
www.apress.com

Gauvin
Essentials of Adm

inistering Team
 Foundation Server 2015

Essentials of
Administering
Team Foundation
Server 2015

Using TFS 2015 to accelerate your so� ware
development
—
Gary Gauvin

Essentials of Administering Team Foundation Server 2015

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

This book covers the critical as well as the less obvious aspects of managing Microso� Team
Foundation Server 2015 in a variety of development and test environments. Coverage includes
basic installation, initial con� guration, maintenance, and common trouble shooting techniques,
sizing, and performance considerations.

Essentials of Administering Team Foundation Server 2015 explains how TFS can help you
incorporate Git source control–probably the most popular open source code control system–in
your TFS environment to gain the best features of both. You’ll learn how to set up TFS to match
how you develop so� ware.

The book covers the whole development process, along with practical advice on implementing
Agile methodologies that blend well with TFS’s existing features.

In addition, the author dives into using TFS in your team covering subjects like setting up
accounts for diff erent roles, managing users and groups–plus what you need to know about
TFS security and running a secure team.

No discussion of a centralized system like TFS would be complete without learning how to
backup and restore it, and the author covers what you will need to know to maintain your TFS
including the backup and restore details required to properly plan for disaster recovery.

The book details what you need to know about TFS functionality in creating and setting up
collections and projects, how to manage the build process with Team Build (including setting
it up and deploying build server and agents), using templates to speed up the creation of
builds, building multi-platform solutions, adding quality gates to your process, and getting
code coverage information.

The book also off ers comprehensive information about testing, using tools like Microso� Test
Manager, Microso� Lab Manager, CodedUI, Web, and other testing features.

Shelve in:
So� ware Engineering/So� ware Development

User level:
Intermediate

9 781484 205723

ISBN 978-1-4842-0572-3ISBN 978-1-4842-0572-3

SOURCE CODE ONLINE

www.allitebooks.com

http://www.allitebooks.org

Essentials of
Administering Team

Foundation Server 2015
Using TFS 2015 to Accelerate Your

Software Development

Gary Gauvin

www.allitebooks.com

http://www.allitebooks.org

Essentials of Administering Team Foundation Server 2015: Using TFS 2015 to
Accelerate Your Software Development

Copyright © 2015 by Gary Gauvin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0572-3

ISBN-13 (electronic): 978-1-4842-0571-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Development Editor: Douglas Pundick
Lead Editor: James DeWolf
Technical Reviewer: Fabio Cladio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Kim Burton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

■■Chapter 1: Planning for Team Foundation Server��� 1

■■Chapter 2: Installing Team Foundation Server��� 13

■■Chapter 3: Installation Validation and Security�� 45

■■Chapter 4: Managing Collections�� 67

■■Chapter 5: Managing Team Projects��� 97

■■Chapter 6: Managing Source Code and Work��� 119

■■Chapter 7: Maintaining Team Foundation Server��� 143

■■Chapter 8: Build Management�� 155

■■Chapter 9: Testing with Team Foundation Server��� 165

■■Chapter 10: Reporting and Other Features Worth Exploring������������������������������ 177

Index�� 185

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

■■Chapter 1: Planning for Team Foundation Server��� 1

Before You Begin��� 1

Team Foundation Server 2013 Editions��� 1

TFS Architecture Overview�� 2

Installation Considerations�� 3

Basic Requirements��� 3

Installation Checklist��� 3

Accounts and Permissions�� 4

Supported Operating System Requirements��� 6

Performance and Planning�� 7

Hardware��� 8

Scaling Tips: One to Many��� 8

SharePoint Requirements�� 8

SQL Server Requirements��� 8

Active Directory��� 10

Ports�� 11

Language Requirements�� 12

Summary��� 12

www.allitebooks.com

http://www.allitebooks.org

vi

■ Contents

■■Chapter 2: Installing Team Foundation Server��� 13

Install Categories��� 13

New Install��� 13

Upgrades��� 15

TFS Upgrade Scenarios��� 16

Back Up!�� 16

Installation Experience�� 20

SQL Reporting Services Configuration Manager��� 37

Summary��� 43

■■Chapter 3: Installation Validation and Security�� 45

Installation Validation�� 45

Validate Team Foundation Server URLs��� 45

Validate TFS Services�� 48

Installation Logs�� 49

XAML Build Service��� 50

Team Foundation Server Security��� 61

Security Model��� 62

Summary��� 65

■■Chapter 4: Managing Collections�� 67

Collections and Projects Overview�� 67

What Are They?�� 68

Collection Naming Convention��� 69

Setting Up and Managing Team Project Collections�� 69

Team Project Collections��� 69

Summary��� 96

■■Chapter 5: Managing Team Projects��� 97

Team Projects Overview�� 97

Team Project Boundaries�� 98

Team Project Naming Conventions�� 98

vii

■ Contents

Setting up Team Projects�� 98

Reporting Services Permissions to View or Create Reports�� 99

SQL Server Database Roles for Report Authors and to Create Team Projects������������������������������������� 101

Check to Make Sure That You Are in the Project Collection Administrators Group������������������������������ 105

SharePoint Permissions��� 108

Team Project Security�� 110

Pick a Process��� 110

Source Control Choices��� 110

Setting up a Team Project�� 111

Summary��� 118

■■Chapter 6: Managing Source Code and Work��� 119

Working with Source Code: Workspaces��� 119

Server or Local?�� 119

Setting up the Workspace�� 120

Adding a Solution/Project to a Team Project��� 124

Checking In and Out�� 128

Branching and Merging��� 128

Managing Work��� 133

Setting up a Team�� 133

Summary��� 142

■■Chapter 7: Maintaining Team Foundation Server��� 143

Get Up to Date��� 143

Disk Space�� 144

Security! Microsoft Baseline Security Analyzer (MBSA)�� 144

Antivirus�� 144

IIS Process Exclusion��� 144

SQL and SharePoint��� 144

viii

■ Contents

SQL Maintenance�� 145

Backup��� 145

Run DBCC CHECKDB�� 145

Backup�� 145

Scheduled Backups Wizard��� 146

Summary��� 154

■■Chapter 8: Build Management�� 155

Overview��� 155

Setting up a Build Agent�� 155

Scaling and Administering Team Foundation Build��� 158

Starting/Restarting Build Agents��� 158

Settings: Build Retention��� 159

Security: Letting Others Help Manage the Builds�� 159

Using Team Foundation Build�� 160

Build Definitions: Creating and Queueing�� 161

Summary��� 164

■■Chapter 9: Testing with Team Foundation Server��� 165

Do I Need Visual Studio for My Dedicated QA Team/Testers?��������������������������������������� 165

Manual Test Planning, Creating, and Running��� 166

Continuous Integration Testing�� 174

Summary��� 175

■■Chapter 10: Reporting and Other Features Worth Exploring������������������������������ 177

SQL Reporting Services Reports��� 177

SharePoint Dashboards��� 179

Excel Reports�� 180

Other TFS Features You Should Explore�� 181

Lab Management�� 181

ix

■ Contents

Release Management�� 181

ALM Virtual Machines�� 183

Summary��� 184

Index�� 185

xi

About the Author

Gary Gauvin is currently the Director of Application Lifecycle
Management at CD-adapco, the leading provider of CFD (computational
fluid dynamics) software. Gauvin has held senior positions in many of
nation’s top companies, as well as the consulting firm he founded.

Gauvin has worked in software development for over 20 years,
spanning many industries and disciplines. He has been a Microsoft
MVP in the ALM specialty, working closely with Microsoft on various
releases of Team Foundation Server. He has consulted and worked for
the nation’s top technology companies. Gary lives and works in northern
New Hampshire. You can follow his blog at www.theCTO.org. Feel free to
connect with him on LinkedIn at www.linkedin.com/in/garypgauvin.

www.theCTO.org
www.linkedin.com/in/garypgauvin

xiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Blu Arancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

www.bluarancio.com

xv

Acknowledgments

I would like to thank my family for again putting up with the long hours and short deadlines a book like this
requires. I’d also like to thank my co-workers for putting up with my ranting and raving about this book and
occasionally pitching in with some editing. Finally, I’d like to thank the Apress team (especially Jim, Melissa,
Douglas, and Fabio) for their help with the editing, formatting, and keeping things on track. Without them,
this book would have never been completed.

xvii

Introduction

Who This Book Is For
The book is written for anyone who wants to get started quickly with Team Foundation Server. While not
intended to be an exhaustive deep dive, it will provide the system administrator or development manager
with enough detail to begin using TFS in their environment or provide a good jumping-off point for further
study, if needed.

What You Will Learn
This book covers the critical as well as the less obvious aspects of managing Microsoft Team Foundation
Server 2015 in a variety of development and test environments. Coverage includes basic installation, initial
configuration, maintenance, valuable tips, sizing, and performance considerations.

Essentials of Administering Team Foundation Server 2015 explains how TFS can help you incorporate
project management, source control, build automation, and testing in your development environment.
You’ll also learn how to set up TFS to match how you develop software.

The book covers TFS through the whole development process, along with practical advice on how to
use its features effectively to get up to speed quickly.

In addition, the author dives into using TFS in your team, covering subjects like setting up accounts
for different roles, users, and groups, plus what you need to know about TFS security and running a secure
team.

No discussion of a centralized system like TFS would be complete without learning how to back up
and restore it. The author covers what you need to know to maintain TFS, including the backup and restore
details required to properly plan for disaster recovery.

The book details what you need to know about TFS functionality in creating and setting up collections
and projects, how to manage the build process with team build (including setting it up and deploying build
server and agents), using templates to speed up the creation of builds, building multiplatform solutions,
 and testing. It finishes up with a discussion on reporting and hints on additional areas to explore.

1

Chapter 1

Planning for Team Foundation
Server

This chapter explores what you need to consider for establishing a solid Team Foundation Server (TFS)
environment, including the following:

•	 General installation requirements

•	 Accounts and permissions needed

•	 Correctly sizing the environment

•	 Supported operating system requirements

•	 Specific SharePoint requirements

•	 SQL Server requirements

•	 Ports required

•	 Language considerations

Before You Begin
By using Team Foundation Server 2013, teams can enable themselves to get more productive faster and scale
beyond a small team into a larger one, without outgrowing the toolset they are on. I am assuming that you
have a functioning network and Windows Server installations to cover the infrastructure portions required
for the installation. Also, it’s probably worth pointing out that this book is based on Team Foundation Server
2013 Update 3, which was released on August 4, 2014. So if you are using a different edition, please make
sure that you double-check the requirements for that release before you begin.

Team Foundation Server 2013 Editions
Team Foundation Server 2013 (TFS 2013) is available from a multitude of sources and at many price points,
and as soon as I write this, Microsoft will probably add another one. Some popular ways to acquire it are free
(Team Foundation Server 2013 Express is free for up to five users), a Microsoft Developer Network (MSDN)
subscription, and various Microsoft Volume Licensing programs. If you don’t want to host the server-side
components within your organization, another alternative is to use Visual Studio Online. Not sure which is
right for you? Your best bet is to first download and read the Visual Studio 2015 and MSDN Licensing White
Paper available at www.microsoft.com/en-us/download/details.aspx?id=13350.

http://www.microsoft.com/en-us/download/details.aspx?id=13350

Chapter 1 ■ Planning for Team Foundation Server

2

TFS Architecture Overview
Since TFS has a lot of moving parts, I thought I’d give you a picture of how it all fits together. Now before I get
a lot of hate mail on this, it is a simplified chart and I’m likely going to leave off someone’s favorite feature.
All the big pieces are here though. The purpose is to the give the reader a better idea of how what’s being
discussed fits in the big TFS picture.

There are also a number of deployment options that will have an effect on the final look of your
architecture, such as scaled-out servers and high availability (HA) database options (see Figure 1-1). This
should serve as a good general reference, though, as you move through the book.

Figure 1-1.  TFS architecture reference

Chapter 1 ■ Planning for Team Foundation Server

3

Installation Considerations
There are a few pieces of information that you need to collect, and a few configuration tasks that you’ll
need to make sure have been completed properly. Here I’ll cover the system requirements and provide a
handy checklist that you can use so you aren’t hunting around for critical information when you are anxious
to begin.

Basic Requirements
One “new” requirement for this release is a 64-bit server operating system (OS). I know this is really not
“new” news for everyone, but if you haven’t had to install or upgrade an operating system in a while, this
may come as a surprise. Also, you may require different hardware to support a 64-bit operating system
(check with your hardware manufacturer on this). If this applies to you, now you may have that justification
you were looking for on ordering that new server.

You may have had no reason to upgrade your operating system before now, but to run TFS you need to
have a 64-bit server. Running TFS brings the perfect justification for upgrading your OS!)

Another question I’m getting these days on just about everything is if this (Team Foundation Server 2015
in this case) will support a Server Core installation. It will not. (More information on the Core Installation
Option is at http://technet.microsoft.com/en-us/library/cc771345(v=ws.10).aspx.) Just not enough
of what TFS needs with these options.

Installation Checklist
Here is a checklist to make sure that you have the basic information to begin. Please refer back to Table 1-1 in
future chapters, because you’ll be reusing the information here in most chapters.

Table 1-1.  Team Foundation Server 2015 Installation and Configuration Checklist

Details Parameters for Installation

Server names for each server involved:

•	 Team Foundation 2015 (or the old Team Foundation
Server if you are upgrading, and the new server)

•	 Active Directory Domain / Domain Controller

•	 SQL Server (if yours is separate)

•	 SQL Reporting Services Server (if yours is separate)

•	 SharePoint Server (if yours is separate)

See the “Active Directory” and “Supported Operating System
Requirements” sections in this chapter for additional
requirements for this environment. If your planned systems
don’t meet the specifications, go no further until you correct it.

☑☑ TFS Server

☑☑ Active Directory Domain

☑☑ Domain Controller

☑☑ SQL Server

☑☑ SQL Reporting Services Server

☑☑ SharePoint Server

(continued)

http://technet.microsoft.com/en-us/library/cc771345(v=ws.10).aspx

Chapter 1 ■ Planning for Team Foundation Server

4

Accounts and Permissions
You will need a number of accounts for installing and running Team Foundation Server. Since the largest
number of issues I get questions on end up being permissions related as a root cause, I’m going to suggest
that you read this section carefully, without opting for shortcuts. Also, unless you are working on an upgrade
where the accounts have been established and working for a while, I’m going to recommend that you
establish new accounts and not reuse old ones, especially if this is an enterprise install.

Why you ask? Well, for one thing, people tend to adjust the security settings and permissions of
accounts over time either by accident (i.e., having trouble with getting a service to run and giving it Domain
Administrator privileges, and then forgetting to set it back), or if you have an IT security group that scans for
privileged accounts and scales them back based on the last login date (I worked for a large defense contractor
where that was the norm; caused me days of aggravation). You’ll avoid that by starting with new accounts.

Also, no section like this would be complete without a disclaimer: these recommendations should fit
most situations. If you are building a large scaled-out environment in a really security-strict environment,
you will likely need to make some additional adjustments to comply with these rules. Also, the user accounts
could be domain (recommended) or local accounts. If you are installing a component in a workgroup, you
must use local accounts for user accounts, however. The following names are only suggested. There is no
real requirement to use a specific name, but if you do not, be sure to list the one you use since I’ll be referring
to the suggested name from here on out.

Table 1-2 provides the lists of user and service accounts, including descriptions of what they are.

Details Parameters for Installation

Service account names and login information. You’ll want this
information handy throughout the tasks in this book. If you are
creating these, see the “Accounts and Permissions” section in this
chapter as well to make sure that you have the permissions set
correctly. In a simple single server environment you may choose
to use a single account for this, TFSSERVICE for instance.

You will need these basic accounts for installation and operation
(see the “Accounts and Permissions” section). A common question
I get is, “Do I need to actually name my accounts this?” You don’t.
But if you do, it will make your life easier since this is how they are
referred to in most Microsoft documentation and this book.
But if you don’t, here is a handy place to list the equivalents:

TFSREPORTS – reporting reader account

TFSSEVICE – the server service

TFSBUILD – for the build service

TFSPROXY – for the proxy service

And you’ll need these for the other supporting software
(see the “Accounts and Permissions” section, but these are
generally user accounts):

WSSSERVICE – for SharePoint

SQLSERVICE – for SQL Server

☑☑ TFSREPORTS

☑☑ TFSSEVICE

☑☑ TFSBUILD

☑☑ TFSPROXY

☑☑ WSSSERVICE

☑☑ SQLSERVICE

Visual Studio Team Foundation Server 2015. You’ll need this
later on during the installation. For now, just locate the Team
Foundation Server 2015 DVD or ISO file from MSDN.

☑☑ Installation Media / ISO

Table 1-1.  (continued)

Chapter 1 ■ Planning for Team Foundation Server

5

Table 1-2.  TFS Account Permissions

Where Used Recommended
Name (you will find
Microsoft referring
to that name)

Permission Requirements Notes

Installation/
maintenance
user account

TFSADMIN Full System Administrator
permissions on the server(s) for
the install.

You will likely get some grief if you
are in a big IT shop and request
this. However, it is definitely
recommended to make the install
go smoothly.

Reporting TFSREPORTS A user account that has the Allow
logon locally permission. You
will also see this referred to as the
Report Reader account since that
is what it does. This should not be
an administrator account.

You will be prompted for this
account during the install. You
will not be able to specify a built-
in account for the report reader
account.

Team
Foundation
Server

TFSSERVICE Can use a built-in account or a
user account. If you use a user
account, it must have the logon
as a service permission.

If a SharePoint site wasn’t
installed with Team
Foundation Server, you need
to add TFSSERVICE to the
Farm Administrators group
for the SharePoint Central
Administration site.

Do not use the account that you used
to install Team Foundation Server as
the account for TFSSERVICE.

If this installation will use reports,
you need to add TFSSERVICE
to the Content Manager role on
the server that is running SQL
Server Reporting Services. This
will default in the installation to
the Network Service account. This
usually works fine.

Team
Foundation
Build

TFSBUILD This can be a built-in or a user
account. If it’s a user account,
make sure it has the logon as a
service permission.

Team
Foundation
Server Proxy

TFSPROXY This can be a built-in or a user
account. If it’s a user account,
make sure it has the logon as a
service permission.

Only used in a Proxy install, but
better to have it ready if you decide
to deploy this component.

SharePoint
products

WSSSERVICE Needs to be a user account. If you install Team Foundation
Server with the default options,
this will be the same as the report
reader account. Note: It is also
the identity of the application
pool for the SharePoint Central
Administration site.

SQL Server SQLSERVICE This can be a built-in or a user
account. If it’s a user account,
make sure it has the logon as a
service permission.

No particular TFS requirements for
this account; just make sure SQL
Server is functioning normally for
the install.

(continued)

Chapter 1 ■ Planning for Team Foundation Server

6

Supported Operating System Requirements
If anything, the supported operating systems got tighter this release with the elimination of some platforms.
You can use:

Server operating systems (Server Core installations not supported):

•	 64-bit versions of Windows Server 2012 R2 (Essentials, Standard, Datacenter)

•	 64-bit versions of Windows Server 2012

•	 64-bit versions of Windows Server 2008 R2 (Standard, Enterprise, Datacenter)

•	 Windows Small Business Server 2011 (Standard, Essentials, Premium Add-On)

For the love of sanity, if you choose to go the SBS route, make sure that you calculate your fully
configured SBS server with all its components (Exchange, etc.), and then add the Team Foundation Server
requirements to those. Better yet, use it in your deployment, but not as a single-server TFS solution.

For installations of TFS or SQL Server with Windows Server 2008 R2, you need .NET Framework 3.5
installed. On Windows Server 2008 R2, you can install .NET Framework 3.5 by using the Add Features Wizard
from Server Manager.

Supported client operating system requirements:

•	 Windows 8.1 (Basic, Professional, Enterprise)

•	 Windows 8

•	 Windows 7 (Home Premium, Professional, Enterprise, Ultimate, SP1 minimum)

Where Used Recommended
Name (you will find
Microsoft referring
to that name)

Permission Requirements Notes

Release
Management
Server

RMSERVER Identity used in Internet
Information Service (IIS) for the
application pool and the Release
Management Monitor Windows
service.

This will default in the installation
to the Network Service account.
This usually works fine.

Release
Management
Server

DEPLOY This account is used to configure
machines in your environment,
so it will need whatever
permissions are required to do
this. Most of the time it will need
to be in the Administrators group.

If this account needs to access
builds on the network, make sure
it has access to the network drop
location that you specified in
the build.

Release
Management
Server
(connected
to TFS)

RMTFS This is a TFS user that is a
member of the Project Collection
Administrators group. Set “Make
Requests on Behalf of Others”
to Allow.

Not sure what this piece is all about
yet? Don’t worry, we’ll hit it again
later, and you might not even
need it.

Table 1-2.  (continued)

Chapter 1 ■ Planning for Team Foundation Server

7

It’s best to use a client OS only as a test install for a proof of concept. You will not be able to install
SharePoint, Reporting, or TFSProxy. What does this mean for you? No web site to collaborate, no HTML
project reports, and you won’t be able to proxy source files. Move to a server OS above for any production
use. I always find it amazing when I see questions on “performance issues,” and then find someone using a
client operating system. Also, the “Standard” install isn’t supported on a client OS since it installs SharePoint.
Have I talked you out of trying to do this on the cheap with a client OS yet? Very good.

Performance and Planning
Nothing gets more hotly contested in systems engineering circles than performance recommendations.
The recommendations in Table 1-3 come directly from Microsoft. They are the minimum. Take special note
of the new hard disk requirements. Also, the numbers do not include recommendations for SharePoint
installed on the same server; those recommendations are in the next section. My notes from my personal
experience are in a following note.

Table 1-3.  Scaling and Performance Recommendations

Number of Users Role Configuration CPU Memory Hard Disk

Less than 250 users TFS Server Single-server (Team
Foundation Server and
the Database Engine on
the same server).

1 single-core
processor at
2.13 GHz

2 GB 1 disk at 7.2k
rpm (125 GB)

250 to 500 users TFS Server Single-server (Team
Foundation Server and
the Database Engine on
the same server).

1 dual-core
processor at
2.13 GHz

4 GB 1 disk at 10k rpm
(300 GB)

500 to 2,200 users TFS Server Dual-server (Team
Foundation Server and
the Database Engine on
different servers).

1 dual-core
Intel Xeon
processor at
2.13 GHz

4 GB 1 disk at 7.2k
rpm (500 GB)

Database
Server

This is for the Database
Engine portion with 500 to
2,200 users (for preceding
configuration).

1 quad-core
Intel Xeon
processor at
2.33 GHz

8 GB SAS disk array at
10k rpm (2 TB)

2,200 to 3,600 users TFS Server Dual-server (Team
Foundation Server and
the Database Engine on
different servers).

1 quad-core
Intel Xeon
processor at
2.13 GHz

8 GB 1 disk at 7.2k
rpm (500 GB)

Database
Server

This row is for the
Database Engine with
2,200 to 3,600 users (for
preceding configuration).
Performance

2 quad-core
Intel Xeon
processors at
2.33 GHz

16 GB SAS disk array at
10k rpm (3 TB)

Chapter 1 ■ Planning for Team Foundation Server

8

Hardware
Table 1-3 reviews the general hardware recommendations for Team Foundation Server, broken out by tier
or role. These are good starting recommendations, but you need to keep in mind any local considerations
that may increase these.

Scaling Tips: One to Many
So you need more performance out of your Team Foundation Server 2015 installation. The first step is to be
sure that you meet the minimum requirements in this chapter. Since there are a lot of scenarios here, let’s
consider this one: you’re starting to max out on your single-server installation. The one axiom you will note
in any system’s performance recommendation chart is that you can never have enough RAM, fast enough
processors, or fast enough disk subsystems to support everything on one system. So what, in general, should
you scale out to? It really depends on which components in the Team Foundation Server are the heaviest
used. For a lot of people, that ends up being the SharePoint Server. After that, move your databases to a
separate SQL Server and Reporting Services server.

I covered a very select scenario here, and yours may be different. For more advanced considerations,
I highly recommend reading up on Team Foundation Server performance recommendations in the Visual
Studio ALM Rangers guide at http://vsarplanningguide.codeplex.com.

SharePoint Requirements
Team Foundation Server 2015 is compatible with both SharePoint 2010 and SharePoint 2013— Foundation,
Standard, or Enterprise. If you are planning on using SharePoint products in your configuration (and why
wouldn’t you want to, really), you’ll need to beef up the preceding figures, or alternatively, use another
server to host SharePoint. How much beefing up? Let’s consider SharePoint Foundation 2013 (which Team
Foundation Server installs for you), which needs a 64-bit 4-core CPU and a minimum of 8 GB of RAM. If you
install SharePoint 2013 on a server that is also running SQL Server (which is required by the TFS standard
configuration), SharePoint recommends that you have 24 GB of system memory; if you have only 8 GB, the
Team Foundation installer will throw a warning if you only have 10 GB, but you can finish the install. My
advice is that if you intend to install SharePoint on the same server as Team Foundation Server, read up
on the requirements at http://technet.microsoft.com/en-us/library/cc262485(v=office.15).aspx.
At the very least, plan on adding the memory and disk requirements to your existing minimums for Team
Foundation Server.

SQL Server Requirements
With SQL Server you can use SQL Server 2012 or SQL Server 2014, and you have multiple options from there:

•	 The basic configuration of Team Foundation Server, which comes with SQL Server
2014 Express

•	 One of the supported editions of SQL Server 2014 (Express, Standard, or Enterprise)

•	 An existing installation of SQL Server 2012 or SQL Server 2014

In any case, your server needs to fit in one of the following supported configurations detailed in
Table 1-4.

http://vsarplanningguide.codeplex.com/
http://technet.microsoft.com/en-us/library/cc262485(v=office.15).aspx

Chapter 1 ■ Planning for Team Foundation Server

9

SQL Server 2014 Performance
TFS 2013 Update 2 adds support for SQL 2014. TFS2015 does as well. The only problem with this is that the
hardware requirements to run SQL Server 2014 are much higher than in earlier versions, so if you had a
minimal SQL installation prior, SQL Server 2014 might seem like a performance hog. This has caught quite a
few people off guard and has generated more than a few support calls. What does this mean for you? Well, if
you had your heart set on upgrading to SQL Server 2014 as part of your install, then you may need to do a little
more planning and upgrading prior. A good rule of thumb to follow for installations supporting 500+ users is to
add 0.4 GB of RAM per collection database. For more detailed information on this issue, or if you have installed
SQL 2014 and now have some specific concerns, the Microsoft Knowledge Base article at http://support.
microsoft.com/kb/2953452/en-us will help.

TFS Express SQL Naming Requirement
One odd thing about using TFS Express is that it only supports SQL Server Express using the default instance
name of “SQLExpress”. I doubt most people opting for this free edition of TFS will mind, but it’s worth
pointing out to save headaches later.

Table 1-4.  SQL Server Requirements

Requirement Supported Configuration

Supported editions SQL Server 2014 Express (limited or no SQL Server high availability support;
see note on naming).

SQL Server 2014 Standard Edition (limited or no SQL Server high availability
support).

SQL Server 2014 Enterprise Edition.

SQL Server 2012 Express with SP1 (limited or no SQL Server high availability
support, see note on naming).

SQL Server 2012 Standard Edition with SP1 (limited or no SQL Server high
availability support); it is strongly recommended to install CU2 or higher on top of
SQL Server 2012 SP1.

SQL Server 2012 Enterprise Edition with SP1; it is strongly recommended to install
CU2 or higher on top of SQL Server 2012 SP1 or hotfix KB2793634 minimally.

Required for Team
Foundation Server

Database Engine Services (this is your SQL Database).

Full-Text and Semantic Extractions for Search.

Required for reporting Reporting Services—Native.

Analysis Services.

Collation settings Must be accent sensitive.

Must not be case sensitive.

Must not be binary.

Must not be binary – code point.

For more information, see http://msdn.microsoft.com/en-us/library/
dd578603.aspx.

Authentication Windows authentication.

Service account You can use a domain account or a built-in account.

http://support.microsoft.com/kb/2953452/en-us
http://support.microsoft.com/kb/2953452/en-us
http://msdn.microsoft.com/en-us/library/dd578603.aspx
http://msdn.microsoft.com/en-us/library/dd578603.aspx

Chapter 1 ■ Planning for Team Foundation Server

10

SQL Server High Availability Features Supported on Team Foundation Server
So you’ve heard about the new high availability (HA) features in SQL Server 2012 and SQL Server 2014.
Using these requires a Team Foundation Server–specific configuration. The development team tried really
hard to make the HA features independent of Team Foundation Server, but some configuration is required,
as indicated in Table 1-5.

Table 1-5.  High Availability Feature Support

SQL Server HA Feature TFS support Requires TFS Configuration?

AlwaysOn Failover Cluster Instances
(was known as Failover Clustering) / Failover
Clustering

Yes No

AlwaysOn Availability Groups (you can now
use more than one in TFS 2015)

Yes Yes (Must include your TFS_Configuration
database and all of the TFS_Collection
databases in the group. Select option
during install or upgrade on Advanced
Wizard only)

SQL Mirroring (Deprecated feature. Available
but not recommended. Use AlwaysOn
Availability Groups instead)

Yes No

SQL Replication No No

SQL Log Shipping No No

The configuration and planning of these advanced features is well beyond the scope of what I can cover
here. If you’re considering/planning on using these features in a TFS environment, the bottom line is to
decide what your tolerance for downtime is, and then plan the HA configuration to support that goal. For
further reading, I recommend following this Microsoft link: http://msdn.microsoft.com/en-us/library/
vstudio/jj662725.aspx).

No Touchy the TFS DB!
Microsoft support is getting a bit testy with users who have scripts, queries, or so forth, that perform read
operations on any of the TFS databases, and who then try to get support with it running. So if it does come
to a call to support, or if you are going to upgrade an existing installation, I recommend turning this off
prior. People have had scripts that read against the TFS DBs for years, mostly to make up for a lack of a
management feature or to pull statistics that would be difficult to get at otherwise. I’ve developed some
pretty nifty queries that I use for security checking, for instance. While reads are nondestructive in the
general sense, they do put a load on the system and could interfere with debugging tools or an upgrade.

Active Directory
You can install Team Foundation Server on multiple servers if they are all in an Active Directory Domain,
and that domain is at the functional level that Team Foundation Server supports. A single server on a
workgroup is also supported. You cannot, however, install Team Foundation Server on a server that has
domain controllers running Windows NT Server 4.0 (yes, there are still a few around). Table 1-6 shows the
functional levels that are not supported. All others are considered fair game at this point for TFS 2015.

http://msdn.microsoft.com/en-us/library/vstudio/jj662725.aspx
http://msdn.microsoft.com/en-us/library/vstudio/jj662725.aspx

Chapter 1 ■ Planning for Team Foundation Server

11

Table 1-6.  Functional Levels and Active Directory

Functional Levels for Active Directory Domains Supported

Windows 2000 mixed-mode domain controllers that are running Windows NT Server 4.0,
Windows 2000, Windows Server 2003, and Windows Server 2003 R2.

No

Windows Server 2003 interim-mode domain controllers that are running Windows NT
Server 4.0, Windows Server 2003, and Windows Server 2003 R2.

No

Ports
You will likely need to open some ports on your firewall so that Team Foundation Server can communicate
with the various interfaces it needs. Table 1-7 shows the default ports that you need to make sure are open. If
you have modified your installation, you’ll need to verify what these are set to in your environment. This may
require you to speak with your IT department if you are in a larger company.

Table 1-7.  Ports

Service Default TCP Port Alternate Port?

SQL Service (Database Engine)

Note: This is used for the default instance (the first
one); for named instances it uses a dynamically
assigned port. Use the SQL Server Configuration
Manager to find out.

1433 ☑☑ Alternate Port

SQL Browser Service (Database Engine) 1434 ☑☑ Alternate Port

SQL Server Analysis Services Redirector 2382 ☑☑ Alternate Port

SQL Server Analysis Services 2383 ☑☑ Alternate Port

SQL Server Reporting Services 80 ☑☑ Alternate Port

Report Server (if it’s not on the Team Foundation
Server)

Windows Management
Instrumentation(WMI)

☑☑ Shared Service
Host, ports assigned
through DCOM

Default web site (for SharePoint; if you aren’t sure,
you can use Internet Information Services (IIS)
Manager to check)

80 ☑☑ Alternate Port

SharePoint Central Administration (if you aren’t sure,
just start the app and check; if you need to change it,
you will need to do it in both here and in the Bindings
for the site in IIS)

17012 ☑☑ Alternate Port

Team Foundation Server 8080 ☑☑ Alternate Port

Team Foundation Server Proxy 8081 ☑☑ Alternate Port

Release Management Server (if you are using this) 1000 ☑☑ Alternate Port

Chapter 1 ■ Planning for Team Foundation Server

12

Also, if you are using Windows Firewall, the install process will set the ports for you. If you are using
another firewall, you’ll need to check the documentation or with your local IT person to figure out how to get
these open.

Language Requirements
Team Foundation Server supports the language of the operating system it’s put on. However, it can also be
installed in English on a non-English system under certain circumstances. Why, you ask? Consider this:
you may work with development teams across the world with different servers that you want to include in
a scale out deployment. While the operating systems may likely be deployed in the local language, you’ll
probably want to have a common language on the TFS environment. SharePoint will complicate this a bit.
SharePoint must always match whatever language pack is on the TFS server. Table 1-8 shows the allowable
combinations of operating system language, TFS, and SharePoint.

Table 1-8.  Language Requirements

Operating system Team Foundation Server SharePoint

English English English

English Language other than English Language (or language pack) must match Team
Foundation Server

Language other
than English

English English (or English-language pack added)

Language other
than English

Language must match the
operating system

Language (or language pack added) to match Team
Foundation Server

Summary
This chapter covered what you need to know to plan a successful Team Foundation Server deployment.
Starting with the basic requirements, I provided a list of what you need to run TFS. I also provided a handy
checklist. If this is your first time doing a Team Foundation Server deployment, it is highly recommended
that you use this checklist. Account permissions were also covered. Please pay particular attention to this;
I’ve had many a customer installation fouled up from not following these requirements. Scaling was also
discussed, as well as some specifics on SQL Server requirements, Active Directory, ports, and language
requirements.

13

Chapter 2

Installing Team Foundation Server

Now comes the fun part! This chapter explores the setup experience and how to manage it. You’ll now
appreciate the time you spent planning in the first chapter, as you’ll be utilizing a lot of the information
you gathered. Hopefully, you’ve followed my advice in the previous chapter and you’ll have your checklists
together with the required information. If not, no problem. Go back and get it together. I’ll wait…

This chapter covers the following:

•	 Various scenarios you may wish to use and ones that you may not have
considered yet

•	 The general workflow of an install, so you’ll know what’s coming

•	 A step-by-step walk-through of a new install

Install Categories
As mentioned in the previous chapter, there are scaling considerations. This is especially true if you are in
an existing environment that is maxed out, and this update is part of your plan to add capacity. Most people,
however, are looking at single-server environments, or close to that.

In order to satisfy the broadest audience, this is the model that you will follow in this book. If I get into a
section where a scaling or high-availability touch point exists, I will mention it in a callout or note toward the
end of the chapter. To begin, let’s review the main installation types that are available. There are two broad
categories, and you need to see which you fall into.

New Install
A new installation is the most straightforward installation type. There are no earlier versions of Team
Foundation Server to contend with, and other than the normal prerequisites, you can begin the installation.
Here I am going to assume that you are using a single-server configuration and that you haven’t chosen to
scale the environment to multiple servers (see Chapter 1 for more details on scaling and performance). One
important change from versions past: Microsoft is no longer having any of the installation wizards actually
install SharePoint Foundation or jump to the SQL Reporting Service Configuration Manager to finish that
for you (it will do the integration only), so you’ll need to take care of these on your own prior to your install.
For instructions on running the SQL Reporting Services Configuration Manager to configure and check
SQL, please refer to http://msdn.microsoft.com/en-us/library/Dd578643.aspx. I’ve also provided a brief
review of the process at the end of the of the “Installation Experience” section.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1
http://msdn.microsoft.com/en-us/library/Dd578643.aspx

Chapter 2 ■ Installing Team Foundation Server

14

Which Wizard to Use?
Once you get into the install, you’ll run into the wizard choice pretty quickly, so it’s best to talk about it
now. The Team Foundation Server Configuration Center offers you the following installation/configuration
choices:

•	 Basic: This will install (as the name implies) just the basic services for running
TFS. It will also either install SQL Express, or let you connect to existing SQL Server
Standard or Enterprise, but it won’t install them for you. You’ll get Source Control,
Work Item Tracking, and Build Services. You do not get SharePoint or Reporting
Services Integration configured, however. All default options are selected for you.
It lets you install on a client OS, though, for a really small system.

•	 Full Server: If you need full control over all aspects of the install, this is the choice for
you. It only runs on Windows Server OS (so no client OS installs with this one). This
wizard is also intended for a single server with the default options. The big difference
with this one is that it will also configure SharePoint Foundation 2013, and configure
SQL Server Reporting Services. This is the option recommended for most single-server
TFS installs, and the one I’ll walk through in this book. Additionally, if you need to
install or reinstall the Application Tier onto an existing web site, you’ll want to use
the Application Tier Only wizard instead. The only thing you wouldn’t want to use
this for is to simply install or reinstall the Application Tier on its own (see next for
that) or if you.

•	 Application Tier Only: As the name implies, this is used mainly to install an
additional Application Tier (Team Foundation Server) to your existing Team
Foundation deployment. You can use it on client and server operating systems.
It’s also very useful for moving a TFS from one server to another, and for disaster
recovery. Don’t use this wizard to set up your first Team Foundation Server.

•	 Upgrade: This is the wizard to use to upgrade from an older Team Foundation Server
version. It supports both client and server operating systems. Please remember to
back up your server prior to starting this wizard. This wizard has come a long way
since it was introduced in TFS 2010, but it still never fails to inspire panic, because
one of the first things it does is remove the old version, but if this fails, it will not
reinstall the old one for you.

Here you will want to install the standard configuration. This makes sense if you want to install Team
Foundation Server on a single server with reporting and a team portal. It makes installation much simpler.
The workflow you are going to follow here is very simple; I detail it in Figures 2-1 and 2-2 for your reference.

Pr
el

im
in

ar
y

Ta
sk

s Verify server
system and
hardware

In
st

al
l S

QL
 S

er
ve

r SQL Server
DB Engine

Reporting
and Analysis
Services

In
st

al
l T

FS

Team
Foundation
Server

Share Point
Foundation
(During TFS
Install)

Figure 2-1.  TFS installation workflow

Chapter 2 ■ Installing Team Foundation Server

15

Upgrades
So you aren’t going to step through a full upgrade process here; there are just too many variables. And no
matter which one I chose, it wouldn’t add much value unless it matched your scenario. What would be
valuable, though, is reviewing the upgrade requirements, selecting the right options, and reviewing the most
common scenarios to ensure a successful upgrade. In a lab environment, you can get away with a lot; however,
in a production environment, you need to pay careful attention to the prerequisites and warnings before you
begin. You also have some choices to make on what to do with SharePoint and SQL Report Server. Let’s dive in.

Prerequisites
I’ll review some prerequisites next to avoid roadblocks later during the install, when it can be at least twice
as annoying.

Upgrade Paths for TFS

First, you need to see if you can upgrade right to Team Foundation Server 2013, or if you need to take a
longer path. So here is a list of the earlier releases you can upgrade directly from:

•	 Team Foundation Server 2015

•	 Team Foundation Server 2013

•	 Team Foundation Server 2012 with Update 4 through Team Foundation Sever 2012

•	 Team Foundation Server 2010 with Update 1

Configuration DB on local SQL Server
Instance

local SQL Server Reporting and
Analysis Instances

Team Foundation Server Extensions
(installed automatically) on local

SharePoint Web Application

Figure 2-2.  Items configured in a standard single-server installation

Chapter 2 ■ Installing Team Foundation Server

16

How About Upgrades from Older Releases?

If you have Team Foundation Server 2008, you are in luck in a sense. You can download a special ISO disk
file (vs2012_tfs_enu.iso) that you can use to upgrade to Team Foundation Server 2012. This download is
available at http://go.microsoft.com/fwlink?linkid=255990.

■■ Note  ¿Hablas español? A frequent question I’ve seen regards whether you can change languages during
the upgrade. No, you cannot. You’ll need to leave it as is, matching the locale of the operating system.

SQL Server

As discussed in the first chapter, SQL Server 2008 is no longer supported. This will create a bit of work for you
if you are using it; you’ll need to upgrade it before you begin the TFS upgrade. You need to be at SQL Server
2012 with cumulative Update 2 at least. If you are considering a jump to SQL Server 2014, please review the
system requirements on that carefully since it’s quite a jump from SQL 2012.

The Trouble with SharePoint and SQL Reporting Services

I haven’t hit many Team Foundation Server deployments that didn’t use SharePoint or SQL Reporting
Services, and more than likely, both. If you are going to keep these during the upgrade, you just need to
make sure that the SQL Server is at the correct version (see the previous section) and that SharePoint is at the
correct version, and if so, then you are good to go. SharePoint Services 3.0 and Microsoft Office SharePoint
Server 2007 are no longer supported, so you need to stop now to upgrade those, if necessary.

Is it possible for you to skip installing SharePoint and SQL Reporting Services for now and do it later?
Not easily, so it’s best to take care of that now if they are part of your installation plan. The primary reason
is because one of the things that the upgrade wizard does is reconnect all those links to your projects and
reports, and doing that manually later would be a real pain; so best to tackle it now.

TFS Upgrade Scenarios
There are three choices for an upgrade path, which is similar to an installation except that the path is
more or less chosen for you depending on the environment that the upgrade wizard discovers. Some of
the preparation steps are different, however, depending on the scenario that you are in; thus, it’s good to
understand the differences so that you know where you are going and what is expected.

Back Up!
Make sure that you get a clean TFS backup of all databases and the system itself. This is critical should
something go wrong, even as part of an upgrade scenario. What is a “clean” backup of a TFS database? It is
a backup that uses transaction marking, as specified in the MSDN article at http://msdn.microsoft.com/
en-us/library/ms253070.aspx. Alternatively, if you have a current TFS2012 or later installation, there is a
wizard to perform this step for you in the TFS Administrator Console at https://msdn.microsoft.com/
en-us/library/hh561429(v=vs.120).aspx. Note these haven’t been updated for TFS 2015 as of this writing,
but the information still applies.

If you are starting back even further, you should check out my blog entry at www.thecto.org/
blogengine/post.aspx?id=5a473b34-9def-4643-b95e-4491139979cf.

http://go.microsoft.com/fwlink?linkid=255990
http://msdn.microsoft.com/en-us/library/ms253070.aspx
http://msdn.microsoft.com/en-us/library/ms253070.aspx
https://msdn.microsoft.com/en-us/library/hh561429(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/hh561429(v=vs.120).aspx
http://www.thecto.org/blogengine/post.aspx?id=5a473b34-9def-4643-b95e-4491139979cf
http://www.thecto.org/blogengine/post.aspx?id=5a473b34-9def-4643-b95e-4491139979cf

Chapter 2 ■ Installing Team Foundation Server

17

TFS Basic or Express Upgrades
The following steps are for upgrading a minimal installation of Team Foundation Server. No SharePoint or
Reporting. If either of these are part of your configuration, you need to look at the Standard or Advanced
scenario instead.

	 1.	 Check the requirements laid out in Chapter 1 of this book. You’ll need to have the
account names used originally. TFS defaults to using the Network Service, which
is usually fine, but you can utilize whatever account was used originally as well.

	 2.	 Back up! Make sure that you get a clean TFS backup (see previous note) of the
complete system, just in case. This is a good practice with any major system
change.

	 3.	 Update the system to the latest service packs. Specifically, this is for SQL Express.
The easiest way is to go to Windows Update on your TFS system. You may need to
reboot after updating, as is usual with some updates.

	 4.	 Uninstall TFS if you have TFS 2010 installed. If you are lucky enough to have TFS
2012, you can move to the next step.

	 5.	 Upgrade TFS. This is the part that you were waiting for! Locate your media or
ISO file, and then select the TFS server installer, tfs_server.exe, as shown in
Figure 2-3. Upgrade from the Configuration Center menu, as depicted
in Figure 2-4.

Figure 2-3.  Select the TFS installer

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 2 ■ Installing Team Foundation Server

18

	 6.	 Follow the upgrade wizard from here. This is as detailed as I get with the wizard
here. For more detailed steps on the upgrade wizard, please consult the TFS
Installation Guide available at www.microsoft.com/en-us/download/details.
aspx?id=29035.

	 7.	 Lastly, you may want to verify that the server is working correctly and/or set up a
new build machine. This is covered in Chapter 3.

Standard Upgrade
In the Standard scenario, you are looking at a fairly common situation—an upgrade using the same
hardware, or an in-place upgrade, as it’s commonly called. Here are the installation steps, which are almost
identical to the Basic, with the possibility of SharePoint in the mix:

	 1.	 Check the requirements as laid out in Chapter 1. You’ll need to get the account
names used originally. TFS defaults to using the Network Service, which is
usually fine, but you can utilize whatever account was used originally.

	 2.	 Back up! Make sure that you get a clean TFS backup (see earlier note) of
the complete system, just in case. This is a good practice with any major
system change.

Figure 2-4.  Selecting the Upgrade option from the Configuration Center

http://www.microsoft.com/en-us/download/details.aspx?id=29035
http://www.microsoft.com/en-us/download/details.aspx?id=29035
http://dx.doi.org/10.1007/978-1-4842-0571-6_3
http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 2 ■ Installing Team Foundation Server

19

	 3.	 Update the system to the latest service packs. Specifically, this is for SQL.
The easiest way is to go to Windows Update on your TFS system if SQL is locally
installed. If it isn’t, update both servers. You may need to reboot after updating,
as is usual with some updates.

	 4.	 Uninstall TFS if you have TFS 2010 installed. If you are lucky enough to have
TFS 2012, you can move to the next step and retain some app tier settings. Don’t
worry, this will not delete any TFS databases.

	 5.	 If SharePoint is local, then the uninstall wizard will take care of uninstalling the
TFS Extensions for SharePoint Server. If not, you will need to uninstall these now
on that server.

	 6.	 Upgrade TFS. This is the part that you were waiting for! Locate your media or ISO
file, and then select the TFS server installer, tfs_server.exe. Next, upgrade from
the Configuration Center menu. (If you need a visual, please see Figure 2-3).

	 7.	 Lastly, you may want to verify that the server is working correctly and/or set up a
new build machine. We’ll cover some of this in the next chapter.

Advanced Upgrade
Next on the difficulty scale is something referred to as an advanced upgrade. The biggest thing here is that
you are expected to use different hardware. You may have heard the term swing migration. This can be a
little nerve-racking, but it’s actually ridiculously easy compared to some other centralized version control
systems. This is because most of the intelligence in the system is located in the databases, which are portable
(with some work). This is how you perform an advanced upgrade:

	 1.	 Check the requirements as laid out in Chapter 1. You’ll need to have the account
names used originally. TFS defaults to using Network Service, which is usually
fine, but you can utilize whatever account was used originally.

	 2.	 Back up! Make sure that you get a clean TFS backup (see earlier note) of the
complete system, just in case. This is a good practice with any major
system change.

	 3.	 Install SQL Server on your new server. Please review the requirements for SQL for
TFS in the previous chapter to make sure that you don’t get in a jam mid-upgrade.
You are going to install the features that you need (at a minimum). For more details
on the install process, please see the beginning of this chapter. The following lists
what you’ll need to select during the SQL installation process:

•	 Database Engine Services (this is your SQL Database)

•	 Full-Text and Semantic Extractions for Search

•	 Reporting Services – Native

•	 Analysis Services

	 4.	 Install and set up SharePoint. I’m assuming that you’re not skipping the
SharePoint products here. You can either use your existing server or set up a new
one. The processes are slightly different.

•	 For an existing server, you just need to uninstall the existing SharePoint
extensions, and then install the new ones, as indicated in previous sections.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 2 ■ Installing Team Foundation Server

20

•	 For a new server, it’s a little more complex. You’ll need to install the TFS
Extensions for SharePoint Server first, and then you’ll detach the current
content database because you are replacing it in the next step.

	 5.	 Restore current data. This is actually a pretty cool operation. Basically, you
are going to take the existing content and move it to the new servers or
location. Yes, I realize that with TFS, the Application Tier isn’t there yet.
Not to worry. Just restore the databases that you backed up. You can use the
TFS backup tool to perform this operation. Further instruction is available at
http://msdn.microsoft.com/en-us/library/jj620932.aspx if you aren’t
familiar with it. This tool automatically ensures that you have a clean backup.
(Note: This is a TFS2013 link, but the process is the same. No update from
Microsoft as of this writing.)

	 6.	 Update the system to the latest service packs. Specifically, this is for SQL.
The easiest way is to go to Windows Update on your TFS system, if SQL is locally
installed. If it isn’t, update both servers. You may need to reboot after updating,
as is usual with some updates.

	 7.	 Uninstall TFS if you have TFS 2010 installed. If you are lucky enough to have
TFS 2012 or TFS 2013, you can move to the next step and retain some app tier
settings. Don’t worry, this will not delete any TFS databases.

	 8.	 If SharePoint is local, then the uninstall wizard takes care of uninstalling the TFS
Extensions for SharePoint Server. If not, you need to uninstall these now on
that server.

	 9.	 Upgrade TFS. This is the part that you were waiting for! Locate your media or ISO
file, and then select the TFS server installer, tfs_server.exe. Next, upgrade from
the Configuration Center menu. (If you need a visual, please see Figure 2-3).
Please remember to tell the upgrade wizard where your SQL server and your
SharePoint server are located.

	 10.	 Lastly, you may want to verify that the server is working correctly and/or set up a
new build machine. We’ll cover this in the next chapter.

Installation Experience
Using the Standard Single Server installation wizard, I’m going to step through the installation process.
I’m using this configuration because it’s fairly simple for documentation purposes, and one of the more
popular layouts for Team Foundation Server.

	 1.	 Select the media. Choose the DVD/ISO file for the TFS install, as depicted
in Figure 2-5.

http://msdn.microsoft.com/en-us/library/jj620932.aspx

Chapter 2 ■ Installing Team Foundation Server

21

	 2.	 Pick a location (most people just leave the default and keep going). Next, accept
the license terms (as shown in Figure 2-6) to continue. You’ll be presented with
a screen similar to Figure 2-7.

Figure 2-5.  Media selection

Figure 2-6.  Pick a location for the installation

Chapter 2 ■ Installing Team Foundation Server

22

	 3.	 Pick a wizard. As I said earlier, you are going to choose the Full Server
(see Figure 2-8). You’ll then be brought to the Full Server Configuration Wizard
welcome screen. The only option here is to choose if you want to participate in
the Visual Studio Experience Improvement Program by supplying automatically
collected information (see Figure 2-9). You can make your own choice on that
one unless your company has guidelines on this sort of thing. Won’t affect the
configuration either way.

Figure 2-7.  The first progress screen—you are on your way

Chapter 2 ■ Installing Team Foundation Server

23

Figure 2-8.  Standard Single Server wizard

Figure 2-9.  Full Server Configuration Wizard Welcome

Chapter 2 ■ Installing Team Foundation Server

24

	 4.	 Now you can choose the SQL Server Instance to use. You can (and should) test
it as I did here. I also expanded but did not use the advanced options. You could
use these to use pre-created empty DB’s and a Server Database Label. This could
be very important in an enterprise environment with a separate database team
that requires they create them rather than the configuration tool. Here, I’m going
to let the tool do it (see Figure 2-10).

Figure 2-10.  SQL instance selection and advanced options

	 5.	 Next, you are prompted to enter some account information (see Figure 2-11).
You need to specify the primary service account for Team Foundation Server.
Here’s where you get to use the checklist from the previous chapter. Get the
account credentials you identified as the TFSSERVICE account, and then enter
them. You could also just use the default “Local Service” if this is a fairly simple
environment.

Chapter 2 ■ Installing Team Foundation Server

25

	 6.	 In the next screen (see Figure 2-12), you get to fine-tune your Application Tier
settings if you want. You don’t need to, all the values you see here were populated
by default, but you could adjust the Site, Port, and Virtual Directory. My advice
on these is don’t get creative and take the defaults unless you can’t, makes
support afterward easier. For the File Cache you should put this to a non-system
drive if possible. Since there is only one on the sample system, I’m going to leave
that as default as well. Click Next when ready.

Figure 2-11.  Service account selection

Chapter 2 ■ Installing Team Foundation Server

26

	 7.	 The Build Service is the next item (see Figure 2-13). Here you select the service
account for the build services and a working folder to perform the builds. This
is another place where you can take the defaults and keep moving, but you
are going to put the TFSBUILD entry here from the checklist in Chapter 1. I’m
going to leave the Auto Start option for the service here, but in a production
environment, you’ll want to check this.

Figure 2-12.  Configuring the Application Tier

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 2 ■ Installing Team Foundation Server

27

	 8.	 Now you need to integrate with reporting services. If this isn’t already installed
and configured, you’ll need to stop here and do that in the SQL Reporting Service
Configuration Manager. The option to do this is not checked by default. The
installation wizard detects whether or not it is, and alerts you (see Figure 2-14).
I’d recommend doing it now if you can. Hit Next.

Figure 2-13.  Build Service configuration

Chapter 2 ■ Installing Team Foundation Server

28

	 9.	 In this next screen, you enter the Reporting Services settings (see Figure 2-15).
This is another screen where the defaults are fine for our purposes. You could
specify a Reporting Services Instance on a different server, which would be my
recommendation for a build-out.

Figure 2-14.  Reporting Services configuration selection

Chapter 2 ■ Installing Team Foundation Server

29

	 10.	 Here you simply need to select and verify the Analysis Services. In a larger
environment, you would select your Analysis Services Instance on another
server. Click Test to verify that the instance is active, as shown in Figure 2-16.
Then click Next.

Figure 2-15.  Reporting Services instance selection

Chapter 2 ■ Installing Team Foundation Server

30

	 11.	 The last screen for Reporting Services. Here you need an account for the Report
Reader. You can get this from your checklist in Chapter 1 on the TFSREPORTS
entry. There is no option to use a built-in account (see Figure 2-17).

Figure 2-16.  Analysis Services selection

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 2 ■ Installing Team Foundation Server

31

	 12.	 On the next screen, you can select to integrate with SharePoint (see Figure 2-18).
If the wizard detects SharePoint products, it clicks the box and populates the
URLs. Please click Test to ensure that they are valid and then click Next.

Figure 2-17.  Report Reader Account

Chapter 2 ■ Installing Team Foundation Server

32

	 13.	 The last item in the wizard that prompts you for data is the Project Collections
screen (see Figure 2-19). It is checked to create a default collection; leave this
checked and you can alternatively change the name and add a description.
You are just going to hit Next here and take the defaults.

Figure 2-18.  SharePoint integration

Chapter 2 ■ Installing Team Foundation Server

33

	 14.	 Now you come to the Review screen (see Figure 2-20), where you can
double-check your entries one last time. When you are ready, hit Next.

Figure 2-19.  Project Collection

Chapter 2 ■ Installing Team Foundation Server

34

	 15.	 On the next screen, you see that the Readiness Checks have completed
successfully (see Figure 2-21). You also get a warning if things went wrong, or
like in this case, an FYI on some IIS configuration being done on your behalf. It’s
probably also important to point out that the wizard hasn’t affected the system
configuration yet, so you could still cancel it without modifying anything. When
you click Configure, this next step takes some time.

Figure 2-20.  Review screen

Chapter 2 ■ Installing Team Foundation Server

35

	 16.	 The Configure screen (see Figure 2-22) tells you if everything went as planned,
and if not, what you need to work on to make it right. If something did go wrong,
please review the log link in the next page as well.

Figure 2-21.  Readiness Checks

Chapter 2 ■ Installing Team Foundation Server

36

	 17.	 Finally, you have completed configuration and are presented with the summary
screen shown in Figure 2-23. The following are some important things to note on
this screen:

•	 TFS URL: http://<server name>:<port>/tfs

•	 Detailed Results: What you find here will vary based on how the configuration
went. A few typical items include a note on enabling compression, the port on
the firewall that was opened, and a resetting of the Windows service timeout.

•	 A link to the configuration log: It would be a great idea to thoroughly check this
log for any errors before continuing.

Figure 2-22.  Configuration completed

Chapter 2 ■ Installing Team Foundation Server

37

SQL Reporting Services Configuration Manager
As promised, I wanted to include some instructions on running the Reporting Services Configuration
Manager. If you installed Reporting Services during your SQL install, it should be right on the Start menu.
Start ➤ Microsoft SQL Server 2012 ➤ Reporting Services Configuration Manager.

	 1.	 In the first screen (see Figure 2-24), you just need to make the connection. This is
usually prepopulated, so you just need to click Connect.

Figure 2-23.  Configuration completed

Chapter 2 ■ Installing Team Foundation Server

38

	 2.	 Select or enter the service account information for the Reporting Server Service,
as depicted in Figure 2-25.

Figure 2-24.  Connect to the Reporting Services instance

Chapter 2 ■ Installing Team Foundation Server

39

	 3.	 Next, you need to configure the Web Service URL, as shown in Figure 2-26. If it
isn’t already configured, you’ll be prompted to create it, which is what I did here.

Figure 2-25.  Service Account selection

Chapter 2 ■ Installing Team Foundation Server

40

	 4.	 Next, you’ll need to create the DB (if it wasn’t done) or connect to it, as I’ve done
in Figure 2-27.

Figure 2-26.  Web Service URL

Chapter 2 ■ Installing Team Foundation Server

41

	 5.	 Next, you look at the Report Manager URL in Figure 2-28. Take the defaults here.

Figure 2-27.  Connect or create DBs

Chapter 2 ■ Installing Team Foundation Server

42

	 6.	 Skip email settings for now and go to the Execution Account configuration,
as shown in Figure 2-29. You’ll want to enter the account you selected for the
TFSREPORTS account. Pay careful attention to the format because it’s very
particular. It must be in a DOMAN\ACCOUNT format, even for a local account;
for example, .\TFSREPORTS for a local account. You are going to stop here. You’ll
skip creating the encryption keys for now, but please put this on your list to do
afterward. You will not be able to restore reports without it. You should be able to
start or continue your TFS configuration from here.

Figure 2-28.  Report Manger URL

Chapter 2 ■ Installing Team Foundation Server

43

Summary
This chapter started with an examination of the different installation categories and prerequisites. You also
looked at the supported upgrade paths and the common concerns around SharePoint and SQL Server with
regard to Team Foundation Server. Last but not least, I walked you through a complete upgrade experience,
pointing out what to look for in your installation to help ensure a successful installation.

Figure 2-29.  Execution Account

45

Chapter 3

Installation Validation and Security

OK, now that you’ve successfully installed Team Foundation Server, it’s time to validate that it’s running.
You’ll do this by checking some basic things on the system. Then you’ll look at TFS security and how to
leverage it to save administration.

This chapter covers:

•	 Validating TFS URLs

•	 Validating TFS services

•	 A few words on the installation logs

•	 Basic setup of the Build Service to validate operation

•	 A discussion on TFS security and planning

•	 TFS authentication

Installation Validation
We are all excited to jump in and start using a new set of tools, but first you should probably make sure that
the installation went OK; this is fairly simple. You can dive into a few steps that will help you with this. I’ll
also give a couple of tips for upgrades, since that’s fairly specific to your environment.

Validate Team Foundation Server URLs
This one is easy and determines whether a host of services and web sites have been configured correctly.
Let’s start by looking at the main URLs for the Team Foundation Server (you can get the first one from the
Success window from your install, if it is still up; or if you closed it, just follow these next steps).

	 1.	 Get the URL. Go to Start menu ➤ Team Foundation Server 2015 ➤ Team
Foundation Server Administration Console.

	 2.	 Once you have the console open, go to the Application Tier node in the selection
tree, as indicated in the screen shown in Figure 3-1. Note the Web Access URL
on this page. It will be in the format of http(s)://<server name>:<port,
normally 8080>/tfs.

Chapter 3 ■ Installation Validation and Security

46

	 3.	 Now you can check the Web Access services with the URL. (Note that the Server
URL is also able to perform this quick test on the local server). Enter that URL in
a browser window on the TFS server. You should see a window similar to the
one shown in Figure 3-2. Click the Administer panel to open its window
(see Figure 3-3). You’ll visit this window again later.

Figure 3-1.  TFS Web Access URL

Chapter 3 ■ Installation Validation and Security

47

Figure 3-2.  TFS Web Access main page

Chapter 3 ■ Installation Validation and Security

48

Validate TFS Services
Another important step in making sure that your install went smoothly is examining the services installed
by Team Foundation Server. Most of the time (actually since TFS 2010), if you make it to the installation
confirmation window with a page of green check marks, you are good to go. However, it never hurts to
double-check a few things. Since Team Foundation Server runs on the standard Windows Server stack, to do
its job, it depends upon a slew of “standard” services and a few specialized ones to be running, including but
not limited to the following:

•	 World Wide Web Publishing Service

•	 SQL Server (for both TFS and SharePoint)

•	 SQL Server Reporting Services

•	 Visual Studio Team Foundation Background Job Agent

These system-level services are to be expected on a Standard Single Server install like the one you
performed earlier in this book. If you have another configuration, or a scaled-out deployment, your
individual servers would not necessarily run all of these. These are fairly easy to identify in the Service
applet; they should be running and set to Automatic startup. There are a bunch of others in a fully

Figure 3-3.  TFS Web Access Admin screen

Chapter 3 ■ Installation Validation and Security

49

configured TFS server as other featured are added (as in the Build Service that you’ll check out next), but
these are good to start with. An interesting service worth mentioning is the last one on the list. You’ll only
know something is wrong with the Visual Studio Team Foundation Background Job Agent when things you
did in the system don’t seem as if they took properly (permissions, for instance), so it’s worth an initial check
and then monitoring on occasion, because it can be confusing when you set things up properly but they still
don’t seem to be working, through no fault of your own.

	 1.	 Start the Services applet. Go to Start ➤ Administrative Tools ➤ Services.

	 2.	 Verify that key services are running and set to Automatic startup, as seen in
Figure 3-4.

Installation Logs
So I’m sure someone at Microsoft will be upset with me saying this, but the installation logs are of limited
usefulness in validating whether an install happened correctly, in the absence of any real errors presented
during the installation. Why? There is just too much information in the files that appear to be potential
errors, but in reality are just information. However, if you are tracking down a stubborn installation error and
can focus on that, or if you are working with Microsoft Technical Support, installation logs can be useful.
The location is here:

C:\Users\<install account>\AppData\Local\Microsoft\Team Foundation\Setup\Logs

So if you were installing under the account TFSADMIN, you would look in:

C:\Users\TFSADMIN\AppData\Local\Microsoft\Team Foundation\Setup\Logs

Figure 3-4.  Windows Services applet highlighting the Visual Studio Team Foundation Background Job Agent

Chapter 3 ■ Installation Validation and Security

50

For the curious, Figure 3-5 is a typical view of files you might find in this directory. Note the use of the
Hidden flag on the View menu in File Explorer. Without selecting it, you’ll be staring at an empty directory.

XAML Build Service
OK, so the Build Service configuration isn’t strictly a validation task, but strays more into configuration.
I debated putting it in the last chapter. It is, however, an excellent way to make sure that the system is set
up and operating properly, and a good segue into the rest of the configuration tasks you’ll need to perform.
Microsoft made a departure in this release from putting the “Build Service” node in the Team Foundation
Server Administration Console under its own node and now tucks it under the Additional Tools and
Components > XAML Build Configuration node. This is also a minor indication of a major build system
overhaul that took place including the addition of a Web based UI and expanded third-party capabilities in
the new Team Foundation Build 2015. Microsoft now refers to the build features that went into TFS 2010,
2012, 2013, and Visual Studio Online (that were based on the Windows Workflow engine) as XAML Builds.
Microsoft has stated that in TFS 2015 and in Visual Studio Online they will continue to support the old XAML
Build templates and controllers. What does this mean for us? It means that when we upgrade our on-site
servers everything will continue to work as we expect it. The new stuff is not expected to interfere with the
old. We’ll cover more of the new build system in another section. Here we are just looking to get the XAML
stuff up and running to validate our install. Also, companies have invested thousands of hours in setting up
their build systems and you’ll want to be able to support this “legacy” technology as many people may wish
to continue with their investment here before making a switch.

Figure 3-5.  File Explorer in the TFS Logs directory

Chapter 3 ■ Installation Validation and Security

51

System Requirements
System requirements for the Build Service are the same as the rest of TFS, but it bears mentioning that a
few things can bottleneck this service. Sure, a fast CPU and a lot of RAM will have an effect, but from my
experience, storage speed seems to have the most dramatic effect overall for Build Services. When you think
about it, this makes sense because the XAML build process is indeed writing out files to the disk, which is
bound by the speed of the disk subsystem on the server.

XAML Build Service Configuration
Now you get to set up Build Services. This is fairly simple, but I hope my visuals make it even easier. We had
you select to install the XAML Build during the TFS configuration so we are already halfway there.

	 1.	 Go to Start menu ➤ Team Foundation Server 2015 ➤ Team Foundation
Server Administration Console and select the Additional Tools ➤ XAML Build
Configuration link as shown in Figure 3-6. This pops up the wizard selection as
in Figure 3-7. I will point out that the example you are using here for installing
a Build Controller and Agents on the Team Foundation Server Application Tier
server is not ideal; if you are planning for a larger, scaled-out environment, you’d
want to do this on a dedicated build server for maximum performance. For these
examples and smaller environments, however, this way is fine. Click the Start
Wizard button on this dialog.

Figure 3-6.  XAML node in the Team Foundation Server Admininstration Console

Chapter 3 ■ Installation Validation and Security

52

Figure 3-7.  Team Foundation Server Configuration Center—XAML Build Services

Chapter 3 ■ Installation Validation and Security

53

	 2.	 Now you need to make a decision on whether you want to participate in the TFS
improvement program (see figure 3-8). This will take you to your first real task—
selecting a Team Project Collection. The wizard automatically locates the Default
Collection on the server you are on, or you can select a different Team Project
Collection to work with. Since you haven’t the knowledge of Collections and
Projects yet, you can just use the default for these purposes. You’ll also notice
that after the collection selection is made, any existing build controllers and
agents, and a total machine count, are displayed (see Figure 3-9). In this case,
there should be no others.

Figure 3-8.  Welcome Screen

Chapter 3 ■ Installation Validation and Security

54

Figure 3-9.  Collection Selection Dialog

Chapter 3 ■ Installation Validation and Security

55

	 3.	 Next Select the number of build agents you want (see Figure 3-10). The default in
this dialog is 1, and for our purposes that’s fine. A build controller will also be
run on this machine. You can select to configure up to four on this dialog, or
choose Configure Later to manually configure at a later time. 1 is good for our
purposes here.

Figure 3-10.  Agent Quantity selection

Chapter 3 ■ Installation Validation and Security

56

Figure 3-11.  Enter or select a service account for XAML Build Services

	 4.	 Select or enter the security context the build services will run under, as shown
in Figure 3-11. This is probably a good time to use the checklist you created
in Chapter 1 to look up the TFSBUILD specified account. Remember, if you
use a user account, it needs to have Log on As a Service Permission selected.
Alternately, you can just use a system account, which is OK for a smaller
single-server installation; but if this were a larger deployment as part of an
enterprise, you’d likely want more control over the account, and you would not
use a system account. Press Next to verify.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 3 ■ Installation Validation and Security

57

	 5.	 Confirm the settings shown in Figure 3-12. Press Next or Verify, and let it rip.

Figure 3-12.  Review Settings

Chapter 3 ■ Installation Validation and Security

58

	 7.	 Configuration complete! If everything went correctly, you’ll see the screen in
Figure 3-14; if not, the exceptions and instructions on how to remediate the
issues will be provided. Just click Next here.

Figure 3-13.  Readiness Checks

	 6.	 Readiness checks. If anything is wrong here, you’ll be notified and provided
some instructions. The view in Figure 3-13 lets you know that you are good to go.
Click Configure to continue.

Chapter 3 ■ Installation Validation and Security

59

	 8.	 Complete. The real completion screen is pictured in Figure 3-15. It lets you know
that the configuration worked, and that a firewall exception for port 9191 was
added, which only happens if you are using Windows Firewall. If you are using
an external firewall, you are on your own with that. You are also presented a
handy link for information on working with build agents. I’ll cover that in another
section. For purposes of validating the install, you are done and you can move
forward.

Figure 3-14.  Success!

Chapter 3 ■ Installation Validation and Security

60

	 9.	 The XMAL Build Configuration summary screen. Final words on this. When you
close the dialog shown in Figure 3-15 (and its parent), you’re presented with the
screen you started on (see Figure 3-16), but now rather than just the link to start
configuring, you have a nice summary screen that tells you the status of all the
controllers and agents in the deployment. Why is this important? Well, if a build
agent hangs up, or you want to get a quick glance of your build topology, this is
the place to come. I’ve circled a few things I think you’ll want to check on that
indicate the current state. You’ll revisit this in a detailed section on build, but for
now, you’ve finished what you need to know to validate that the install went well
and is ready for the next steps.

Figure 3-15.  Configuration Complete

Chapter 3 ■ Installation Validation and Security

61

Team Foundation Server Security
In this section, I’ll cover Team Foundation Server security. Like many complex products, there are lots of
ways to accomplish the same task; this section covers the most common ones.

You will learn about:

•	 The Team Foundation Server security model

•	 Setting up accounts for different roles

•	 Using Active Directory and user accounts, users and groups, and permissions to
secure your Team Foundation Server installation

Team Foundation Server’s security model is based on users and groups. You may use the default groups
that are built into Team Foundation Server, or create additional ones to customize the model to match the
needs of your organization. This allows you to grant permissions to the group without having to set ones for
each individual, which could be tedious in a large organization. Likely, you’ll want to create ones for specific
teams or other organizational units. Hang on before you jump in and start rolling out the new groups,
though; there are a couple of things you should consider first.

Figure 3-16.  Build Configuration overview dialog in the Team Foundation Server Administration Console

Chapter 3 ■ Installation Validation and Security

62

Security Model
Security in Team Foundation Server is integrated with standard operating system security, and as I said
earlier, it is based on users and groups. This means that you are utilizing Windows authentication to secure
the connection between members of the solution stack (Visual Studio, Team Foundation Server, and other
Team Foundation Server clients).

In addition to securing your deployment with users and group assignments, you can further secure it by
enabling HTTPS (Hypertext Transfer Protocol Secure) with SSL (Secure Sockets Layer), and requiring your
users to use it.

Authentication
There are many ways that you can configure your deployment of Team Foundation Server to support
authentication schemes such as Basic, Digest, and certificates. The reason for this is because you want to
enable external connections to your deployment without requiring the overhead of establishing a VPN
(virtual private network) connection, which allows you to work remotely while maintaining a comfortable
level of security.

Planning
You have a few options here that you may want to consider if you installed TFS into an environment with
Active Directory, especially an enterprise-sized one. You can certainly use the Team Foundation Server
groups, and add either Active Directory users or local users, but you can also add Active Groups to these
Team Foundation groups.

How is this useful? Well, if you are trying to deploy TFS into an enterprise environment, most
companies choose to centralize the creation and maintenance of all credentials (accounts, passwords, and
groups). They might be concerned about a TFS administrator potentially creating “rouge” credentials. With
the scenario of creating container groups in the TFS system, and using Active Directory groups inside these,
you can still maintain control of your TFS environment while letting someone else manage the credentials to
corporate guidelines. Peace and harmony should now reign with corporate IT.

The diagram in Figure 3-17 illustrates my point.

TFS Group

User1

User2

Active Directory Group

User3

User4

Active Directory Sub-group

User6 User7

Figure 3-17.  A flexible model diagram showing use of Active Directory groups in TFS

Chapter 3 ■ Installation Validation and Security

63

As I mentioned earlier, TFS’s security is based largely on groups and group membership, as it relates to
the major parts in TFS. This is an immensely flexible model, and you can really get as complex as you like—
or keep it simple, depending on your needs. I’m mentioning this concept now since I will be referring to just
the built TFS groups later on, and I don’t want you to develop a strategy without this consideration.

Team Foundation Server includes security on every major part of the system, including the following:

•	 Server level

•	 Collection level

•	 Project level

•	 Area level

•	 Iteration level

•	 Version-control level

•	 Build level

•	 Lab Management (if you have it)

•	 Release Management (if you have it)

Let’s explore these now so that you have a full understanding of how the users and groups that you add
will apply.

Something else that’s new and improved this release is Team Web Access. It was always a popular way
to get at certain parts of TFS, especially for nonprogrammers. Microsoft has beefed it up again with new
controls and the ability to access most areas of the TFS system. I’ll be using it whenever possible since it’s
more universal.

So What Do I Get by Default?
Regardless of what you choose for options, like the process template you select (more on this in a later
chapter), there are some default behaviors you need to know about.

Of special consideration is the Contributors group. Every user, by default, is added to this group. Setting
permissions on this group will make them active for everyone. This can be useful if you need to quickly set
permissions for everyone on the system at once, such as denying access to an on-hold project. However,
you also need to avoid being a lazy administrator by setting this group to have every permission available.
To do so would create a serious security loophole and you’d drive yourself crazy trying to override it in other
groups. Consequently, this is the first place to check for permissions issues that don’t seem to make sense.

Default Groups at the Team Project Level

The following are the default groups that you get when you create a Team Project. They all have sets of
permissions that are specific to the rolls that are indicated in their names:

•	 Project Administrators: Use this group for exactly what it sounds like—people who
need to administer the entire project, including permissions of other team members.

•	 Contributors: I gave this special mention earlier. This is a catch-all for everyone
who needs to contribute either source code or work items to the project. Since you
may also have project managers and business analysts on the team who need to
contribute work items but not source code, I usually create a clone of this group, call
it Business, remove the ability to commit source code, and add those roles to it. Do it.
You’ll thank me later.

Chapter 3 ■ Installation Validation and Security

64

•	 Readers: This is kind of self-explanatory by its title, but people in the Readers group
only have the ability to read, by default. I’ve always used this one for documentation
people that are saving their work outside the TFS system.

•	 Build Administrators: I’ll talk about managing team builds later in the chapter, but
this group is handy for people who need to administer the build environment, create
and monitor build jobs, and so forth.

•	 <Whatever you call the project> Team: A better group to use rather than Contributors
when you want to explicitly set the permissions for your project team.

Securing Team Web Access: Access Levels

Technically, web access is more license management than security, but it is handled via the security tools,
so I’ll cover it here. The concept with this is fairly simple: you control the features of Team Web Access that
each user can use by membership in this group. You’ll explore these features in other chapters, but I want to
have them listed here for your reference. The Basic is default, by default but you can change that so that new
users automatically get another level.

•	 Basic (default): Will need a TFS client-access license (CAL) or Visual Studio
Professional with MSDN subscription to enjoy this access level.

•	 Stakeholder: The only freebee here, no license needed. Good for customers we need
to work with but aren’t expected to use source control, etc.

•	 Advanced: Will need an MSDN subscription for this group. Either Visual Studio
Ultimate with MSDN, Visual Studio Premium with MSDN, MSDN Platforms, or
Visual Studio Test Professional with MSDN. As the name implies, all features are
accessible to users in this group. This includes everything mentioned in the previous
item, plus Request and Manage Feedback, Test Case Management, Team Rooms,
and Agile Portfolio Management.

Feature Break Down by Access Level

I compiled this list of features (see Table 3-1) you’ll have access to by Access Level to help you plan better.
This type of information is always subject to change but as of this writing and release it’s accurate.

Chapter 3 ■ Installation Validation and Security

65

Table 3-1.  Feature Access by Access Level

Stakeholder Basic Advanced

Gets to use…. Gets to use…. Gets to use….

View My Work Items

Standard Features

Agile boards

View My Work Items

Standard Features

Agile boards

Basic backlog and sprint planning tools

Chart Viewing

Code

Build

Administer account

Advanced home page

Advanced backlog and sprint planning
tools

Web-based Test Execution

Advanced portfolio management

Team rooms

Chart Authoring

Analyze test results and manage
machine groups

View My Work Items

Standard Features

Agile boards

Basic backlog and sprint planning tools

Request and Manage Feedback

Web-based Test Execution

Web-based Test Case Management

Team rooms

Agile Portfolio Management

Chart Viewing

Chart Authoring

Code

Build

Administer account

Advanced home page

Advanced backlog and sprint planning
tools

Advanced portfolio management

Analyze test results and manage
machine groups

Summary
In this chapter, you looked at validating the installation with basic methods, such as testing URLs and
services. In addition, you looked at setting up build services to validate the installation. You also examined
TFS security and authentication, as well as some ideas on making management a little easier. Now that you
are sure the TFS environment is installed and working, you can move forward to configuring other parts of
the environment.

67

Chapter 4

Managing Collections

This chapter explores collections in Team Foundation server, including their practical usage and
management. Now that you have a solid server to work with, you’ll also look at other major aspects of
managing other big pieces in TFS.

This chapter covers:

•	 An overview of collections and projects

•	 Setting up and managing collections

•	 Moving and splitting collections

Collections and Projects Overview
The two major “containers” in TFS are collections and projects (more on these in the next chapter). Whereas
team projects (not to be confused with Visual Studio projects) have been around for a while, collections are a
relatively recent feature (circa TFS 2010). To give some context, I’ll reintroduce the architecture drawing from
the first chapter. Specifically, I want to point out that TFS collections exist in the data tier of TFS, as pictured
in Figure 4-1.

Chapter 4 ■ Managing Collections

68

So why am I pointing this out? Just in case someone in IT is curious when new databases start showing
up in your data tier; but it’s also something you need to keep in mind for backup if you’re only set up to back
up a fixed set of databases. If you are in an enterprise environment, this is definitely something you’ll want to
coordinate with your IT group before you assume your recovery after a disaster will be complete.

What Are They?
Collections are logical (or they should be) groupings of team projects and any resources those team projects
may need. Team projects, on the other hand, serve as containers for your source control, team builds, work
items, documents, and reports that are in Team Foundation Server. I’ll cover setting them up a little later in
this chapter, but it would be good to put their usage in a little context.

Figure 4-1.  Team Foundation Server architecture: TFS collection databases are circled

Chapter 4 ■ Managing Collections

69

Collection Naming Convention
The naming conventions for collections are pretty simple. They follow the form of TFS_<CollectionName>.
You cannot use spaces or reserved characters when you create one (later in this section). Your default
collection would be named TFS_DefaultCollection, for instance. The following are a number of naming
convention restrictions that you’ll want to keep in mind:

•	 Length: 64 Unicode characters

•	 Uniqueness: It can’t be identical to any other collection name in your Team
Foundation Server deployment. If you’re using SharePoint or SQL Server Reporting
Services, it can’t be identical to the name and full path of an existing SharePoint site,
report server, or Reporting Services web site.

•	 Special characters:

•	 No Unicode control characters or surrogate characters

•	 None of these printable characters: / : \ ~ & % ; @ ‘ “ ? < > | # $ * } { , + = []

•	 No ellipsis (…) or double periods (..)

•	 It can’t start with an underscore (_)

•	 It can’t start or end with a period (.)

•	 Reserved names: It can’t be a system-reserved name, such as PRN, COM1, COM2,
COM3, COM4, COM5, COM6, COM7, COM8, COM9, COM10, LPT1, LPT2, LPT3,
LPT4, LPT5, LPT6, LPT7, LPT8, LPT9, NUL, CON, AUX, Web, or WEB

Setting Up and Managing Team Project Collections
Depending on your idea of fun, it’s time for another fun part. I’ll begin with a few words on where to find
collections, move on to how to create a new collection, and then discuss some management and usage ideas.

The primary tools you’ll use are the Team Foundation Server administration console, and then later
you’ll use Visual Studio.

Team Project Collections
Collections are objects that you can see in the data tier. Their database contains a set of projects. So why do
we need them? They serve as another container hierarchy level with their own security levels to achieve a
more granular level of control over the said set of projects.

Team project collections give you a whole other level of control and scalability in your deployment.
Reference the data tier in Figure 4-1 and consider that the collection exists at a database level. What benefit
is that? Well, for example, let’s say that all team projects for a certain product that your company makes
(e.g., commercial software) is placed in a collection. If you decide to move that product to another team or
to outsource it, you can easily move it to a different server’s data tier. Also, it provides you with yet another
level of security abstraction. Very handy if your corporate or government security guidelines call for separate
storage of source code on sensitive development efforts. By default, you get one called Default Collection, so
I’m guessing that you can have one named more appropriately.

Chapter 4 ■ Managing Collections

70

Manage Team Project Collections
To manage team project collections, you use the Team Foundation Server administration console. You’ll
use it frequently, so you may want to pin it to your Start menu if you haven’t already done so. It’s also worth
mentioning that if you are not using the account you used to install TFS, you need to be added to the Team
Foundation Administrators group at the server level. Let’s go over some common operations that you’ll be
doing with collections. There are a number of maintenance operations that you can do from this screen as
well. I’ll cover those in a minute.

Creating a Collection
	 1.	 Go to the Start menu and select Team Foundation Server 2015 ➤ Team

Foundation Server Administration Console.

	 2.	 Navigate to the server and select Application Tier ➤ Team Project Collections
(see Figure 4-2).

Figure 4-2.  Team Foundation Server Administration Console

Chapter 4 ■ Managing Collections

71

	 3.	 From here, select the Create Collection button in the upper-right section
of the screen. This will bring you to Create Team Project Dialog wizard that
you see in Figure 4-3. It walks you right through the process of creating a new
collection. Enter the name of the new collection (keep in mind the naming
conventions discussed previously) and a description. The description, although
not mandatory, will make your life easier when you are wondering why you
ever created the collection in the first place. In this example, you are using
ImportantProjects as a name. You may, of course, enter one that makes sense
for you. Click the Next button when you are ready.

	 4.	 Now you have the option to let the wizard create a database for you on the default
SQL Server instance, or you can specify an existing empty database (see Figure 4-4).
Note that you can type in a new SQL Server instance here as well. So why is
specifying an existing database necessary? In large enterprise environments, the
ability to create a new database is largely locked down, so your only option is to
have one created for you and use it. Luckily, TFS supports this. You are going to
take the defaults and keep moving. Hit Next when you’re ready.

Figure 4-3.  Create Team Project Collection start screen

Chapter 4 ■ Managing Collections

72

	 5.	 Next you select the SharePoint Site options. (Note that I expanded the advanced
options, if your screen doesn’t match Figure 4-5 exactly.) Here you get to pick
the web application that the collection will use. It automatically defaults to the
SharePoint web app that you set up during the installation. You are not restricted
to that, however; you may pick any in your installation. Under the advanced
options, you can have the wizard create a new SharePoint site for the collection
(this is the default), supply a path to an existing site, or you may not create one at
this time. You can add one in the future, but like a lot of things in TFS, it’s much
easier to do it now. I’m going to leave the defaults in this example. Once you’ve
made your selections, click Next.

Figure 4-4.  Selecting the database creation option

Chapter 4 ■ Managing Collections

73

	 6.	 Now you’ll look at the reports location for the collection. Looking at Figure 4-6,
you can probably tell that you have limited options; but you could change the
folder path from the default pattern of /TfsReports/<Collection Name>. So in
this case, you’ll take the default /TfsReports/ImportantProjects. Alternatively,
you could disable report writing by choosing the Do not create a report folder
option. Like I mentioned in a previous step, you can go back, but it’s much easier
to create it now. A lot of these options are intended to help an enterprise user
adapt to a much stricter environment. If that’s not you, count your blessings and
click Next.

Figure 4-5.  Setting SharePoint options

Chapter 4 ■ Managing Collections

74

	 7.	 So as you can see in Figure 4-7, you haven’t set up Lab Management yet.
We aren’t going to cover that here, and I want to keep this chapter on track.
Click Next, and you are on to the review.

Figure 4-6.  Reports location

Figure 4-7.  Lab Management? Not yet

Chapter 4 ■ Managing Collections

75

	 8.	 Review the configuration. You shouldn’t see any surprises in Figure 4-8, but if
you do, it’s a good time to back up and correct them. If everything is good, hit
Verify. You are now moving on to Readiness Checks.

	 9.	 If everything was successful, you passed the readiness checks and you see
the screen shown in Figure 4-9. If did not go successfully, you will get a set of
instructions to follow up on. Click Create to proceed.

Figure 4-8.  Review your configuration

Chapter 4 ■ Managing Collections

76

	 10.	 Next, TFS goes through the steps to create your collection for you, showing you
the progress as each component is configured. If all goes well, you’ll see a screen
like the one shown in Figure 4-10. If not, you’ll have some instructions to follow
up on. When you are finished reviewing your configuration, click Next to be
brought to the completion screen.

Figure 4-9.  Readiness checks passed

Figure 4-10.  Configuration success

Chapter 4 ■ Managing Collections

77

	 11.	 If everything completed successfully, you’ll get a screen similar to the one shown
in Figure 4-11. Note that there is a link to the log that was created during this
process. Of course, if something went wrong, you’ll have some things to follow up
on. Note that there is a link to the log that was created during this process.

Moving a Collection
During a TFS server’s life cycle, you will likely exceed its storage capacity, or your organization’s needs
may change, requiring you to move your team project collection to a different TFS server. Luckily, this is a
fairly straightforward, well-tooled process; you’ll walk through it here. There isn’t a complete start-to-finish
wizard, however, so it’s important that the steps you go through next are done completely and in order to
conduct a successful move.

A prerequisite I will mention here is on permissions. If this deployment uses SharePoint products, you
need to make sure that the account you are using is part of the Farm Administrators group; otherwise, you’ll
be in for a load of errors when you reattach, and you’ll likely have to redo the whole operation. OK, let’s
begin!

	 1.	 Go to the Start menu ➤ Team Foundation Server 2013 ➤ Team Foundation
Server Administration Console.

	 2.	 Navigate to the server ➤ Application Tier ➤ Team Project Collections
(see Figure 4-12).

Figure 4-11.  Completion

Chapter 4 ■ Managing Collections

78

	 3.	 Now you are going to detach the collection. The first step is to actually move it.
A word of caution here: once you detach the collection, no one can access it,
so it’s best to make sure that everyone is ready. In the top panel, select your
collection to detach; in this example it’s ImportantProjects. On the General tab,
select Detach Collection as indicated (see Figure 4-12).

	 4.	 This brings up the Detach Team Project wizard, as seen in Figure 4-13. Here you
can enter a servicing message to be displayed to users as they try to connect to
the team project collection. A message is a great idea. If you make the message
very clear and give users an idea of when they can expect to have the project
back online, your local support people will appreciate not having to answer
this additional call. Also, this is good time for a backup so we’ll do one with the
attached link and use the new TFS2015 tool just for that.

Figure 4-12.  TFS Administration Console, Collections area

Chapter 4 ■ Managing Collections

79

	 5.	 Next, you review the settings (see Figure 4-14). Click Verify when you are ready to
proceed to the verification tests (Next will be grayed out).

Figure 4-13.  Beginning the Detach Team Project Collection wizard

Chapter 4 ■ Managing Collections

80

	 6.	 Next, you are brought to the verification screen, where hopefully the collection
is reported as ready to detach (see Figure 4-15). If not, you are notified about the
specific things that you’ll need to follow up on. The good news is that this is done
prior to attempting to detach, so you have a chance to follow up on any issues
before effecting service to your users.

Figure 4-14.  Review your Collection selection and message

Chapter 4 ■ Managing Collections

81

	 7.	 Click the Detach button. Since the readiness checks passed, you get the result
you expected. Success! Figure 4-16 shows the different items that were detached
and it gives you some indication of progress in a long operation. To finish, click
the Complete button. You are brought to the final screen in the wizard.

Figure 4-15.  Readiness checks screen

Chapter 4 ■ Managing Collections

82

	 8.	 Finally, you are done with the detach. You should see a screen with similar
to the one shown in Figure 4-17. If something went wrong, you’d be given
more information on what to do next. You’d also be given the location of the
operation’s log in case you do need to follow up on errors. You can click Close to
go back to the Team Foundation Server administration console.

Figure 4-16.  Detaching progress

Chapter 4 ■ Managing Collections

83

	 9.	 So now you are back at a familiar screen, the Team Foundation Server
Administration Console (see Figure 4-18). At this point, you can move the
collection by moving its database file, which is covered next. You can also change
your mind and immediately reattach it with the Attach Collection feature.

Figure 4-17.  Detachment complete

Chapter 4 ■ Managing Collections

84

	 10.	 So now that you have detached the collection, you need to move the collection
database to its new location. There are a number of ways you could do this, but
by far the simplest way is to use the SQL Backup utility. Let’s begin by going Start
➤ SQL Server Management Studio. Once there, connect to the SQL server that
houses TFS. Locate your database under Databases ➤ TFS_ImportantProjects
(see Figure 4-19). Right-click this and select Tasks ➤ Backup. From this applet,
ensure that a Full backup is selected, and then make note of the file location and
name, as indicated, so that you can easily find it later (if you are doing a manual
move). Hit the OK button to back it up. If you need more information on backing
up than I’ve provided, please refer to your SQL Server documentation. If you used
the tool in the previous steps, you can skip this; you just need to locate the backup.

Figure 4-18.  A familiar screen

Chapter 4 ■ Managing Collections

85

	 11.	 Once the backup is complete, you need to move it to its new home and attach it.
There are many ways to do this, such as using the Copy Database Wizard that you
can access from the SQL Server Management Studio. Just right-click the database
and select Tasks ➤ Copy Database, and it will take you through the steps. This
tool lets you move server to server without having to worry about where to put
a file, and so forth. A note of caution here: you can only do this with a version
identical or higher than your own. If you need to, you can find more information
about the Copy Database Wizard at https://msdn.microsoft.com/en-us/
library/ms188664.aspx. At this point, you could put the detached database on
a different SQL server or TFS server in your implementation. The reattachment is
easy; you’ll go through it next.

Figure 4-19.  Back up the TFS collection database so you can move it

https://msdn.microsoft.com/en-us/library/ms188664.aspx
https://msdn.microsoft.com/en-us/library/ms188664.aspx

Chapter 4 ■ Managing Collections

86

	 12.	 Back to the Team Foundation Server Administration Console. Note that you
should be starting this on the target server, which is the server you moved your
collections to. If it is just to a different SQL instance, it can be the same TFS
server. From the Team Foundation Server Administration Console, select Attach
Collection (see Figure 4-20).

Figure 4-20.  Select Attach from here

	 13.	 When the wizard starts, it automatically finds available but unattached databases
on the current SQL Server instance. If you need to select a different one, just
type in the instance and hit the List Available Databases link to refresh the
list (see Figure 4-21). When ready, confirm the backup and schema update
warnings. I want to share a few caveats that are important to point out before
you continue that will generate warnings during the process. First, if you are on a
new server, and your implementation uses SharePoint products, make sure that
the Service Account for TFS is in the Farm Administrators group. Second, if you
used Reporting, don’t try to re-create the exact folder and path that the reports
were in on the old server (the process does this for you and generates the default
reports). None of these would stop you, but figured I’d mention it. When you are
ready, hit Next.

Chapter 4 ■ Managing Collections

87

	 14.	 Next, you can enter the collection’s name and description (see Figure 4-22). Click
Next when ready.

Figure 4-21.  Select Collection Database to attach

Chapter 4 ■ Managing Collections

88

	 15.	 Confirm your settings; they should be similar to what you see in Figure 4-23.
Click Verify when ready.

Figure 4-22.  Name and describe your collection

Chapter 4 ■ Managing Collections

89

	 16.	 Next, click Verify to run the readiness checks. Hopefully, you get the all-clear, as
seen in Figure 4-24. When you are ready, click Attach.

Figure 4-23.  Confirmation

Chapter 4 ■ Managing Collections

90

	 17.	 In Figure 4-25 and Figure 4-26, you can see the results of this attach. Earlier I
mentioned that a report path and folder already existed; you can see the results.
This warning is simply informational in this case, so you can continue.

Figure 4-24.  Readiness checks passed

Chapter 4 ■ Managing Collections

91

Figure 4-25.  Attach results

Figure 4-26.  Warning log

Chapter 4 ■ Managing Collections

92

Collections with Reports

If you had no customized reports in your collection, then you have nothing more to do with reports. A new
default set was installed when you attached the collection. However, if you do have them, you’ll likely want
to move them over. This is a fairly tedious process, since, believe it or not, you have no wizard for it. And
you’ll need to do work for each report you bring over, so best to go through your report server and identify
the subset of modified reports you want. There are a number of ways to get the reports over the new server
as well, but in this case, I’m going to recommend directly publishing them to the new server since this is the
most direct way. Finally, you need to rebuild the data warehouse and Analysis Services databases.

Figure 4-27.  Completed Attach

	 18.	 Click Next or Complete to move to the last screen of the wizard (see Figure 4-27),
where you are offered another opportunity to review the warning. Since you
have already done this, you are all set. Your “moved” collection is now attached;
but there are a few final steps to complete. Click Close to exit the wizard. Please
examine the next section to see if any of those conditions apply to you; if so, a few
additional steps may be required.

Chapter 4 ■ Managing Collections

93

	 1.	 Once you identified the reports to move, go to the Report Builder on the original
server. Open the report in Report Builder and select Save As.

	 2.	 From here, select the new server instance and save it to the new folder location
on the new server.

	 3.	 Once this is done, you need to open the same report on the new server in Report
Builder and reset its data source property to the new server. More information
on this process is available at https://msdn.microsoft.com/en-us/library/
dd255213(v=sql.110).aspx.

	 4.	 The last steps are to rebuild the data warehouse and Analysis Services databases
on the new server. Go to Team Foundation Server Administration Console ➤
Reporting. Select Start Rebuild. Depending on the size of the databases, this
could take several hours to finish, so plan accordingly.

Collections with SharePoint

If the collection that you moved uses SharePoint products, you may have a few more steps to do. Primarily,
cleaning up the old SharePoint site on the source server, and moving the SharePoint site to the destination
server. It’s not hard, and you’re probably wondering why the wizard couldn’t do this for you. Me too, and it’s
in as a suggestion for a future release. So rather than waiting, here’s how you go about getting it done.

First, let’s back up the site collection database. This can be an involved process (but doesn’t need
to be), so I’m only going to cover it at a high level here for SharePoint 2013 (since most of you are using
that by now). For more detailed information, please visit https://technet.microsoft.com/library/
ee748617(v=office.15).aspx. There are a number of ways to back up the site collection; I’m using
SharePoint Central Administration here.

	 1.	 Navigate to Start ➤ SharePoint 2013 Central Administration. In the Backup and
Restore area of the page, click Perform a Sight Collection Backup.

	 2.	 Next, you’ll select the site collection. By default, this tool will just get you the root
site collection. Select the Site Collection drop-down menu and in the pop-up
dialog, choose the site collection that belongs with your TFS collection. Back on
the main screen, enter a backup file and path. (Resist the temptation to send this
directly to a UNC path, as shown—performance will be horrible!) Here you are
working with the sample ImportantProjects collection, as shown in Figure 4-28.
When ready, select Start Backup. It will look as if nothing is happening for a bit
while the backup is occurring, but with any luck, you’ll eventually get the success
screen shown in Figure 4-29.

https://msdn.microsoft.com/en-us/library/dd255213(v=sql.110).aspx
https://msdn.microsoft.com/en-us/library/dd255213(v=sql.110).aspx
https://technet.microsoft.com/library/ee748617(v=office.15).aspx
https://technet.microsoft.com/library/ee748617(v=office.15).aspx

Chapter 4 ■ Managing Collections

94

Figure 4-28.  Site collection backup

Chapter 4 ■ Managing Collections

95

	 3.	 Next, use whatever method works for you to copy the backup file to the new
server. From this point, open the SharePoint 2013 Central Administration on the
receiving server. On the Home screen in the Backup and Restore section, select
Restore from a backup and specify the file. Follow the prompts to complete.

	 4.	 Once this is done, you need to link SharePoint with the TFS collection by running
a repair on it. Go to the Team Foundation Administrators Console on the
receiving server and select SharePoint Web Applications. From here, select
your restored site collection and click Repair on the right side of the screen. The
wizard will guide you through the rest and you’ll have your moved collection
back online. An optional last step would be to remove the site collection from the
server you moved it from—to keep things neat and tidy. Go to the SharePoint
2013 Central Administration application on the original server and select
Application Management ➤ Delete a Site Collection. Select the old site collection
on the dialog. Click Delete.

An optional step is to remove the SharePoint web application from the SharePoint server. To do this,
simply go back to the source Team Foundation Server, pen SharePoint Central Administration, and delete
the site collection that supports the now moved collection. The same rule would apply to deleting a site
collection for a deleted project collection.

Figure 4-29.  Successful backup!

Chapter 4 ■ Managing Collections

96

Splitting a Collection
I’m only covering this here because if I didn’t, its absence would be conspicuous. There is no real “split”
for collections. What you can do, however, is a pretty nifty work-around. Essentially, your goal is to move
some team projects into one collection and move other projects into another collection, or alternatively,
leave them behind in the original collection. Since the Move Collection process is not selective, and moving
projects can be tedious, this isn’t a bad compromise. It is generally done as follows:

	 1.	 Determine which collection holds the projects that you want moved to
the new server.

	 2.	 Perform a normal move, as described in this chapter.

	 3.	 On the new server, simply delete the team projects that you do not want, leaving
only the ones that you wanted to move.

Not elegant, but it gets the job done.

Summary
Team project collections were covered in detail in this chapter, starting with usage considerations and
moving through creating, managing, moving, and splitting them. The chapter also covered site collection
backup and restore after a move (more on this later in the book). Next, you’ll look at team projects and learn
how to best use them.

97

Chapter 5

Managing Team Projects

In the last chapter, you looked at team collections. This chapter examines team projects, a Team Foundation
Server structure that acts a place for our source code and allows us to collaborate on software development
activities— all in one handy container. This chapter covers

•	 Team projects overview and usage

•	 Setting up projects

•	 Security

•	 Source control choices

Team Projects Overview
Team projects have been around since TFS’s introduction. Team projects form the secondary container
in the source code hierarchy (within Visual Studio, there is also Solutions and Projects), work items, tests,
workflows, and build information. Team projects contain Visual Studio projects; the hierarchy is depicted in
Figure 5-1. If the TFS data tier looks unfamiliar, please flip back to Chapter 4 and take a look at Figure 4-1.

Figure 5-1.  Team project collection to team project relationship

http://dx.doi.org/10.1007/978-1-4842-0571-6_4
http://dx.doi.org/10.1007/978-1-4842-0571-6_4#Fig1

Chapter 5 ■ Managing Team Projects

98

This often ends up as a point of confusion for developers who have only worked in Visual Studio while
not connected to TFS or another source control system.

Team Project Boundaries
Generally, you want your entire software product in a single team project. The reason is manyfold but the
key is that is that all the collaboration tools in Team Foundation Server use it as a boundary, making working
across the boundry possible but fairly challenging. I haven’t seen this as too huge of a problem for people,
in general, but there is always a first time, so just be aware of the team’s needs when setting up team project.
There is no longer a hard limit on the number of team projects in a team project collection until resources on
the server become overly constrained. There is specific guidance on this in Chapter 1.

The only time I see that a deliberate separation makes sense is when there are certain segments of your
development community using a third-party tool that integrates at the team project level. This can occur if
there is multiplatform development involved; however, that multiplatform development on its own is not a
reason to break that segment off on its own.

Team Project Naming Conventions
The naming conventions for projects will look familiar; they are the same as collections. You cannot use
spaces or reserved characters when you create one (more later in this chapter). The following are a number
of naming convention restrictions that you’ll want to keep in mind:

•	 Length: No more than 64 Unicode characters

•	 Uniqueness: A project name can’t be identical to any other project name in your
team project collection. Here are the rules on special characters:

•	 No Unicode control characters or surrogate characters

•	 None of these printable characters: / : \ ~ & % ; @ ‘ “ ? < > | # $ * } { , + = []

•	 No ellipsis (…) or double periods (..)

•	 The project name can’t start with an underscore (_)

•	 The project name can’t start or end with a period (.)

•	 Reserved names: The project name can’t be a system-reserved name, such as PRN,
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, COM10, LPT1,
LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9, NUL, CON, AUX, Web, or WEB

•	 The project name can’t be a hidden segment used for IIS request filtering, such as
App_Browsers, App_code, App_Data, App_GlobalResources, App_LocalResources,
App_WebResources, bin, or web.config.

Setting up Team Projects
Creating team projects is fairly straightforward; it is done in the Team Explorer application. Normally, it is
installed with Visual Studio, so if you have Visual Studio 2013/2015 installed on a workstation, you can use
that. Alternatively, you can install Team Explorer right on the server if you are doing other maintenance tasks
on the server. You could also install Visual Studio on the Team Foundation Server if you have a plethora
of licenses; but unless you are just doing lab experiments, this is probably just a waste of time and money.
Team Explorer is only available as a separate application with Visual Studio 2013 and prior.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1

Chapter 5 ■ Managing Team Projects

99

Where team project collections were set up with the TFS Administrations Console, team projects
need to be created from a Visual Studio client (it can be the free Visual Studio Community Edition). In the
following examples, you are using Visual Studio 2015. If you are using an account that is different from the
one that you installed TFS with, you need to add it to the project collection Administrators group before you
begin. If you successfully walked through the collection creation process in the last chapter, you should be all
set; however, there are a few other processes that you need to undertake to successfully create projects. Let’s
cover these first.

Reporting Services Permissions to View or Create Reports
If you are using the same account you used while installing TFS, you are probably all set. However, if you are
just now picking up this book, let’s take a look. You need to be a member of the Team Foundation Content
Manager group.

	 1.	 To do this, go to the Report Manager home page in Internet Explorer; typically, it
is at an address such as http://<report server name>:80/Reports. If you can’t
find yours, open the Team Foundation Server Administration Console and go to
the Application Tier ➤ Reporting node to look it up. Once on the Reports home
page, select Folder Settings, as indicated in Figure 5-2.

Figure 5-2.  Reports home page

https://msdn.microsoft.com/library/bb737953.aspx
https://msdn.microsoft.com/library/bb737953.aspx

Chapter 5 ■ Managing Team Projects

100

	 2.	 This brings you to the Security screen. You can see in Figure 5-3 that both the
Administrator account and our TFSSERVICE account were already added to the
Team Foundation Content Manager group. You are going to add another user
account to that role as an example. Select New Role Assignment, as indicated in
Figure 5-3.

Figure 5-3.  Reports Security

	 3.	 This brings you to the Role Assignment screen, as shown in Figure 5-4. From
here, you enter the account or group you want the Role added to. Select the Role
and click OK. This takes you back to the Settings screen, where you can verify the
results.

Chapter 5 ■ Managing Team Projects

101

SQL Server Database Roles for Report Authors and to
Create Team Projects
Now that the Reporting Services is all set, you need to add the account to the TfsWarehouseDataReader
role for the account you’ll use to create the Team project. You also need to do this for any user that needs to
create customized reports in Reporting Services. It is very straightforward, but you will be using a different
tool: Microsoft SQL Server Management Studio.

	 1.	 Go to Start ➤ Microsoft SQL Server 2012 ➤ Microsoft SQL Server
Management Studio. From here, select Database Engine (likely the default),
which is your TFS SQL instance (this may not be the default) and click Connect,
as shown in Figure 5-5.

Figure 5-4.  New Role Assignment entry screen

Chapter 5 ■ Managing Team Projects

102

Figure 5-5.  SQL Management Studio: Connect to database engine

	 2.	 Select Databases ➤ Tfs_Warehouse ➤ Security ➤ Roles ➤ Database Roles.
Right-click the TfsWarehouseDataReader role and select Properties. This pops
up the Database Roles Properties dialog for this role. You can see the Role
Members in this dialog in the lower pane. Select Add, as shown in Figure 5-6.
Note that the role owner is Dbo (tied to the Windows Administrator account), so
you are all set. For an example, I’m adding the GaryG account.

Chapter 5 ■ Managing Team Projects

103

Figure 5-6.  Database Role Properties: TfsDataWarehouseDataReader

■■ Note I t’s probably important to note that any user you give this role to can view data across all projects.
This cannot be restricted to a particular collection or team project at this time. 

	 3.	 As shown in the dialog in Figure 5-7, enter the account and click OK. This returns
you to the previous window to verify that it was successfully added as a member
of the role (see Figure 5-8). Click OK.

Chapter 5 ■ Managing Team Projects

104

Figure 5-8.  User added

Figure 5-7.  Select a user to add to the role

Chapter 5 ■ Managing Team Projects

105

Figure 5-9.  Team Web Access: Click the Administer panel

Check to Make Sure That You Are in the Project Collection
Administrators Group
Again, you are probably all set if you are still using the account you installed TFS with, but I want to point
out how to get here if you are in an enterprise environment or if you just want to use a different account. As
with many aspects of TFS, there are multiple ways to do things. You can perform collection-level security
maintenance from either the Team Foundation Administration Console (a tool you’ve used frequently
throughout the book) or you can use Team Web Access. For variety’s sake, I’ll demonstrate with Team Web
Access.

	 1.	 Let’s set up an account. Open Internet Explorer and go to your Team Web Access
address. Typically, it is at http://<tfsservername>:8080/tfs. Then click the
Administer panel, as shown in Figure 5-9. This opens the Team Web Access
Control Panel, as shown in Figure 5-10.

Chapter 5 ■ Managing Team Projects

106

Figure 5-10.  Team Web Access control panel

	 2.	 You are prompted to select the collection you want to work with.
DefaultCollection is selected, which works fine for us here. From the control
panel, click the Manage collection security and group membership link, as
indicated in Figure 5-10. Select the Control Panel ➤ DefaultCollection ➤
Security. Select the Members link in the top right and then Add ➤ Windows
User or Group, as indicated in Figure 5-11. Fill in the information required in the
Add dialog, as shown in Figure 5-12. Click Save Changes.

Chapter 5 ■ Managing Team Projects

107

Figure 5-11.  Manage group membership: add a user to a group

Chapter 5 ■ Managing Team Projects

108

Figure 5-12.  Add Windows User or Group dialog

SharePoint Permissions
This is another process in which you are likely all set if you are still using the account that you used to install
TFS, but if you switched or want enable another account to create team projects, you need to make sure that
they are part of the Farm Administrators group in SharePoint.

	 1.	 This is very easy. Go to Start ➤ SharePoint 2013 Products ➤ SharePoint
Central Administration and select the Manage the farm administrators group,
as indicated in Figure 5-13.

Chapter 5 ■ Managing Team Projects

109

Figure 5-13.  SharePoint Central Administration

Figure 5-14.  People and Groups: Farm Administrators

	 2.	 This brings you to the People and Groups ➤ Farm Administrators screen,
where you can add a new account to enable the creation of team projects. Select
New ➤ Add Users to this group and in the pop-up dialog, add the account you
want to enable, as shown in Figure 5-14. I’d recommend using the machine
name\username or domain\username format, as I did here, if there are a lot of
users. Click Share when you are ready. That’s it.

Chapter 5 ■ Managing Team Projects

110

Team Project Security
As with team project collections, there are a number of permissions you can use to secure your projects. An
overview of collection and project security was covered in Chapter 3. You may want to review that before you
go further here. The security model itself is fairly simple and easy to use. It uses only Allow, Deny, Not Set
(the default).

Pick a Process
One big improvement in the latest TFS release is in its process support. In a team project, a process is
selected at its creation. If you have some experience with TFS, this was known as a process template in
older releases; now it just refers to what creates the process. A process is an extensible system that you can
customize to match your existing application lifecycle management process. It is fairly easy to work with
processes, which are based in XML (extensible markup language). There are also some third-party processes
that you may want to search and explore. More information on customizing the process templates is at
https://msdn.microsoft.com/en-us/library/ms243782.aspx. Out of the box, you get a choice of three:
Scrum, Agile, and CCMI.

Scrum, Agile, and CCMI are all pretty similar at the core, but provide different work item types (WIT)
to help with planning and tracking work. Of the three, Scrum is considered the most lightweight, whereas
CMMI provides some change control and other formalized development processes. For complete details on
each one, surf on over to https://msdn.microsoft.com/library/vs/alm/work/guidance/choose-process.
For our purposes, I’m going to choose Scrum, which is what I use most of the time.

Source Control Choices
Now (well, actually for a few releases now) you have a choice in source control. You can stick with Team
Foundation Version Control (TFVC), which is the classic centralized version control that has been popular
with Windows developers for years. All changes are checked in and distributed from a central location.
These changes are synchronized in either local or server workspaces. Only one copy of the files that you are
working on is kept in these workspaces; the history is kept on the server.

An alternative source control called Git is now available. Git is no newcomer to the source control world
and has been popular with open source developers for many years. It is a distributed version control system
(DVCS) utilizing a local repository to track and version your files. Changes are shared by pushing and pulling
changes through a remote, shared repository. What is unique about Git is that a complete copy of the source
repository is saved on your local workstation. This obviously has some advantages and disadvantages. The
Git integration in TFS can also use third-party Git services, making it ideal for collaboration with non–Visual
Studio developers.

There are a lot of things to weigh when making your source control choice, and choosing between TFVC
and Git is no different. For a detailed look at their differences, please visit https://msdn.microsoft.com/
en-us/Library/vs/alm/code/overview for more information. For our purposes here, I’m going to choose
TFVC.

http://dx.doi.org/10.1007/978-1-4842-0571-6_3
https://msdn.microsoft.com/en-us/library/ms243782.aspx
https://msdn.microsoft.com/library/vs/alm/work/guidance/choose-process
https://msdn.microsoft.com/en-us/Library/vs/alm/code/overview
https://msdn.microsoft.com/en-us/Library/vs/alm/code/overview

Chapter 5 ■ Managing Team Projects

111

Figure 5-15.  Team Explorer in Visual Studio 2015

Setting up a Team Project
Now for the fun part. You are going to add a team project to the DefaultCollection. You’ll use Visual Studio 2015.

	 1.	 Open Visual Studio 2015. In the Team Explorer applet, as seen in Figure 5-15
(you can display it from the View menu if it’s not on the screen yet), click Manage
Connections to bring up the Connect to Team Foundation Server dialog, as
shown in Figure 5-16. Note that the server name is normally populated in the
dialog if you are running on the server locally, as I was here; if you are not, just
click the Server button to enter one. In the Team Project Collections pane, you
can pick any one that is available. When ready, click Connect.

Chapter 5 ■ Managing Team Projects

112

Figure 5-16.  Connect to TFS Server dialog

	 2.	 Next, click the Home drop-down list and select Projects and My Teams ➤ New
Team Project…, as shown in Figure 5-17.

Figure 5-17.  Team Explorer: New Team Project

Chapter 5 ■ Managing Team Projects

113

Figure 5-18.  New Team Project: name and description

	 3.	 In the dialog, enter a name and (optionally) a description for your team project,
as shown in Figure 5-18. Click Next when ready.

	 4.	 In the next dialog, select a process template for your project. Making the right
selection is important, because switching afterward is a difficult process. These
templates select the format and type of work items that you will be using in the
project (artifact to track work). Please see the “Pick a Process” section in this
chapter for more information. I’m going to choose Scrum (see Figure 5-19). Click
Next when ready.

Chapter 5 ■ Managing Team Projects

114

	 5.	 In the next section, you get to configure a SharePoint site for our team project.
The wizard automatically suggests a site name at the SharePoint server on your
TFS configuration, but the Configure button (see Figure 5-20) allows you to
change the site name if you need to. Click Next when ready.

Figure 5-19.  Select a Process Template

Chapter 5 ■ Managing Team Projects

115

Figure 5-20.  SharePoint Site for our team project

	 6.	 Next, you pick the source control. You have a choice of two, as presented in in
Figure 5-21. TFVC (Team Foundation Version Control) is what I selected here.
Please see the “Source Control Choices” section for more information on this.
Click Next when ready.

Chapter 5 ■ Managing Team Projects

116

Figure 5-21.  Source Control Selection

	 7.	 Next is the summary screen. Please review your selections, as shown in
Figure 5-22, and click Finish.

Figure 5-22.  Summary

Chapter 5 ■ Managing Team Projects

117

	 8.	 Finally, you come to the progress screen, as shown in Figure 5-23. It updates
you on the progress of your team project creation. As the dialog indicates, this
process could take a bit of time; typically, I see it take 2 to 10 minutes, depending
on the server configuration. If all goes well, you’ll next see the confirmation
screen, which should look like Figure 5-24. In this dialog, you have the option
of displaying the process guidance for the process you chose and a link to the
creation log. Click Close. You see the process guidance in a web browser. Also,
you are now able to see your new team project in the Visual Studio Source
Control Explorer, as shown in Figure 5-25.

Figure 5-23.  Team project creation progress

Chapter 5 ■ Managing Team Projects

118

Summary
This chapter covered team project boundaries, naming conventions, considerations for creating team
projects, and a complete walkthrough of the creation of a team project. The usage of team projects is covered
in upcoming chapters.

Figure 5-25.  Your new team project

Figure 5-24.  Team project created confirmation

119

Chapter 6

Managing Source Code and Work

Now that you learned how to create team projects, you can begin using them to manage and coordinate
development work. In this chapter, you’ll look at

•	 Storing and managing source code

•	 Branching and merging

•	 Managing work with agile tools

We aren’t going to cover all of Visual Studio’s features in this chapter. That would take a few volumes of
its own. There are some very advanced features included at all license levels that I’d encourage everyone to
check out. What I’ll cover here are the key aspects of using Visual Studio with Team Foundation Server. You
may also want to jump over to Team Web Access on occasion for certain tasks, so you’ll hit some spots where
that makes sense as well.

Working with Source Code: Workspaces
In order to begin working with source code, you need to either configure a workspace (those who use TFVC)
or clone the repository (if you are using Git). Since we used TFVC, you’ll need to set up your workspace. You
have a choice here of using local or server workspaces.

Server or Local?
Server workspaces are the classical method of working with source code. Prior to TFS 2012, they were called
just “workspaces.” There were always local portions, but there were several key data structures that needed a
constant connection to the server, which occurred when

•	 Opening a source-controlled solution

•	 Checking out a file for edit

•	 Pending a new file or folder to add

•	 Pending a delete on an existing file or folder

•	 Pending a rename on an existing file or folder

•	 Asking “what are the pending changes in this workspace?”

•	 Undoing pending changes

•	 Diffing your copy of a file with the version of the file your change is pended against

Chapter 6 ■ Managing Source Code and Work

120

All of this can now be done while disconnected with a local workspace. Of course, there are a number
of items that still require an active connection, like using the Source Control Explorer (this one kills me,
use it all the time), viewing the history of an item, checking in, shelving/unshelving, branching/merging,
undeleting items, and just about every item dealing with managing source. So why do local workspace make
sense? You’ll consider that by just planning ahead a little now you can take what you need for offline use like
in a plane or off the network somewhere. There are a couple of other things with local workspaces to keep in
mind too:

•	 No longer just read-only. In server workspaces, everything but the items you checked
out is marked read-only. Not so in local workspaces. When pending changes are
scanned by Visual Studio, you don’t go back to the server to look for checked out
files; the checkout is implicit. These can be seen in Team Explorer in the Pending
Changes.

•	 Change candidate. The TFVC workspace scanner looks for any changes, adds,
deletes, and creates a change candidate. The Team Explorer has a link to examine the
changes and pops up the Promote Candidate Changes dialog, where you can look at
the changes. You’ll check this out later.

•	 Pend Change Permission. Due to the features in the local workspace, this can no
longer be enforced. Check-in locks seem to work, but taking or releasing a check-in
lock requires a server connection.

•	 Conversion. You can convert back and forth from either type of workspace. The Edit
Workspace dialog is where you manage this (You need to have the Advanced button
to see this option). I’ll go over doing this later in the chapter.

•	 Performance. What is the impact, either way, on performance and scalability? It’s
best to limit local workspaces to small or medium-sized projects. Not only are you
looking at an about a 50% increase in local disk space, but if you have more than
50,000 files, you may end up getting an error. Server workspaces can scale up to
10 million files by contrast. If you still want to work with larger projects in local
workspaces, I’d suggest splitting them up into smaller workspaces by only taking
certain branches into each one.

Setting up the Workspace
Now you’ll get a workspace set up for use. For our examples here, you’ll use a server workspace since it has
the most universal application. Let’s step through it.

	 1.	 In Team Explorer in Visual Studio, follow the links to Project ➤ Configure
Workspace, as shown in Figure 6-1.

Chapter 6 ■ Managing Source Code and Work

121

	 2.	 In the next window (see Figure 6-2), you see the Configure Workspace pane. Here
you can accept the defaults (grabs the current place in the team project) and the
default source location which is <user profile>\Source\Workspaces\<Workspace
Name>. These look good for now, so you’ll take these and click the Map & Get
button as indicated. Alternatively, you could have clicked the Advanced link
and performed more extensive workspace configuration, including additional
mappings and location.

Figure 6-1.  Configure workspace

Chapter 6 ■ Managing Source Code and Work

122

	 3.	 After you map and get the workspace, you should see a notification that it was
successful, as shown in Figure 6-3. You also see that the local path is now defined
in the Source Control Explorer header, as shown in Figure 6-4.

Figure 6-2.  Configure Workspace panel

Chapter 6 ■ Managing Source Code and Work

123

Figure 6-3.  Success notice

Figure 6-4.  Local path defined

Chapter 6 ■ Managing Source Code and Work

124

Adding a Solution/Project to a Team Project
Next, you need to add a Visual Studio solution or project to our TFS team project. Microsoft made this
process fairly simple. It can be done as you create new solutions or projects by selecting the Add to source
control check box in the Visual Studio New Project dialog, as shown in Figure 6-5, or by adding it from an
existing local one.

Figure 6-5.  Add to Source check box

Although adding a new solution while creating it is fairly self-explanatory, getting an existing one may
not be. While in Visual Studio (this is assuming the solution/project is in Visual Studio; if not, please consult
that documentation), navigate to Solution Explorer (the tab next to Team Explorer).

■■ Note I f Team Explorer or Solution Explorer become hidden or closes accidently, you can always get them
back by going to View ➤ Team Explorer or View ➤ Solution Explorer in Visual Studio. 

	 1.	 Once in Solution Explorer, just right-click a solution and select Add to Solution
to Source Control from the menu, as shown in Figure 6-6.

Chapter 6 ■ Managing Source Code and Work

125

	 2.	 In the dialog shown in Figure 6-7, you can see that you need to tell Visual Studio
if you are going to be working with TFS. Please select Team Foundation Version
Control (I’ll discuss Git later in the chapter).

Figure 6-6.  Add Solution to Source Control

Figure 6-7.  Choose source control

■■ Note I f you accidently pick Git as a source control system, you need to close out of Visual Studio and
remove the hidden .git folder to break that connection. The Remove function in the Team Explorer was not
functional for Git as of this writing. 

Chapter 6 ■ Managing Source Code and Work

126

	 3.	 Next, you pick a location to put the solution in the team project, as indicated in
Figure 6-8. You can add a new folder structure here (handy, if you are planning a
large app and want to separate various parts of it). By default, it creates a folder in
TFS with the same name as the solution. For our purposes, that is just fine. When
this is complete, you can see that the project has indeed been added, as shown
in Figure 6-9. Please note the little + (plus signs) next to all the files in Figure 6-9
as well. This indicates you have a pending change (our adding the solution to the
source). To complete the check-in of the solution to the source control, please
go to Team Explorer and select Check In, as indicated in Figure 6-10. Once that’s
complete, you get a confirmation in Team Explorer. The little + will also have
disappeared from Source Control Explorer. From here on out, it’s a simple matter
of right-clicking the project in Source Control Explorer and selecting Get latest
version for updates (there are other methods as well).

Figure 6-8.  Confirm folder name and location

Chapter 6 ■ Managing Source Code and Work

127

Figure 6-9.  Our solution in Source Control Explorer

Figure 6-10.  Need to check in our pending changes

Chapter 6 ■ Managing Source Code and Work

128

Checking In and Out
Ordinarily, Visual Studio dynamically handles all the checkouts for you. There are situations where (like
when you need to beat your office mate to the highly demanded file that you need in 10 minutes) you want
to check out and lock files. To do this, simply go to Source Control Explorer. Right-click and select Check Out
for Edit (you can do this for a bunch of files or an entire solution). You get the dialog shown in Figure 6-11 to
confirm your choices. Also, you can adjust the lock type from the default in Unchanged - Keep any existing
lock or Check In, which lets someone check out but not check in. This means they need to do a merge to
check in afterward. I’m not doing either at the moment since I don’t need to.

Figure 6-11.  Confirm check out

Branching and Merging
You could fill up a book only discussing branching and merging and all of their strategies and nuances.
I’ll cover the highlights here. Branching and merging are methods of reducing risk and increasing stability
into your code and process. Imagine that one of your teams wants to engage in an experiment of sorts that
requires major components to be replaced. For this, you would create a branch. Do your risky coding in
there, prove or disprove the effort, and then merge back to the original if it warrants it.

There are other production or DevOps-oriented scenarios that a branching strategy supports, such as
release branches to stabilize releases while continuing the development of a product. Another common
strategy allows multiple teams to work concurrently on common features by using feature branches to
segregate the code. This is not without complication, as merging these types of changes back into a single
branch can create many conflicts that need to be resolved to integrate these changes.

I’ve only given you a brief overview of what’s possible with branching and merging strategies. For more
information (if your needs are complex or you are planning an enterprise deployment) I highly recommend
reviewing the ALM Ranger Branching and Merging Guide available at http://vsarbranchingguide.
codeplex.com/. This guide has gone through several releases and it gets better each time.

http://vsarbranchingguide.codeplex.com/
http://vsarbranchingguide.codeplex.com/

Chapter 6 ■ Managing Source Code and Work

129

Branching
Here, I’ll just cover the essentials of creating a branch. In Figure 6-12, you can see that I renamed a few
folders and added a Main folder with the intention of putting other solutions there.

Figure 6-13.  Branch dialog

Figure 6-12.  Directories in my team project

I’m also working with a test team that wants to do some extensive regression testing for me, but I don’t
want to hold up development while the daylong suite runs. The solution is to create a stable Test branch for
the testers to work from.

	 1.	 In the Source Control Explorer, you are going to select the Main directory. (If it isn’t
your directory structure, just take a minute to create a Main directory and a GUI
Features directory, and then move your solution under them). Select the Branch
button, as indicated in Figure 6-13, or right-click and select Branching and Merging
➤ Branch. This brings up the dialog shown in Figure 6-13; not the target end point,
which is the branch. The default is always <the source> - branch. You can change
this easily enough, which was done to Test in Figure 6-14. You are also taking the
default check boxes to download the target and immediately convert the folder, so
that it shows up. Hit OK when ready to create the Test branch. After you do this, you
need to go to Team Explorer ➤ Pending Changes and press Check In.

Chapter 6 ■ Managing Source Code and Work

130

Figure 6-14.  Naming the branch test

Figure 6-15.  Fully visualized Test branch

	 2.	 In Figure 6-15, you can see the branch fully visualized. Next, I’ll go over merging
changes.

Merging
Now in our little scenario, the testers have finished their regression testing cycle, thankful that you gave them
a steady codebase to work from. Now they are requesting to test what you have been working on all of this
time. It’s time to merge your work in the Main branch to the Test branch.

	 1.	 Go to the Source Control Explorer. Select the Branch Merge button and then
select Merge on the pop-up. From here, you are looking at the Source Control
Merge Wizard, as shown in Figure 6-16. Note that you can get selective on
which changesets you merge in. Let’s select them all here. Also, the wizard was
prepopulated with its target branch test. Click Next when ready.

Chapter 6 ■ Managing Source Code and Work

131

	 2.	 In the next wizard screen, you can choose to merge the latest version, changeset,
date, or label. Let’s take the default here, as shown in Figure 6-17, and keep
going. Click Next when ready.

Figure 6-16.  Source Control Merge Wizard

Figure 6-17.  Merge options

Chapter 6 ■ Managing Source Code and Work

132

Next, you come to the confirmation screen, shown in Figure 6-18. Not much to do here; it’s just advising
if you have conflicts. Click Finish.

Figure 6-19.  Check in changes after the merge

Figure 6-18.  Confirmation

	 3.	 When you click Finish, the wizard closes. If you look over to the Team Explorer panel
under pending changes, you’ll notice you have a change to commit (I only made
one in this case). Click Check In, as shown in Figure 6-19, and the merge is done.

Chapter 6 ■ Managing Source Code and Work

133

Managing Work
If you are working with three or more people these days, you are likely working in an agile framework. You’re
not? Well, you really should think about it, because most of the industry has switched over to one form or
another of agile. If you are unfamiliar with Agile or Scrum (the most prevalent of the agile frameworks), I
would suggest a visit to http://www.Scrum.org as a first stop. It was founded by Ken Schwaber, one of the
original creators of the Scrum framework.

Luckily, Team Foundation Server has a full set of agile tools to help us collaborate and work together
more effectively. I’ll go over the basics here You’ll create a team (you can have as many as you see fit), get a
backlog together, and work with sprints.

Setting up a Team
Agile is all about the team. The first thing you should do is set up a team to work on the project. Before
getting started here, I created a few user accounts to work with; you may want to do this, or use actual user
accounts if you are ready. You’ve spent a great deal of time in this chapter in Visual Studio since it is the
primary TFS interface for most developers. You are going to jump into the Team Web Access portal for the
rest of this of this chapter.

	 1.	 To get started, click the gear icon on the Team Web Access portal, as shown in
Figure 6-20.

Figure 6-20.  Team Web Access: Select administration

Figure 6-21.  Select your project

	 2.	 From here, you go to the administration screen. Select your project, as shown in
Figure 6-21, and select the link for the Project Administration Page, as indicated
in Figure 6-22.

http://www.scrum.org/

Chapter 6 ■ Managing Source Code and Work

134

	 3.	 From the project administration screen, you can see there is already a default
team, which was automatically created. You are going to create a new team, so
click the New Team button, as indicated in Figure 6-23.

Figure 6-23.  Project screen

Figure 6-22.  Go to the project administration screen

Chapter 6 ■ Managing Source Code and Work

135

	 4.	 In the New Team dialog (see Figure 6-24), name the team. Please make sure
you have the box selected to create an area path for the team (the area path is a
hierarchal categorization used to organize work). You also get to select a security
group to add the team to. Contributors is the default and works fine in this case.
Hit the Create Team button when ready.

Figure 6-24.  Create team dialog

	 5.	 Click the team name to come to the team administration dialog, as shown in
Figure 6-25. From there, click the Add ➤ Add Windows user or group button
and add in the sample users, as shown in Figure 6-26. Click Save Changes when
ready, which takes you back to the overview screen so that you can delete and
add users.

Chapter 6 ■ Managing Source Code and Work

136

Figure 6-25.  Team administration screen: add user

Chapter 6 ■ Managing Source Code and Work

137

	 6.	 Now that you have users on the GUI team, you need to set up iterations and
sprints for the team to work in. You are back on the Overview page. Click the
Settings link, as indicated in Figure 6-27. From there, you can pick the types
of work items (these are objects in TFS used to track work and defects). On the
settings page, as pictured in Figure 6-28, you can select which items you want
on your backlog, the working days, and how bugs should appear (for more
information on bug appearance options go to https://msdn.microsoft.com/
Library/vs/alm/work/customize/show-bugs-on-backlog). I selected Epics, left
the working to the weekday default, and chose to have bugs appear with my bugs
on the backlog.

Figure 6-26.  Users added to the team

https://msdn.microsoft.com/ Library/vs/alm/work/customize/show-bugs-on-backlog
https://msdn.microsoft.com/ Library/vs/alm/work/customize/show-bugs-on-backlog

Chapter 6 ■ Managing Source Code and Work

138

Figure 6-27.  Team administration: pick settings

Chapter 6 ■ Managing Source Code and Work

139

Figure 6-28.  Select backlog, working days, and how bugs appear

	 7.	 Next, click the Iterations tab and select the iterations you’ll need to work on (see
Figure 6-29). Set the first one as the backlog sprint. You can also set the sprint
dates. You could set a series of iterations and sprints as children, but for now,
I’ll just keep it simple. There are a bunch of other options you could look at, like
setting more areas to further categorize work, setting security for a team member,
build settings, and so forth, but for now, you have enough to continue.

Chapter 6 ■ Managing Source Code and Work

140

	 8.	 Going back to the Team Web Access portal home page, you can see there is a new
project and team link. Please select it, as indicated in Figure 6-30. This brings us

Figure 6-29.  Selecting iterations/sprints and options

Figure 6-30.  A new project link!

to the project home screen, as shown in Figure 6-30.

	 9.	 Now you need to add a few backlog items to work with, so I’m going to create a
few quick user stories as an example, as shown in Figure 6-31. Items can easily
be stack-ranked with your team by sliding them up and down the backlog and
further broken down very quickly. Click the Board link when you are ready to see
your backlog on the storyboard.

Chapter 6 ■ Managing Source Code and Work

141

Figure 6-31.  Project home screen, select backlog

Figure 6-32.  Backlog screen allows you to quickly assemble an prioritize backlog

Chapter 6 ■ Managing Source Code and Work

142

	 10.	 On the storyboard screen (see Figure 6-33), you can visualize the work for use at
sprint planning and scrum meetings. An item can easily slide to its accurate status
for transparency in the team’s work. There are many more agile tool functions
that I didn’t cover here. Please follow the information links on the project’s home
screen for more information on how the other features can help you.

Figure 6-33.  Scrum board to status work quickly

Summary
This chapter covered the basics of source control, including branching and merging. It also covered
managing the associated work items (epics, stories, and bugs) and how to work with them using the
included agile tools at a very high level. You will likely want to spend some time reviewing these on your own
before using them in production.

143

Chapter 7

Maintaining Team
Foundation Server

In the last chapter, we had some fun using TFS, so now seems a good time to talk about maintaining it. If you
review the TFS architecture drawing in Figure 1-1, you will notice that TFS depends on a lot of components
running properly to work. I’ll cover some of the major points that you’ll need to keep in mind while trying to
keep your TFS environment healthy. You’ll look at

•	 Operating system maintenance

•	 SQL maintenance

•	 TFS maintenance

•	 Backup

This might seem obvious, but every machine in your TFS system requires maintenance. Failure to do so
might not only result in a failure and downtime, but a serious security breach that could put your company’s
IP (intellectual property) at risk or a system crash that could put you out of action for some time. Do I have
your attention now? Great. Let’s look at what you should be already doing.

Get Up to Date
There is a limit to what you can update (please refer to Chapter 1 for what is supported), and you want to
do this prior to the TFS install, but generally, you want to be on the latest server OS release. This keeps you
further away from obsolescence but also lets you take advantage of performance improvements that come
out in each release.

Beyond this, you have to make sure that, at a minimum, the servers in your environment have been
patched with all identified “critical” updates. This can be done with the Windows Update service that
you use for your client OS updates (I recommend that you select just the critical ones to be automatically
updated). Another alternative for larger environments is to set up the Windows Server Update Services
(WSUS) on a server in your environment. This will give you complete control to approve which updates are
applied to the servers. There is some overhead with this, so I would not recommend putting this on your
sole TFS server. More information on WSUS is at https://technet.microsoft.com/en-us/windowsserver/
bb332157.aspx. Also, if you can set up a schedule to never let more than 24 to 48 hours go by without an
update check, you will be less vulnerable to 0-day attacks.

I will add a cautionary note here for SQL server. As mentioned in Chapter 1, there is a significant
increase in the hardware requirements for SQL Server 2014 vs. SQL Server 2012 and back. I’m not saying
don’t upgrade to it—just make sure that you take into account the increase in requirements so that you are
not caught off guard. More information is available in Chapter 1 and at https://msdn.microsoft.com/
en-us/library/dd631889.aspx.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1
https://technet.microsoft.com/en-us/windowsserver/bb332157.aspx
https://technet.microsoft.com/en-us/windowsserver/bb332157.aspx
http://dx.doi.org/10.1007/978-1-4842-0571-6_1
http://dx.doi.org/10.1007/978-1-4842-0571-6_1
https://msdn.microsoft.com/en-us/library/dd631889.aspx
https://msdn.microsoft.com/en-us/library/dd631889.aspx

Chapter 7 ■ Maintaining Team Foundation Server

144

Disk Space
You need to keep a close eye on disk space for both the data tier and build servers. It can grow quickly, so as
discussed in Chapter 1, you really can’t have too much disk space. Unused and old workspaces also take up a
lot of disk space. The best way to keep an eye on it is with Team Foundation Sidekicks, available at
http://www.attrice.info/cm/tfs/. To clear up space, use tf workspace /delete [/server:servername]
workspacename[;workspaceowner]. For the build servers, especially, you need to look at the build retention
policies and the drop areas.

Security! Microsoft Baseline Security Analyzer (MBSA)
A secure server needs more than just updates. Ideally, you should examine a whole host of things, such
as firewall settings and application configuration that may put your server at risk. This can be exhaustive.
Another tool you can use to do an inspection of sorts on the server after the initial install and on a
maintenance basis is the Microsoft Baseline Security Analyzer (MBSA). It is free and fairly easy to install
and run. You can download and learn more about it at https://msdn.microsoft.com/en-us/library/
dd631889.aspx. One very important feature of this tool is that, as the name implies, it creates a “baseline”
report that you can use to compare with future runs. Put running this in your maintenance schedule.

Antivirus
Team Foundation Server has some specific antivirus settings to keep both it and your antivirus solution
running at peak performance.

IIS Process Exclusion
You should exclude the Internet Information Services (IIS) worker process (w3wp.exe) if your AV solution
doesn’t support the process exclusion directly. The w3wp.exe process is usually at C:\Windows\System32\
inetsrv\w3wp.exe. If it’s not there, you can also locate this file by following these steps:

	 1.	 Make a TFS web request, such as by connecting to TFS through Team Explorer
(you need to make sure that it’s active).

	 2.	 On the Team Foundation Server application tier or proxy machine, select Task
Manager and click the Details tab.

	 3.	 Locate w3wp.exe in the list of running processes.

	 4.	 Right-click w3wp.exe and then select Open file location to get to the location.

SQL and SharePoint
For SQL, you need to put in a few file and folder exclusions (DBs, log files, etc.). This is fairly involved and
specific to a few versions. Full information on doing these exclusions are at https://support.microsoft.
com/en-us/kb/309422. SharePoint has similar file exclusions. It’s fairly extensive; it’s located at https://
support.microsoft.com/en-us/kb/952167.

http://dx.doi.org/10.1007/978-1-4842-0571-6_1
http://www.attrice.info/cm/tfs/
https://msdn.microsoft.com/en-us/library/dd631889.aspx
https://msdn.microsoft.com/en-us/library/dd631889.aspx
https://support.microsoft.com/en-us/kb/309422
https://support.microsoft.com/en-us/kb/309422
https://support.microsoft.com/en-us/kb/952167
https://support.microsoft.com/en-us/kb/952167

Chapter 7 ■ Maintaining Team Foundation Server

145

SQL Maintenance
There are a number of touchpoints in maintaining a working high-performance SQL server that are way
beyond the scope of this book, but I wanted to cover a few common ones here.

Backup
I didn’t want you to think that I was skipping this; there is a whole section on it next. There is now a utility
to set up the backup for TFS; the element is that whatever solution you use, it needs to utilize Transaction
Marking in the process. Read up on it in the next section.

Run DBCC CHECKDB
You should regularly run DBCC CHECKDB to detect physical/logical corruption and get the best shot at
cleanly repairing and preventing it. Full documentation on adding this to your maintenance script is in
the MS SQL Server documentation and in a great blog post at http://blogs.msdn.com/b/cindygross/
archive/2010/06/13/dbcc-checkdb-database-integrity.aspx.

Set PAGE_VERIFY=CHECKSUM
Make sure that PAGE_VERIFY=CHECKSUM is set to prevent corruption. Again, more on this one in the SQL
documentation.

SQL ERRORLOG Monitoring
You’ll want to monitor this log to look for errors before they become serious situations.

Backup
TFS backup is very near and dear subject to me. A bad TFS backup (unknown to me) was responsible for
the failure of a valued customer to perform a restore. Do not begin any production installation or upgrade of
any product mentioned here without a prior backup of all systems. Special attention should be paid to the
backup of the Team Foundation Server system data tier. If done improperly, the backup will put your TFS
installation into an unusable state after a restore operation; the worse part will be that you won’t know this
until you start using it again.

This is because during the DB backups, it is critical that all the timestamps of these backups are
synchronized. Please review Microsoft’s current recommendations on using marked transactions in your
backup strategy (https://msdn.microsoft.com/en-us/library/ms253151(v=vs.120).aspx) if you are
not going to use the Team Foundation Scheduled Backups Wizard (this tool builds that in). I’m often asked
if a file system or “bare metal” backup is needed with TFS since most everything is in the databases. It is
certainly possible to, just depend on reinstalling the software and restoring your databases to “recover” your
TFS environment. However, you really should weigh the risk and the time involved. This is a bad place to try
to save money.

http://blogs.msdn.com/b/cindygross/archive/2010/06/13/dbcc-checkdb-database-integrity.aspx
http://blogs.msdn.com/b/cindygross/archive/2010/06/13/dbcc-checkdb-database-integrity.aspx
https://msdn.microsoft.com/en-us/library/ms253151(v=vs.120).aspx

Chapter 7 ■ Maintaining Team Foundation Server

146

Scheduled Backups Wizard
By far the easiest way to back up and restore your TFS database is with the Scheduled Backups Wizard. You
access it in the Team Foundation Administration console.

	 1.	 Go to Start ➤ Microsoft Visual Studio Team Foundation Server 2015 ➤ Team
Foundation Server Administration Console. From here go to the Scheduled
Backups node, as shown in Figure 7-1. Click the Create Scheduled Backups link.

Figure 7-1.  TFS Administration Console: Scheduled Backups

	 2.	 Next, you are brought to the first screen of the wizard, where you are prompted to
select or type a network path to store your backups, as shown in Figure 7-2. You
also have the option of changing the file extensions for the backup files. Here I’m
just selecting a local share for demonstration purposes; in a production setting,
you could select a NAS/SAN or other network location. Note that you must pick a
network location; you will not be able to select a local folder directly. Click Next
when ready.

Chapter 7 ■ Maintaining Team Foundation Server

147

	 3.	 Now you select to back up the Reporting Services DBs, as shown in Figure 7-3.
For some reason, reporting databases are not selected by default; make sure that
you select the option as indicated for a complete backup. You will also notice
a new node opens below the current one to capture the Reporting Services
Encryption Key. This is important to restoring your server.

Figure 7-2.  Backup location

Figure 7-3.  Reporting databases

	 4.	 Next, you need to back up the Reporting Key (you were prompted to save this in
setting up Reporting Services). Don’t have one? No worries, you can create one here
too, as I’m doing in Figure 7-4. Either select or create one. Click Next when ready.

Chapter 7 ■ Maintaining Team Foundation Server

148

Figure 7-4.  Reporting Encryption Key

Figure 7-5.  SharePoint databases

	 5.	 Now you need to select SharePoint databases, as indicated in Figure 7-5. (Again,
for some reason this isn’t selected by default.) Click Next when ready.

Chapter 7 ■ Maintaining Team Foundation Server

149

	 6.	 On the next screen, you can configure e-mail alerts. These are grayed out here
since I didn’t set up e-mail on this installation, as shown in Figure 7-6.

Figure 7-6.  E-mail alerts

Figure 7-7.  Schedules

Next, you set the schedule. You can select a simple nightly, manual, or custom backup schedule, as I did
as in Figure 7-7.

Chapter 7 ■ Maintaining Team Foundation Server

150

	 7.	 Next is the Review screen, as shown in Figure 7-8. Review and click Next when
ready.

Figure 7-8.  Review your backup schedule

	 8.	 The next screen (see Figure 7-9) features the Readiness checks. You can see that
the checks are ready; if not, resolve the problems that you are prompted about.
Click Configure when ready.

Chapter 7 ■ Maintaining Team Foundation Server

151

Figure 7-9.  Readiness Checks passed

Figure 7-10.  Success!

	 9.	 Next, you can see that the configuration ran fine, as shown in Figure 7-10. Click
Next when ready.

Chapter 7 ■ Maintaining Team Foundation Server

152

	 10.	 Lastly, you have the complete screen, as shown in Figure 7-11. Your backup is
now scheduled as configured. Click Close when ready and return to the TFS
Administration Console.

Figure 7-11.  Complete screen

	 11.	 You can see now that our Scheduled Backups node now has your job in it, as
shown in Figure 7-12. Please click the Take Full Backup link, as indicated,
to complete the process. As shown in Figure 7-13, you see a dialog pop up,
indicating the backup progress.

Chapter 7 ■ Maintaining Team Foundation Server

153

Figure 7-12.  Configured backup

Figure 7-13.  Full backup progress

Chapter 7 ■ Maintaining Team Foundation Server

154

Summary
This chapter covered the important points of maintaining your Team Foundation Server. There are some
other items at the operating system level that you need to do to simply maintain a well-running system
(normal system backups and patches, etc.) that we didn’t go over, but are important as well. For some
reason, backup and restore tend to be trouble spots for people. I think this is mainly because the reliability
of systems these days lulls us into a sense of complacency. Don’t let that happen to you: plan for the disaster
you can’t afford. Do your backups and also do a trial recovery occasionally to prove your plan. Virtual
machines are great for this purpose.

155

Chapter 8

Build Management

This chapter looks at Team Foundation Build, which has gone through quite a facelift with a completely new
build system. As we discussed in Chapter 3, Microsoft now gives us two completely different build systems.
The new old XAML system and Team Foundation Build. Since we already checked out the XAML system
while validating the system install, we’ll stick with Team Foundation Build here and cover

•	 Setting up Team Foundation Build

•	 Multiplatform and customization

•	 Running unit tests and publishing results

•	 Continuous integration

Overview
So what are you looking at in Team Foundation Build 2015? A true multiplatform build system. You can now
build Windows, iOS, Java (Maven, Ant, Grade), and Linux using any domain-specific language. Can you
still use the legacy build system (now called XAML)? Sure, but if you are starting from scratch or making a
small-scale upgrade, it would be worth your time to start making the transition to Team Foundation Build
(TFBuild). You just need to have a build service and a build agent deployed locally (there is also the option of
using Visual Studio Online’s hosted build service, but that’s beyond the scope of this book).

Setting up a Build Agent
You can run the following on your build server (which can also be your Team Foundation Server in a smaller
environment) :

•	 Many agent pools (you can have many per Team Project Collection, set by platform,
for instance, or one per collection)

•	 One or many build agents (depending on how much capacity you have, or use the
VSO service) belonging to these pools

•	 Since you already set up build service on your local system (you did that by installing
and running the Team Foundation Build service), you can skip that and go right to
the good stuff.

http://dx.doi.org/10.1007/978-1-4842-0571-6_3

Chapter 8 ■ Build Management

156

Let’s go through the steps of setting up Team Foundation Build since it takes a little work to get
everything in place.

	 1.	 To begin, let’s go back to the Team Web Access at http://<tfs server
name>:8080/tfs. Click the gear icon on the top right of the page, as shown in
Figure 8-1.

Figure 8-1.  Enter the Administration screen

Figure 8-2.  Agent pools

	 2.	 Next, let’s look at the Agent pools tab, as shown in Figure 8-2. You can see the
default Visual Studio Online (VsoBuildAgent) that was installed by default during
the setup of the TFS server. That would be great, except that you want to build
on premise and not use the cloud service. For this you need to install the agent.
Click Download agent in the top left of the screen, as indicated. You will be
prompted to save agent.zip. Save it to a local directory where you want to run it
from. I created one called C:\LocalTFSBuild and saved it there.

	 3.	 Once that’s done, you need to extract the files (right-click and select Extract all).
You see a file called ConfigureAgent.ps1. This is the configuration file you need
to set up the agent. Right-click this file and select Run ConfigureAgent.Ps1. This
pops open a PowerShell command window, as shown in Figure 8-3.

Chapter 8 ■ Build Management

157

	 4.	 In the PowerShell window, answer Yes to the execution policy change (typically,
you see this the first time you run PowerShell). Next, you are prompted to name
the agent. You can write your own name or take the default, as I did. Now you
need to enter the server URL. This is typically http://<server name>:8080/
tfs/. If in doubt, refer to your Team Foundation Server Administration Console.
Next, you need to enter the agent pool; you are using the default here, so just hit
Enter. The work folder is next; hit Default to use the folder you saved the file in, or
specify one. You are now prompted to run the agent as a service or interactively.
Normally, service is the right choice but if you will be running a Coded UI test or
need to debug a problem, interactive is the best choice. I chose interactive for this
one, which left the command prompt open, as shown in Figure 8-4. This is normal
and why service is better for a production environment. Do not close this window
or else the agent will shut down; but you can minimize to get it out of the way.

Figure 8-3.  PowerShell command window

Figure 8-4.  Build Agent in a command window

Chapter 8 ■ Build Management

158

	 5.	 If you click back to the Build tab in the control panel, you see the new agent you
created and that its status is green, as shown in Figure 8-5. From here you can
enable or disable the agent as needed. You would have had more configuration to
do if you didn’t use the Default Collection, but this served as a good example to get
started. You can also select Add capabilities on this tab to add more frameworks
(like a specific .Net one). These are very powerful, because when you submit a
build, the system only picks agents that have the capability needed. You’ve only
set up a single agent here for Windows. You can use the procedures you’ve gone
through to add agents for different platforms or frameworks as needed.

Figure 8-5.  The new tunning agent

Scaling and Administering Team Foundation Build
You just configured a very simple Windows build agent on the default collection and default pool as an
example. You co could also set up various Xplat build agents to support platforms other than Windows,
as discussed earlier. More information on setting these up is available at https://msdn.microsoft.com/
Library/vs/alm/Build/agents/xplat. In a production environment, you should consider a layout of
various build agents hosted on their own virtual machines, which are on a series of dedicated build servers
to host them. This would take a tremendous load off your TFS server (if you build there) and give you greater
flexibility and redundancy. The System Center Virtual Machine Manager is great for this (configured from
the TFS Administration Console) but a bit beyond what I can cover in the scope of this book. Let’s now
discuss how to go about the basic administration of Team Foundation Build.

Starting/Restarting Build Agents
Restarting a crashed or canceled configured build agent is easy. You don’t need to reconfigure it, just
launch it.

	 1.	 Start a PowerShell window (make sure you are an administrator), as shown in
Figure 8-6. Switch to your local agent directory, which you configured the agent
to; I went to C:\LocalTFSBuild\agent. Once there, just type agent\VsoAgent.exe.
This restarts the agent as you already configured it. I configured an interactive
one, so it starts in that mode, as shown. If you go to Control Panel ➤ Agent Pools,
you should see your agent running (green status).

https://msdn.microsoft.com/Library/vs/alm/Build/agents/xplat
https://msdn.microsoft.com/Library/vs/alm/Build/agents/xplat

Chapter 8 ■ Build Management

159

Settings: Build Retention
The build retention policy is also set from the control panel. Launch it at http://<tfs server name>:8080/
tfs and click the gear icon on the top right if you don’t already have it running. Select the View collection
administration page link, and then the Settings link, as shown in Figure 8-7. The Maximum Retention
Policy: Days to keep specifies that unless you specifically marked a build as Retain Indefinitely in the build
definition file (discussed later), it’s going to only keep for 30 days. This is fine for most teams, but if you have
specific needs, you can adjust here.

Figure 8-6.  PowerShell window to start agent

Figure 8-7.  Build Retention Policy

Security: Letting Others Help Manage the Builds
One thing you will find out quickly once you move from building on the desktop to server-based builds
with Team Foundation Build is that you will likely need to delegate some of this duty to other people,
because setting up and managing agents for a team can be time intensive. This is done by going to the
Control panel ➤ Agent pools tab. From there you can see two agent pool permissions: one for Agent Pool
Administrators and another for Agent Service Pool service accounts. From there you can add to the groups,
as pictured in Figure 8-8.

Chapter 8 ■ Build Management

160

•	 Agent Pool Service Accounts: Gives you permission to listen to the message queue
for the specific pool to receive work. Except in rare circumstances, the agent
registration process (like you went through) will suffice. Normally, Network Service is
automatically added when you register the agent. You may need to consider adding
an account here if you have specific enterprise security requirements.

•	 Agent Pool Administrators: Being in this group allows you to register new agents in
the pool and add other users and service accounts. Put someone in this group if you
need to delegate agent management activity. As with most security in TFS, you can
add a Windows User Group or a TFS Group.

Using Team Foundation Build
Now you are going to look at using Team Foundation Build and walk through creating a simple Windows
build. To begin, let’s open the Team Web Access portal, typically at http://<tfs server name>:8080/
tfs. Click the Team Project link on the main page. I’m selecting the sample one I created earlier, the
WickedCoolTeamProject. From here you click the Build link in the top tool bar, which should bring you to a
similar screen to the one shown in Figure 8-9.

Figure 8-8.  Adding users to Agent Pool Administration Group

Chapter 8 ■ Build Management

161

Build Definitions: Creating and Queueing
The build definition defines how the build is laid out, what you want it to do, and with what code. It can also
be set to trigger on certain events, such as a check-in or a clock. Do the following to create one.

	 1.	 Click the + sign in the top left. The first prompt is to select a template, as shown
in Figure 8-10. More on this later, but you use templates to pre-fill common
settings for both builds and deployments. You can see the defaults here (you can
buy, download, or create more). I selected the Visual Studio for our walk through.

Figure 8-9.  Build main window

Figure 8-10.  Select a Build Definition template

Chapter 8 ■ Build Management

162

	 2.	 Next, you select a pattern for the solution to build, along with various other
options, as shown in Figure 8-11. The options you see selected here are the
default. Notice that you can add a build step here as well. Some of the steps that
you can add are shown in Figure 8-12. Let’s just stick with the single step here
and not add any others.

Figure 8-12.  Optional steps

	 3.	 Skip the Options, Repository, and Variables screens. Select the Triggers screen,
as shown in Figure 8-13. Here you have the choice of triggering the build based
on a continuous integration (a check in) or a schedule, or both to make sure that
you have a fresh build every morning, for instance. Let’s choose Continuous
Integration here. It also worth pointing out the Batch Changes option on this
screen. It’s on by default and important to leave it there since it prevents slightly
overlapping builds.

Figure 8-11.  Build step screen

Chapter 8 ■ Build Management

163

Figure 8-13.  Trigger selection

	 4.	 Now is a good time to save. Hit the Disk button in the upper left of the screen and
type a meaningful name, as shown in Figure 8-14.

Figure 8-14.  Save the build definition

	 5.	 Now you need to queue up the build definition that you just created so it will
build when triggered. Select the Queue build link, as shown in Figure 8-15. On
the dialog, you can see a lot of options, including selecting a particular shelve set,
entering a build configuration, and in demands you could specify the existence
of a file or files. This could be handy if you are depending on another build or
system to deliver a component that you need to have finished before you build.
For now, you are all set. Hit OK when you are ready to queue the build.

Chapter 8 ■ Build Management

164

Figure 8-15.  Queue the build definition

	 6.	 As soon as you hit OK, you are placed in the Build browser screen, where you see
the build start up, the passed or failed steps on the left, and a console that shows
the live results, as shown in Figure 8-16. In the future, you’ll want to add a test
or two to ensure code and build quality. All of these results are reportable and
trackable.

Figure 8-16.  Build Explorer showing the build

Summary
In this chapter you checked out the new build system and learned how to set up agents to perform builds.
You also looked at setting build retention so that you don’t fill up the build server and discovered what build
definitions do.

165

Chapter 9

Testing with Team
Foundation Server

Testing with Team Foundation Server has undergone many revisions and improvements over the years.
Although most of the flashy testing features require a copy of Visual Studio (Enterprise or Test Professional),
there are still several important testing functions that can be done with TFS on it its own. These testing
functions are the focus of this chapter.

Testing your application is critical. Test early/test often is a mantra you hear from most agile teams, and
for good reason—it’s much easier to fix bugs while the code is still in active development. There are many
testing tools available in both Visual Studio and TFS to support these efforts.

Do I Need Visual Studio for My Dedicated QA Team/Testers?
I get this question every time that a new release comes out. My answer was always yes, but with this latest
release, I’m moving to a definite maybe. It really depends on how the work is organized and which tools the
client needs to use. Let’s begin with a quick overview of the available testing tools and what they can do for
you. Table 9-1 breaks down the functionalities.

Table 9-1.  Testing Functionalities

Testing scenario Tool Requires?

Test planning, management, and
manual execution, including suites,
cases, and steps

Team Web Access TFS only

Recording steps and IntelliTrace data
with the scenario above

Microsoft Test Manager Visual Studio and TFS.

Integration/system-level tests run
interactively

Coded UI test Visual Studio and TFS (for results
storage, tracking).

Continuous integration (CI) tests run
at check-in or periodically

TFS build, coded UI,
unit test, IntelliTest

Visual Studio (to create tests)
TFS (to run / monitor).

Load and performance Testing Load test Visual Studio. TFS (for results
storage, tracking.

Chapter 9 ■ Testing with Team Foundation Server

166

As you can see, the two key testing features that you use with TFS are manual tests and continuous
integration (CI) tests. It is worth noting that any test supported by Visual Studio can be run as a CI test,
including coded UI tests (you need the agent to be in interactive mode to support this).

Next, you’ll look at some of the testing that you can support with TFS alone.

Manual Test Planning, Creating, and Running
You are going to work in Team Web Access from here on. You can get to it from Visual Studio in the Team
Web Access link in Team Explorer, or from your browser at http://<tfs server>:8080/tfs/ (then select a
Team Project shortcut).

	 1.	 Select the Test link. You should see the Test Hub window, as shown in Figure 9-1.
Note the instructions on the screen, which is what you get in a Team Project without
a test plan. You are going to take care of this next as you create a test plan. Click the
here link to start (or you can click the + (plus sign) at the top of the left pane).

Figure 9-1.  Test hub

	 2.	 Next, fill in the name of the test plan, as shown in Figure 9-2. The other
information on this form is pre-filled. Area path is a hierarchal categorization
method that TFS has had since the beginning. Iteration is designed to track
releases and sprints. You used iterations in the chapter with storyboards (you
can learn more on area paths and iterations at https://msdn.microsoft.com/
Library/vs/alm/Work/customize/modify-areas-iterations). Currently,
the area path is set to our Team Project and the iteration is set to the sprint you
created previously. Hit Create when you’ve filled in the Name field. I called mine
GUI Testing.

https://msdn.microsoft.com/Library/vs/alm/Work/customize/modify-areas-iterations
https://msdn.microsoft.com/Library/vs/alm/Work/customize/modify-areas-iterations

Chapter 9 ■ Testing with Team Foundation Server

167

	 3.	 Now you’ll need to create a test suite. You have some choices here, as indicated
in Figure 9-3. You can create a static suite, a requirements-based suite, or a
query-based suite. A static suite is pretty much how it sounds: just a suite based
on whatever you enter. A query-based suite pops up a dialog to enter a work-
item query. The requirement-based suite is what you’ll use in this example. You
use these to group test cases together so you can track the testing status of an
item in the backlog. Each test case added to a requirement-based test suite is
automatically linked to the backlog item. I really like these for that reason. Select
Requirement-based suite.

Figure 9-2.  Creating a test plan

Chapter 9 ■ Testing with Team Foundation Server

168

Figure 9-4.  Selecting all the sprint items

Figure 9-3.  Suite type selection

	 4.	 Next, you are presented with a pre-populated work-item query screen of what’s
in the sprint. I’m going to select them all and build suites that link to them all at
once, as pictured in Figure 9-4.

Chapter 9 ■ Testing with Team Foundation Server

169

	 5.	 As you can see in Figure 9-5, the suites have been created. It’s time to add a few
steps. Select a suite and then click the +New drop-down list in the middle panel
and select New test case. Note the option to create a New test case from grid.
This is roughly like laying out a test case with an Excel sheet. Let’s use the first one.

Figure 9-5.  Creating test cases for our suite

	 6.	 Next, I named the case and added some steps, as shown in Figure 9-6. Ordinarily,
you’d have several test cases rolling up into several test suites, but what you have
here now is fine to demonstrate the functionality. Click Save and close when ready.

Chapter 9 ■ Testing with Team Foundation Server

170

	 7.	 This brings us back to the main test suite window, where you can see the status
of the test case. As the cases are run, you can select if the step passed or failed,
as shown in Figure 9-7. Click Run so that you can see the steps and mark some
results on a few.

Figure 9-7.  Main test case view

Figure 9-6.  Adding the case and steps

Chapter 9 ■ Testing with Team Foundation Server

171

	 8.	 Next, you are going to perform each step and mark a few as passed or failed.
Note that as you clicked Run on the test case page, the web-based Test Runner
popped up (see Figure 9-8) and took its position on the left side of the screen,
where it will be out of the way but keep the test steps handy. It runs on all the
major browsers—Internet Explorer, Chrome, Firefox, and Safari. You can move it
around as needed as well. There are controls on the side of the test steps to mark
as pass, fail, or record a comment. The few at the top record the results, create a
bug, and save. Let’s mark a few steps here as pass or fail, record the results, and
click Save and close. I’m going to do this a few times to get a mix of results to
look at.

Figure 9-8.  Test Runner

Chapter 9 ■ Testing with Team Foundation Server

172

	 9.	 When you go back to the test hub, you see that our test case has a “passed”
indicator near it. To see the individual runs, click the Run link at the top of the
left panel. This shows you the individual test runs. You can see in Figure 9-9 that I
recorded a few failures as well.

Figure 9-9.  Test runs

	 10.	 Next, let’s look at a chart of the test results. First, you need to build it. Go to Test
plan ➤ Graph. This section is empty until you create a chart, so let’s do that.
Click the +New drop-down list and select the Test Results chart. You should see
a screen like the one shown in Figure 9-10. I’m choosing to create a pie chart
and to sort by Outcome, but there are several other choices here. Click OK when
ready.

Chapter 9 ■ Testing with Team Foundation Server

173

	 11.	 In the chart view, you can see the test results, as shown in Figure 9-11.

Figure 9-10.  Building a test runs chart

Figure 9-11.  Test results chart

Chapter 9 ■ Testing with Team Foundation Server

174

Now this was a very simple example, but hopefully you can see the power here. You can get a quick look
across the entire sprint backlog and look at its testing status. You can even pin this chart to the home page by
clicking the … icon in the top right of the chart. That’s all I’m going to cover here. You now have the tools to
create a complete suite of tests against your sprint items to instantly inform your teams about status.

Continuous Integration Testing
To support the pace of modern agile development, developers need to know the instant a change causes an
error, or when some new code has been integrated. You can deliver in this using Team Foundation Server
and Visual Studio. This is going to be one of those times that I’m going to tell you that you already set up the
framework to run CI testing. Remember back in Chapter 8 when you set up Team Foundation Build? That CI
build that you set up had a step to run any test added to the Team Project.

Let’s go back to the Team Web Access portal and click Build ➤ Explorer to view the builds. Select
the build that you created in Chapter 8 and click Edit. You should see a screen similar to the one shown in
Figure 9-12. If you recall, you used the default Visual Studio build template, so this is right out of the box.

Figure 9-12.  CI build test step

Looking at the current build’s test step configuration, as I’ve selected here, you can see the Test
Assembly parameter that lets the build do its stuff:
\$(BuildConfiguration)*test*.dll;-:\obj**

This combination of wild cards has the effect of running any version of Visual Studio you drop in the
Team Project. It will run any DLL with “test” in its name, except in object directories. Pretty cool, right? Well,
most of the time it is, but just keep in mind what this line is looking for—and not looking for—to run the tests
that you want.

http://dx.doi.org/10.1007/978-1-4842-0571-6_8
http://dx.doi.org/10.1007/978-1-4842-0571-6_8

Chapter 9 ■ Testing with Team Foundation Server

175

For example, I like to run coded UI tests in my build process. So as long as I’m running my agents in
interactive mode, that’s great. However, if I didn’t have my agents set up that way, or if I had coded UI, unit,
or other test types that were not ready for production, or are unsuitable to run on a build agent, my build
would fail as soon as I checked them in. The solution to this is to exclude the non-production test paths from
the test assembly path, like the obj one is. Not a big deal if you are ready for it.

Summary
You covered a lot of ground quickly in this unit. You looked at using the Test Runner with Team Web Access.
You also walked through planning your manual tests suites and tying them to the requirements that should
be driving them.

177

Chapter 10

Reporting and Other Features
Worth Exploring

The reporting functionality (in addition to the dashboards that you’ve looked at) in Team Foundation Server
is provided through SQL Reporting Services. It’s very powerful and expandable. In this chapter, you’ll look
at the reporting functionality and what the system offers at a high level. I’ll also discuss some areas that you
may want to explore for further research. This chapter covers

•	 Reporting functionality

•	 Types of reports available

•	 Report security and administration

•	 Other TFS features that you should explore

•	 Reporting

There are a number of different reporting platforms available with TFS. What you choose depends on
what you are looking for. For instance, SharePoint dashboards are great for visualizing data sets that you
want to monitor constantly, but take some work to set up and modify. On the other end of the scale are work-
item queries that are quick and simple, but offer little in terms of graphics for visualization. Let’s have a look
at these to see what makes sense for you to use.

SQL Reporting Services Reports
The out-of-the-box SQL Reporting Services reports are quite good and cover most areas you’d want to keep
an eye on, such as work progress and bugs. A handy feature (which you’d be smart to include in your custom
reports) is a link to related reports that the viewer might want to check out. These include parameters to
make the reports more flexible, such as filtering by area paths and iterations.

Your actual collection of reports will vary based on the process template you chose for the project.
Figure 10-1 shows a sample Backlog Overview Report, for example. There isn’t much activity in this example
system, but you can imagine how useful a report like this could be in monitoring organization-wide
development deliverables and test results. Other reports include the build status and test case readiness.
Of the visual reports, these are the easiest to customize as well with a little knowledge of SQL Reporting
Services. You can browse all of the reports by going to the Reports service in your deployment, normally at
http://<report server:80/Reports, but you can always check the Team Foundation Server ➤ Application
Tier ➤ Reporting.

Figure 10-1.  Backlog Overview report

Chapter 10 ■ Reporting and Other Features Worth Exploring

178

One thing worth mentioning in a recovery or crash scenario is that the SQL Analysis Services may
require you to rebuild the warehouse. There is a fairly simple way to do this. Just go to Team Foundation
Server Administration Console ➤ Application Tier ➤ Reporting. Click the Rebuild link, as indicated in
Figure 10-2. This rebuilds the warehouse and gets your reports back in working order.

Figure 10-2.  Rebuilding the warehouse

Chapter 10 ■ Reporting and Other Features Worth Exploring

179

SharePoint Dashboards
What you get from SharePoint dashboards varies based on what you chose as a process during the creation
of the Team Project. Scrum, for instance, only offers a Release dashboard, whereas Agile offers the My
Dashboard and the Project, Progress, Quality, Test, Bugs, and Build dashboards. However, what you
get also varies by which version of SharePoint is integrated; there is a notable difference between
SharePoint Standard Edition and SharePoint Server Enterprise. Your best bet is to review the article at
https://msdn.microsoft.com/library/dd380719.aspx if a specific dashboard is important to you. These
dashboards are built from a combination of Excel reports and Team Project data. Since Scrum was chosen
for our process, you only get the Release dashboard; however, this board has just about everything that you
need to keep an eye on, including the burndown, backlog, and stats on work items, recent builds, and
check-ins. You can always add or move around the web parts on the page if the Release dashboard doesn’t
quite suit you. A sample Release dashboard is shown in Figure 10-3.

https://msdn.microsoft.com/library/dd380719.aspx

Figure 10-3.  Release dashboard

Chapter 10 ■ Reporting and Other Features Worth Exploring

180

Excel Reports
The Excel reports are used throughout the Dashboards, so likely you are already using them and just don’t
know it. TFS also provides an Excel template that you can use to query anything in the data warehouse. If
you have the Enterprise edition of SharePoint, your portal comes with a selection of Excel reports to track
bugs, tests, and other deliverables. However, you can roll your own reports with the Excel template provided.
Figure 10-4 shows a simple work item–based report.

Figure 10-4.  Excel-based work item report

Chapter 10 ■ Reporting and Other Features Worth Exploring

181

Other TFS Features You Should Explore
Unfortunately, when you are writing an essentials book on a tight deadline, you just don’t have the
bandwidth to include every feature that TFS has to offer, even at a high level. I want to briefly introduce you
to a few areas that I think you should research on your own to see if these features might add value to your
deployment. There are certainly more features, but I find the following to be the most interesting, and I think
you might too.

Lab Management
Lab Management is TFS’s virtual machine build management system. It can be used in conjunction with
build management and testing, providing the provisioning or build and test configurations as needed. It is
by no means an essential element; I deploy it for clients only about half the time. When I don’t deploy it,
it’s because the client really didn’t need what it had to offer (too small an operation) or they already had a
competitive solution that was working fine for them. You can use Lab Management to manage both standard
environments (physical and single machine virtual machines of any type) and SCVMM (System Center
Virtual Machine Manager) environments that can be multitier Hyper-V machines (just Hyper-V, actually).
It can be configured in the Team Foundation Administration Console. You can read up on it a little more at
https://msdn.microsoft.com/en-us/library/dd936084.aspx.

Release Management
Release Management is an interesting new product to the TFS family. It lets you automate your deployment
process across all of your environments directly from your continuous integration builds. It lets you stage
your environments and create an approval-based workflow so that transitions from, let’s say, development to
testing to production are planned, and not happening by accident or by the sheer momentum that happens

https://msdn.microsoft.com/en-us/library/dd936084.aspx

Figure 10-5.  Release Management: Release Path

Chapter 10 ■ Reporting and Other Features Worth Exploring

182

on occasion. It’s not extremely difficult to set up; it just requires a little planning. Once it’s up and running,
you can keep a careful eye on the status of all of your releases and know where something went astray. It
provides additional traceability on environments that may need a higher level of scrutiny. It also makes
otherwise complex deployment sequences easy to follow and repeatable.

In Figures 10-5 and 10-6, you can see the simple workflow layout of a three-tiered environment and
a library of release tasks. You can learn more about it at https://msdn.microsoft.com/Library/vs/alm/
Release/overview-rm2015.

https://msdn.microsoft.com/Library/vs/alm/Release/overview-rm2015
https://msdn.microsoft.com/Library/vs/alm/Release/overview-rm2015

Figure 10-6.  Release Management: actions you can reuse consistently

Chapter 10 ■ Reporting and Other Features Worth Exploring

183

ALM Virtual Machines
So, this is not technically a feature but I feel compelled to mention it. Visual Studio ALM virtual machines—
initially built by Brian Keller at Microsoft—are an extremely valuable resource for learning more about
TFS and Visual Studio. You can use them to see what a fully configured system with sample data looks like.
There is also a collection of hands-on labs that you can use to become more familiar with the features in a
safe environment. I’ve used these in the past and they have been of real value to me. I even used them for a
few screenshots in this book. You can learn more at http://vsalmvm.azurewebsites.net/alm-vm-2015-
available-now/.

One thing you won’t learn at that web site is that you can actually use the Oracle VM VirtualBox
freeware application to host it just about anywhere—in addition to a Hyper-V environment. Simply configure
the VM as stated for Hyper-V, but in VirtualBox. In older releases, you had to move the VHD file to an IDE
virtual controller, but as of version 5.0.8 r103449, the default SATA controller seems to work just fine. You can
see mine running in Figure 10-7.

http://vsalmvm.azurewebsites.net/alm-vm-2015-available-now/
http://vsalmvm.azurewebsites.net/alm-vm-2015-available-now/

Figure 10-7.  The Visual Studio ALM VM running on a VirtualBox VM

Chapter 10 ■ Reporting and Other Features Worth Exploring

184

Summary
This chapter covered reporting and a few other areas that I think you should explore. I hope that you found
this book useful in your exploration of Team Foundation Server 2015. It is far from an exhaustive work, but
it should at least get you started and let you know where you should dig deeper. Team Foundation Server is
a force multiplier in the development world and a rare one that can help a small five-person development
team sort out the chaos of quick-moving projects. It can also help a large enterprise maintain consistent
practices.

185

�       � A
ALM virtual machines, 183
Antivirus

IIS process exclusion, 144
SQL and SharePoint, 144

�       � B
Build management

administration screen, 156
agent pools, 156
build, definition

Build Explorer, 164
queue, 164
save, 163
step screen, 162
template, 161
trigger selection, 163

command window
build agent, 157
PowerShell, 157

PowerShell command window, 156
Team Foundation

build retention policy, 159
security, 159–160
starting/restarting build agents, 158

tunning agent, 158
Build Service configuration

Administration Console and Build
Configuration, 62

agents, 55
Configuration Center, 52
Configuration complete, 59
CPU and RAM, 50
disk subsystem, 50
new build server installation, 51
readiness checks, 58
Review settings, 57
service account selection, 56
summary screen, 61

Team Foundation Build Service dialog, 53
Team Project Collection, 54

�       � C
Collection management

architecture, 67–68
containers, 67
databases, 68
naming conventions, 69
resources, 68
team projects, 68

Continuous Integration (CI) Testing, 174–175

�       � D
Detaching progress, 81–82

�       � E, F, G
Excel reports, 180–181

�       � H
HTTPS. See Hypertext Transfer Protocol

Secure (HTTPS)
Hypertext Transfer Protocol

Secure (HTTPS), 62

�       � I, J, K
Installation, TFS

advanced upgrade, 19–20
Application Tier, 14
basic services, 14
category, 13
location, selection, 21
media selection, 20
negotiate authentication, 14
new installation, 13
progress screen, 21–22

Index

■ index

186

standard single server
items configuration, 14–15
wizard selection, 22–23

upgrades, 14
workflow, 14

Installation validation
Logs directory, 49–50
Server URLs

services and web, 45
Web Access Admin screen, 48
Web Access main page, 47
Web Access URL, 46

services, 48–49

�       � L
Lab management, 62, 74, 181

�       � M, N, O, P, Q
Microsoft baseline security analyzer (MBSA), 144
Microsoft Developer Network (MSDN), 1

�       � R
Release management server, 181, 183
Reporting functionality, TFS

Excel reports, 180–181
SharePoint dashboards, 179–180
SQL reporting services reports, 177, 179

�       � S
Secure Sockets Layer (SSL), 62
Security, TFS

Active Directory groups, 62–63
default groups, 64
HTTPS, 62
on-hold project, 64
SSL, 62
users and groups, 61–63
VPN, 62
Web access, 64

SharePoint dashboards, 179–180
SharePoint Requirements

SharePoint 2010, 8, 15
SharePoint 2013, 1, 8, 93

Source code management
local workspaces, 120
server workspaces, 119
Source Control Explorer

branching, 129–130
check in and out, 128
merging, 130, 132

team project
adding solution to source control, 125
folder name, location confirmation, 126
Source check box, 124
Source Control Explorer, 127

workspace set up
configuration, 121–122
local path defined, 123
mapped notification, 123

SQL maintenance
backup, 145
DBCC CHECKDB, 145
ERRORLOG monitor, 145
PAGE_VERIFY=CHECKSUM, 145

SQL reporting services reports, 177, 179
SQL Server requirements

high availability (HA), 10
Server Express, 9
SQL Server 2012, 8
SQL Server 2014, 8–9

SSL. See Secure Sockets Layer (SSL)

�       � T
Team Foundation Server 2013 (TFS 2013)

architecture
high availability (HA), 2
scaled-out servers, 2

installation
64-bit server operating system (OS), 3
accounts and permissions, 4–6
checklist, 3–4
Server Core installation, 3
Server operating systems, 6–7

language requirements, 12
MSDN, 1
ports

alternation, 11
default, 11

scaling and performance, 7
SharePoint requirements, 8
single-server installation, 8
SQL Server requirements, 8, 10
TFS DB, 10
Visual Studio 2013, 1

Team Foundation Server maintenance
antivirus, 144
backup

configured backup, 152–153
e-mail alerts, 149
location, 147
readiness checks, 151
reporting encryption key, 148
reporting services DBs, 147
reviewing schedule, 150

Installation, TFS (cont.)

■ Index

187

scheduled backups, 146, 149
SharePoint databases, 148

disk space, 144
MBSA, 144
SQL maintenance, 145
WSUS, 143

Team Foundation Server, testing
functionalities, 165
Team Web Access

sprint items selection, 168
suite type selection, 167–168
test cases creation, 169
test case view, 170
test hub, 166
test plan creation, 166–167
test results chart, 173
test runner, 171
test runs chart, 172–173

Team Foundation Version
Control (TFVC), 110

Team project collections
administrators group, 70
attach collection feature, 83
collection database, 87
complete detachment, 82–83
configuration review, 75
configuration success, 76
confirmation, 89
database creation, 72
Database Wizard, 85
data tier, 69
default collection, 69
default SQL Server, 71
deployment, 69
detach collection, 78
environments, 71
familiar screen, 83–84
Farm Administrators group, 77, 86
important projects, 71
lab management, 74
List Available Databases, 86
maintenance operations, 70
moved collection, 92
naming conventions, 71
readiness checks, 76, 80–81, 90
report collections, 92–93
reports location, 73
server documentation, 84
Server Management Studio, 85
servicing message, 78
SharePoint collections, 93, 95
SharePoint products, 77
SharePoint Site, 72
site collection, 94, 96

splitting, 96
SQL backup utility, 84
stricter environment, 73
target server, 86
verification tests, 79
warning log, 90–91
web application, 72

Team projects management
administrators group account

administer panel, 105
group membership, 107
web access control panel, 106
Windows user\group dialog, 108

Git, 110
naming conventions, 98
project collection to relationship, 97
reports

home page, 99
role assignment entry screen, 101
security, 100

security, 110
SharePoint permissions, 108–109
SQL server database

database engine connection, 102
database role properties, 103
user addition, 104
user selection, 104

team project boundaries, 98
TFS process support, 110
TFVC, 110
Visual Studio 2015

process template selection, 114
project, 112
project created confirmation, 117, 118
project name and description, 113
SharePoint site, 115
source control selection, 116
team explorer, 111
TFS Server dialog, 112

TFS databases
Active Directory, 11
functional levels, 11
Windows NT Server 4.0, 10
TFVC. See Team Foundation Version

Control (TFVC)

�       � U
Upgrades, TFS

back up, 16
in-place upgrade, 18–19
installer, selection, 17
older releases, 16
options, selection, 15

■ index

188

path, 15–16
performance, advanced upgrade, 19–20
prerequisites, 15
SharePoint/SQL Reporting Services, 16
SQL server, 16
steps

backup, 17
latest service packs, 17
requirement, analysis, 17
uninstall, TFS 2010, 17

option selection, 17–18

�       � V
Virtual private network (VPN), 63
Visual Studio 2013. See Team Foundation

Server 2013 (TFS 2013)
VPN. See Virtual private network (VPN)

�       � W, X, Y, Z
Windows Server Update Services (WSUS), 143
Work management

project
administration screen, 134
link, 140
screen, 134
selection, 133

Team Foundation Server
administration, selection, 133
backlog screen, 141
backlog selection, 141
iterations/sprints and options, 140
pick settings, 138
scrum board, 142
team dialog creation, 135
user addition, 136–137

WSUS. See Windows Server Update Services (WSUS)

Upgrades, TFS (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Planning for Team Foundation Server
	 Before You Begin
	 Team Foundation Server 2013 Editions
	 TFS Architecture Overview

	 Installation Considerations
	 Basic Requirements
	 Installation Checklist
	 Accounts and Permissions
	 Supported Operating System Requirements

	 Performance and Planning
	 Hardware
	 Scaling Tips: One to Many
	 SharePoint Requirements
	 SQL Server Requirements
	SQL Server 2014 Performance
	TFS Express SQL Naming Requirement
	SQL Server High Availability Features Supported on Team Foundation Server
	No Touchy the TFS DB !

	 Active Directory
	 Ports
	 Language Requirements

	 Summary

	Chapter 2: Installing Team Foundation Server
	 Install Categories
	 New Install
	Which Wizard to Use?

	 Upgrades
	Prerequisites
	Upgrade Paths for TFS
	How About Upgrades from Older Releases?
	 SQL Server
	The Trouble with SharePoint and SQL Reporting Services

	 TFS Upgrade Scenarios
	 Back Up!
	TFS Basic or Express Upgrades
	Standard Upgrade
	Advanced Upgrade

	 Installation Experience
	 SQL Reporting Services Configuration Manager

	 Summary

	Chapter 3: Installation Validation and Security
	 Installation Validation
	 Validate Team Foundation Server URLs
	 Validate TFS Services
	 Installation Logs
	 XAML Build Service
	System Requirements
	XAML Build Service Configuration

	 Team Foundation Server Security
	 Security Model
	Authentication
	Planning
	So What Do I Get by Default?
	Default Groups at the Team Project Level
	Securing Team Web Access: Access Levels
	Feature Break Down by Access Level

	 Summary

	Chapter 4: Managing Collections
	 Collections and Projects Overview
	 What Are They?
	 Collection Naming Convention

	 Setting Up and Managing Team Project Collections
	 Team Project Collections
	Manage Team Project Collections
	Creating a Collection
	Moving a Collection
	Collections with Reports
	Collections with SharePoint

	 Splitting a Collection

	 Summary

	Chapter 5: Managing Team Projects
	 Team Projects Overview
	 Team Project Boundaries
	 Team Project Naming Conventions
	 Setting up Team Projects
	 Reporting Services Permissions to View or Create Reports
	 SQL Server Database Roles for Report Authors and to Create Team Projects
	 Check to Make Sure That You Are in the Project Collection Administrators Group
	 SharePoint Permissions
	 Team Project Security
	 Pick a Process
	 Source Control Choices
	 Setting up a Team Project

	 Summary

	Chapter 6: Managing Source Code and Work
	Working with Source Code: Workspaces
	Server or Local?
	Setting up the Workspace
	Adding a Solution/Project to a Team Project
	Checking In and Out
	Branching and Merging
	Branching
	Merging

	Managing Work
	Setting up a Team

	Summary

	Chapter 7: Maintaining Team Foundation Server
	 Get Up to Date
	 Disk Space
	 Security! Microsoft Baseline Security Analyzer (MBSA)
	 Antivirus
	 IIS Process Exclusion
	 SQL and SharePoint

	 SQL Maintenance
	 Backup
	 Run DBCC CHECKDB
	Set PAGE_VERIFY=CHECKSUM
	SQL ERRORLOG Monitoring

	 Backup
	 Scheduled Backups Wizard

	 Summary

	Chapter 8: Build Management
	 Overview
	 Setting up a Build Agent
	 Scaling and Administering Team Foundation Build
	 Starting/Restarting Build Agents
	 Settings: Build Retention
	 Security: Letting Others Help Manage the Builds

	 Using Team Foundation Build
	 Build Definitions: Creating and Queueing

	 Summary

	Chapter 9: Testing with Team Foundation Server
	 Do I Need Visual Studio for My Dedicated QA Team/Testers?
	 Manual Test Planning, Creating, and Running
	 Continuous Integration Testing
	 Summary

	Chapter 10: Reporting and Other Features Worth Exploring
	 SQL Reporting Services Reports
	 SharePoint Dashboards
	 Excel Reports
	 Other TFS Features You Should Explore
	 Lab Management
	 Release Management
	 ALM Virtual Machines
	 Summary

	Index

