	(or	Structure	level)

Attribute-Level	Matching
At	its	lowest	level,	data	matching	is	used	to	judge	the	similarity	between	two	identity
attribute	values.	A	comparator	is	an	algorithm	that	takes	two	attribute	values	as	input	and
determines	if	they	meet	a	required	level	of	similarity.	The	simplest	comparator	determines
“exact”	match.	If	the	two	values	are	numeric,	say	age,	then	the	two	numeric	values	must
be	equal.	If	the	two	values	are	strings,	say	a	person’s	given	name,	then	the	two	strings
must	be	identical	character-for-character.	The	problem	with	exact	match	is	values	encoded
as	character	strings	are	prone	to	variation	such	as	mistyping	and	misspelling.	In	exact
match,	even	differences	in	letter	casing	(upper	versus	lower	case)	and	spacing	will	not	be
an	exact	match.

In	general,	comparators	are	designed	to	overcome	variation	in	representations	of	the
same	value.	Therefore,	in	addition	to	exact	match,	other	types	of	comparators	provide
either	some	level	of	standardization	or	some	level	of	approximate	match,	sometimes
referred	to	as	a	“fuzzy”	match.	This	is	especially	true	for	comparators	for	values	typically
represented	by	character	strings	such	as	names	or	addresses.

What	constitutes	similarity	between	two	character	strings	depends	on	the	nature	of	the
data	and	the	cause	of	the	variation.	For	example,	person	names	may	vary	because	names
sounding	the	same	may	be	spelled	differently.	The	names	“Philip”	and	“Phillip”	have
identical	pronunciations	and	can	easily	be	confused	by	someone	entering	the	name	on	a
keyboard	during	a	telephone	encounter	such	as	a	telemarketing	sale.	To	address	the
variation	caused	by	names	sounding	alike	but	spelled	differently,	a	number	of	“phonetic”
comparators	have	been	developed	such	as	the	Soundex	algorithm.

In	this	particular	example,	the	Soundex	algorithm	will	convert	both	the	strings	“Philip”
and	“Phillip”	into	the	same	value	“P410.”	This	is	done	by	first	removing	all	of	the	vowels,
then	systematically	replacing	each	character	except	the	first	character	with	a	digit	that
stands	for	a	group	of	letters	having	a	similar	sound.

Variation	in	string	values	caused	by	mistyping	or	other	types	of	data	quality	errors	are
addressed	by	another	family	of	comparators	performing	what	is	known	as	“approximate
string	matching”	or	ASM	algorithms.	One	of	the	most	famous	is	the	Levenshtein	Edit
Distance	comparator.	It	measures	the	similarity	between	two	character	strings	as	the
minimum	number	of	character	delete,	insert,	or	substitution	operations	that	will	transform
one	string	into	the	other.	For	example,	the	edit	distance	between	the	strings	“KLAUSS”
and	“KRAUS”	is	2	because	only	2	edit	operations,	the	substitution	of	“R”	for	“L”	in	the
first	string	and	the	deletion	of	the	second	“S”,	are	necessary	to	transform	“KLAUSS”	into
“KRAUS”.

A	more	complete	description	of	commonly	used	ER	and	MDM	comparators	can	be
found	in	Appendix	A.

Reference-Level	Matching
Most	ER	systems	use	one	of	two	types	of	matching	rules:	Boolean	rules	or	scoring	rules.
These	are	sometimes	referred	to	as	“deterministic”	and	“probabilistic,”	respectively.
However,	these	terms	are	somewhat	of	a	misnomer	because	all	ER	rules	are	both
deterministic	and	probabilistic.	A	process	is	said	to	be	deterministic	if,	whenever	given	the
same	input,	it	always	produces	the	same	output.	This	is	certainly	true	for	all	ER	rules
implemented	as	computer	code	because	computer	programs	are,	by	nature,	deterministic.
In	addition,	all	ER	matching	rules	are	probabilistic	because	the	increasing	similarity	of
two	references	only	increases	the	probability	they	are	equivalent.	No	matter	how	similar
they	are,	there	is	still	some	probability	they	are	not	equivalent.	Conversely,	no	matter	how
dissimilar	two	references,	there	is	still	a	probability	they	may	be	equivalent.	For	this
reason,	they	are	referred	to	here	as	Boolean	and	scoring	rules	to	make	a	clear	distinction.

Boolean	Rules
As	the	name	implies,	Boolean	rules	are	logical	propositions	connected	by	the	logical
operators	AND	and	OR	(Figure	3.3).	In	the	context	of	ER	the	logical	propositions	are	that
two	values	of	an	attribute	meet	a	prescribed	level	of	similarity.

FIGURE	3.3 	Schematic	of	Boolean	rule	structure.

The	two	rules	shown	here	are	examples	of	a	simple	Boolean	rule	set	potentially	used	in
managing	student	enrollment	data.

Rule	1:

(First:	Soundex)	AND	(Last:	Exact)	AND	(School_ID:	Exact)

Rule	2:

(First:	Exact)	AND	(Last:	Exact)	AND	(Street_Nbr:	Exact)

In	Rule	1,	the	term	“First”	is	the	attribute	of	the	student’s	first	name	(given	name),	and
the	first	name	values	are	required	to	agree	by	the	Soundex	phonetic	similarity	algorithm.
The	term	“Last”	is	the	attribute	representing	the	student’s	last	name	(family	name)	and	the
“School_ID”,	is	an	identifier	for	the	student’s	current	school.	In	Rule	1,	both	“Last”	and
“School_ID”	must	be	the	same.	Because	each	term	is	connected	by	an	AND	operator,	all
three	conditions	must	hold	in	order	for	Rule	1	to	be	true,	i.e.	signal	a	match.

In	Rule	2,	“First”,	“Last”,	and	the	street	number	of	the	student’s	address	(“Street_Nbr”)
must	all	be	the	same.	However,	the	logical	operation	between	rules	is	an	implied	“OR”.
Therefore,	if	two	references	satisfy	either	Rule	1	or	Rule	2	or	both,	the	two	references	will
be	considered	a	match.

Scoring	Rule
While	Boolean	rule	sets	can	contain	multiple	rules	comparing	the	same	identity	attributes
in	different	ways,	a	scoring	rule	is	a	single	rule	that	compares	all	the	identity	attributes	at
one	time.	Each	comparison	contributes	a	“weight”	or	score	depending	upon	whether	the
similarity	was	satisfied	(values	agree)	or	not	satisfied	(values	disagree).

FIGURE	3.4 	Schematic	of	scoring	rule	structure.

The	diagram	in	Figure	3.4	shows	an	example	of	a	scoring	rule	that	compares	five
identity	attributes	of	two	customer	references.	The	first	name	comparator	is	an	alias	or
nickname	match.	The	last	name,	street	number,	and	street	suffix	require	exact	match,	and
the	street	name	is	a	fuzzy	match,	such	as	Levenshtein	edit	distance.	In	this	example,	the
first	names	agree	by	alias,	the	last	names	disagree	by	exact,	the	street	numbers	agree	by
exact,	the	street	names	agree	by	fuzzy	match	(e.g.	Levenshtein	edit	distance	<2),	and	one
of	the	street	suffix	values	is	missing.

The	score	is	calculated	by	summing	the	agreement	and	disagreement	weights	for	each
attribute	plus	the	missing	value	weight	for	the	street	suffix,	set	at	zero	in	this	example.	In
this	case,	the	total	score	for	the	match	is	135.	However,	for	this	system	the	match
threshold	score	has	been	set	at	150.	Therefore,	the	two	references	in	this	example	are	not
considered	a	match.

The	calculation	of	agreement	and	disagreement	weights	typically	follows	the	Fellegi-
Sunter	(1969)	model	as	discussed	in	the	previous	section	on	Attribute	Weight.	A	more
detailed	description	of	weight	calculation	is	covered	later	in	the	discussion	in	Chapter	8,
“The	Nuts	and	Bolts	of	Entity	Resolution”	and	the	Fellegi-Sunter	Model	is	discussed	in
Chapter	7,	“Theoretical	Foundations.”

Hybrid	Rules
Some	systems	implement	matching	rules	that	combine	some	characteristics	of	Boolean
and	scoring.	One	example	is	the	use	of	an	affinity	scoring	rule	to	supplement	a	set	of
Boolean	rules	(Kobayashi,	Nelson	&	Talburt,	2011;	Kobayashi	&	Talburt,	2013).	The
affinity	scoring	rule	serves	as	a	tie-breaker	when	a	reference	matches	more	than	one	EIS,
but	the	EIS	have	been	asserted	(flagged)	as	true	negatives	to	prevent	them	from	being
merged.

For	example,	two	EIS	are	associated	with	twins	in	school	that	have	similar	information
including	same	date-of-birth,	same	last	name,	same	parent’s	name,	and	same	address.	New
references	coming	into	the	system	often	match	both	EIS	by	the	base	set	of	Boolean	rules
because	they	have	such	similar	characteristics.	Ordinarily	when	a	reference	matches	two
EIS,	the	system	merges	the	two	EIS	due	to	transitive	close.	However,	in	the	case	where	the

EIS	are	known	to	be	for	different	students,	the	EIS	are	marked	as	“do	not	merge”	through
a	true	assertion	process	discussed	in	more	detail	in	Chapter	5.

The	problem	is	due	to	the	input	reference	referring	to	one	of	the	twins,	but	the	Boolean
rules	do	not	offer	any	help	as	to	which	one.	When	this	specific	situation	arises,	some
systems	then	invoke	a	more	granular	scoring	rule	to	determine	which	of	the	two	EIS	is	a
better	match	for	input	reference	and	should	be	merged	with	(Kobayashi	&	Talburt,	2014b).

Cluster-Level	Matching
Beyond	reference-to-reference	matching,	there	is	the	issue	of	how	to	match	a	reference	to
a	cluster	or	a	cluster	to	another	cluster.	In	general,	the	answer	is	the	cluster	is	“projected”
as	one	or	more	references	or	records,	and	the	projected	references	are	compared	using	a
pairwise	Boolean	or	scoring	rule.	The	two	most	common	projections	of	clusters	are
record-based	projection	and	attribute-based	projection.

A	more	detailed	description	of	cluster	projection	and	cluster-level	matching	is	covered
later	in	Chapter	8,	“The	Nuts	and	Bolts	of	Entity	Resolution.”

Implementing	the	Capture	Process
The	actual	implementation	of	the	capture	process	starts	by	deciding	on	an	initial	Boolean
or	scoring	match	rule.	In	the	case	of	a	Boolean,	it	can	be	relatively	simple	and	based	on
understanding	and	experience	using	the	data.	In	the	case	of	the	scoring	rule,	the	weights
can	be	best	guesses.	The	reason	is	because	rule	design	is	an	iterative	refinement	process
(Pullen,	Wang,	Wu,	&	Talburt,	2013b).

Starting	with	the	initial	rule	and	subsequent	refinements,	the	results	of	using	the	rule
must	be	assessed	using	either	the	truth	set	or	benchmark	methods	discussed	earlier	to	get
an	objective	measure	of	false	positive	and	false	negative	rates	(Syed	et	al.,	2012).	Based
on	an	analysis	of	these	errors,	the	rule	should	be	revised,	run	again,	and	assessed	again.
This	process	should	continue	until	acceptable	error	rates	are	achieved.	Once	these	levels
are	achieved,	the	residual	errors	can	be	addressed	through	a	manual	update	process	driven
by	the	review	indicators.	The	manual	update	process	is	discussed	in	more	detail	in	Chapter
5.

Concluding	Remarks
The	CSRUD	MDM	Life	Cycle	starts	with	the	capture	phase.	It	is	in	this	step	that	the
match	rules	are	iteratively	developed	and	refined	based	on	complete	assessment	of	the
reference	data	and	careful	measurement	of	entity	identity	integrity	attainment	at	each
iteration.	Regardless	of	whether	the	system	implements	Boolean,	scoring,	or	hybrid	rules,
ongoing	ER	assessment	and	analytics	is	critical.	The	investment	in	time	to	acquire	or	build
proper	ER	assessment	tools	will	be	repaid	many	times,	not	only	in	the	capture	phase,	but
also	for	monitoring	during	the	update	phase.

CHAPTER	4

www.allitebooks.com

http://www.allitebooks.org

Store	and	Share	–	Entity	Identity
Structures

Abstract
This	chapter	contains	a	discussion	of	the	different	approaches	for	storing	entity	identity	information	in	entity
identity	structures	(EIS)	and	the	most	common	architectures	used	in	dedicated	MDM	systems.

Keywords
Entity	identity	structures;	Identity	knowledge	base;	MDM
architectures

Entity	Identity	Information	Management
Strategies
A	characteristic	distinguishing	entity	identity	information	management	(EIIM)	from	entity
resolution	(ER)	is	the	persistence	of	entity	identity	information,	including	entity
identifiers,	from	process	to	process.	As	noted	in	Chapter	1	and	shown	in	Figure	1.2,	the
focus	of	basic	ER	or	record	linking	is	to	properly	classify	entity	references	into	clusters
where	all	references	in	the	same	cluster	are	equivalent,	i.e.	refer	to	the	same	real-world
entity,	and	are	not	equivalent	to	references	in	other	clusters.	The	focus	of	ER	is	on	the
correct	aggregation	of	references	into	clusters	and	the	avoidance	of	false	positive	and	false
negative	errors.

In	MDM	it	is	important	to	consistently	identify	(label)	each	master	data	entity	under
management	over	time.	This	requires	every	MDM	system	to	implement	a	strategy	for
storing	enough	entity	identity	information	so	that	the	same	master	data	object	can	be
recognized	and	labeled	with	the	same	identifier	over	time.	These	storage	structures	are
called	entity	identity	structures	(EIS).

Every	information	system	of	any	size	will	have	master	data.	Organizations	using	this
master	data	must	undertake	some	form	of	MDM,	either	implicitly	or	explicitly.	The	MDM
capability	and	maturity	of	organizations	varies	widely	from	ad	hoc,	manually	mediated
MDM	to	sophisticated	programs	with	dedicated	MDM	software	and	well-executed	master
data	governance.

Bring-Your-Own-Identifier	MDM
One	of	the	earliest	and	perhaps	still	the	most	prevalent	forms	of	MDM	for	party	entities	is
Bring-Your-Own-Identifier	(BYOI).	In	BYOI	it	is	the	party’s	responsibility	to	manage
their	own	identifier.	A	classic	example	is	a	company	payroll	system.	When	a	new
employee	is	hired,	a	master	employee	record	(EIS)	with	a	unique	employee	identifier	is
created	and	recorded	in	the	system,	typically	as	a	row	in	a	database	table.	At	the	time	it
becomes	the	employee’s	responsibility	to	provide	his	or	her	employee	identifier	when
conducting	any	employee-related	transactions.	For	example,	the	employees	may	be
required	to	clock-in	and	clock-out	with	a	time	card	bearing	their	employee	number	in
order	to	be	properly	paid.

Many	colleges	and	universities	use	the	same	BYOI	strategy	by	assigning	each	student	a
unique	identifier	upon	admission.	From	that	point	on,	all	transactions	with	the	school’s
systems,	such	as	course	registration,	computer	access,	and	meal	plans,	require	the	student
to	present	his	or	her	school-assigned	identifier.

BYOI	MDM	is	most	effective	in	a	closed	system	where	entry	and	exit	points	from	the
system	are	well-controlled	and	the	party’s	engagement	occurs	over	a	relatively	long	period
of	time.	Hopefully	students	and	employees	will	be	engaged	with	the	organization	over	a
period	of	months	and	years.	Although	BYOI	is	not	as	practical	for	nonparty	entities	such
as	product	entities,	which	can	less	reliably	self-identify,	it	is	not	impossible.	Barcode

scanning	and	radio	frequency	tag	identification	(RFID)	can	allow	nonparty	entities	to	self-
identify	in	certain	situations.

It	is	interesting	to	note	somewhat	of	a	return	to	BYOI	in	recent	years.	This	is	reflected
in	the	widespread	use	of	customer	loyalty	programs	where	customers	garner	rewards	for
self-identifying	with	a	card	or	other	token.	For	example,	most	large	grocery	chains,
clothing	stores,	airlines,	and	many	other	companies	have	extensive	customer	loyalty
programs	primarily	so	that	customers	will	self-identity,	thus	simplifying	CDI,	the	CRM
version	of	MDM.

Once-and-Done	MDM
In	a	more	open	system,	such	as	a	hospital	or	a	small	business,	where	party	engagements
are	more	frequent,	a	Once-and-Done	(O&D)	type	of	MDM	is	often	employed.	Here	the
party	entities	are	not	expected	to	know	their	own	identifier.	Instead,	clerks	or	other	agents
of	the	organization	make	a	decision	at	the	point	of	entry	as	to	whether	the	party	already
has	an	assigned	identifier	(is	already	under	management)	or	whether	a	new	identifier	and
identity	record	should	be	created.

This	decision	authority	is	often	distributed	across	many	different	agents	staffing
different	points	of	engagement	with	the	parties.	The	agent’s	decision	is	often	aided	by
some	type	of	“look-up”	system	that	allows	the	agent	to	search	the	central	registry	of
entities	by	identity	attributes	such	as	name,	address,	or	date-of-birth.	Using	whatever	tools
are	at	hand,	the	agent	makes	a	one-time	decision	on	an	identifier	for	the	party	at	the	point
of	engagement.	This	identifier,	either	selected	by	the	agent	from	previously	assigned
identifiers	or	a	newly	created	one,	goes	into	the	system	as	the	identifier	of	record	for	all
further	processing	of	information	related	to	the	engagement.

Although	some	error	correction	may	be	done	manually	if	discovered	at	a	later	point,
O&D	MDM	does	not	use	automated	ER	systems	to	do	system-wide	reconciliations	of
identifiers	used	by	the	system.	The	accuracy	of	O&D	MDM	depends	heavily	on	the
training	and	diligence	of	the	agents.	Errors	in	O&D	MDM	will	accumulate	over	time.
False	positive	and	negative	errors	often	accumulate	to	the	point	that	a	large-scale
intervention	is	required	to	clean	up	the	system.	These	interventions	often	result	in	a	large
number	of	entity	identifier	changes,	a	situation	which	works	against	the	goal	of
maintaining	persistent	identifiers.

Dedicated	MDM	Systems
The	movement	to	develop	dedicated	MDM	software	systems	and	master	data	governance
began	in	earnest	in	the	1990s	with	the	introduction	of	customer	relationship	management
(CRM).	Companies	began	to	recognize	customer	information	as	master	data	and	wanted	to
manage	it	more	effectively.	However,	for	many	types	of	businesses,	it	was	impractical	to
require	customers	to	self-identify	and,	for	many	engagements,	an	agent	was	not	always
present	to	select	an	identifier.	Hence,	neither	the	BYOI	nor	the	O&D	model	for	MDM
would	be	effective.	Out	of	this	dilemma	was	born	a	new	kind	of	MDM	called	customer
data	integration	(CDI).	The	application	of	ER	to	build	customer	recognition	systems	is	the
precursor	of	EIIM	and	MDM	as	we	know	them	today	(Dyché	&	Levy,	2006).

The	Survivor	Record	Strategy
The	most	common	EIIM	strategy	is	simply	to	add	one	additional	step	to	the	ER	merge-
purge	process	that	selects	a	single	reference	from	each	cluster	to	represent	the	entity.	In
this	case	the	EIS	is	essentially	the	structure	of	the	reference.	The	selected	reference	is
called	the	survivor	record	because	the	other	references	are	discarded	after	the	single
reference	has	been	selected.

The	survivor	record	typically	has	two	versions,	a	“best	record”	survivor	or	an
“exemplar	record”	survivor.	Figure	4.1	shows	an	example	of	these	two	versions	of	the
survivor	record	strategy.

In	the	best	record	version	of	the	survivor	strategy,	user-defined	rules	are	designed	to
select	one	reference	from	the	cluster	that	is	considered	the	best	representative.	What	is
considered	a	best	reference	will	vary	by	application.	In	the	example	in	Figure	4.1,	the
record	R3	was	selected	because	it	has	the	most	complete	name	(a	full	middle	name	instead
of	an	initial).	The	problem	with	selecting	the	best	record	is	that	not	all	the	most	desirable
features	for	a	given	application	are	always	found	in	one	reference.	As	in	this	example,
even	though	“Liz”	is	the	predominant	(most	frequent)	first	name	value,	the	longer	version
“Elizabeth”	might	be	preferred.	In	addition,	the	reference	with	the	most	complete	name
has	the	least	frequently	occurring	address.

FIGURE	4.1 	Best	and	exemplar	versions	of	the	survivor	record	strategy.

An	alternate	version	of	the	survivor	record	strategy	is	to	create	an	exemplar	record.	In
this	form	the	user	defines	a	set	of	rules	that	create	a	single	reference	by	assembling	what

are	considered	to	be	the	best	features	from	various	references	in	the	cluster.	In	the	example
given	in	Figure	4.1,	the	first	name	“Elizabeth”	was	selected	because	it	is	a	full	name	rather
than	a	nickname.	The	middle	name	“Ann”	was	selected	again	because	it	is	the	most
complete.	The	last	name	“Doe”	was	selected	because	it	is	the	most	predominant	as	is	the
address	“123	Oak	St.”

The	rules	for	both	best	and	exemplar	record	strategies	will	vary.	For	example,	it	could
be	argued	the	value	selected	for	the	exemplar	should	always	be	based	on	frequency	of
occurrence	rather	than	completeness.	In	any	case,	the	final	choice	should	be	based	on	what
gives	the	most	accurate	ER	results.

Attribute-Based	and	Record-Based	EIS
The	problem	with	the	survivor	record	strategy	for	EIIM	is	due	to	useful	information	being
lost.	As	in	the	example	shown	in	Figure	4.1,	the	customer	has	two	different	addresses	and
two	different	last	names,	but	only	one	can	be	carried	forward	into	the	survivor	record.	To
solve	this	problem	more	elaborate	EIS	are	required	to	go	beyond	the	simple	survivor
record	strategy.	Sørensen	(2012)	calls	this	“going	beyond	true	positives	in	deduplication.”
These	generally	fall	into	two	categories:	attributed-based	EIS	and	record-based	EIS.

In	an	attribute-based	EIS,	the	goal	is	to	preserve	the	variety	of	values	occurring	for	each
identity	attribute.	In	its	simplest	form,	the	EIS	maintains	a	list	of	unique	values	for	each
identity	attribute.	Figure	4.2	illustrates	the	principle	of	the	attribute-based	EIS.

The	attribute-based	EIS	is	the	extreme	of	the	exemplar	record	because	it	preserves
every	combination	of	values.	Because	two	choices	of	values	exist	for	each	of	the	four
attributes,	this	structure	provides	24	=	16	match	combinations.	One	issue	with	the
attribute-based	EIS	is	that	it	can	produce	combinations	of	values	possibly	invalid	for	the
entity.	For	example,	it	could	produce	a	combination	of	a	name	at	an	address	even	though
in	reality	the	name	was	never	associated	with	the	address.	Whether	this	presents	a	problem
for	the	ER	process	will	depend	upon	the	nature	of	the	data.	The	risk	it	represents	is
another	reason	why	ER	analytics	are	important	to	obtaining	high-quality	MDM	results.

FIGURE	4.2 	Attribute-based	EIS	strategy.

FIGURE	4.3 	Record-based	EIS	strategy.

FIGURE	4.4 	Record-based	EIS	with	duplicate	record	filter.

In	a	record-based	EIS,	the	goal	is	to	preserve	the	references	comprising	each	entity.	As
the	name	implies,	a	record-based	EIS	preserves	not	only	reference	values,	but	also	the
record	structure	of	the	references.	Figure	4.3	illustrates	the	principle	of	the	record-based
EIS	using	the	same	cluster	as	shown	previously	in	Figure	4.1.

The	record-based	EIS	can	be	thought	of	as	the	extreme	of	the	best	record	version	of	the
survivor	record	strategy	because	every	record	is	kept	intact.	One	issue	with	the	record-
based	EIS	is	it	often	carries	a	lot	of	redundant	information.	For	example,	in	Figure	4.3,
only	two	different	address	values	exist	across	all	five	of	the	references.

Figure	4.4	shows	one	method	for	handling	record	redundancy	called	the	duplicate
record	filter.

With	the	duplicate	record	filter,	only	one	copy	of	each	unique	reference	is	kept	with
either	a	counter	or	list	of	record	identifiers	to	show	its	multiplicity.	This	can	save	storage
in	applications	where	the	references	with	the	same	information	are	processed	frequently,
and	it	would	be	burdensome	to	keep	a	complete	copy	of	every	duplicate	reference.

Yet	another	approach	is	the	hybrid	between	the	record-based	EIS	and	the	exemplar
version	of	the	survivor	record	strategy.	This	is	illustrated	in	Figure	4.5.

The	EIS	shown	in	Figure	4.5	has	an	exemplar	record	built	from	the	predominant	values
for	each	of	the	identity	attributes	and	also	a	copy	of	each	reference.	However,	for	those
identity	attributes	where	the	value	in	the	reference	is	the	same	as	in	the	exemplar	record,
an	asterisk	(∗)	is	used	instead	of	the	actual	value.	Only	when	the	attribute	value	in	the
reference	differs	from	the	corresponding	value	in	the	exemplar	record	is	the	actual	value
of	the	attribute	used	in	the	reference.

FIGURE	4.5 	Record-based	EIS	with	exemplar	record.

FIGURE	4.6 	Record-based	EIS	with	record	filter	and	exemplar	record.

As	the	structures	grow	more	complex,	to	save	storage	there	is	a	corresponding	increase
in	time	to	manipulate	the	structures.	For	example,	when	a	new	reference	is	added	to	the
EIS	shown	in	Figure	4.5,	the	values	in	the	new	reference	may	cause	a	change	in	the
predominant	value	for	one	or	more	attributes.	If	this	occurs,	then	the	exemplar	and	the
references	with	that	value	must	be	adjusted	appropriately.

Finally,	Figure	4.6	shows	a	record-based	EIS	using	both	the	record	filter	and	the
exemplar	record.

ER	Algorithms	and	EIS
Before	leaving	the	topic	of	EIS	it	is	important	to	note	that	the	choice	of	EIS	must	be	taken
into	consideration	with	other	components	of	the	MDM	system.	In	particular,	the	EIS	must
be	selected	so	that	it	will	properly	support	the	way	in	which	match	rules	are	applied	to
EIS,	and	support	the	ER	algorithm	that	will	be	used	for	systematically	comparing	EIS.
The	interaction	of	EIS,	matching	rules,	and	ER	algorithms	is	discussed	in	more	detail	in
Chapter	8.

The	Identity	Knowledge	Base
Regardless	of	the	EIS	strategy,	the	collection	of	all	EIS	comprises	the	identity	knowledge
base	(IKB)	that	is	the	primary	repository	of	identity	information	and	provides	a	central
point	of	management.	The	IKB	is	sometimes	referred	to	as	the	central	registry	or	the
system	hub.	The	EIIM	strategies	and	their	associated	EIS,	as	described	in	the	introductory
portion	of	this	chapter,	represent	conceptual	models.	The	actual	implementation	of	these
models	in	an	information	system	will	vary	widely	depending	upon	the	characteristics	of
the	actual	MDM	application	including	its	size,	the	type	of	source	data,	the	volatility	of	the
information,	and	timeliness	of	access.

For	example,	an	MDM	system	using	survivor	record	EIS	might	reside	on	a	single
database	server	in	which	the	IKB	is	a	single	master	table	of	entities.	The	updates	and
access	to	the	information	in	the	master	table	may	simply	be	handled	with	SQL	statements
and	queries.	On	the	other	hand,	expansive	interactive	applications	using	record-based	EIS
typically	reside	on	large-scale	distributed	processor	architectures.	In	these	systems,	the
EIS	are	often	virtual	structures	in	which	the	references	reside	in	different	tables	or
distributed	storage	folders	joined	on	demand	in	order	to	create	a	complete	EIS.

Storing	versus	Sharing
For	many	large-scale	MDM	systems,	the	storing	and	maintenance	of	the	IKB	and	access
to	the	IKB	are	distinct	operations	and	sometimes	use	different	copies	of	the	master	data
(Kobayashi	&	Talburt,	2014a).	Typically,	updates	happen	in	large	batch	operations	in	a
database	or	distributed	data	architecture	often	not	well-suited	for	interactive	or	on-demand
batch	access.	Systems	such	as	these	typically	utilize	two	concurrent	operations:	a
background	operation	in	which	the	information	is	updated,	and	a	foreground	operation	that
provides	continuous,	and	often	real-time,	access	to	the	information.

The	illustration	in	Figure	4.7	shows	the	relation	between	these	processes.	In	the
background,	periodic	batch	updates	are	made	to	IKB	stored	in	a	very	large	database
system	(VLDBS).	Batch	access	may	be	provided	in	the	background	as	shown	here,	or	it
may	be	a	service	provided	in	the	foreground	along	with	interactive	access.	The	arrow
crossing	the	boundary	is	to	indicate	a	periodic	transfer	of	identity	information	from	the
VLDB	system	to	refresh	the	information	in	the	distributed	environment.	In	most	systems,
the	foreground	process	is	a	read-only	system	not	allowing	updates	to	flow	back	to	the
identity	knowledge	base.

FIGURE	4.7 	MDM	system	using	background	and	foreground	operations.

In	other	cases,	the	two	operations	operate	within	the	same	system,	and	rather	than
operating	concurrently,	they	operate	alternately,	i.e.	time	share.	For	example,	the
background	updates	may	occur	during	an	overnight	operation	and	then	give	way	to
interactive	operations	during	the	business	day.

MDM	Architectures
Storing	and	sharing	strategies	are	closely	related	to	the	style	of	architecture	used	to
implement	MDM	systems.	MDM	architectures	can	be	described	by	the	relationships
among	three	principal	MDM	components.	These	components	are	the	IKB,	“source
records,”	and	“client	systems.”	The	IKB	is	the	central	repository	or	hub	of	the	MDM
system	containing	a	single	representation	of	each	master	entity	under	management.	A
source	record	is	any	record	in	the	information	system	specifically	referencing	one	of	the
master	entities.	Because	these	source	records	usually	reside	in	various	application-specific
subsystems	of	the	enterprise	system,	source	records	comprise	two	types	of	attributes:
identity	attributes	and	application-specific	attributes.	If	the	identifiers	for	the	entities
referenced	by	the	source	records	in	the	application	specific	subsystem	are	managed	by	the
IKB,	then	these	subsystems	are	the	MDM	system’s	clients.

MDM	architectures	can	be	classified	many	ways.	Berson	and	Dubov	(2011)	have
classified	MDM	architectures	into	four	categories	based	on	two	factors.	The	first	factor	is
how	the	attributes	in	the	source	records	are	partitioned	between	the	IKB	and	the	client
systems.	The	second	factor	is	the	level	of	interaction	and	control	the	IKB	exercises	over
its	client	systems.	They	define	four	types	of	MDM	architectures:	external	reference	style,
registry	style,	reconciliation	engine,	and	transaction	hub.

External	Reference	Architecture
In	the	external	reference	architecture,	the	IKB	is	a	large	cross-reference	table	connecting
equivalent	references	located	in	the	various	client	systems.	The	EIS	in	the	IKB	are	entirely
virtual,	only	containing	pointers	to	the	references	to	a	particular	entity.	None	of	the	actual
entity	identity	information	for	a	particular	entity	is	stored	in	the	IKB.

Both	the	identity	attribute	values	and	the	application-specific	attribute	values	of	the
source	record	reside	in	the	client	system	as	shown	in	Figure	4.8.	The	advantage	of	external
reference	architecture	is	that	changes	to	an	entity	identifier	taking	place	in	one	system	can
be	more	easily	propagated	to	all	other	client	systems	where	the	same	entity	is	referenced.

FIGURE	4.8 	External	reference	schematic.

The	external	reference	architecture	works	best	when	the	governance	policy	allows	for
distributed	authority	to	make	master	data	changes	in	several	different	client	systems.	It
does	not	work	as	well	in	systems	where	a	large	number	of	new	source	records	must	be
ingested	and	identified	on	a	regular	basis.	In	systems	implementing	external	reference
architecture,	the	identity	information	needed	for	matching	must	be	marshaled	on	demand
from	the	client	systems	where	it	resides.

Registry	Architecture
A	more	common	architecture	for	MDM	applications	ingesting	and	managing	large
volumes	of	input	data	is	registry	architecture.	In	registry	architecture	each	EIS	in	the	IKB
contains	a	collection	of	identity	attribute	values	representing	the	entity	under	management.
Each	EIS	has	an	identifier	serving	as	the	master	identifier	for	the	entity	across	all	client
systems.	The	amount	of	identity	information	retained	in	the	EIS	will	vary	from	system	to
system	and	on	the	choice	of	EIS	strategy	as	discussed	earlier,	e.g.	survivor	record,
attribute-based,	record-based,	etc.

In	registry	architecture,	each	reference	is	divided	into	two	parts,	as	shown	in	Figure	4.9.
The	value	for	the	identity	attributes	are	kept	in	the	IKB.	The	IKB	must	retain	sufficient
identity	information	so	that	when	a	new	source	record	is	introduced,	the	system	can
correctly	determine	if	it	references	a	previously	registered	entity	already	having
established	entity	identifiers,	or	if	it	references	a	new	entity	which	must	be	registered	in
the	IKB	with	a	new	entity	identifier.

FIGURE	4.9 	Registry	architecture	schema.

A	third	possibility	is	if	a	new	source	record	carries	additional	identity	information
providing	evidence	that	two	EIS	initially	thought	to	represent	distinct	entities	are	actually
references	to	the	same	entity.	For	example,	a	source	record	having	both	a	current	and
previous	address	for	a	customer	connects	an	EIS	created	for	that	customer	at	the	previous
address,	and	another	EIS	created	for	the	same	customer	at	the	current	address.	As	a	result,
one	of	the	entity	identifiers	is	retired,	usually	the	most	recently	assigned,	and	the	identity
information	in	the	two	EIS	are	merged.

In	registry	architecture,	the	values	for	client-specific	attributes	are	retained	in	the	source
records	residing	in	the	client	systems.	The	two	halves	of	the	source	record	–	the	identity
values	and	the	client-specific	values	–	are	linked	together	by	the	entity	identifier.	The
shared	link	identifier	also	does	away	with	the	need	to	store	the	identity	values	of	the
reference	in	the	client	system.	The	replacement	of	entity	identity	values	with	a	unique
identifier	for	the	entity	is	called	semantic	encoding.	Semantic	encoding	is	one	of	the
fundamental	principles	of	the	ISO	8000-110:2009	Standard	for	Master	Data	Quality
discussed	in	Chapter	11.

In	registry	architecture,	the	IKB	and	the	systems	are	loosely	coupled.	It	is	usually	the
responsibility	of	each	client	system	to	synchronize	its	entity	identifiers	with	the	identifiers
in	the	registry	through	periodic	batch	or	interactive	inquiries	to	the	registry.	The	registry
architecture	is	typical	for	most	CDI	systems	primarily	providing	an	identity	management
service,	i.e.	appends	link	identifiers	to	source	records	on	demand.

Registry	architecture	is	sometimes	used	to	provide	anonymous	entity	resolution	to
several	external	clients	in	a	trusted	broker	configuration	(Talburt,	Morgan,	Talley,	&
Archer,	2005).	Trusted	broker	architecture	can	be	useful	when	each	external	client	holds
some	information	for	entities	also	known	to	other	clients,	but	also	manages	information
for	some	entities	unique	to	the	client	organization.	The	clients	want	to	collaborate	and
share	information	about	common	entities,	but	do	not	want	their	exclusive	entity
information	shared	or	exposed	to	other	clients.	This	situation	often	arises	in	law
enforcement,	healthcare,	and	information	sharing	among	government	agencies.

The	name	comes	from	the	fact	that	all	of	the	clients	must	trust	one	neutral	organization

to	host	the	hub	of	the	registry.	In	addition,	even	though	the	hub	internally	maintains	only
one	set	of	entity	identifiers,	it	issues	a	different	set	of	entity	identifiers	to	each	client.	This
means	even	though	two	different	clients	hold	information	about	the	same	entity,	the	hub
will	give	each	client	a	different	identifier	for	that	same	entity.	The	hub	mediates	the
translation	between	client	identifiers.	In	this	way,	the	trusted	broker	also	incorporates
some	features	of	the	external	reference	architecture.

If	a	Client	A	wants	to	know	whether	Client	B	is	holding	information	about	an	entity	of
interest,	Client	A	sends	an	inquiry	to	the	hub	organization.	The	hub	organization	can	then
translate	the	Client	A	identifier	into	its	internal	identifier	and	determine	if	Client	B	has
information	on	the	entity.	The	hub	organization	can	also	mediate	policies	or	regulations	on
access.	If,	according	to	policy,	Client	A’s	inquiry	is	valid,	then	the	hub	can	send	the
information	from	Client	B	to	Client	A	using	the	entity	identifier	of	Client	A.

Reconciliation	Engine
One	extension	of	the	registry	architecture	is	the	reconciliation	engine.	A	reconciliation
engine	essentially	has	the	same	partitioning	of	identity	and	application	attributes	between
the	IKB	and	the	client	systems.	However,	a	reconciliation	engine	has	additional
functionality	that	synchronizes	changes	in	entity	identifiers	with	its	client	systems.	Instead
of	the	pull	model	where	client	systems	must	periodically	send	source	records	to	the	IKB	to
obtain	fresh	entity	identifiers,	the	reconciliation	engine,	using	the	push	model,	notifies	the
client	systems	when	changes	are	made	(Kobayashi,	Nelson,	&	Talburt,	2011).

The	reconciliation	engine	is	essentially	a	hybrid	architecture	made	by	combining
external	reference	and	registry	architectures.	In	order	to	actively	maintain	synchronization
of	entity	identifiers,	a	reconciliation	engine	must	maintain	pointers	to	each	source	record
in	each	client	system	by	entity	identifier	as	in	the	external	reference	architecture	and
illustrated	in	Figure	4.8.	At	the	same	time,	the	reconciliation	engine	maintains	the
separation	of	identity	and	application-specific	attribute	values	as	in	the	registry
architecture	illustrated	in	Figure	4.9.

The	reconciliation	engine	has	the	obvious	advantage	of	keeping	client	systems
synchronized,	so	client	systems	always	have	the	most	recent	entity	identifier.	The
disadvantage	is	the	additional	layer	of	code	required	to	maintain	synchronization,	which
adds	more	complexity	to	the	reconciliation	engine.

Transaction	Hub
The	transaction	hub	architecture	is	also	a	hybrid.	It	attempts	to	solve	both	the	attribute
partitioning	problem	and	the	synchronization	problem	at	the	same	time.	In	this	case,	the
hybridization	is	between	the	IKB	and	its	client	systems.	In	a	transaction	hub,	the	IKB
stores	the	complete	source	record,	both	identity	attributes,	and	application-specific
attributes.

By	incorporating	the	source	records	into	the	IKB,	the	transaction	hub	is	simultaneously
an	MDM	system	and	an	application	system.	The	transaction	hub	can	be	a	good	solution

for	situations	where	the	system	must	process	large	volumes	of	new	source	references
while	at	the	same	time	servicing	high	volumes	of	inquiries	for	application-specific
information	because	the	application	information	is	immediately	at	hand.	There	is	no	need
to	fetch	the	application	information	from	a	client	system	in	order	to	service	the	inquiry.
However,	this	is	only	feasible	if	only	one	or	two	applications	are	integrated	with	the	hub;
otherwise	the	maintenance	of	the	system	becomes	too	complex	to	manage.	Many	financial
systems	incorporate	the	transaction	hub	architecture	for	MDM.

For	example,	on	a	daily	basis	a	large	credit	reporting	agency	must	process	millions	of
updates	to	consumer	account	information	daily	received	from	a	wide	range	of	credit
providers.	At	the	same	time	the	system	must	provide	real-time	responses	to	hundreds	of
thousands	of	online	inquiries	for	consumer	credit	information	from	lenders.	In	order	to
meet	expected	levels	of	performance,	these	kinds	of	systems	often	use	a	transaction	hub
architecture	to	manage	both	identity	and	application-specific	information	within	the	same
system.

Concluding	Remarks
EIIM	is	a	key	component	of	MDM	because	it	acts	as	the	“memory”	for	the	entities	under
management.	The	memory	elements	are	the	EIS	storing	the	identity	information	for	these
entities.	The	EIIM	process	tries	to	create	EIS	to	represent	each	of	the	entities	under
management	in	such	a	way	that	each	entity	is	represented	by	one	and	only	one	EIS,	and
different	entities	are	represented	by	different	EIS.	This	is	the	goal	of	entity	identity
integrity.	Several	metrics	for	measuring	goal	achievement	include	false	positive	and	false
negative	rates,	accuracy,	recall,	precision,	and	the	T-W	Index.

The	second	goal	of	EIIM	is	to	maintain	persistent	entity	identifiers,	i.e.	the	EIS
representing	an	entity	under	management	should	always	have	the	same	identifier.
Assigning	and	maintaining	persistent	identifiers	is	not	possible	without	implementing
some	type	of	EIIM	strategy	that	creates	and	saves	identity	information	in	an	EIS.	The
most	popular	EIIM	strategies	are	survivor	record,	exemplar	record,	attribute-based,	or
record-based	EIS.

There	are	several	styles	of	MDM	architecture	to	choose	from	including	external
reference,	registry,	reconciliation	engine,	and	transaction	hub.	The	selection	of	an
architecture	should	be	carefully	considered	and	depends	on	a	number	of	factors.	These
factors	include	the	volume	of	identities	to	be	managed,	the	degree	of	integration	between
the	MDM	and	the	client	systems,	the	volatility	of	the	entity	identity,	and	the	requirements
for	time-to-update	and	inquiry	response	time.

CHAPTER	5

Update	and	Dispose	Phases	–	Ongoing
Data	Stewardship

Abstract
This	chapter	explores	the	issues	around	maintaining	entity	identity	integrity	over	time	as	entity	identity	information
changes.	It	explains	why	both	automated	and	manual	update	processes	are	critical	for	successful	ER	and	MDM
processes.	It	also	covers	the	management	and	retirement	of	entity	identifiers.

Keywords
Data	Stewardship;	Data	Governance;	Clerical	Review
Indicators;	Correction	Assertions;	Confirmation	Assertions

Data	Stewardship
Data	stewardship	emerged	as	a	concept	along	with	data	governance.	Both	data
stewardship	and	data	governance	underpin	the	growing	trend	to	recognize	information	as
an	enterprise	asset.	Whereas	data	governance	speaks	to	elevating	data	management
decisions	to	an	enterprise	business	function,	data	stewardship	speaks	more	to	the	cultural
issue	of	caring	for	data	on	behalf	of	the	enterprise.	Data	stewardship	is	antithetical	to	the
concept	of	data	ownership,	at	least	to	ownership	understood	as	ownership	conveying	total
and	complete	control.

Historically	the	root	cause	of	many	information	quality	issues	can	be	traced	to	the	fact
that	certain	individuals	or	departments	believed	the	data	in	their	care	actually	belonged	to
them	–	and	only	to	them.	From	this	ownership-as-control	perspective	they	often	felt
empowered	to	unilaterally	make	changes	to	the	data	or	its	underlying	data	architecture
solely	for	their	own	benefit	without	consulting	or	even	notifying	other	stakeholders.	At	the
same	time,	these	other	stakeholders	often	had	dependencies	on	the	data	in	its	unaltered
form.	The	result	was	critical	business	processes	were	broken,	often	with	dire	results.	The
fact	that	such	changes	could	happen	unexpectedly	then	prompted	organizational	units	to
make	duplicate	copies	of	the	data	in	order	to	assure	it	would	not	be	altered	by	others.
These	data	silos	then	led	to	the	problem	of	redundant	and	unsynchronized	data	sets	across
the	enterprise,	one	of	the	problems	MDM	seeks	to	address.

Still,	many	authors	continue	to	refer	to	the	ownership	of	data	when	they	really	mean
accountability	for	data.	In	the	domain	of	data	governance,	persons	responsible	for	data	are
the	ones	who	carry	out	the	data	management	tasks,	whereas	persons	accountable	for	data
are	charged	with	making	sure	that	the	proper	data	management	tasks	are	assigned	and
completed.

The	update	phase	of	the	CSRUD	life	cycle	represents	proper	stewardship	of	master
data.	The	update	phase	begins	immediately	after	the	initial	capture	phase.	Although	taking
the	time	to	lay	the	proper	foundation	in	the	capture	phase	is	critical	to	future	success,
overall	it	occupies	a	relatively	short	interval	of	time	in	the	total	life	of	an	MDM	system.
The	long-term	success	of	an	MDM	system	will	depend	upon	careful	attention	to	master
data	stewardship	and	the	ongoing	care	and	management	of	the	entity	identity	information.

The	need	to	continually	update	identity	information	comes	from	two	primary	sources.
The	first	is	to	keep	in	synchronization	with	the	real-world	entities	as	they	change	over
time.	Customers	change	addresses,	new	products	are	added,	and	obsolete	products	are
removed.	The	rate	of	change	will	depend	upon	the	type	of	entities	under	management	and
the	application	requirements,	but	without	question,	identity	information	will	change.

For	large	systems,	updates	related	to	change	in	entity	identity	information	flow	through
the	system	in	a	manner	similar	to	the	capture	process.	Just	as	in	the	capture	process,
information	needed	to	update	the	identity	knowledge	base	comes	in	the	form	of	entity
references.	However,	in	the	case	of	the	update	process,	the	input	references	must	not	only
be	compared	to	each	other,	but	also	to	the	information	in	the	EIS	that	has	already	been
built.

The	second	reason	is	that	every	MDM	system	should	implement	two	distinct	types	of
update,	automated	and	manual.	The	automated	update	process	is	one	governed	by	the
matching	rule	that	was	developed	and	refined	during	the	initial	capture	phase.	The	manual
update	process	introduces	the	human-in-the-loop	to	the	MDM	process.	In	the	manual
update	process	the	matching	rule	is	replaced	with	expert	knowledge.	Unfortunately,	many
organizations	do	not	recognize	and	implement	the	manual	update	and	in	not	doing	so	lose
the	ability	to	implement	effective	continuous	improvement	in	their	MDM	system.

The	Automated	Update	Process
Figure	5.1	shows	the	data	flow	in	the	automated	update	process.	It	closely	resembles	the
capture	process	shown	in	Figure	3.1.	The	only	essential	difference	is	the	current	identity
knowledge	base	(IKB)	is	an	input	into	the	ER	process	along	with	the	new	entity
references.

New	entity	references	are	first	staged	for	data	cleansing	and	standardization.	Prior	to	the
new	references	entering	the	ER	process,	the	EIS	from	the	current	IKB	are	loaded	into	the
system.	Both	the	new	references	and	previous	EIS	participate	in	the	ER	matching	process
to	build	the	new	IKB.

The	update	process	is	driven	by	resolving	the	new	input	references.	As	each	input
reference	is	processed,	one	of	three	things	will	happen.

1.	The	input	reference	fails	to	match	any	of	the	existing	EIS	up	to	that	point	in	the	process.
This	includes	the	initial	set	of	EIS	from	the	current	IKB	along	with	any	newly	formed	EIS
from	processing	previous	input	references.	If	no	matches	are	found	for	the	input	reference,
the	system	creates	a	new	EIS	comprising	only	that	reference.

2.	The	input	reference	matches	exactly	one	of	the	EIS	in	the	system.	In	this	case,	the
reference	is	integrated	into	the	EIS	it	matches.

3.	The	input	reference	matches	two	or	more	EIS	in	the	system.	By	the	transitive	closure
principle	of	reference	equivalence	(more	on	this	in	Chapter	8),	the	reference	and	all	of	the
EIS	the	reference	matches	are	merged	into	a	single	EIS.	References	causing	EIS	to	merge
are	sometimes	called	glue	records.

FIGURE	5.1 	Update	phase	(automated).

From	the	perspective	of	the	output	IKB,	each	EIS	in	the	updated	IKB	is	either

•	An	EIS	already	in	the	current	IKB	and	unaffected	by	the	update	process,	i.e.	no	new
references	matched	the	EIS

•	A	new	EIS	created	entirely	from	one	or	more	new	input	references

•	An	EIS	already	in	the	current	IKB,	but	was	updated	by	matching	one	or	more	of	the	new
input	references.	In	addition	to	being	updated	by	new	input	references,	the	EIS	may
have	absorbed	one	or	more	of	the	original	EIS	if	a	new	input	reference	caused	them	to
merge,	i.e.	acted	as	a	glue	record.

At	the	end	of	every	update,	the	system	should	generate	statistics	for	all	of	these
occurrences.

Clerical	Review	Indicators
A	component	common	to	both	the	capture	and	automated	update	process	are	clerical
review	indicators	as	shown	in	both	Figures	3.1	and	5.1.	Clerical	review	indicators	are
simply	warnings	produced	by	the	ER	process	that	a	linking	error	may	have	occurred.
These	indicators	are	produced	by	code	detecting	particular	events	or	conditions	correlated
with	linking	errors.

The	concept	of	review	indicators	has	been	a	part	of	entity	resolution	and	record	linking
since	its	beginning	with	the	Fellegi-Sunter	Theory	of	Record	Linking	(Fellegi	&	Sunter,
1969).	An	essential	element	of	their	proof	was	that,	in	order	for	a	match	rule	to	meet	a
given	constraint	on	the	maximum	allowable	false	positive	and	false	negative	rates,	some
minimal	number	of	reference	pairs	would	have	to	be	manually	reviewed	by	a	data	expert
who	could	correctly	classify	them	as	being	equivalent	or	not	equivalent.	In	the	case	of	the
Fellegi-Sunter	model,	the	review	indication	occurs	when	a	pair	of	references	satisfied	a
particular	agreement	pattern.	For	example,	in	matching	student	enrollment	records,	the
pattern	of	disagreement	on	first	name,	but	agreement	of	last	name,	date-of-birth,	and
house	number	might	fall	into	this	review	category.	The	pattern	strongly	suggests	the
records	may	be	referencing	the	same	student	but	also	the	possibility	the	records	satisfying
this	match	pattern	are	twin	siblings.	Sometimes	these	are	called	soft	rules	or	weak	rules.
Instead	of	signaling	a	match,	the	firing	of	these	rules	signals	the	need	for	clerical	review.

Similar	to	the	conundrum	posed	by	ER	assessment	one	might	ask,	if	the	system	knows
that	an	error	condition	leading	to	a	linking	error	has	occurred,	why	not	program	the	system
to	avoid	the	condition	and	avoid	the	error?	Again	the	answer	lies	with	probabilities.	A
review	indication	is	produced	by	the	system	when	the	condition	or	event	is	associated	with
a	higher	probability	a	linking	error	has	occurred,	not	a	certainty.	Review	indicators	are	not
perfect.	A	review	indication	may	be	a	false	alarm,	and	conversely,	linking	errors	may
occur	that	do	not	produce	a	review	indicator.

Review	indicators	also	play	a	critical	role	in	continuous	improvement.	If	a	reviewer
determines	the	system	made	an	error,	then	correcting	these	errors	will	clearly	improve	the
accuracy	of	the	IKB.	But	more	so,	a	careful	root	cause	analysis	of	errors	over	time	can
inform	refinements	and	improvements	to	the	matching	logic	preventing	these	errors	from

happening.	Clerical	review	indicators	together	with	ER	outcome	analysis	and	root	cause
analysis	form	a	continuous	improvement	cycle	for	ER	and	MDM.

Again,	it	is	hard	to	overemphasize	the	need	for	these	components	to	be	in	place	in	order
to	have	a	highly	effective	and	efficient	MDM	system.	While	many	users	rely	primarily	on
initial	quality	assurance	validation	processes	applied	to	the	reference	sources,	the	ones
most	often	neglected	are

•	Systematic	evaluation	of	ER	accuracy	using	truth	sets,	benchmarking,	and	problem	sets.

•	Review	indicator	logic	signaling	possible	errors	in	EIS	caused	by	matching.	This	is
essentially	a	second	level	of	quality	assurance	examining	the	coherence	of	references
vis-à-vis	other	references	for	the	same	entity	(same	EIS),	as	opposed	to	the	validation	of
each	source	examining	the	coherence	of	references	vis-à-vis	other	references	from	the
same	source.

•	Actual	human	review	of	each	exception	signaled	by	a	review	indicator	resulting	in	either
a	correction	or	confirmation	action.

Even	the	analysis	of	cases	where	the	reviewer	finds	the	indicator	was	wrong	and	the	ER
decision	was	actually	correct	(a	false	alarm)	can	contribute	to	performance	improvements
by	leading	to	refinements	in	the	review	indicator	logic.	In	addition,	if	a	system	allows
reviewer	decisions	to	be	captured	in	the	metadata	of	the	IKB,	the	system	can	suppress
review	indications	on	EIS	that	have	previously	been	reviewed	and	found	correct.	These
confirmation	assertions	can	significantly	decrease	the	time	and	effort	required	for	clerical
review.	The	transactions	causing	indicator	logic	to	be	suppressed	on	combinations	of	EIS
already	reviewed	as	correct	are	called	true	assertions	or	confirmation	assertions.	In
contrast,	transactions	used	to	correct	errors	are	called	correction	assertions.

Pair-Level	Review	Indicators
Review	indicators	are	typically	designed	to	work	at	one	of	two	levels:	at	the	reference
matching	pair	level	and	the	cluster	level.	The	previous	example	of	a	Fellegi-Sunter
agreement	pattern	falls	into	the	category	of	pair-level	indication.	In	other	words,	the
review	signal	is	associated	with	a	pair	of	references	satisfying	a	certain	match	condition,
in	this	case,	that	the	two	references	follow	a	specific	agreement	pattern.

Scoring	rules	discussed	in	Chapter	3	provide	natural	pair-level	review	indicator	logic.
By	setting	a	second	threshold	score	just	below	the	match	score	threshold,	the	system	can
give	an	indication	on	every	pair	of	references	scoring	below	the	match	threshold	and
above	the	second	threshold,	called	a	review	threshold.	These	represent	pairs	with	scores
close	to	being	a	match	but	just	falling	short,	i.e.	near	matches.

Even	though	a	Boolean	rule	set	does	not	generate	a	score,	some	systems	allow	for	some
sub-rules	(AND	clauses)	to	be	designated	as	a	soft	rule	or	weak	rule.	A	weak	rule	allows
for	more	fuzziness	or	looseness	in	the	match.	The	weak	rule	can	be	treated	either	as	a
match	or	a	no-match,	but	in	either	case,	the	pairs	of	references	satisfying	a	weak	rule	are
called	out	for	clerical	review.

Cluster-level	Review	Indicators
Even	for	experts	in	a	given	data	domain,	decisions	on	clerical	reviews	can	sometimes	be
difficult.	In	making	these	decisions	it	often	helps	to	have	the	complete	context.	Cluster-
level	review	indicators	can	provide	this	much-needed	context	by	showing	the	contents	of
the	EIS	associated	with	a	pair	of	references.	Another	advantage	of	cluster-level	indicators
is	they	can	be	applied	at	two	different	times:	at	run-time	while	the	EIS	is	in	main	memory
and	matching	is	taking	place,	or	they	can	be	applied	to	the	EIS	in	off-line	storage	after	the
ER	process	is	complete.

As	an	example,	Pullen,	Wang,	Talburt,	and	Wu	(2013a)	developed	review	indicator
logic	for	ER	systems	using	Shannon’s	entropy	formulation.	The	entropy	calculation	is
done	by	looking	at	the	frequency	of	distinct	values	of	identity	attributes	of	the	references
within	a	cluster.	For	example,	suppose	a	cluster	representing	a	student	has	10	references
and	one	of	the	identity	attributes	is	the	student’s	first	name.	If	7	of	the	references	have	the
first	name	value	of	“JAMES”	and	3	of	the	references	have	the	first	name	value	of	“JIM”
then	the	probability	of	the	first	name	“JAMES”	would	be	0.7	and	the	probability	of	“JIM”
would	be	0.3.	From	this	the	entropy	of	the	first	name	values	would	be	given	by

A	similar	calculation	for	each	identity	attribute	contributes	to	a	total	entropy	score	for
the	entire	cluster.	Their	work	shows	that,	for	certain	types	of	data,	a	high	entropy	value	for
a	cluster	is	a	high-precision	indicator	of	a	potential	false	positive	error,	i.e.	more	than	one
entity	is	represented	in	the	cluster.

Conversely,	they	have	also	shown	that	low	entropy	can	be	a	good	indicator	of	false
negative	EIS.	To	be	used	as	a	false	negative	indicator,	closely	related	EIS	must	first	be
brought	together	by	a	loose	match	key.	For	an	example	using	student	data,	the	false
negative	key	might	be	a	combination	of	last	name	and	date-of-birth.	If	two	EIS	that	have
the	same	last	name	and	data	of	birth	are	brought	together,	and	if	the	entropy	of	the	EIS
created	by	combining	the	references	from	both	EIS	is	low,	then	this	may	indicate	the	two
EIS	are	false	negatives	of	each	other.	If	two	EIS	are	found	to	be	false	negatives,	i.e.	both
reference	the	same	entity,	then	by	transitive	closure	of	equivalence,	they	should	be
combined	into	one	EIS.

The	Manual	Update	Process
The	manual	update	process	is	driven	by	the	clerical	review	indicators.	As	shown	in
Figure	5.2,	the	manual	update	process	begins	with	a	data	expert	and	a	set	of	clerical
review	indications	produced	by	a	capture	process	or	by	an	automated	update	process.	For
a	system	of	any	size,	the	reviewer	will	need	two	things.	The	first	is	a	tool	to	assist	in
reviewing	the	EIS	in	order	to	make	a	review	decision,	and	the	second	is	a	mechanism	for
making	adjustments	to	the	IKB	based	on	the	decision.

Adjustments	made	to	the	IKB	by	human	(knowledge-based)	decision	are	called
assertions.	If	the	decision	is	an	error	was	made,	then	the	action	is	to	correct	the	EIS	in
error.	If	the	decision	is	no	error	was	made,	then	the	action	is	to	confirm	the	EIS	are
correct.	The	assertion	process	will	be	discussed	first.	Once	assertions	are	understood,	the
functions	of	the	visualization	tool	will	be	clearer.

FIGURE	5.2 	Update	phase	(manual).

Asserted	Resolution
Asserted	resolution,	sometimes	called	informed	linking	or	knowledge-based	linking,	is
simply	the	reconfiguration	of	the	EIS	in	the	IKB	based	on	expert	knowledge.	Assertions
are	effected	by	creating	assertion	transactions	applied	to	the	IKB	through	the	EIIM
system.	Because	asserted	resolution	is	a	manual	process,	the	number	of	assertions	applied
to	the	IKB	will	always	be	small	when	compared	to	the	large	volume	of	updates	applied
through	the	automated	update	process.	However,	assertions	are	important	to	reduce	the
accumulations	of	false	positive	and	false	negative	errors,	which	build	up	over	time	in	an
unreviewed	EIIM	system.	Assertion	complements	the	automated	ER	process	and	provides
a	mechanism	for	continuous	improvement	of	the	EIIM	system.

Direct	manipulation	of	the	IKB	through	an	editing	tool	or	other	ad	hoc	processes	is
never	a	good	idea	and	should	be	prohibited	by	MDM	governance	policy.	All	update
transactions	to	the	IKB	including	assertion	transaction	actions	should	always	be	mediated
through	thoroughly	tested	application	software	logging	transaction	events	to	facilitate
process	auditability	and	to	maintain	IKB	integrity.

Correction	Assertions
Assertions	generally	fall	into	three	categories	–	correction	assertions,	confirmation
assertions,	and	convenience	assertions.	Correction	assertions	are	designed	to	alter	EIS	in	a
way	that	corrects	malformation	caused	by	the	false	positive	and	false	negative	errors
inevitably	occurring	in	the	automated	ER	process.	Confirmation	assertions	do	not	alter
EIS	other	than	to	insert	metadata	flagging	the	EIS	as	being	correct.	The	presence	of	the
confirmation	metadata	is	detected	by	the	review	indicator	logic	to	prevent	it	from	calling
out	for	review	EIS	already	confirmed	as	correct.	In	addition,	the	metadata	inserted	into
EIS	when	correcting	a	false	positive	(structure-split-assertion)	or	confirming	a	true
negative	prevents	the	rules	in	the	automated	ER	process	from	merging	(or	re-merging)	EIS
that	should	remain	separated.

Structure-to-Structure	Assertion
A	structure-to-structure	assertion	is	used	to	correct	a	false	negative	error	in	which	two	EIS
are	found	to	be	equivalent,	i.e.	reference	the	same	entity.	Although	some	false	negatives
are	self-correcting	when	new	references	connect	the	EIS	during	the	identity	update
process,	this	is	not	always	the	case,	and	manual	intervention	may	be	required.	Figure	5.3
shows	the	schematic	of	a	structure-to-structure	assertion.

FIGURE	5.3 	Structure-to-structure	assertion.

In	Figure	5.3,	ABC	and	DEF	are	forced	to	merge	into	a	single	cluster.	To	minimize
entity	identifier	changes,	the	identifier	for	one	EIS	is	retained,	in	this	case	ABC.	Only
entity	identifier	DEF	will	have	to	be	retired.	Although	Figure	5.3	only	shows	two	EIS
being	merged,	some	systems	support	merging	several	equivalent	EIS	in	the	same
assertion.

However,	the	retirement	of	DEF	from	the	IKB	will	orphan	any	source	records	residing
in	the	IKB	client	systems	referencing	DEF.	These	records	should	now	reference	ABC.	The
mechanism	making	this	adjustment	(synchronization)	will	depend	upon	the	MDM
architecture	of	the	system	as	discussed	previously.	For	example	in	a	registry	architecture,
the	client	systems	will	have	to	push	their	records	to	the	IKB	in	order	to	refresh	its
identifiers,	whereas	in	a	reconciliation	engine,	the	IKB	will	notify	client	systems	with
references	to	DEF	that	it	should	be	replaced	by	ABC	and	the	IKB	will	notify	client
systems.

A	structure-to-structure	assertion	is	effected	by	a	set	of	assertion	transactions	shown	on
the	left	side	of	Figure	5.3.	In	systems	that	support	asserting	multiple	EIS,	if	N	is	the
number	of	EIS	to	be	merged,	then	N	transactions	are	required,	one	for	each	EIS.	The
structure-to-structure	assertion	transaction	has	three	fields	–	a	transaction	identifier,	an
entity	identifier,	and	a	group	identifier.

In	Figure	5.3	two	EIS	are	being	merged	by	two	structure-to-structure	assertion
transactions.	The	transaction	identifiers	are	T1	and	T2.	Transaction	T1	references	entity
identifier	ABC,	and	transaction	T2	references	entity	identifier	DEF.	Both	transactions
have	a	group	identifier	value	of	15.	All	EIS	sharing	the	same	group	identifier	value	will
merge,	in	this	case	ABC	and	DEF.	If	a	third	EIS	were	to	be	merged	in	this	assertion,	there
would	only	need	to	be	a	third	transaction	with	the	entity	identifier	of	the	third	EIS	and
with	the	same	group	identifier	value	of	15.

Structure-Split	Assertion
The	structure-split	assertion	is	designed	to	correct	false	positive	errors,	i.e.	EIS	containing
references	to	more	than	one	entity.	Unlike	false	negative	errors,	false	positive	errors	are
never	self-correcting	through	the	automated	update	process.	ER	processes	are	driven	by
matching	engines	only	making	decisions	to	merge	EIS,	never	to	split	them.	Once	a	false
positive	EIS	is	created,	it	will	remain	in	the	system	until	there	is	a	manual	intervention	to
correct	it.

A	schematic	for	the	structure-split	assertion	is	shown	in	Figure	5.4.	In	this	example	the
EIS	ABC	contains	five	references	R1,	R2,	R3,	R4,	and	R5.	A	clerical	review	shows

references	R1	and	R2	reference	one	entity,	references	R3	and	R4	reference	a	second	entity,
and	reference	R5	references	yet	a	third	entity.	Correcting	this	problem	requires	a	set	of
structure-split	assertion	transactions.	Again,	to	minimize	the	amount	of	effort	needed	to
synchronize	the	client	systems,	the	MDM	system	will	not	allow	all	of	the	references	to	be
split	away	from	the	original	EIS.	In	other	words,	the	system	requires	that	the	original	EIS
must	survive	the	structure-split	assertion	operation,	so	the	original	entity	identifier	ABC	is
retained	in	the	system.	The	structure-split	assertion	transactions	only	need	to	call	out	the
references	needing	to	be	moved	out	of	EIS.

FIGURE	5.4 	Structure-split	assertion.

The	transactions	needed	to	effect	a	structure-split	assertion	are	similar	to	those	for
structure-to-structure	assertion,	but	they	require	one	additional	field.	Each	structure-split
assertion	transaction	has	four	fields	–	a	transaction	identifier,	an	entity	identifier,	a
reference	identifier,	and	a	group	identifier.	In	Figure	5.4	there	are	three	transactions	with
identifiers	T3,	T4,	and	T5.	All	of	the	transactions	have	entity	identifier	ABC;	however,
transaction	T3	has	the	identifier	for	reference	R3,	transaction	T4	for	reference	R4,	and	T5
for	reference	R5.

In	a	set	of	structure-split	assertion	transactions	are	two	levels	of	grouping.	The	first
level	is	by	EIS	and	the	second	level	is	by	split	group	using	a	group	identifier.	In
Figure	5.4,	the	group	of	transactions	applying	to	ABC	is	shown	with	group	identifiers	63
and	88.	Within	the	ABC	group	are	two	subgroups	–	subgroup	63	and	subgroup	88.
Subgroup	63	indicates	references	R3	and	R4	should	move	together	into	a	new	EIS	after
being	removed	from	ABC.	For	R3	and	R4	the	new	EIS	identifier	is	DEF.	Subgroup	88
indicates	that	reference	R5	should	be	in	a	new	EIS,	but	different	EIS	than	the	new	EIS
created	for	R3	and	R4.	For	R5	the	new	identifier	is	GHI.

The	synchronization	of	identifiers	in	a	client	system	for	structure-split	assertions	is
more	difficult	than	for	the	structure-to-structure	previously	discussed.	The	problem	now	is
clients’	systems	may	contain	many	source	records	referencing	identifier	ABC,	but	after	the
assertion,	some	of	these	perhaps	should	reference	the	new	identifier	GHI.	Even	if	the
system	has	kept	track	of	which	source	records	were	appended	with	identifier	ABC,	it	is
not	obvious	which	of	these	should	be	changed	to	GHI	without	having	to	rematch	the
records	against	the	identity	information.	This	is	another	reason	why	ER	systems	are
usually	tuned	to	prefer	false	negative	errors	over	false	positive	errors.	Not	only	do	the
corrections	to	false	negative	errors	stay	corrected	without	special	logic,	the	identifier

retirement	is	simpler	to	manage.

FIGURE	5.5 	Reference-transfer	assertion.

Reference-Transfer	Assertion
The	reference-transfer	assertion	is	designed	to	correct	both	a	false	positive	and	false
negative	in	one	process.	Figure	5.4	shows	a	situation	in	which	the	reference	R2	has	been
clustered	in	ABC	with	R1,	but	should	have	been	clustered	with	R3	in	XYZ.	In	this	case,
R2	is	a	false	positive	with	respect	to	R1	and	a	false	negative	with	respect	to	R3.	The
solution	is	to	move	the	reference	R2	from	ABC	to	XYZ.

No	new	EIS	are	created	in	the	reference-transfer	assertion	process.	One	reference-
transfer	assertion	transaction	exists	for	each	reference	needing	to	be	moved.	Each
reference-transfer	assertion	transaction	has	four	fields	–	a	transaction	identifier,	a
reference	identifier,	a	source	entity	identifier,	and	a	target	entity	identifier.	In	the	example
of	Figure	5.5,	transaction	T7	indicates	a	move	of	reference	R2	from	ABC	to	XYZ	as
shown	in	the	diagram.

Confirmation	Assertions
Confirmation	assertions	are	designed	to	label	EIS	as	having	been	reviewed	and	confirmed
as	correct	in	order	to	prevent	their	continued	review.	The	algorithms	producing	clerical
review	exceptions	are	not	perfect.	Some	EIS	called	out	for	clerical	review	as	potential
false	positives	often	turn	out	to	be	true	positives,	i.e.	correctly	clustered.	Similarly,	some
groups	of	EIS	called	out	for	clerical	review	as	false	negatives	are	in	fact	true	negatives.
Without	confirmation	assertions,	these	EIS	can	be	repeatedly	called	out	for	review	by	the
clerical	review	indicator	logic	even	though	they	have	previously	been	manually	reviewed
and	found	to	be	correct.

However,	it	is	important	to	note	EIS	reviewed	as	correct	should	only	be	excluded	from
subsequent	reviews	as	long	as	they	maintain	the	state	they	had	at	the	time	of	the	review.
Any	changes	to	the	EIS	could	change	their	status	from	correct	to	incorrect.	The
implementation	of	confirmation	assertions	also	requires	new	functionality	in	the	ER
update	logic	that	will	remove	confirmation	labels	from	the	EIS	metadata	whenever	the	ER
process	modifies	the	EIS.

True	Positive	Assertion
The	true	positive	confirmation	assertion	pertains	to	a	single	EIS.	If	an	EIS	is	called	out	for

clerical	review,	and	if	the	reviewer	finds	all	references	in	the	EIS	are	for	same	entity,	the
EIS	is	a	true	positive	and	should	be	asserted	as	such.	The	true	positive	assertion	of	an	EIS
will	add	a	metadata	label	showing	the	EIS	is	true	positive.

FIGURE	5.6 	True	positive	assertion.

The	case	shown	in	Figure	5.6	is	where	the	EIS	with	entity	identifier	ABC	was	called	out
for	clerical	review	as	a	false	positive,	but	after	inspection	it	was	found	to	be	correct.	The
true	positive	assertion	transaction	requires	only	two	fields	–	a	transaction	identifier	and	the
entity	identifier	of	the	true	positive	EIS.	The	action	of	the	true	positive	assertion	is	to	add
a	metadata	tag	(shown	as	<TP>	in	Figure	5.6)	to	the	EIS.	True	positive	assertion
transaction	T8	asserts	ABC	as	a	true	positive	EIS.	The	true	positive	tag	inserted	into	ABC
will	prevent	the	clerical	review	indicator	logic	from	calling	out	ABC	for	review	as	long	as
the	tag	is	present.

However,	if	a	later	update	process	results	in	new	references	being	added	to	ABC,	then
the	true	positive	tag	will	be	removed,	and	ABC	may	again	be	called	out	for	clerical	review
in	later	processing.	The	metadata	added	to	the	true	positive	EIS	may	also	include	other
information	for	auditing	and	traceability	such	as	an	identifier	for	the	person	making	the
review	decision,	the	date	of	review,	and	other	relevant	information.	These	additional
metadata	are	important	for	good	master	data	governance.

True	Negative	Assertion
The	true	negative	assertion	confirms	two	or	more	EIS	were	called	out	for	review	as
potential	false	negatives	have	been	confirmed	as	correct	by	an	expert	reviewer.	Just	as
with	the	true	positive	assertion,	the	true	negative	assertion	inserts	metadata	tags	into	the
reviewed	EIS.	In	the	case	of	true	negative,	additional	metadata	is	required	because	a	true
negative	state	always	exists	between	two	(or	more)	EIS.	Just	labeling	an	EIS	as	a	true
negative	does	not	make	sense	by	itself.	A	true	negative	assertion	of	an	EIS	must	be
expressed	in	relation	to	another	EIS.	In	addition	to	a	true	negative	label,	a	true	negative
assertion	must	also	insert	the	identifier	of	the	EIS	to	which	it	is	a	true	negative.	These
metadata	must	be	inserted	into	all	of	the	EIS	the	review	process	determines	to	be	true
negatives	of	each	other.

The	example	in	Figure	5.7	is	for	two	EIS	with	identifiers	ABC	and	DEF.	The	true
negative	assertion	transactions	require	three	fields	–	a	transaction	identifier,	an	entity
identifier	of	one	of	the	true	negative	EIS,	and	a	grouping	identifier.	The	grouping
identifier	is	simply	a	provided	value	identifying	the	EIS	comprising	the	true	negative
group.	The	value	of	the	grouping	identifier	is	not	as	important	while	it	is	the	same	in	all
transactions	relating	to	the	same	true	negative	group	and	different	from	the	identifier	for
any	other	true	negative	group.	In	this	example,	the	group	identifier	is	76	for	transactions

T9	and	T10.	Because	transaction	T11	has	a	different	group	identifier,	it	relates	to	some
other	true	negative	group	not	shown.

FIGURE	5.7 	True	negative	assertion.

As	shown	in	Figure	5.7,	the	true	negative	assertion	of	the	EIS	with	identifiers	ABC	and
DEF	creates	metadata	cross-referencing	these	EIS.	The	EIS	with	identifier	ABC
references	the	EIS	with	identifier	DEF	as	a	true	negative,	and	conversely,	the	EIS	with
identifier	DEF	references	the	EIS	with	identifier	ABC	as	a	true	negative.	These	tags	will
prevent	the	clerical	review	logic	from	calling	out	the	EIS	identified	as	ABC	and	DEF	as
false	negatives	in	future	processes	as	long	as	they	maintain	the	original	state.	Just	as	with
the	true	positive	assertion,	the	metadata	tags	suppressing	subsequent	true	negative	review
must	be	removed	if	and	when	a	later	update	process	adds	new	references	to	any	one	of	the
EIS	in	a	true	negative	group.

Reference-to-Reference	Assertion
Two	special	types	of	confirmation	assertions	are	used	to	move	external	references	into
correctly	configured	EIS.	They	belong	to	the	category	of	convenience	assertions.
Convenience	assertions	allow	the	user	to	directly	create	and	manipulate	EIS	without	using
matching	rules.

The	first	convenience	assertion	is	a	reference-to-reference	assertion	used	to	create	a
new	EIS	containing	a	specific	set	of	source	references.	The	reference-to-reference
assertion	bypasses	the	matching	rules	and	in	some	ways	represents	a	special	type	of
identity	capture	configuration.	Reference-to-reference	assertions	are	often	used	to	migrate
intact	clusters	of	references	from	a	legacy	MDM	system	into	a	new	MDM	system.

Reference-to-reference	assertion	transactions	require	three	fields	–	a	transaction
identifier,	a	reference,	and	a	group	identifier.	As	with	the	true	negative	assertion,	the	group
identifier	serves	to	show	which	references	are	to	create	the	same	EIS.	In	the	case	of
migration	from	a	legacy	system,	these	group	identifiers	will	simply	be	the	entity	identifier
assigned	to	the	references	by	the	legacy	system.

In	Figure	5.8,	the	reference-to-reference	assertion	transactions	T12	and	T13	are	grouped
by	identifier	35	indicating	references	R1	and	R2	are	to	form	a	new	cluster.	Depending
upon	the	system,	the	identifier	ABC	of	the	new	EIS	can	be	a	value	automatically
generated	by	the	system,	or	it	can	be	a	value	specified	by	the	user,	and	again	in	the	case	of
legacy	migration,	could	be	the	group	identifier.	In	the	case	where	identifiers	are	provided,

the	MDM	system	should	prevent	the	user	from	inadvertently	creating	duplicate	identifiers.

FIGURE	5.8 	Reference-to-reference	assertion.

FIGURE	5.9 	Reference-to-structure	assertion.

Reference-to-Structure	Assertion
The	second	type	of	convenience	confirmation	assertion	is	a	reference-to-structure
assertion	used	to	add	one	or	more	references	to	an	existing	EIS.	As	with	a	reference-to-
reference	assertion,	a	reference-to-structure	assertion	bypasses	the	matching	rules.

As	shown	in	Figure	5.9,	the	reference-to-structure	assertion	transactions	require	three
fields	–	a	transaction	identifier,	a	reference,	and	an	EIS	identifier.	Grouping	is	unnecessary
for	reference-to-structure	assertion	transactions	because	each	transaction	names	the
specific	EIS	to	which	the	transaction	should	be	added.

In	the	example	of	Figure	5.9,	reference-to-structure	assertion	transactions	T15	and	T16
add	references	R2	and	R3,	respectively,	to	the	EIS	labeled	DEF	which	is	already	in
existence	and	contains	reference	R1.

EIS	Visualization	Tools
Visualization	can	be	an	effective	tool	for	assessing	and	managing	information	(Abu-
Halimeh,	Pullen,	&	Tudoreanu,	2013;	Gibson	&	Talburt,	2010).	This	is	especially	true	for
Big	Data.	Large	MDM	systems	can	have	millions	of	entities	and	source	references	under
management.	For	systems	of	this	scale,	clerical	review	becomes	difficult	without	tools	that
allow	reviewers	to	quickly	access	and	understand	the	contents	of	EIS	indicated	for	review.
Conducting	reviews	using	printouts	or	on-screen	listings	can	be	tedious	and	error	prone.
Visualization	tools	with	advanced	functionality	can	considerably	ease	the	review	burden
and	increase	reviewer	productivity	and	accuracy	(Chen	et	al.,	2013b).	Some	of	the	helpful
features	provided	by	a	good	visualization	tool	allow	the	reviewer	to

•	Quickly	locate	and	view	EIS	called	out	by	clerical	review	indicators

•	Allow	multiple	reviewers	simultaneous	access

•	Keep	track	of	indicator	status	in	terms	of	“needing	review”	or	“already	reviewed”

•	Support	undirected,	keyword	searches	over	the	entire	IKB	in	addition	to	reviews	directed
by	clerical	review	indicators

•	Automatically	generate	properly	formatted	correction	and	confirmation	assertions
reflecting	reviewer	decisions

To	illustrate	these	features,	the	following	section	will	use,	as	an	example,	a	browser-
based	IKB	visualization	tool	called	Identity	Visualization	System	(IVS)	developed	by,	and
shown	here	with	the	permission	of,	Black	Oak	Analytics,	Inc.	All	of	the	information
shown	in	the	screen	shots	were	created	using	synthetic	data	and	do	not	represent	actual
persons.

First	note	that	IVS,	like	most	visualization	tools,	does	not	directly	modify	the	IKB.	As
depicted	in	Figure	5.2,	the	information	from	the	IKB	is	extracted	to	the	database	in	the
IVS	tool	allowing	IVS	to	make	queries	in	real	time.	During	the	extraction	process,	all	of
the	tokens	in	the	EIS	are	indexed	to	enable	real-time	keyword	searches	of	the	EIS.	In
addition,	the	entropy	calculations	are	made	during	the	extraction	by	user-defined
parameters	in	the	extraction	script.

Again	as	shown	in	Figure	5.2,	the	output	of	IVS	is	a	file	of	assertion	transactions.	The
decisions	reviewers	make	using	IVS	are	not	actually	reflected	in	adjustments	to	the	IKB
until	these	transactions	are	run	against	the	IKB	through	an	ER	assertion	process.	Although
the	decoupling	of	the	visualization	tool	from	the	IKB	by	this	extraction	process	gives	the
visualization	tool	higher	performance,	it	can	also	lead	to	synchronization	problems	if	not
properly	governed.

The	primary	issue	is	that	reviewers	are	working	on	a	copy	of	the	IKB,	not	the	IKB
itself.	If	automated	updates	are	applied	to	the	real	IKB	before	the	assertion	transactions
from	the	clerical	reviews	have	been	applied,	some	assertion	transactions	made	by
reviewers	may	be	rendered	invalid	because	of	structural	changes	made	to	the	IKB	by	the

automated	update.	Contention	between	updates	is	always	a	potential	risk	with	redundant
data.	In	this	case,	the	copy	of	the	IKB	manipulated	by	the	visualization	tool	is	redundant
to	the	actual	IKB.	Redundancy	always	introduces	the	possibility	for	loss	of
synchronization	between	copies	of	the	same	data.

Assertion	Management
The	initial	login	screen	for	the	system	is	shown	in	Figure	5.10.	By	requiring	reviewers	to
login,	the	system	can	keep	track	of	which	indicated	EIS	have	been	reviewed	and	by	which
reviewers.	The	login	identifier	is	also	carried	forward	into	all	of	the	assertion	transactions
generated	by	the	reviewer.	When	the	assertion	transactions	are	applied,	the	reviewer
identifier	is	inserted	into	the	metadata	of	the	asserted	EIS	in	order	to	enable	the
auditability	of	assertion	transactions.

FIGURE	5.10 	Initial	login	screen.

FIGURE	5.11 	IVS	home	page	for	user	chen.

When	the	reviewer	logs	into	IVS,	the	system	starts	on	the	reviewer’s	home	page.	The
home	page	shows	the	status	of	work	for	the	reviewer	since	the	last	review	session.	The
home	page	depicted	in	Figure	5.11	shows	that	the	reviewer	“chen”	has	made	four
assertions	in	a	previous	review	session.	These	assertions	are	labeled	as	“pending”	because
even	though	the	assertion	decisions	have	been	made,	and	the	assertion	transactions	have
been	generated,	the	assertion	transactions	have	not	yet	been	applied	to	the	IKB.

An	interesting	feature	of	the	IVS	is	the	user	interface	resembling	an	online	shopping
model.	As	reviewers	make	assertion	decisions,	the	decisions	are	saved	in	an	“assertion
cart”	similar	to	an	online	shopping	cart.	When	a	reviewer	makes	an	assertion	decision	for
an	indicator,	the	asserted	indicator	is	put	into	the	cart.	At	the	same	time,	the	indicated	EIS
is	removed	from	the	reviewer’s	queue	of	indicated	EIS	to	review.

At	any	point	in	the	session	the	reviewer	can	view	the	assertions	in	the	cart,	and	if	he	or
she	so	chooses,	can	“commit”	the	assertions	in	the	cart.	The	commit	step	causes	the	IVS	to
generate	assertion	transactions	for	the	decision	in	the	cart,	analogous	to	“purchasing”	the
items	in	a	shopping	cart.	Once	the	decisions	are	committed	to	transactions,	the	cart	is
emptied	and	the	assertion	transactions	become	pending	assertions	as	shown	in	Figure	5.11.

Because	the	screen	shot	has	been	cropped	to	fit	the	page,	only	the	assertion	transactions
generated	for	two	of	the	four	pending	assertions	can	been	seen	in	Figure	5.11.	Visible	here
are	11	structure-split	transactions	pending	for	application	to	the	EIS	with	identifier
7VVJ4UJYXQABKIUI.	As	discussed	in	the	previous	section,	each	split-assertion
transaction	has	four	values	–	a	transaction	identifier,	a	reference	identifier,	an	EIS
identifier,	and	a	grouping	identifier.	For	example,	the	first	transaction	shown	has	a
transaction	identifier	of	SPA.1,	a	reference	identifier	of	source1.C929503,	the	EIS
identifier	7VVJ4UJYXQABKIUI,	and	a	grouping	identifier	of	7VVJ4UJYXQABKIUI#1.

The	grouping	identifiers	have	been	generated	by	appending	an	integer	value	to	the	EIS
identifier	to	create	a	set	of	unique	identifiers	for	the	groups	specified	by	the	reviewer.
There	are	three	distinct	grouping	identifiers	in	the	eleven	transactions.	However,	when
these	11	transactions	are	applied	to	the	IKB	they	will	only	create	two	new	EIS.	The
system	will	automatically	select	the	largest	subgroup	to	retain	the	base	EIS	with	identifier
7VVJ4UJYXQABKIUI.	The	two	small	groups	will	create	two	new	EIS	with	new
identifiers	generated	by	the	system.	This	process	will	assure	the	fewest	possible	identifiers
are	changed,	and	the	fewest	possible	references	are	given	new	identifiers.

The	top	of	Figure	5.11	includes	tabs	showing	the	three	basic	operating	modes	of	IVS	–
Search	Mode,	Negative	Resolution	Review	Mode,	and	Positive	Resolution	Review	Mode.
The	Search	Mode	allows	the	reviewer	to	perform	undirected	keyword	searches	of	the	IKB.
Negative	Resolution	Review	Mode	shows	the	reviewer	EIS	indicated	as	possible	false
negatives,	and	the	Positive	Resolution	Review	Mode	shows	the	reviewer	EIS	indicated	as
possible	false	positives.

Search	Mode
Figure	5.12	shows	the	search	mode	input	screen.	The	reviewer	can	type	any	sequence	of

keywords	here	to	perform	an	undirected	search	of	the	entire	IKB.	In	this	case,	the	search	is
to	be	performed	on	the	single	token	value	“michael”.

As	a	result	of	the	search,	100	EIS	were	found	that	contained	references	with	the	value
“michael”	in	any	one	of	the	attribute	values.	The	partial	search	results	are	shown	in
Figure	5.13.	The	IVS	tool	will	search	on	multiple	keywords	both	qualified	and
unqualified.	The	first	reference	returned	has	“michael”	in	the	first	name	field	and	the
second	reference	has	the	value	“michael”	in	the	last	name	field.

FIGURE	5.12 	IVS	search	mode	–	undirected	search	for	“michael”

FIGURE	5.13 	IVS	results	for	an	undirected	Search	on	“michael”

In	a	qualified	search	the	token	is	prefixed	by	an	attribute	name.	Figure	5.14	shows	a
qualified	keyword	search	for	references	where	the	token	value	“michael”	is	found	in	the
last	name	field	“LastName:michael”	and	will	only	search	for	EIS	in	the	first	name	field
containing	the	value	of	“michael”.

The	results	of	the	directed	search	are	shown	in	Figure	5.15.

Negative	Resolution	Review	Mode
Upon	entry	into	the	negative	resolution	review	mode,	IVS	will	show	the	reviewer	the	EIS
groups	indicated	as	possible	false	negative	groups.	Because	IVS	uses	the	entropy-based
clerical	review	described	in	the	previous	section,	the	groups	brought	together	by	the	split
key	are	arranged	in	order	from	lowest	to	highest	entropy.	Figure	5.16	shows	the	four

groups	with	the	lowest	entropy	when	brought	together	by	the	split	key.	In	this	case	the
split	key	is	the	first	8	digits	of	the	social	security	number.

FIGURE	5.14 	IVS	search	mode	–	directed	search	for	“michael”	in	Last	Name	Field.

FIGURE	5.15 	IVS	results	for	a	directed	search	for	“michael”	in	Last	Name	Field.

To	enhance	readability	for	the	reviewer,	different	EIS	within	a	group	and	different
groups	have	different	colored	backgrounds.	The	reviewer	can	also	select	different	bands	of
entropy	to	review.	In	this	example,	the	band	of	entropy	values	between	0.0	and	5.0	entropy
is	displaying	2,817	EIS	groups	for	review.

At	the	detail	level,	the	reviewer	can	see	the	attribute-level	information	in	each
reference.	Figure	5.17	shows	the	detail	level	of	three	EIS	brought	together	by	a	split	key.
In	this	example	are	three	EIS	brought	together	by	the	split	key,	and	each	EIS	comprises	a
single	reference.

The	check	boxes	at	the	left	of	each	EIS	allow	the	reviewer	to	select	which	EIS	should
be	designated	as	either	true	negatives	or	false	negatives	that	should	be	merged.	After	the
EIS	are	selected	by	their	check	boxes,	the	decision	is	effected	by	clicking	the	appropriate
button	at	the	bottom	of	the	screen.

FIGURE	5.16 	IVS	negative	resolution	review	indicator	level.

Positive	Resolution	Review	Mode
The	positive	resolution	review	mode	function	is	similar	to	the	negative	resolution	review
mode.	Figure	5.18	shows	the	indicator	level	list	of	EIS	for	positive	review	mode.	In
positive	review	mode	the	EIS	are	listed	in	descending	order	of	entropy	scores,	since	high-
entropy	EIS	are	more	likely	to	be	false	positive.

By	clicking	the	“Go	To	Detail”	button,	the	reviewer	is	taken	to	the	detail	level	screen	as
shown	in	Figure	5.19.	The	EIS	shown	in	Figure	5.19	is	the	same	EIS	with	identifier	value
7VVJ4UJYXQABKIUI	shown	in	Figure	5.18.

Note	that	in	Figure	5.19,	the	reviewer	has	already	determined	the	EIS	is	a	false	positive
and	had	already	selected	how	the	references	should	be	correctly	grouped.	The	groupings
are	created	by	selecting	an	integer	value	for	the	drop-down	boxes	at	the	left	of	each
reference.	After	the	grouping	codes	are	selected,	the	reviewer	will	click	the	“Assert
Structure	Split”	button	at	the	bottom	of	the	page.	The	right	end	of	the	main	menu	bar	has
been	moved	into	view	to	show	the	count	of	assertions	currently	in	the	Assertion	Cart.	By
clicking	on	the	Assertion	Cart,	the	reviewer	can	see	all	of	the	assertions	that	he	or	she	has
reviewed	since	the	last	commit.

FIGURE	5.17 	IVS	negative	resolution	review	EIS	detail	level.

Managing	Entity	Identifiers
The	entity	identifiers	in	an	MDM	system	are	called	“persistent”	identifiers	rather	than
“permanent”	identifiers	for	good	reason.	Because	MDM	systems	are	driven	by	ER
processes,	and	ER	processes	make	mistakes,	some	entity	identifiers	are	going	to	change
when	these	mistakes	are	corrected.

Take,	as	an	example,	the	false	negative	error	in	Figure	5.3.	Before	the	error	was
discovered,	the	EIS	identified	as	ABC	and	DEF	were	believed	to	represent	different
entities.	The	references	R1	and	R2	were	assumed	to	reference	entity	ABC	and	references
R3	and	R4	referenced	entity	DEF.	After	the	correction,	only	the	identifier	ABC	survived.
The	result	is	that	reference	R3	and	R4	changed	identifiers.

Similarly,	before	the	false	positive	error	shown	in	Figure	5.4	was	discovered,	references
R1,	R2,	R3,	R4,	and	R5	were	all	believed	to	reference	the	entity	identified	as	ABC.	After
the	correction	two	new	entity	identifiers	are	in	the	system,	the	identifier	DEF	for	the	entity
defined	by	references	R3	and	R4,	and	identifier	GHI	for	the	entity	defined	by	reference
R5.	The	net	result	is	changed	identifiers	for	reference	R3,	R4,	and	R5.

The	Problem	of	Association	Information	Latency
One	factor	driving	the	false	negative	problem,	especially	with	customer	entities,	is
association	information	often	lagging	behind	existence	information.	For	example,	when	a
customer	moves	from	one	address	to	another,	whether	postal	or	electronic	address,	a
transaction	seen	at	a	new	address	without	reference	to	an	old	address	often	appears	to	be	a
new	customer.	When	this	happens,	the	system	creates	a	new	EIS	and	new	identifier.	It	is
only	later	that	the	association	information,	such	as	a	postal	change-of-address	transaction,
will	appear	connecting	the	customer	at	his	or	her	new	address	and	old	address.	In
applications	where	this	happens	frequently,	the	result	can	be	a	churning	effect	where	new
identifiers	are	created	and	then	quickly	retired.

FIGURE	5.18 	IVS	positive	resolution	review	indicator	level.

Models	for	Identifier	Change	Management
Regardless	of	the	cause	for	identifier	changes,	these	changes	must	be	dealt	with.	Two
basic	models	include	the	pull	or	user-directed	model	and	the	push	or	system-directed
model.

The	Pull	Model
In	the	pull	model	all	of	the	source	information	from	client	systems	is	pulled	back	to	the
MDM	system	where	it	is	relinked,	i.e.	the	current	identifiers	are	appended	to	the	client
source	records.	In	this	model,	it	is	the	client	system’s	responsibility	to	detect	when	an
identifier	has	been	changed	and	to	take	the	appropriate	actions.

FIGURE	5.19 	Positive	resolution	review	mode	EIS	detail	level.

In	this	division	of	responsibility,	the	central	MDM	system	is	primarily	an	identity
management	system	focused	on	maintaining	the	identity	integrity	of	its	IKB.	The	central
system	does	not	maintain	a	log	of	which	identifiers	have	been	given	to	which	client
systems.	The	client	systems	must	periodically	relink	in	order	to	be	assured	of	having	the
most	current	identifiers.	The	pull	model	is	common	when	there	are	many	client	systems
using	the	identifiers,	especially	when	some	of	the	clients	are	in	organizations	or
information	systems	separate	from	the	MDM	system.

The	advantage	of	the	pull	model	is	that	from	an	MDM	system	viewpoint,	it	is	simpler	to
manage.	By	placing	the	burden	on	client	systems	to	harmonize	identifiers,	the	MDM
system	itself	is	less	complex.	Of	course,	the	obvious	disadvantage	of	the	pull	model	is	the
potential	loss	of	synchronization	of	identifiers	across	client	systems.	The	extent	to	which
this	can	happen	will	depend	upon	the	nature	of	the	application,	the	volatility	of	the	data,
and	the	frequency	of	the	synchronization	process.	If	updates	to	the	IKB	are	done	on	a
regular	schedule,	then	relinking	can	be	timed	to	coincide	with	the	updates	in	order	to
minimize	the	synchronization	problem.

The	Push	Model
In	the	push	model	of	identifier	change	management,	it	is	the	central	system’s
responsibility	to	publish	changes	in	identifiers	to	the	client	systems.	Several	different
versions	of	the	push	model	vary	in	sophistication.	In	the	simpler	version,	all	changes	are

published	to	all	clients,	and	it	is	still	the	client’s	responsibility	to	determine	which	changes
are	pertinent	to	its	references	and	to	appropriately	adjust	the	identifiers.

In	more	sophisticated	versions	of	the	push	model,	the	central	system	keeps	track	of
which	identifiers	have	been	given	to	which	clients.	In	this	way	the	central	system	can
notify	(or	not	notify)	each	client	about	changes	to	identifiers	specific	to	a	client.	In	the
most	sophisticated	approach,	the	central	system	and	the	client	systems	are	integrated	to	the
extent	that	the	central	hub	actually	effects	the	identifier	changes	in	the	client	system.

Concluding	Remarks
To	obtain	the	highest	level	of	identity	integrity	in	an	MDM	system	it	is	necessary	to
undertake	manual,	human-in-the-loop	correction	and	confirmation	assertions	to
complement	the	automated	update	process.	Automated	update	processes	will	always
produce	some	level	of	false	positive	and	false	negative	errors.	Left	uncorrected,	these
errors	will	accumulate	and,	over	time,	will	degrade	the	identity	integrity	of	the	system.

At	the	same	time,	successful	manual	updates	require	support	from	two	other	systems-
clerical	review	indicators	and	EIS	search	and	visualization	tools.	The	review	indicators
help	the	MDM	data	steward	focus	their	attention	on	the	EIS	most	likely	to	have	these
errors.	The	visualization	tool	provides	them	with	the	capability	to	rapidly	look	up	these
EIS,	view	them	in	context,	and	record	their	assertion	decisions.	A	robust	visualization	tool
can	also	assist	the	data	stewards	in	generating	valid	assertion	transactions,	and	even	help
manage	and	coordinate	the	overall	assertion	workflow.	This	can	be	especially	important
when	several	operators	are	working	concurrently	on	the	same	identity	knowledge	base.

CHAPTER	6

Resolve	and	Retrieve	Phase	–	Identity
Resolution

Abstract
The	resolve	and	retrieve	phase	of	the	CSRUD	life	cycle	is	the	primary	use	case	for	MDM	as	an	application.	Client
systems	provide	entity	identity	information	in	exchange	for	the	identifier	of	an	entity,	a	process	called	identity
resolution.	From	an	MDM	perspective,	two	important	aspects	of	identity	resolution	guides	its	implementation	and
underlying	architecture.	These	are	its	mode	of	access	–	batch	versus	interactive	–	and	its	universe	model	–	open
universe	versus	closed	universe.

Keywords
Identity	resolution;	batch	access;	interactive	access;	closed
universe;	open	universe

Identity	Resolution
Identity	resolution	is	an	EIIM	configuration	where	the	input	is	entity	identity	information
and	the	output	is	the	identifier	of	the	EIS	representing	the	entity.	Identity	resolution	can	be
thought	of	as	a	recognition	process.	In	other	words,	does	the	MDM	system	recognize	the
identity	information	given	to	it	as	referencing	one	of	the	entities	the	system	has	under
management?	In	CDI,	the	customer	version	of	MDM,	identity	resolution	is	often	referred
to	as	customer	recognition.

Identity	resolution	is	perhaps	the	most	important	configuration	in	EIIM.	One	of	the
fundamental	principles	of	information	quality	is	that	information	only	creates	value	when
it	is	used	(McGilvray,	2008;	Talburt,	2011).	In	addition,	as	McGilvray	also	points	out,	the
planning,	obtaining,	storing,	sharing,	maintenance,	and	disposal	of	information	are	all
necessary	parts	of	the	information	life	cycle,	but	they	represent	overhead	cost.	The
benefits	that	offset	cost	and	create	information	value	are	only	realized	when	the
information	is	used	to	accomplish	some	purpose.	In	MDM,	the	purpose	is	to	provide	the
enterprise	with	persistent	entity	identifiers	having	the	highest	possible	identity	integrity.

Two	major	considerations	influencing	the	implementation	of	the	identity	resolution
configuration	are	access	mode	and	universe	model.

Identity	Resolution	Access	Modes
Client	systems	obtain	entity	identifiers	from	the	IKB	through	the	EIIM	identity	resolution
configuration	in	two	primary	ways.	The	first	is	batch	mode	and	the	second	is	interactive
mode	(Kobayashi,	Nelson,	&	Talburt,	2011).	Many	MDM	systems	support	both	modes	of
identity	resolution.

Batch	Identity	Resolution
Although	batch	is	often	associated	with	processing	large	files	of	records,	the	fundamental
difference	between	batch	and	interactive	mode	is	not	so	much	about	the	quantity	as	it	is
about	time.	When	the	client	system	submits	entity	references	to	an	EIIM	identity
resolution	configuration	in	batch	mode,	it	is	with	the	expectation	that	the	identifiers	for	the
entities	will	be	returned	at	a	later	time.	How	much	later	the	identifiers	are	returned	can
vary	considerably	from	hours	to	days	depending	upon	the	nature	of	the	application.	Often
the	delay	between	submission	and	reply	is	governed	by	a	service	level	agreement	(SLA)
setting	out	requirements	for	the	maximum	amount	of	delay.

The	schema	for	a	typical	batch	identity	resolution	process	is	shown	in	Figure	6.1.	The
client	system	submits	entity	references	to	the	EIIM	system	for	resolution.	The	references
usually	undergo	standardization	and	other	data	quality	cleansing	and	validation	operations
at	the	staging	step.	The	entity	resolution	system	attempts	to	match	each	input	reference	to
one	of	the	EIS	under	management	in	the	IKB.	If	a	match	is	found,	then	the	identifier	of	the
matching	EIS	is	paired	with	the	identifier	of	the	reference	in	the	link	index	table.	If	a
match	is	not	found,	the	system	will	pair	the	reference	with	a	special	identifier	discussed	in
more	detail	later.	After	the	references	have	been	processed,	the	system	writes	the	link
index	table	and	makes	it	available	to	the	client	system.

It	is	usually	the	responsibility	of	the	client	system	to	read	the	link	index	table,	and	to
update	the	original	input	reference	with	its	resolved	entity	identifier	from	the	link	index
table.	The	first	column	of	the	link	index	table	is	the	list	of	identifiers	for	all	of	the
references	input	into	the	system.	The	second	column	of	the	table	contains	the	entity
identifier	corresponding	to	the	reference	identifier	in	the	first	column.	If	the	input
references	are	in	a	relational	database	table,	then	the	link	index	table	can	also	be	written
directly	to,	or	loaded	into,	the	same	database.	At	this	point	the	entity	identifiers	from	the
link	index	table	can	be	easily	appended	to	their	corresponding	references	through	a	simple
database	join	operation.

FIGURE	6.1 	Schema	for	batch	mode	identity	resolution.

If	the	reference	file	is	too	large	for	a	traditional	relational	database,	then	both	the
references	and	link	index	can	be	loaded	into	a	NoSQL	data	store	such	as	the	Hadoop	Files
System	(HDFS)	or	HBase.	Big	Data	stores	like	HDFS	and	HBase	store	data	as	key-value
pairs.	Unlike	traditional	relational	databases,	the	data	are	often	left	unnormalized	and	the
keys	are	not	required	to	be	unique.	The	join	operations	for	these	systems	are	accomplished
through	Hadoop	map/reduce	jobs	instead	of	an	SQL	query.

Some	EIIM	systems	are	designed	to	update	the	input	references	directly.	Rather	than
creating	a	separate	link	index	table,	the	EIIM	system	writes	the	entity	identifier	directly
into	a	user-designated	field	of	the	input	reference.	In	these	types	of	systems,	the	identity
resolution	configuration	is	often	referred	to	as	the	link	append	process,	because	the	EIIM
system	appends	the	entity	identifier	value	to	the	input	reference.

Managed	and	Unmanaged	Entity	Identifiers
The	value	of	the	identity	resolution	process	is	that	it	greatly	reduces	the	effort	the	client
system	must	expend	to	detect	equivalent	references.	All	of	the	references	for	the	same
entity	should	be	paired	with	(or	have	appended)	the	same	entity	identifier	in	the	link	index
table.	This	makes	finding	equivalent	(duplicate)	references	a	simple	matter	of	sorting	the
link	index	table	by	the	entity	identifier	column.	Where	the	link	index	is	in	a	Big	Data	store
as	key-value	pairs	and	the	key	in	the	reference	identifier,	the	sort	will	take	the	form	of	a
map/reduce	step.	The	mapper	inverts	the	link	index,	i.e.	it	makes	the	entity	identifier	the
key	and	the	reference	identifier	the	value.	The	reduce	step	then	shuffles	(sorts)	and	brings
together	all	of	the	references	with	the	same	entity	identifier.

For	example,	if	the	input	references	represent	customer	sales	transactions	and	the
entities	under	management	are	the	customers,	then	after	the	identity	resolution	process	all
of	the	transactions	for	the	same	customer	will	have	the	same	customer	identifier.	In	this

respect,	MDM	can	be	viewed	as	a	technique	for	reuse	of	ER	effort.

An	identifier	assigned	to	one	of	the	EIS	under	management	in	an	MDM	system	is	called
a	managed	entity	identifier.	To	this	point	the	discussion	has	been	based	on	the	assumption
there	is	a	matching	EIS	and,	consequently,	a	managed	entity	identifier	for	reference	input
into	the	identity	resolution	process.	However,	this	is	not	always	the	case.	There	may	be
instances	where	an	input	reference	does	not	match	any	of	the	EIS	under	management	in
the	IKB.	In	this	situation,	the	MDM	system	will	create	a	default	entity	identifier.	Because
the	default	entity	identifier	is	not	saved	or	maintained	in	the	IKB,	the	default	identifiers
are	also	called	unmanaged	entity	identifiers.

There	are	two	main	strategies	for	unmanaged	entity	identifiers.	The	first	strategy	is	to
pair	the	reference	identifier	with	a	special	identifier	value	set	aside	for	this	purpose.	When
a	value	is	returned	as	the	identifier	it	tells	the	client	system	no	match	was	found.	In	this
strategy,	all	no-match	references	are	given	this	same	no-match	identifier	value.
Furthermore,	the	no-match	identifier	value	is	created	in	a	way	to	guarantee	it	will	not
collide	with	any	of	the	managed	entity	identifiers.	It	is	the	responsibility	of	the	client
system	to	recognize	the	no-match	identifier	value	and	to	implement	any	logic	to	properly
handle	it	differently	than	it	would	a	managed	identifier.

An	alternate	no-match	strategy	is	to	create	a	temporary	or	local	entity	identifier	for
references	not	matching	a	managed	entity.	In	this	case,	the	unmanaged	identifier	is	created
by	hashing	certain	identity	attribute	values	in	the	reference.	For	example,	in	a	customer
reference,	the	unmanaged	entity	identifier	might	be	created	by	concatenating	the	first	letter
of	the	first	name,	the	first	eight	letters	of	the	last	name,	and	the	street	number	of	the
address.	Even	though	these	hash	keys	are	unmanaged,	they	can	provide	more	value	to	the
client	system	than	simply	providing	the	single,	no-match	indicator	of	the	first	strategy.

The	reason	they	are	useful	is	that	the	unmanaged	hash	keys	are	essentially	match	keys.
Two	references	will	only	produce	the	same	unmanaged	identifier	if	the	identity	attribute
values	used	to	produce	the	identifier	are	similar.	Consequently,	when	the	client	system
brings	together	references	appended	with	same	entity	identifiers,	there	is	a	higher
likelihood	the	references	with	the	same	unmanaged	identifiers	are	equivalent.	The
likelihood	of	equivalence	may	not	be	as	high	as	it	would	be	for	two	references	given	the
same	managed	entity	identifier,	but	nevertheless	it	provides	some	guidance	to	the	client
system	about	possible	equivalent	references.	Just	as	with	the	special	no-match	identifier	of
the	first	strategy,	the	unmanaged	identifiers	created	by	hashing	are	formatted	in	such	a
way	that	the	client	system	can	easily	discriminate	between	the	managed	and	unmanaged
entity	identifiers.

The	identity	resolution	configuration	of	EIIM	in	Figure	6.1	is	similar	to	the	automated
identity	update	configuration	shown	in	Figure	5.1,	but	with	some	important	differences.
The	first	and	most	important	difference	is	the	IKB	is	not	updated	in	the	identity	resolution
process.	In	identity	resolution,	the	input	references	act	only	as	inquiries	into	the	IKB	to
retrieve	entity	identifiers.	The	content	of	the	IKB	is	not	altered	by	the	identity	resolution
process.

That	is	not	to	say	that	identity	update	does	not	provide	identifiers,	because	it	does.	The
automated	update	process	also	provides	the	client	with	a	link	index	as	one	of	its	outputs,
thus	it	also	performs	identity	resolution.	However,	the	identity	resolution	provided	by	the
automated	update	process	through	the	link	index	is	really	a	byproduct	of	the	process,	not
its	primary	purpose.	The	primary	purpose	of	the	update	process,	both	automated	and
manual,	is	to	enrich	the	IKB	with	new	entity	identity	information	from	high-quality	entity
reference	sources.

Because	the	IKB	is	not	expected	to	be	altered	in	the	identity	resolution	configuration,
the	quality	of	the	input	references	can	be	much	lower	than	the	threshold	required	in	the
identity	update	configuration.	Of	course,	the	garbage-in-garbage-out	(GIGO)	rule	still
applies.	The	quality	of	a	reference	input	into	the	identity	resolution	process	will	still
influence	the	quality	of	the	output.	However,	the	difference	is	that	in	the	identity
resolution	configuration,	low	quality	input	references	will	not	lower	the	identity	integrity
of	the	IKB.

Interactive	Identity	Resolution
Interactive	identity	resolution	takes	place	when	a	client	system	submits	an	entity	reference
to	the	MDM	system	with	the	expectation	that	the	identifier	for	the	corresponding	entity
will	be	returned	in	real	time.	Because	real	time	is	generally	understood	to	mean	the	client
system	will	hold	further	processing	until	the	reply	is	received,	the	actual	amount	of	time
will	depend	upon	the	application.	Again	using	the	example	of	customer	MDM,	if	the
application	is	to	support	a	point-of-sale	(POS)	transaction	in	a	store,	the	time	between
entering	customer	identity	information	and	receiving	the	managed	identifier	for	the
customer	may	be	a	matter	of	a	few	seconds.	As	long	as	the	delay	does	not	burden	either
the	customer	or	the	sales	person,	then	it	is	considered	a	real-time	transaction.

For	system-to-system	transactions,	the	bar	may	be	set	orders	of	magnitude	higher	and
subsecond	response	times	may	be	necessary.	Another	consideration	is	the	total	volume	of
transactions	and	the	impact	on	the	overall	throughput	of	the	system.	For	example,	if	a	POS
transaction	needs	to	be	completed	in	one	second	for	each	user,	but	one	thousand	user
transactions	are	expected	to	arrive	each	second,	then	each	of	these	requests	must	be
serviced	in	one-thousandth	of	a	second	in	order	for	each	user	to	experience	no	more	than
one	second	of	delay.	For	this	reason,	an	SLA	for	response-time	performance	can	be	even
more	important	for	interactive	identity	resolution	than	it	is	for	batch	identity	resolution.

As	shown	in	Figure	6.2,	interactive	identity	resolution	is	usually	mediated	through	an
application	programming	interface	(API).	An	API	is	basically	a	contract	between	two
systems	specifying	that	when	a	defined	set	of	input	values	are	given,	a	defined	set	of
output	values	will	be	returned.	In	the	case	of	identity	resolution,	the	inputs	are	values	of
entity	identity	attributes,	and	the	value	returned	is	the	entity	identifier,	either	managed	or
unmanaged.

FIGURE	6.2 	Schema	for	interactive	identity	resolution.

Identity	Resolution	API
Many	options	for	the	implementation	of	an	API	for	identity	resolution	follow	a	number	of
API	standards	such	as	Common	Object	Request	Broker	Architecture	(CORBA)	and	the
Representational	State	Transfer	(REST)	architecture	of	the	World	Wide	Web	(so	called
RESTful	APIs).	However,	the	purpose	of	the	discussion	here	is	not	to	delve	into	the
details	of	implementation,	but	to	simply	point	out	some	of	the	high-level	design
considerations.

The	primary	trade-off	in	API	design	is	between	control	and	complexity.	Take	as	an
example	a	simple	identity	resolution	API	shown	in	Figure	6.3	for	a	student
MDM	application.	Here	the	client	exchanges	the	student’s	first	name,	last	name,	and	date-
of-birth	for	the	student’s	identifier.

The	simplicity	of	the	GetIdentifier()	design	comes	with	a	certain	surrender	of	control	by
the	client.	Except	for	the	choice	of	search	values,	all	other	aspects	of	the	exchange	are
determined	by	the	system	hub.	For	example,	the	only	options	for	client	input	are	the	three
identity	attributes	of	first	name,	last	name,	and	date-of-birth,	even	though	there	could	be
many	other	searchable	attributes	such	as	middle	name,	address,	or	gender.

The	GetIdentifier()	API	in	Figure	6.3	does	not	allow	the	client	to	specify	any	matching
criteria.	In	fact,	the	matching	criteria	are	not	exposed.	It	would	be	up	to	the	client	to
understand	exactly	how	matching	takes	place,	and	to	assess	its	suitability	for	a	particular
application.	Understanding	the	API	documentation	would	also	be	important	to	know	how
likely	it	is	that	when	GetIdentifier()	returns	a	managed	identifier,	it	is	the	correct	identifier
for	the	reference.	For	example,	if	the	input	reference	matches	two	or	more	entities,	does

the	API	simply	select	one	at	random	or	is	other	logic	invoked?	When	the	GetIdentifier()
API	returns	an	unmanaged	identifier,	how	does	the	client	know	the	reason?	Was	it	because
no	match	was	found?	Or	was	it	because	the	reference	matched	more	than	one	entity?

Giving	the	client	more	control	is	a	usually	a	design	choice	of	making	a	more	complex
API	to	accommodate	more	client	parameters	and	choices,	or	to	create	multiple	APIs	where
each	API	implements	only	part	of	the	logic.	When	a	decision	is	for	a	family	of	APIs,	then
the	client	may	need	to	make	several	calls	to	different	APIs	to	complete	a	process.

FIGURE	6.3 	Simple	GetIdentifier()	API.

API	Families
The	notion	of	an	API	family	is	similar	to	class	libraries	in	object-oriented	programming
languages	such	as	Java.	The	API	family	supports	overall	objectives	such	as	facilitating
identity	resolution,	but	each	API	in	the	family	is	responsible	for	only	one	particular	task	or
function.	Figures	6.4	and	6.5	show	a	GetKeywords()	API	and	a	GetIdentifierList()	API
working	together	to	give	the	client	system	more	control	over	the	identity	resolution
configuration.

The	GetKeywords()	shown	in	Figure	6.4	returns	as	output	a	list	of	string	values
representing	all	of	the	searchable	identity	attributes	for	the	system	named	in	the	input.
More	specifically,	GetKeywords()	returns	three	outputs.	The	first	is	an	error	code
signaling	the	client	whether	the	API	transaction	was	executed	successfully,	or	if	not,	some
indication	of	why	the	transaction	did	not	complete.	For	example,	one	value	of	the	error
code	might	indicate	that	the	system	name	given	was	invalid,	or	another	value	that	the
requested	system	was	unavailable	at	the	time	the	API	was	invoked.	Providing	an	error
code	or	completion	code	to	the	client	is	always	a	good	API	design	choice.	The	second
output	of	GetKeywords()	is	the	number	of	keywords	returned,	and	the	third	output	is	the
actual	list	of	keywords.

For	example,	suppose	the	client	system	is	a	visualization	tool	supporting	the	manual

update	process	as	described	in	Chapter	5.	Then	the	GetKeywords()	might	be	called	at
system	initialization	time	to	populate	a	dropdown	list	of	search	qualifiers	or	to	validate
search	qualifiers	manually	entered	by	the	operator.

Unlike	the	simple	GetIdentifier()	API	of	Figure	6.3,	the	GetIdentifierList()	shown	in
Figure	6.5	allows	the	client	to	search	on	any	combination	of	identity	attribute	values.	For
example,	suppose	the	GetKeywords()	returns	the	list	“First”,	“Middle”,	“Last”,	“DOB”,
and	“Gender”.	Then	the	list	given	as	input	to	the	GetIdentifierList()	might	look	like
“First:Geneva”,	“Gender:F”,	“DOB:19970507”	where	the	client	specifies	a	search	for
female	students	with	first	name	“Geneva”	and	born	on	May	7,	1997.

In	addition	to	allowing	the	client	to	select	its	own	combination	of	search	terms,	the
GetIdentifierList()	API	allows	the	client	more	control	over	the	matching	process.	The
assumption	for	this	example	is	that	the	GetIdentifierList()	API	is	using	a	scoring	rule	such
as	the	one	described	in	Chapter	3	to	match	search	terms	to	EIS.	The	first	input	of	the
GetIdentifierList(),	shown	as	“Threshold”	in	Figure	6.5,	establishes	the	minimum	score
constituting	a	match.

FIGURE	6.4 	GetKeywords()	API.

FIGURE	6.5 	Simple	GetIdentifierList()	API.

The	output	from	GetIdentifierList()	is	similar	to	the	output	from	GetKeywords().	The
client	system	receives	an	error	code	indicating	the	success	or	failure	of	the	invocation,	the
number	of	EIS	matching	the	search	query,	and	the	list	of	identifiers	for	the	matching	EIS.

The	APIs	given	here	by	no	means	constitute	a	complete	design.	They	are	only	given	to
illustrate	some	of	the	features	and	considerations	going	into	API	design.	This	family	could
have	many	other	APIs.	For	example,	another	API	might	be	named	SetWeights()	allowing
the	client	to	set	the	agreement	and	disagreement	weights	of	a	scoring	rule	that	does	the
matching.	Other	APIs	might	be	related	to	security	and	governance;	for	example,	there
could	be	an	API	requiring	the	client	to	give	a	username	and	password	in	exchange	for	an
access	token	required	to	invoke	other	APIs.

Confidence	Scores
In	many	respects,	the	two	API	examples	discussed	here	represent	the	extremes.	The
simple	GetIdentifier()	makes	all	of	the	decisions	about	the	matching	and	gives	the	client	a
single	answer.	On	the	other	hand,	the	API	family	including	functions	such	as
GetKeywords()	and	GetIdentifierList()	would	give	the	client	access	to	a	detailed	level	of
information	and	empower	more	sophisticated	decision-making	on	the	client	side.	An	API
family	providing	this	level	of	detail	would	be	needed	to	support	complex	applications,
such	as	a	visualization	tool	where	domain	experts	need	to	review	information	in	detail
before	making	correction	and	confirmation	decisions.

However,	if	the	client	is	another	automated	system,	then	an	intermediate	strategy	is
often	a	better	fit,	one	allowing	the	client	system	to	participate	in	making	a	decision	about
the	output.	One	technique	is	to	provide	the	client	with	a	single	output	identifier,	and	along
with	it,	a	second	value	called	a	confidence	score	or	confidence	factor.	The	purpose	of	the
confidence	score	is	to	give	the	client	system	some	quantitative	measure	of	the	likelihood
the	identifier	provided	by	the	identity	resolution	API	is	the	correct	identifier	for	input
reference.

Given	a	reference	having	some	level	of	match	to	one	or	more	managed	EIS,	the
calculation	of	a	confidence	score	needs	to	take	three	factors	into	account	–	the	depth	of
match,	the	degree	of	match,	and	the	match	context.	The	depth	of	match	is	measured	by
how	many	different	identity	attribute	values	participate	in	the	match,	whereas	the	degree
of	match	is	how	closely	the	values	of	each	attribute	match.	Finally,	the	match	context
comprises	all	of	the	EIS	having	defined	some	level	of	match	to	the	reference	in	question.

Depth	and	Degree	of	Match
Decisions	about	the	depth	and	degree	of	match	not	only	have	a	bearing	on	identity
resolution	but	are	also	an	integral	part	of	the	crafting	of	ER	match	rules	for	the	capture	and
update	configuration.	In	considering	whether	a	match	rule	will	predict	equivalence,	both
influences	must	be	considered.	Take,	as	an	example,	the	process	of	crafting	Boolean	rules
for	student	MDM.	Match	depth	is	about	how	many	identity	attributes	should	participate	in
a	match.	Is	a	match	on	first	name	and	last	name	enough?	In	most	cases,	probably	not.	For
common	names,	many	different	students	could	share	the	same	first	and	last	name.	An
extension	would	be	to	add	agreement	on	date-of-birth	to	the	rule.	Now	the	question
becomes	whether	there	also	different	students	who	share	the	same	first	name,	last	name,
and	date-of-birth.	As	new	attributes	are	added,	it	becomes	increasingly	likely	that	the
references	agreeing	on	all	of	the	values	are	equivalent	and	less	likely	they	would	not	be
equivalent.

As	a	reminder,	high-quality	MDM	can	only	be	attained	when	the	answers	to	questions
like	the	ones	here	are	answered	through	data	analysis	rather	than	heuristics	or	intuition,	as
is	so	often	the	case.	The	effort	expended	in	developing	and	using	the	techniques	of	truth
set	development,	benchmarking,	and	problem	sets	discussed	in	Chapter	3	is	an	investment
that	will	pay	back	many	times	in	the	long	term.

At	the	same	time,	the	depth	of	match	must	be	tempered	with	the	degree	of	match.	The
pervasiveness	of	poor	data	quality	usually	requires	agreement	between	values	that	must	be
defined	as	something	less	than	identical,	i.e.	less	than	an	exact	match.	The	recognition	that
the	values	of	identity	attributes	will	almost	always	have	variations	and	corruptions	has
driven	the	development	of	a	plethora	of	matching	algorithms.	Each	algorithm	is	designed
to	overcome	some	particular	type	of	variation	known	to	occur	in	identity	attribute	values.
These	approximate	or	fuzzy	matching	techniques	provide	a	way	to	measure	the	degree	of
match.

Take,	as	a	simple	example,	the	maximum	q-gram	similarity,	which	is	a	special	case	of
the	Jaccard	Index	character	strings.	Given	two	string	values,	the	maximum	q-gram
similarity	is	the	length	of	the	longest	shared	substring	divided	by	the	length	of	the	longest
string.	For	example,	consider	the	two	string	values	“HALVERS”	and	“EVERST”.	The
longest	substring	that	they	share	is	“VERS”	with	a	length	of	4	characters.	Because	the
longest	string	“HALVERS”	has	8	characters,	the	maximum	q-gram	similarity	is	4/8	=	0.50
or	50%.	It	is	also	easy	to	see	that	the	maximum	q-gram	similarity	can	only	be	100%	when
the	two	strings	are	identical,	and	the	similarity	will	be	0%	for	two	strings	not	having	any
characters	in	common.

Given	a	depth	of	match	and	a	degree	of	match,	a	reference-to-reference	match	may	be
assigned	a	score	using	several	methods.	Suppose	the	depth	of	match	is	a	set	of	N	identity
attributes	and	the	degree	of	match	is	determined	by	a	similarity	function	F	(like	maximum
q-gram)	taking	on	values	between	0	and	1.	If	aj	represents	the	value	of	the	j-th	identity
attribute	of	the	first	reference	A,	and	bj	represents	the	corresponding	j-th	attribute	of	the
second	reference	B,	then	a	commonly	used	pattern	to	calculate	a	match	score	follows	the
formulation

The	match	score	is	simply	the	average	of	the	similarity	scores	between	each	of	the
corresponding	attribute	values	of	the	two	references.

For	example,	suppose	N	=	2,	and	the	two	attributes	are	student	first	name	and	last	name.
Let	reference	A	be	(“JON”,	“HALVERS”)	and	reference	B	be	(“JOE”,	“EVERST”).	Also,
let	F	be	the	maximum	q-gram	similarity	function.	Then

A	more	sophisticated	version	of	this	formulation	allows	the	user	to	assign	different
weights	to	each	attribute.	This	is	helpful	when	the	similarity	for	certain	identity	attributes
is	a	better	predictor	of	equivalence	than	other	attributes,	as	these	can	be	given	higher
weights.

where

The	second	formulation	also	allows	attributes	to	be	compared	by	different	similarity
functions.	For	instance,	if	one	of	the	identity	attributes	is	date-of-birth,	then	a	similarity
function	designed	to	measure	similarity	in	the	number	of	days	between	two	date	values
would	be	more	appropriate	than	something	comparing	string	similarity	like	the	maximum
q-gram	similarity	function.

All	similarity	functions	are	required	to	return	values	between	0	and	1	and	the	weights
assigned	to	each	attribute	must	total	1.0	to	ensure	the	match	score	value	will	also	be	a
value	between	0	and	1.

However,	in	identity	resolution	the	match	is	between	a	reference	and	a	managed	EIS	in
the	IKB.	What	is	needed	is	a	reference-to-structure	score.	Again,	a	reference-to-structure
match	score	may	be	formulated	in	many	ways	and	will	depend	upon	the	architectural
design	of	the	EIS.	For	systems	that	implement	record-based	EIS	design,	as	discussed	in
Chapter	4,	a	reference-to-structure	match	score	can	be	easily	formulated	as	follows.	Let	A
represent	a	reference	with	N	attributes	and	let	S	represent	a	record-based	EIS	containing	M
references	R1,	R2,	…,	RM.	Then	a	reference-to-structure	match	score	can	be	defined	by

In	this	formulation,	the	reference-to-structure	match	score	is	simply	the	largest
reference-to-reference	match	score	taken	over	all	of	the	references	comprising	the	record-
based	EIS.

Match	Context
The	third	component	of	an	identity	resolution	confidence	score	is	the	match	context.
While	it	is	important	to	understand	the	level	of	match	between	a	reference	and	any	one
particular	EIS,	it	is	also	important	to	understand	how	many	other	EIS	also	have	some	level
of	match	to	the	same	reference.	These	other	EIS	and	the	reference	form	the	match	context.
However,	the	way	in	which	a	match	context	interacts	with	reference-to-structure	match
scores	to	create	a	confidence	score	will	depend	upon	the	universe	model	of	the	identity
resolution	configuration.

Closed	and	Open	Universe	Models
An	identity	resolution	configuration	is	said	to	use	a	closed	universe	model	if	all	of	the
input	references	requesting	an	identifier	from	the	system	are	references	to	entities	already
under	management.	In	other	words,	only	references	to	managed	entities	are	given	as	input
to	the	identity	resolution	configuration.	In	a	closed	universe,	the	question	is	not	whether	a
reference	is	to	a	managed	entity;	rather	it	is	only	which	managed	entity	is	being

referenced.

On	the	other	hand,	an	identity	resolution	configuration	is	using	an	open	universe	model
if	some	of	the	input	references	requesting	an	identifier	from	the	system	are	references	to
entities	not	under	management.	In	an	open	universe	model	the	system	is	being	asked	to
recognize	whether	a	reference	is	to	an	entity	under	management	with	the	expectation	some
references	will	not	be	recognized.	The	identity	resolution	configuration	will	return	an
unmanaged	entity	identifier	in	response	to	an	unrecognized	reference,	but	it	will	not
update	the	system.

Open	and	closed	universe	models	describe	the	context	of	the	identity	resolution
configuration	and	not	the	MDM	system	itself.	The	same	MDM	system	may	run	an	identity
resolution	configuration	in	both	open	and	closed	models	at	different	times.	Take,	as	an
example,	a	student	MDM	system	for	a	school.	Suppose	all	of	the	students	in	the	school	or
in	a	particular	class	take	a	standardized	examination.	When	taking	the	examination
students	fill	in	their	multiple-choice	answers	on	a	scan	sheet	along	with	their	name	and
date-of-birth.	These	answer	sheets	are	then	scanned	and	captured	as	electronic	records.
Finally,	the	answer	sheet	records	are	submitted	to	an	identity	resolution	configuration	of
the	student	MDM	system	to	obtain	the	student’s	managed	identifier.

In	this	examination	scenario,	the	identity	configuration	is	operating	in	a	closed	universe
model	because	the	expectation	is	that	every	test	record	references	a	student	under
management	in	the	MDM	system.	However,	the	closed	universe	model	does	not
necessarily	guarantee	every	reference	will	have	a	managed	identifier	appended.	There
could	be	many	reasons	why	an	answer	sheet	fails	to	receive	a	proper	identifier,	such	as	a
scanning	error	corrupting	the	information,	a	damaged	scan	sheet,	or	the	student	incorrectly
entered	information.	Nevertheless,	each	record	generated	from	a	scan	sheet	is	intended	to
reference	one	of	the	students	in	the	school	or	class	who	took	the	examination.

In	a	different	scenario,	the	school	is	sponsoring	an	event	open	to	the	public.	However,
students	of	the	school	sponsoring	the	event	are	entitled	to	a	special	discount	on	their
registration	fee.	One	of	the	functions	of	the	event	registration	system	is	to	pass	each
attendee’s	registration	information	to	an	identity	resolution	configuration	of	the	school’s
MDM	system	to	determine	if	the	attendee	is	a	student.	In	this	open	universe	scenario,	only
the	registration	records	for	students	of	the	sponsoring	school	are	expected	to	match	and
return	a	managed	identifier,	while	the	records	for	other	attendees	should	not.

Confidence	Score	Model
To	understand	the	confidence	score	model,	first	consider	the	case	of	closed	universe
identity	resolution.	Here	the	guiding	principle	is	any	match	is	a	good	match.	This	is
because	in	a	closed	universe	model	the	input	reference	is	presumed	to	match	one	of	the
EIS,	and	therefore,	it	is	presumed	to	be	the	EIS	with	the	highest	reference-to-structure
match	regardless	of	the	actual	score.

Consider	an	example	where	the	depth	is	3	attributes	all	with	equal	weights.	Suppose	an
input	reference	R	has	a	0.333	match	score	with	a	structure	S	because	it	has	an	exact	match

on	one	attribute,	but	the	values	of	the	other	two	attribute	values	are	missing.	Further
suppose	R	has	a	0.000	match	with	all	other	structures	in	the	IKB,	i.e.	R	and	S	form	the
complete	context.	Even	though	this	is	a	low	match	score	in	absolute	terms,	because	of	the
closed	universe	assumption,	the	confidence	score	for	the	match	to	S	is	essentially	1.00	or
100%.	In	other	words,	the	API	would	give	the	client	the	managed	identifier	of	S	with	a
confidence	score	1.000	that	it	is	the	correct	identifier	even	though	the	reference-to-
structure	match	score	is	only	0.333.

Now	suppose	reference	R	is	more	complete	with	only	one	attribute	value	missing.
Further	suppose	the	two	non-null	attributes	are	an	exact	match	to	structure	S1	giving	it	a
0.667	reference-to-structure	match	score.	Also	suppose	R	has	a	0.500	match	score	with
structure	S2,	and	a	0.000	match	score	with	all	other	structures.	Even	in	this	case	the	API
should	return	to	the	client	the	managed	identifier	of	S1	with	a	confidence	of	100%.	The
reason	is	that	R	is	known	to	match	one	of	the	structures	and	because	S1	provides	the
highest	match,	it	must	be	the	one.

The	only	exception	to	the	highest-score-wins	principle	is	when	two	structures	have	the
same,	or	essentially	the	same,	match	scores.	Now	it	becomes	ambiguous	as	to	which
structure	is	the	correct	one.	For	example,	if	R	has	a	0.667	match	with	both	structures	S1
and	S2,	then	the	API	would	return	the	identifier	for	S1	(or	S2),	but	with	a	confidence	score
of	0.500	or	50%	because	there	is	essentially	a	50/50	chance	it	could	be	equivalent	to	either
one.	Similarly,	if	R	matched	S1,	S2,	and	S3	with	the	same	score	of	0.667,	then	the
confidence	score	for	the	identifier	of	S1	would	be	0.333	or	33%,	the	equal	distribution	of
the	100%	among	the	three	competing	EIS.

Although	this	is	greatly	simplified,	the	underlying	principle	holds.	If	the	structure	with
the	highest	match	score	is	a	clear	winner	in	the	context	of	other	structures,	then	its
identifier	should	be	returned	along	with	the	maximum	confidence	score.	If	there	is	a	tie	for
the	highest	level	of	match,	then	the	identifier	for	the	one	the	EIS	and	confidence	score
returned	is	the	maximum	score	divided	by	the	number	of	matching	EIS.

Again	due	to	data	quality	issues,	it	is	unlikely	the	confidence	score	for	the	highest
reference-to-structure	match	will	always	be	100%.	For	example,	in	a	customer	MDM,
suppose	that	S1	is	a	structure	representing	customer	Mary	Smith.	If	Mary	were	to	change
her	name	to	Mary	Jones,	then	it	would	be	possible	that	a	reference	R	with	the	name	Mary
Jones	may	generate	a	higher	reference-to-structure	score	with	some	structure	R2
representing	a	different	customer,	also	with	the	last	name	of	Jones.	These	and	other
possible	scenarios	would	indicate	that	the	confidence	score	would	tend	to	decrease	as	the
highest	reference-to-structure	score	decreases.

The	function	G	plotted	in	Figure	6.6	shows	this	relationship.	In	the	closed	universe,	the
confidence	remains	high	even	for	smaller	match	scores.	However,	Figure	6.7	shows	that	in
the	open	universe	model,	the	behavior	of	the	function	G	is	much	different.

FIGURE	6.6 	Confidence	score	vs.	match	score	–	closed	universe.

FIGURE	6.7 	Confidence	score	vs.	match	score	–	open	universe.

In	the	open	universe	model	the	probability	that	an	identifier	is	correct	for	a	given
reference	remains	small	until	the	value	approaches	the	match	threshold.	The	match
threshold	is	the	degree	of	match	equivalent	to	an	ER	match	rule	used	in	a	capture	or
update	configuration.

The	only	remaining	factor	is	in	defining	whether	the	EIS	with	the	highest	match	score
to	the	reference	is	a	clear	winner.	Within	a	given	match	context,	several	EIS	could	have
the	same	or	similar	match	scores	as	the	highest	match	score.	To	address	this	issue,	let	R	be
the	input	reference,	let	Γrepresent	the	set	of	EIS	having	a	nonzero	match	score	with	R,	i.e.
R	and	Γ	are	the	match	context.	If	μ	represents	the	reference-to-structure	match	score
function	and	E0	represents	the	EIS	in	Γ	having	the	highest	match	score	with	R,	then	define

T	is	the	count	of	EIS	having	match	scores	within	δ	of	the	highest	match	score.	Because
this	includes	E0,	T	must	be	at	least	1.	Just	as	with	the	probability	function	G,	the	value	of	δ
should	be	determined	empirically.

Applying	these	principles,	the	confidence	score	for	both	the	closed	and	open	universe
models	can	be	formulated	as

Concluding	Remarks
The	resolve	and	retrieve	phase	is	the	most	important	of	all	the	CSRUD	MDM	life	cycle
phases.	Resolving	an	entity	reference	to	its	correct	entity	(EIS)	is	the	primary	use	case	for
MDM	–	the	phase	producing	value	for	the	enterprise.

A	major	issue	for	the	resolve	and	retrieve	phase	is	the	synchronization	of	identifiers	in
the	MDM	hub	with	identifiers	residing	in	client	systems.	As	identifiers	change	in	the	hub,
the	changes	must	somehow	be	propagated	to	the	clients’	systems.	The	two	primary
strategies	are	periodically	pulling	source	records	from	the	clients’	systems	back	to	the	hub
for	re-resolution	to	refresh	the	identifiers,	and	pushing	changes	from	the	hub	to	client
systems	as	they	occur.	The	pull	model	is	the	simpler	of	the	two	strategies,	but	for	some
organizations	and	applications,	the	pull	model	may	not	meet	the	business	and	functions
requirements	for	the	MDM	application.

In	addition	to	synchronization,	quantifying	the	reliability	of	a	resolved	identifier	is	also
a	problem.	The	reliability	of	identification	will	vary	from	inquiry	to	inquiry	depending
upon	the	depth,	breadth,	and	context	of	the	match	to	the	EIS	in	the	identity	knowledge
base.	In	order	to	provide	guidance	to	the	inquiring	client	system,	some	MDM	systems
compute	a	confidence	score	for	each	inquiry	providing	the	client	system	with	an	estimate
of	the	likelihood	that	a	resolved	identifier	is	correct.

CHAPTER	7

Theoretical	Foundations

Abstract
This	chapter	contains	a	discussion	of	three	major	theoretical	models	supporting	modern	MDM	systems:	the	Fellegi-
Sunter	Theory	of	record	linkage	that	laid	the	foundation	for	both	Boolean	and	scoring	rule	design	and	the	notion	of
clerical	review;	the	Stanford	Entity	Resolution	Framework	(SERF)	that	gives	a	mathematical	definition	of	entity
resolution	of	a	set	of	references	and	algorithms	always	arriving	at	resolution;	and	the	Entity	Identity	Information
Management	(EIIM)	model	that	extends	entity	resolution	to	address	the	life	cycle	management	of	information	and
how	it	articulates	with	both	the	Fellegi-Sunter	and	SERF	models	of	ER.

Keywords
Fellegi-Sunter	model;	SERF;	EIIM;	Stanford	entity	resolution
framework;	entity	identity	information	management

The	Fellegi-Sunter	Theory	of	Record	Linkage
In	1969,	I.P.	Fellegi	and	A.B	Sunter,	statisticians	working	at	the	Dominion	Bureau	of
Statistics	in	Canada,	published	a	paper	titled	A	Theory	for	Record	Linkage	(Fellegi	&
Sunter,	1969)	describing	a	statistical	model	for	entity	resolution.	Known	as	the	Fellegi-
Sunter	Model,	it	has	been	foundational	to	ER,	and	by	extension	MDM,	in	several
fundamental	ways:

•	It	described	record	linking,	a	particular	configuration	of	ER,	in	a	rigorous	way	using	the
language	of	mathematics	and	statistics.

•	Although	the	structure	of	the	matching	rule	is	no	longer	used	exactly	as	they	described	it,
it	still	informs	both	of	the	most	frequently	used	styles	of	matching	used	today,	Boolean
rules	and	scoring	rules.

•	It	emphasized	the	role	and	importance	of	entity	resolution	analytics.	The	fundamental
theorem	is	about	optimizing	match	rules	with	respect	to	a	maximum	allowable	false
positive	rate	and	a	maximum	allowable	false	negative	rate.

•	It	defined	a	method	for	generating	clerical	review	indicators.	The	proof	of	the
fundamental	theorem	relies	on	the	assumption	that	human	reviewers	will	always	be	able
to	correctly	decide	if	a	pair	of	references	indicated	for	review	are	equivalent	or	not
equivalent.

The	Context	and	Constraints	of	Record	Linkage
The	theory	of	record	linkage	is	set	in	a	special	context	of	linking	across	two	lists	of
references.	It	addresses	the	problem	of	finding	equivalences	between	pairs	of	references
where	one	reference	is	in	the	first	list	and	the	other	reference	is	in	the	second	list.	In	the
proof	of	the	theorem,	they	generously	assumed	the	list	had	no	equivalences.	In	other
words,	no	two	references	within	the	same	list	were	equivalent;	equivalences	could	only	be
found	between	the	two	lists.	This	is	much	different	than	the	context	described	in	the
previous	chapters	where	the	input	is	a	single	set	of	references.	Although	the	EIIM
configuration	of	merge-purge	is	often	called	record	linking,	technically	record	linking	and
merge-purge	are	different	processes.	In	the	merge-purge	configuration	of	EIIM,	a	single
list	of	references	is	partitioned	in	clusters	of	presumed	equivalent	references,	whereas
record	linking	takes	place	only	between	two	separate	lists	of	references.

From	an	analytical	perspective,	if	X	and	Y	represent	the	two	lists,	then	the	number	of
pairs	to	be	considered	for	record	linking	will	be	|X|∗|Y|,	the	size	of	the	cross	product

X×	Y.	In	merge-purge,	there	are	(|X| 	+	|Y|)∗(|X| 	+	|Y|−1)/2	pairs	to	consider.
Moreover,	in	record	linking,	the	maximum	number	of	equivalences	possible	will	be
Minimum{|X|,	|Y|}	because	each	reference	in	List	X	can	only	be	equivalent	to,	at	most,
one	reference	in	List	Y.	If	a	reference	in	List	X	were	equivalent	to	two	references	in	List
Y,	then	by	transitivity	of	equivalence,	the	two	references	in	List	Y	would	necessarily	be

equivalent	and	contradict	the	assumption	that	no	two	pairs	of	references	in	List	Y	are
equivalent.	A	similar	argument	holds	that	each	reference	in	List	Y	can	only	be	equivalent
to,	at	most,	one	reference	in	List	X.

However,	the	confusion	is	forgivable.	Just	from	a	practical	viewpoint,	starting	an	ER
process	with	two	lists	where	each	list	is	known	to	be	free	of	equivalent	references	is	rare.
Given	two	lists	of	references	in	the	real	world	there	could	well	be	equivalent	references
within	each	list	as	well	as	between	the	two	lists.	As	a	practical	matter,	record	linking	is
often	implemented	by	first	merging	the	two	lists	into	a	single	list,	then	running	a	merge-
purge	or	identity	capture	configuration.	If	the	two	lists	are	truly	free	of	internal
equivalences,	then	each	cluster	formed	in	the	merge-purge	process	can	comprise	only	a
single	reference	or	two	references	where	each	is	from	a	different	list.	The	latter	indicates	a
link	between	the	two	lists.	On	the	other	hand,	if	a	cluster	contains	two	references	from	the
same	list,	then	the	two	references	are	presumably	equivalent	and	this	indicates	the
assumption	was	not	justified.	In	this	way,	equivalence	references	can	be	found	in	one
process	both	between	the	lists	and	within	each	list.

The	Fellegi-Sunter	Matching	Rule
An	understanding	of	the	Fellegi-Sunter	matching	rule	is	essential	to	understanding	the
overall	theorem.	Another	assumption	is	the	two	lists	of	references	have	the	same	number
and	types	of	identity	attributes.	In	other	words,	there	is	a	one-to-one	correspondence
between	the	identity	attributes	in	the	first	list	and	the	identity	attributes	in	the	second	list.
Suppose	in	the	first	list,	List	X,	each	reference	has	N	identity	attributes	x1,	x2,	…,	xN,	and
in	the	second	list,	List	Y,	each	reference	has	the	corresponding	identity	attributes	y1,	y2,	…,
yN.

An	agreement	pattern	between	two	references	from	Lists	X	and	Y	is	an	N-bit	binary
number	where	the	k-th	bit	of	the	binary	number	represents	the	state	of	agreement	between
the	k-th	identity	attribute	of	List	X	(xk)	and	the	k-th	identity	attribute	of	List	Y	(yk).	If	the
k-th	bit	of	the	pattern	is	a	1,	then	the	two	attributes	agree	in	value.	If	the	k-th	bit	of	the
pattern	is	a	0,	then	the	two	attributes	disagree	in	value.

Take,	as	a	simple	example,	two	Lists	X	and	Y	sharing	three	identity	attributes,	say	first
name,	middle	name,	and	last	name	of	a	customer.	Then	the	agreement	patterns	will	be	3-
bit	binary	numbers.	For	example,	the	agreement	pattern	101	means	the	values	of	the	first
name	attribute	agree	(1),	the	values	of	the	middle	name	attribute	disagree	(0),	and	the
values	of	the	last	name	attribute	agree	(1).	In	this	example	of	three	identity	attributes	there
are	8	=	23	possible	agreement	patterns	corresponding	to	the	8	binary	numbers	from	000	to
111.	In	general,	for	N	corresponding	identity	attributes	there	will	be	2N	possible	agreement
patterns.

It	should	also	be	noted	that	agreement	does	not	necessarily	mean	the	two	identity
attribute	values	are	exactly	the	same.	It	could	be	defined	to	mean	agreement	on	Soundex
code,	or	having	a	q-Gram	similarity	of	80%	or	larger,	or	any	other	type	of	ER	comparator.
Moreover,	agreement	can	be	defined	differently	for	each	attribute.

In	this	respect,	agreement	patterns	are	a	special	type	of	Boolean	match	rule.	In	the
previous	example	the	101	pattern	might	be	interpreted	as	the	proposition	“(First	name
values	agree	on	Soundex	match)	AND	(NOT(middle	name	values	agree	by	Exact	match))
AND	(last	name	values	agree	by	Exact	match)”.	However,	most	systems	supporting
Boolean	rules	do	not	implement	the	NOT	operator.	Instead,	the	identity	attributes	not
required	to	match	are	not	specified	in	the	rule	and	treated	as	“don’t	care”	states.	In	other
words,	the	Boolean	rule	“First	name	values	agree	on	Soundex	AND	last	name	values
agree	by	exact”	would	be	True	as	long	there	was	agreement	on	the	first	and	last	name
regardless	of	whether	the	middle	name	values	agree	or	not.	Thus,	this	Boolean	version	of
the	rule	would	encompass	both	the	101	and	111	Fellegi-Sunter	agreement	patterns.

Given	two	lists	of	references,	List	X	and	List	Y,	sharing	N	identity	attributes,	define	Γ	to
be	the	set	of	2N	possible	agreement	patterns.	Then	a	Fellegi-Sunter	matching	rule	is
defined	by	three	sets	A,	R,	and	V	where

1.	A⊆Γ,	R⊆Γ,	V⊆Γ

2.	A∩R	=	∅,	A∩V	=	∅,	R∩V	=	∅
3.	A∪R∪V	=	Γ
Although	A,	R,	and	V	are	nonoverlapping	sets	covering	Γ,	they	do	not	always	form	a

partition	of	Γ	because	they	are	not	required	to	be	nonempty	subsets	of	Γ.

Now	let	x∈X,	y∈X,	and	let	γ∈Γ	represent	the	agreement	pattern	between	values	of	the
identity	attributes	of	the	references	x	and	y.	Then	the	Fellegi-Sunter	matching	rule	F	=
{A,R,V}	states

1.	If	γ∈A,	then	always	link	reference	x	and	y,

2.	Else	if	γ∈R,	then	always	reject	linking	(never	link)	reference	x	and	y,

3.	Else	if	γ∈V,	then	a	person	must	verify	that	x	and	y	are,	or	are	not,	equivalent	and	link
accordingly.

All	of	this	is	just	a	mathematical	way	of	saying	divide	all	of	the	possible	agreement
patterns	into	three	nonoverlapping	groups,	A,	R,	and	V.	When	comparing	references	from
Lists	X	and	Y,	if	the	values	of	the	corresponding	identity	attributes	conform	to	an
agreement	pattern	in	the	set	A,	then	the	rule	is	to	always	link	the	references	together.	If	the
agreement	pattern	is	in	the	set	R,	then	the	rule	is	to	never	link	the	references	together.	If
the	agreement	pattern	is	in	the	set	V,	then	the	rule	is	a	person	must	verify	whether	the	two
references	should	be	linked	or	not.

The	Fundamental	Fellegi-Sunter	Theorem
The	crux	of	the	Fellegi-Sunter	theory	rests	on	one	fundamental	theorem.	The	fundamental
theorem	adds	two	more	elements	to	the	context	besides	to	the	two	lists	of	references.

These	elements	are	two	constraint	values:	the	maximum	allowable	false	negative	rate
denoted	by	λ	and	the	maximum	false	positive	rate	denoted	by	μ.

The	fundamental	theorem	of	the	Fellegi-Sunter	theory	says,	given	the	context	of	two
lists	X	and	Y	and	constraints	λ	and	μ,	then	it	will	always	be	possible	to	find	a	Fellegi-

Sunter	match	rule	F	=	{A, 	R, 	V}	that	is	optimal	with	respect	to	the	following:
1.	The	false	positive	rate	from	always	linking	reference	pairs	with	agreement	patterns	in	A
will	not	exceed	μ;

2.	The	false	negative	rate	from	never	linking	reference	pairs	with	agreement	patterns	in	R
will	not	exceed	λ;	and

3.	The	number	of	reference	pairs	with	agreement	patterns	in	V	requiring	manual
verification	will	be	minimized.

Fortunately	the	proof	of	the	theorem	is	a	constructive	proof,	i.e.	the	proof	of	the
theorem	shows	how	to	construct	the	rule	F	=	{A,	R,	V}	satisfying	these	conditions.

The	construction	starts	with	the	two	lists	of	references	X	and	Y.	Let	X×Y	represent	all
possible	pairs	of	these	references	(x,	y)	where	x∈X	and	y∈Y,	and	γ∈Γ	is	one	of	the
agreement	patterns.	Now	let	E⊆X×Y	represent	the	pairs	of	references	actually	equivalent
to	each	other.	The	construction	of	the	rule	is	fairly	straightforward	and	relies	primarily	on
the	following	formula:

The	fraction	Rγ	is	called	the	Pattern	Ratio	for	pattern	γ.	The	numerator	of	the	ratio	is	the
probability	two	equivalent	references	will	conform	to	the	agreement	pattern	γ,	and	the
denominator	is	the	probability	that	two	nonequivalent	references	will	conform	to	γ.
Because	these	fractions	can	be	very	large	or	very	small,	the	theorem	also	defines	Wγ	the
Pattern	Weight	for	γ	by	simply	converting	the	ratio	Rγ	to	its	logarithmic	value,	i.e.

The	pattern	ratio	and	pattern	weight	measure	the	predictive	power	of	each	pattern	for
equivalence	or	nonequivalence.	If	the	probability	that	equivalent	references	satisfy	a	given
pattern	is	high	and	the	probability	that	nonequivalent	references	satisfy	the	same	pattern	is
low,	the	ratio	will	be	very	large.	It	also	means	the	pattern	is	a	good	predictor	of	whether
the	two	references	should	be	linked	because	it	is	associated	with	a	high	probability	of
equivalence,	thus	creating	a	true	positive	link.	As	the	numerator	approaches	1	and	the
denominator	approaches	0,	the	value	of	the	ratio	becomes	unbounded.	To	avoid	the
problem	of	division	by	zero,	the	denominator	is	never	allowed	to	be	smaller	than	a	very
small,	but	fixed,	value.

FIGURE	7.1 	Candidates	for	sets	A,	V,	and	R	based	on	ordered	pattern	weights.

On	the	other	hand,	if	the	numerator	is	small	and	the	denominator	is	large,	the	ratio	will
be	small	and	weight	will	be	a	small	negative	value.	In	this	case	the	pattern	predicts	that	the
references	should	not	be	linked	because	the	references	are	more	likely	to	be	true	negatives.

From	this	it	is	easy	to	see	that	the	highest	weight	patterns	are	the	best	choices	for
members	of	the	set	A	of	the	rule	(always	link),	and	the	lowest	weight	patterns	are	the	best
choices	for	members	of	the	set	R	of	the	rule	(never	link).	In	the	proof	of	the	theorem	the
patterns	are	ordered	from	highest	to	lowest	weight.

The	ordering	and	candidates	for	the	members	of	the	A,	V,	and	R	set	of	the	rules	are
shown	in	Figure	7.1.	The	only	question	is	how	many	of	the	patterns	with	high	weights
should	go	into	A	and	how	many	with	the	lowest	weights	should	go	into	R.	The	answers	to
these	questions	are	determined	by	the	constraints	λ	and	μ.

Note	that	if	a	pattern	is	selected	for	the	set	A,	then	any	pair	of	references	conforming	to
the	pattern	will	be	linked.	Linking	will	either	result	in	a	true	positive	or	a	false	positive.
Patterns	in	A	never	create	false	negative	links.	They	can	only	make	true	or	false	positives.
Also,	unless	the	denominator	of	the	pattern	ratio	equals	0,	the	pattern	will	make	some	false
positive	links,	i.e.	it	will	link	two	nonequivalent	references.	The	false	positive	rate	for	a
pattern	in	A	is	the	ratio	of	the	number	of	nonequivalent	pairs	of	references	it	links	together
to	the	total	number	of	nonequivalent	pairs.

The	algorithm	for	selecting	patterns	for	membership	in	A	proceeds	as	follows,	starting
with	A	empty	and	the	cumulative	false	positive	rate	equal	to	zero.	Start	with	the	pattern
having	the	highest	weight.	If	the	pattern’s	false	positive	rate	is	greater	than	μ,	then	the
algorithm	stops	and	A	remains	empty.	Otherwise	add	the	pattern	to	A,	add	its	false
positive	rate	to	the	cumulative	false	positive	rate,	and	select	the	pattern	with	the	next
highest	weight.	If	the	cumulative	false	positive	rate	plus	the	false	positive	rate	of	the	next
pattern	is	greater	than	μ,	then	the	algorithm	stops.	Otherwise	add	this	pattern	to	A,	add	its
false	positive	rate	to	the	cumulative	false	positive	rate,	and	select	the	pattern	with	the	next
highest	weight.	This	process	continues	until	a	pattern	is	selected	causing	the	cumulative
false	positive	rate	of	the	patterns	in	A	to	exceed	μ,	the	maximum	allowable	false	positive
rate.

After	the	members	of	A	are	selected,	the	next	step	is	to	select	the	agreement	patterns	for
R.	If	a	pattern	is	selected	for	the	set	R,	then	any	pair	of	references	conforming	to	the
pattern	will	not	be	linked.	Therefore,	patterns	in	R	can	only	create	true	negatives	or	false
negatives.	When	two	equivalent	references	conform	to	a	pattern	in	R,	then	the	pattern	will
create	a	false	negative.	The	false	negative	rate	of	a	pattern	in	R	is	the	ratio	of	the	number
of	equivalent	pairs	satisfying	the	pattern	to	the	total	number	of	equivalent	pairs.

The	algorithm	for	selecting	patterns	for	membership	in	R	follows	a	similar	algorithm	to

the	one	for	A,	starting	with	R	empty	and	the	cumulative	false	negative	rate	equal	to	zero.
Start	with	the	pattern	having	the	lowest	weight.	If	its	false	negative	rate	is	greater	than	λ,
then	the	algorithm	stops	and	R	remains	empty.	Otherwise	add	the	pattern	to	R,	add	its
false	negative	rate	to	the	cumulative	false	negative	rate,	and	select	the	pattern	with	the
next	lowest	weight.	If	the	cumulative	false	negative	rate	plus	the	false	negative	rate	of	the
next	pattern	is	greater	than	λ,	then	the	algorithm	stops.	Otherwise	put	this	pattern	in	R,	add
its	false	negative	rate	to	the	cumulative	false	negative	rate,	and	select	the	pattern	with	the
next	lowest	weight.	This	process	continues	until	a	pattern	is	selected	that	causes	the
cumulative	false	negative	rate	of	the	patterns	in	R	to	exceed	λ	or	until	there	are	no	other
patterns	remaining	to	select	(not	already	selected	for	A).

The	members	of	set	V	are	determined	by	default.	If	after	selecting	the	members	of	A
and	R	patterns	still	remain,	then	these	patterns	comprise	V.	The	construction	of	the
Fellegi-Sunter	rule	F	=	{A,	R,	V}	is	now	complete.

Since	its	original	publication,	a	number	of	authors	have	described	many	extensions	and
improvements	of	the	Fellegi-Sunter	Model.	Most	notably	William	Winkler	at	the	U.S.
Bureau	of	the	Census	has	published	on	the	application	of	expectation-maximization
methods	(Winkler,	1988)	ways	to	adjust	for	lack	of	conditional	independence	among
attributes	(Winkler,	1989a),	and	the	automation	of	weight	calculations	(Winkler,	1989b).

Attribute	Level	Weights	and	the	Scoring	Rule
Although	the	theorem	and	the	construction	of	the	Fellegi-Sunter	rule	are	elegant,	the
theory	presents	some	practical	challenges	in	its	implementation.	One	of	the	biggest
problems	is	with	the	number	of	possible	patterns	that	must	be	analyzed.	It	might	not	be
uncommon	in	an	application	to	have	10	identity	attributes.	To	develop	a	Fellegi-Sunter
rule	for	such	an	application	would	require	the	analysis	of	1,024	=	210	agreement	patterns.

However,	if	prepared	to	make	the	assumption	that	the	identity	attributes	are
conditionally	independent,	then	the	problem	can	be	greatly	simplified.	The	conditional
independence	assumption	is	that	the	probability	of	agreement	or	disagreement	between
two	values	of	one	identity	attribute	does	not	affect	the	probability	of	agreement	or
disagreement	between	two	values	of	any	other	identity	attribute.	Of	course	in	most
applications,	this	is	not	entirely	true.	For	example,	if	two	addresses	were	to	agree	on	a
state,	then	the	agreements	on	city	will	be	limited	to	the	names	of	cities	in	that	state.
However,	in	general,	the	benefits	of	assuming	conditional	independence	outweigh	these
concerns.

The	benefit	of	assuming	conditional	independence	of	the	identity	attributes	is	that	the
calculation	of	the	pattern	weight	can	be	estimated	by	calculating	the	weight	of	each
identity	attribute.	In	their	book,	Herzog,	Scheuren,	and	Winkler	(2007)	give	an	excellent
exposition	of	the	method	for	calculating	pattern	weights	from	the	estimated	probabilities
of	agreement	and	disagreement	on	individual	identity	attributes.	Given	the	attributes	are
conditionally	independent,	the	pattern	weight	calculation	is

By	using	this	calculation,	the	estimate	for	each	pattern	weight	can	be	calculated	by
summing	the	ratios	associated	with	individual	attributes.	Using	the	previous	example	of
the	agreement	pattern	101,	then

where	m1	is	the	probability	that	equivalent	records	agree	on	first	name,	and	u1	is	the
probability	that	nonequivalent	records	agree	on	first	name.	The	values	of	m2	and	u2	are	for
similar	probabilities	on	values	of	middle	name,	and	m3	and	u3	for	values	of	last	name.

In	this	scheme	each	attribute	has	two	weights,	an	agreement	weight	and	a	disagreement
weight.	These	weights	are	summed	to	estimate	the	weight	of	the	complete	pattern.	When
implemented	in	software,	this	“on-the-fly”	generation	of	the	pattern	weight	is	called	a
scoring	rule	as	discussed	in	Chapter	3.	The	example	given	in	Figure	3.4	shows	the
automatic	generation	of	the	weight	for	the	agreement	pattern	10110.

When	scoring	rules	are	implemented	in	ER	systems,	the	patterns	comprising	the	A
subset	of	patterns	in	the	Fellegi-Sunter	linking	rule	(always	link)	are	determined	by	a
value	called	the	match	threshold.	Just	as	shown	in	Figure	3.4,	if	two	references	conform	to
an	agreement	pattern	generating	a	weight	above	the	match	threshold,	the	references	are
linked.	This	corresponds	to	a	value	between	Wγ4	and	Wγ5	in	Figure	7.1	defining	the
boundary	of	the	A	patterns.	In	addition,	many	scoring	rule	systems	implement	a	second
threshold	called	the	review	threshold	that	is	smaller	than	the	match	threshold.	Pairs	of
references	generating	a	pattern	weight	smaller	than	the	match	threshold	but	greater	than
the	review	threshold	are	logged	for	clerical	review.	The	review	threshold	corresponds	to	a
value	between	WγN−3	and	WγN−2	in	Figure	7.1,	separating	the	V	patterns	from	the	R
patterns.

Frequency-based	Weights	and	the	Scoring	Rule
One	further	refinement	of	estimating	pattern	weight	from	attribute	weights	is	called
frequency-based	weights.	Frequency-based	weighting	is	simply	a	reinterpretation	of	the
probability	mi	and	ui	from	agreement	on	attributes	to	agreement	on	specific	attribute
values.	Thus,	if	v	is	a	value	of	the	i-th	identity	attribute	then

mi(v)	=	probability	equivalent	references	agree	on	the	value	v	in	attribute	i

ui(v)	=	probability	nonequivalent	references	agree	on	the	value	v	in	attribute	i

In	this	scheme,	each	identity	attribute	has	many	weights,	potentially	one	for	every	value
the	attribute	can	take	on.	However,	as	the	name	implies,	the	value	weights	are	usually	only
generated	for	the	most	frequently	encountered	values.	The	assumption	is	that	more
frequently	encountered	values	are	more	likely	to	be	associated	with	many	different	entities
and	consequently	should	have	a	lower	weight	than	less	frequently	used	values,	which	are
more	likely	associated	with	fewer	entities.

A	case	in	point	for	party	entities	are	name	attributes.	For	example,	consider	first	name.
Given	a	population,	it	may	be	determined	that	many	different	customers	have	the	first
name	“JOHN”	versus	many	fewer	different	customers	having	the	first	name
“FREDRICK”.	If	the	first	name	is	the	first	identity	attribute,	this	means	the	probability
nonequivalent	references	will	agree	on	“JOHN”	is	greater	than	the	probability
nonequivalent	references	will	agree	on	“FREDRICK”,	i.e.	u1(“JOHN”)	>
u1(“FREDRICK”).	The	net	effect	will	be	the	weight	for	agreement	on	“JOHN”	in	the	first
name	attribute	will	be	smaller	than	the	weight	for	agreement	on	“FREDRICK”.

The	nuanced	adjustment	in	weight	based	on	frequency	can	make	the	scoring	rule	an
accurate	tool	in	certain	MDM	domains.	The	trade-off	is	the	increased	analytical	effort	to
initially	determine	the	weights	and	the	ongoing	effort	to	keep	the	weights	in	adjustment.
Another	issue	with	both	frequency-based	and	attribute-based	weights	in	general	is	they	do
not	perform	well	on	sets	of	references	with	identity	attributes	having	a	significant	number
of	missing	values.	The	setting	of	the	weights	depends	on	the	probabilities	of	agreement
and	disagreement,	but	when	one	or	both	values	are	missing,	agreement	and	disagreement
cannot	be	determined.

The	Stanford	Entity	Resolution	Framework
Another	significant	contribution	to	the	theory	of	entity	resolution	is	the	Stanford	Entity
Resolution	Framework	(SERF)	developed	by	researchers	at	the	Stanford	InfoLab	led	by
Hector	Garcia-Molina	(Benjelloun	et	al.,	2009).	The	main	contributions	of	the	SERF	are:

1.	It	changed	the	context	of	ER	from	the	Fellegi-Sunter	model	of	linking	pairs	of
references	between	two	different	lists	to	the	problem	of	finding	clusters	of	equivalent
references	within	a	single	dataset	similar	to	the	merge-purge	configuration	of	EIIM.

2.	In	addition	to	a	pair-wise	matching	operation,	it	described	a	new	operation	merging
(creates	clusters	of)	references	to	form	new	objects	(the	EIS	of	EIIM)	that	can	also	be
acted	upon	by	the	match	and	merge	operations.

3.	Using	abstract	mathematical	descriptions	of	the	match	and	merge	operations,	it	formally
defined	what	it	means	for	a	set	of	objects	(clusters)	produced	by	the	match	and	merge
operations	acting	on	a	set	of	references	to	comprise	the	entity	resolution	of	those
references.

4.	It	established	the	properties	the	match	and	merge	operations	must	satisfy	in	order	to
assure	the	unique	entity	resolution	of	a	set	of	references	will	exist.

5.	In	the	case	where	the	match	and	merge	operations	have	the	properties	necessary	to
produce	a	unique	entity	resolution	of	a	set	of	references,	it	defined	an	algorithm	for
applying	the	match	and	merge	operations	to	the	set	of	references	always	ending	with	the
clusters	that	comprise	their	entity	resolution.

Abstraction	of	Match	and	Merge	Operations
The	foundation	of	SERF	is	an	abstraction	of	the	match	and	merge	operations	as	functions
operating	on	an	abstract	set	of	entity	references.	Whereas	the	Fellegi-Sunter	model	focuses
on	the	actual	mechanics	of	matching	in	terms	of	agreement	and	disagreement	of	identity
attribute	values,	the	SERF	takes	a	more	abstract	approach.	If	M	represents	the	match
operation	and	D	represents	its	domain,	then	the	match	function	M	is	defined	as

M	is	simply	a	function	assigning	each	pair	of	elements	in	its	domain	a	True	or	False
value.	Similarly	for	the	same	domain	D,	the	merge	operation	μ	is	defined	as

The	merge	function	simply	maps	pairs	of	matching	elements	in	D	to	another	element	in
D.	Because	both	x	and	y	are	elements	in	D,	it	is	possible	in	some	instances	either	μ(y,	x)	=
x	or	μ(x,	y)	=	x.	When	this	happens,	then	x	is	said	to	“dominate”	y.

So	what	is	the	domain	D?	If	R	is	a	set	of	entity	references,	then	the	domain	D	is	the
closure	of	R	with	respect	to	M	and	μ.	In	other	words,	D	is	the	set	of	all	objects	possibly
formed	by	starting	with	R,	then	repeatedly	finding	matching	references	and	merging	the

matching	references.

As	a	warning,	even	though	these	operations	are	called	match	and	merge,	and	R	is	said	to
be	a	set	of	entity	references,	this	is	strictly	a	set	theoretic	definition,	and	at	this	point	in	the
model,	these	names	do	not	imply	any	particular	real-world	behavior	or	structure.	For
example,	there	is	nothing	in	the	definition	of	M	that	requires	M(x,	x)	=	True.	In	other
words,	the	elements	of	D	are	not	required	to	match	themselves,	a	fairly	basic	expectation
of	real	data	matching.	There	is	also	no	assumption	that	M(x,	y)	=	M(y,	x)	or	that	μ(x,	x)	=
x.

To	illustrate	this	point,	consider	the	case	where	R	=	{1},	the	set	containing	only	the
integer	value	of	one.	Furthermore,	define	the	operations	M	and	μ	as	follows

Having	defined	R,	M,	and	μ,	the	next	question	is	what	is	D?	Given	that	R	only	has	one
element	1,	the	only	place	to	start	is	with	the	question:	Is	M(1,	1)	True	or	False?	Because	1
is	odd,	the	answer	is	True.	Therefore,	the	merge	function	can	operate	on	the	pair	(1,	1)
resulting	in	a	new	object	μ(1,	1)	=	1+1	=	2.

At	this	point	D	has	expanded	from	{1}	to	{1,	2}.	Now	there	are	4	pairs	in	D	to	test	for
matching	with	M.	If	any	of	those	pairs	match,	then	the	merge	function	can	be	applied	and
will	possibly	generate	new	objects	in	D.	As	it	turns	out,	M(1,	2)	=	True,	thus	μ(1,	2)	=	3
thereby	expanding	D	=	{1,2,3}.	By	following	this	pattern	it	is	easy	to	see	D	can	be
extended	to	include	all	positive	integers	Z+	=	{1,	2,	3,	…}	an	infinite	set.

The	Entity	Resolution	of	a	Set	of	References
Given	a	set	of	entity	reference	R,	a	match	operation	M,	and	a	merge	operation	μ,	then	a	set
ER(R)	is	said	to	be	the	entity	resolution	of	R,	provided	ER(R)	satisfies	the	following
conditions:

1.	ER(R)⊆D.	This	condition	requires	ER(R)	to	be	a	subset	of	D.

2.	If	x∈D,	then
a.	Either	x∈ER(R),	or
b.	There	exists	a	y∈ER(R)	such	that	μ(x,	y)	=	y	or	μ(y,	x)	=	y.
This	condition	states	every	element	of	D	must	either	be	in	the	entity	resolution	of	R	or

be	dominated	by	an	element	in	the	entity	resolution	or	R.

3.	If	x,	y∈ER(R),	then
a.	Either	M(x,	y)	=	False,	or

b.	μ(x,	y)	≠	x,	μ(x,	y)	≠	y,	μ(y,	x)	≠	x	and	μ(y,	x)	≠	y.

This	condition	states	for	any	two	elements	in	the	entity	resolution	of	R,	they	either	don’t
match,	or	if	they	do	match,	then	one	does	not	dominate	the	other.

Given	the	previous	example	where	R	=	{1}	and	D	=	Z+,	what	is	ER(R)?	The	first	thing
to	note	is	by	the	definition	of	the	merge	function,	no	two	elements	of	D	can	ever	dominate
each	other.	Because	x	and	y	are	positive	integers,	and	μ(x,	y)	=	x	+	y,	it	follows	that	x	+	y	>
x	and	x	+	y	>	y.	Therefore	by	Condition	1	of	the	definition,	the	only	candidate	for	ER(R)	is
D.	However,	for	D	to	be	ER(R),	D	must	also	satisfy	Condition	2.	For	Condition	2,	there
are	two	cases	for	x,	y∈D	to	consider.	One	is	when	x	is	even.	If	x	is	even,	then	M(x,	y)	=
False	and	Condition	2	is	satisfied.	On	the	other	hand	if	x	is	odd,	then	M(x,	y)	=	True.
However,	μ(x,	y)	=	x	+	y	can’t	be	equal	to	x	or	y	by	the	same	argument	as	in	Condition	1.
Thus	ER(R),	the	entity	resolution	of	R	exists	and	is	unique,	but	it	is	infinite.	It	is	not
difficult	to	construct	other	examples	where	ER(R)	does	not	exist	or	where	there	is	more
than	one	ER(R).

Consistent	ER
The	SERF	also	answers	the	question	of	when	the	match	and	merge	operations	will
produce	a	unique	and	finite	ER(R),	called	consistent	ER.	Consistent	ER	will	occur	if	and
only	if	the	match	and	merge	operations	have	the	following	properties,	called	the	ICAR
properties:

•	For	every	x∈D,	M(x,	x)	=True,	and	μ(x,	x)	=	x	(Idempotent)

•	For	every	x,	y∈D,	M(x,	y)	=	M(y,	x),	and	μ(x,	y)	=	μ(y,	x)	(Commutative)

•	For	every	x,	y,	z∈D,	μ(x,	μ(y,	z))	=	μ	(μ	(x,	y),	z)	(Associative)

•	If	M(x,	y)	=	M(y,	z)	=	True,	then	M(x,	μ	(y,	z))	=	M(μ	(x,	y),	z)	=	True	(Representativity)

The	R-Swoosh	Algorithm
The	SERF	also	includes	a	number	of	algorithms	for	actually	producing	the	set	of	elements
in	D	comprising	the	ER(R).	The	most	important	of	these	is	the	R-Swoosh	algorithm.
Given	match	and	merge	operations	satisfying	the	conditions	of	the	consistent	ER,	the	R-
Swoosh	algorithm	was	shown	to	require	the	least	number	of	operations	to	produce	ER(R)
in	the	worst	case	scenario.	The	details	of	the	R-Swoosh	ER	algorithm	are	discussed	in	the
next	chapter.

The	next	chapter	also	compares	the	R-Swoosh	algorithm	with	the	One-Pass	algorithm.
The	One-Pass	algorithm	is	simpler	(requires	fewer	operations)	than	the	R-Swoosh
algorithm,	but	it	is	only	guaranteed	to	produce	ER(R)	when	additional	conditions	are
applied	to	the	match	and	merge	functions.	However,	these	extra	conditions	are	often
imposed	for	typical	EIIM	and	MDM	systems;	thus	R-Swoosh	is	not	often	used	in
commercial	applications.

Entity	Identity	Information	Management
Entity	Identity	Information	Management	(EIIM)	is	the	main	theme	of	this	book,	and	has
been	discussed	extensively	in	previous	chapters.	As	stated	in	Chapter	1,	EIIM	is	the
collection	and	management	of	identity	information	with	the	goal	of	sustaining	entity
identity	integrity	over	time	(Zhou	&	Talburt,	2011b).	While	the	primary	focus	of	the	EIIM
model	is	on	addressing	the	life	cycle	of	entity	identity	information,	EIIM	draws	from,	and
is	consistent	with,	both	the	Fellegi-Sunter	and	the	SERF	models	of	ER.

EIIM	and	Fellegi-Sunter
The	manual	update	configuration	of	EIIM	discussed	in	Chapter	5	and	the	importance	of
assessing	ER	outcomes	discussed	in	Chapter	3	are	both	drawn	directly	from	the	work	of
Fellegi	and	Sunter.	As	noted	earlier,	the	proof	of	their	fundamental	theorem	of	record
linkage	depends	on	the	assumption	that	some	number	of	matches	will	require	manual
review.	Furthermore,	it	prescribes	a	method	for	identifying	the	pairs	of	references	needing
to	be	reviewed,	namely	the	pairs	having	agreement	patterns	comprising	the	verify	subset	V
of	the	Fellegi-Sunter	matching	rule.	Although	the	method	of	the	theorem	minimizes	the
number	of	pairs	satisfying	these	“soft”	rules,	they	do	require	verification	by	a	domain
expert.	Unfortunately,	this	important	aspect	of	ER	is	absent	in	many	MDM	systems	that
rely	entirely	on	automated	ER	matching	decisions.

The	reliance	on	automated	ER	coupled	with	a	lack	of	ER	analytics	is	a	recipe	for	low-
quality	MDM	if	not	outright	failure.	Even	at	small	levels,	false	positive	and	false	negative
errors	will	accumulate	over	time	and	progressively	degrade	the	level	of	entity	identity
integrity	in	an	MDM	system.

In	addition	to	clerical	review	of	matching,	the	Fellegi-Sunter	Model	is	framed	around
accuracy	in	the	form	of	limits	on	false	positive	and	false	negative	rates.	However,	these
constraints	are	meaningless	if	these	values	are	not	known.	Measurement	of	entity	identity
integrity	attainment	is	yet	another	important	aspect	of	ER	absent	in	many	MDM	systems.
Few	MDM	stewards	can	offer	reliable,	quantitative	estimates	of	the	false	positive	and
false	negative	rates	of	their	systems.	Even	though	almost	every	chief	data	officer	(CDO)
or	chief	information	officer	(CIO)	would	state	that	their	goal	is	to	make	their	MDM
systems	as	accurate	as	possible,	few	actually	undertake	systematic	measures	of	accuracy.
Without	meaningful	measurements	it	is	difficult	to	tell	if	changes	aimed	at	improving
accuracy	are	really	effective.

EIIM	and	the	SERF
The	EIIM	Model	elaborates	on	several	features	of	the	SERF.	For	example,	it	explores	in
more	detail	the	characteristics	of	the	merge	operation.	In	the	EIIM	Model,	the	results	of
merging	references	are	characterized	as	entity	identity	structures	(EIS).	The	EIIM	further
describes	the	interaction	between	the	match	and	merge	operations	in	terms	of	EIS
projection.	The	next	chapter	discusses	EIS	projection	in	more	detail	and	also	investigates

the	consequences	of	design	choices	for	both	EIS	and	EIS	projection.	These	include	the
most	commonly	used	designs	of	survivor	record,	exemplar	record,	attribute-based,	and
record-based	EIS.	In	particular,	the	chapter	shows	that	a	simplified	version	of	the	R-
Swoosh	algorithm	called	One-Pass	is	sufficient	to	reach	ER(R)	when	the	record-based
projection	of	EIS	is	used.

The	EIIM	automated	update	configuration	is	equivalent	to	the	SERF	notion	of
incremental	resolution	(Benjalloun	et	al.,	2009).	Whereas	the	SERF	focuses	primarily	on
the	efficiency	of	resolution,	the	focus	of	EIIM	is	on	sustaining	entity	identity	integrity
through	the	incremental	resolution	(update)	cycles	including	the	use	of	manual	update
(assertion).

Concluding	Remarks
The	primary	theoretical	foundations	for	ER	are	the	Fellegi-Sunter	Theory	of	Record
Linkage	and	the	Stanford	Entity	Resolution	Framework.	Their	basic	principles	still
underpin	ER	today.	Deterministic	matching,	probabilistic	matching,	ER	metrics,	ER
algorithms,	clerical	review	indicators,	and	clerical	review	and	correction	all	have	their
origin	in	these	models.	However,	in	order	for	ER	to	effectively	support	MDM,	some
additional	functionality	is	required.	EIIM	describes	additional	functionality	in	terms	of
creating	and	maintaining	EIS.	The	EIS	are	essential	for	preserving	entity	identity
information	and	maintaining	persistent	entity	identifiers	from	ER	process	to	ER	process.

CHAPTER	8

The	Nuts	and	Bolts	of	Entity	Resolution

Abstract
This	chapter	goes	into	detail	about	the	design	considerations	surrounding	the	entity	resolution	and	entity	identity
information	management	processes	that	support	the	CSRUD	life	cycle.

Keywords
Deterministic	Matching;	Probabilistic	Matching;	Attribute-based
Cluster	Project;	Record-based	Cluster	Projection;	One-Pass
Algorithm;	R-Swoosh	Algorithm

The	ER	Checklist
Even	in	its	most	basic	form,	entity	resolution	(ER)	has	many	moving	parts	that	must	be	fit
together	correctly	in	order	to	obtain	accurate	and	consistent	results.	The	functions	and
features	that	are	assembled	to	support	the	different	phases	of	the	CSRUD	Life	Cycle	are
called	EIIM	configurations.	The	focus	of	this	chapter	is	on	the	configurations	supporting
the	capture	and	the	automated	update	phases.	From	a	design	perspective,	these
configurations	are	essentially	the	same,	and	must	address	the	following	questions:

1.	What	rules	will	match	pairs	of	references?

2.	How	will	references	be	systematically	matched?	The	configuration	should
systematically	compare	pairs	of	references	so	that	the	largest	number	(if	not	all)	of	the
matches	can	be	found,	and	at	the	same	time,	make	as	few	comparisons	as	possible.

3.	What	rules	will	match	clusters?	Once	two	or	more	references	have	been	linked	together
to	form	a	cluster,	there	have	to	be	rules	for	matching	a	single	reference	to	a	cluster	of
references,	and	rules	for	matching	two	clusters.

4.	What	is	the	procedure	for	reorganizing	matching	clusters?	If	an	input	reference	and	a
cluster	match,	or	there	are	two	matching	clusters,	then	there	must	be	a	procedure	for
reorganizing	them	into	a	single	cluster.

Deterministic	or	Probabilistic?
One	of	the	first	questions	faced	in	the	design	of	a	new	ER/MDM	system	or	the	selection	of
the	third-party	system	is	whether	the	base	rule	for	matching	a	pair	of	references	should	be
a	Boolean	rule	(misnamed	deterministic)	or	a	scoring	rule	(misnamed	probabilistic).	The
basic	design	for	both	types	of	rules	was	discussed	in	Chapter	3	and	both	have	advantages
and	disadvantages.	The	choice	between	Boolean	versus	scoring	rules,	or	some
combination,	will	depend	upon	the	nature	of	the	data,	the	application,	and	level	of
maturity	of	the	organization	(Wang,	Pullen,	Talburt,	&	Wu,	2014a).

Consider	the	example	of	a	Boolean	rule	set	from	Chapter	3	for	student	enrollment
records,	shown	here.

Rule	1:

(First:	Soundex)	AND	(Last:	Exact)	AND	(School_ID:	Exact)

Rule	2:

(First:	Exact)	AND	(Last:	Exact)	AND	(Street_Nbr:	Exact)

Rule	1	and	Rule	2	represent	the	OR	clauses	of	the	overall	Boolean	rule	and	can	be
thought	of	as	subrules.	The	obvious	advantage	of	a	Boolean	rule	is	that	it	is	easy	to
understand	and	create.	In	addition,	its	subrules	(OR	clauses)	operate	independently	of	each
other.	If	a	new	matching	condition	needs	to	be	addressed,	it	can	easily	be	added	as	a	new

subrule	without	impacting	the	effects	or	actions	of	the	other	subrules.

Another	advantage	is	that	different	subrules	can	use	different	comparators	for	the	same
attribute.	In	the	example	given	here,	the	student	first	name	is	compared	using	the
SOUNDEX	comparator	in	Rule	1,	but	the	student	first	name	is	compared	using	the
EXACT	comparator	in	Rule	2.	In	contrast,	in	the	basic	design	of	the	scoring	rule,	each
attribute	has	only	one	comparator.	Another	advantage	of	a	Boolean	rule	is	that	it	is	easier
to	address	the	issue	of	misfielded	items	or	cross-attribute	comparison.	For	example,	a
subrule	can	be	added	that	compares	the	first	name	to	the	last	name	and	vice	versa	to
address	cases	where	the	first	and	last	names	have	been	reversed.	Similar	comparisons	can
be	made	on	attributes	like	telephone	numbers.

Another	advantage	of	the	Boolean	rule	is	that	it	is	easier	to	align	it	with	the	match	key
index	than	a	scoring	rule.	Blocking	and	match	key	indexing	are	discussed	in	more	detail	in
the	next	chapter.	In	general,	a	Boolean	rule	is	easier	to	design	and	refine	than	a	scoring
rule.

The	biggest	advantage	of	the	scoring	rule	is	that	it	provides	a	fine-grained	matching
capability	that	for	certain	types	of	data	can	be	much	more	accurate	than	Boolean	rules.
This	is	because	a	scoring	rule	can	adjust	its	matching	decision	based	on	the	actual	values
of	the	attributes.	For	example,	consider	the	case	where	a	Boolean	rule	specifies	an	exact
match	on	student	first	name,	such	as	required	in	Rule	2	of	the	example.	The	first	name
comparison	will	give	a	True	result	if	the	two	first	names	are	“John”	or	if	they	are	“Xavier”
as	long	as	they	are	both	the	same.	However,	scoring	rules	operate	by	assigning	weight	to
the	agreement	and	defer	in	the	final	decision	on	matching	until	all	of	the	weights	have
been	added	together.	This	means	that	if	analysis	shows	that	the	first	name	“John”	is	shared
by	many	different	students	but	the	first	name	“Xavier”	is	only	shared	by	a	few	students,
then	agreement	on	“Xavier”	can	be	given	a	higher	weight	than	agreement	on	“John”
because	agreement	on	“Xavier”	has	a	higher	probability	of	predicting	that	the	enrollment
records	are	equivalent.	The	following	XML	segment	shows	how	this	might	look	in	a	script
defining	a	scoring	rule	for	an	MDM	system.

	
<ScoringRule	Ident="Example"	MatchScore="800"	ReviewScore="750">

	<Term	Item="StudentFirst"	Similarity="Exact"

	 	 	 	DataPrep="Scan(LR,	Letter,	0,	ToUpper,	SameOrder)"

	 	 	 	AgreeWgt="300"	WgtTable="Ex1SFirst"	DisagreeWgt="-20"	/>

	<Term	Item="StudentLast"	Similarity=”Exact”	…

In	this	script	a	scoring	rule	named	“Example”	is	defined.	The	total	score	needed	to
declare	a	match	is	800,	and	all	comparisons	that	score	between	800	and	750	should	be

reviewed,	i.e.	all	such	scores	will	produce	a	review	indicator.	The	script	also	shows	that
the	first	term	of	the	scoring	rule	compares	the	attribute	“StudentFirst,”	which	has	the
student’s	first	name.	The	comparator	for	the	first	name	is	required	to	be	an	EXACT	match.
However,	before	the	first	name	values	are	compared,	the	first	name	string	goes	through	a
data	preparation	using	an	algorithm	called	SCAN	that	extracts	only	letter	characters	and
changes	the	letters	to	all	upper	case.

In	addition	to	an	agreement	weight	of	300	and	a	disagreement	weight	of	−20,	the
definition	also	points	to	a	Weight	Table	named	“Ex1SFirst”.	This	means	that	in	the
operation	of	this	rule,	if	two	first	names	agree	(after	data	preparation),	the	Weight	Table	is
searched.	If	the	name	value	is	found,	then	the	agreement	weight	given	in	the	table	is	added
to	the	overall	score;	otherwise	the	default	agreement	weight	of	300	is	added.	If	the	first
names	do	not	agree,	then	the	disagreement	weight	of	−20	is	added	to	the	score.

Calculating	the	Weights
The	algorithm	used	to	calculate	the	agreement	weights	and	disagreement	weights	is	the
Fellegi-Sunter	probabilistic	model	for	estimated	weights	under	the	assumption	of
conditional	independence	of	the	identity	attributes	(Herzog,	Scheuren,	&	Winkler,	2007).
To	illustrate	how	this	algorithm	works,	let	ai	represent	the	i-th	attribute	of	a	set	of	identity
attributes,	and	let	R	be	a	set	of	references.	Then	define

E	=	number	of	equivalent	pairs	of	references	in	R

∼E	=	number	of	nonequivalent	pairs	of	references	in	R

Ei	=	number	of	equivalent	pairs	of	references	in	R	that	agree	on	the	value	ai

∼Ei	=	number	of	nonequivalent	pairs	of	references	in	R	that	agree	on	ai

Using	these	counts	mi,	the	probability	that	equivalent	pairs	will	agree	on	ai	is	calculated
by

Similarly,	ui,	the	probability	that	non-equivalent	pairs	will	agree	on	ai	is	calculate	by

The	agreement	weight	for	ai	is	calculated	by

And	the	disagreement	weight	for	ai	is	calculated	by

If	v	represents	a	particular	value	of	ai,	then	it	is	only	necessary	to	restrict	the	counts	to

references	in	R.	As	in	the	example	of	student	enrollment	records	let	v	=	“John”,	then	Ei
would	now	represent	the	number	of	all	equivalent	pairs	of	records	in	R	that	agree	on
“John”	and	∼Ei	would	represent	the	number	of	all	nonequivalent	pairs	of	records	in	R	that
agree	on	“John.”	Otherwise,	the	calculations	are	calculated	in	the	same	way.

There	are	two	principal	disadvantages	to	the	scoring	rule.	The	first	is	that	it	is	hard	to
calculate	the	weights	and	to	determine	the	optimal	match	threshold	score.	The	calculation
of	the	weights	is	an	iterative	process	(Wang,	Pullen,	Talburt,	&	Wu,	2014b),	and	the
determination	of	the	match	threshold	can	require	considerable	trial-and-error	and
assessment	of	results.	The	use	of	the	scoring	rule	definitely	requires	good	ER	knowledge
and	skills	along	with	good	tools	to	objectively	measure	ER	results.

A	second	potential	problem	with	scoring	rules	is	that	they	are	more	sensitive	to	the
missing	values	than	Boolean	rules.	When	using	a	scoring	rule,	if	one	or	both	of	the	values
of	the	attribute	being	compared	are	missing	(null),	then	it	is	not	clear	what	weight	value
should	be	used.	Many	implementations	simply	use	a	default	weight	of	zero	for	missing
value	comparisons.	Despite	the	advantage	of	granularity	in	matching,	a	scoring	rule	may
not	perform	as	well	as	a	Boolean	rule	on	data	where	there	is	a	large	percentage	of	missing
identity	values.

Cluster-to-Cluster	Classification
The	answers	to	Questions	2	(how	to	systematically	match	references),	3	(how	to	match
clusters),	and	4	(how	to	reorganize	clusters)	in	the	opening	section	are	interrelated.
Interestingly,	most	of	the	design	decisions	hinge	on	the	answers	to	Question	3:	what	rules
will	match	a	reference	to	a	cluster	of	reference?	And	what	are	the	rules	for	comparing
clusters	of	references?

The	problem	is	that	the	base	matching	rule	is	designed	to	only	classify	pairs
of	references,	rather	than	a	set	of	references.	As	discussed	earlier,	the	two	most	common
approaches	to	pair	matching	are	Boolean	rules	or	scoring	rules.	In	the	case	of	a	Boolean
rule,	the	classification	categories	are	simply	matching	pair	(true)	or	nonmatching	pair
(false).	In	the	case	of	the	scoring	rule,	the	classification	can	be	matching	pair	(score	is
above	the	match	threshold),	possible	matching	pair	that	needs	review	(score	is	below	the
match	threshold,	but	above	the	review	threshold),	or	nonmatching	pair	(score	is	below	the
review	threshold).

Before	considering	the	general	problem	of	comparing	two	clusters,	first	consider	the
problem	of	comparing	a	single	input	reference	to	a	cluster	of	references	that	are	already
linked	together	and	are	presumed	to	represent	a	single	entity.	The	assumption	is	that	this
comparison	should	utilize	the	base	rule	that	performs	pair	matching.	In	order	to	do	this,
two	important	questions	need	to	be	answered:

1.	How	to	select	a	set	of	attribute	values	from	the	cluster	to	match	against	the	attributes	of
the	new	input	reference	so	that	the	base	rule	can	be	invoked?

2.	Of	the	possible	attribute	value	selections,	how	many	of	these	selections	must	match	in
order	for	the	overall	reference-to-cluster	comparison	to	be	considered	a	match?

The	first	factor	describes	what	is	called	a	cluster	(or	a	structure)	projection.	Figure	8.1
shows	an	example	of	an	input	reference	R3	and	a	cluster	of	previously	linked	references
R1	and	R2.	In	this	example,	the	pair-wise	matching	rule	states	that	two	references	are
classified	as	a	match	if	they	agree	on	first	name	and	last	name,	or	if	they	agree	on
employer	identifier	(“ID”).

The	two	most	common	types	of	projections	are	record-based	projection	and	attribute-
based	projection	(Zhou	&	Talburt,	2011c).	In	record-based	projection,	the	incoming
reference	simply	participates	in	pair-wise	matching	with	each	reference	in	Cluster	C1.	In
other	words,	the	answer	to	the	question	about	how	to	select	attribute	values	to	use	in	the
base	rule	is	that	the	attribute	values	selected	must	come	from	the	same	reference	in	the
cluster.

In	the	example	of	Figure	8.1,	there	are	two	previously	processed	references	R1	and	R2
that	form	Cluster	C1	because	they	satisfied	the	base	match	rule	by	agreeing	on	the	ID
value.	In	the	scenario	shown,	an	input	reference	R3	comes	into	the	system	to	be	compared
to	Cluster	C1.	In	a	record-based	projection	model,	there	are	two	possible	selections.	The
attribute	values	of	R3	can	be	compared	to	the	attribute	values	of	R1	and	R2.	However,	it	is
easy	to	see	that	neither	of	these	would	be	classified	as	a	matching	pair.	When	R3	is

compared	to	R1,	the	first	names	agree,	but	the	last	names	and	ID	values	disagree.	When
R3	is	compared	to	R2,	the	last	names	agree,	but	the	first	names	and	ID	values	disagree.	In
record-based	projection,	the	projections	of	the	cluster	correspond	to	the	individual
references	in	the	cluster.	In	other	words,	a	cluster	comprising	10	references	would	produce
10	projections.

FIGURE	8.1 	Reference-to-cluster	match	scenario.

In	this	example,	part	of	the	answer	to	how	many	matches	must	succeed	seems	obvious.
If	the	input	reference	does	not	match	any	of	the	references	in	the	cluster,	then	the	overall
reference-to-cluster	comparison	should	be	classified	as	a	no-match.	On	the	other	hand,	if
the	input	reference	matches	one	or	more	of	the	references	in	the	cluster,	how	many	is
enough	to	say	that	the	reference	should	be	part	of	the	cluster?	In	general,	the	answer	is	that
one	is	enough,	i.e.	if	the	input	reference	matches	at	least	one	of	the	projections	from	the
cluster	then	the	overall	reference-to-cluster	comparison	is	considered	a	match.	The	reason
for	this	is	the	“principle	of	transitive	closure”	that	will	be	discussed	later.	However,
requiring	only	a	single	match	is	not	universally	true	in	all	systems.	In	some	cases,	the
requirement	may	be	set	higher	–	for	example,	that	the	input	reference	must	match	every
projection	from	the	cluster.

In	an	attribute-based	projection,	the	attribute	values	used	to	compare	to	the	input
reference	are	not	required	to	come	from	the	same	reference	in	the	cluster.	If	an	attribute-
based	projection	is	used	in	the	example	of	Figure	8.1,	the	input	reference	R3	could	be
compared	to	four	possible	projections	of	the	First,	Last,	and	ID	values	in	Cluster	C1.
These	are	shown	in	Table	8.1.

Note	that	projections	P1	and	P4	correspond	to	references	R1	and	R2,	respectively.
However,	projections	P2	and	P3	do	not	correspond	to	actual	references	but	are
combinations	of	attributes	taken	from	R1	and	R2.	In	this	case,	the	input	reference	R3
would	match	projection	P3	according	to	the	first	condition	of	the	base	match	rule,	i.e.	First
and	Last	values	agree.

The	fact	that	R3	matches	one	of	the	attribute-projections	of	the	cluster	again	brings	up
the	question	of	how	many	projections	should	match	in	order	to	say	that	the	reference
matches	the	entire	cluster.	And	again	the	answer	is	that	in	most	systems	matching	one
cluster	projection	is	sufficient	for	the	overall	reference-to-cluster	comparison	to	be
considered	a	match.

The	same	logic	for	record-based	and	attribute-based	projection	can	be	extended	to	the
more	general	case	of	cluster-to-cluster	classification.	Reference-to-cluster	classification	is
just	a	special	case	of	cluster-to-cluster	classification,	where	one	cluster	comprises	a	single
reference.	In	the	general	case,	each	projection	from	the	first	cluster	is	compared	to	each
possible	projection	of	the	second	cluster	until,	or	if,	enough	pair-wise	projections	are
classified	as	a	match	in	order	for	the	cluster-to-cluster	classification	to	be	considered	a
match.

Table	8.1
Attribute-based	Projections	of	C1

The	number	of	attribute-based	projections	can	grow	dramatically.	Just	as	a	simple
example,	suppose	that	references	have	three	identity	attributes	A1,	A2,	and	A3.	Also,
suppose	that	cluster	C1	contains	three	references	and	cluster	C2	contains	four	references.
A	record-based	cluster-to-cluster	comparison	would	require	at	most	12	(3	times	4)
reference-to-reference	comparisons.	On	the	other	hand,	in	the	worst-case	scenario	where
all	of	the	attribute	values	are	unique	within	the	cluster,	then	the	number	of	distinct
attribute-based	projections	from	cluster	C1	would	be	27	(33)	and	from	cluster	C2	there
would	be	64	(43).	Together	these	would	yield	1,728	possible	projection-to-projection
comparisons.	However,	the	actual	number	will	typically	be	much	smaller	since	the
expectation	is	that	references	in	the	same	cluster	will	share	many	of	the	same	attribute
values,	and	will	not	all	be	unique.	In	the	example	of	Figure	8.1,	Table	8.1	shows	that	even
though	a	cluster	of	two	references	with	three	attributes	could	produce	eight	(23)	attribute-
based	projections,	there	are	actually	only	four	projections	of	C1	because	the	attribute	ID
has	only	one	value	“G45”.

The	Unique	Reference	Assumption	and	Transitive
Closure
The	next	question	is	this:	once	the	conditions	are	defined	for	classifying	a	cluster-to-
cluster	comparison	as	a	match,	what	should	happen	to	the	clusters?	Most	often,	the	two
clusters	are	merged	into	a	single	cluster,	and	all	references	in	the	merged	cluster	are	given
the	same	link	value.	Such	an	approach	is	in	alignment	with	the	Unique	Reference
Assumption	that	states	“every	reference	is	created	to	refer	to	one	and	only	one	real-world
entity.”

Given	this	assumption,	suppose	that	the	system	has	determined	that	reference	R1	is

equivalent	to	R2,	i.e.	R1	and	R2	refer	to	the	same	real-world	entity	E1.	Suppose	now	a
third	reference	R3	is	determined	equivalent	to	R2,	i.e.	R2	and	R3	refer	to	the	same	real-
world	entity	E2.	Because	R2	references	both	E1	and	E2,	it	follows	by	the	Unique
Reference	Assumption	that	E1	and	E2	are	the	same	entity,	therefore	R1,	R2,	and	R3	are	all
equivalent	because	they	all	reference	the	same	entity.

If	a	relationship	has	the	property	that	“A	relates	to	B”	and	“B	relates	to	C”	implies	that
“A	relates	to	C,”	then	it	is	called	a	transitive	relationship.	The	unique	reference
assumption	provides	the	argument	that	reference	equivalence	is	a	transitive	relationship
among	references.	In	other	words,	R1	is	equivalent	to	R2,	and	R2	is	equivalent	to	R3,
implies	that	R1	is	equivalent	to	R3.	From	an	ER	perspective	that	means	that	all	three
references	R1,	R2,	and	R3	should	be	linked	together.	Transitivity	of	reference	equivalence
also	explains	why	in	reference-to-cluster	classification,	even	if	an	input	reference	matches
only	one	reference	(or	attribute-projection)	in	a	cluster,	it	is	equivalent	to	all	of	them.	The
reference	can	be	classified	as	a	match	for	the	entire	cluster	and	can	be	merged	into	the
cluster.

It	often	happens	that	an	input	reference	can	match	two	or	more	clusters.	Even	in	this
case,	the	same	rule	of	transitive	closure	of	reference	equivalence	is	usually	followed,	and
all	of	the	clusters	that	match	the	input	reference	are	merged	together	along	with	the	input
reference	itself	into	a	single	cluster.	A	reference	that	matches	and	causes	the	merger	of	two
or	more	references	is	sometimes	called	a	glue	record.

It	is	important	to	note	that	even	though	reference	equivalence	is	transitive,	matching
itself	is	not	transitive.	If	reference	R1	matches	reference	R2,	and	R2	matches	reference
R3,	it	does	not	follow	that	R1	will	match	R3.	For	example,	consider	a	simple	match	rule
that	says	two	strings	match	if	they	differ	by	at	most	one	character.	Then	for	this	match	rule
it	would	be	true	that	“ABC”	matches	“ADC”,	and	that	“ADC”	matches	“ADE”,	but	it	is
not	true	that	“ABC”	matches	“ADE”.

Selecting	an	Appropriate	Algorithm
Once	the	cluster-to-cluster	classification	method	has	been	decided,	the	next	question	is
which	ER	algorithm	should	be	used	to	systematically	compare	each	input	reference	to
previously	processed	references.	The	most	desirable	algorithm	should	have	three
characteristics:

1.	It	should	find	all	possible	matches.	It	should	select	and	compare	references	in	a	way
that	whenever	two	reference	match	they	will	be	compared,	i.e.	for	a	given	base	rule	for
pair	matching	and	a	cluster-to-cluster	classification	method,	if	a	reference-to-reference
match,	or	a	reference-to-cluster	match,	or	a	cluster-to-cluster	match	is	possible	given	the
references	in	the	input	source,	then	the	algorithm	will	systematically	select	the	references
and	clusters	in	such	a	way	that	these	comparisons	will	be	made.

2.	It	should	be	efficient.	At	the	same	time	it	does	not	lose	matches,	it	should	try
minimizing	the	number	of	attempted	comparisons	among	references	and	clusters	to	find
those	matches,	i.e.	it	should	avoid	spending	time	on	comparisons	that	will	not	result	in	a
match.	For	example,	one	way	to	find	all	possible	matches	is	to	use	the	“brute	force”
method	that	exhaustively	compares	every	cluster	to	every	other	cluster.	However,	brute
force	is	not	efficient.

3.	It	should	be	sequence	neutral,	i.e.	the	clusters	created	at	the	final	step	should	be	the
same	regardless	of	the	order	that	the	input	references	are	processed	by	the	algorithm.	This
property	is	really	a	corollary	of	the	first	characteristic	provided	the	algorithm	obeys
transitive	closure.

The	degree	to	which	possible	matches	are	found	(Characteristic	1)	is	called	the	recall	of
the	algorithm.	If	R	is	a	set	of	N	references,	and	P	is	the	set	of	all	distinct,	unordered	pairs
of	references	from	R,	then	the	number	of	pairs	in	P	is	given	by

For	a	given	match	rule,	let	M	represent	the	pairs	of	references	in	P	that	would	actually
match	by	the	rule.	In	general	the	size	of	M	will	be	much	smaller	than	P.	Given	an
algorithm	A	for	selecting	pairs	in	P	for	matching,	let	pairs	found	by	A	that	actually	match
be	represented	by	F.	Then	the	match	recall	of	A	is	given	by

It	is	easy	to	guarantee	that	Recall(A)	is	100%	by	having	the	algorithm	compare	every
pair	of	references	in	P.	However,	according	to	the	first	formula	the	number	of	pairs	in	P
grows	with	the	square	of	N,	the	number	of	references	in	R.	Even	for	fast	processing
systems	using	an	ER	algorithm	that	makes	every	possible	comparison	between	references,
time	performance	will	be	unacceptable.	In	addition,	ER	does	not	easily	lend	itself	to
parallel	and	distributed	processing.

For	practical	purposes	the	ER	algorithm	A	must	select	only	some	subset	of	P	as
candidates	for	matching.	Let	C	represent	the	set	of	pairs	in	P	that	are	selected	by	the
algorithm	A.	Then	the	efficiency	of	the	algorithm	(Characteristic	2)	called	its	match
precision	is	given	by

The	match	precision	of	A	measures	the	ratio	of	matching	pairs	found	by	A	to	the	total
number	of	pairs	compared	by	A.

As	noted	earlier,	the	recall	of	an	algorithm	(Characteristic	1)	and	its	ability	to	be
sequence	neutral	(Characteristic	3)	are	related	to	each	other.	If	the	algorithm	is	sensitive	to
the	order	in	which	the	references	are	processed,	it	may	miss	some	matches	that	it	might
have	found	if	the	references	were	processed	in	a	different	order.	In	addition,	there	is	a
dependency	upon	the	choice	of	cluster	projection	used	for	cluster-to-cluster	matching.	An
algorithm	that	has	all	three	characteristics	when	record-based	projection	is	used	may	fail
in	some	characteristics	if	attribute-based	projection	is	used.

To	help	illustrate	these	concepts,	a	series	of	examples	will	be	shown.	For	each	example,
the	input	and	base	rule	for	matching	pairs	of	references	will	be	the	same.	Table	8.2	shows
the	input	references	used	in	the	examples.

Table	8.2
List	of	Input	References

Similar	to	the	previous	example	concerning	cluster	projections,	each	reference	has	four
attributes:	a	record	identifier	(RefID),	a	first	name	value	(First),	a	last	name	value	(Last),
and	a	school	identifier	(SID).

In	addition,	all	of	the	examples	will	use	the	same	base	rule	for	pair	matching:

Base	(Boolean)	Rule	for	matching	pairs	of	references

(First	values	agree)	AND	(Last	values	agree)

OR

(SID	values	agree)

The	One-Pass	Algorithm
The	One-Pass	Algorithm	is	a	simple	algorithm	that	is	more	efficient	than	brute	force	yet
still	able	to	find	all	possible	matches	for	certain	cluster-to-cluster	classification	schemes.
Its	name	comes	from	the	fact	that	each	input	reference	is	only	processed	one	time,	i.e.	one
pass	through	the	input	references.

The	algorithm	starts	with	a	list	of	input	references	and	an	empty	output	list	of	clusters.
Each	input	reference	is	processed	in	order	by	comparing	it	to	all	of	the	clusters	in	the
output	list.	If	it	matches	one	or	more	clusters	in	the	output	list,	then	all	of	the	clusters	that
it	matches	are	merged	together,	including	the	input	reference	itself,	to	form	a	new	cluster.
In	the	case	where	the	input	reference	does	not	match	any	one	of	the	clusters	in	the	output
list,	it	forms	a	new	single-reference	cluster	appended	to	the	end	of	the	cluster	list.	This
continues	until	all	of	the	input	references	have	been	processed.

	
Example	8.1 One-Pass	Algorithm	using	Record-Based
Projection
Configuration	Choices	for	Example	8.1:

1.	Base	rule	for	matching	reference	pairs:	Boolean	rule	(First	Agree)	AND	(Last	Agree)
OR	(SID	Agree)

2.	Cluster	projection:	Record-Based

3.	Cluster-to-Cluster	Match	Rule:	Single	Match

4.	Transitive	Closure:	Yes

5.	ER	Algorithm:	One-Pass

FIGURE	8.2 	Starting	conditions	for	Example	8.1.

The	starting	conditions	for	the	example	input	are	shown	in	Figure	8.2.	When	the	first

input	reference	R1	is	processed,	there	are	no	clusters	to	compare	it	with,	and	therefore	it
is	simply	made	into	the	single-reference	cluster	C1	as	the	first	item	in	the	Cluster	List,
as	shown	in	Figure	8.3.

FIGURE	8.3 	After	processing	the	first	input	reference	R1.

In	the	next	step,	Reference	R2	is	processed.	In	this	case,	there	is	only	one	reference-
to-cluster	comparison	of	R2-to-C1.	The	cluster	projection	for	this	example	is	record-
based	projection.	This	means	that	C1	only	projects	one	set	of	values	to	be	compared	to
R2,	namely	the	values	that	comprise	R1.	Because	the	R1	values	do	not	march	the	R2
values	according	to	the	base	rule,	R2	creates	a	new	cluster	C2	as	shown	in	Figure	8.4.

FIGURE	8.4 	After	processing	the	second	input	reference	R2.

In	the	third	step,	Reference	R3	is	processed.	Now	there	are	two	reference-to-cluster
comparisons	of	R3-to-C1	and	R3-to-C2.	Again,	C1	only	projects	the	R1	values	and
these	do	not	match	R3	by	the	base	rule.	C2	only	projects	the	R2	values	and	these	do	not
match	R3	either.	Therefore,	R3	creates	a	new	cluster	C3,	as	shown	in	Figure	8.5.

FIGURE	8.5 	After	processing	the	third	input	reference	R3.

In	the	fourth	step,	Reference	R4	is	processed	and	there	are	three	reference-to-cluster

comparisons	of	R4-to-C1,	R4-to-C2,	and	R4-to-C3.	Each	cluster	only	projects	one	set
of	values	from	the	single	reference	in	the	cluster.	The	values	of	R4	do	not	match	any	of
these	projections,	and	therefore,	it	creates	a	new	cluster	C4	as	shown	in	Figure	8.6.

FIGURE	8.6 	After	processing	the	fourth	input	reference	R4.

In	the	fifth	step,	Reference	R5	is	processed	and	there	are	now	four	reference-to-
cluster	comparisons	of	R5-to-C1,	R5-to-C2,	R5-to-C3,	and	R5-to-C4.	Again,	each
cluster	only	projects	one	set	of	values	from	the	single	reference	in	each	cluster.
However,	in	this	step	the	SID	value	in	R5	matches	the	SID	value	projected	from	C3
according	to	the	second	part	of	the	base	rule.	Consequently,	R5	is	merged	with	Cluster
C3	to	form	a	new	Cluster	C5	as	shown	in	Figure	8.7.

FIGURE	8.7 	After	processing	the	fifth	input	reference	R5.

In	the	sixth	and	final	step,	Reference	R6	is	processed.	There	are	four	reference-to-
cluster	comparisons	of	R6-to-C1,	R6-to-C2,	R6-to-C4,	and	R6-to-C5.	Clusters	C1,	C2,
and	C4	only	project	one	set	of	values	from	the	single	reference	in	the	cluster.	By	record-
based	project,	C5	projects	two	sets	of	values,	one	set	of	value	from	R3	and	one	set
values	from	R5.	At	this	step,	R6	matches	name	values	projected	from	C2	according	to
the	first	part	of	the	base	rule,	and	R6	also	matches	the	SID	value	projected	from	C4
according	to	the	second	part	of	the	base	rule.	In	this	case,	R6	acts	as	a	glue	record
causing	R6,	C2,	and	C4	to	merge	into	a	single	cluster	C6	as	shown	in	Figure	8.8.

FIGURE	8.8 	After	processing	the	sixth	input	reference	R6.

The	final	result	is	that	the	six	input	references	are	linked	together	into	three	clusters,
cluster	C1	comprising	reference	R1,	cluster	C5	comprising	references	R3	and	R5,	and
cluster	C6	comprising	references	R2,	R4,	and	R6.	However,	this	result	is	dependent
upon	all	of	the	configuration	choices	stated	at	the	beginning.	Change	any	of	these
parameters	and	the	clustering	results	for	the	same	input	dataset	may	be	different,	as	will
be	shown	in	later	examples.

	
Example	8.2 One-Pass	Algorithm	using	Record-based
Projection	(Input	Reordered)
The	configuration	choices	for	Example	8.2	are	the	same	as	for	Example	8.1,	the	only
difference	being	that	the	input	has	been	reordered	so	that	reference	R1	now	appears	at
the	end	of	the	input	list	instead	of	at	the	beginning	as	shown	in	Figure	8.9.

FIGURE	8.9 	Starting	conditions	for	Example	8.2.

The	first	input	reference	R2	forms	the	single-reference	cluster	C1	as	shown	in
Figure	8.10.

FIGURE	8.10 	After	processing	the	first	input	reference	R2.

In	the	next	step,	the	second	reference	R3	forms	a	single-reference	cluster	C2	as
shown	in	Figure	8.11.

FIGURE	8.11 	After	processing	the	second	input	reference	R3.

In	the	third	step,	Reference	R4	is	processed	and	forms	the	single-reference	cluster	C3
as	shown	in	Figure	8.12.

FIGURE	8.12 	After	processing	the	third	input	reference	R4.

In	the	fourth	step,	Reference	R5	matches	cluster	C2	and	merges	to	form	cluster	C4	as
shown	in	Figure	8.13.

FIGURE	8.13 	After	processing	the	fourth	input	reference	R5.

In	the	fifth	step,	Reference	R6	matches	both	C1	and	C3	to	form	the	new	cluster	C5	as
shown	in	Figure	8.14.

FIGURE	8.14 	After	processing	the	fifth	input	reference	R5.

In	the	sixth	and	final	step,	Reference	R1	is	processed	and	does	not	match	any	of	the
projections	from	clusters	C4	and	C5,	and	forms	the	new	single-reference	cluster	C6	as
shown	in	Figure	8.15.

FIGURE	8.15 	After	processing	the	sixth	input	reference	R1.

The	final	result	is	that	the	six	input	references	are	linked	together	into	three	clusters,
cluster	C4	comprising	references	R2,	R4,	and	R6,	cluster	C5	comprising	references	R3
and	R5,	and	cluster	C6	comprising	reference	R1.	The	important	point	here	is	that	even
though	the	cluster	labels	are	different,	the	clustering	is	the	same	as	in	Example	8.1	as
shown	in	Figure	8.8,	i.e.	the	order	of	processing	did	not	affect	the	ER	results,	the	same
references	were	clustered	together.	Although	this	does	not	constitute	a	proof,	it	is	true

that	One-Pass	is	sequence	neutral	when	record-based	projection	is	used	for	cluster-to-
cluster	matching.	The	next	two	examples	show	that	One-Pass	is	not	always	sequence
neutral	when	attribute-based	projection	is	used.

	
Example	8.3 One-Pass	Algorithm	using	Attribute-based
Projection
Configuration	choices	for	Example	8.3:

1.	Base	rule	for	matching	reference	pairs:	Boolean	rule	(First	Agree)	AND	(Last	Agree)
OR	(SID	Agree)

2.	Cluster	projection:	Attribute-based

3.	Cluster-to-Cluster	Match	Rule:	Single	Match

4.	Transitive	Closure:	Yes

5.	ER	Algorithm:	One-Pass

The	first	part	proceeds	much	the	same	as	in	Example	8.1.

FIGURE	8.16 	Starting	conditions	for	Example	8.3

The	starting	conditions	for	the	example	input	are	shown	in	Figure	8.16.	When	the
first	input	reference	R1	is	processed,	it	forms	the	single-reference	cluster	C1	as	shown
in	Figure	8.17.

FIGURE	8.17 	After	processing	the	first	input	reference	R1.

In	the	next	step,	reference	R2	creates	a	new	cluster	C2	as	shown	in	Figure	8.18.

FIGURE	8.18 	After	processing	the	second	input	reference	R2.

In	the	third	step,	reference	R3	creates	a	new	cluster	C3	as	shown	in	Figure	8.19.

FIGURE	8.19 	After	processing	the	third	input	reference	R3.

In	the	fourth	step,	Reference	R4	creates	a	new	cluster	C4	as	shown	in	Figure	8.20.

FIGURE	8.20 	After	processing	the	fourth	input	reference	R4.

In	the	fifth	step,	Reference	R5	matches	C3	and	a	new	Cluster	C5	is	formed	by	the
merger	as	shown	in	Figure	8.21.

FIGURE	8.21 	After	processing	the	fifth	input	reference	R5.

In	the	sixth	and	final	step,	Reference	R6	is	processed.	Just	as	before,	there	are	four
reference-to-cluster	comparisons	of	R6-to-C1,	R6-to-C2,	R6-to-C4,	and	R6-to-C5.
Even	though	this	example	uses	attribute-based	projection,	Clusters	C1,	C2,	and	C4	only
project	one	set	of	values	from	the	single	reference	in	the	cluster.	However,	in	the	R6-to-
C5	comparison,	C5	produces	three	projections	that	are	shown	in	Table	8.3.

Table	8.3
Attribute-based	Projections	of	C5

At	this	step,	R6	still	matches	the	name	values	projected	from	C2,	and	the	SID	value
projected	from	C4.	The	fact	that	C5	produces	two	additional	projections	does	not	result
in	any	additional	matches	for	this	step.	Therefore,	the	result	for	Example	8.3	is	the	same
as	for	Examples	8.1	and	8.2	as	shown	here	in	Figure	8.22.

FIGURE	8.22 	After	processing	the	sixth	input	reference	R6.

	
Example	8.4 One-Pass	Algorithm	using	Attribute-based

Projection	(Input	Reordered)
The	configuration	choices	for	Example	8.4	are	the	same	as	for	Example	8.3;	the	only
difference	is	the	input	has	been	reordered	so	reference	R1	now	appears	at	the	end	of	the
input	list	instead	of	at	the	beginning	as	shown	in	Figure	8.23.	The	purpose	of	this
example	is	to	show	the	One-Pass	algorithm	is	not	sequence	neutral	when	used	in
conjunction	with	attribute-based	projection.

FIGURE	8.23 	Starting	conditions	for	Example	8.4.

The	first	input	reference	R2	forms	the	single-reference	cluster	C1	as	shown	in
Figure	8.24.

FIGURE	8.24 	After	processing	the	first	input	reference	R2.

In	the	next	step,	the	second	reference	R3	forms	a	single-reference	cluster	C2	as
shown	in	Figure	8.25.

FIGURE	8.25 	After	processing	the	second	input	reference	R3.

In	the	third	step,	Reference	R4	is	processed	and	forms	the	single-reference	cluster	C3
as	shown	in	Figure	8.26.

FIGURE	8.26 	After	processing	the	third	input	reference	R4.

In	the	fourth	step,	Reference	R5	matches	cluster	C2	and	merges	to	form	cluster	C4	as
shown	in	Figure	8.27.

FIGURE	8.27 	After	processing	the	fourth	input	reference	R5.

In	the	fifth	step,	Reference	R6	matches	both	C1	and	C3	to	form	the	new	cluster	C5	as
shown	in	Figure	8.28.

FIGURE	8.28 	After	processing	the	fifth	input	reference	R5.

In	the	sixth	and	final	step,	something	different	happens.	Cluster	C4	now	produces
four	projections,	the	same	projections	that	were	produced	from	Cluster	C5	in	the
previous	example	and	shown	in	Table	8.3.	In	particular,	R1	matches	projection	P3.
Therefore,	R1	is	merged	into	C4	to	produce	a	new	cluster	C6	as	shown	in	Figure	8.29.

FIGURE	8.29 	After	processing	the	sixth	input	reference	R1.

The	final	result	is	that	two	clusters	of	three	references	are	fundamentally	different
than	the	results	in	Examples	8.1,	8.2	and	8.3.	In	particular,	this	example	shows	that	the
One-Pass	algorithm	is	not	always	sequence	neutral	when	attribute-based	projection	is
used.	When	the	configuration	choice	is	attribute-based	projection,	then	an	ER	algorithm
stronger	than	the	One-Pass	algorithm	is	required.

The	R-Swoosh	Algorithm
The	R-Swoosh	ER	algorithm	was	developed	at	the	Stanford	InfoLab	oun,	Garcia-
Molina,	Su,	&	Widom,	2005).	The	R-Swoosh	algorithm	is	part	of	a	larger	body	of	ER
research	called	the	Stanford	Entity	Resolution	Framework	(SERF).	As	described	in
Chapter	7,	the	SERF	model	describes	entity	resolution	in	terms	of	abstract	match	and
merge	functions,	and	shows	the	conditions	that	must	hold	for	these	functions	so	the	ER
process	will	always	arrive	at	a	finite,	unique,	and	sequence-neutral	outcome.	An
important	component	of	SERF	is	the	Swoosh	family	of	ER	algorithms,	of	which	R-
Swoosh	is	the	most	basic.

The	R-Swoosh	algorithm	is	similar	to	the	One-Pass	in	that	it	starts	with	a	list	of	input
references	and	an	empty	output	list	of	clusters.	The	primary	difference	is	that	clusters
from	the	output	list	are	sometimes	pushed	back	into	the	input	list	for	reprocessing.	Here
is	how	that	happens.	When	an	item	on	the	input	list	is	selected	for	processing,	it	is
compared	in	order	to	each	cluster	in	the	output	list.	If	a	comparison	results	in	a	match,
the	input	item	is	removed	from	the	input	list	and	merged	with	the	matching	cluster.	The
new	merged	cluster	is	removed	from	the	output	list	and	appended	to	the	end	of	the	input
list.	The	algorithm	continues	by	processing	the	next	item	in	the	input	list	until	the	input
list	is	empty.	In	the	case	where	an	input	item	does	not	match	any	of	the	clusters	in	the
output	list,	it	forms	a	new	single-reference	cluster	that	is	appended	to	the	end	of	the
cluster	list	the	same	as	in	the	One-Pass	algorithm.	The	algorithm	continues	until	all	of
the	input	items	have	been	processed.

	
Example	8.5 R-Swoosh	Algorithm	using	Attribute-based
Projection
Configuration	choices	for	Example	8.5:

1.	Base	rule	for	matching	reference	pairs:	Boolean	rule	(First	Agree)	AND	(Last	Agree)
OR	(SID	Agree)

2.	Cluster	projection:	Attribute-Based

3.	Cluster-to-Cluster	Match	Rule:	Single	Match

4.	Transitive	Closure:	Yes

5.	ER	Algorithm:	R-Swoosh

FIGURE	8.30 	Starting	conditions	for	Example	8.5.

Because	there	are	no	matches	among	the	first	four	references,	these	all	create	single-
reference	clusters	as	shown	in	Figure	8.31.

FIGURE	8.31 	After	processing	input	references	R1,	R2,	R3,	and	R4.

Up	to	this	point,	R-Swoosh	behaves	the	same	as	One-Pass.	However,	in	the	fifth	step
there	is	a	difference.	In	the	R5-to-C1	and	R5-to-C2	comparisons	there	is	no	match,	but
R5-to-C3	is	a	match	on	SID.	In	the	R-Swoosh	algorithm	R5	is	merged	into	C3	to	form	a
new	cluster	C5.	R5	and	C3	are	removed	from	the	input	list	and	output	list,	respectively,
and	the	new	cluster	C5	is	appended	to	the	end	of	the	input	list	for	reprocessing	as
shown	in	Figure	8.32.

FIGURE	8.32 	After	processing	the	fifth	input	reference	R5.

Unlike	the	previous	examples,	the	sixth	step	is	no	longer	the	final	step	because	there
are	now	two	items	still	in	the	input	list.	When	reference	R6	is	processed,	the	first	match
it	finds	is	to	C2.	This	stops	the	comparisons,	and	R6	is	merged	with	Cluster	C2.	The
new	merged	cluster	C6	is	appended	to	the	input	list	as	shown	in	Figure	8.33.

FIGURE	8.33 	After	processing	the	sixth	input	reference	R6.

In	the	seventh	step,	cluster	C5	is	compared	to	C1.	By	attribute	projection,	cluster	C5
will	produce	four	projections,	the	same	as	those	shown	in	Table	8.3,	and	in	fact,	project
P3	of	Table	8.3	is	a	match	to	the	single	projection	of	C1.	Consequently,	clusters	C5	and
C1	are	merged	into	a	new	cluster	C7	that	is	appended	to	the	input	list	as	shown	in
Figure	8.34.

FIGURE	8.34 	After	processing	the	seventh	input	item	C5.

In	the	eighth	step,	cluster	C6	is	compared	to	C4.	Because	these	two	clusters	match,
they	are	merged	into	a	new	cluster	C8	that	is	an	appended	input	list	as	shown	in
Figure	8.35.	Although	the	cluster	list	is	empty,	the	algorithm	does	not	stop	until	the
input	list	is	empty.

FIGURE	8.35 	After	processing	the	eighth	input	item	C6.

In	the	ninth	step,	cluster	C7	is	simply	moved	to	the	empty	cluster	list.	In	the	tenth	and
last	step,	cluster	C8	is	compared	to	cluster	C7.	Because	these	two	clusters	do	not	match,
cluster	C8	is	also	moved	to	the	end	of	the	cluster	list	as	shown	in	Figure	8.36.	This	also
results	in	an	empty	input	list	and	so	the	algorithm	ends	at	the	tenth	step.

FIGURE	8.36 	After	processing	the	ninth	and	tenth	input	items	C7	and	C8.

	
Example	8.6 R-Swoosh	Algorithm	using	Attribute-based
Projection	(Input	Reordered)
The	configuration	for	this	example	is	exactly	the	same	as	for	the	previous	Example	8.5
except	that	the	input	list	has	been	reordered	so	that	reference	R1	is	placed	at	the	end	of
the	input	list	instead	of	at	the	beginning,	as	shown	in	Figure	8.37.

FIGURE	8.37 	Starting	conditions	for	Example	8.6.

Because	there	are	no	matches	among	the	first	three	references,	these	all	create	single-
reference	clusters	as	shown	in	Figure	8.38.

FIGURE	8.38 	After	processing	input	items	R2,	R3,	and	R4.

In	the	fourth	step,	reference	R5	matches	cluster	C2.	Following	the	R-Swoosh
algorithm,	R5	and	C2	are	merged	to	create	new	cluster	C4	that	is	appended	to	the	input
list	as	shown	in	Figure	8.39.

FIGURE	8.39 	After	processing	input	item	R5.

In	the	next	step,	reference	R6	is	found	to	match	cluster	C1.	R6	and	C1	are	merged	to
form	a	new	cluster	C6	that	is	appended	to	the	input	list,	as	shown	in	Figure	8.40.

FIGURE	8.40 	After	processing	input	item	R6.

In	the	sixth	step,	reference	R1	is	compared	to	cluster	C4	and	found	not	to	be	a	match.
Reference	R1	forms	a	new	cluster	C7	that	is	appended	to	the	cluster	list	as	shown	in
Figure	8.41.

FIGURE	8.41 	After	processing	input	item	R1.

In	the	seventh	step,	cluster	C5	is	first	compared	to	C4	and	found	not	to	be	a	match.
However,	through	attribute-based	projection,	cluster	C5	is	a	name	match	to	cluster	C7
as	in	the	previous	Example	8.5.	Clusters	C5	and	C7	are	merged	to	form	a	new	cluster
C8	that	is	an	appended	input	list	as	shown	in	Figure	8.42.

FIGURE	8.42 	After	processing	input	item	C5.

In	the	eighth	step,	cluster	C6	matches	and	merges	with	C4	to	form	cluster	C9	that	is
appended	to	the	input	list	as	shown	in	Figure	8.43.

FIGURE	8.43 	After	processing	input	item	C6.

At	this	point,	the	algorithm	is	essentially	complete.	In	the	ninth	step,	cluster	C8	is
moved	to	the	cluster	list,	and	in	the	tenth	step,	cluster	C9	is	compared	to	cluster	C8,	but
does	not	match.	Therefore,	cluster	C9	is	appended	to	the	cluster	list	and	the	algorithm
ends	with	an	empty	input	list	as	shown	in	Figure	8.44.

FIGURE	8.44 	End	of	algorithm	after	processing	input	items	C8	and	C9.

Although	these	examples	do	not	establish	a	proof,	at	least	Examples	8.5	and	8.6	show
that	the	R-Swoosh	algorithm	produces	the	same	results	for	attribute-based	projection
when	presented	with	the	differently	ordered	lists	that	caused	the	One-Pass	to	give
different	results	when	using	attribute-based	projection	as	demonstrated	in	Examples	8.3
and	8.4.

Concluding	Remarks
The	previous	examples	have	shown	that	some	combinations	of	ER	design	choices	will
lead	to	undesirable	results.	Examples	8.1	and	8.2	show	the	combination	of	the	One-Pass
algorithm	with	record-based	cluster	matching	produces	the	same	clustering	results	for	two
different	orderings	of	the	input	list.	It	is	not	difficult	to	show	this	combination	is	actually
sequence	neutral,	i.e.	will	give	the	same	clustering	results	for	any	ordering	of	the	input	list.

Table	8.4
Summary	of	ER	Design	Scenarios	for	Same	Input	and	Base	Rule

However,	Examples	8.3	and	8.4	demonstrate	that	the	combination	of	the	One-Pass
algorithm	with	attribute-based	projection	cluster	matching	is	not	sequence	neutral.	They
show	that	different	orderings	can	produce	different	clustering	results.	Examples	8.5	and
8.6	show	that	the	combination	of	the	R-Swoosh	algorithm	with	attribute-based	cluster
matching	gives	the	same	clustering	results	for	both	orderings.	Benjelloun	et	al.	(2009)
have	shown	that	this	will	always	be	the	case,	i.e.	the	combination	of	R-Swoosh	and
attribute-based	cluster	matching	will	be	sequence	neutral.

It	is	also	worthwhile	to	note	that	because	an	attribute-based	projection	can	produce
more	pair-wise	attribute	value	combinations	to	test	than	a	record-based	projection,	then	it
follows	that	using	the	R-Swoosh	algorithm	with	attribute-based	projection	will	often	find
more	matches	than	the	One-Pass	algorithm	using	record-based	projection.	From	this	it	also
follows	that	the	total	number	of	clusters	produced	by	R-Swoosh	and	attribute-based
projection	will	always	be	less	than	or	equal	to	the	total	number	of	clusters	produced	by
One-Pass	and	record-based	projection	as	shown	in	Examples	8.1	and	8.5.	Acting	on	the
same	input	list,	One-Pass	using	record-based	projection	produced	three	clusters	in
Example	8.1	while	R-Swoosh	using	attributed-based	projection	produced	two	clusters	in
Example	8.5.	The	reason	is	that	with	transitive	closure,	more	matches	yields	a	higher
likelihood	of	producing	a	glue	record	that	will	merge	two	clusters.	In	other	words,	more
matching	means	fewer	clusters.

A	summary	of	these	design	combinations	is	shown	in	Table	8.4.	Note	that	even	though
Scenario	4	is	a	valid	sequence	neutral	combination,	it	would	be	better	to	use	Scenario	1
instead.	Using	R-Swoosh	with	record-based	matching	is	inefficient	because	the	extra
comparisons	are	not	necessary	to	achieve	the	correct	result.	One-Pass	will	give	the	same
clustering	result	with	fewer	comparisons.

CHAPTER	9

Blocking

Abstract
The	chapter	discusses	blocking	as	a	technique	for	reducing	the	total	number	of	pair-wise	comparisons	necessary	for
an	ER	algorithm	to	arrive	at	an	acceptable	clustering	result.	Blocking	or	some	other	type	of	comparison	reduction
must	be	used	in	order	to	implement	a	practical	ER	system.	This	chapter	focuses	on	a	particular	type	of	blocking
called	match	key	blocking.	It	also	discusses	the	importance	of	match-key-to-rule	alignment,	match	key	precision,
match	key	recall,	and	strategies	for	creating	and	optimizing	match	key	generators.

Keywords
Blocking;	Match	Key;	Inverted	Indexing

Blocking
As	necessary	as	the	considerations	discussed	in	Chapter	8	are	to	the	design	of	a	logically
sound	ER	system,	they	are	not	sufficient	to	implement	a	usable	ER	system.	As	a	practical
matter,	neither	the	One-Pass	algorithm	nor	the	R-Swoosh	algorithm	should	be
implemented	exactly	as	described.	The	number	of	comparisons	will	be	overwhelming.	For
both	of	these	algorithms	the	number	of	comparisons	grows	as	the	square	of	the	number	of
references	processed.	Twice	as	many	references	require	four	times	as	many	comparisons,
and	three	times	as	many	references	require	nine	times	more,	and	so	on.	Implementing	any
of	the	design	scenarios	as	described	in	a	computer	language	such	as	C	or	Java	will
produce	a	system	that	will	never	be	able	to	process	more	than	a	few	thousand	references	in
a	reasonable	amount	of	time,	even	with	a	fast	computer.

To	actually	implement	a	practical	ER	system,	one	more	ingredient	is	required	for	the
ER	recipe	and	that	is	blocking.	For	a	given	set	of	input	references	to	an	ER	process,	this
simply	means	performing	the	ER	process	on	specific	subsets	of	the	input	instead	of	on	the
entire	set	of	references.	These	subsets	are	called	blocks,	hence	the	name	blocking.	For
example,	if	the	input	has	1,000	references,	if	an	ER	process	is	performed	on	the	entire
1,000	references,	processing	will	require	on	the	order	of	1,0002	or	1,000,000	comparisons
to	complete.	However,	if	the	references	are	partitioned	into	10	disjoint	blocks	of	100
references,	then	the	effort	to	perform	the	ER	algorithm	on	each	block	will	require	on	the
order	of	1002	or	10,000	comparisons.	Thus,	the	overall	effort	for	all	10	blocks	will	be	on
the	order	of	10	×	1002	or	100,000	comparisons,	an	order	of	magnitude	less	than
performing	the	algorithm	on	the	entire	1,000	references.

Of	course,	there	is	an	obvious	problem.	Suppose	that	references	R1	and	R2	in	the	input
match	by	the	ER	base	rule.	If	the	blocking	process	assigns	R1	to	block	B1,	and	assigns	R2
to	a	different	block	B2,	then	R1	and	R2	will	not	be	compared	and	the	ER	process	will	not
find	this	match.	The	ER	process	will	only	make	comparisons	among	the	references	within
block	B1	and	within	B2,	but	not	between	B1	and	B2.	Consequently,	unless	the	blocking	is
done	in	such	a	way	that	the	records	that	match	are	in	the	same	block,	the	ER	process	will
not	be	accurate.

This	presents	another	ER	conundrum.	Putting	the	references	into	the	proper	block
requires	knowing	ahead	of	time	whether	they	will	match	or	not.	But	finding	equivalent
references	by	matching	is	the	whole	purpose	of	the	ER	process.	So	if	it	were	already
known	which	references	match,	then	there	would	be	no	need	for	the	ER	process	in	the	first
place.

In	reality,	the	best	that	can	be	done	is	to	assign	references	to	the	same	block	based	on
the	likelihood	that	they	will	match.	Because	it	is	only	a	probability,	some	matching
references	may	still	end	up	in	separate	blocks,	causing	those	matches	to	be	lost	and	the
overall	accuracy	of	the	process	to	be	reduced.	Like	so	many	things	in	ER,	blocking	is	a
trade-off.	In	the	case	of	blocking,	the	trade-off	is	between	accuracy	and	performance.

Two	Causes	of	Accuracy	Loss

As	discussed	earlier,	ER	is	about	finding	equivalent	references,	not	just	matching.	The
first	loss	in	ER	accuracy	is	introduced	simply	because	matching	is	the	primary	tool	for
resolving	equivalence.	The	fact	that	two	references	have	similar	values	for	identity
attributes	only	increases	the	likelihood	they	are	equivalent;	it	does	not	guarantee	it.	As
discussed	in	Chapter	3,	the	loss	of	ER	accuracy	due	to	matching	is	measured	in	terms	of
false	positive	(FP)	and	false	negative	(FN)	errors.	From	the	perspective	of	matching,	the
accuracy	of	the	ER	process	can	be	measured	as

The	introduction	of	blocking	can	further	decrease	the	accuracy	of	ER.	Blocking	will
never	create	new	matches,	so	it	cannot	cause	an	increase	in	false	positive	links.	However,
it	can	increase	the	number	of	false	negatives.	Assume	the	majority	of	matches	found	by	an
ER	process	result	in	true	positive	links	rather	than	false	positive	links	and	then	the	effect
of	blocking	is	to	increase	the	number	of	false	negatives.	This	happens	when	references
that	would	have	matched	and	created	true	positive	links	are	placed	into	separate	blocks
where	they	remain	unlinked.	Although	as	a	general	rule	blocking	reduces	accuracy	by
increasing	false	negatives,	it	is	not	absolute.	There	is	always	a	small	probability	blocking
could	prevent	a	false	positive	match	and	increase	the	number	of	true	negatives,	thereby
increasing	accuracy.

Blocking	is	said	to	be	in	alignment	with	the	ER	process	when	it	is	true	that	every	match
that	could	have	been	found	without	blocking	will	still	be	found	with	blocking	in	place,	i.e.
the	blocking	does	not	prevent	any	matches.	However,	the	fact	that	blocking	is	in	100%
alignment	with	the	ER	process	does	not	mean	that	the	ER	process	is	100%	accurate.	The
accuracy	of	the	ER	process	is	dependent	on	the	false	positive	and	false	negative	rates	of
the	matching	in	the	ER	process	itself.	The	point	is	accurate	ER	results	depend	upon	both
accurate	matching	and	accurately	aligned	blocking.

Measuring	the	reduction	of	comparisons	from	blocking	is	easier	than	measuring	the	loss
of	accuracy	from	blocking.	An	empirical	method	to	test	the	potential	loss	of	accuracy	from
blocking	is	to	first	select	some	subset	of	the	references	small	enough	that	the	ER	process
can	run	without	blocking.	By	analyzing	the	cluster	results	of	running	these	references	with
blocking	and	without	blocking	it	is	possible	to	estimate	the	loss	of	matching	that	blocking
has	introduced.	If	no	matches	are	lost	by	the	blocking,	then	the	cluster	results	should	be
identical.

It	should	also	be	noted	that	if	some	matches	are	lost	by	blocking,	then	the	ER	results
with	blocking	will	always	have	more	clusters	than	the	results	without	blocking.	This	is
because	all	ER	processes	(except	for	certain	types	of	assertion	configurations)	that	link
references	together	by	matching	rules	and	transitive	closure	will	never	split	clusters	apart,
they	will	only	bring	clusters	together.	Therefore,	with	more	matches	found,	the	number	of
clusters	decreases	as	the	sizes	of	the	clusters	increase.	In	the	extreme,	if	all	references
were	to	match,	then	the	output	would	only	be	one	cluster	comprising	all	input	references.
At	the	other	extreme,	if	no	references	were	to	match,	then	every	reference	will	form	its
own	cluster,	i.e.	N	references	will	form	N	clusters,	each	containing	a	single	reference.

Blocking	as	Prematching
The	central	issue	of	blocking	is	how	to	organize	the	references	into	subsets	that	contain
the	references	most	likely	to	match.	The	fact	that	matching	is	the	primary	tool	for
determining	equivalence	drives	the	blocking	decisions.	In	essence,	blocking	is
prematching.	Blocking	typically	focuses	on	the	similarity	between	references	by	one	or
two	of	their	identity	attributes	to	form	the	block,	and	then	leaves	the	ER	algorithm	and	the
base	matching	rule	to	do	the	fine-grained	resolution	into	clusters.

For	example,	if	the	base	rule	matches	two	customer	references	based	on	having	similar
names	and	addresses,	then	the	strategy	might	be	to	organize	the	references	into	blocks
according	to	the	same	postal	code	(e.g.	zip	code	in	the	U.S.).	The	idea	is	that	if	two
complete	addresses	match,	they	will	have	the	same	postal	code.	This	example	can	be	used
to	highlight	some	of	the	factors	that	influence	the	accuracy	of	blocking.

The	first	and	most	obvious	factor	is	that	the	blocking	value	needs	to	be	highly
correlated	to	the	matching	logic.	Using	the	postal	code	for	blocking	implies	all	references
are	expected	to	agree	on	address.	If	there	are	other	agreement	patterns	that	do	not	require
agreement	on	address,	then	blocking	by	postal	code	may	not	be	effective	in	bringing
together	the	references	that	match	by	those	patterns.

The	second	factor	is	the	importance	of	data	preparation.	If	the	references	being
processed	in	this	example	had	customer	addresses	that	were	entered	by	the	customer,	then
some	of	the	postal	codes	may	be	incorrect.	Customers	may	not	know	their	correct	postal
code	or	they	might	be	mistyped.	An	important	step	would	be	to	standardize	the	references
using	the	appropriate	postal	authority	so	that	each	address	has	the	correct	postal	code.

A	third	factor	is	the	problem	of	missing	values.	If	a	blocking	value	is	missing	in	a
reference,	then	it	is	impossible	to	know	to	which	block	the	reference	should	be	assigned.
In	the	example	of	the	postal	code,	it	may	be	possible	to	overcome	the	problem	of	missing
values.	If	the	street	address	and	city-state	elements	of	the	address	are	complete,	then	it
might	be	possible	to	determine	the	value	of	the	postal	code	by	using	tables	supplied	by	the
relevant	postal	authority.	However,	in	other	cases	it	might	be	more	difficult.	For	example,
if	blocking	were	by	year-of-birth,	then	there	may	not	be	a	way	to	impute	a	missing	value
based	on	other	information	in	the	reference.

Missing	values	are	a	problem	for	both	blocking	and	matching.	Just	as	a	missing	value
can	prevent	a	reference	from	being	assigned	to	a	block,	it	can	also	prevent	references	from
being	matched.	If	a	match	rule	required	agreement	on	the	customer’s	account	number	and
the	account	number	value	in	a	reference	is	missing,	then	that	reference	cannot	be	matched
to	another	reference	based	on	account	number	agreement.

Because	of	the	problem	of	missing	values,	matching	is	often	based	on	more	than	one
pattern	of	agreement.	For	example,	student	enrollment	records	might	be	matched	based	on
the	agreement	of	the	student’s	first	name,	student’s	last	name,	and	date-of-birth.	If	data
analysis	shows	that	some	of	the	dates-of-birth	are	missing,	the	rule	may	be	augmented	to
also	allow	a	match	based	on	the	agreement	of	the	student’s	first	name,	student’s	last	name,
and	the	house	number	of	the	student’s	address.	Allowing	a	match	by	either	pattern	could

help	compensate	for	instances	where	a	reference	is	missing	either	a	date-of-birth	or	the
house	number.	However,	this	would	not	help	if	both	are	missing.	Yet	a	third	might	be
required	that	supports	a	match	on	other	identity	attributes	when	both	date-of-birth	and
house	number	are	missing.

Another	important	consideration	for	blocking	is	uniformity	in	block	size.	The	uniform
distribution	of	references	to	blocks	is	not	an	accuracy	issue,	but	a	performance	issue.	The
purpose	of	blocking	is	to	improve	performance,	but	it	is	important	to	understand	that	the
principle	of	blocking	does	not	work	based	on	the	average	size	of	the	blocks;	rather	it
depends	on	the	absolute	size	of	each	block.	Recalling	the	previous	example,	it	does	not
help	to	partition	1,000	references	into	10	blocks	with	an	“average”	size	of	100	references
if	one	of	the	blocks	has	900	references.	The	loss	in	performance	in	processing	the
approximately	9002	or	810,000	comparison	in	the	large	block	will	negate	any	gains	from
faster	processing	of	the	9	smaller	blocks.	So,	in	addition	to	the	problem	of	organizing
blocks	by	likelihood	of	matching,	there	is	the	additional	consideration	of	uniform	block
size.	The	latter	is	sometimes	called	the	“large	entity”	problem	where	the	nature	of	the
references	and	the	base	match	rule	interact	to	form	very	large	clusters.

Blocking	by	Match	Key
Many	approaches	to	blocking	have	been	developed.	Christen	(2012),	Isele,	Jentzsch	and
Bizer	(2011),	and	Baxter,	Christen,	and	Churches	(2003)	describe	a	number	of	these,
including	inverted	indexing,	sorted	neighborhoods,	Q-gram	indexing,	suffix-array
indexing,	canopy	clustering,	and	mapping-based	indexing.	However,	inverted	indexing,
sometimes	called	match	key	indexing	or	standard	blocking	(Christen,	2006),	is	one	of	the
most	common	approaches	to	blocking	in	ER	systems.	In	addition,	match	key	blocking
plays	an	important	role	in	addressing	ER	and	MDM	for	Big	Data	that	will	be	discussed	in
the	next	chapter.

The	example	of	blocking	records	by	postal	code	described	earlier	is	also	a	simple
example	of	blocking	by	match	key.	The	value	used	to	partition	references	into	blocks,
such	as	the	postal	code,	is	called	the	match	key.	Sometimes	the	match	key	is	simply	the
value	of	a	single	attribute	of	the	reference	such	as	the	postal	code.	In	other	cases,	the	value
may	be	modified	in	some	way.	The	transformations	that	modify	values	to	form	the	match
key	are	called	hashing	algorithms,	and	the	resulting	values	are	sometimes	called	hash	keys
instead	of	match	keys.	The	routines	that	create	match	keys	are	called	match	key
generators.

Phonetic	encoding	algorithms	such	as	Soundex	(Holmes	&	McCabe,	2002),	NYSIIS
(Borgman	&	Siegfried,	1992),	and	Double-Metaphone	(Philips,	2000)	are	commonly	used
hashing	algorithms	used	to	overcome	phonetic	variation	in	names.	For	example,	the
Soundex	has	an	algorithm	that	transforms	both	“SMITH”	and	“SMYTHE”	into	the	string
value	(hash	value)	of	“S530.”	There	are	many	other	hash	algorithms	including	those	that
are	simply	string	manipulation	functions	such	as	uppercasing	letters,	extracting	specific
character	types	such	as	digits,	or	extracting	specific	substrings.	At	the	other	extreme,	some
hashing	functions	perform	mathematical	operations	on	the	underlying	bits	of	the	character
string,	transforming	the	string	into	an	integer	value.	All	of	these	hash	functions	can	be
used	to	create	match	keys.

In	some	cases,	the	match	key	is	created	from	the	values	from	several	attributes.	For
example,	if	the	base	match	rule	requires	agreement	on	the	customer’s	name	as	well	as	the
address,	then	the	size	of	each	block	can	be	reduced	by	constructing	a	compound	match
key	by	concatenating	the	customer’s	last	name	with	the	postal	code.	As	long	as	this	is	the
only	matching	pattern,	then	using	this	compound	key	would	improve	performance	without
decreasing	accuracy.	The	reason	is	the	longer	match	key	now	requires	two	conditions	to	be
met	and	would	create	smaller	blocks.	At	the	same	time	agreement	on	name	also	implies
agreement	on	last	name	and	agreement	on	address	implies	agreement	on	postal	code,	and
therefore,	the	match	key	is	aligned	with	the	agreement	pattern	of	the	rule.	Any	pair	of
references	that	would	match	by	the	name	and	address	pattern	would	be	placed	in	the	same
block	by	the	last	name	and	postal	code	match	key.

Match	Key	and	Match	Rule	Alignment
As	noted	earlier,	blocking	is	in	100%	alignment	with	the	base	matching	rule	if	any	two

references	that	match	by	the	rule	are	always	in	the	same	block.	For	match	key	blocking,
100%	alignment	can	be	expressed	this	way.	If	it	is	true	that	whenever	two	references
match	by	the	rule,	they	also	generate	the	same	match	key,	then	the	match-key	and	rule	are
in	alignment.	For	match	key	blocking,	misalignment	occurs	when	two	references	match
each	other,	but	do	not	generate	the	same	match	key.

A	secondary	goal	of	match	key	generation	is	to	minimize	the	number	of	references	that
generate	the	same	match	key,	but	that	do	not	match	by	the	rules.	So	a	natural	question	to
ask	is:	why	not	make	the	match	key	generators	the	same	as	the	match	rules?	In	some
simple	scenarios	this	might	be	possible,	but	in	most	cases	they	must	be	different.	The
reason	can	be	explained	by	the	following	example.

For	simplicity,	suppose	that	there	is	a	single	match	rule	for	student	enrollment	records
with	a	pattern	that	requires	the	last	names	to	be	the	same	(exact	match),	but	allows	the	first
name	values	to	be	nicknames	for	each	other,	e.g.	for	English	names	allowing	“JAMES”
and	“JIM”	to	be	a	match.	In	this	case	using	a	match	key	made	by	combining	the	first	and
last	name	will	not	work	properly.	For	example,	the	two	records	“JAMES	DOE”	and	“JIM
DOE”	will	match	by	the	rule,	but	their	match	keys	“JAMESDOE”	and	“JIMDOE”	are	not
the	same.	Therefore,	they	would	not	be	assigned	to	the	same	match	key	block	and	would
never	be	compared	and	brought	together	in	the	same	cluster.

Another	match	key	strategy	for	this	same	rule	might	be	to	use	the	LeftSubstring(1)	hash
generator	for	the	first	name.	Now	the	enrollment	records	“JAMES	DOE”	and	“JIM	DOE”
match	by	the	rule	and	also	generate	the	same	match	key	“JDOE”.	However,	this	would
still	not	bring	the	match	key	generator	into	100%	alignment	with	the	rule.	Take	for
example	the	enrollment	records	“ROBERT	CAMP”	and	“BOB	CAMP”.	Because	for
English	names,	Bob	is	a	common	nickname	for	Robert,	these	two	references	would	match
by	the	rule,	but	their	match	keys	“RCAMP”	and	“BCAMP”	are	not	the	same.	Thus,	the
rule	and	the	index	generator	are	still	not	in	100%	alignment.

The	Problem	of	Similarity	Functions
The	problem	with	the	previous	example	is	caused	when	the	comparator	used	in	a	rule	is
based	on	a	similarity	function	rather	than	a	hashing	algorithm.	A	similarity	function
requires	two	input	values	in	order	to	give	a	match	result.	In	the	example	just	given,	the
similarity	function	is	the	Nickname	function.	It	takes	the	two	first	name	values	and	looks
them	up	in	a	table	to	see	if	one	is	a	nickname	for	the	other.	On	the	other	hand,	a	hashing
algorithm	operates	on	a	single	value	to	transform	it,	such	as	the	SOUNDEX	has	an
algorithm	that	transforms	“Smith”	into	the	value	“S530.”	When	a	hash	function	such	as
SOUNDEX	is	used	as	a	comparator,	it	simply	checks	if	two	attribute	values	give	the	same
hash	value.

However,	the	nickname	comparator	can	only	operate	when	it	knows	both	values.	It	is
not	a	hash	function	because	it	is	not	possible	to	design	an	algorithm	in	such	a	way	that	if
two	names	are	processed	independently	by	the	algorithm,	the	names	will	produce	the	same
output	(hash)	value	if	and	only	if	they	are	nicknames	of	each	other.	In	other	words,	a	hash

algorithm	does	not	need	information	from	other	attribute	values	to	produce	its	output.

It	turns	out	many	similarity	functions	are	commonly	used	in	ER	matching	rules.	One
example	is	the	Levenshtein	edit	distance	function	discussed	in	Chapter	3.	Given	the	string
“KLAUS,”	there	are	a	hundreds,	if	not	thousands,	of	other	strings	that	are	within	1	edit
distance	just	by	changing	a	single	character,	e.g.	first	character	substitution	“ALAUS”,
“BLAUS”,	“CLAUS”,	etc.	second	character	substitutions	“KAAUS”,	“KBAUS”,
“KCAUS”,	etc.	and	so	on.	Again,	there	is	not	a	hashing	algorithm	that	can	act	on	every
one	of	these	variant	strings	independently	and	produce	the	same	output	value.

The	worst	case	for	match	key	blocking	is	when	all	of	the	comparators	used	in	an
agreement	pattern	of	a	rule	are	similarity	functions	that	do	not	have	corresponding	hash
algorithms.	For	example,	consider	a	rule	that	matches	student	enrollment	records	by	the
pattern	where	first	name	is	a	nickname	match	and	the	last	name	is	within	one	Levenshtein
edit	distance.	In	this	case,	a	match	key	generator	based	on	hashing	algorithms	cannot	be
constructed	that	will	guarantee	when	two	references	match,	their	match	keys	will	be	the
same.	The	blocking	for	a	rule	like	this	would	best	be	done	using	a	different	technique
other	than	match	key	blocking	such	as	q-gram	blocking	as	described	by	Christen	(2012).

However,	if	the	ER	system	is	constrained	to	use	match	keys	for	blocking,	other
strategies	can	be	adopted.	One	is	to	break	the	rule	into	multiple	patterns	in	which	each
pattern	has	at	least	one	comparator	that	corresponds	to	a	hash	generator.	For	example,
instead	of	one	agreement	pattern	of	nickname	match	on	the	first	name	and	edit	distance	of
one	on	the	last	name,	use	two	patterns.	The	first	agreement	pattern	uses	nickname	on	the
first	name,	but	requires	an	exact	match	on	the	last	name.	Then	the	second	pattern	could
require	exact	match	on	the	first	name,	but	allow	one	edit	distance	difference	on	the	last
name.	This	would	not	be	a	perfect	solution;	at	least	it	would	allow	for	blocking	by	match
key	that	would	find	those	matches	where	the	variation	was	only	in	the	first	name	or	the
last	name,	but	not	in	both.

Dynamic	Blocking	versus	Preresolution
Blocking
The	example	just	given	also	shows	why	it	is	sometimes	beneficial	to	create	more	than	one
match	key	per	reference,	when	the	match	rule	allows	for	more	than	one	agreement	pattern.
However,	the	use	of	more	than	one	match	key	leads	to	an	implementation	issue.	The	issue
is	the	point	in	the	process	at	which	references	are	assigned	to	blocks.	There	are	two
approaches.	One	approach	is	to	organize	the	input	into	blocks	prior	to	starting	the	ER
process	(preresolution	blocking),	and	the	other	approach	is	to	create	the	blocks	as	the	ER
algorithm	is	executing	(dynamic	blocking	or	indexing).

First	consider	the	case	where	there	is	only	a	single	match	key	such	as	the	postal	code.	In
this	case,	preresolution	blocking	could	be	easily	done	by	sorting	all	references	by	postal
code	before	the	ER	process	starts.	Each	block	of	references	with	the	same	postal	code
could	then	be	read	into	the	system	and	processed	by	the	match	rules	and	ER	algorithm	one
block	at	a	time.	Because	each	block	is	independent	of	every	other	block,	the	blocks	could
be	processed	in	parallel.	By	doing	so,	there	will	not	only	be	a	gain	in	performance	by
applying	the	ER	algorithm	to	the	smaller	blocks	of	data,	there	will	be	an	additional	gain	in
performance	by	processing	the	blocks	concurrently	in	different	processor	threads	or	on
different	processors.

The	other	approach	is	dynamic	blocking	by	using	an	inverted	index.	In	dynamic
blocking,	the	input	references	do	not	have	to	be	sorted	or	preordered.	Instead,	as	each
reference	is	read	into	the	system,	its	match	key	is	generated,	and	the	reference	is	indexed
in	memory	by	its	match	key.	In	other	words,	the	system	keeps	track	of	each	reference
through	an	inverted	index	built	using	the	match	key.	When	a	new	input	reference	is	read
into	the	system,	its	match	key	is	generated	and	then	through	the	inverted	index,	the	match
key	is	used	to	look	up	all	of	the	previous	processed	references	that	also	generated	the	same
match	key.

The	set	of	references	brought	back	by	the	inverted	index	is	sometimes	called	the
candidate	list	because	the	references	returned	by	the	index	are	the	most	likely	to	match	the
incoming	reference.	The	candidate	list	produced	by	the	inverted	index	comprises	the	block
for	that	match	key,	at	least	as	it	exists	at	that	point	in	the	process.	The	blocks	grow	in	size
as	each	new	input	record	is	read	and	indexed	by	the	system.

Now	consider	the	case	where	there	is	more	than	one	match	key	generator.	For
simplicity,	suppose	each	student	enrollment	record	generates	two	match	keys,	one	based
on	first	name	and	another	based	on	last	name.	In	this	case,	preresolution	blocking	can’t	be
done	by	sorting	because	there	are	two	ways	to	sort,	one	by	first	name	and	the	other	by	last
name.	On	the	other	hand,	the	dynamic	blocking	by	inverted	index	is	largely	unaffected.
For	example,	if	a	reference	for	“John	Doe”	is	read,	then	the	system	uses	the	inverted	index
to	look	up	all	previously	processed	references	with	the	first	name	“John”	and	all
previously	processed	references	with	the	last	name	“Doe.”	The	union	of	these	two	sets	of
references	then	forms	the	candidate	list	of	references	that	should	be	compared	to	the
incoming	reference	“John	Doe.”

Preresolution	Blocking	with	Multiple	Match	Keys
When	performance	considerations	require	more	than	one	match	key,	the	problem	of
preresolution	blocking	becomes	much	more	difficult.	In	dynamic	match	key	blocking
using	an	inverted	index,	the	candidates	for	an	input	reference	are	assembled	on	demand	as
each	input	reference	is	processed.	Because	the	inverted	index	is	in	memory,	it	is	a	simple
matter	to	recall	the	relevant	candidates	for	a	given	input.

That	is	not	possible	to	do	in	preresolution	blocking	where	all	combinations	have	to	be
anticipated.	For	example,	consider	the	same	reference	with	the	name	“John	Doe”	in	the
case	where	both	the	first	name	and	second	name	values	act	as	match	keys.	In	preresolution
blocking	the	system	needs	to	anticipate	that	the	reference	“John	Doe”	may	match	with
other	references	with	the	first	name	“John”	and	the	last	name	“Doe”	just	as	in	dynamic
blocking.	Therefore,	all	references	with	the	first	name	“John”	and	the	last	name	“Doe”
must	be	brought	into	the	same	block.

However,	if	one	of	the	references	in	the	block	with	the	first	name	“John”	has	the	last
name	“Smith”,	then	preresolution	blocking	must	anticipate	this	reference	could	match
with	other	references	that	have	the	last	name	of	“Smith”.	Therefore,	all	references	with	the
last	name	of	“Smith”	should	also	be	brought	into	the	block.	If	a	reference	with	the	last
name	“Smith”	is	brought	into	the	block	that	has	a	first	name	of	“James”,	then	by	the	same
reasoning	it	is	necessary	to	bring	into	the	block	all	of	the	references	with	the	first	name	of
“James”	as	they	may	match.	This	chaining	or	transitive	closure	of	the	match	keys	can	go
on	and	on	and	potentially	create	very	large	blocks	of	references,	exactly	the	opposite	of
what	is	desired.

The	essential	difference	is	that	dynamic	match	key	blocking	by	inverted	index	has	the
luxury	of	only	dealing	with	one	degree	of	connection	(references	with	the	same	first	name
or	same	last	name	as	the	input	reference)	as	each	input	reference	is	processed.	On	the
other	hand,	preresolution	match	key	blocking	must	anticipate	all	degrees	of	connection	in
advance	by	forming	the	transitive	closure	of	all	first	and	last	name	connections.

From	this	example	it	might	appear	dynamic	blocking	is	the	preferred	method	because	it
can	easily	accommodate	multiple	match	keys.	This	is	true	as	long	as	the	volume	of	data	to
be	processed	allows	the	entire	inverted	index	to	reside	in	main	memory.	As	data	volumes
grow	into	the	big	data	range,	this	may	no	longer	be	possible	or	at	least	practical,	from	a
systems	implementation	standpoint.	Approaches	to	preresolution	match	key	blocking	for
big	data	when	multiple	match	keys	are	required	will	be	discussed	in	the	next	chapter.

Blocking	Precision	and	Recall
Just	as	match	rules	can	be	evaluated	in	terms	of	precision	and	recall,	the	same	measure	can
be	applied	to	blocking,	especially	match	key	blocking.	Match	keys	can	be	thought	of	as	an
information	retrieval	(IR)	strategy.	Consider	the	case	of	dynamic	match	key	blocking.	As	a
new	input	reference	enters	the	system,	the	goal	is	to	retrieve	all	previously	processed
references	likely	to	match	the	input	reference.	In	the	match	key	approach,	the	match	key
generated	from	the	input	reference	is	like	a	query	that	returns	a	list	of	candidates.
Basically,	two	measures	can	be	applied	to	the	retrieved	candidate	list.

The	first	question	is	what	proportion	of	the	candidates	in	the	list	actually	matches	the
input	reference?	The	answer	to	this	question	is	the	precision	measure	of	the	match	key
query.	In	other	words,	if	every	candidate	returned	by	the	inverted	index	matches	the	input
record,	the	query	has	100%	precision.

The	second	question	to	ask	is	whether	there	are	references	that	match	the	input
reference,	but	were	not	in	the	candidate	list.	The	answer	to	this	question	is	the	recall
measure	of	the	match	query.	Recall	is	the	proportion	of	all	references	that	actually	match
the	input	reference	that	are	actually	returned	in	the	candidate	list.	In	other	words,	if	every
reference	that	will	match	the	input	reference	is	returned	in	the	candidate	list,	then	the
query	has	100%	recall.

Yet	another	way	to	express	match-key-to-rule	alignment	is	to	say	that	the	match	key
index	has	100%	recall.	In	other	words,	if	there	is	any	reference	that	will	match	the	input
reference,	then	it	will	be	in	the	candidate	list	produced	by	the	match	key	query	to	the
inverted	index.	The	precision	measure	is	not	important	for	alignment	(accuracy),	but	it	is
important	for	performance.	The	nonmatching	references	returned	by	the	index	represent
overhead	in	the	process	as	they	force	the	system	to	make	additional,	nonproductive
comparisons	in	order	to	find	the	actual	matching	references.

The	scenarios	in	Figure	9.1	illustrate	various	relationships	between	precision	and	recall
as	Venn	diagrams.	If	R	is	a	set	of	references,	then	the	background	of	the	diagram
represents	all	possible	unordered	pairs	of	references	from	R.	The	area	enclosed	by	the
solid	circle	represents	the	set	of	all	pairs	of	references	from	R	that	satisfy	the	matching
rule.	The	area	enclosed	by	the	dashed	circle	represents	the	set	of	all	pairs	of	references
from	R	that	generate	the	same	match	key.

FIGURE	9.1 	Schematics	for	match	key	recall	and	precision.

Alignment	occurs	when	the	recall	measure	is	100%,	meaning	the	solid	circle	is
completely	enclosed	in	the	dashed	circle	as	shown	in	Scenario	(1).	The	area	between	the
two	circles	(inside	the	dashed	and	outside	the	solid)	represents	pairs	that	generate	the	same
match	key,	but	do	not	match	by	the	rule.	For	this	reason,	the	precision	shown	in	Scenario
(1)	is	less	than	100%.	In	Scenario	(2),	the	match	key	index	recalls	some,	but	not	all,	of	the
matching	references	along	with	many	pairs	that	do	not	match.	Both	precision	and	recall	in
Scenario	(2)	are	less	than	100%.

In	Scenario	(3),	every	pair	of	references	recalled	by	the	match	key	index	are	matching
references,	and	therefore,	the	precision	of	this	scenario	is	100%.	The	area	between	the
circles	(inside	the	solid	and	outside	the	dashed)	represents	matching	pairs	that	are	not
recalled	by	the	match	key	index,	and	therefore,	the	recall	of	Scenario	(3)	is	less	than
100%.

Scenario	(4)	shows	complete	misalignment	between	the	rule	and	the	match	key	index.
None	of	the	pairs	that	share	the	same	match	key	match	by	the	rule,	and	conversely,	none
of	the	pairs	that	match	are	returned	by	the	index.	In	Scenario	(4)	both	precision	and	recall
are	0%.

The	scenario	shown	in	Figure	9.2	illustrates	the	strategy	of	using	multiple	match	key
generators.	Each	match	key	individually	has	less	than	100%	recall,	but	taken	together
(their	union),	they	do	achieve	100%	recall.	The	areas	outside	of	the	solid	oval	but	enclosed
by	one	or	more	dashed	circles	represents	the	loss	of	precision,	i.e.	pairs	that	generate	the
same	match	key	and	are	recalled	by	an	index	but	do	not	match	by	the	rule.

FIGURE	9.2 	Schematic	for	multiple	match	keys.

Match	Key	Blocking	for	Boolean	Rules
The	following	XML	segment	shows	how	dynamic	match	key	blocking	might	be	defined
for	a	Boolean	rule	in	an	ER	system	performing	ER	on	school	enrollment	records	(Zhou,
Talburt,	&	Nelson,	2013).

	
<IdentityRules>

	<Rule	Ident="SLN">

	 	<Term	Item="SSN"	DataPrep="Scan(LR,	DIGIT,	0,	ToUpper,	SameOrder)"

	 	 	Similarity="EXACT"/>

	 	<Term	Item="FirstName"	Similarity="SOUNDEX"/>

	</Rule>

	<Rule	Ident="FLD">

	 	<Term	Item="FirstName"	DataPrep	="Scan(LR,	LETTER,	0,	ToUpper,	SameOrder)"

	 	 	Similarity=NICKNAME/>

	 	<Term	Item="LastName"	DataPrep	="Scan(LR,	LETTER,	0,	ToUpper,	SameOrder)"

	 	 	Similarity=Exact/>

	 	<Term	Item="YOB"	DataPrep="Scan(LR,	DIGIT,	0,	KeepCase,	SameOrder)

	 	 	Similarity=Exact/>

	</Rule>

</IdentityRules>

<Indices>

	<Index	Ident="1">

	 	<Segment	Item="SSN"	Hash="Scan(LR,	DIGIT,	0,	KeepCase,	SameOrder)"/>

	 	<Segment	Item="FirstName"	Hash="SOUNDEX"/>

	</Index>

	<Index	Ident="2">

	 	<Segment	Item="LastName"	Hash="Scan(LR,	LETTER,	0,	ToUpper,	SameOrder)"/>

	 	<Segment	Item="YOB"	Hash="Scan(LR,	DIGIT,	0,	ToUpper,	SameOrder)"/>

	</Index>

</Indices>

The	first	section	of	the	XML	segment	enclosed	by	the	<IdentityRules>	element	defines
the	Boolean	rule	comprising	two	agreement	patterns.	The	first	agreement	pattern	is	an
exact	match	on	social	security	number	(SSN)	and	a	SOUNDEX	match	on	the	first	name.
The	second	agreement	pattern	is	a	nickname	match	on	first	name	and	an	exact	match	on
both	last	name	and	year-of-birth	(YOB).

The	second	section	of	the	segment	enclosed	by	the	<Indices>	element	defines	two
match-key	generators.	Both	generate	compound	keys.	The	first	key	comprises	a	simple
hash	of	the	SSN	by	the	SCAN	algorithm.	The	SCAN	algorithm	parameters	specify	a	left-
to-right	(LR)	scan	to	extract	digits	(DIGIT)	up	to	the	full	length	of	the	string	(0),	keeping
the	original	case	(KeepCase),	and	keeping	the	digits	in	the	same	order	as	in	the	original
string	(SameOrder).	The	second	component	of	the	first	match	key	is	the	SOUNDEX	hash
of	the	first	name.

The	first	match	key	index	is	in	100%	alignment	with	the	first	agreement	pattern,	and	in
this	case,	it	also	achieves	100%	precision.	This	is	because	every	candidate	brought	back
by	the	first	index	will	match	to	the	incoming	reference	because	agreement	on	the	match
key	is	exactly	the	same	as	agreement	on	the	rule	pattern.

The	second	match	key	definition	is	necessary	because	the	second	agreement	pattern
uses	the	nickname	similarity	function	for	the	first	name	attribute.	To	assure	alignment,	the
second	match	key	brings	back	candidates	that	agree	on	last	name	and	year-of-birth.	Both
of	the	agreements	are	necessary	but	insufficient	to	satisfy	the	second	rule	pattern.	In	other
words,	candidates	brought	back	by	the	second	match	key	may	not	always	match	by	the
second	pattern	(because	first	names	are	different),	but	if	any	references	do	match	by	the
second	pattern,	they	will	be	brought	back	as	candidates	by	this	index.

Note	that	it	is	not	always	necessary	to	create	a	separate	match	key	generator	for	every
agreement	pattern.	Whether	a	new	match	key	generator	is	needed	will	depend	on	the

nature	of	the	rules.	Take	as	an	example	a	Boolean	rule	for	student	enrollment	that	has	two
patterns.	The	first	pattern	requires	exact	agreement	on	first	name,	last	name,	and	the
difference	in	age	value	is	0,	−1,	or	1	(i.e.	ages	are	within	one	year	of	each	other).	The
second	pattern	requires	exact	agreement	on	first	name,	last	name,	and	street	number	of	the
student’s	address.	A	single	match	key	comprised	of	the	student’s	first	name	and	last	name
together	would	be	in	alignment	with	both	patterns.

Match	Key	Blocking	for	Scoring	Rules
The	examples	shown	so	far	have	been	based	on	Boolean	rules.	Match	key	generation	and
rule	alignment	are	essentially	the	same	for	scoring	rules.	The	difference	is	the	agreement
patterns	of	Boolean	rules	are	explicit	in	the	definition	of	the	rule,	whereas	understanding
the	agreement	patterns	for	a	scoring	rule	requires	some	analysis.

An	agreement	pattern	in	a	Boolean	rule	is	an	AND	clause,	i.e.	a	sequence	of	comparator
terms	joined	by	the	AND	operator	and	separated	from	other	patterns	by	the	OR	operator.
In	a	Boolean	rule,	it	is	easy	to	find	and	examine	each	agreement	pattern,	then	determine
whether	it	requires	defining	a	new	match	key	generator,	or	if	it	is	already	in	alignment
with	a	previously	defined	match	key.

For	a	scoring	rule,	it	is	not	as	simple.	Scoring	rules	have	patterns,	but	they	are	not
obvious	from	inspecting	the	rule.	For	simplicity,	suppose	that	a	scoring	rule	compares	four
identity	attributes	A1,	A2,	A3,	and	A4,	and	the	comparators	for	these	attributes	correspond
to	a	hash	algorithm.	Further	assume	the	scoring	rule	does	not	use	value-based	(frequency-
based)	weights,	i.e.	there	is	only	one	agreement	and	one	disagreement	weight	for	each	of
the	four	attributes.

This	means	when	comparing	any	two	references	there	are	a	total	of	16	(24)	possible
patterns	of	agreement	and	disagreement,	i.e.	they	could	agree	or	disagree	on	A1,	agree	or
disagree	on	A2,	and	the	same	for	A3	and	A4.	Each	of	these	patterns	can	be	represented	by
a	four-bit	binary	number	where	a	0	bit	means	disagreement	and	a	1	bit	means	agreement.
For	example,	1010	would	represent	agreement	on	A1,	disagreement	on	A2,	agreement	on
A3,	and	disagreement	on	A4.

Now	assume	each	attribute	has	the	following	agreement	and	disagreement	weights,
A1(10,	0),	A2(3,	−4),	A3(7,	−1),	A4(5,	2)	where	the	first	number	of	the	ordered	pair	is	the
agreement	weight	and	the	second	number	is	the	disagreement	weight.	For	example,	the
disagreement	weight	for	A2	is	−4.	Given	these	weights,	a	total	score	can	now	be
calculated	for	each	of	the	16	possible	agreement	patterns.	For	example,	the	pattern	“1010”

would	have	a	score	of	10 	− 	4 	+ 	7 	+ 	2	=	15.
Table	9.1	shows	each	of	the	16	patterns	ranked	in	descending	order	by	their	total	score.

Now	suppose	the	match	threshold	set	for	this	rule	is	8,	i.e.	any	pattern	that	gives	a	score	of
8	or	more	will	be	considered	a	match.	From	this	table	it	is	clear	the	agreement	patterns	for
the	scoring	rule	are	the	first	10	patterns	in	Table	9.1	that	have	a	score	greater	than	or	equal
to	8.

Table	9.1
Pattern	Scores	in	Descending	Order

Pattern Score
1111 25
1110 22
1011 18
1101 17
1010 15
0111 15
1100 14
0110 12
1001 10
0011 8
1000 7
0101 7
0010 5
0100 4
0001 0
0000 −3

The	pattern	with	the	smallest	score	that	satisfies	the	threshold	value	of	8	is	the	pattern
“0011”.	With	the	assumption	thatall	of	the	comparators	correspond	to	a	hash	algorithm,	it
is	possible	to	define	a	match	key	for	each	10	patterns.	For	example,	the	match	key	for	the
pattern	“0011”	would	be	the	hash	value	of	A3	concatenated	with	the	hash	value	of	A4

(A3 	+ 	A4).	This	match	key	would	clearly	be	in	alignment	with	the	pattern	“0011”	that	it
was	generated	from.

However,	it	is	not	necessary	to	define	10	different	match	keys	in	order	to	achieve

alignment	with	all	10	match	patterns.	For	example,	the	match	key	A3 	+ 	A4	derived
from	the	pattern	“0011”	is	also	in	alignment	with	the	patterns	“1111”,	“1011”,	and	“0111”
because	these	patterns	also	require	agreement	on	A3	and	A4.	Next	consider	the	pattern

“1001”	just	above	“0011”.	A	match	key	for	this	pattern	would	be	A1 	+ 	A4.	This	match
key	would	also	be	in	alignment	with	the	pattern	“1101”.	Thus,	two	match	keys	A3 	+ 	A4
and	A1 	+ 	A4	align	with	6	of	the	10	patterns	above	the	threshold.	Furthermore,	the
match	key	A2 	+ 	A3	is	in	alignment	with	the	pattern	“0110”	and	“1110”,	the	match	key
A1 	+ 	A2	aligns	with	pattern	“1100”,	and	finally	match	key	A1 	+ 	A3	aligns	with
pattern	“1010”.	Thus,	5	match	keys	are	sufficient	to	properly	align	with	all	10	of	the
agreement-disagreement	patterns	of	the	scoring	rule.

Although	this	example	is	simplistic,	this	approach	to	finding	match	keys	for	a	scoring
rule	is	basically	sound.	The	actual	analysis	becomes	more	complicated	when	frequency-	or
value-based	weights	are	used.	Also,	the	assumption	that	each	comparator	corresponds	to	a
hash	algorithm	may	not	hold	in	every	situation.

Concluding	Remarks
Even	though	blocking	contributes	to	some	loss	of	ER	accuracy,	it	is	absolutely	essential.
Even	with	the	use	of	parallel	and	distributed	computing,	the	power	of	O(n2)	will
eventually	overwhelm	any	system	that	does	not	employ	blocking.	Although	there	are
several	strategies	for	blocking,	the	most	commonly	used	is	match	key	blocking.	The	loss
of	accuracy	with	match	key	blocking	can	be	minimized	by	properly	aligning	the	match
keys	with	the	matching	rules.	Match-key-to-rule	alignment	is	easier	to	achieve	in	systems
using	Boolean	rules,	especially	rules	that	rely	primarily	on	hash	function	comparators
rather	than	similarity	functions.	Match-key-to-rule	alignment	is	more	difficult	in	systems
that	use	scoring	(probabilistic)	rules.

CHAPTER	10

CSRUD	for	Big	Data

Abstract
This	chapter	describes	how	a	distributed	processing	environment	such	as	Hadoop	Map/Reduce	can	be	used	to
support	the	CSRUD	Life	Cycle	for	Big	Data.	The	examples	shown	in	this	chapter	use	the	match	key	blocking
described	in	Chapter	9	as	a	data	partitioning	strategy	to	perform	ER	on	large	datasets.	The	chapter	includes	an
algorithm	for	finding	the	transitive	closure	of	multiple	match	keys	in	a	distributed	processing	environment	using	an
iterative	algorithm	that	minimizes	the	amount	of	local	memory	required	for	each	processor.	It	also	outlines	a
structure	for	an	identity	knowledge	base	in	a	distributed	key-value	data	store,	and	describes	strategies	and
distributed	processing	workflows	for	capture	and	update	phases	of	the	CSRUD	life	cycle	using	both	record-based
and	attribute-based	cluster-to-cluster	structure	projections.

Keywords
Big	Data;	Hadoop	Map/Reduce;	Transitive	Closure;	Graph
Component

Large-Scale	ER	for	MDM
As	noted	earlier,	in	the	world	of	ER	small	data	can	quickly	become	big	data	because	ER	is
fundamentally	an	O(n2)	problem.	Match	key	blocking,	as	discussed	in	Chapter	8,	is	one	of
the	primary	strategies	for	addressing	the	problem	of	large-scale	ER	(Bianco,	Galante,	&
Heuser,	2011;	Kirsten	et	al.,	2010;	Yancey,	2007).	This	is	because	properly	aligned	match
key	blocking	will	partition	the	set	of	input	references	into	disjoint	subsets	that	can	be
resolved	independently	of	one	another.	This	makes	match	key	blocking	ideal	for
distributed	processing	applications	such	as	Hadoop	Map/Reduce	that	do	not	support	or
require	processor-to-processor	communication.	However,	this	approach	will	only	work	as
long	each	block	is	small	enough	to	fit	into	the	memory	of	any	single	processor.

The	Hadoop	Map/Reduce	is	a	processing	layer	that	sits	on	top	of	the	Hadoop	File
System	(HDFS).	In	the	Hadoop	architecture,	a	mapper	function	outputs	key-value	pairs.
The	system	then	brings	together	all	of	the	key-value	pairs	into	blocks	that	share	the	same
key.	These	blocks	are	then	processed	by	reducer	functions.	This	paradigm	fits	nicely	with
match	key	blocking	in	which	the	key	of	the	key-value	pair	is	the	match	key,	and	the	value
of	the	key-value	pair	is	the	reference.

Large-Scale	ER	with	Single	Match	Key	Blocking
Suppose	for	a	base	ER	rule	there	is	a	single,	properly	aligned	index	generator.	Alignment
of	the	index	generator	with	the	match	rule	implies	all	pairs	of	references	that	match	by	one
of	the	rules	also	generate	the	same	index	value.	Therefore,	from	an	entity	resolution
standpoint,	this	means	all	of	the	matches	that	can	be	found	by	the	match	rule	are	going	to
be	found	between	references	within	the	same	block.	By	the	assumption	of	alignment,
references	from	different	match	key	blocks	should	not	match.	Consequently	in	the	case	of
a	single	index	generator,	the	complete	resolution	of	a	dataset	can	be	accomplished	in	a
relatively	simple,	two-step	process	as	shown	in	Figure	10.1.

The	first	step	is	the	generation	of	the	match	key	values.	At	this	first	step,	the
partitioning	and	distribution	D1	of	the	input	references	to	different	processors	is	arbitrary
and	can	simply	be	based	on	uniformly	sized	groupings	of	references.	This	is	because	the
match	key	value	produced	by	a	match	key	generator	only	depends	upon	the	values	of	the
identity	attributes	in	each	reference,	and	there	are	no	dependencies	on	other	references.	In
the	Hadoop	Map/Reduce	framework,	algorithms	such	as	match	key	generation	that
operate	independently	on	individual	records	are	usually	run	in	a	map	step.	The	output	of	a
map	step	is	always	a	key-value	pair.	In	this	case	the	key	of	the	key-value	pair	is	the
generated	match	key,	and	the	value	of	the	key-value	pair	is	the	reference	that	generated	the
match	key.

FIGURE	10.1 	Distributed	workflow	based	on	single	index	generator.

After	each	block	of	input	references	has	been	processed	by	the	match	key	generator
running	at	each	of	the	nodes,	each	reference	will	produce	a	single	match	key.	These	match
key-reference	pairs	are	then	merged	and	sorted	into	match	key	value	order.	In	the	Hadoop
Map/Reduce	framework,	sorting	by	key	value	is	performed	by	a	shuffle	step	that	follows
the	map	step	and	precedes	the	reduce	step.	Unless	otherwise	specified,	the	shuffle	sorts	the
mapper	output	in	key	value	order	by	default.

After	the	references	are	sorted	into	match	key	order,	Hadoop	automatically	creates	key-
blocks.	Each	key-block	comprises	all	of	the	key-value	pairs	that	share	the	same	key	value.
In	this	case,	it	will	be	blocks	of	references	where	all	of	the	references	in	the	same	block
share	the	same	match	key	value.

In	the	reduce	step,	the	key-blocks	are	distributed	to	different	processors	where	the	final
resolution	of	blocks	into	clusters	takes	place.	Again,	this	fits	well	with	the	Hadoop
map/reduce	framework	that	guarantees	all	of	the	records	in	a	key-block	are	processed
together	on	the	same	processor.	One	processor	could	be	given	multiple	blocks,	but	the
reducer	function	of	Hadoop	assures	blocks	are	not	split	across	processors.

Once	a	block	of	key-value	pairs	is	sent	to	a	processor,	it	can	be	processed	by	an	ER
algorithm	and	base	match	rule	to	link	the	references	into	clusters.	Consequently,	in	a
Hadoop	framework	the	ER	process	itself	works	best	in	a	reduce	step.	Taking	again	the
example	of	blocking	by	postal	code,	the	key	of	the	key-value	pair	would	be	the	postal
code	and	the	value	of	the	key-value	pair	would	be	the	actual	reference.	In	this	way,	all
references	with	the	same	postal	code	would	be	sent	to	the	same	processor.	The	reduce	step
guarantees	blocks	with	the	same	postal	code	will	be	sent	to	the	same	processor	provided
the	postal	code	block	does	not	exceed	the	capacity	of	a	single	processor.	Typically	key
blocks	will	be	smaller	than	the	single	process	capacity,	allowing	the	system	to	send	several
key	blocks	to	the	same	processor.	The	reducer	provides	an	iterator	function	that	allows	the
code	resident	on	the	processor	to	access	each	key-value	pair	in	the	key-block	sequentially.
In	the	final	reduce	step	each	postal	code	block	becomes	the	input	to	an	ER	algorithm	that
will	further	refine	the	block	into	clusters	according	to	the	matching	rules	of	the	ER
process.

Decoding	Key-Value	Pairs
From	the	viewpoint	of	a	map/reduce	process,	all	records	only	have	two	fields,	a	key	field
and	a	value	field	separated	by	a	special	character,	by	default	a	tab	character.	Although	the
keys	and	values	can	be	typed,	they	are	usually	handled	as	text	(character	strings).
Therefore,	it	is	the	responsibility	of	the	application	developer	to	interpret	the	value	portion
of	the	key-value	pairs	as	a	reference	comprising	several	attribute-value	pairs,	i.e.

subvalues	of	a	value	string.	The	subvalues	representing	the	attribute	values	of	the
reference	can	be	encoded	into	the	overall	string	representing	the	single-value	of	the	key-
value	pair	in	many	different	ways.	For	example,	the	encoding	can	be	comma-separated
values	(CSV)	or	even	traditional	fixed-field	width	record	format.	Talburt	and	Nelson
(2009)	have	developed	a	Compressed	Document	Set	Architecture	(CoDoSA)	that	uses
short	metadata	tags	in	the	string	to	separate	and	identify	the	subvalues	encoded	into	an
overall	string.	CoDoSA	encoding	resembles	a	lightweight	XML	document.	CoDoSA	is	the
standard	for	encoding	references	in	the	EIS	of	the	OYSTER	Open	Source	Entity
Resolution	system	(Talburt	&	Zhou,	2012,	2013).	An	example	of	an	OYSTER	EIS	using
CoDoSA	reference	encoding	is	shown	in	Figure	1.3	of	Chapter	1.

In	the	case	of	a	single	index	as	shown	in	Figure	10.1,	both	distributions	D1	and	D2
actually	create	true	partitions	of	the	datasets	A	and	B,	respectively	–	i.e.	the	distributed
segments	are	nonoverlapping.	D1	can	partition	the	input	by	simply	counting	off	equal	size
blocks	of	references.	D2	partitions	the	match	key-value	pairs	because	each	reference	has
only	one	match	key	value;	thus	the	match	key	blocks	cannot	overlap.

The	Transitive	Closure	Problem
However,	there	is	a	problem	associated	with	the	process	described	in	Figure	10.1.	The
problem	is	that,	in	most	large-scale	entity	resolution	applications,	a	single	match	key	is	not
sufficient	to	bring	together	all	of	the	references	that	should	be	compared.	Data	quality
problems	such	as	typographical	errors	in	attribute	values,	missing	values,	and	inconsistent
representation	of	the	values	will	require	the	use	of	more	than	one	match	key	in	order	to
obtain	good	resolution	results	with	a	reasonable	amount	of	comparison	reduction.	This
problem	is	particularly	acute	when	the	base	match	rule	is	a	scoring	rule.	As	described	in
Chapter	9	in	the	section	titled	“Match	Key	Blocking	for	Scoring	Rules,”	a	simple	scoring
rule	comparing	only	a	few	identity	attributes	may	need	support	from	dozens	of	match	key
generators.

When	each	input	reference	can	potentially	create	more	than	one	match	key,	the
processing	method	outlined	in	Figure	10.1	will	not	always	lead	to	the	correct	resolution	of
the	references	in	the	input.	The	reason	is	the	requirement	for	transitive	closure	of	an	ER
process.	Transitive	closure	states	if	a	reference	R1	is	linked	to	a	reference	R2,	and
reference	R2	is	linked	to	a	reference	R3,	then	reference	R1	should	be	linked	to	reference
R3.

To	see	how	having	multiple	match	key	generators	disrupts	the	process	described	in
Figure	10.1,	suppose	there	are	three	distinct	references	R1,	R2,	and	R3,	and	two	match
key	generators	Gen1	and	Gen2.	Table	10.1	shows	the	results	of	applying	the	two	match
key	generators	to	the	three	references.

Because	each	reference	generates	two	keys,	the	final	result	is	a	set	of	six	match	key-
value	pairs.	These	pairs	in	sorted	order	by	match	value	are	shown	in	Table	10.2.

The	four	distinct	key	values	partition	the	key-value	pairs	into	four	blocks.	The	first
block	has	two	key-value	pairs	that	share	the	match	key	value	of	K1.	The	second	block
formed	by	the	match	key	K2	has	only	a	single	key-value	pair.	The	third	block	has	two
key-value	pairs	formed	by	the	match	key	K3,	and	finally	the	last	block	is	a	single	key-
value	pair	formed	by	the	match	key	K4.

The	first	observation	is	that,	even	though	the	keys	partition	the	key-value	pairs,	they	do
not	partition	the	underlying	set	of	references.	The	references	in	the	K1	block	overlap	with
the	references	in	the	K2	and	K3	blocks	at	references	R1	and	R2,	respectively.	Any
reference	that	generates	two	or	more	distinct	match	keys	will	be	duplicated	in	each	of	the
blocks	for	those	match	keys.

Now	suppose	in	a	distributed	processor	scheme	the	K1	and	K2	blocks	are	sent	to
processor	P1,	and	the	K3	and	K4	blocks	are	sent	to	another	processor	P2.	Further	suppose
when	the	ER	process	running	on	P1	processes	the	K1	block,	it	finds	that	R1	and	R2	are
matching	references	and	links	them	together.	Similarly	suppose	when	the	ER	process
running	on	P2	processes	the	K3	block,	it	finds	that	R2	and	R3	are	matching	references	and
links	them	together.

Table	10.1
Match	Key	Values

Reference Gen1 Gen2
R1 K1 K2
R2 K1 K3
R3 K4 K3

Table	10.2
Pairs	Sorted	by	Match	Key

Key Value
K1 R1
K1 R2
K2 R1
K3 R2
K3 R3
K4 R3

The	combined	output	of	this	process	comprises	four	clusters:	{R1,	R2},	{R1},	{R2,
R3},	and	{R4}.	However,	this	result	is	not	consistent	with	the	principles	of	ER.	The	final
output	of	an	ER	process	should	be	a	true	partition	of	the	original	input,	i.e.	each	reference
should	be	in	one,	and	only	one,	cluster,	and	the	clusters	should	not	overlap	with	each
other.	Clearly	when	references	can	generate	multiple	match	keys,	the	simple	process
shown	in	Figure	10.1	no	longer	works.

The	approach	to	solving	the	multiple-index	problem	depends	upon	whether	the	ER
processes	are	using	record-based	resolution	or	attribute-based	resolution	as	described	in
Chapter	8.	The	solution	for	multiple	match	keys	when	the	ER	system	is	using	record-
based	projection	is	simpler	than	one	using	attributed-based	projection,	so	it	will	be
discussed	first.

Distributed,	Multiple-Index,	Record-Based
Resolution
The	workflow	for	multiple	match	key	resolution	as	shown	in	Figure	10.2	begins	in	the
same	way	as	the	process	outlined	in	Figure	10.1	for	a	single	index	workflow.	The	problem
is	that	simply	sorting	and	distributing	by	match	key	blocks	is	no	longer	adequate.	As
discussed	in	the	previous	example,	simply	sorting	to	create	distribution	D2	may	cause	the
final	result	to	contain	clusters	of	overlapping	references.

One	solution	to	the	problem	shown	here	is	to	replace	the	sort	process	with	a	transitive
closure	process	where	the	closure	is	with	respect	to	shared	match	key	values.	This	can
most	easily	be	understood	by	looking	at	the	references	and	relationships	in	the	form	of	a
graph.

Transitive	Closure	as	a	Graph	Problem
In	graph	theory	an	undirected	graph	is	simply	a	set	N	of	nodes	and	a	set	of	E	of	edges,
where	E	is	a	subset	of	P(N),	the	set	of	all	subsets	of	N	that	contain	two	elements.	As	a
simple	example	consider,	N	=	{a,	b,	c,	d,	e}	and	E	=	{{a,	b},	{b,	c},	{d,	e}}.	N	and	E	form
an	undirected	graph	of	five	nodes	and	three	edges	depicted	in	Figure	10.3.

A	connected	component	of	a	graph	is	a	maximal	subset	of	nodes	in	the	graph	having	the
property	for	any	two	nodes	in	the	subset,	there	exists	a	path	of	edges	that	connects	them
together.	In	Figure	10.3,	it	is	easy	to	see	the	graph	has	two	connected	components	{a,	b,	c}
and	{d,	e}.	Even	though	node	“a”	and	node	“c”	do	not	share	an	edge,	there	is	a	path	from
“a”	to	“b”	and	from	“b”	to	“c”	that	connects	them.	It	will	also	be	true	the	connected
components	of	a	graph	form	a	partition	of	the	nodes,	i.e.	every	node	in	the	graph	is	in	one,
and	only	one,	component.

FIGURE	10.2 	Distributed	workflow	for	multiple	match	keys.

FIGURE	10.3 	Undirected	graph	of	N	and	E.

A	connected	component	represents	the	transitive	closure	of	the	nodes	in	the	component
with	respect	to	connections	between	nodes.	The	standard	algorithm	for	finding	the
components	of	a	graph	uses	this	principle	(Sedgewick	&	Wayne,	2011).	It	starts	by
selecting	any	node	in	the	graph,	and	then	finds	all	of	the	nodes	connected	to	it.	Next,	all	of
the	nodes	connected	to	these	nodes	are	found,	then	the	nodes	connected	to	these,	and	so	on
until	no	new	connections	can	be	made.	The	set	of	nodes	found	in	this	way	comprises	the
first	component	of	the	graphs.	The	next	step	is	to	select	any	node	not	in	the	first
component	and	form	its	component	in	the	same	way	as	the	first.	This	process	stops	when
there	are	no	more	nodes	outside	of	the	components	that	have	already	been	found.

References	and	Match	Keys	as	a	Graph
References	and	their	match	keys	can	also	be	given	a	graphical	interpretation.	Consider	the
following	example	of	11	references	{A,	B,	C,	D,	E,	F,	G,	H,	I,	J,	K}	and	3	index
generators.	For	simplicity,	the	match	key	values	in	Table	10.3	are	given	as	integer	values.
By	the	design	of	the	match	key	generators,	the	values	produced	by	one	generator	will	be
different	from	the	set	of	values	produced	by	a	different	generator.	However,	in	general
there	will	be	duplication	among	the	values	produced	by	the	same	generator.

Table	10.3
Match	Keys

FIGURE	10.4 	Graph	interpretation	of	Table	10.3.

The	references	and	match	keys	in	Table	10.3	can	be	interpreted	as	a	graph	in	which	the
references	are	the	nodes	of	the	graph	and	match	keys	shared	by	two	references	form	an
edge	in	the	graphs.	Figure	10.4	shows	the	graph	interpretation	of	Table	10.3.

One	notable	difference	between	the	match	key	graph	in	Figure	10.4	and	the	graph	in
Figure	10.3	is	the	match	key	graph	is	noisy.	The	noise	is	created	by	the	fact	that	some
references	may	generate	unique	keys	not	shared	with	any	other	reference,	e.g.	keys	21	and
22.	A	unique	match	key	does	not	form	an	edge	in	the	graph.	Another	source	of	noise	is

that	some	references	share	more	than	one	match	key,	e.g.	nodes	F	and	D.

Although	this	noise	makes	the	graph	in	Figure	10.4	look	somewhat	different	from	the
graph	in	Figure	10.3,	they	still	have	the	same	essential	features.	Two	references	are
connected	if	and	only	if	they	share	at	least	one	match	key	between	them.	It	is	also	much
easier	to	see	the	connected	components	of	the	references	in	the	graph	representation	in
Figure	10.4	than	by	inspecting	Table	10.3.	It	is	apparent	the	graph	in	Figure	10.4	has	four
connected	components	{A,	D,	F},	{J},	{B,	E,	G,	K},	and	{C,	H,	I}.

An	Iterative,	Nonrecursive	Algorithm
for	Transitive	Closure
The	standard	algorithm	for	finding	the	connected	components	of	a	graph	is	a	breadth-first
search	algorithm	that	uses	recursion	(Sedgewick	&	Wayne,	2011).	Although	elegant,	it	has
a	limiting	feature	when	working	with	Big	Data.	The	standard	recursive	algorithm	for
transitive	closure	needs	to	have	access	to	all	the	node	and	edge	information	in	one
memory	space	to	work	efficiently.	In	other	words,	the	algorithm	assumes	it	can	directly
access	any	part	of	the	graph	at	any	given	point	in	the	algorithm.	For	very	large	datasets
this	may	not	be	practical	or	even	possible.

Distributed	processing	using	the	Hadoop	framework	works	best	when	it	is	operating	on
large	key-value	sets	by	successively	performing	record-level	operations	(mapper
functions)	followed	by	operations	on	key-values	blocks	(reducer	functions).	To	better	fit
the	processing	paradigm,	the	authors	have	developed	an	iterative	algorithm	for	finding	the
connected	components	of	a	match	key	graph	like	the	one	shown	in	Figure	10.4.	The
purpose	of	the	algorithm	is	to	perform	the	transitive	closure	of	a	graph	through	the
iterative,	sequential	processing	of	a	large	set	of	key-value	pairs	without	the	need	to	create
large,	in-memory	data	structures.

The	context	and	notation	for	the	pseudo-code	of	this	algorithm	is	that	R	represents	a	set
of	references,	and	G	represents	a	set	of	N	match	key	generators.	If	r	is	a	reference	in	R,
then	r1,	r2,	r3,	…,	rN	represent	the	key	values	generated	by	each	of	the	index	generators
acting	on	r	(some	values	may	be	null).	The	algorithm	has	three	parts:	an	initial	bootstrap
phase,	an	iteration	phase,	and	a	final	deduplication	phase.	Here	is	a	general	description	of
each	phase	and	the	key-value	pairs	they	use.

•	Bootstrap:	In	the	bootstrap	phase,	the	key	of	the	key-value	pair	is	a	match	key	and	the
value	of	key-value	pair	is	the	reference.	Each	reference	can	generate	up	to	N	key-value
pairs,	one	key-value	pair	for	each	non-null	match	key	generated	by	the	reference.	In	the
bootstrap,	the	key	value	pairs	are	sorted	by	match	key	to	find	the	connected	pairs	of
references.	The	output	of	the	bootstrap	phase	is	a	list	where	each	item	in	the	list	is	a	set
of	reference	identifiers	of	the	references	connected	to	each	other	by	a	shared	match	key
value.

•	Starting	with	the	bootstrap	phase,	and	in	each	following	step,	the	items	in	the	output	list
are	sets	of	record	identifiers.	These	sets	of	record	identifiers	are	the	proto-components
of	the	graph,	i.e.	components	in	formation.	At	the	bootstrap	these	proto-components	are
usually	singleton	sets	or	pairs	of	identifiers.	The	algorithm	takes	a	bottom-up	approach
by	first	finding	connected	pairs	of	references	in	the	bootstrap	phase,	then	finding
overlapping	pairs	in	the	first	iteration	phase	to	form	triples,	then	quadruples	in	the	next
iteration,	and	so	on.	At	the	end	of	the	bootstrap	phase	the	match	key	values	and	the
actual	contents	of	the	reference	are	discarded.	Only	reference	identifiers	are	carried
forward	into	the	iteration	phase.	After	the	match	keys	have	been	generated,	the
attribute-value	pairs	of	the	reference	are	not	needed	for	the	actual	transitive	closure

process	and	can	be	discarded	for	storage	efficiency.	At	the	end	of	the	transitive	closure
process,	the	actual	reference	value	can	be	recovered	for	use	in	the	ER	process	by
performing	a	simple	join	of	the	reference	identifiers	with	the	original	input.

•	Iteration:	Each	iteration	phase	starts	with	a	list	of	proto-components.	In	the	case	of	the
first	iteration,	it	is	the	list	of	proto-components	from	the	bootstrap.	In	other	iterations	it
is	the	list	of	proto-components	output	from	the	previous	iteration.	Each	iteration	begins
by	taking	each	proto-component	produced	in	the	previous	step	and	expanding	it	into	a
set	of	key-value	pairs	where	the	key	is	a	single	reference	identifier	taken	from	the	proto-
component	and	the	value	is	the	entire	proto-component.	This	means	that	if	a	proto-
component	contains	N	reference	identifiers,	then	it	forms	N	key-value	pairs,	one	for
each	reference	identifier	in	the	proto-component.	For	example,	if	the	proto-component
comprises	three	reference	identifiers	{R1,	R2,	R3},	then	it	forms	three	key	value	pairs
of	(R1,	{R1,	R2,	R3}),	(R2,	{R1,	R2,	R3}),	and	(R3,	{R1,	R2,	R3}).	After	the
expansion,	the	key-value	pairs	are	sorted	by	key	value.	After	the	key-value	pairs	are
sorted,	all	of	the	proto-components	with	the	same	key	block	are	merged	(set	union)	to
produce	a	new	proto-component.	The	new	list	of	proto-components	becomes	the	input
for	the	next	iteration.	The	iteration	continues	until	no	new	proto-components	are	created
at	the	merge	step,	i.e.	the	proto-components	cease	to	grow	in	size	as	a	result	of	the
merging	of	all	of	the	proto-components	in	the	same	key-value	block.

•	Deduplication:	Due	to	the	nature	of	the	algorithm	and	the	noise	inherent	in	the	match
key	graph,	the	same	component	may	appear	in	different	positions	in	the	list.	The	final
phase	is	to	deduplicate	the	final	list	of	components	into	a	set	of	unique	connected
components.	This	is	done	by	creating	key-value	pairs	where	the	key	value	is	the	first
reference	identifier	in	the	final	component,	and	the	value	of	the	key-value	pair	is	the
entire	component.	After	these	key-value	pairs	are	sorted	by	key	value,	only	the	first
component	in	each	key-value	block	is	kept.	This	is	because	during	the	iteration	phase,
the	reference	identifiers	are	maintained	in	the	proto-component	sets	in	sorted	order.
Therefore,	if	two	components	agree	on	the	first	reference	identifier,	then	they	are	the
same	component.

Bootstrap	Phase:	Initial	Closure	by	Match	Key	Values
Let	kList	be	a	list	of	items	where	each	item	has	two	attributes.	The	first	attribute	is	a	non-
null,	match	key	value	for	a	reference.	The	second	attribute	is	the	identifier	(RefID)	of	the
reference;	kList	should	have	one	record	for	each	possible	combination	of	a	reference	r	in
R	and	a	non-null	match	key	value	produced	by	one	of	the	index	generators	in	G	acting	on
r.	If	kItem	represents	an	item	in	kList,	then	kItem.key	represents	the	value	of	the	first
attribute	(match	key	value),	and	kItem.rid	represents	the	value	of	the	second	attribute
(RefID).

Let	sList	represent	another	list	where	each	list	item	has	two	attributes;	for	sList	the	first
attribute	is	an	integer	value	and	the	second	attribute	is	a	set	of	RefIDs.	If	sItem	represents
an	item	of	sList	then	sItem.int	is	the	integer	value	and	sItem.refSet	is	the	list	of	RefIDs.

	
Bootstrap	Start

Sort	kList	primary	by	key	and	secondary	by	RefID.

\\	Write	proto-components	to	sList	by	processing	kList	sequentially

1	→	compNbr

kList.getNextItem()	→	kItem

kItem.rid	→	prevRid

kItem.idx	→	prevIdx

Declare	compSet	a	Set	of	RefID

Ø	→	compSet

Ø	→	sList

While(More	items	in	kList)

	 	 	If((kItem.rid	==	prevRid)	OR	(kItem.idx)	==	prevIdx))

	 	 	Then

	 	 	 	 	 	compSet.insert(kItem.rid)

	 	 	Else

	 	 	 	 	 	compNbr	→	sItem.int

	 	 	 	 	 	compSet	→	sItem.refSet

	 	 	 	 	 	sList.append(sItem)

	 	 	 	 	 	compNbr	+	1	→	compNbr

	 	 	 	 	 	kItem.rid	→	compSet

	 	 	kList.rid	→	prevRid

	 	 	kList.idx	→	prevIdx

	 	 	K.readNextRecord()→	kRec

End	of	While	Loop

compNbr	→	sItem.int

compSet	→	sItem.refSet

sList.append(sItem)

Iteration	Phase:	Successive	Closure	by
Reference	Identifier
Let	sList	be	the	same	list	of	items	produced	in	the	bootstrap	phase,	and	let	tList	represent	a
list	of	items	where	the	first	attribute	is	a	single	RefID,	and	the	second	attribute	is	a	Set	of
RefIDs.

	
\\	This	is	an	iterative	process,	stops	when	changeCnt	is	zero

1	→	changeCnt

Ø	→	tList

While(changeCnt>0)

	 	 	//	Expand	sList	into	tList

	 	 	While(More	items	in	sList)

	 	 	 	 	 	sList.readNextItem()→	sItem

	 	 	 	 	 	(sList.refSet).sizeOf()→	setSize

	 	 	 	 	 	For	J	from	1	to	setSize

	 	 	 	 	 	 	 	 	sList.refSet.getSetElement(J)	→	refID

	 	 	 	 	 	 	 	 	refID	→	tItem.refID

	 	 	 	 	 	 	 	 	sList.refSet	→	tItem.refSet

	 	 	 	 	 	End	J	Loop

	 	 	End	While	Loop

	 	 	//	Sort	tList

	 	 	Sort	tList	by	first	column	refID

	 	 	//	empty	sList	to	hold	the	new	proto-components

	 	 	Ø	→	sList

	 	 	1	→	compNbr

	 	 	0	→	changeCnt

	 	 	Declare	compSet	to	be	a	set	of	RefIDs

	 	 	//	Process	tList	in	order	by	key	to	create	new	set	of	proto-components

	 	 	tList.getNextItem()→	tItem

	 	 	tItem.refSet	→	compSet

	 	 	tItem.rid	→	prevRid

	 	 	While(More	items	in	tList)

	 	 	 	 	 	If((tItem.refSet	∩	compSet	not	Ø)	or	(tItem.rid	==	prevRid))

	 	 	 	 	 	 	 	 	Then

	 	 	 	 	 	 	 	 	 	 	 	compSet.setUnion(tRec.refSet)

	 	 	 	 	 	 	 	 	 	 	 	If(compSet.SizeOf()	>	(tRec.refSet).SizeOf())

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	changeCnt+1	→	changeCnt

	 	 	 	 	 	 	 	 	Else

	 	 	 	 	 	 	 	 	 	 	 	compNbr	→	sItem.int

	 	 	 	 	 	 	 	 	 	 	 	compSet	→	sItem.refSet

	 	 	 	 	 	 	 	 	 	 	 	sList.append(sItem)

	 	 	 	 	 	 	 	 	tItem.rid	→	prevRid

	 	 	 	 	 	 	 	 	tItem.refSet	→	compSet

	 	 	 	 	 	 	 	 	compNbr+1	→	compNbr

	 	 	 	 	 	 	 	 	tList.getNextItem()→	tItem

	 	 	End	of	While	Loop

	 	 	compNbr	→	sItem.int

	 	 	compSet	→	sItem.refSet

	 	 	sList.append(sItem)

End	of	While	Loop

Deduplication	Phase:	Final	Output	of
Components
Start	with	Table	S	at	the	end	of	the	iteration	phase.

	
Ø	→	tList

While(More	items	in	sList)

	 	 	sList.getNextItem()→	sItem

	 	 	(sList.refSet).getSetElement(1)	→	tItem.refID

	 	 	sItem.refSet	→	tItem.refSet

	 	 	tItem.append(tItem)

End	While	Loop

Sort	tList	by	key	(refID)

Ø	→	sList

1	→	compNbr

tList.getNextItem()	→	tItem

tItem.rid	→	prevRid

While(More	items	in	tList)

	 	 	If(tItem.rid<>prevRid)

	 	 	 	 	 	compNbr	→	sItem

	 	 	 	 	 	tItem.refSet	→	sItem.refSet

	 	 	 	 	 	sList.append(sItem)

	 	 	 	 	 	compNbr	+	1	→	compNbr

	 	 	tItem.rid	→	prevRid

	 	 	tList.getNextItem()→	tItem

End	While	Loop

compNbr	→	sItem

tItem.refSet	→	sItem.refSet

sList.append(sItem)

The	bootstrap	phase	and	first	iteration	in	applying	this	algorithm	to	the	match	key	graph
of	Figure	10.2	is	shown	in	Table	10.4.	The	first	two	columns	of	Table	10.4	with	the
heading	of	kList	show	the	information	from	Table	10.3	flattened	into	a	single	column	and
sorted	in	order	by	match	key	values.	The	next	two	columns	with	the	heading	sList	show
the	first	set	of	proto-components	formed	by	collapsing	the	key	blocks	in	the	second
column	under	kList.	The	two	columns	with	the	heading	tList(raw)	show	the	expansion

step	of	the	first	iteration	in	which	each	proto-component	in	the	input	is	expanded	into	key-
value	pairs.

The	two	columns	with	the	heading	tList(sorted)	show	the	same	key-value	pairs	under
the	heading	tList(raw),	but	in	sorted	order	by	the	key	value	(reference	identifier).	The	final
step	of	the	first	iteration	is	to	merge	the	values	(lists)	in	the	same	key-value	block.	This
creates	a	list	of	10	proto-components	under	the	heading	of	sList(merged),	which	will
become	the	input	into	the	second	iteration.

It	is	also	important	to	note	that	in	the	final	merge	step,	every	key-value	block	changed
except	for	the	key-value	block	with	the	key	value	of	J	shown	highlighted	in	Table	10.4.

Table	10.5	shows	the	remaining	iterations	and	final	deduplication	phase	for	this
example.	For	brevity	the	expansion	steps	(tList(raw))	have	been	omitted	as	has	the	last
merge	step.	The	final	tList(sorted)	columns	signal	the	final	iteration	because	there	are	no
changes	in	when	proto-components	in	the	same	key-value	block	are	merged.	The	final
result	comprises	the	four	components	of	the	match	key	graph	shown	in	the	Figure	10.4.

For	simplicity,	the	pseudo-code	and	example	shown	here	use	the	simplest	form	of	the
algorithm.	In	following	the	steps	it	is	easy	to	see	the	many	opportunities	to	reduce	the
effort.	For	example,	whenever	a	proto-component	has	not	changed	during	the	merger,	it
does	not	need	to	be	expanded	into	the	next	step.	Its	cross-product	key-value	pairs	no
longer	have	any	contribution	to	make	to	the	transitive	closure	of	other	components.
Another	improvement	is	to	deduplicate	the	input	sList	before	expanding	the	sList	into	the
tList	key-value	pairs.

Table	10.4
Bootstrap	and	First	Iteration	for	Figure	10.3

Table	10.5
Iterations	2	through	3	and	the	Deduplication	Phase

One	final	observation	is	that	the	algorithm	is	symmetric	with	respect	to	reference
identifiers	and	match	keys.	It	is	a	simple	matter	to	reverse	the	map	output	from	the	key
generation	so	the	key-value	pairs	input	to	the	bootstrap	have	the	reference	identifier	as	the
key	and	the	match	key	as	the	value.	In	this	case,	instead	of	discarding	the	match	key,	the
reference	identifier	is	discarded	and	the	iteration	proceeds	by	performing	the	transitive
closure	on	the	match	keys	instead	of	the	reference	identifiers.	If	there	are	relatively	few
match	key	generators,	then	closure	on	the	match	keys	can	be	more	efficient	than	closure
on	the	reference	identifiers	because	the	cross-products	are	smaller.	The	only	difference	is
that	at	the	end,	it	will	take	two	joins	to	recover	the	original	reference	value,	one	to	join	the
match	key	to	the	reference	identifier	and	another	to	join	the	reference	identifier	to	the
reference	value.

Although	not	shown	in	the	example	given	in	Figure	10.4,	another	practical	problem	that
must	be	addressed	is	the	possibility	that	some	references	will	not	generate	a	match	key	by
any	of	the	generators.	Although	this	is	clearly	an	indication	of	a	poor	quality	record,	it
could	happen	for	certain	sets	of	references	and	match	key	generator	configurations.	One
approach	is	to	write	these	references	out	as	exceptions	and	not	carry	them	through	the
transitive	closure	process.

By	the	fact	that	a	reference	does	not	generate	a	match	key	value,	it	is	already	known	it
will	not	match	with	any	other	references.	Therefore,	references	that	do	not	generate	a
match	key	will	form	their	own,	single-reference	clusters	in	the	final	output.	If	these
references	are	carried	forward	to	participate	in	the	transitive	closure	process	rather	than
output	as	exceptions,	then	they	should	each	be	assigned	an	autogenerated	match	key	value.
However,	if	they	are	all	given	the	same	default	match,	instead	of	forming	many,	single-
reference	clusters,	they	will	form	one	large	component	that	can	degrade	the	overall
performance	of	the	system.	In	order	to	prevent	this,	the	autogenerated	match	key	should
be	unique	across	all	references.	In	a	distributed	processing	environment	such	as	Hadoop,
assigning	a	value	unique	across	all	processors	in	the	system	can	be	a	challenge.
Autogenerated	keys	for	this	purpose	should	use	some	local	processor	variable	such	as
node	name	together	with	a	sequence	number	to	prevent	different	processors	from
assigning	the	same	key	value.

Example	of	Hadoop	Implementation
The	following	code	for	the	bootstrap	phase	of	the	transitive	closure	is	implemented	as	a
Reducer	class	in	Hadoop.	The	Bootstrap	reducer	essentially	reads	the	kList	and	creates	the
tList(raw)	shown	in	Table	10.4.	Note	the	sList	in	Table	10.4	is	only	shown	for	clarity.	The
building	of	the	sList	is	not	a	required	step	in	the	algorithm.

The	input	coming	into	the	Bootstrap	reducer	is	a	series	of	key-value	blocks	similar	to
the	kList.	Each	block	comprises	one	key	and	series	of	values.	The	values	are	presented	to
the	reducer	as	an	iterable	list.	The	Bootstrap	class	overrides	the	“reduce()”	method	of	the
parent	Reducer	class.	The	first	argument	of	the	“reduce()”	method	is	the	key	of	the	block
labeled	as	“inputKey”.	The	second	argument	is	the	iterable	list	of	values	labeled	“values”.
The	first	two	arguments	are	inputs.	The	third	argument	is	the	output	Context	labeled

“context”.

	
/∗∗	@author	Cheng	@date	08/25/2014	∗/

public	class	Bootstrap	extends	Reducer<Text,	Text,	Text,	Text>	{

	 	 	@Override

	 	 	public	void	reduce(Text	inputKey,	Iterable<Text>	values,	Context	context)	throws	IOException,	InterruptedException	{

	 	 	 	 	 	TreeSet<String>	group	=	new	TreeSet<String>();

	 	 	 	 	 	for	(Text	value	:	values)	{

	 	 	 	 	 	 	 	 	group.add(value.toString());

	 	 	 	 	 	}

	 	 	 	 	 	if(group.size()>1){

	 	 	 	 	 	 	 	 	for	(String	aa	:	group)	{

	 	 	 	 	 	 	 	 	 	 	 	context.write(new	Text(aa.trim()),new	Text(printArray(group)));

	 	 	 	 	 	 	 	 	}

	 	 	 	 	 	}

	 	 	}

	 	 	private	static	String	printArray(TreeSet<String>	group)	{

	 	 	 	 	 	String	result	=	"";

	 	 	 	 	 	int	i	=	0;

	 	 	 	 	 	for	(String	aa	:	group)	{

	 	 	 	 	 	 	 	 	if	(i	==	0)	{

	 	 	 	 	 	 	 	 	 	 	 	result	+=	aa.trim();

	 	 	 	 	 	 	 	 	}	else	{

	 	 	 	 	 	 	 	 	 	 	 	result	+=	"\u0007"	+	aa.trim();

	 	 	 	 	 	 	 	 	}

	 	 	 	 	 	 	 	 	i++;

	 	 	 	 	 	}

	 	 	 	 	 	return	result;

	 	 	}

}

The	Bootstrap	input	is	coming	from	a	mapper	that	generated	a	set	of	match	keys	for
each	reference.	The	mapper	writes	its	key-value	pairs	to	its	Context	with	the	generated
match	key	as	the	key	of	the	key-value	pair,	and	the	reference	identifier	as	the	value	of	the
key-value	pair.	A	shuffle	step	prior	to	the	reducer	brings	together	the	pairs	having	the	same
match	key	and	block	passed	to	the	Bootstrap	reducer.	So	for	the	Bootstrap	reducer,	the	key
of	each	key-block	is	a	match	key,	and	the	values	are	the	reference	identifiers	that	produced
the	match	key	similar	to	the	kList	in	Table	10.4.	For	example,	in	Table	10.4,	match	key
value	“1”	was	only	produced	by	Reference	B,	and	match	key	“2”	was	produced	by
References	C,	H,	and	I.

In	the	Bootstrap	class,	the	first	operation	is	to	iterate	over	the	values	in	the	block	and
add	each	one	to	a	Java	TreeSet	structure	labeled	“group”.	A	TreeSet	structure	is	used
because	it	will	insert	new	items	in	sorted	order.	It	is	important	for	the	operation	of	the
algorithm	that	the	list	of	reference	identifiers	output	from	each	iteration	step	is	in	sorted
order.

All	of	the	values	in	the	block	are	cast	and	manipulated	as	Java	String	objects.	In	the
next	step,	the	values	are	made	into	a	single	string	that	uses	a	Bell	character	as	a	delimiter
to	separate	the	different	reference	identifiers.	The	construction	of	the	delimited	string	is
carried	out	by	the	“printArray()”	method.	The	“printArray()”	method	iterates	over
reference	identifiers	in	the	TreeSet	and	concatenates	these	values	in	sorted	order	into	a
string	labeled	“result”.	All	values	except	for	the	first	value	are	preceded	by	an	ASCI
“\u0007”	(Bell)	character.	The	Bell	character	serves	as	a	delimiter	to	make	it	easier	for	the
string	to	be	parsed	into	individual	reference	identifiers	at	a	later	point	in	the	algorithm.

After	the	string	is	constructed,	the	reducer	writes	a	single	key-value	pair	to	Context

where	the	key	value	is	the	first	reference	identifier	in	the	TreeSet	(“aa”)	and	the	value	is
the	concatenated	string	of	all	reference	identifiers	in	the	block	(the	“result”	returned	from
“printArray()”).	However	in	this	code,	no	key-value	pair	is	written	for	blocks	containing
only	one	value.	Again	this	is	departure	from	the	example	shown	in	Table	10.4
implemented	for	performance	efficiency.	When	a	match	key	block	only	contains	one
reference	identifier,	either	that	reference	is	connected	to	other	references	in	another	block,
or	the	reference	is	not	connected	to	any	other	reference.	For	the	“1”	block	only	containing
B,	it	is	the	former.	Reference	B	is	connect	to	reference	E	in	the	“12”	and	“16”	blocks	of
kList.	Hence,	reference	B	will	be	retained	in	the	bootstrap	because	it	is	present	in	other
match	key	blocks	with	more	than	one	value.

However,	some	references	may	be	lost	entirely	during	bootstrap	because	they	do	not
connect	with	any	other	reference.	For	example,	the	reference	J	only	occurs	in	the	kList	in
the	single-value	blocks	“5”,	“10”,	and	“15”.	Therefore,	the	reference	J	is	lost	during
bootstrap.	However,	this	is	not	a	problem	because	the	final	step	of	the	transitive	closure
process	is	to	perform	an	outer	join	between	the	reference	identifiers	remaining	at	the	end
of	the	transitive	closure	process	with	the	original	input	of	reference	identifier-reference
pairs.	Because	it	is	an	outer	join,	all	of	the	original	references	will	be	recovered	at	the	end
of	the	process.	It	will	also	signal	that	any	reference	recovered	by	the	outer	join	will	form	a
single-reference	component	of	the	graph.

ER	Using	the	Null	Rule
It	is	important	not	get	lost	in	the	details	of	the	transitive	closure	process	and	lose	sight	of
the	overall	objective,	which	is	ER.	As	shown	in	Figure	10.2	the	transitive	closure	is	only
an	intermediate	step	to	partition	the	set	references	to	be	resolved	into	manageable	sized
blocks.	In	this	case	the	blocks	are	the	connected	components	of	the	match	key	graph	of
references.	Each	component	becomes	the	input	to	an	ER	process	which	applies	an	ER
algorithm	and	matching	rule	to	find	the	clusters	and	create	the	final	set	of	EIS.

However,	there	are	situations	where	it	is	possible	to	end	the	ER	process	with	transitive
closures.	This	is	possible	when	the	match	rule	is	a	Boolean	rule	set,	and	where	each	one	of
the	comparators	used	in	the	rules	are	hash	functions.	In	this	case,	match	key	generators
can	be	constructed	in	such	a	way	that	they	are	equivalent	to	the	match	rules.	In	other
words,	two	references	share	the	same	match	key	if,	and	only	if,	the	references	match	by
the	rule	that	corresponds	to	the	match	key.	In	this	case	the	components	found	from	the
transitive	closure	of	the	match	keys	represent	the	final	clusters	of	the	ER	process,	and	the
ER	process	is	said	to	use	the	“Null	Rule.”

Here	is	a	simple	example.	Suppose	an	ER	process	for	matching	student	records	uses	a
two-part	Boolean	rule.	The	first	part	is	two	enrollment	records	are	a	match	if	they	agree	on
first,	middle,	and	last	name	values.	The	second	part	is	they	are	considered	a	match	if	they
agree	on	the	last	name,	have	the	same	date-of-birth,	and	the	first	names	agree	on	Soundex
value.	Since	simple	agreement	(exact	match)	and	Soundex	agreement	are	both	hash
function	comparators,	then	the	enrollment	records	can	be	resolved	using	the	null	rule.

To	use	the	null	rule	for	this	example	requires	building	two	match	key	generators,	one
for	the	first	rule	that	creates	a	match	key	by	concatenating	the	characters	of	the	first,
middle,	and	last	names	(presumably	with	some	cleansing	such	as	upper	casing	and
removing	punctuation).	The	second	match	key	generator	would	create	a	match	key	by
concatenating	the	four-character	Soundex	value	of	the	first	name	with	the	character	of	the
last	name	and	digits	of	the	date-of-birth	(again	with	some	cleansing	and	standardization).
So,	clearly	if	two	enrollment	records	share	one	of	these	keys,	the	records	are	going	to
match	according	to	the	rule	that	corresponds	to	the	key.	Therefore,	a	component	formed
by	the	transitive	closure	of	the	enrollment	records	by	these	two	match	keys	contains	all	of
the	records	that	are	equivalent	by	the	Boolean	match	rule.

The	null	rule	cannot	be	used	if	any	of	the	comparators	of	the	proposed	matching	rule
are	similarity	functions	rather	than	hash	functions	–	for	example,	comparators	such	as
Levenshtein	edit	distance	or	Q-gram.	In	these	cases,	the	match	keys	can	only	approximate
the	match	conditions	up	to	hash	function	levels.	The	final	components	from	the	transitive
closure	of	the	approximate	match	keys	must	be	further	refined	by	applying	the	full	match
rule.

Using	the	previous	example,	suppose	the	second	part	of	the	rule	were	changed	to
require	the	first	name	values	to	be	within	one	Levenshtein	edit	distance	of	each	other
instead	of	having	the	same	Soundex	value.	Now	the	second	match	key	generator	would
have	to	be	revised.	Because	Levenshtein	is	a	similarity	function	rather	than	a	hash

function,	the	new	index	generator	would	have	to	omit	the	first	name	and	only	concatenate
the	last	name	and	date-of-birth.	However,	this	change	would	now	allow	enrollment
records	with	completely	different	first	names	to	come	into	the	same	component	as	long	as
they	agree	on	last	name	and	date-of-birth.	Therefore,	the	references	in	these	components
would	have	to	be	compared	using	the	complete	match	rule	in	order	to	make	the	final
determination	of	clusters.

The	Capture	Phase	and	IKB
The	only	thing	that	differentiates	merge-purge	ER	from	the	capture	phase	of	CSRUD	is
the	transformation	of	clusters	into	EIS	and	storing	them	in	an	IKB.	The	flows	in	Figures
10.1	and	10.2	are	essentially	the	same	for	both	except	for	capture,	the	merged	output	from
the	ER	flow	into	a	storage	system.	In	the	distributed	processing	storage	environment,	both
the	Hadoop	File	System	(HDFS)	and	HBase	follow	the	key-value	pair	paradigm.	Because
they	do	not	follow	the	relational	data	base	model	and	do	not	directly	support	structure
query	language	(SQL)	they	are	often	referred	to	as	“Not	only	SQL”	or	NoSQL	databases.
Following	the	Hadoop	model	for	distributed	process	used	up	to	this	point,	the	design	for	a
distributed	IKB	will	follow	an	HDFS	file	system	implementation.

In	order	to	retain	the	full	functionality	present	in	a	nondistributed	file	system,	a
distributed	IKB	requires	a	number	of	tables,	except	that	in	HDFS	tables	correspond	to
folders.	Again	each	folder	contains	one	set	of	key-value	pairs	and	possibly	other	folders.
Because	it	is	a	distributed	file	system,	HDFS	only	presents	the	user	with	a	logical	view	of
a	file	as	a	folder.	Underneath	the	folder	HDFS	may	be	managing	the	physical	file	as
segments	distributed	over	several	different	underlying	storage	units.	Figure	1.3	in	Chapter
1	shows	a	segment	of	a	nondistributed	IKB	created	in	a	capture	configuration	of	the
OYSTER	ER	system.	OYSTER	stores	its	IKB	as	an	XML	document	with	a	hierarchical
structure.	The	IKB	comprises	the	IKB-level	metadata	(<Metadata>)	and	the	EIS
(<Identities>).	Each	EIS	(<Identity>)	comprises	a	set	of	references	(<References>)	that	in
turn	comprise	a	reference	value	(<Value>)	in	CoDoSA	format	and	reference	metadata
(<Traces>).

In	the	HDFS	distributed	data	store,	both	data	and	metadata	reside	in	folders	created	by
map/reduce	processes.	Each	folder	corresponds	to	a	logic	dataset	comprising	key-value
pairs.	The	physical	segments	of	the	dataset	may	actually	reside	in	different	locations
managed	by	HDFS.

There	are	three	essential	key-value	folders	in	the	HDFS	version	of	the	IKB.	The	text	in
parentheses	after	the	name	of	the	folder	describes	the	key-value	pair	definitions	for	the
folder.

•	References	–	(Source	identifier	+	Reference	identifier,	reference	value)	the	store	of	all
references	under	management.	Note	the	key	value	is	a	concatenation	of	the	source
identifier	for	the	reference	with	the	unique	reference	identifier	within	the	source.	This	is
required	to	give	each	reference	in	the	IKB	a	unique	identifier	across	all	sources.	The
reference	value	is	a	CoDoSA	encoded	string	where	each	attribute	value	is	preceded	with
an	escape	character	(ASCI	Bell)	followed	by	an	attribute	tag.	The	meaning	of	the
attribute	tag	is	defined	in	the	CoDoSA	Tags	table	of	the	IKB.

•	Entities	–	(Entity	identifier,	Entity-level	metadata)	The	key	is	the	entity	identifier	and	the
value	is	a	string	that	is	a	concatenation	of	various	entity-level	metadata	items	such	as
the	identifier	of	the	run	(process)	in	which	the	entity	was	created	and	the	identifiers	of
any	runs	in	which	the	entity	was	modified.	This	is	where	any	assertion	metadata	would
be	stored	as	well	as	including	true	positive	assertion	tags	and	negative	structure-to-

structure	assertion	tags	generated	by	correction	or	confirmation	assertions	as	discussed
in	Chapter	5.

•	Reference-to-Entity	–	(Source	identifier	+	Reference	identifier,	Entity	identifier	+
Reference-level	metadata)	Key-value	pairs	in	the	Entities	folder	have	the	same	key	as
the	References	folder,	but	have	a	different	value	structure.	The	value	string	is	a
concatenation	of	the	entity	identifier	and	various	reference-level	metadata.	The	primary
purpose	of	the	Entities	folder	is	to	indicate	for	each	reference	the	entity	to	which	it
belongs.	This	folder	defines	the	EIS	of	the	IKB.	All	of	the	references	with	the	same
entity	identifier	comprise	an	EIS.	The	remaining	portion	of	the	value	string	following
the	entity	identifier	contains	various	metadata	pertaining	to	the	relationship	between	the
reference	and	the	entity	to	which	it	belongs.	For	example,	the	reference-level	metadata
could	include	the	identifier	of	the	run	(process)	in	which	the	reference	was	merged	into
the	EIS.	It	might	also	include	the	identifier	of	the	rule	that	caused	the	reference	to
merge	into	the	EIS.

There	are	several	additional	folders	that	can	be	added	to	the	IKB.	These	folders	are
primarily	to	hold	IKB-level	metadata	and	are	generally	small	enough	that	they	can	hold
physical	tables	(text	files)	rather	than	virtual	key-value	pairs.	These	include

•	Run	Identifiers	–	A	sequence	number	or	other	unique	identifier	for	each	run	of	the
system	for	traceability	and	auditing.	Run	identifiers	are	primarily	used	to	associate	other
metadata	with	a	particular	run	of	the	system.

•	CoDoSA	Tags	–	A	two-column	table	where	each	row	has	a	CoDoSA	attribute	tag
followed	by	its	description.	These	tags	are	used	to	encode	the	string	representing	the
reference	value	in	the	References	folder.

•	Sources	–	A	four-column	table	where	each	row	has	a	unique	source	identifier,	path	to	the
source,	name	of	source,	and	description	of	the	source.

•	Other	tables	to	store	copies	of	the	Run	Scripts	(control	scripts)	for	each	run,	Reports
generated	from	each	run,	log	files	generated	for	each	run,	and	any	other	run-level
metadata.

The	Identity	Update	Problem
Another	important	EIIM	configuration	is	the	automated	update	configuration	in	the	update
phase	of	the	CSRUD	Life	Cycle.	When	new	references	are	introduced,	the	system	uses	the
matching	rule	to	decide	if	each	new	reference	is	referring	to	an	entity	already	represented
in	the	IKB	by	an	existing	EIS,	or	if	it	is	referring	to	some	new	entity	not	yet	represented	in
the	system.	In	the	former	case,	the	system	should	integrate	the	new	reference	into	the	EIS
of	the	matching	identity.	In	the	latter	case,	the	system	must	create	a	new	EIS	and	add	it	to
the	IKB	to	represent	the	new	identity.	This	means	there	will	be	two	inputs	to	the	update
process	including	the	existing	(prior)	EIS	created	in	a	previous	process	and	the	new
references.

FIGURE	10.5 	The	basic	workflow	for	the	update	configuration.

Figure	10.5	shows	the	general	approach	to	the	update	configuration	for	a	distributed
processing	environment	that	is	basically	the	identity	capture	workflow	of	Figure	10.4	with
an	added	input	of	prior	EIS	to	be	updated.

One	problem	in	adapting	the	identity	capture	workflow	of	Figure	10.4	to	identity	update
is	that	the	identity	capture	workflow	was	based	on	the	assumption	that	all	of	the	inputs	are
single	references,	each	with	a	unique	reference	identifier,	but	in	Figure	10.5	the	Prior	input
comprises	EIS	rather	than	references.

If	the	Prior	EIS	have	a	record-based	structure,	then	it	is	possible	to	recover	(reconstruct)
the	references	used	to	create	each	of	the	prior	EIS.	If	not,	then	it	may	still	be	possible	to
recover	these	references	as	long	as	the	aggregate	set	of	references	used	to	create	the	Prior
EIS	has	been	saved	or	archived	in	some	way.	In	either	case	it	means	the	workflow	in
Figure	10.5	is	essentially	a	recapture	of	the	prior	references	combined	with	the	new
references.

However,	there	are	still	two	problems	with	the	recapture	approach.	The	first	issue
concerns	the	evolution	of	matching	rules.	Over	time,	the	matching	rules	may	be	modified
to	improve	the	entity	identity	integrity	of	EIS	or	to	accommodate	changes	in	the	reference
data.	Therefore,	the	matching	rules	used	to	create	or	update	the	prior	EIS	may	be	different
from	the	matching	rules	currently	in	effect.	A	simple	recapture	process	will	apply	the
current	identity	rules	to	the	prior	references	as	well	as	the	new	references.	In	other	words,
the	identities	represented	by	the	prior	EIS	from	D	are	essentially	discarded,	and	the
identities	represented	by	the	EIS	in	E	are	based	entirely	on	the	current	rules.	This	issue
may	or	may	not	be	a	problem,	but	it	is	an	artifact	of	the	recapture	approach	that	should	be
noted.

The	second	problem	in	using	a	recapture	approach	is	a	much	more	fundamental	issue
related	to	the	issue	of	persistent	identifiers	for	the	identities	represented	in	the	system.

Persistent	Entity	Identifiers
An	important	goal	of	EIIM	is	to	create	and	maintain	persistent	entity	identifiers	for	each
identity	under	management,	i.e.	each	EIS	retains	the	same	identifier	from	process	to
process.	This	is	not	the	case	for	basic	ER	systems	that	do	not	create	and	maintain	EIS.	In
these	systems	the	link	identifier	assigned	to	a	cluster	of	references	at	the	end	of	the
process	is	transient	because	it	is	not	part	of	a	persistent	identity	structure.	The	entity
identifiers	assigned	by	these	systems	are	only	intended	to	represent	the	linking	(identity)
decisions	for	a	particular	process	acting	on	a	particular	input.	Typically	these	system	select
one	survivor	record	from	each	link	cluster	to	go	forward	into	further	processing	steps.
After	the	survivor	record	has	been	selected,	the	link	identifier	is	no	longer	needed.

If	the	only	objective	were	to	build	the	identities	represented	by	combining	the
references	from	Prior	EIS	with	the	new	references,	then	a	recapture	approach	to	the
workflow	shown	in	Figure	10.5	would	be	sufficient.	The	problem	is	even	though	the	EIS
in	the	merged	output	bring	together	all	of	the	references	that	represent	the	same	identity,	a
Prior	EIS	and	a	corresponding	EIS	in	the	output	that	represent	the	same	entity	may	be
assigned	different	identifiers.	In	other	words,	from	an	EIIM	perspective,	simply
performing	a	capture	process	on	the	combined	references	would	have	the	undesirable	side
effect	that	the	identifiers	for	the	same	entity	identity	could	change	after	each	update
process.

Fortunately,	there	is	a	fairly	simple	solution	to	the	problem,	and	that	is	to	treat	the	EIS
identifier	as	a	match	key	in	the	transitive	closure	process.	To	see	how	this	works,	consider
a	simple	example	in	which	there	is	only	one	Prior	EIS,	one	new	reference,	and	a	single
match	key	generator	G1	as	shown	in	Figure	10.6.

In	the	scenario	of	Figure	10.6	there	is	a	single	Prior	EIS	with	Identifier	E1	that
comprises	two	references	R1	and	R2,	two	new	reference	R3	and	R4,	and	a	single	match
key	generator	G1	that	produces	three	distinct	match	key	values	1,	2,	and	3.	For	purposes
of	the	example,	assume	the	generator	G1	is	aligned	with	the	base	match	rule,	and	R2	and
R3	match	by	the	base	rule.	Remember	the	alignment	between	the	match	rule	and	the
generator	means	if	two	references	match	they	must	generate	the	same	match	key;
however,	if	they	generate	the	same	match	key,	they	do	not	necessarily	match	by	the	rule.

Also,	notice	in	the	scenario	of	Figure	10.6	that	R1	and	R2	do	not	generate	the	same
match	key	even	though	they	are	in	the	same	EIS.	Assuming	generator	alignment,	this
means	R1	and	R2	do	not	match	by	the	base	rule	because	they	generate	different	match
keys.	However,	it	is	important	to	remember	EIS	are	designed	to	store	equivalent
references	and	not	all	equivalent	references	match.	For	example,	suppose	these	are
customer	references	and	the	base	rule	is	they	must	match	on	name	and	address.	The
references	R1	and	R2	may	be	for	the	same	customer	who	has	changed	address,	i.e.	the
address	in	R1	does	not	match	the	address	in	R2.	If	the	generator	G1	is	aligned	with	the
name+address	match	rule,	then	it	is	unlikely	the	hash	value	produced	by	the	address	in	R1
will	be	the	same	as	the	hash	value	produced	by	the	address	in	R2;	consequently	the	match
keys	for	R1	and	R2	will	be	different.

FIGURE	10.6 	Simple	update	scenario.

Nevertheless,	these	references	are	equivalent	and	therefore	belong	in	the	same	EIS.	This
EIS	may	have	been	formed	in	a	previous	automated	ER	process	that	used	a	different	base
rule,	e.g.	match	on	name	and	telephone	number,	or	these	references	may	have	been
asserted	together	in	a	manual	update	process.

Given	these	assumptions,	then	a	simple	capture	process	on	the	combined	reference
would	result	in	three	output	EIS	shown	in	Figure	10.7	as	F1,	F2,	and	F3.

The	problem	is	the	result	shown	in	Figure	10.7	is	incorrect.	Given	R1	and	R2	are
equivalent,	and	R2	matches	R3,	then	by	transitive	closure	of	equivalence,	R1,	R2,	and	R3
should	all	be	in	the	same	EIS.	In	order	to	solve	the	problem,	the	knowledge	of	prior
equivalence	must	be	carried	forward	into	the	preresolution	transitive	closure	process.	This
can	be	accomplished	by	treating	the	Prior	EIS	identifiers	as	supplemental	match	keys,	as
shown	in	Figure	10.8.

If	the	transitive	closure	of	the	references	is	determined	based	on	both	the	match	key	and
the	EIS	identifier,	then	the	graph	will	only	have	two	components	{R1,	R2,	R3}	and	{R4}.
This	is	because	R1	and	R2	are	connected	by	the	shared	identifier	E1,	and	R2	and	R3	are
connected	by	the	shared	match	key	2.	Thus,	R1,	R2,	and	R3	form	a	single	connected
component.

In	order	to	complete	transformation	of	the	capture	process	into	a	proper	update	process,
two	more	changes	must	be	made.	The	first	is	that	not	only	should	the	Prior	EIS	identifiers
be	used	to	form	the	transitive	closure	of	the	references,	but	also	these	identifiers	need	to	be
carried	forward	into	the	ER	process.	In	other	words,	when	the	ER	process	sees	a	reference,
it	also	needs	to	know	if	it	came	from	a	Prior	EIS,	and	if	it	does,	it	needs	the	Prior	EIS
identifier	value.

FIGURE	10.7 	Results	of	capture	based	on	transitive	closure	of	match	keys.

FIGURE	10.8 	Simple	update	scenario	with	supplemental	EIS	keys.

Secondly,	the	matching	logic	of	the	ER	process	needs	to	be	augmented.	Regardless	of
the	base	match	rule,	any	time	two	references	are	determined	to	have	come	from	the	same
Prior	EIS,	they	should	be	considered	a	match.	In	other	words,	the	base	match	rule	is
supplemented	with	an	assertion	rule.	Furthermore,	the	EIS	created	by	the	ER	process
should	reuse	the	Prior	EIS	identifiers	in	those	cases	where	the	output	EIS	contains	a
reference	from	a	Prior	EIS.

Figure	10.9	shows	the	correct	result	obtained	by	making	these	three	changes,	i.e.	adding
the	Prior	EIS	identifier	as	a	supplemental	match	key	for	transitive	closure,	carrying	the
Prior	EIS	identifier	forward	into	the	ER	process,	and	augmenting	the	ER	base	rule	with
the	assertion	rule	for	references	originating	from	the	same	Prior	EIS.	Note	the	first	output
EIS	has	been	labeled	with	the	Prior	EIS	identifier	E1	because	it	represents	the	same
identity	updated	with	a	new	reference	R3.	On	the	other	hand,	F1	represents	a	new	identity
formed	by	the	reference	R4.

In	the	example	shown	in	Figure	10.8,	one	component	has	a	reference	from	a	Prior	EIS
together	with	a	new	reference,	and	the	other	component	has	only	a	new	reference.	In
general	there	can	be	four	situations	that	occur:

1.	If	the	component	contains	only	references	from	one	Prior	EIS,	it	means	there	are	no
new	references	that	share	a	match	key	value	with	the	references	in	the	prior	EIS.	The
result	is	that	the	prior	EIS	will	not	be	modified	by	the	update	process.	It	will	pass	through

unchanged	and	retain	its	original	identifier.

FIGURE	10.9 	Correct	update	of	the	simple	scenario	of	Figure	10.6.

2.	If	the	component	contains	references	from	one	prior	EIS	along	with	new	references,
then	there	is	the	potential	that	the	Prior	EIS	will	be	updated.	However,	this	is	only	a
potential	update	because	sharing	a	match	key	only	means	a	match	is	possible,	not
guaranteed.	Whether	a	match	actually	occurs	will	not	be	known	until	the	component	goes
into	the	ER	process	where	pairs	of	references	are	tested	by	the	match	rule.	If	none	of	the
new	references	in	the	component	match	one	of	the	references	from	the	Prior	EIS,	then	the
new	references	will	form	one	or	more	new	EIS	in	the	output.

3.	If	the	component	contains	only	new	input	references,	then	the	references	will	not	update
any	Prior	EIS.	Instead	they	will	form	one	or	more	new	EIS	in	the	output	that	will	be
assigned	new	identifiers.

4.	It	is	possible	a	component	could	include	references	from	more	than	one	Prior	EIS.	This
would	happen	if	one	of	the	new	references	shares	a	match	key	with	references	in	two	or
more	Prior	EIS.	If	the	new	reference	that	shares	a	match	key	turns	out	to	actually	match
the	references	in	the	Prior	EIS,	then	by	transitive	closure	of	equivalence,	the	EIS	should	be
merged	into	a	single	EIS.	The	exception	to	this	is	when	the	EIS	have	been	previously	split
by	an	assertion.	EIS	formed	by	a	split	assertion	process	are	cross-referenced	to	prevent
them	from	merging	during	an	automated	update	process.

The	Large	Component	and	Big	Entity
Problems
Although	identity	capture	and	identity	update	workflows,	described	in	Figures	10.2	and
10.5	respectively,	can	be	operationalized	using	preresolution	transitive	closure,	they	will
only	work	well	when	the	match	keys	are	similar	to,	or	the	same	as,	the	matching	rule.	The
problem	is	not	with	logic	of	the	system,	but	in	interaction	between	the	software	and	the
data,	the	root	of	many	data	process	problems	(Zhou,	Talburt,	&	Nelson,	2011).	In	the	case
of	the	preresolution	transitive	closure	algorithm,	the	problem	is	the	components	(blocks)
can	become	very	large	and	overwhelm	the	capacity	of	the	system	even	in	a	large-scale,
distributed	processing	environment.

An	example	of	how	components	can	grow	very	large	was	described	in	Chapter	9	in	the
section	“Dynamic	Blocking	versus	Preresolution	Blocking.”	In	the	CDI	example	only	two
match	keys	were	defined	–	a	first	name	match	key	and	a	last	name	match	key.	The
transitive	closure	of	these	two	match	keys	will	likely	grow	into	one	component	that
includes	every	reference,	a	result	that	defeats	the	purpose	of	blocking.	As	described	in
Chapter	8,	in	the	section	“Cluster-to-Cluster	Classification,”	reference	equivalence	is
transitive,	but	reference	matching	is	not	transitive.	The	clusters	formed	by	the	ER	process
are	the	transitive	closure	of	the	reference-to-reference	links	made	by	the	matching	rules
under	the	assumption	that	matching	references	are	equivalent	references.

However,	two	references	that	agree	on	a	match	key	value	are	only	potential	matches
and,	consequently,	are	only	potentially	equivalent.	As	chains	of	references	connected	by
common	match	key	values	continue	to	grow	in	the	transitive	closure	process,	the
references	at	the	extreme	ends	of	the	chain	are	less	likely	to	match.	Again	using	the	first
and	last	name	match	key	example,	“James	Doe”	and	“Mary	Doe”	connect	by	last	name,
“Mary	Doe”	and	“Mary	Smith”	connect	by	first	name.	However,	“James	Doe”	and	“Mary
Doe”	at	the	ends	of	the	chain	are	not	good	match	candidates	even	though	they	will	be
placed	into	the	same	component	by	the	transitive	closure	of	the	two	match	keys.	Given	a
set	of	match	key	generators,	it	is	hard	to	predict	how	they	will	interact	without	actually
starting	the	transitive	closure	process	and	observing	the	growth	of	the	components.

To	solve	the	problem	of	large	components,	the	transitive	closure	process	and	the
matching	process	must	somehow	be	blended	together	to	constrain	the	growth	of	the	chains
that	create	the	large	components.	There	are	many	different	strategies	for	controlling	this
growth	(Kardes,	Konidena,	Agarwal,	Huff,	&	Sun,	2013;	Kolb,	Thor,	&	Rahm,	2011;
Papadakis,	Ioannou,	Niederée,	Palpanas,	&	Nedjl,	2012).	Two	described	here	are
postresolution	transitive	closure	and	incremental	transitive	closure.

Postresolution	Transitive	Closure
The	strategy	of	postresolution	transitive	closure	is	to	translate	each	match	key	into	an
entity	identifier	and	then	perform	the	transitive	closure	on	the	entity	identifiers.	The
process	is	illustrated	in	Figure	10.10.

In	this	process	the	same	set	of	references	(Ref)	is	resolved	multiple	times,	one	time	for
each	match	key	(M-Kx).	Each	of	these	single	match-key	flows	corresponds	to	Figure	10.1
where	blocking	takes	place	using	only	one	match	key.	However,	the	ER	process	uses	a	full
set	of	matching	rules	(or	at	least	all	of	the	matching	rules	that	align	with	the	match	key),
so	the	clusters	formed	at	the	end	of	each	resolution	step	comprise	only	equivalent
references.	In	the	transitive	closure	process,	the	chaining	takes	place	on	the	entity
identifiers	assigned	to	each	reference	rather	than	on	the	match	key.	Because	a	shared
identifier	represents	equivalence	instead	of	a	possible	match,	the	components	formed	in
the	closure	process	are	actually	the	EIS	that	would	be	formed	using	all	of	the	match	keys
and	matching	rules	in	one	ER	step.	Therefore,	the	components	in	the	postresolution
transitive	closure	are	constrained	to	be	no	larger	than	the	largest	entity	that	can	be	formed
by	the	matching	rules.

FIGURE	10.10 	Postresolution	transitive	closure.

The	advantage	of	postresolution	transitive	closure	is	the	maximum	size	block	for	each
match	key	is	known	in	advance,	and	the	growth	of	the	components	in	the	final	transitive
closure	is	constrained	to	only	chain	equivalent	references.	The	disadvantage	of	this
approach	is	if	N	is	the	number	of	match	keys,	then	the	full	set	of	input	references	must	run
N	times,	and	the	input	to	the	final	transitive	closure	is	N	times	the	size	of	the	original	set
of	input	references.

Incremental	Transitive	Closure
Another	strategy	is	similar	to	the	update	process	shown	in	Figure	10.4.	Here	the	idea	is	to
blend	each	match	key	into	the	transitive	closure	process	with	the	equivalences	found	by
previously	processed	match	keys.	The	process	is	illustrated	in	Figure	10.11.

The	incremental	transitive	closure	process	starts	in	the	same	way	as	postresolution
transitive	closure	where	the	ER	process	uses	only	the	first	match	key	generator.	In	the
second	step,	the	entity	identifier	assigned	to	each	reference	by	the	ER	process	is	appended
as	an	additional	attribute	to	each	of	the	original	references.	In	addition,	the	next	match	key
generator	is	applied,	so	each	reference	has	two	match	keys	–	the	entity	identifier	from	the
previous	ER	process	and	the	match	key	from	the	next	match	key	generator.	The	transitive

closure	operates	on	these	two	keys	followed	by	the	full	ER	process	that	assigns	a	new	set
of	entity	identifiers.	This	process	continues	until	all	of	the	match	keys	have	been
processed.

FIGURE	10.11 	Incremental	transitive	closure.

The	advantage	of	the	incremental	process	is	both	the	transitive	closure	process	and	the
ER	process	can	be	highly	optimized.	In	the	transitive	closure	process,	the	bootstrap	phase
can	take	advantage	of	the	previous	matching.	For	example,	if	a	group	of	references
sharing	the	next	match	key	also	has	the	same	identifier	from	the	previous	ER	process,	then
the	group	does	not	need	to	go	through	the	closure	process	because	the	match	key	is	not
adding	any	incremental	value.	It	is	not	bringing	together	any	references	that	have	not
already	been	determined	as	equivalent.	Similarly	in	the	ER	process,	any	references	already
determined	to	be	equivalent	in	a	previous	ER	process	(i.e.	share	the	same	entity	identifier)
do	not	need	to	be	matched	again.	Matching	only	needs	to	take	place	between	references
that	have	different	entity	identifiers	while	sharing	the	same	match	key.

The	Big	Entity	Problem
Aside	from	the	problem	of	large	components	(blocks),	there	can	also	be	a	problem	when
some	entities	cluster	a	large	number	of	references,	so-called	big	entities.	Sometimes	a	big
entity	is	just	a	big	entity	because	it	really	does	comprise	many	references,	but	sometimes	it
is	caused	by	data	quality	issues.

In	the	former	this	is	sometimes	caused	by	a	client	system	repeatedly	sending	an	entire
set	of	references	to	the	hub	rather	than	only	new	references.	For	example,	in	student
tracking	the	enrollment	system	may	send	the	records	of	all	students	enrolled	every	day.
Although	a	few	of	these	may	be	new	or	changes,	the	vast	majority	are	the	same	from	day

to	day.	This	can	be	a	problem	for	MDM	systems	that	store	every	reference.	For	these	cases
the	system	implements	logic	for	recognizing	and	handling	duplicate	records	of	previous
inputs	such	as	the	duplicate	record	filter	shown	in	Figure	4.4	in	the	section	“Dedicated
MDM	Systems”	in	Chapter	4.

The	data	quality	issues	that	cause	big	entities	are	often	related	to	default	values.	Instead
of	leaving	fields	blank,	many	data	entry	systems	are	written	to	either	automatically
provide	a	default	value	or	default	values	are	entered	by	the	operator	because	an	entry	is
required	by	the	software.	For	example,	the	entry	of	“LNU”	for	last	name	unknown	or
“999-99-9999”	for	a	missing	social	security	number.	The	problem	is	that	when	these	fields
are	used	as	identity	attributes	in	the	ER	process	they	can	sometimes	cause	big	entities	to
be	formed.	Again,	the	answer	is	usually	a	special	filter	that	recognizes	and	handles	default
values	in	the	matching	process.

Identity	Capture	and	Update	for	Attribute-
Based	Resolution
Everything	described	to	this	point	has	assumed	the	ER	systems	are	using	record-based
architecture,	i.e.	record-based	projection	and	record-based	EIS	as	described	in	Chapter	8.
In	the	case	of	attribute-based	resolution,	the	purely	sequential	workflows	given	so	far	will
not	always	work	correctly.	The	reason	is	that,	when	an	EIS	is	updated	to	include	a	new
reference,	the	introduction	of	the	new	information	may	cause	the	updated	EIS	to	match
other	references	that	it	did	not	match	prior	to	the	update.	This	creates	a	problem	for	the
preresolution	transitive	closure	method.	For	example,	in	workflows	such	as	those	shown
in	Figures	10.2	and	10.5,	the	transitive	closure	operations	are	based	on	shared	match	keys
and,	for	update,	on	shared	EIS	identifiers.	However,	the	match	keys	used	in	the	closure	are
generated	from	the	new	references	and	Prior	EIS	before	starting	the	ER	process.	In	a
record-based	ER	architecture	this	is	not	a	problem.	As	long	as	the	match	key	generators
are	in	alignment	with	the	base	matching	rule,	each	connected	component	will	contain	all
of	the	new	references	and	Prior	EIS	that	potentially	match.

However,	in	the	case	of	an	attribute-based	architecture,	if	a	reference	updates	(i.e.	is
merged	into)	an	EIS	during	the	resolution	process,	the	updated	EIS	can	potentially
generate	new	match	key	values	that	would	not	have	existed	before	the	update.	These	new,
postresolution	match	key	values	may	connect	the	updated	EIS	with	other	input	references
or	other	EIS	not	included	in	the	component	during	the	transitive	closure	process	because
the	closure	process	took	place	before	the	EIS	was	updated.

One	solution	for	the	attribute-based	resolution	problem	is	to	simply	iterate	the
preresolution	update	workflow	as	shown	in	Figure	10.12.	This	workflow	already	assumes
EIS	from	previous	processes	are	(or	can	be)	included	as	part	of	the	input.	If	any	prior	EIS
are	included	in	the	input,	then	index	values	are	generated	for	these	EIS	by	the	IXG
processes	before	starting	the	transitive	index	closure	step.

In	the	case	of	attribute-based	resolution,	the	first	step	is	the	same	as	for	record-based
resolution.	The	set	of	new	references	and	any	prior	EIS	are	the	inputs	that	produce	the
updated	EIS.	However,	if	any	EIS	were	updated	during	the	initial	phase,	it	is	necessary	to
rerun	the	output	EIS	as	input	to	a	second,	iterative	step.

FIGURE	10.12 	Iterative	update	process	for	attribute-based	ER	systems.

In	the	iterative	step,	all	of	the	match	key	values	are	generated	for	the	EIS	followed	by
the	transitive	closure	process	and	the	resolution	process.	If	during	the	resolution	process
some	of	the	EIS	are	updated,	the	EIS	must	be	processed	again.	This	is	repeated	until	there
are	no	updates.	The	same	process	as	shown	in	Figure	10.12	also	works	for	attribute-based
identity	capture.	The	only	difference	is	the	input	to	the	first	step	is	only	the	set	of	new
references,	and	there	is	no	set	of	prior	EIS.

Concluding	Remarks
MDM	for	Big	Data	is	difficult	but	possible	using	distributed	computing.	The	two	biggest
problems	to	solve	for	distributed	MDM	are	transitive	closure	and	update.	If	an	ER	process
only	requires	a	single	blocking	key,	then	the	distributed	processing	flow	is	quite	simple.
The	key	blocks	of	a	single	key	partition	the	references,	and	the	partition	segments	form
natural	key-value	blocks	that	can	be	allocated	to	distributed	processors.	However,	if	more
than	one	blocking	key	is	used,	there	must	be	a	transitive	closure	process.	The	transitive
closure	can	occur	at	different	points	in	the	ER	process	–	prior	to	matching	(preresolution),
after	matching	(postresolution)	or	intertwined	with	the	matching	process	(incremental).
The	choice	of	strategy	will	be	dictated	by	the	nature	of	the	data.	The	transitive	closure
process	finds	the	components	of	the	graph	formed	from	reference	nodes	connected	by
edges	of	shared	match	key	values.	One	advantage	of	pretransitive	closure	is	the
components	of	the	match	key	graph	represent	the	final	set	of	clusters	when	the	ER	match
rules	are	the	same	as	the	match	key	generation	rules	(null	rules).	Otherwise,	the	match	key
components	must	undergo	a	final	resolution	at	each	node	using	the	full	and	complete	set
of	matching	rules.	The	greatest	disadvantage	to	preresolution	transitive	closure	is	that	for
certain	match	key	combinations	it	can	create	very	large	components	too	large	to	process.
When	this	happens,	a	different	strategy	for	transitive	closure	must	be	used.

In	order	to	implement	the	full	CSRUD	MDM	Life	Cycle,	the	basic	process	capture
process	must	be	modified	to	allow	for	update.	Update	requires	that	both	new	references
and	old	(previously	clustered)	references	be	input	into	the	preresolution	transitive	closure
process.	Moreover,	to	preserve	previous	clustering	decisions	and	maintain	persistent	entity
identifiers,	the	old	references	must	also	carry	along	their	previously	assigned	entity
identifiers.	This	serves	two	purposes.	The	first	is	to	retain	and	reuse	the	previous	identifier
whenever	possible.	The	second	is	to	preserve	linking	decisions	from	previous	update
processes.	The	previously	assigned	identifiers	are	input	into	the	transitive	closure	process
and	treated	by	the	transitive	closure	process	the	same	as	if	they	were	generated	match
keys.	In	the	case	where	the	ER	process	is	using	an	attribute-based	project	for	cluster
matching,	the	entire	transitive	closure/ER	process	must	be	repeated	until	no	new	clusters
are	formed.

CHAPTER	11

ISO	Data	Quality	Standards	for	Master
Data

Abstract
This	chapter	provides	a	discussion	of	the	new	International	Organization	for	Standardization	(ISO)	standards
related	to	the	exchange	of	master	data.	It	includes	an	in-depth	look	at	the	ISO	8000	family	of	standards,	including
ISO	8000-110,	-120,	-130,	and	-140,	and	their	relationship	to	the	ISO	22745-10,	-30,	and	-40	standards.	Also	an
explanation	is	given	of	simple	versus	strong	ISO	8000-110	compliance,	and	the	value	proposition	for	ISO	8000
compliance	is	discussed.

Keywords
ISO;	ANSI;	ISO	8000;	ISO	22745;	Semantic	Encoding

Background
In	2009,	the	International	Organization	for	Standardization	(ISO)	approved	a	set	of
standards	for	data	quality	as	it	relates	to	the	exchange	of	master	data	between
organizations	and	systems.	These	are	primarily	defined	in	the	ISO	8000-110,	-120,	-130,
-140,	and	the	ISO	22745-10,	-30,	and	-40	standards.	Although	these	standards	were
originally	inspired	by	the	business	of	replacement	parts	cataloging,	the	standards
potentially	have	a	much	broader	application.	The	ISO	8000	standards	are	high-level
requirements	that	do	not	prescribe	any	specific	syntax	or	semantics.	On	the	other	hand,	the
ISO	22745	standards	are	for	a	specific	implementation	of	the	ISO	8000	standards	in
extensible	markup	language	(XML)	and	are	aimed	primarily	at	parts	cataloging	and
industrial	suppliers.

The	Electronic	Commerce	Code	Management	Association	(ECCMA)	formed	in	1999
has	largely	guided	the	development	of	the	ISO	8000	standards.	The	American	National
Standards	Institute	(ANSI)	is	the	U.S.	representative	to	ISO,	and	ECCMA	is	the	ANSI
accredited	administrator	of	the	U.S.	Technical	Advisory	Group	(TAG)	to	the	ISO
Technical	Committee	(TC)	184	and	its	subcommittees	SC4	and	SC5	that	deal	with
industrial	data	and	data	interoperability,	respectively.	Under	the	leadership	of	Peter
Benson,	ECCMA	continues	to	be	active	in	developing	new	data	quality	standards	for
master	data	and	providing	ISO	8000	training	and	certification.	This	chapter	will	focus
primarily	on	the	ISO	8000-110	standard	because	it	describes	the	overall	framework	and
guidelines	to	which	specific	implementations	of	the	ISO	8000	standard	such	as	ISO	22745
must	comply	(ANSI,	2009).

Data	Quality	versus	Information	Quality
Before	getting	too	deeply	into	the	ISO	8000	standard,	it	might	be	helpful	to	review	the
basic	principles	of	information	and	data	quality.	Even	though	there	is	almost	universal
acceptance	that	data	and	information	are	separate	concepts,	the	same	cannot	be	said	for	the
terms	data	quality	and	information	quality.	Many	noted	experts	use	data	quality	and
information	quality	interchangeably	with	the	general	definition	of	“fitness	for	use
(purpose)”	(Juran,	1989).

The	discussion	of	the	ISO	8000	standard	is	an	occasion	where	it	can	be	helpful	to
separate	the	concepts	of	data	quality	and	information	quality.	In	2010,	the	International
Association	for	Information	and	Data	Quality	(IAIDQ)	undertook	an	extensive	survey	of
information	professionals	to	elicit	their	opinions	on	the	knowledge	and	skills	required	to
be	successful	as	an	information	quality	professional	(Yonke,	Walenta,	&	Talburt,	2012).
The	survey	was	part	of	the	development	process	for	the	Information	Quality	Certified
Professional	(IQCPsm)	credential	(IAIDQ,	2014).	The	knowledge	and	skill	descriptions
gathered	from	the	survey	were	analyzed	and	subsequently	summarized	into	six	categories,
referred	to	as	the	IAIDQ	Domains	of	Information	Quality.	The	domains	are

1.	Information	Quality	Value	and	Business	Impact

2.	Information	Quality	Strategy	and	Governance

3.	Information	Quality	Environment	and	Culture

4.	Information	Quality	Measurement	and	Improvement

5.	Sustaining	Information	Quality

6.	Information	Architecture	Quality

An	important	principle	emerging	from	the	study	was	that	information	quality	is
primarily	about	helping	organizations	maximize	the	value	of	their	information	assets.	The
survey	results	provided	strong	support	for	the	principle	that	information	quality	is	a
business	function	rather	than	an	information	technology	responsibility.	The	first	three
domains	that	cover	value,	business	impact,	strategy,	governance,	environment,	and	culture
are	primarily	business	and	management	issues.

Even	though	successful	MDM	depends	upon	understanding	many	technical	issues,
many	of	which	are	presented	in	this	book,	its	adoption	is,	or	should	be,	a	business-driven
decision.	Furthermore,	MDM	is	generally	viewed	as	a	key	component	of	data	governance
programs,	which	are	themselves	seen	as	essential	for	organizations	to	be	competitive	in	an
information-based	economy.

Only	the	last	three	IAIDQ	domains	deal	with	measurement,	improvement,	monitoring,
and	data	architecture,	the	activities	comprising	what	can	be	generally	defined	as	data
quality.	As	ISO	defines	quality	as	meeting	requirements,	data	quality	can	be	defined	as	the
degree	to	which	data	conform	to	data	specifications	(data	requirements).	Information
quality	includes	data	quality,	but	in	the	larger	context	it	also	addresses	the	business	issue
of	creating	value	from	information	and	how	to	manage	information	as	product.
Information	quality	requires	information	producers	to	understand	the	needs	of	information
consumers.	Once	those	are	understood,	they	can	be	translated	into	the	data	specifications
that	underpin	and	define	data	quality.

Some	have	likened	the	difference	between	data	and	information	quality	to	the	classic
engineering	dilemma:	Am	I	building	the	thing	right?	Or	am	I	building	the	right	thing?
Building	an	information	product	the	right	way	is	about	conforming	to	the	data
specifications	for	the	product,	which	is	the	definition	of	data	quality.	Building	the	right
thing	is	creating	an	information	product	that	provides	value	to	its	users,	the	definition	of
information	quality.

To	be	successful,	data	quality	and	information	quality	must	work	hand-in-hand.	An
organization	should	constantly	align	its	data	quality	activities	with	its	information	quality
activities.	Data	cleansing,	assessment,	and	monitoring	(DQ)	should	only	be	undertaken	as
a	solution	to	a	business	need	(IQ).	Conversely,	data	quality	assessments	(DQ)	can	often
uncover	data	problems	whose	solutions	directly	impact	increased	cost,	lost	revenue,
operational	risk,	compliance	default,	and	many	other	business	issues	(IQ).

Relevance	to	MDM

The	ISO	8000	standards	are	relevant	to	MDM	for	several	reasons.	The	most	obvious	is	the
standard	is	specifically	for	master	data.	In	particular,	the	accuracy	of	ER	that	supports
MDM	has	a	strong	dependence	on	understanding	of	reference	identity	attributes	and	the
alignment	of	identity	attributes	across	different	sources.

But	beyond	that,	there	is	general	agreement	that	data	standards	are	important	for	data
quality	but	are	hard	to	establish	(Redman,	1996).	The	problem	of	establishing	standards
for	data	is	probably	best	solved	first	through	master	data,	because	there	is	broad	agreement
about	the	things	that	require	master	data,	at	least	at	the	industry	level.

As	organizations	move	to	exploit	Big	Data,	the	need	for	metadata	that	describes	data	in
a	source	becomes	even	more	acute	as	data	are	created	at	an	amazing	rate	of	speed.	Instead
of	simply	automating	manual	processes,	organizations	are	now	creating	new	ways	of
collecting	data	highly	dependent	on	instrumentation.	Without	information	about
provenance,	completeness,	accuracy,	and	other	data	characteristics,	it	is	nearly	impossible
to	understand	what	the	data	even	represents.

Goals	and	Scope	of	the	ISO	8000-110
Standard
Despite	widespread	adoption	of	the	ISO	8000-110	standard	in	certain	industries,	it	is	not
well	understood	in	many	information	quality	and	MDM	circles.	Even	though	it	is	a
generally	applicable	data	quality	standard	for	master	data,	its	application	has	been	mainly
limited	to	replacement	parts	cataloging	for	the	military	and	petroleum	industry.	For
example,	the	North	Atlantic	Treaty	Organization	(NATO)	now	requires	all	parts	suppliers
to	comply	with	the	ISO	22745	version	of	the	ISO	8000-110	standard.

Unambiguous	and	Portable	Data
The	ISO	8000-110	standard	has	two	major	goals.	The	first	is	to	remove	as	much	ambiguity
as	possible	from	the	exchange	of	master	data.	The	second	is	to	make	master	data	portable
from	system-to-system.

The	goal	of	being	unambiguous	is	addressed	in	the	standard	through	extensive	use	of
semantic	encoding.	Semantic	encoding	is	the	replacement	of	natural	language	terms	and
descriptions	with	unique	identifiers	that	reference	clear	and	unambiguous	data	dictionary
entries.	The	standard	requires	the	referenced	data	dictionary	to	be	easily	accessible	by
both	the	transmitting	and	receiving	parties.

The	Scope	of	ISO	8000-110
It	is	important	to	understand	what	the	ISO	8000-110	standard	covers,	and	also	what	it	does
not	cover.	At	a	high	level,	the	ISO	8000-110	is	a	standard	for	representing	data	definitions
and	specifications	for

•	Master	data	in	the	form	of	characteristic	data	that	are

•	Exchanged	between	organizations	and	systems,	and	that

•	Conform	to	the	data	specifications	that	can	be	validated	by	computer	software.

The	latter	point	about	conformance	to	data	requirements	puts	the	ISO	8000-110
standard	squarely	in	the	realm	of	data	quality.	To	place	ISO	8000	into	the	vocabulary	of
this	book,	characteristics	(also	called	properties)	correspond	to	the	identity	attributes	of	the
entities	under	management.	Master	data	in	the	form	of	characteristic	data	are	essentially
the	entity	references	described	in	Chapter	1.

Logically	they	comprise	a	set	of	attribute-value	pairs	where	the	attribute	name	is	a
characteristic	or	property	of	the	entity,	and	the	value	is	a	specific	instance	of	the
characteristic	or	property	for	a	particular	entity.	In	a	physical	implementation	the	attribute-
value	pairs	for	an	entity	could	be	represented	as	a	row	in	a	spreadsheet,	a	record	in	a	file,
or	XML	document.	For	example,	a	characteristic	of	an	electric	motor	might	be	its
operating	voltage	with	a	value	of	110	volts/AC.	Other	characteristics	might	be	power

consumption	in	watts	or	its	type	of	mounting.

Perhaps	the	most	common	misunderstanding	about	the	ISO	8000	standards	is	that	they
somehow	establish	certain	levels	of	data	quality	such	as	80%	completeness	or	95%
accuracy	for	particular	master	data	domains	and	characteristics.	This	is	not	at	all	the	case.
Instead,	ISO	8000	describes	a	standard	for	embedding	references	to	data	definitions	and
data	specifications	into	the	master	data	exchanged	between	two	organizations	in	such	a
way	that	the	organizations	can	automatically	validate	that	the	referenced	specifications
have	been	met.

The	automatic	verification	of	conformance	to	specifications	is	an	important	aspect	and
innovation	of	the	standard.	Although	several	ISO	standards	address	quality,	such	as	the
ISO	9000	family	of	standards	for	quality	management	systems,	ISO	8000	specifically
requires	that	conformance	to	the	specifications	must	be	verifiable	by	a	computer
(software)	rather	than	by	manual	audits.

Another	important	point	is	the	standard	applies	only	to	master	data	in	transit	between
organizations	and	systems.	The	standard	does	not	apply	to	data	at	rest	inside	of	a	system,
nor	does	it	provide	a	way	to	talk	about	an	MDM	system	as	being	ISO	8000-100	compliant.

Motivational	Example
Consider	the	following	example	of	how	a	master	data	exchange	standard	could	be	helpful.
Suppose	ABC	Bank	has	developed	a	new	financial	product	it	wants	to	market	to	its
existing	customers.	However,	ABC	also	wants	to	target	different	customers	in	different
ways	depending	on	the	customer’s	characteristics,	i.e.	through	market	segmentation.	One
important	characteristic	for	segmenting	its	customers	is	their	level	of	income.	ABC	has	a
customer	MDM	system,	but	income	level	is	not	one	of	the	identity	attributes	of	the	MDM
IKB	nor	is	it	a	business	attribute	maintained	by	any	of	the	internal	clients	of	the	ABC
MDM	system.	In	order	to	segment	its	customers,	ABC	needs	to	acquire	this	information
from	third-party	data	brokers.

ABC	approaches	two	data	brokers,	DB1	and	DB2,	about	providing	income	information.
ABC	sends	both	DB1	and	DB2	a	file	of	its	customers’	names	and	addresses.	Both	brokers
match	the	ABC	file	against	their	MDM	systems	to	append	income	information	to	ABC’s
file.	When	ABC	receives	the	appended	files	from	DB1	and	DB2,	it	finds	that	both	brokers
also	provided	a	separate	document	describing	the	formats	and	definitions	of	the	items	in
the	returned	data.

When	the	marketing	team	examines	the	returned	files,	they	have	to	decode	the	results.
For	example,	when	they	look	at	the	record	for	customer	John	Doe	living	at	123	Oak	St,
they	find	that	broker	DB1	has	appended	a	code	value	of	“C”	for	income	level.	Looking
this	up	in	the	documentation	provided	by	DB1	they	find	that	“C”	corresponds	to	an
income	level	between	$40,000	and	$60,000.

The	marketing	team	finds	broker	DB2	also	recognized	the	same	customer,	John	Doe,	in
its	system	and	appended	the	income	code	“L4”.	The	documentation	from	DB2	indicates
that	“L4”	corresponds	to	an	income	level	between	$75,000	and	$100,000.

After	the	analysis	of	the	data	returned	from	the	two	brokers,	the	marketing	team	now
has	two	problems.	The	first	problem	is	that	the	two	brokers	are	using	different	income
increments	for	their	income	brackets.	DB1	reports	in	increments	of	$20,000,	and	DB2	in
increments	of	$25,000.	The	difference	creates	a	problem	of	how	to	assign	a	single	income
level	code	to	each	ABC	customer.	It	turns	out	there	are	many	cases	where	DB1	had
income	information,	but	DB2	did	not,	and	conversely,	cases	where	DB2	had	information,
but	DB1	did	not.	If	in	these	cases	they	simply	use	the	broker’s	codes,	then	the	income
fields	contain	two	different	sets	of	codes.	This	is	a	data	quality	problem	known	as	an
overloaded	field.	At	the	same	time,	because	the	brackets	are	of	different	sizes,	it	is	not
clear	how	to	translate	the	two	different	sets	of	data	broker	codes	into	a	single	set	of
meaningful	codes	for	ABC.

A	second,	more	troubling,	problem	is	the	case	of	John	Doe	where	both	brokers	reported
income,	but	the	levels	are	entirely	different.	When	the	marketing	team	investigates	further,
they	find	DB2	levels	are	consistently	higher	than	those	reported	by	DB1.	In	an	attempt	to
determine	which	broker	might	have	more	accurate	reporting,	the	marketing	team	called
both	brokers	to	better	understand	their	data	collection	process.	It	was	during	these
conversations	that	ABC	uncovered	yet	another	issue.	DB1	explained	they	were	collecting
individual	income,	but	DB2	was	collecting	and	reporting	household	income.	In	other
words,	the	value	reported	by	DB1	was	their	estimate	of	the	income	level	for	just	John	Doe
himself.	The	value	reported	by	DB2	not	only	included	John	Doe’s	income,	but	also	his
spouse’s	income,	and	possibly	other	family	members.	Even	though	both	were	reporting
“income,”	each	broker	had	a	different	definition	of	what	that	means.

In	the	context	of	ISO	8000-110,	the	master	data	are	the	customers	of	ABC	Bank.	The
characteristic	data	are	name,	address,	and	income	level.	DB1	and	DB2	are	both	using
different	semantics	(definitions)	for	income	level.	In	addition,	both	brokers	also	use
different	data	syntax	specifications,	i.e.	different	bracket	sizes	and	different	bracket	codes.

What	ISO	8000-110	provides	as	a	response	to	this	problem	might	be	a	service	level
agreement	(SLA)	for	data	brokers	supplying	this	information	to	ABC	Bank.	The	ABC
SLA	might	require	that	it	will	only	buy	income	data	from	brokers	willing	to	meet	the
following	conditions	and	specifications:

1.	The	income	level	must	represent	“individual”	income	as	defined	by	ABC.

2.	The	income	level	codes	must	be	the	letters	“A”,	“B”,	“C”,	“D”,	and	“E”.

3.	The	income	level	brackets	must	be	in	$25,000	increments	starting	with	$0,	with	the	“E”
level	representing	the	bracket	$100,000	and	above.

4.	All	of	the	required	specifications	are	published	in	an	online	data	dictionary	available	to
the	data	providers.

5.	The	transmitted	file	must	include	metadata	encoded	in	a	data	specification	language
understood	by	both	ABC	and	the	data	provider,	which	will	allow	ABC	to	automatically
validate	conformance	to	these	specifications.

Four	Major	Components	of	the	ISO	8000-110
Standard
The	ISO	8000-110	standard	has	four	major	parts	(ANSI,	2009).	These	are

Part	1	General	Requirements

Part	2	Message	Syntax	Requirements

Part	3	Semantic	Encoding	Requirements

Part	4	Conformance	to	Data	Specification

Part	1:	General	Requirements
According	to	the	ISO	8000-110	standard,	a	master	data	message	must	meet	six	general
requirements.

Part	1.a	The	master	data	message	shall	unambiguously	state	all	information	necessary	for
the	receiver	to	determine	its	meaning

Part	1.b	A	formal	syntax	must	be	specified	using	a	formal	notation

Part	1.c	Any	data	specification	required	by	the	message	shall	be	in	a	computer-
interpretable	language

Part	1.d	The	message	must	explicitly	indicate	both	the	data	specifications	it	fulfills	and	the
formal	syntax	(or	syntaxes)	to	which	it	complies

Part	1.e	It	must	be	possible	to	check	the	correctness	of	the	master	data	message	against
both	its	formal	syntax	and	its	data	specifications

Part	1.f	The	references	within	the	master	data	message	to	data	dictionary	entries	must	be
in	the	form	of	unambiguous	identifiers	conforming	to	an	internationally	recognized
scheme.

Part	2:	Syntax	of	the	Message
The	requirements	for	master	data	message	syntax	are:

•	The	message	shall	contain	in	its	header	a	reference	to	the	formal	syntax	to	which	it
complies.

•	The	reference	shall	be	an	unambiguous	identifier	for	the	specific	version	of	the	formal
syntax	used	to	encode	the	message.

•	The	formal	syntax	shall	be	available	to	all	interested	parties.

The	first	point	is	somewhat	of	a	conundrum.	The	standard	says	the	header	of	the

message	must	point	to	the	definition	of	the	syntax	in	which	the	message	is	encoded.
However,	the	receiver	cannot	really	locate	and	understand	the	part	of	the	message	that
comprises	the	header	without	already	knowing	the	syntax	of	the	message.	The	reason	for
this	is	likely	the	inspiration	for	the	syntax	standard	in	XML.	All	XML	documents	should
start	with	the	element

<?xml	version=“1.0”?>

declaring	itself	as	an	XML	document.

There	are	some	other	things	about	message	syntax	worth	noting.	First	of	all,	a
compliant	message	can	refer	to	more	than	one	syntax.	Again,	this	likely	goes	back	to
XML	because	there	are	many	data	standards	defined	as	restrictions	of	XML.	In	other
words,	the	first	or	underlying	syntax	can	be	XML.	Then	a	second	level	of	syntax	is	added
by	restricting	the	document	to	only	use	certain	element	names	that	have	a	predefined
meaning.

Some	examples	where	this	has	been	done	are	the	Global	Justice	XML	Data	Model
(GJXML)	for	the	exchange	of	information	among	law	enforcement	agencies	and	the
eXtensible	Business	Reporting	Language	(XBRL)	adopted	by	the	Securities	and	Exchange
Commission	for	financial	reporting.	Both	syntaxes	provide	a	common	vocabulary	through
predefined	XML	tags	(elements)	and	attributes.	Most	notably,	the	ISO	22745	standard,
which	is	an	ISO	8000	compliant	standard,	has	a	syntax	that	is	a	restriction	of	the	XML
syntax.

Even	though	XML	and	many	of	its	restrictions	such	as	XBRL	are	open	and	free,	free
access	is	not	required	by	the	standard.	Nothing	prevents	an	organization	from	developing
its	own	syntax	and	charging	a	fee	for	its	use.	However,	the	message	syntax	must	be
formally	defined	in	a	formal	notation	(General	Requirement	Part1.b.),	so	it	is	computer
readable.

Another	point	is	that	the	syntax	requirement	does	not	preclude	encryption	of	the
message	because	encryption	itself	is	not	a	syntax.	The	encryption	of	master	data	messages
just	adds	a	second	layer	of	translation.	Once	a	message	has	been	created	in	the	ISO	8000
compliant	syntax,	it	can	then	be	encrypted	for	transmission.	The	receiver	must	first
decrypt	the	message,	and	then	interpret	the	content	according	to	the	ISO	8000	compliant
syntax.

From	a	practical	standpoint,	the	formal	syntax	can	be	almost	any	commonly	used
computer-readable	document	or	dataset	format	such	as	XML,	comma	separated	values
(CSV)	files,	spreadsheets,	files	in	fixed-length	field	record	format,	ISO	22745-40
conformant	messages,	and	ISO	9735	(EDIFACT)	conformant	messages.

Part	3:	Semantic	Encoding
The	semantic	encoding	requirement	is	just	an	elaboration	of	the	General	Requirement	Part
1.f.	(The	reference	within	the	master	data	message	to	data	dictionary	entries	must	be	in	the
form	of	unambiguous	identifiers	conforming	to	an	internationally	recognized	scheme).

Because	the	master	data	message	must	be	in	the	form	of	characteristic	data,	its	basic
format	of	the	master	data	message	is	a	collection	of	property	value	pairs.

(property1,	value1),	(property2,	value2),	…,	(propertyN,	valueN)

In	order	to	meet	the	semantic	encoding	requirement,	each	property	must	be	represented
as	an	unambiguous	identifier	that	references	a	data	dictionary	entry.	This	means	that	a
typical	message	in	the	form

Message:	(Name,	“John	Doe”),	(Income,	“A”),	…

is	not	compliant.	However,	a	message	of	the	form

Message:	(ICTIP.Property.ABC.101,	“John	Doe”),	(ICTIP.Property.ABC.105,	“A”),
…

can	be	compliant.

First	of	all,	the	properties	are	represented	as	valid,	uniform	resource	identifiers	(URI).
This	complies	with	the	part	of	General	Requirement	Part	1.f	requiring	identifiers	to
conform	to	an	internationally	recognized	scheme.	The	only	question	remaining	is	whether
these	identifiers	reference	data	dictionary	entries.

Minimally,	a	data	dictionary	entry	must	have	three	parts:	a	unique	identifier,	a	term
(name),	and	a	clear	definition.	Therefore,	for	the	second	set	of	tuples	in	the	above	example
to	be	compliant,	there	must	exist	a	data	dictionary	entry	in	the	form

Identifier ICTIP.Property.ABC.105

Term Individual_Income_Bracket

Definition Range	of	individual	income	given	in	increments	of	$25,000	starting	at	$0	and
coded	with	single	letters	“A”,	“B”,	“C”,	“D”,	and	“E”	where	“A”	for	[0–25,000],	“B”
for	[25,001–50,000],	“C”	for	[50,001–75,000],	“D”	for	[75,001–100,000],	and	“E”	for
[100,000	and	above].

One	weak	point	of	the	standard	is	that	it	only	specifies	the	properties	be	“clear	and	well-
defined,”	a	quite	subjective	statement.	However,	this	weakness	can	be	offset	somewhat	by
the	data	specification	part	of	the	requirement	discussed	next.

The	standard	does	note	that,	in	order	to	understand	the	meaning	of	a	property	value,	its
data	type	should	always	be	given.	The	standard	allows	for	the	data	type	of	a	property	to	be
given	in	several	ways,	including:

•	Explicitly	in	the	property	value,	e.g.	quotation	marks	to	indicate	string	values.

•	In	the	data	dictionary	definition	of	the	property	as	in	the	foregoing	example.

•	Reference	to	a	data	dictionary	entry	for	data	type.

•	Reference	to	a	data	specification	entry,	which	includes	a	data	type	specification.

Another	requirement	is	the	data	dictionary	must	be	accessible	to	the	receiver	of	the
message.	Here	again	the	standard	allows	for	flexibility	in	compliance	including:

•	Providing	a	downloadable	version	of	the	entire	dictionary	from	the	Internet
(downloadable	free	of	charge).

•	Making	the	data	dictionary	interactively	accessible	through	an	API	available	through	the
Internet	(usable	free	of	charge),	e.g.	web	services	using	SOAP.

•	Inserting	data	dictionary	entries	needed	in	the	message	into	the	same	dataset	(message)
as	the	property	value.	If	this	last	option	is	used,	the	data	dictionary	entries	must	also	be
defined	and	supported	by	the	message	syntax.

The	standard	is	also	quite	flexible	as	to	the	overall	schema	for	the	message	itself.	It	does
not	specify	what	the	message	syntax	should	be,	only	that	it	must	have	one	that	is	machine
readable.	Generally	there	are	two	approaches,	a	single-record	schema	and	a	multiple-
record	schema.

In	a	single-record	scheme	the	actual	instance	of	a	master	data	reference	can	mirror	its
logical	structure	where	the	reference	is	a	sequence	of	property-value	pairs.	Figure	11.1
shows	the	structure	of	a	single-record	message	referencing	an	external	data	dictionary.

The	problem	with	representing	each	instance	of	a	master	data	reference	as	a	set	of
property-value	pairs	is	when	there	are	multiple	instances	of	master	data	references	in	the
same	message,	and	all	of	the	references	have	the	same	properties,	then	the	message	will
contain	a	large	amount	of	redundant	data.	There	is	no	need	to	repeat	the	property	reference
for	each	property	value	in	every	record.

Figure	11.2	shows	a	schema	in	which	each	property	definition	is	referenced	only	one
time,	and	each	instance	comprises	only	the	set	of	property	values	listed	in	the	same	order
as	the	property	definition	references.

Part	4:	Conformance	to	Data	Specifications
The	conformance	to	data	specifications	has	three	requirements:

1.	Each	master	data	message	shall	contain	in	its	header	a	reference	to	the	data
specification	or	specifications	to	which	the	master	data	message	complies.

2.	Each	reference	shall	be	in	the	form	of	an	unambiguous	identifier	for	the	specific	version
of	the	data	specification	used	to	encode	the	master	data	message.

FIGURE	11.1 	Single-record	message	structure.

FIGURE	11.2 	Multiple-record	schema.

3.	All	referenced	data	specifications	shall	be	available	to	all	interested	parties.	If	the
master	data	is	offered	to	the	public,	then	all	referenced	data	specifications	shall	be	publicly
available.	The	data	specifications	should	be	available	at	a	reasonable	cost.

Notice	the	similarity	between	this	requirement	and	the	semantic	encoding	requirement.
In	the	semantic	encoding	requirement,	the	identifier	points	to	a	data	dictionary	entry	that
has	the	three	parts	–	identifier,	term,	and	definition.	In	the	conformance	to	data
specification,	the	identifier	points	to	a	data	specification.	The	main	difference	is	that	the
definition	of	the	property	in	the	data	dictionary	is	for	human	interpretation,	but	a	data
specification	is	for	machine	interpretation.

FIGURE	11.3 	Message	referencing	a	data	specification.

A	data	specification	is	basically	a	formalization	of	the	data	dictionary	definition	so	as	to
make	it	actionable.	Take	as	an	example	the	data	dictionary	entry	for
Individual_Income_Bracket	given	earlier.	Note	the	property	definition	laid	out	several
specifications	for	this	value.	For	example,	it	stated	the	values	must	be	single	alphabetic
characters	“A”	through	“E”	with	specific	semantics.	However,	the	data	dictionary	entry	is
for	human	reference;	its	purpose	is	to	assure	the	sender	and	receiver	have	a	common
understanding	of	the	data	elements	being	transmitted.	On	the	other	hand,	an	ISO	8000	data
specification	is	a	set	of	machine	interpretable	instructions	that	will	allow	the	receiver	to
verify	by	software	whether	data	values	are	actually	in	compliance	with	the	specification.

Take,	as	an	example,	the	message	and	supporting	references	shown	in	Figure	11.3.	The
syntax	of	the	message	is	that	the	text	lines	beginning	with	the	“#”	character	comprise	the
header	(metadata)	section	of	the	message.	The	first	line	identifies	the	message	syntax.	The
second	line	gives	the	address	of	a	web	service	where	items	referenced	in	the	message	can
be	found.	The	third	line	is	a	reference	to	the	location	where	the	complete	and	formal
definition	of	the	message	syntax	can	be	found.	(Note	that	neither	ICTIP_CSV.2.0	nor
ICTIP_DataSpec.2.0	are	actual	formally	defined	syntaxes,	although	they	could	be.	The
sections	of	the	message	shown	in	the	example	are	only	intended	to	illustrate	the	concepts.)

Similarly,	the	fourth	line	is	a	reference	to	the	location	where	the	complete	and	formal
definition	of	the	data	specification	language	can	be	found.	The	overall	structure	of	the
message	follows	the	multiple-record	scheme	where	each	record	in	the	message	has	two
properties	defined	by	the	next	two	“Item”	lines.	Line	five	references	Property.ABC.101,
which	is	the	Customer_Name	data	dictionary	entry.	The	sixth	line	references	the
Individual_Income_Bracket	data	dictionary	entry.

In	the	message	schema	shown	in	Figure	11.3,	a	property	can	have	more	than	one
identifier.	The	first	identifier	is	the	required	reference	to	a	data	dictionary	entry	that
defines	the	property.	The	second	identifier	is	a	reference	to	a	data	specification.	For

example,	the	Individual_Income_Bracket	property	references	the	data	specification	with
the	identifier	“Spec.ABC.302”.	The	content	of	the	data	specification	is	shown	in	the	inset.

The	data	specification	language	used	in	this	example	is	a	(made-up)	restricted	set	of
XML	elements.	Although	the	formal	semantics	of	the	language	are	not	shown	here,	they
can	be	inferred	from	the	names	of	the	structure	and	names	of	the	tags.	The	first	part	of	the
specification	is	given	by	the	<Item>	tag.	It	defines	the	data	type	as	character,	gives	the
requirement	that	the	value	must	be	present	in	every	record,	and	the	requirement	that	its
length	must	be	exactly	one	character.	The	second	part	of	the	specification	is	given	by	the
<List>	tag.	The	<List>	tag	encloses	a	set	of	<ListItem>	tags	that	define	the	allowable
property	values	“A”,	“B”,	“C”,	“D”,	and	“E”.

As	long	as	the	receiver	has	an	interpreter	for	the	data	specification	language,	any
incoming	message	with	property	value	specifications	written	in	that	language	can	be
verified	for	compliance	with	the	specification.	In	this	example,	the	receiver’s	software
could	verify	all	values	of	the	second	property	(individual	income	bracket)	are	present	and
the	value	is	one	of	the	five	character	values	in	the	list.

One	interesting	aspect	of	the	ISO	8000	standard	is	data	specifications	are	not	required.
The	standard	only	requires	the	message	contains	a	reference	to	the	definition	of	a	data
specification	language	“if”	data	specifications	are	given.	If	the	message	is	sent	without
data	specifications	other	than	the	property	definitions,	then	the	message	can	still	be	ISO
8000-110	compliant.	This	means	there	are	two	levels	of	ISO	8000	compliance,	simple	and
strong.

Simple	and	Strong	Compliance	with	ISO	8000-
110
In	order	for	an	organization’s	master	data	messages	to	be	in	compliance	with	the	ISO
8000-110	standard,	certain	things	are	mandatory.	The	primary	requirement	is	the	existence
of	a	freely	available	data	dictionary	in	which	every	property	used	in	the	message	is
defined.	Furthermore,	the	identifiers	must	be	unique	and	follow	an	international	standard.
The	data	dictionary	entries	must	have	at	least	an	identifier,	a	term,	and	a	clear	definition.

Next,	the	organization	must	either	define	or	adopt	a	formal	syntax	for	its	messages.
Several	existing	standards,	for	example	ISO	22745,	ISO	13584,	and	EDIFACT,	define
complete	message	syntaxes.	Of	these,	ISO	22745	is	the	most	flexible,	and	it	is	probably
the	best	candidate	for	introducing	ISO	8000	compliance	into	other	MDM	domains	besides
parts	cataloging.

Compliance	with	the	syntax	and	semantic	encoding	parts	of	the	ISO	8000-110	standard
is	sufficient	for	overall	compliance	because	the	data	specifications	are	optional.	A	data
specification	syntax	and	language	only	need	to	be	referenced	in	the	message	if	the
message	includes	data	specifications.	Simple	compliance	to	ISO	8000-110	does	not
include	data	specifications.

However,	simple	compliance	fails	to	realize	the	full	power	of	the	standard	which	lies	in
the	automated	verification	of	the	message	against	data	specifications.	In	order	to	have
strong	compliance	the	organization	must	either	define	or	adopt	a	formal	data	specification
language,	and	insert	data	specifications	in	its	master	data	messages.

ISO	22745	Industrial	Systems	and	Integration
The	ISO	22745	standard	defines	a	specific	implementation	of	ISO	8000-110	that	includes
both	a	message	syntax	and	a	data	specification	syntax	based	on	a	restriction	of	XML.	ISO
22745	was	primarily	designed	to	support	parts	cataloging.	It	has	been	adopted	by	the
North	Atlantic	Treaty	Organization	(NATO)	for	its	supply	chain	management.	There	are
also	some	commercial	software	solutions	that	implement	the	ISO	22745	standard
including	the	PiLog®	Data	Quality	Solution	(PiLog,	2014).

Different	parts	of	the	ISO	22745	standard	define	the	components	necessary	to	meet	the
ISO	8000-110	standard.	These	include

•	ISO	22745-10:2010(E)	–	Open	Technical	Dictionary	(OTD)	to	meet	data	dictionary
requirements	of	ISO	8000-110.

•	ISO	22745-30:2009(E)	–	Identification	Guide	(IG)	to	meet	the	machine	readable	data
specification	language	of	ISO	8000.

•	ISO	22745-40:2010(E)	–	Master	data	representation	to	meet	the	message	syntax	of	ISO
8000.

The	documentation	of	these	standards	is	much	lengthier	and	much	more	detailed	than
for	the	basic	ISO	8000	framework.	This	is	because	these	standards	must	formally	define
the	data	dictionary	syntax,	the	message	syntax,	and	the	data	specification	syntax	and	logic.

Beyond	ISO	8000-110
After	the	initial	development	of	the	ISO	8000-110	standard,	several	smaller	parts	were
added.	The	new	parts	of	the	standard	try	to	address	data	quality	dimensions	difficult	to	put
into	a	data	specification	language.	Take,	as	an	example,	the	property
Individual_Income_Bracket,	defined	earlier.	It	is	easy	to	see	how	a	machine-readable	data
specification	could	be	designed	that	would	verify	that	the	values	for	this	property	are	only
the	characters	“A”	through	“E”	such	as	the	specification	instructions	illustrated	in
Figure	11.3.

However,	it	is	less	clear	how	to	verify	that	when	the	value	“A”	is	used,	the	actual
income	of	the	customer	is	between	$0	and	$25,000,	as	required	by	the	definition.	This
would	require	in	the	field	verification	and	represent	a	measure	of	accuracy.	Accuracy
cannot	be	verified	by	applying	a	rule	to	the	property	value.	Accuracy	requires	verification
against	the	primary	source,	or	against	other	records	verified	against	the	primary	source,
so-called	“golden	records.”	In	short,	data	specifications	are	a	powerful	way	to	perform
data	validation,	but	they	will	not	work	for	all	data	requirements.

Part	120:	Provenance
In	its	broadest	sense,	data	provenance	is	the	history	of	a	data	item	from	the	time	of	its
creation	to	the	present.	Provenance	is	a	term	commonly	used	in	the	art	world,	something
art	and	auction	galleries	must	verify,	especially	for	high-value,	historical	works.	Here
provenance	is	being	able	to	account	for	and	scrupulously	document	all	of	the	owners	from
the	original	artist	to	the	present	day	without	any	gaps.	The	same	concept	is	used	in	the
court	system	where	the	chain	of	custody	must	be	established	for	any	physical	evidence
before	it	can	be	introduced	at	trial.

The	ISO	8000-120	standard	does	not	go	quite	that	far.	It	basically	looks	at	the	most
recent	owner	of	the	data.	At	the	data	element	level,	the	standard	requires	the	specification
of	two	things:

1.	When	the	data	was	extracted	from	the	database.

2.	The	owner	of	the	database.

Part	130:	Accuracy
As	stated	earlier,	accuracy	is	a	measure	of	how	closely	data	represent	the	state	of	the	real
world	at	any	given	time.	Usually,	but	not	always,	it	means	the	current	state	of	the	world.
For	example,	accuracy	for	customer	address	is	usually	understood	to	be	the	current
address	of	the	customer.	However,	previous	addresses	can	be	historically	correct,	i.e.
correct	at	the	time,	but	are	no	longer	current.	Because	it	relies	on	verification,	rather	than
rule	validation,	accuracy	is	perhaps	the	most	difficult	of	all	the	data	quality	dimensions	to
measure.

The	ISO	8000	approach	to	accuracy	is	as	follows.	At	the	data	elements	level:

•	The	organization	claiming	the	accuracy	must	be	identified.

•	The	accuracy	can	either	be	covered	by	a	warranty	or	be	asserted.

•	If	covered	by	warranty,	the	place	where	the	warranty	statement	and	terms	can	be
found	must	be	provided

•	If	the	accuracy	is	asserted,	the	location	where	a	description	of	the	assertion	that
explains	why	the	data	are	believed	to	accurate	must	be	provided.

Part	140:	Completeness
Completeness	is	a	data	quality	measure	of	the	amount	of	data	provided	in	proportion	to	the
amount	of	data	possible.	Completeness	can	be	measured	at	several	levels.	The	two	most
common	are	at	the	population	or	data	set	level	and	the	depth	of	completeness	at	the	record
level.	For	example,	in	a	customer	MDM	system,	population	completeness	would	be	the
proportion	of	all	customers	of	the	company	who	are	actually	represented	in	the	system	and
under	management.	On	the	other	hand,	at	the	depth	or	record	level	the	question	might	be
for	the	20	attributes	collected	for	each	customer	and	what	proportion	of	these	values	are
actually	present.

It	is	important	to	note	here	that	a	missing	value	is	not	necessarily	a	null	value.	Certainly
a	null	value	is	a	missing	value,	but	a	value	can	also	be	missing	because	it	is	an	empty
string,	a	blank	value,	or	a	placeholder	value.

The	ISO	8000	approach	to	completeness	is	simply	to	require	that	the	organization
claiming	completeness	must	be	identified.

Concluding	Remarks
Whether	ISO	8000	compliance	produces	value	for	an	organization	will	depend	on	several
factors.	One	of	these	factors	is	the	position	of	the	organization	with	respect	to	being
primarily	a	data	consumer	or	a	data	provider.	The	ISO	8000	was	born	from	a	consumer
perspective,	i.e.	the	need	for	a	data	consumer	to	have	a	systematic	way	of	requisitioning
equivalent	replacement	parts	from	multiple	suppliers.

The	lack	of	clear	understanding	about	the	syntax,	semantics,	and	specifications	of
datasets	exchanged	between	data	providers	and	data	consumers	is	a	common	problem	in
many	industries	and	one	of	the	primary	motivations	for	MDM	in	the	first	place.	Many
organizations	receive	data	from	numerous	sources	and	spend	inordinate	amounts	of	time
and	effort	to	rationalize	the	sources	into	the	same	format	and	semantics.	If	the	data	are
references	to	real-world	entities,	then	there	is	the	further	process	of	entity	resolution.

Just	as	in	the	example	of	the	ABC	Bank	at	the	beginning	of	this	chapter,	publishing	data
definitions	and	specifications,	requiring	data	suppliers	to	conform	to	those	definitions	and
specifications,	and	being	able	to	verify	their	compliance	automatically,	could	result	in
enormous	cost	savings	and	increased	productivity.	Common	standards	for	these	functions
also	helps	to	solve	the	problem	of	how	to	structure	service	level	agreements	that	govern
data	quality	requirements	for	data	acquired	from	third	parties	(Caballero	et	al.,	2014).

One	consideration	in	adopting	the	ISO	standards	is	how	much	initial	time	and	effort	it
will	take	to	create	the	definitions	and	specifications.	A	second	is	whether	the	organization
has	enough	influence	or	authority	to	require	that	their	suppliers	conform	to	their	data
quality	specifications.

From	the	data	producer	viewpoint,	compliance	to	ISO	8000	can	make	the	data	products
of	an	organization	easier	to	use	and	understand.	This	could	in	turn	create	a	competitive
advantage	and	increased	market	share.	Consumers	of	the	information	will	know	how	to
interpret	the	data	and	understand	exactly	what	is	in	it.

APPENDIX 	A

Some	Commonly	Used	ER	Comparators

Exact	Match	and	Standardization
The	most	fundamental	and	most	commonly	used	similarity	is	an	exact	match	between	two
values.	Exact	match	requires	both	values	to	be	the	same	according	to	their	data	type,	i.e.
the	same	numeric	value,	the	same	date,	or	the	same	string.

In	the	case	of	string	values,	exact	match	is	a	demanding	requirement.	Two	strings	will
only	be	exactly	the	same	if	they	comprise	exactly	the	same	characters	(by	internal
character	code)	in	exactly	the	same	order.	For	example,	while	“JOHN”	and	“JOHN”	are
exact	string	matches,	the	strings	“JOHN”	and	“John”	are	not.	The	character	code	for	an
upper	case	“O”	is	different	from	the	character	code	for	a	lower	case	“o”.	The	same	is	true
for	the	letters	“H”	and	“N”	as	well.

Similarly,	the	strings	“JOHN	R.	DOE”	and	“JOHN	R	DOE”	are	not	an	exact	match
because	the	first	string	contains	a	period	(“.”)	and	the	second	does	not.	However,	in	both
cases	most	people	would	consider	these	a	match	in	the	sense	that	they	essentially	represent
the	same	name	value.	For	this	reason,	when	string	values	are	compared	they	generally	are
subject	to	some	alteration	or	standardization	so	that	two	strings	representing	the	same
underlying	value	will	also	be	the	same	string	value.	The	two	examples	given	here	are	two
of	the	most	common	standardizations	used	for	string	values,	i.e.	standardizing	letter	case
and	removing	punctuation.

Where	to	Standardize
There	are	two	schools	of	thought	on	standardization	of	values.	The	first	and	most	common
is	that	standardization	should	be	done	in	a	separate	process	prior	to	the	ER	matching
process.	The	other	is	that	the	comparison	operators	themselves	should	compensate	for	the
differences.	There	are	pros	and	cons	to	each	approach.	Preprocess	standardization	has	the
advantage	that	each	value	is	transformed	one	time	rather	than	having	to	be	transformed
each	time	it	is	used	in	a	match	operation.	Preprocess	standardization	also	often	makes	it
easier	to	apply	more	complex	transformations	than	having	to	build	these	into	the	code	of
the	comparator	logic.

However,	there	are	two	disadvantages	to	preprocess	standardization.	The	first	is	that	it
creates	a	dependency	between	preprocess	and	the	ensuing	ER	process.	For	the	same	set	of
input	references,	the	ER	process	may	deliver	different	results	when	there	are	changes	to
the	standardization.	This	makes	it	difficult	to	understand	the	true	action	of	the	matching
rules	without	first	understanding	preprocess	standardization.	Often	this	information	is	in
two	different	places	and	may	even	be	administered	by	different	groups.	If	the
standardization	is	built	into	the	matching	rules,	then	it	is	easier	to	manage	the	dependency
between	standardization	and	matching.

A	second	reason	why	it	may	be	better	to	standardize	in	the	comparator	is	a	fundamental
rule	of	data	management	–	always	keep	the	original	data.	For	example,	if	the	EIS	is	built
from	standardized	data,	then	it	is	more	difficult	to	know	the	true	states	of	the	original
references	from	which	the	EIS	was	constructed.

Overcoming	Variation	in	String	Values
So	regardless	of	where	standardization	takes	place,	in	preprocess	or	in	the	comparator
logic,	the	goal	is	to	overcome	variations	between	two	representations	of	the	same
underlying	value.	This	is	primarily	a	problem	with	values	represented	as	string	or
character	data	types.	Seven	of	the	most	common	types	of	variation	are:

1.	Format	variation	–	the	characters	that	represent	the	value	are	the	same,	but	they	are
couched	in	different	formats.	For	example,	two	telephone	numbers	with	exactly	the	same
10-digit	sequence,	but	represented	as	“(012)	345-6789”	versus	“012.345.6789”.	This	also
includes	standardizing	letter	casing	and	spacing.

2.	Damaged	value	–	even	after	removing	format	variation,	the	values	are	slightly	different
strings	due	to	some	type	of	input	or	process	error	that	has	removed,	changed,	inserted,	or
transposed	characters.	For	example,	“Johnson”	versus	“Jhonson”,	a	common	typing	error.

3.	Alias	value	–	these	are	strings	that	can	be	entirely	different,	but	semantically	they	mean
the	same	thing.	This	is	common	with	names	such	as	“Robert”	and	“Bob”	but	also	common
in	addresses	with	the	use	of	abbreviations	such	as	“Av”	for	“Avenue”	or	“MLK”	for
“Martin	Luther	King”.

4.	Phonetic	variation	–	these	are	strings	that	when	pronounced	as	words	have	a	similar
sound.	Phonetic	variations	often	occur	when	data	are	transcribed	from	speech	such	as	on
orders	taken	by	telephone.	For	example,	“Christy”	versus	“Kristi”.

5.	Alternate	value	–	these	are	cases	where	there	can	be	more	than	one	valid	value	to
represent	an	attribute.	They	often	occur	as	the	result	of	a	name	or	address	change	or
different	usages	in	different	contexts.	For	example,	“Jane	Doe”	becomes	“Jane	Smith”
after	marriage.

6.	Misfielding	–	this	variation	occurs	when	valid	values	are	misclassified	by	attribute
name.	Common	examples	are	name	reversals	where	the	first	name	value	has	been
recorded	in	the	last	name	field,	and	the	last	name	value	in	the	first	name	field.	Similar
misfielding	often	occurs	with	home	telephone	number	versus	work	telephone	number.

7.	Missing	value	–	there	is	no	meaningful	value	present.	They	may	be	missing	because	the
value	is	null,	empty,	or	blank.	However,	a	missing	value	can	also	occur	when	a
placeholder	value	is	used	to	overcome	data	entry	restrictions.	For	example,	if	telephone
number	is	a	required	entry,	but	was	not	known	when	the	data	were	recorded,	the	person
entering	the	information	may	simply	enter	a	value	like	“999-999-9999”	in	order	to
proceed	to	the	next	screen.	Even	though	missing	values	cannot	be	easily	overcome,	it	is
important	to	know	which	attributes	have	missing	values	and	to	what	degree	the	values	are

missing.	Placeholder	values	can	be	harder	to	detect	and	can	do	more	to	lower	matching
accuracy	than	blank	values.	The	reason	is	because	they	can	cause	a	match	between
identity	attributes	when	in	fact	they	should	not	match	and	lead	to	false	positive	links.

Scanning	Comparators
Scanning	comparators	are	used	to	address	format	variations.	Scanning	comparators
examine	a	string	character-by-character	looking	for	particular	characters	that	should	be
changed	or	removed.	For	example,	a	comparator	like	ExactIgnoreCase	will	search	for	and
replace	each	lower-case	letter	in	a	string	with	its	corresponding	upper-case	character
before	comparing	the	two	strings.	By	using	the	ExactIgnoreCase	comparator	the	example
strings	“JOHN”	and	“John”	will	match.

Sometimes	more	sophisticated	scanning	comparators	are	used	that	can	perform	several
types	of	operations	in	the	same	scan	of	the	string.	For	example,	the	CharScan(A,	B,	C)
comparator	that	takes	three	arguments	where

A 	Indicates	the	type	of	characters	to	retain,	but	omitting	all	other	characters,	e.g.
letters,	digits,	letters	&	digits,	etc.

B 	Indicates	the	maximum	number	of	characters	to	keep
C 	Indicates	when	retaining	letters	whether	lower-case	letters	should	be	converted	to	the
corresponding	upper-case	character,	or	to	keep	them	in	their	original	case

For	example,	CharScan(Letters,	All,	ToUpper)	would	overcome	the	variation	between
the	strings	“John	R.	Doe”	and	“JOHN	R	DOE”	by	ignoring	the	blanks	and	the	period
while	also	changing	the	lower-case	letters	to	upper-case.	The	final	comparison	would	be
between	“JOHNRDOE”	and	“JOHNRDOE”,	resulting	in	an	exact	match.

It	is	important	to	note	the	transformations	performed	by	the	comparator	do	not	change
the	original	values	of	the	string.	They	only	create	proxy	strings,	sometimes	called	hash
values,	for	comparison	purposes.	The	hashed	values	are	discarded	after	the	final
comparison	is	made.

Approximate	String	Match	Comparators
To	get	beyond	format	variation	and	overcome	damaged	values,	more	sophisticated
comparators	are	required.	There	is	a	large	family	of	approximate	string	matching	(ASM)
comparators	that	judge	the	similarity	between	two	strings	in	terms	of	the	number	or	order
of	shared	characters.

Transpose
One	of	the	simplest	ASM	comparators	is	Transpose.	The	Transpose	comparator	returns	a
match	signal	whenever	two	strings	differ	by	the	transposition	(reversal)	of	two	adjacent
characters.	The	transposition	of	two	characters	is	a	common	keyboard	entry	error.	For
example,	the	strings	“Jhon”	and	“John”	will	be	considered	a	match	by	the	Transpose
comparator.

One	could	argue	that	if	two	strings	are	identical,	the	Transpose	should	also	consider
them	a	match	as	well.	However,	this	is	generally	not	the	case.	Most	comparators	that	look
for	special	conditions	such	as	transposition	generally	do	not	match	strings	where	the
condition	is	not	present.	This	is	particularly	true	for	systems	using	Boolean	rules.	The
reason	is	that	it	allows	the	rule	designer	to	isolate	particular	match	conditions	to	specific
rules.

Take,	as	an	example,	a	situation	where	an	exact	match	on	the	values	of	two	attributes	A
and	B	is	sufficient	to	link	the	references.	However,	it	may	be	observed	some	false
negatives	are	created	by	this	rule	because	some	values	of	A	that	should	match	vary	by
transposition.	In	order	to	convert	these	cases	to	true	positives	a	second	rule	is	added	that
requires	a	transposition	match	on	the	A	attribute	values	match	while	still	requiring	an
exact	match	on	the	values	of	B.	However,	because	the	transposition	is	a	“softer”	match	it
could	possibly	cause	a	false	positive	if,	by	chance,	two	different	values	of	A	that	should
not	match	differ	by	a	transposition	not	the	result	of	a	typing	error.	To	compensate,	the
second	rule	may	be	augmented	by	requiring	some	level	of	match	on	a	third	attribute	C.
The	two	rules	allow	the	rule	designer	to	separate	these	two	issues,	one	where	both	A	and	B
are	an	exact	match,	and	the	other	where	B	is	exact	and	A	is	a	transposition	match.

Initial	Match
Another	useful	ASM	for	name	matching	is	the	Initial	match.	Like	the	transposition	it	only
creates	a	match	in	specific	circumstances.	Generally	the	condition	for	an	Initial	match	is
there	are	two	strings	where	one	string	comprises	a	single	character	and	the	other	string
comprises	two	or	more	characters.	If	the	single	character	in	the	first	string	is	the	same	as
the	first	character	of	the	second	string,	then	the	two	strings	are	considered	an	Initial	match.

Again,	like	transposition	it	does	not	signal	match	in	other	situations,	such	as	when	two
names	start	with	the	same	character	or	when	both	strings	are	a	single	character.	For
example,	the	strings	“J”	and	“John”	would	match	by	Initial,	but	“Jon”	and	“John”	would
not.

Levenshtein	Edit	Comparator
Perhaps	one	of	the	most	famous	and	used	ASM	comparators	is	based	on	the	Levenshtein
edit	distance	(Levenshtein,	1966).	The	Levenshtein	edit	distance	between	two	strings	is
the	minimum	number	of	basic	character	operations	required	to	transform	one	string	into
the	other.	Typically,	the	allowable	operations	are	inserting	a	character,	deleting	a	character,
and	replacing	(substituting)	a	character,	although	some	versions	also	allow	transposing
two	adjacent	characters.	For	example,	the	string	“ALISA”	and	“ALYSSA”	are	separated
by	an	edit	distance	of	2	because	it	requires	at	least	two	transformations	to	transform	one
string	into	the	other.	For	example,	starting	with	“ALISA”,	one	transformation	is	replacing
“I”	with	“Y”	giving	“ALYSA”.	The	second	transformation	is	to	insert	an	“S”	giving
“ALYSSA”.

By	its	definition	the	Levenshtein	edit	distance	between	two	strings	cannot	exceed	the
length	of	the	longest	string.	If	L(A,	B)	represents	the	Levenshtein	edit	distance	between
two	strings	A	and	B,	then	the	normalized	edit	distance	NL	can	be	calculated	as	(Christen,
2006):

Maximum	q-Gram
Another	family	of	ASM	algorithms	focuses	on	the	ordering	of	the	characters.	These	are
called	q-Gram	or	n-Gram	algorithms.	A	q-Gram	is	a	fixed	sequence	of	characters	of
length	q.	For	example,	“ARM”	is	a	3-gram.	The	simplest	q-Gram	comparator	is	the
Maximum	q-Gram	comparator.	It	is	simply	the	length	of	the	longest	substring	(q-Gram)
shared	by	both	strings.	It	is	also	normalized	by	dividing	by	the	length	of	the	longest	string.

For	example,	the	Maximum	q-Gram	similarity	between	“CRANSTON”	and
“RANSOM”	is	0.5.	The	longest	shared	substring	is	“RANS”	with	length	4.	The	longer
string	“CRANSTON”	has	length	8,	hence	the	Maximum	q-Gram	similarity	is	4/8	or	0.50.

q-Gram	Tetrahedral	Ratio
The	principle	of	q-Gram	similarity	between	two	strings	can	be	extended	in	several	ways.
One	way	is	to	count	the	number	of	characters	in	all	shared	q-Grams.	The	more	q-Grams
they	share,	the	more	similar	the	strings.	Consider	the	two	strings	“JULIE”	and	“JULES”.
These	two	strings	share	four	1-Grams,	the	single	letters	“J”,	“U”,	“L”,	and	“E”.	They	also
share	two	2-Grams	of	“JU”	and	“UL”	and	one	3-Gram	of	“JUL”.	Whereas	the	Maximum
q-Gram	only	counts	the	longest,	in	this	case	3,	the	q-Gram	Tetrahedral	Ratio	(qTR)
algorithm	(Holland	&	Talburt,	2010b)	scores	the	number	of	character	as	shared	q-Grams
against	the	total	number	possible.	The	total	number	of	characters	contained	in	all	q-Grams
(substrings)	of	a	string	of	length	N	is	the	tetrahedral	number	of	N	given	by:

In	the	example	above,	the	string	“JULIE”	of	length	5	has	15	possible	substrings
containing	a	total	of	35	characters,	i.e.	TN	=	35.	As	noted	above,	“JULIE”	shares	7	of	these
q-Grams	with	“JULES”	with	a	total	of	10	characters,	so	the	q-Gram	Tetrahedral	Ratio	of
“JULIE”	with	respect	to	“JULES”	gives

In	the	case	where	the	strings	being	compared	are	of	different	lengths,	then	the
calculation	of	qTR	will	depend	upon	which	string	is	selected	to	determine	the	tetrahedral
number	in	the	denominator	of	the	ratio.	To	address	these	cases	and	make	the	qTR	measure
symmetric,	an	adjusted	qTR	measure	is	defined	as	the	weighted	average	of	the	two
directional	measures	(Holland	&	Talburt,	2010b).	If	N	represents	the	length	of	the	first
string,	M	the	length	of	the	second,	and	Q	the	number	of	q-Grams	shared	by	the	two
strings,	then	the	adjusted	qTR	is	given	by

Jaro	String	Comparator
Another	q-Gram	variant	is	the	Jaro	String	Comparator	(Jaro,	1989).	It	considers	the
number	of	characters	in	common	between	two	strings	and	the	number	of	character
transpositions.	If	A	and	B	represent	two	strings	with	at	least	one	character	in	common,
then	the	Jaro	similarity	is	given	by

where	W1,	W2,	W3	are	the	weights	assigned	to	the	first	string,	second	string,	and
transpositions,	respectively,	and	where	W1	+	W2	+	W3	=	1,	where	C	is	the	common
character	count,	T	is	the	number	of	transpositions,	and	LA	and	LB	are	the	lengths	of	the
two	strings.	For	example,	the	strings	“SHAKLER”	and	“SHAKEL”	have	6	characters	in
common	and	one	transposition	of	“LE”	to	“EL”.	Assuming	three	equal	weights	of	{1/3}
each,	the	Jaro	Similarity	between	these	strings	would	be

Some	implementations	of	the	algorithm	not	only	require	sharing	the	same	sequence	of	q
characters,	but	also	require	that	the	shared	sequences	both	start	at	the	same	or	almost	the
same	position	in	the	strings.	These	types	of	q-Grams	are	called	positional	q-Grams.

Jaro-Winkler	Comparator
The	Jaro-Winkler	Comparator	(Winkler,	1999)	is	an	example	of	a	positional	q-Gram
algorithm.	The	Jaro-Winkler	comparator	is	a	modification	of	the	Jaro	Comparator	that

gives	additional	weight	to	the	agreements	on	the	first	four	characters	of	the	two	strings.	If
N	represents	the	number	of	the	first	four	characters	that	agree,	then	the	Jaro-Winker
similarity	is	calculated	as

In	the	example	of	“SHAKLER”	and	“SHAKEL”	the	value	N	is	4.	The	Jaro-Winkler
similarity	of	these	two	strings	is	calculated	by

The	Transpose,	Initial,	Levenshtein,	Maximum	Length	q-Gram,	Tetrahedral	Ratio,	Jaro,
and	Jaro-Winkler	are	only	a	few	examples	of	the	many	ASM	algorithms	that	are	used	in
ER	matching	processes.	A	quick	search	of	the	Internet	using	the	keywords	“approximate
string	matching”	will	reveal	many	others	along	with	details	of	their	implementation.

Token	and	Multivalued	Comparators
Most	of	the	ASM	comparators	are	based	on	comparing	a	single	string	value	to
another	string	value.	However,	there	are	many	cases	where	a	string	represents	multiple
values	–	for	example,	a	name	field	given	as	“John	R.	Doe”.	Rather	than	representing	a
single	value,	this	string	contains	several	values:	a	first	name	value,	a	middle	name	value,
and	a	last	name	value.	The	substrings	of	“John	R.	Doe”	separated	by	spaces	or	punctuation
are	called	tokens.	In	the	example	there	are	three	tokens:	“John”,	“R”	and	“Doe”.

Jaccard	Coefficient
The	Jaccard	Coefficient	is	perhaps	the	most	canonical	similarity	measure.	In	its	most
general	form,	it	compares	the	similarity	of	two	sets	P	and	Q	with	the	following	formula:

The	Jaccard	Coefficient	can	be	applied	at	two	levels.	For	multivalued	fields,	such	as	an
address	or	complete	name,	P	and	Q	can	be	sets	of	tokens.	For	example,	the	Jaccard
Coefficient	for	values	“Dr	Sean	Doe”	and	“John	Sean	Doe”	is	calculated	by	first
tokenizing	the	two	fields.

The	Jaccard	Coefficient	can	also	be	applied	at	the	character	level.	For	example,

The	advantage	of	the	Jaccard	Coefficient	for	token	comparison	is	it	is	not	sensitive	to
word	order	because	it	considers	only	whether	a	token	exists	in	a	string,	not	at	which
position	(Naumann	&	Herschel,	2010).

tf-idf	Cosine	Similarity
The	term	frequency-inverse	document	frequency	(tf-idf)	and	the	cosine	similarity	are	often
used	in	information	retrieval	and	duplicate	detection.

Given	a	finite	domain	denoted	as	D,	the	d	distinct	terms	that	appear	in	any	string	in	D
are	called	d	dimensions.	The	vectors	made	out	of	the	terms	in	D	have	d	dimensions.
Consider	the	example	taken	from	Naumann	&	Herschel	(2010).

In	Table	A.1,	the	number	of	distinct	terms	is	19.	Therefore,	it	is	a	19-dimensional
domain.	Each	entry	is	a	candidate.	Assuming	a	term	t	appears	in	the	value	v	of	an	object
description	of	a	candidate	c,	its	term	frequency	is	denoted	as	tf(t,	c).	For	example,
tf(“Insurance”,	c4)	=	1.0.

The	inverse	document	frequency	of	a	token	t	occurring	in	the	object	description	of	a

candidate	c	represented	as	idf(t,	c)	is	defined	as

For	example	in	Table	A.1,	the	total	number	of	candidates	is	10	and	there	are
6	candidates	containing	the	term	“Insurance”,	therefore	idf(“Insurance”,	c4)	=	10/6	=	1.67.

The	tf-idf	score	combines	both	the	term	frequency	and	the	inverse	document	frequency
into	a	single	score,	using	the	following	formula:

Table	A.1
Sample	Table	Listing	Insurance	Companies

CID Name
c1 Allstate
c2 American	Automobile	Association
c3 American	National	Insurance	Company
c4 Farmers	Insurance
c5 GEICO
c6 John	Hancock	Insurance
c7 Liberty	Insurance
c8 Mutual	of	America	Life	Insurance
c9 Safeway	Insurance	Group
c10 Westfield

Thus

The	other	part	of	tf-idf	cosine	similarity	is	the	final	computation	of	cosine	similarity.	In
general,	given	two	n-dimensional	vectors	V	and	W,	the	cosine	similarity	is	the	cosine	of
the	angle	α	between	the	two	vectors	as

where

Going	back	to	the	example	of	Table	A.1,	there	are	19	distinct	terms	across	the	10
candidates.	If	the	19	terms	are	given	fixed	order	from	1	to	19,	then	each	candidate	C	can
be	considered	a	19-dimensional	vector	VC	where

For	example,	for	candidate	C4	in	Table	A.1,	its	vector	would	be

where	“Insurance”	is	the	6th	term	and	“Farmers”	is	the	8th	term.	Therefore,	using	the
Cosine	Similarity,

Alignment	Comparator	for	Multi-valued	Attributes
Originally	developed	for	comparing	author	lists	of	publications	(Mazzucchi-Augel	&
Ceballos,	2014),	the	Alignment	Comparator	for	Multi-valued	Attributes	(ACMA)	can	also
be	adapted	to	the	more	general	problem	of	comparing	unstructured	fields	(Mazzucchi-
Augel,	2014).

FIGURE	A.1 	ACMA	comparator	framework.

The	general	framework	for	ACMA	is	shown	in	Figure	A.1.

Given	two	multivalued	fields	where	the	first	field	contains	M	values	and	the	second
field	contains	N	values,	the	starting	point	for	ACMA	is	an	M×N	matrix	where	each	row	is

labeled	by	one	value	of	the	first	multivalued	field	and	each	column	is	labeled	by	one	value
of	the	second	multivalued	field.	Each	cell	of	the	M×N	matrix	is	populated	with	the	rating
(a	number	in	the	interval	[0,	1])	that	represents	the	similarity	between	the	corresponding
row	and	column	values.

In	the	first	step,	the	similarity	ratings	in	each	row	are	aggregated	into	a	single	similarity
rating.	In	the	second	step,	the	aggregated	row	similarity	ratings	are	aggregated	into	a	final
similarity	rating.	The	framework	is	flexible	and	can	be	customized	at	every	step.
Customization	points	include	the	method	for	determining	the	similarity	rating	between
two	values,	the	method	of	row	aggregation,	and	the	method	of	final	aggregation.

For	value	similarity	at	the	cell	level,	a	single	similarity	function	can	be	used	such	as	the
normalized	Levenshtein	Edit	Distance.	Comparators	are	typically	applied	after	some
standardization	of	the	values	has	been	applied,	such	as	removal	of	punctuation,	upper
casing,	and	standard	spacing.	Instead	of	one	comparator,	the	framework	allows	for	several
comparators	to	be	used	to	calculate	one	cell	rating.	For	example,	Jaro-Winkler	and
Maximum	q-Gram,	which	each	produce	a	similarity	rating.	Reducing	multiple	ratings	to	a
single	cell	rating	provides	another	degree	of	freedom	as	to	how	these	ratings	will	be
combined	–	for	example,	maximum	rating,	average,	or	root	mean	square	(RMS)	of	the
ratings.

The	simplest	form	of	aggregation	is	to	simply	compute	the	average	of	all	of	the
similarity	ratings,	i.e.

Table	A.2
Average	Row-Column	Maxima	by	Row	Order	Traversal

An	alternate	strategy	that	often	works	better	when	M≠N	is	to	calculate	the	overall	rating
as	the	average	of	the	row-column	maxima.	This	is	an	iterative	process	starting	with	the
largest	cell	rating,	then	the	next	largest	cell	rating	not	in	the	same	row	or	column	of	the
first	rating,	then	the	next	largest	cell	rating	not	in	the	same	row	or	column	of	either	of	the
previous	two	ratings,	and	so	on.	If	M≥N,	then	the	iteration	will	produce	N	cell	ratings.
Again,	the	final	rating	can	be	calculated	as	the	maximum	rating,	the	average	of	the	N
ratings,	or	the	RMS	of	ratings.

Table	A.2	shows	a	variation	of	the	row-column	maxima	algorithm	comparing	author

names.	To	minimize	the	number	of	comparisons,	the	algorithm	uses	a	row-order	traversal
of	the	matrix.	The	algorithm	proceeds	as	follows.	Start	by	assigning	the	shorter	of	the	two
lists	of	values	as	row	labels.	Starting	with	the	first	row,	calculate	the	similarity	rating	for
each	cell	in	the	row	in	order.	If	a	rating	exceeds	a	predefined	match	threshold	(e.g.	0.80),
stop	the	comparisons	in	the	row	and	select	that	value	as	the	row	maximum.	Remove	the
column	of	the	row	maximum	from	further	consideration.	Go	to	the	next	row	and	follow
the	same	procedure,	but	do	not	make	any	comparisons	in	columns	previously	removed
from	consideration.

In	Table	A.2,	three	comparisons	were	made	before	reaching	the	0.80	threshold.	This
removes	Row	1	and	Column	3	from	further	consideration.	In	Row	2,	the	process	stops	at
Column	2,	and	in	Row	3	it	stops	at	Column	1.	This	leaves	Column	4	as	the	only
comparison	to	be	made	in	Row	4.	The	final	rating	for	the	entire	matrix	is	0.97,	the	average
of	row-column	maxima	of	1.0,	1.0,	1.0,	and	0.88.

Alias	Comparators
Approximate	semantic	matching	is	when	the	similarity	between	strings	is	based	upon	their
linguistic	meaning	rather	than	their	character	structure.	For	example,	in	the	English
language	the	name	“JIM”	is	well-known	and	well-understood	as	an	alternate	name
(nickname)	for	the	name	“JAMES”.	Most	probabilistic	matching	schemes	for	names
incorporate	some	type	of	nickname	or	alias	table	to	handle	these	situations.	The	problem	is
the	mapping	of	names	to	nicknames	is	not	one-to-one.	For	example,	the	name	“HARRY”
could	be	a	nickname	for	the	name	“HENRY”,	the	name	“HAROLD”,	or	perhaps	not	a
nickname	at	all,	i.e.	the	birth	name	was	given	as	“HARRY”.

Semantic	similarity	is	even	more	problematic	when	dealing	with	business	names.	For
example,	the	determination	that	“TOWING	AND	RECOVERY”	represents	the	same
business	activity	as	“WRECKER	SERVICE”	is	difficult	to	automate.	The	methods	and
techniques	for	making	these	discoveries	fall	into	the	area	of	research	called	latent
semantic	analysis	(Deaton,	Doan,	Schweiger,	2010;	Landauer,	Foltz,	&	Laham,	1998).

Phonetic	Comparators
Soundex	Comparator
One	of	the	first	derived	match	codes	schemes	is	called	the	Soundex	algorithm.	It	was	first
patented	in	1918	(Odell	&	Russell,	1918)	and	was	used	in	the	1930s	as	a	manual	process
to	match	records	in	the	Social	Security	Administration	(Herzog	et	al.,	2007).	The	name
Soundex	comes	from	the	combination	of	the	words	“Sound”	and	“Indexing”	because	it
attempts	to	recognize	both	the	syntactic	and	phonetic	similarity	between	two	names.	As
with	most	approximate	matching,	there	are	many	variations	resulting	from	the	adaptation
of	the	algorithm	to	different	applications.	The	algorithm	presented	here	is	from	Herzog	et
al.	(2007)	using	the	name	“Checker”:

1.	Capitalize	all	letters	and	drop	punctuation	→	CHECKER

2.	Remove	the	letters	A,	E,	I,	O,	U,	H,	W,	and	Y	after	the	first	letter	→	CCKR

3.	Keep	first	letter	but	replace	the	other	letters	by	digits	according	to	the	coding	{B,	F,	P,
V}	replace	with	1,	{C,	G,	J,	K,	Q,	S,	X,	Z}	replace	with	2,	{D,	T}	replace	with	3,	{L}
replace	with	4,	{M,	N}	replace	with	5,	and	{R}	replace	with	6	→	C226

4.	Replace	consecutive	sequences	of	the	same	digit	with	a	single	digit	if	the	letters	they
represent	were	originally	next	to	each	other	in	the	name	or	separated	by	H	or	W	→	C26
(because	the	22	comes	from	letters	CK	that	were	next	to	each	other)

5.	If	the	result	is	longer	than	4	characters	total,	drop	digits	at	the	end	to	make	it	4
characters	long.	If	the	result	is	less	than	4	characters,	add	zeros	at	the	end	to	make	it	4
characters	long	→	C260

Using	this	same	algorithm	the	name	“John”	produces	the	Soundex	match	code	value
J500.	By	using	these	match	codes	as	proxies	for	the	attribute	values,	the	name	“John
Checker”	would	be	matches	to	any	other	names	that	produce	the	same	match	codes	such
as	“Jon	Cecker”.

References
Abu-Halimeh	A,	Pullen	D,	Tudoreanu	M.E.	Perception	of	value-added	through	a	visual	join	operation.

2013.	International	Conference	on	Information	Quality.	2013	November	7–9,	2013,	Little	Rock,	AR,	pp.	326–337.

ANSI.	Data	quality	part	110:	Master	data:	Exchange	of	characteristic	data:	Syntax,	semantic	encoding,	and	conformance
to	data	specification.	2009	International	Standard	ISO	8000-11:2009(E)	First	edition	2009-11-15.	Downloaded
from.	ansi.org	on	January	3,	2012.

Baxter	R,	Christen	P,	Churches	T.	A	comparison	of	fast	blocking	methods	for	record	linkage.	First	Workshop	on	Data
Cleaning,	Record	Linkage,	and	Object	Consolidation.	2003	KDD-2003,	Washington,	DC,	August	24–27,	2013.

Benjelloun	O,	Garcia-Molina	H,	Menestrina	D,	Su	Q,	Whang	S.E,	Widom	J.	Swoosh:	A	generic	approach	to	entity
resolution.	The	VLDB	Journal.	2009;18(1):255–276.

Benjelloun	O,	Garcia-Molina	H,	Su	Q,	Widom	J.	Swoosh:	A	Generic	Approach	to	Entity	Resolution	Stanford	InfoLab
Technical	Report.	2005.	dbpubs.stanford.edu/pub/2005-5.

Berson	A,	Dubov	L.	Master	data	management	and	data	governance.	New	York,	NY:	McGraw	Hill;	2011.

Bianco	G.D,	Galante	R,	Heuser	C.A.	A	fast	approach	for	parallel	deduplication	on	multicore
processors.	SAC’11.	2011	March	21–25,	2011,	TaiChung,	Taiwan.

Borgman	C,	Siegfried	S.	Getty’s	Synoname™	and	its	cousins:	A	survey	of	applications	of	personal	name-matching
algorithms.	Journal	of	the	American	Society	for	Information	Science.	1992;43(7):459–476.

Caballero	I,	Parody	L,	Bermejo	I,	Lopez	T.G,	Gasca	R,	Piattini	M.	Service	level	agreement	for	data	quality	governed	by
ISO	8000-1X0.	2014	The	19th	International	Conference	on	Information	and	Data	Quality	(ICIQ-2014).	Xi’an,	China,
August	1–3,	2014,	pp.	114–127.

Center	for	Identity.	Identity	threat	assessment	and	prediction	(ITAP).	2014	Available
at:	http://identity.utexas.edu/research/model.

Cervo	D,	Allen	M.	Master	data	management	in	practice:	Achieving	true	customer	MDM.	Wiley;	2011.

Chen	C,	Hanna	J,	Talburt	J.R,	Brochhausen	M,	Hogan	W.R.	A	demonstration	of	entity	identity	information	management
applied	to	demographic	data	in	a	referent	tracking	system.	International	Conference	on	Biomedical	Ontology	(ICBO
2013).	2013	Montreal,	Canada,	July	7–12,	2013,	pp.	136–137.

Chen	C,	Mohammed	M,	Talburt	J.R.	Visualization	tools	for	results	of	entity	resolution.	The	2013	International
Conference	on	Information	and	Knowledge	Engineering	(IKE’13).	2013	Las	Vegas,	Nevada,	July	22–25,	2013,
CSREA	Press,	pp.	87–91.

Chiang	C,	Talburt	J,	Wu	N,	Pierce	E,	Heien	C,	Gulley	E,	Moore	J.	A	case	study	in	partial	parsing	unstructured	text.	Fifth
International	Conference	on	Information	Technology:	New	Generations.	2008	Las	Vegas,	NV,	IEEE	Press,	pp.	447–
452.

Christen	P.	A	comparison	of	personal	name	matching:	techniques	and	practical	issues.	Sixth	IEEE	International
Conference	on	Data	Mining	Workshops.	2006:290–294.

Christen	P.	Febrl	–	A	freely	available	record	linkage	system	with	a	graphical	user	interface.	Proceedings	of	the
Australian	Workshop	on	Health	Data	and	Knowledge	Management	(HDKM).	2008	Conferences	in	Research	and
Practice	in	Information	Technology	(CRPIT),	Wollongong,	Australia,	January	2008,	vol.	80.

Christen	P.	Data	matching:	Concepts	and	techniques	for	record	linkage,	entity	resolution,	and	duplicate
detection	Springer.	2012.

Deaton	R,	Doan	T,	Schweiger	T.	Semantic	data	matching:	Principles	and
performance.	In:	Chan	Y,	Talburt	J,	Talley	T,	eds.	Data	Engineering:	Mining,	Information	and
Intelligence.	Springer;	2010:17–38.

Decker	W,	Liu	F,	Talburt	J.R,	Wang	P,	Wu	N.	A	case	study	on	data	quality,	privacy,	and	entity
resolution.	In:	Yeoh	W,	Talburt	J.R,	Zhou	Y,	eds.	Information	Quality	and	Governance	for	Business
Intelligence.	2013	IGI	Global,	pp.	66–87.

Doan	A,	Halevy	A,	Ives	Z.	Principles	of	data	integration.	Morgan	Kaufmann.	2012.

Dreibelbis	A,	Eberhard	H,	Milman	I,	Oberhofer	M,	van	Run	P,	Wolfson	D.	Enterprise	master	data	management:	An

http://ansi.org
http://dbpubs.stanford.edu/pub/2005-5
http://identity.utexas.edu/research/model

SOA	approach	to	managing	core	information.	IBM	Press;	2008.

Dyché	J,	Levy	E.	Customer	data	integration:	Reaching	a	single	version	of	the	truth.	New	York:	Wiley;	2006.

English	L.	Improving	data	warehouse	and	business	information	quality:	Methods	for	reducing	costs	and	increasing
profits.	New	York:	Wiley;	1999.

Fellegi	I,	Sunter	A.	A	theory	for	record	linkage.	Journal	of	the	American	Statistical	Association.	1969;64(328):1183–
1210.

Gibson	N,	Talburt	J.	Visualizing	student	growth:	Applications	of	student	growth	models.	Ninth	Annual	Conference	on
Applied	Research	in	Information	Technology.	2010	University	of	Central	Arkansas,	Conway,	AR,	April	9,	2010,	pp.
9–13.	research.acxiom.com/publications.

Hashemi	R,	Talburt	J,	Wang	R.	Significance	test	for	the	Talburt-Wang	Similarity
Index.	In:	Talburt	J,	Pierce	E,	Wu	N,	Campbell	T,	eds.	11th	International	Conference	on	Information
Quality.	Cambridge,	MA:	MIT	IQ	Publishing;	2006:125–132.

Heien	C,	Wu	N,	Talburt	J.	Methods	to	Measure	Importance	of	Data	Attributes	to	Consumers	of	Information
Products.	AMCIS	2010	Proceedings.	2010	Paper	582.	http://aisel.aisnet.org/amcis2010/582.

Herzog	T.N,	Scheuren	F.J,	Winkler	W.E.	Data	quality	and	record	linkage	techniques.	New	York:	Springer;	2007.

Holland	G,	Talburt	J.	A	framework	for	evaluating	information	source	interactions.	In:	Hu	C,	Berleant	D,	eds.	2008
Conference	on	Applied	Research	in	Information	Technology.	Conway,	AR:	University	of	Central	Arkansas;	2008	pp.
13–19.	http://research.acxiom.com/publications.html.

Holland	G,	Talburt	J.	An	entity-based	integration	framework	for	modeling	and	evaluating	data	enhancement
products.	Journal	of	Computing	Sciences	in	Colleges.	2010;24(5):65–73.

Holland	G,	Talburt	J.	q-Gram	Tetrahedral	Ratio	(qTR)	for	approximate	pattern	matching.	Ninth	Annual	Conference	on
Applied	Research	in	Information	Technology.	2010	University	of	Central	Arkansas,	Conway,	AR,	April	9,	2010,	pp.
14–17.	research.acxiom.com/publications.

Holmes	D,	McCabe	C.	Improving	precision	and	recall	for	Soundex	retrieval.	In	Proc.	of	the	IEEE	International
Conference	on	Information	Technology	–	Coding	and	Computing.	2002	Las	Vegas,	NV.

Huang	K,	Lee	Y.W,	Wang	R.Y.	Quality	Information	and	Knowledge	Management.	Prentice	Hall;	1999.

International	Association	for	Information	and	Data	Quality	(IAIDQ).	IQCPSM	–	Information	Quality	Certified
Professional	Available	from.	http://iaidq.org/iqcp/iqcp.shtml,	2014.

Isele	R,	Jentzsch	A,	Bizer	C.	Efficient	multidimensional	blocking	for	link	discovery	without	losing	recall.	Fourteenth
International	Workshop	on	the	Web	and	Databases.	2011	WebDB-2011,	June	12,	2011,	Athens,	Greece.

Jaro	M.A.	Advances	in	record-linkage	methodology	as	applied	to	matching	the	1985	census	of	Tampa,	Florida.	Journal
of	the	American	Statistical	Association.	1989;84(406):414–420.

Jonas	J.	To	know	semantic	reconciliation	is	to	love	semantic	reconciliation.	2007	Downloaded
from:	http://jeffjonas.typepad.com/jeff_jonas/2007/04/to_know_semanti.html	on	December	25,	2014.

Josang	A,	Pope	S.	User	Centric	Identity	Management.	2005	In:	Proceedings	of	AusCERT	Conference.

Jugulum	R.	Competing	with	high-quality	data:	Concepts,	tools,	and	techniques	for	building	a	successful	approach	to
data	quality.	Wiley;	2014.

Juran	J.M.	Juran	on	leadership	for	quality.	The	Free	Press;	1989.

Kardes	H,	Konidena	D,	Agarwal	S,	Huff	M,	Sun	A.	Graph-based	approaches	for	organizational	entity	resolution	in
MapReduce.	Proceedings	of	the	TextGraphs-8	Workshop.	2013	October	18,	2013,	Seattle,	WA,	pp.	70–78.

Kirsten	T,	Kolb	L,	Hartung	M,	Gross	A,	Kopche	H,	Rahm	E.	Data	partitioning	for	parallel	entity	matching.	Proceedings
of	the	VLDB	Endowment.	2010;Vol.	3	No.	2.

Kobayashi	F,	Talburt	J.R.	Probabilistic	Scoring	Methods	to	Assist	Entity	Resolution	Systems	Using	Boolean	Rules.	The
2013	International	Conference	on	Information	and	Knowledge	Engineering	(IKE’13).	2013	Las	Vegas,	Nevada,	July
22–25,	2013,	CSREA	Press,	pp.	101–107.

Kobayashi	F,	Talburt	J.R.	Decoupling	Identity	Resolution	from	the	Maintenance	of	Identity	Information.	11th
Information	and	Knowledge	Engineering	Conference.	2014	July	21–24,	2014,	Las	Vegas,	NV,	pp.	349–354.

Kobayashi	F,	Talburt	J.R.	Improving	the	Quality	of	Entity	Resolution	for	School	Enrollment	Data	through	Affinity
Scores.	19th	MIT	International	Conference	on	Information	Quality.	2014	August	1–3,	2014,	Xi’an,	China.

http://research.acxiom.com/publications
http://aisel.aisnet.org/amcis2010/582
http://research.acxiom.com/publications.html
http://research.acxiom.com/publications
http://iaidq.org/iqcp/iqcp.shtml
http://jeffjonas.typepad.com/jeff_jonas/2007/04/to_know_semanti.html

Kobayashi	F,	Nelson	E.D,	Talburt	J.R.	Design	consideration	for	identity	resolution	in	batch	and	interactive
architectures.	International	Conference	on	Information	Quality	(ICIQ	2011).	2011	Adelaide,	Australia,	2011.

Kolb	L,	Thor	A,	Rahm	E.	Block-based	load	balancing	for	entity	resolution	with	MapReduce.	CIKM’11,	October	24–28,
2011.	Scotland:	Glasgow;	2011	pp.	2397–2400.

Kotter	J.P.	Leading	change.	Harvard	Business	Review	Press;	1996.

Landauer	T.K,	Foltz	P.W,	Laham	D.	Introduction	to	latent	semantic	analysis.	Discourse	Processes.	1998;25:259–284.

Lawley	E.	Building	a	health	data	hub.	2010	March	29,	2010.	Nashville	Post	(online	version,	downloaded	July	24,	2010).

Lee	Y,	Madnick	S,	Wang	R,	Wang	F,	Zhang	H.	A	cubic	framework	for	the	Chief	Data	Officer:	Succeeding	in	a	world	of
big	data.	MIS	Quarterly	Executive.	2014	March	2014	(13:1).

Lee	Y,	Pierce	E,	Talburt	J,	Wang	R,	Zhu	H.	A	curriculum	for	a	master	of	science	in	information	quality.	The	Journal	of
Information	Systems	Education.	2007;18(2):233–242.

Lee	Y.W,	Pipino	L.L,	Funk	J.D,	Wang	R.Y.	Journey	to	Data	Quality.	Cambridge,	MA:	MIT	Press;	2006.

Levenshtein	V.	Binary	Codes	capable	of	correcting	deletions,	insertions	and	reversals.	Soviet	Physics
Doklady.	1966;10(8):707–710.

Loshin	D.	Master	data	management.	Knowledge	Integrity,	Inc;	2009.

Mahata	D,	Talburt	J.R.	A	framework	for	collecting	and	managing	entity	identity	information	from	social	media.	19th
MIT	International	Conference	on	Information	Quality.	2014	August	1–3,	2014,	Xi’an,	China,	pp.	216–233.

Maydanchik	A.	Data	Quality	Assessment.	Technics	Publications;	2007.

Mazzucchi-Augel	P.N,	Ceballos	H.G.	An	alignment	comparator	for	entity	resolution	with	multi-valued	attributes.	13th
Mexican	International	Conference	on	Artificial	Intelligence	(MICAI),.	2014;8857(2):272–284	November	2014.

Mazzucchi-Augel	P.N.	An	aggregation	and	alignment	operator	to	solve	the	entity	matching	problem.	Master’s	thesis,
Instituto	Tecnológico	y	de	Esudios	Superiores	de	Monterrey.	2014	Mexico,	December	2014.

McGilvray	D.	Executing	Data	Quality	Projects:	Ten	Steps	to	Quality	Data	and	Trusted	Information.	Morgan
Kaufmann;	2008.

Menestrina	D,	Whang	S.E,	Garcia-Molina	H.	Evaluating	entity	resolution	results.	Proceedings	of	the	VLDB
Endowment.	2010;Vol.	3	No.	1.

Naumann	F,	Herschel	M.	An	introduction	to	duplicate	detection.	Synthesis	Lectures	on	Data	Management.	2010	Morgan
and	Claypool	Publishers.

Nelson	E,	Talburt	J.	Improving	the	quality	of	law	enforcement	information	through	entity
resolution.	In:	Hu	C,	Berleant	D,	eds.	2008	Conference	on	Applied	Research	in	Information	Technology.	Conway,
AR:	University	of	Central	Arkansas;	2008:113–118.	http://research.acxiom.com/publications.html.

Nelson	E,	Talburt	J.	Entity	resolution	for	longitudinal	studies	in	education	using	OYSTER.	Proceedings:	2011
Information	and	Knowledge	Engineering	Conference	(IKE	2011).	2011	Las	Vegas,	NV,	July	18–20,	2011,	pp.	286–
290.

Oberhofer	M,	Hechler	E,	Milman	I,	Schumacher	S,	Wolfson	D.	Beyond	Big	Data:	Using	social	MDM	to	drive	deep
customer	insight.	IBM	Press;	2014.

Odell	M,	Russell	R.	U.S.	patent	number	1,261,167.	Washington,	DC:	U.S.	Patent	Office;	1918.

Osesina	I,	Talburt	J.	A	data-intensive	approach	to	named	entity	recognition	combining	contextual	and	intrinsic
indicators.	International	Journal	of	Business	Intelligence	Research.	2012;3(1):55–71.

Papadakis	G,	Ioannou	E,	Niederée	C,	Palpanas	T,	Nedjl	W.	WSDM’12	February	8–12,	2012,	Seattle,	WA,	pp.	53–
62.	2012.

Penning	M,	Talburt	J.R.	Information	quality	assessment	and	improvement	of	student	information	in	the	university
environment.	The	2012	International	Conference	on	Information	and	Knowledge	Engineering	(IKE’12).	2012	Las
Vegas,	Nevada,	July	16–29,	2012,	pp.	351–357.

Philips	L.	The	double-metaphone	search	algorithm.	2000	C/C++	User’s	Journal,	18(6).

PiLog.	Master	data	quality	solutions.	2014	Website	available	at:	http://www.pilog.in/.

Power	D,	Hunt	J.	The	8	worst	practices	in	master	data	management	and	how	to	avoid	them.	2013	White	paper
downloaded	from:	http://www.informationbuilders.com	on	December	22,	2014.

http://research.acxiom.com/publications.html
http://www.pilog.in/
http://www.informationbuilders.com

Power	D,	Lyngsø.	Multidomain	MDM	–	Why	it’s	a	superior	solution.	Inside	Analysis	online	newsletter.	2013	on
Downloaded	from:	http://insideanalysis.com/2013/08/multidomain-mdm/	on	December	22,	2014.

Provost	F,	Fawcett	T.	Data	science	for	business:	What	you	need	to	know	about	data	mining	and	data-analytic
thinking	O’Reilly.	2013.

Pullen	D.	Developing	and	refining	matching	rules	for	entity	resolution.	2012	International	Conference	on	Information
and	Knowledge	Engineering	(IKE’12).	2012;2012	Las	Vegas,	NV,	pp.	345–350.

Pullen	D,	Wang	P,	Talburt	J.R,	Wu	N.	A	false	positive	review	indicator	for	entity	resolution	systems	using	Boolean
rules.	The	18th	International	Conference	on	Information	Quality	(ICIQ-2013).	2013	University	of	Arkansas	at	Little
Rock,	November	7–9,	2013,	pp.	26–36.

Pullen	D,	Wang	P,	Wu	N,	Talburt	J.R.	Mitigating	data	quality	impairment	on	entity	resolution	errors	in	student
enrollment	data.	2013	Information	and	Knowledge	Engineering	Conference.	2013	July	21–24,	2013,	Las	Vegas,	NV,
pp.	96–100.

Rand	W.M.	Objective	criteria	for	the	evaluation	of	clustering	methods.	Journal	of	the	American	Statistical
Association.	1971;66:846–850.

Redman	T.C.	Data	quality	for	the	information	age.	Artech	House;	1996.

Redman	T.C.	The	impact	of	poor	data	quality	on	the	typical	enterprise.	Communications	of	the	ACM.	1998;41(2):79–82.

Redman	T.C.	Data	driven:	Profiting	from	your	most	important	business	asset.	Boston,	MA:	Harvard	Business
Press;	2008.

Schumacher	S.	The	need	for	accuracy	in	today’s	data	world.	Database	Trends	and	Applications	(online
newsletter).	2010	Downloaded	from:	http://www.dbta.com	on	December	28,	2014.

Sebastian-Coleman	L.	Measuring	data	quality	for	ongoing	improvement.	Morgan	Kaufmann;	2013.

Sedgewick	R,	Wayne	K.	Algorithms.	Fourth	Edition.	Addison	Wesley;	2011.

Shannon	C.E.	A	mathematical	theory	of	communication.	Bell	System	Technical	Journal.	1948.

Soares	S.	Big	Data	governance:	An	emerging	imperative.	MC	Press	Online;	2013.

Soares	S.	IBM	InfoSphere:	A	platform	for	Big	Data	governance	and	process	data	governance.	MC	Press	Online;	2013.

Soares	S.	Data	governance	tools:	Evaluation	criteria,	Big	Data	governance,	and	alignment	with	enterprise	data
management.	MC	Press	Online;	2014.

Sørensen	H.L.	The	Liliendahl	101	on	MDM.	2011	Downloaded	from:	http://liliendahl.com/mdm-notes	on	December	22,
2014.

Sørensen	H.L.	Beyond	True	Positives	in	Deduplication.	Blog	Post.	2012	Downloaded
from:	http://liliendahl.com/2012/11/20/beyond-true-positives-in-deduplication	on	December	22,	2014.

Syed	H,	Talburt	J.R,	Liu	F,	Pullen	D,	Wu	N.	Developing	and	refining	matching	rules	for	entity	resolution.	The	2012
International	Conference	on	Information	and	Knowledge	Engineering	(IKE’12).	2012	Las	Vegas,	Nevada,	July	16–
29,	2012,	pp.	345–350.

Taguchi	G,	Chowdhury	S,	Wu	Y.	Taguchi’s	Quality	Engineering	Handbook	In:	Part	III:	Quality	Loss	Function.	Wiley-
Interscience,	NJ;	2005	2005,	pp.	171	–98.

Talburt	J,	Hashemi	R.	A	formal	framework	for	defining	entity-based,	data	source
integration.	In:	Arabnia	H,	Hashemi	R,	eds.	2008	International	Conference	on	Information	and	Knowledge
Engineering.	Las	Vegas,	NV:	CSREA	Press;	2008:394–398.

Talburt	J,	Nelson	E.	CoDoSA:	A	light-weight,	XML	framework	for	integrating	unstructured	textual	information.	15th
Americas	Conference	on	Information	Systems.	2009	San	Francisco,	CA,	AIS	Electronic	Library	(aisel.asnet.org),
Paper	489.

Talburt	J,	Zhou	Y.	OYSTER:	An	open	source	entity	resolution	system	supporting	identity	information
management.	ID360	–	The	Global	Forum	on	Identity.	2012	Austin,	TX,	April	23–24,	2012,	Best	Paper	Award,	pp.
69–86.

Talburt	J,	Zhou	Y.	A	practical	guide	to	entity	resolution	with	OYSTER.	In:	Sadiq	Shazia,	ed.	Handbook	on	Research	and
Practice	in	Data	Quality.	Springer;	2013:235–270.

Talburt	J,	Kuo	E,	Wang	R,	Hess	K.	An	algebraic	approach	to	data	quality	metrics	for	customer
recognition.	In:	Chengular-Smith	S,	Raschid	L,	Long	J,	Seko	C,	eds.	9th	International	Conference	on	Information

http://insideanalysis.com/2013/08/multidomain-mdm/
http://www.dbta.com
http://liliendahl.com/mdm-notes
http://liliendahl.com/2012/11/20/beyond-true-positives-in-deduplication
http://aisel.asnet.org

Quality.	Cambridge,	MA:	MIT	IQ	Publishing;	2004:234–247.

Talburt	J,	Morgan	C,	Talley	T,	Archer	K.	Using	commercial	data	integration	technologies	to	improve	the	quality	of
anonymous	entity	resolution	in	the	public	sector.	In:	Naumann	F,	Gertz	M,	Madnick	S,	eds.	10th	International
Conference	on	Information	Quality.	Cambridge,	MA:	MIT	IQ	Publishing;	2005:133–142.

Talburt	J,	Wang	R,	Hess	K,	Kuo	E.	An	algebraic	approach	to	data	quality	metrics	for	entity	resolution	over	large
datasets.	In:	Al-Hakim	L,	ed.	Information	quality	management:	Theory	and	applications.	Hershey,	PA:	Idea	Group
Publishing;	2007:1–22.

Talburt	J,	Zhou	Y,	Shivaiah	S.	SOG:	A	synthetic	occupancy	generator	to	support	entity	resolution	instruction	and
research.	2009	International	Conference	on	Information	Quality.	2009	Potsdam,	Germany,	November	2009,	pp.	91–
105.

Talburt	J.R.	Entity	resolution	and	information	quality.	Morgan	Kaufmann;	2011.

Talburt	J.R.	Overview:	The	criticality	of	entity	resolution	in	data	and	information	quality.	The	ACM	Journal	of	Data	and
Information	Quality	(JDIQ),.	2013;Vol.	4	No.	2,	pp.	6:1–2.

Wang	P,	Pullen	D,	Talburt	J.R,	Wu	N.	Iterative	approach	to	weight	calculation	in	probabilistic	entity	resolution.	2014
International	Conference	on	Information	Quality.	2014	August	1–3,	2014,	Xi’an,	China.

Wang	P,	Pullen	D,	Talburt	J.R,	Wu	N.	Probabilistic	matching	compared	to	deterministic	matching	for	student	enrollment
records.	2014	International	Conference	on	Information	Technology:	New	Generation.	2014	April	7–9,	2014,	Las
Vegas,	NV,	pp.	355–359.

Wang	R.Y.	A	product	perspective	on	total	data	quality	management.	Communications	of	the	ACM.	1998;41(2):58–65.

Wang	R.Y,	Strong	D.M.	Beyond	accuracy:	What	data	quality	means	to	consumers.	Journal	of	Management	Information
Systems.	1996;12(4):5–34.

Winkler	W.E.	Using	the	EM	algorithm	for	weight	computation	in	the	Fellegi–Sunter	model	of	record	linkage.	Journal	of
the	American	Statistical	Association,	Proceedings	of	the	Section	on	Survey	Research	Methods.	1988:667–671.

Winkler	W.E.	Methods	for	adjusting	for	lack	of	independence	in	an	application	of	the	Fellegi-Sunter	Model	of	record
linkage.	Survey	Methodology.	1989;15:101–117.

Winkler	W.E.	Near	automatic	weight	computation	in	the	Fellegi-Sunter	Model	of	record	linkage.	Proceedings	of	the
Fifth	Census	Bureau	Annual	Research	Conference.	1989:145–155.

Winkler	W.E.	The	state	of	record	linkage	and	current	research	problems.	1999	Statistics	of	Income	Division,	Internal
Revenue	Service	Publication	R99/04.

Wu	N,	Talburt	J,	Heien	C,	Pippenger	N,	Chiang	C,	Pierce	E,	et	al.	A	method	for	entity	identification	in	open	source
documents	with	partially	redacted	attributes.	The	Journal	of	Computing	Sciences	in	Colleges.	2007;22(5):138–144.

Yancey	W.	BigMatch:	A	program	extracting	possible	matches	from	a	large	file.	Research	Report	Series	(Computing
#2007-1).	Washington,	DC:	Statistical	Research	Division,	U.S.	Census	Bureau;	2007.

Yonke	C.L,	Walenta	C,	Talburt	J.R.	The	job	of	the	information/data	quality	professional.	Industry	Report	from	the
International	Association	for	Information	and	Data	Quality.	2012	Retrieved
from:	http://iaidq.org/publications/yonke-2011-02.shtml.

Zhou	Y,	Talburt	J.R.	Entity	identity	information	management.	International	Conference	on	Information	Quality
2011.	2011	Adelaide,	Australia,	November	18–20,	2011,	electronic	proceedings
at.	http://iciq2011.unisa.edu.au/doc/ICIQ2011_Proceeding_Nov.zip.

Zhou	Y,	Talburt	J.	Staging	a	Realistic	Entity	Resolution	Challenge	for	Students.	Journal	of	Computing	Sciences	in
Colleges.	2011;26(5):88–95.

Zhou	Y,	Talburt	J.	The	role	of	asserted	resolution	in	entity	identity	information	management.	Proceedings:	2011
Information	and	Knowledge	Engineering	Conference	(IKE	2011).	2011	Las	Vegas,	NV,	July	18–20,	2011,	pp.	291–
296.

Zhou	Y,	Talburt	J.R.	Strategies	for	large-scale	entity	resolution	based	on	inverted	index	data
partitioning.	In:	Talburt	J,	Yeoh	W,	Zhou	Y,	eds.	Information	Quality	and	Governance	for	Business	Intelligence.	IGI
Global;	2014	pp.	329–151.

Zhou	Y,	Kooshesh	A,	Talburt	J.	Optimizing	the	accuracy	of	entity-based	data	integration	of	multiple	data	sources	using
genetic	programming	methods.	International	Journal	of	Business	Intelligence	Research.	2012;3(1):72–82.

Zhou	Y,	Nelson	E.D,	Kobayashi	F,	Talburt	J.R.	A	graduate-level	course	on	entity	resolution	and	information	quality:	A

http://iaidq.org/publications/yonke-2011-02.shtml
http://iciq2011.unisa.edu.au/doc/ICIQ2011_Proceeding_Nov.zip

step	toward	ER	education.	Journal	of	Data	and	Information	Quality	(JDIQ).	2013	Special	Issue	on	Entity	Resolution,
Vol.	4,	No.	2,	March	2013,	Article	No.	10.

Zhou	Y,	Talburt	J,	Nelson	E.	The	interaction	of	data,	data	structures,	and	software	in	entity	resolution	systems.	Software
Quality	Professional.	2011;13(4):32–41.

Zhou	Y,	Talburt	J,	Su	Y,	Yin	L.	OYSTER:	A	tool	for	entity	resolution	in	health	information	exchange.	5th	International
Conference	on	the	Cooperation	and	Promotion	of	Information	Resources	in	Science	and	Technology
(COINFO’10).	2010	Beijing,	China,	November	27–29,	2010,	pp.	356–362.

Index

Note:	Page	numbers	followed	by	“b”,	“f”	and	“t”	indicate	boxes,	figures	and	tables
respectively.

A

Accuracy	loss,	causes	of,	148–149

Accuracy	measurement,	42

Alias	comparators,	217–218

Alignment	Comparator	for	Multi-valued	Attributes	(ACMA),	215–217,	216f

Ambiguous	representation,	24,	24f

American	National	Standards	Institute	(ANSI),	191

Application	programming	interface	(API),	93

families,	95–96

GetIdentifier(),	94f

GetIdentifierList(),	96f

GetKeywords(),	95f

identity	resolution,	94

Approximate	string	match	(ASM),	47

algorithms,	47

comparators,	209

initial	match,	210

Jaro	String	Comparator,	212

Jaro-Winkler	Comparator,	212–213

Levenshtein	edit	comparator,	210–211

Maximum	q-Gram,	211

qTR	algorithm,	211–212

transpose,	210

Asserted	resolution,	71

confirmation	assertions,	74–77

correction	assertions,	71–74

Assertion	management,	78

See	also	Structure-split	assertion

assertion	cart,	80

grouping	identifiers,	80

initial	login	screen,	79f

IVS,	79

home	page,	79f

operating	modes,	80

login	identifier,	78

Attribute-based	projection,	124–125,	124t

One-Pass	algorithm	using,	134b–140b

R-Swoosh	algorithm	using,	140b–145b

Attribute-based	resolution

See	also	Batch	identity	resolution

identity	capture	and	update	for,	188–190

iterative	update	process	for	ER	system,	189f

Attribute-level	matching,	46

See	also	Match	key

character	strings,	47

comparator,	46

ER	and	MDM	comparators,	47

Soundex	algorithm,	47

variation	in	string	values,	47

Attribute(s),	19–20

See	also	Identity	attributes

entropy,	36

level	weights,	110–111

uniqueness,	35

weight,	35–37

Automated	update	process,	66,	67f

See	also	Manual	update	process

clerical	review	indicators,	67

analysis	of	cases,	68–69

entity	resolution	and	record	linking,	67–68

ER	assessment,	68

ER	outcome	analysis	and	root	cause	analysis,	68

quality	assurance	validation	processes,	68

cluster-level	review	indicators,	69–70

IKB,	67

new	entity	references,	66

pair-level	review	indicators,	69

B

Batch	identity	resolution,	89–90,	90f

See	also	Attribute-based	resolution

client	system,	90

managed	entity	identifiers,	91–92

unmanaged	entity	identifiers,	91–92

Benchmarking,	38–39

Best	record	version,	55,	55f

Big	Data,	13,	193

challenges,	15

MDM	and,	15–16

value-added	proposition,	14

Big	entities,	188

problems,	188

Blocking,	147

causes	of	accuracy	loss,	148–149

dynamic	vs.	preresolution,	153–155

ER	system,	147

match	key,	150

and	match	rule	alignment,	151–152

problem	of	similarity	functions,	152–153

for	scoring	rules,	158–160

precision,	155–156

as	prematching,	149–150

recall,	155–156

Boolean	rules,	47–48,	48f,	69,	107,	120–121

See	also	Hybrid	rules;	Scoring	rules

match	key	blocking	for,	157–158

Bootstrap	phase,	168–170

Bring-Your-Own-Identifier	(BYOI),	53–54

“Brute	force”	method,	126

C

Capture,	Store,	Resolution,	Update,	Dispose	model	(CSRUD	model),	28,	161

See	also	Big	Data;	CSRUD	Life	Cycle

attribute-based	resolution,	188–190

capture	phase	and	IKB,	179–180

distributed	resolution,	165–167

large	component,	185

big	entity	problems,	188

incremental	transitive	closure,	187–188,	187f

postresolution	transitive	closure,	186–187,	186f

large-scale	ER

for	MDM,	161–163

with	single	match	key	blocking,	161–163

multiple-index	resolution,	165–167

persistent	entity	identifiers,	181–182

capture	based	on	match	keys	transitive	closure,	183f

Prior	EIS,	185

simple	update	scenario,	182f,	184f

transitive	closure	of	references,	183

record-based	resolution,	165–167

single	index	generator,	162f

transitive	closure	problem,	163–165

update	problem	identification,	180–181

Capture	phase,	31,	31f

attribute

entropy,	36

uniqueness,	35

weight,	36–37

benchmarking,	38–39

building	foundation,	32–33

data	matching	strategies,	46–50

data	preparation,	33–34

ER	results	assessment,	37–46

identity	attributes	selection,	34–37

IKB,	31–32

input	references,	32

intersection	matrix,	39,	40t,	42

equivalent	pairs,	41

equivalent	references,	41

fundamental	law	of	ER,	41

linked	pairs,	42

partition	classes,	40–41

partition	of	set,	39

references	with	sets	of	links,	40t

true	and	false	positives	and	negatives,	41

True	Link,	40

problem	sets,	39

proposed	measures,	44–45

Cluster	Comparison	method,	45–46

pairwise	method,	45

review	indicators,	32

truth	sets,	38

TWi,	43–44

characteristics,	44

True	link	and	ER	link,	44,	45t

truth	set	evaluation,	44

utility,	44

understanding	data,	33

unique	identifier,	31

Capture	phase,	179–180

Capture	process	implementation,	50

CDEs,	See	Critical	data	elements

CDI,	See	Customer	data	integration

CDO,	See	Chief	data	officer

Central	registry,	58–59

“Certified	records”,	See	“Golden	records”

Chief	data	officer	(CDO),	9,	116

Chief	information	officer	(CIO),	116

Churn	rate,	6–7

CIO,	See	Chief	information	officer

Clerical	review	indicators,	67

analysis	of	cases,	68–69

entity	resolution	and	record	linking,	67–68

ER

assessment,	68

outcome	analysis	and	root	cause	analysis,	68

quality	assurance	validation	processes,	68

Closed	universe	models,	99–100

Cluster	Comparison	method,	45–46

Cluster-level	matching,	50

Cluster-level	review	indicators,	69–70

Cluster-to-cluster	classification,	122,	126

attribute-based	projection,	124–125,	124t

record-based	projection,	123

reference-to-cluster

classification,	124–125

match	scenario,	123f

transitive	closure,	125–126

unique	reference	assumption,	125–126

CoDoSA,	See	Compressed	Document	Set	Architecture

Comma-separated	values	(CSV),	163,	197–198

Common	Object	Request	Broker	Architecture	(CORBA),	94

Comparator,	46

Compressed	Document	Set	Architecture	(CoDoSA),	163

Confidence	scores,	96

depth	and	degree	of	match,	97–99

match	context,	99–100

model,	100–102

Confirmation	assertions,	74

reference-to-reference	assertion,	76,	77f

reference-to-structure	assertion,	77,	77f

true	negative	assertion,	75–76,	76f

true	positive	assertion,	74–75,	75f

Conformance	to	data	specifications,	199–200

ISO	8000	standard,	202

message	and	supporting	references,	201

message	referencing	data	specification,	201f

multiple-record	schema,	200f

single-record	message	structure,	200f

XML	elements,	202

CORBA,	See	Common	Object	Request	Broker	Architecture

Correction	assertions,	71

reference-transfer	assertion,	74,	74f

structure-split	assertion,	72,	73f

levels	of	grouping,	73

synchronization	of	identifiers,	73

transactions,	73

structure-to-structure	assertion,	71,	72f

EIS,	72

set	of	assertion	transactions,	72

Critical	data	elements	(CDEs),	34

CRM,	See	Customer	relationship	management

CRUD	model,	27

CSRUD	Life	Cycle,	119

See	also	Automated	update	process

automated	update	configuration,	180–181

update	problem	identification,	180–181

CSRUD	model,	See	Capture,	Store,	Resolution,	Update,	Dispose	model

CSV,	See	Comma-separated	values

Customer	data	integration	(CDI),	8,	55

Customer	recognition,	89

Customer	relationship	management	(CRM),	6–7,	55

Customer	satisfaction,	6–8

D

Data

preparation,	33–34

quality,	191–193

science,	14

scientists,	15

Data	governance	program	(DG	program),	9–10

adoption,	10

control,	10

data	stewardship	model,	10

DBA,	9–10

Data	matching	strategies,	46

attribute-level	matching,	46

character	strings,	47

comparator,	46

ER	and	MDM	comparators,	47

Soundex	algorithm,	47

variation	in	string	values,	47

Boolean	rules,	47–48,	48f

capture	process	implementation,	50

cluster-level	matching,	50

hybrid	rules,	49–50

MDM,	46

reference-level	matching,	47

scoring	rule,	48–49,	49f

Data	stewardship,	65

asserted	resolution,	71–77

automated	update	process,	66–70

CSRUD	life	cycle,	65

EIS	visualization	tools,	77–83

entity	identifiers	management,	84–87

manual	update	process,	66,	70–71

model,	10

rate	of	change,	66

root	cause	of	information	quality	issues,	65

Data	warehousing	(DW),	6–7

Database	administrator	(DBA),	9–10

Dedicated	MDM	systems,	55–58

Deduplication	phase,	169,	171–177

Depth	and	degree	of	match,	97–99

Deterministic	matching,	119–121

DG	program,	See	Data	governance	program

Distributed	resolution,	165

references	and	match	keys	as	graph,	166–167

transitive	closure	as	graph	problem,	165–166

DW,	See	Data	warehousing

Dynamic	blocking,	153–155

E

E-R	database	model,	See	Entity-relation	database	model

ECCMA,	See	Electronic	Commerce	Code	Management	Association

EIIM,	See	Entity	identity	information	management

EIS,	See	Entity	identity	structure

Electronic	Commerce	Code	Management	Association	(ECCMA),	191

Entity	identifiers	management,	84

models	for,	85

pull	model,	85–87

push	model,	87

problem	of	association	information	latency,	84–85

Entity	identity	information	management	(EIIM),	3–4,	10–11,	21–22,	27,	53,	115

See	also	Stanford	Entity	Resolution	Framework	(SERF)

configurations,	119

EIS,	4–6

ER	and	data	structures,	4

false	negative	error,	22

false	positive	error,	22

and	Fellegi-Sunter,	115–116

goal	of,	22

identity	information,	4

life	cycle	management	models,	27

CSRUD	model,	28

Loshin	model,	27–28

POSMAD	model,	27

“matching”	records,	6

“merge-purge”	operation,	5

OYSTER	open	source	ER	system,	6

SERF,	116

strategies,	53–54

time	aspect,	5

Entity	identity	integrity,	22–23,	23f

ambiguous	representation,	24,	24f

culture	and	expectation,	25

discovery,	26

false	negative,	25

incomplete	state,	25,	26f

master	data	table,	22–23

MDM

registry	entries,	25–26

system,	24

meaningless	state,	25,	25f

primary	key	value,	23

proper	representation,	23–24,	23f

surjective	function,	24

Entity	identity	structure	(EIS),	4–6,	21–22,	31,	53,	116

attribute-based,	56,	56f

duplicate	record	filter,	57

exemplar	record,	56

BYOI,	53–54

dedicated	MDM	systems,	55–58

EIIM	strategies,	53–54

ER	algorithms	and,	58

IKB,	58–60

O&D	MDM,	54

record-based,	56,	57f,	58

with	duplicate	record	filter,	57f

with	exemplar	record,	58f

issue	with,	57

with	record	filter	and	exemplar	record,	58f

storing	vs.	sharing,	59–60

survivor	record	strategy,	55

best	record	version,	55,	55f

exemplar	record,	55f,	56

rules,	56

versions,	55

visualization	tools,	77–78

assertion	management,	78–80

negative	resolution	review	mode,	81–82,	83f

positive	resolution	review	mode,	83,	85f

search	mode,	80–81,	81f

Entity	resolution	(ER),	3–4,	18,	53,	119,	165

appropriate	algorithm	selection,	126–145

checklist,	119

deterministic,	119–121

weights	calculation,	121–122

cluster-to-cluster	classification,	122–126

comparators

alias	comparators,	217–218

ASM	comparators,	209–213

multivalued	comparators,	213–217

phonetic	comparators,	218

token	comparators,	213–217

consistency,	115

with	consistent	classification,	5f

de-duplication	applications,	3–4

exact	match	and	standardization,	207

overcoming	variation	in	string	values,	208–209

scanning	comparators,	209

standardizing,	207–208

fundamental	law,	19

information	quality,	4

key	data	cleansing	process,	3

using	Null	Rule,	177–179

One-Pass	algorithm,	128–145

outcomes	measurements,	42

accuracy	measurement,	42

F-Measure,	43

false	negative	rate,	43

false	positive	rate,	43

R-Swoosh	algorithm,	137b–142b

results	assessment,	37–46

set	of	references,	114–115

Entity-relation	database	model	(E-R	database	model),	11

Entity/entities,	17–18

of	entities,	12

entity-based	data	integration,	6–8

reference,	18

resolution	problem,	19

ER,	See	Entity	resolution

Exemplar	record,	55f,	56

eXtensible	Business	Reporting	Language	(XBRL),	197

Extensible	markup	language	(XML),	191

External	reference	architecture,	60–61,	61f

F

F-Measure,	43

False	negatives	(FN),	43

errors,	22,	148

rate,	43

False	positives	(FP),	43

errors,	22,	148

rate,	43

Fellegi-Sunter	Theory	of	Record	Linking,	67–68,	105

context	and	constraints	of	record	linkage,	105–106

EIIM	and,	115–116

fundamental	Fellegi-Sunter	theorem,	108–110

matching	rule,	106–107

scoring	rule,	110–111

attribute	level	weights	and,	110–111

frequency-based	weights	and,	112

FN,	See	False	negatives

Format	variation,	208

FP,	See	False	positives

Frequency-based	weights,	112

“Fuzzy”	match,	46,	49

G

Garbage-in-garbage-out	rule	(GIGO	rule),	92

Global	Justice	XML	Data	Model	(GJXML),	197

“Golden	records”,	1,	203–204

Google™,	14

H

Hadoop	File	System	(HDFS),	91,	161,	179

Hadoop	implementation,	175–177

Hadoop	Map/Reduce	framework,	161–162

Hash	keys,	151

Hashing	algorithms,	151

Hierarchical	MDM,	12

Hybrid	rules,	49–50

See	also	Boolean	rules,	Scoring	rules

I

IAIDQ,	See	International	Association	for	Information	and	Data	Quality

IAIDQ	Domains	of	Information	Quality,	192

Identification	Guide	(IG),	203

Identity,	internal	vs.	external	view,	19–20

See	also	Entity	identity	information	management	(EIIM)

issues,	20

merge-purge	process,	21

occupancy	history,	20,	20f

occupancy	records,	21

Identity	attributes,	17,	19–20

internal	view	of	identity,	20

selection,	34

measures,	35

primary	identity	attributes,	34–35

supporting	identity	attributes,	35

Identity	knowledge	base	(IKB),	31,	58–60,	66,	179–180

Identity	resolution,	89

access	modes,	89

batch	identity	resolution,	89–92,	90f

interactive	identity	resolution,	92–93,	93f

API,	94–96

confidence	scores,	96–102

Identity	Visualization	System	(IVS),	78,	79f

IG,	See	Identification	Guide

IKB,	See	Identity	knowledge	base

Incomplete	state,	25,	26f

Incremental	transitive	closure,	187–188,	187f

Information	quality,	191–193

Information	Quality	Certified	Professional	(IQCP),	4,	192

Information	retrieval	(IR),	155

Informed	linking,	See	Asserted	resolution

Interactive	identity	resolution,	92–93,	93f

See	also	Batch	identity	resolution

International	Association	for	Information	and	Data	Quality	(IAIDQ),	192

International	Organization	for	Standardization	(ISO),	191

See	also	ISO	8000–110	standard

data	quality	vs.	information	quality,	191–193

relevance	to	MDM,	193

Intersection	matrix,	39,	40t,	42

equivalent	pairs,	41

equivalent	references,	41

fundamental	law	of	ER,	41

linked	pairs,	42

partition	classes,	40–41

partition	of	set,	39

references	with	sets	of	links,	40t

true	and	false	positives	and	negatives,	41

True	Link,	40

Inverted	indexing,	150

IQCP,	See	Information	Quality	Certified	Professional

IR,	See	Information	retrieval

ISO,	See	International	Organization	for	Standardization

ISO	8000–110	standard,	191

adding	new	parts,	203

accuracy,	204

completeness,	204–205

provenance,	204

components,	196

conformance	to	data	specifications,	199–202

general	requirements,	196

message	referencing	a	data	specification,	201f

multiple-record	schema,	200f

semantic	encoding,	198–199

single-record	message	structure,	200f

syntax	of	message,	197–198

goals,	193

ISO	22745	standard	industrial	systems	and	integration,	203

motivational	example,	194–196

scope,	193–194

simple	and	strong	compliance	with,	202–203

unambiguous	and	portable	data,	193

Iteration	phase,	169–171

IVS,	See	Identity	Visualization	System

J

Jaccard	coefficient,	213–214

Jaro	String	Comparator,	212

Jaro-Winkler	Comparator,	212–213

K

Key-value	pairs,	decoding,	163

Knowledge-based	linking,	See	Asserted	resolution

L

“Large	entity”	problem,	150

Large-scale	ER

for	MDM,	161–163

with	single	match	key	blocking,	161

decoding	key-value	pairs,	163

Hadoop	Map/Reduce	framework,	162

single	index	generator,	162f

Latent	semantic	analysis,	218

Left-to-right	(LR),	158

Levenshtein	edit	comparator,	210–211

Levenshtein	Edit	Distance	comparator,	47

Link	append	process,	91

Loshin	model,	27–28

LR,	See	Left-to-right

M

Managed	entity	identifiers,	91–92

Manual	update	process,	66,	70–71

See	also	Automated	update	process

Master	data,	1

Master	data	management	(MDM),	1–4

See	also	Reference	data	management	(RDM)

architectures,	60

external	reference	architecture,	60–61,	61f

reconciliation	engine,	63

registry	architecture,	61–63

transaction	hub	architecture,	63–64

business	case	for,	6

better	security,	10–11

better	service,	8

cost	reduction	of	poor	data	quality,	9

customer	satisfaction	and	entity-based	data	integration,	6–8

success	measurement,	11

components,	3f

DG	program,	9–10

adoption,	10

control,	10

data	stewardship	model,	10

DBA,	9–10

dimensions,	11

hierarchical	MDM,	12

multi-channel	MDM,	13

multi-cultural	MDM,	13

multi-domain	MDM,	11–12

policies,	2

relevance	to,	193

system	using	background	and	foreground	operations,	59f

Match	context,	99

closed	universe	models,	99–100

confidence	score	model,	100–102

open	universe	models,	99–100

Match	key,	151

See	also	Attribute-level	matching

blocking,	150

for	Boolean	rules,	157–158

and	match	rule	alignment,	151–152

preresolution	blocking	with	multiple,	154–155

problem	of	similarity	functions,	152–153

for	scoring	rules,	158–160

generators,	151

indexing,	150

Match	threshold,	111

Matching	rule,	106–107

“Matching”	records,	6

Maximum	q-Gram,	211

MDM,	See	Master	data	management

Meaningless	state,	25,	25f

Merge-purge

operation,	5

process,	21,	26

Metadata,	2

Multi-channel	MDM,	13

Multi-cultural	MDM,	13

Multiple-index	resolution,	165

references	and	match	keys	as	graph,	166–167

transitive	closure	as	graph	problem,	165–166

Multivalued	comparators,	213–217

N

n-Gram	algorithms,	211

N-squared	problem,	15–16

Natural	language	processing	(NLP),	14

Negative	resolution	review	mode,	81–82,	83f

North	Atlantic	Treaty	Organization	(NATO),	193,	203

Null	Rule,	ER	using,	177–178

O

Occupancy	history,	20,	20f

Once-and-Done	MDM	(O&D	MDM),	54

One-Pass	algorithm,	128

using	attribute-based	projection,	134b–136b

input	reordered,	137b–140b

using	record-based	projection,	128b–131b

input	reordered,	131b–133b

Open	Technical	Dictionary	(OTD),	203

Open	universe	models,	99–100

OYSTER	open	source	ER	system,	6,	7f

P

Pair-level	review	indicators,	69

Pairwise	method,	45

Party	domain,	11

Pattern	ratio,	108

Period	entities,	11–12

Persistent	identifiers,	26–27,	84

Phonetic	comparators,	218

Phonetic	encoding	algorithms,	151

Phonetic	variation,	208

Place	domain,	11–12

Point-of-sale	(POS),	92–93

Positive	resolution	review	mode,	83,	85f

POSMAD	model,	27

Postresolution	transitive	closure,	186–187,	186f

Precision,	43,	127

Prematching,	blocking	as,	149–150

Preprocess	standardization,	207–208

Preresolution	blocking,	153–155

Primary	identity	attributes,	34–35

Probabilistic	matching,	37,	119–121

Problem	sets,	39

Product	domain,	11–12

Proper	representation,	23–24,	23f

Pull	model,	85–87

Push	model,	87

Q

q-Gram	algorithms,	211

q-Gram	Tetrahedral	Ratio	algorithm	(qTR	algorithm),	211–212

R

R-Swoosh	algorithm,	115,	137b–140b

using	attribute-based	projection,	140b–142b

input	reordered,	142b–145b

Radio	frequency	tag	identification	(RFID),	54

RDM,	See	Reference	data	management

Recall,	43,	126

Reconciliation	engine,	63

Record	linking,	105–106

Record-based	projection,	123,	165

One-Pass	algorithm	using,	125b–133b

references	and	match	keys	as	graph,	166–167

transitive	closure	as	graph	problem,	165–166

Reference

codes,	2

data,	2

Reference	data	management	(RDM),	1

Reference-level	matching,	47

Reference-to-cluster	classification,	124–125

Reference-to-reference	assertion,	76,	77f

Reference-to-structure	assertion,	77,	77f

Reference-transfer	assertion,	74,	74f

Registry	architecture,	61

hub	organization,	62–63

IKB	and	systems,	62

reference,	61–62

schema,	61f

semantic	encoding,	62

trusted	broker	architecture,	62

Representational	State	Transfer	(REST),	94

RESTful	APIs,	94

Return-on-investment	(ROI),	11

Review	indicators,	32

Review	threshold,	111

RFID,	See	Radio	frequency	tag	identification

ROI,	See	Return-on-investment

Root	mean	square	(RMS),	216

S

SaaS,	See	Software-as-a-service

Scanning	comparators,	209

Scoring	rules,	48–49,	49f,	69,	110–111,	122

See	also	Boolean	rules,	Hybrid	rules

attribute	level	weights	and,	110–111

frequency-based	weights	and,	112

match	key	blocking	for,	158–160

Search	mode,	80–81,	81f

Semantic	encoding,	62,	193,	198–199

SERF,	See	Stanford	Entity	Resolution	Framework

Service	level	agreement	(SLA),	89–90,	196

Shannon’s	Schematic	for	Communication,	18

SLA,	See	Service	level	agreement

Social	security	number	(SSN),	34–35,	158

Soft	rules,	67–68

Software-as-a-service	(SaaS),	10

SOR,	See	Systems	of	record

Soundex	algorithm,	47,	218

Soundex	comparator,	218

SQL,	See	Structure	query	language

SSN,	See	Social	security	number

Standard	blocking,	150

Stanford	Entity	Resolution	Framework	(SERF),	112–113,	116,	137b–140b

See	also	Entity	identity	information	management	(EIIM)

abstraction	of	match,	113–114

consistent	ER,	115

merge	operations,	113–114

R-Swoosh	algorithm,	115

set	of	references	ER,	114–115

Structure	query	language	(SQL),	179

Structure-split	assertion,	72,	73f

See	also	Assertion	management

levels	of	grouping,	73

synchronization	of	identifiers,	73

transactions,	73

Structure-to-structure	assertion,	71,	72f

EIS,	72

set	of	assertion	transactions,	72

Supporting	identity	attributes,	35

Surjective	function,	24

Surrogate	identity,	18

Survivor	record	strategy,	55

best	record	version,	55,	55f

exemplar	record,	55f,	56

rules,	56

versions,	55

Syntax	of	message,	197–198

System	hub,	See	Central	registry

Systems	of	record	(SOR),	1

T

TAG,	See	U.S.	Technical	Advisory	Group

Taguchi’s	Loss	Function,	9

Talburt-Wang	Index	(TWi),	43–44

characteristics,	44

True	link	and	ER	link,	44,	45t

truth	set	evaluation,	44

utility,	44

Technical	Committee	(TC),	191

term	frequency-inverse	document	frequency	(tf-idf),	214

cosine	similarity,	214–215

Theoretical	foundations

EIIM,	115–116

Fellegi-Sunter	Theory	Of	Record	Linkage,	105–112

SERF,	112–115

Token	comparators,	213–217

Transaction	hub	architecture,	63–64

Transitive	closure,	125–126

as	graph	problem,	165–166

incremental,	187–188,	187f

iterative,	nonrecursive	algorithm	for,	167–168

bootstrap	phase,	168–170,	173t

deduplication	phase,	169,	171–177,	174t

distributed	processing,	168

Hadoop	implementation	example,	175–177

iteration	phase,	169–171

key-value	pairs,	168–169

postresolution,	186–187,	186f

problem,	163

ER	process,	165

match	key	generators,	164

match	key	values,	164t

True	Link,	40

True	negative	assertion,	75–76,	76f

True	positive	assertion,	74–75,	75f

Trusted	broker	architecture,	62

Truth	sets,	38

TWi,	See	Talburt-Wang	Index

U

U.S.	Technical	Advisory	Group	(TAG),	191

Uniform	resource	identifiers	(URI),	198

Unique	reference	assumption,	18,	125–126

Universal	Product	Code	(UPC),	19–20

Unmanaged	entity	identifiers,	91–92

V

Variation	in	string	values,	208–209

Very	large	database	system	(VLDBS),	59–60

W

Weak	rules,	67–69

X

XBRL,	See	eXtensible	Business	Reporting	Language

XML,	See	Extensible	markup	language

	Title page
	Table of Contents
	Copyright
	Foreword
	Preface
	Acknowledgements
	Chapter 1. The Value Proposition for MDM and Big Data
	Definition and Components of MDM
	The Business Case for MDM
	Dimensions of MDM
	The Challenge of Big Data
	MDM and Big Data – The N-Squared Problem
	Concluding Remarks

	Chapter 2. Entity Identity Information and the CSRUD Life Cycle Model
	Entities and Entity References
	Managing Entity Identity Information
	Entity Identity Information Life Cycle Management Models
	Concluding Remarks

	Chapter 3. A Deep Dive into the Capture Phase
	An Overview of the Capture Phase
	Building the Foundation
	Understanding the Data
	Data Preparation
	Selecting Identity Attributes
	Assessing ER Results
	Data Matching Strategies
	Concluding Remarks

	Chapter 4. Store and Share – Entity Identity Structures
	Entity Identity Information Management Strategies
	Dedicated MDM Systems
	The Identity Knowledge Base
	MDM Architectures
	Concluding Remarks

	Chapter 5. Update and Dispose Phases – Ongoing Data Stewardship
	Data Stewardship
	The Automated Update Process
	The Manual Update Process
	Asserted Resolution
	EIS Visualization Tools
	Managing Entity Identifiers
	Concluding Remarks

	Chapter 6. Resolve and Retrieve Phase – Identity Resolution
	Identity Resolution
	Identity Resolution Access Modes
	Confidence Scores
	Concluding Remarks

	Chapter 7. Theoretical Foundations
	The Fellegi-Sunter Theory of Record Linkage
	The Stanford Entity Resolution Framework
	Entity Identity Information Management
	Concluding Remarks

	Chapter 8. The Nuts and Bolts of Entity Resolution
	The ER Checklist
	Cluster-to-Cluster Classification
	Selecting an Appropriate Algorithm
	Concluding Remarks

	Chapter 9. Blocking
	Blocking
	Blocking by Match Key
	Dynamic Blocking versus Preresolution Blocking
	Blocking Precision and Recall
	Match Key Blocking for Boolean Rules
	Match Key Blocking for Scoring Rules
	Concluding Remarks

	Chapter 10. CSRUD for Big Data
	Large-Scale ER for MDM
	The Transitive Closure Problem
	Distributed, Multiple-Index, Record-Based Resolution
	An Iterative, Nonrecursive Algorithm for Transitive Closure
	Iteration Phase: Successive Closure by Reference Identifier
	Deduplication Phase: Final Output of Components
	ER Using the Null Rule
	The Capture Phase and IKB
	The Identity Update Problem
	Persistent Entity Identifiers
	The Large Component and Big Entity Problems
	Identity Capture and Update for Attribute-Based Resolution
	Concluding Remarks

	Chapter 11. ISO Data Quality Standards for Master Data
	Background
	Goals and Scope of the ISO 8000-110 Standard
	Four Major Components of the ISO 8000-110 Standard
	Simple and Strong Compliance with ISO 8000-110
	ISO 22745 Industrial Systems and Integration
	Beyond ISO 8000-110
	Concluding Remarks

	Appendix A. Some Commonly Used ER Comparators
	References
	Index

