
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

by Michael Alexander

Excel® Macros

www.allitebooks.com

http://www.allitebooks.org

Excel® Macros For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Microsoft and Excel are registered trademarks of Microsoft Corporation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
 products, visit www.wiley.com.

Library of Congress Control Number is available from the publisher.

ISBN 978‐1‐119‐08934‐6 (pbk); ISBN 978‐1‐119‐08926‐1 (ebk); ISBN 978‐1‐119‐08935‐3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance
Introduction .. 1

Part I: Holy Macro Batman! ... 7
Chapter 1: Macro Fundamentals .. 9
Chapter 2: Getting Cozy with Visual Basic Editor.. 29
Chapter 3: The Anatomy of Macros ... 43

Part II: Making Short Work of Workbook Tasks 57
Chapter 4: Working with Workbooks .. 59
Chapter 5: Working with Worksheets ... 85

Part III: One‐Touch Data Manipulation 113
Chapter 6: Feeling at Home on the Range ... 115
Chapter 7: Manipulating Data with Macros .. 137

Part IV: Macro‐Charging Reports and Emails 173
Chapter 8: Automating Common Reporting Tasks .. 175
Chapter 9: Sending Emails from Excel... 213

Part V: The Part of Tens ... 229
Chapter 10: Ten Handy Visual Basic Editor Tips ... 231
Chapter 11: Ten Places to Turn for Macro Help .. 239
Chapter 12: Ten Ways to Speed Up Your Macros .. 245

Index .. 255

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction ... 1

About This Book .. 2
Foolish Assumptions ... 2
Icons Used In This Book ... 3
Beyond the Book ... 3
Where to Go from Here ... 4

Part I: Holy Macro Batman! .. 7

Chapter 1: Macro Fundamentals .9
Why Use a Macro? ... 9
Macro Recording Basics ... 10

Examining the macro ... 12
Testing the macro .. 13
Editing the macro... 13

Comparing Absolute and Relative Macro Recording 14
Recording macros with absolute references.................................... 14
Recording macros with relative references 17

Other Macro Recording Concepts ... 19
Macro‐enabled file extensions.. 19
Macro security in Excel 2010 .. 19
Trusted locations ... 20
Storing macros in your personal macro workbook 21
Assigning a macro to a button and other form controls 22
Placing a macro on the Quick Access toolbar 23

Examples of Macros in Action ... 24
Building navigation buttons ... 24
Dynamically rearranging pivot table data .. 25
Offering one‐touch reporting options ... 26

Chapter 2: Getting Cozy with Visual Basic Editor 29
Working in Visual Basic Editor .. 29

Understanding VBE components ... 30
Working with the Project Window .. 31

Adding a new VBA module ... 32
Removing a VBA module ... 33

www.allitebooks.com

http://www.allitebooks.org

Excel Macros For Dummies vi
Working with a Code Window .. 34

Minimizing and maximizing windows ... 34
Getting VBA code into a module .. 35

Customizing the VBA Environment ... 37
The Editor tab .. 37
The Editor Format tab ... 39
The General tab .. 40
The Docking tab ... 40

Chapter 3: The Anatomy of Macros . .43
An Overview of the Excel Object Model ... 43

Understanding objects .. 44
Understanding collections .. 45
Understanding properties .. 45
Understanding methods ... 46

A Brief Look at Variables .. 46
Understanding Event Procedures ... 49

Worksheet events .. 49
Workbook events ... 51

Error Handling in a Nutshell ... 53
On Error GoTo SomeLabel .. 53
On Error Resume Next .. 54
On Error GoTo 0 ... 55

Part II: Making Short Work of Workbook Tasks 57

Chapter 4: Working with Workbooks .59
Creating a Workbook from Scratch ... 59

How the macro works ... 60
How to use the macro ... 61

Saving a Workbook when a Particular Cell Is Changed 61
How the macro works ... 62
How to use the macro ... 63

Saving a Workbook before Closing .. 63
How the macro works ... 64
How to use the macro ... 65

Protecting a Worksheet on Workbook Close ... 66
How the macro works ... 66
How to use the macro ... 67

Unprotecting a Worksheet on Workbook Open .. 68
How the macro works ... 68
How to use the macro ... 68

Opening a Workbook to a Specific Tab ... 69
How the macro works ... 70
How to use the macro ... 70

www.allitebooks.com

http://www.allitebooks.org

vii Table of Contents

Opening a Specific Workbook Defined by the User 71
How the macro works ... 71
How to use the macro ... 72

Determining Whether a Workbook Is Already Open 73
How the macro works ... 73
How to use the macro ... 75

Determining Whether a Workbook Exists in a Directory 76
How the macro works ... 76
How to use the macro ... 77

Closing All Workbooks at Once ... 77
How the macro works ... 77
How to use the macro ... 78

Printing All Workbooks in a Directory .. 78
How the macro works ... 79
How to use the macro ... 80

Preventing the Workbook from Closing Until a Cell Is Populated 80
How the macro works ... 80
How to use the macro ... 81

Creating a Backup of a Current Workbook with Today’s Date 82
How the macro works ... 82
How to use the macro ... 83

Chapter 5: Working with Worksheets .85
Adding and Naming a New Worksheet .. 85

How the macro works ... 85
How to use the macro ... 86

Deleting All but the Active Worksheet .. 87
How the macro works ... 87
How to use the macro ... 88

Hiding All but the Active Worksheet ... 88
How the macro works ... 89

How to use the macro ... 90
Unhiding All Worksheets in a Workbook .. 90

How the macro works ... 91
How to use the macro ... 91

Moving Worksheets Around ... 92
How the macro works ... 92
How to use the macro ... 93

Sorting Worksheets by Name ... 93
How the macro works ... 94
How to use the macro ... 95

Grouping Worksheets by Color ... 96
How the macro works ... 96
How to use the macro ... 98

Copying a Worksheet to a New Workbook ... 98
How the macro works ... 98
How to use the macro ... 99

www.allitebooks.com

http://www.allitebooks.org

Excel Macros For Dummies viii
Creating a Workbook for Each Worksheet ... 99

How the macro works ... 99
How to use the macro ... 101

Printing Specified Worksheets ... 101
How the macro works ... 101
How to use the macro ... 102

Protecting All Worksheets .. 102
How the macro works ... 103
How to use the macro ... 103

Unprotecting All Worksheets ... 104
How the macro works ... 104
How to use the macro ... 105

Creating a Table of Contents for Your Worksheets 106
How the macro works ... 106
How to use the macro ... 109

Zooming In and Out of a Worksheet with Double‐Click 109
How the macro works ... 109
How to use the macro ... 110

Highlighting the Active Row and Column ... 110
How the macro works ... 111
How to use the macro ... 112

Part III: One‐Touch Data Manipulation 113

Chapter 6: Feeling at Home on the Range .115
Selecting and Formatting a Range ... 115

How the macro works ... 116
How to use the macro ... 117

Creating and Selecting Named Ranges ... 117
How the macro works ... 119
How to use the macro ... 120

Enumerating through a Range of Cells ... 120
How the macro works ... 120
How to use the macro ... 122

Inserting Blank Rows in a Range .. 122
How the macro works ... 122
How to use the macro ... 123

Unhiding All Rows and Columns ... 123
How the macro works ... 124
How to use the macro ... 124

Deleting Blank Rows .. 124
How the macro works ... 125
How to use the macro ... 126

www.allitebooks.com

http://www.allitebooks.org

ix Table of Contents

Deleting Blank Columns .. 127
How the macro works ... 127
How to use the macro ... 128

Limiting Range Movement to a Particular Area 129
How the macro works ... 129
How to use the macro ... 129

Selecting and Formatting All Formulas in a Workbook 130
How the macro works ... 130
How to use the macro ... 132

Finding and Selecting the First Blank Row or Column 133
How the macro works ... 133
How to use the macro ... 136

Chapter 7: Manipulating Data with Macros .137
Copying and Pasting a Range ... 137

How the macro works ... 138
How to use the macro ... 138

Converting All Formulas in a Range to Values ... 139
How the macro works ... 139
How to use the macro ... 140

Performing the Text to Columns Command on All Columns 141
How the macro works ... 142
How to use the macro ... 143

Converting Trailing Minus Signs .. 144
How the macro works ... 144
How to use the macro ... 146

Trimming Spaces from All Cells in a Range .. 146
How the macro works ... 146
How to use the macro ... 148

Truncating Zip Codes to the Left Five Digits .. 148
How the macro works ... 148
How to use the macro ... 150

Padding Cells with Zeros .. 150
How the macro works ... 151
How to use the macro ... 153

Replacing Blanks Cells with a Value .. 153
How the macro works ... 153
How to use the macro ... 155

Adding Text to the Left or Right of Your Cells ... 155
How the macro works ... 155
How to use the macro ... 157

Cleaning Up Nonprinting Characters .. 157
How the macro works ... 158
How to use the macro ... 159

Excel Macros For Dummies x
Highlighting Duplicates in a Range of Data .. 159

How the macro works ... 160
How to use the macro ... 161

Hiding All Rows Except Rows Containing Duplicate Data 161
How the macro works ... 162
How to use the macro ... 164

Selectively Hiding AutoFilter Drop‐Down Arrows 164
How the macro works ... 165
How to use the macro ... 166

Copying Filtered Rows to a New Workbook ... 166
How the macro works ... 166
How to use the macro ... 167

Displaying Filtered Columns in the Status Bar .. 167
How the macro works ... 168
How to use the macro ... 170

Part IV: Macro‐Charging Reports and Emails 173

Chapter 8: Automating Common Reporting Tasks 175
Refreshing All Pivot Tables in a Workbook .. 175

How the macro works ... 176
How to use the macro ... 177

Creating a Pivot Table Inventory Summary ... 177
How the macro works ... 177
How to use the macro ... 180

Adjusting All Pivot Data Field Titles .. 180
How the macro works ... 180
How to use the macro ... 182

Setting All Data Items to Sum ... 182
How the macro works ... 183
How to use the macro ... 185

Applying Number Formatting to All Data Items 185
How the macro works ... 185
How to use the macro ... 188

Sorting All Fields in Alphabetical Order ... 188
How the macro works ... 189
How to use the macro ... 190

Applying Custom Sort to Data Items ... 190
How the macro works ... 190
How to use the macro ... 191

Applying Pivot Table Restrictions ... 191
How the macro works ... 192
How to use the macro ... 193

xi Table of Contents

Applying Pivot Field Restrictions .. 193
How the macro works ... 193
How to use the macro ... 195

Automatically Deleting Pivot Table Drill‐Down Sheets 195
How the macro works ... 196
How to use the macro ... 198

Printing a Pivot Table for Each Report Filter Item 199
How the macro works ... 199
How to use the macro ... 201

Creating a Workbook for Each Report Filter Item 202
How the macro works ... 202
How to use the macro ... 204

Resizing All Charts on a Worksheet .. 205
How the macro works ... 205
How to use the macro ... 206

Aligning a Chart to a Specific Range .. 206
How the macro works ... 206
How to use the macro ... 208

Creating a Set of Disconnected Charts ... 208
How the macro works ... 208
How to use the macro ... 210

Printing All Charts on a Worksheet ... 210
How the macro works ... 210
How to use the macro ... 211

Chapter 9: Sending Emails from Excel .213
Mailing the Active Workbook as an Attachment 213

How the macro works ... 214
How to use the macro ... 215

Mailing a Specific Range as an Attachment .. 215
How the macro works ... 215
How to use the macro ... 217

Mailing a Single Sheet as an Attachment .. 217
How the macro works ... 218
How to use the macro ... 219

Sending Mail with a Link to Your Workbook .. 220
How the macro works ... 220
How to use the macro ... 221

Mailing All Email Addresses in Your Contact List 222
How the macro works ... 222
How to use the macro ... 223

Saving All Attachments to a Folder ... 224
How the macro works ... 224
How to use it ... 226

Saving Certain Attachments to a Folder ... 226
How the macro works ... 226
How to use the macro ... 228

Excel Macros For Dummies xii

Part V: The Part of Tens .. 229

Chapter 10: Ten Handy Visual Basic Editor Tips 231
Applying Block Comments ... 231
Copying Multiple Lines of Code ... 232
Jumping between Modules and Procedures .. 233
Teleporting to Your Functions ... 233
Staying in the Right Procedure .. 234
Stepping through Your Code ... 234
Stepping to a Specific Code Line ... 235
Stopping Code at a Predefined Point .. 236
Seeing Beginning and Ending Variable Values ... 237
Turning Off Auto Syntax Check .. 237

Chapter 11: Ten Places to Turn for Macro Help 239
Letting Excel Write the Macro for You ... 239
Using the VBA Help Files .. 240
Pilfering Code from the Internet .. 240
Leveraging User Forums ... 241
Visiting Expert Blogs ... 242
Mining YouTube for Video Training .. 242
Attending Live and Online Training Classes .. 243
Learning from Microsoft Office Dev Center ... 243
Dissecting Other Excel Files in Your Organization 243
Asking Your Local Excel Genius .. 244

Chapter 12: Ten Ways to Speed Up Your Macros245
Halting Sheet Calculations .. 245
Disabling Sheet Screen Updating ... 246
Turning Off Status Bar Updates ... 247
Telling Excel to Ignore Events .. 248
Hiding Page Breaks .. 249
Suspending Pivot Table Updates ... 249
Steering Clear of Copy and Paste .. 250
Using the With Statement ... 251
Avoiding the Select Method ... 252
Limiting Trips to the Worksheet .. 252

Index ... 255

Introduction

I
n its broadest sense, a macro is a sequence of instructions that automates
some aspect of Excel so that you can work more efficiently and with fewer

errors. You might create a macro, for example, to format and print a month‐
end sales report. After you develop the macro, you can execute it to perform
many time‐consuming procedures automatically.

Macros are written in VBA, which stands for Visual Basic for Applications.
VBA is a programming language developed by Microsoft and a tool used to
develop programs that control Excel.

Excel programming terminology can be a bit confusing. For example, VBA is a
programming language but also serves as a macro language. What do you call
something written in VBA and executed in Excel? Is it a macro or is it a pro-
gram? Excel’s Help system often refers to VBA procedures as macros, so this
is the terminology used in this book.

You’ll also see the term automate throughout this book. This word means
that a series of steps are completed automatically. For example, if you write a
macro that adds color to some cells, prints the worksheet, and then removes
the color, you have automated those three steps.

You’re probably aware that people use Excel for thousands of different tasks.
Here are just a few examples:

 ✓ Keeping lists of things, such as customer names and transactions

 ✓ Budgeting and forecasting

 ✓ Analyzing scientific data

 ✓ Creating invoices and other forms

 ✓ Developing charts from data

The list could go on and on. The point is simply that Excel is used for a wide
variety of tasks, and everyone reading this book has different needs and
expectations regarding Excel. One thing most readers have in common, how-
ever, is the need to automate some aspect of Excel, which is what macros
(and this book) are all about.

2 Excel Macros For Dummies

About This Book
This book approaches the topic of Excel macros with the recognition that
programming VBA takes time and practice — time that you may not have
right now. In fact, many analysts don’t have the luxury of taking a few weeks
to become expert at VBA. So instead of the same general overview of VBA
topics, this book provides some of the most commonly used real‐world Excel
macros.

Each section in the book outlines a common problem and provides an Excel
macro to solve the problem — along with a detailed explanation of how the
macro works and where to use it.

Each section presents the following:

 ✓ The problem

 ✓ The macro solution

 ✓ How the macro works

After reading each section, you’ll be able to

 ✓ Immediately implement the required Excel macro

 ✓ Understand how the macro works

 ✓ Reuse the macro in other workbooks or with other macros

The macros in this book are designed to get you up and running with VBA in
the quickest way possible. Each macro tackles a common task that benefits
from automation. The idea here is to learn through application. This book is
designed so that you can implement the macro while getting a clear under-
standing of what the macro does and how it works.

Foolish Assumptions
I make three assumptions about you as the reader:

 ✓ You’ve installed Microsoft Excel 2007 or a higher version.

 ✓ You have some familiarity with the basic concepts of data analysis, such
as working with tables, aggregating data, creating formulas, referencing
cells, filtering, and sorting.

 ✓ You have an Internet connection so you can download the sample files.

3 Introduction

Icons Used In This Book
Throughout this book, you’ll see a few nifty icons that call out items that
deserve special mention. Here is a list of these icons and what they mean.

Technical icons outline some of the technical aspects of the topic being
 discussed.

Tip icons cover tricks or techniques related to the current discussion.

Remember icons indicate notes or asides that are important to keep in mind.

Warning icons hold critical information about pitfalls you will want to avoid.

Beyond the Book
In additional to the material in the print or ebook you’re reading, this product
comes with more online goodies:

 ✓ Sample files: Each macro in this book has an associated sample file that
enables you to see the macro working and to review the code. You can
use the sample files also to copy and paste the code into your environ-
ment (as opposed to typing each macro from scratch). Download the
sample files at

www.dummies.com/extras/excelmacros

Each macro in this book has detailed instructions on where to copy and
paste the code. In general terms, you open the sample file associated
with the macro, go to Visual Basic Editor (by pressing Alt+F11), and
copy the code. Then you go to your workbook, open Visual Basic Editor,
and paste the code in the appropriate location.

Note that in some macros, you need to change the macro to suit your
situation. For instance, in the macro that prints all workbooks in a direc-
tory (see Chapter 4), you point to the C:\Temp\ directory. Before using
this macro, you must edit it to point to your target directory.

http://www.dummies.com/extras/excelmacros

4 Excel Macros For Dummies

If a macro is not working for you, most likely a component of the macro
needs to be changed. Pay special attention to range addresses, directory
names, and any other hard‐coded names.

 ✓ Cheat sheet: The cheat sheet offers shortcut keys that can help you
work more efficiently in Excel’s Visual Basic Editor. You can find the
cheat sheet at

www.dummies.com/cheatsheet/excelmacros

 ✓ Web extras: You’ll find some great references that you can use, includ-
ing a resume template, a sample resume, and a list of websites of value
to networking professionals. Go to

www.dummies.com/extras/excelmacros

 ✓ Updates: If we have any updates to this book, you can find them at

www.dummies.com/go/excelmacroupdates

Where to Go from Here
If you’re new to Excel macros, start with Chapters 1–3 to get the fundamen-
tals you’ll need to leverage the macros in this book. You’ll gain a concise
understanding of how macros and VBA work, along with the basic foundation
you’ll need to implement the macros provided in this book

If you have some macro experience and want to dive right into the macro
examples, feel free to peruse Chapters 4–9 for a task or macro that looks
interesting to you. Each macro example stands on its own; within each sec-
tion, you get all the guidance you’ll need to understand and implement the
code in your own workbook.

Visit Chapters 4 and 5 if you’re interested in macros that automate common
workbook and worksheet tasks to save time and gain efficiencies.

Explore Chapters 6 and 7 to find macros that navigate ranges, format cells,
and manipulate the data in your workbooks.

If you want to find macros that automate redundant pivot table and chart
tasks as well as macros that send emails and attachments, thumb through
the macros in Chapters 8 and 9.

Don’t forget to read Chapters 10 and 11 for some useful tips and advice on
how to get the most out of your new macro skills.

http://www.dummies.com/cheatsheet/excelmacros
http://www.dummies.com/extras/excelmacros
http://www.dummies.com/go/excelmacroupdates

5 Introduction

Here are some final things to keep in mind while working with the macros in
this book:

 ✓ Any file that contains a macro must have the .xlsm file extension.
See the section on macro‐enabled file extensions in Chapter 1 for more
 information.

 ✓ Excel will not run macros until they are enabled. As you implement
these macros, you and your customers must comply with Excel’s macro
security measures. See the section in Chapter 1 on macro security in
Excel for details.

 ✓ You cannot undo macro actions. When working in Excel, you can often
undo the actions you’ve taken because Excel keeps a log (called the
undo stack) recording your last 100 actions. However, running a macro
automatically destroys the undo stack, so you can’t undo the actions
you take in a macro.

 ✓ You need to tweak the macros to fit your workbook. Many of the
macros reference example sheet names and ranges that you may not
have in your workbook. Be sure to replace references such as Sheet 1 or
Range(“A1”) with the sheet names and cell addresses you are working
with in your own workbooks.

6 Excel Macros For Dummies

www.allitebooks.com

http://www.allitebooks.org

Part I
Holy Macro Batman!

 Go to www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Build a foundation for your macro skills with fundamental

macro recording concepts.

 ✓ Get a solid understanding of the ground rules for using and
 distributing macros in Excel.

 ✓ Explore Excel’s coding environment with a deep‐dive of Visual
Basic Editor.

 ✓ Explore how to leverage the Excel object model to start writing
your own macros from scratch.

 ✓ Understand the roles played by variables, events and error
handling in macro development.

Macro Fundamentals
In This Chapter

 ▶ Understanding why you should use macros

 ▶ Recording macros

 ▶ Understanding macro security

 ▶ Seeing macros in action

A
macro is essentially a set of instructions or code that you create to tell
Excel to execute any number of actions. In Excel, macros can be written

or recorded. The key word here is recorded.

Recording a macro is like programming a phone number into your cell phone.
On your phone, you first manually dial and save the number. Later, you can
redial those numbers with the touch of a button. In Excel, you start record-
ing a macro, and then you perform your intended actions. While you record,
Excel gets busy in the background, translating your keystrokes and mouse
clicks to a macro. This written code is known as Visual Basic for Applications
(VBA). After the macro is recorded, you can play back those actions anytime
you want.

In this chapter, you explore macros and learn how you can use them to auto-
mate recurring processes to simplify your life.

Why Use a Macro?
The first step in using macros is admitting you have a problem. Actually, you
may have several problems:

 ✓ Repetitive tasks: As each new month rolls around, you have to crank out
those reports. You have to import that data. You have to update those
pivot tables. You have to delete those columns, and so on. Wouldn’t it
be nice if you could fire up a macro and have the more redundant parts
of your reporting processes performed automatically?

Chapter 1

10 Part I: Holy Macro Batman!

 ✓ Mistakes: When you’re repeatedly applying formulas, sorting, and
moving things around manually, you’re bound to make mistakes. Add
looming deadlines and constant change requests, and your error rate
goes up. Why not calmly record a macro, ensure that everything is run-
ning correctly, and then forget it? The macro will perform every action
the same way every time you run it; reducing the chance of errors.

 ✓ Awkward navigation: Make your reports more user friendly, and those
who have a limited knowledge of Excel, will appreciate your efforts.
Macros can be used to dynamically format and print worksheets,
navigate to specific sheets in your workbook, or even save the open
document in a specified location. Your audience will appreciate these
touches that help make perusal of your workbooks a bit more pleasant.

Macro Recording Basics
To start recording your first macro, you need to find Macro Recorder, which
is on the Developer tab. Unfortunately, Excel comes out of the box with
the Developer tab hidden — you may not see it on your version of Excel at
first. If you plan to work with VBA macros, you’ll want to make sure that the
Developer tab is visible. To display this tab:

1. Choose File➪Excel Options.

2. In the Excel Options dialog box, select Customize Ribbon.

3. In the list box on the right, click to place a check mark
next to Developer.

4. Click OK to return to Excel.

Now that the Developer tab appears in the Excel ribbon, you can start Macro
Recorder. Select Record Macro from the Developer tab. The Record Macro
dialog box appears, as shown in Figure 1-1.

Figure 1-1:
The Record
Macro dia-

log box.

11 Chapter 1: Macro Fundamentals

Here are the four parts of the Record Macro dialog box:

 ✓ Macro name: Excel gives a default name to your macro, such as Macro1,
but you should give your macro a name more descriptive of what it
does. For example, you might name a macro that formats a generic table
FormatTable.

 ✓ Shortcut key: Every macro needs an event, or something to happen, for
it to run. This event can be a button press, a workbook opening, or in
this example, a keystroke combination. When you assign a shortcut key
to your macro, entering that of keys triggers your macro to run. Note
that you don’t need a shortcut key to trigger a macro, so this field is
optional.

 ✓ Store macro in: The This Workbook option is the default. Storing your
macro in This Workbook simply means that the macro is stored along
with the active Excel file. The next time you open that particular work-
book, the macro is available to run. Similarly, if you send the workbook
to another user, that user can run the macro as well (provided the
macro security is properly set by your user — more on this later in
this chapter).

 ✓ Description: This optional field can come in handy if you have numer-
ous macros in a spreadsheet or you need to give a user a more detailed
description about what the macro does.

With the Record Macro dialog box open, follow these steps to create a simple
macro that enters your name in a worksheet cell:

1. In the User Name field, enter a new single‐word name for the macro
to replace the default Macro1 name.

 A good name for this example is MyName.

2. In the Shortcut Key field, enter an uppercase N.

 You’ve just assigned this macro to the shortcut key Ctrl+Shift+N.

3. Click OK to close the Record Macro dialog box and begin recording
your actions.

4. Select a cell in your Excel spreadsheet, type your name in the selected
cell, and then press Enter.

5. Choose Developer➪Code➪Stop Recording (or click the Stop
Recording button in the status bar).

12 Part I: Holy Macro Batman!

Examining the macro
The macro was recorded in a new module named Module1. To view the code
in this module, you must activate Visual Basic (VB) Editor. You can activate
VB Editor in either of two ways:

 ✓ Press Alt+F11.

 ✓ Choose Developer➪Code➪Visual Basic.

In VB Editor, the project window displays a list of all open workbooks and
add‐ins. This list is displayed as a tree diagram, which you can expand or
collapse. The code that you recorded previously is stored in Module1 in the
current workbook. When you double‐click Module1, the code in the module
appears in the Code window.

The macro should look something like this:

Sub MyName()
'
' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

The recorded macro is a Sub procedure named MyName. The statements tell
Excel what to do when the macro is executed.

At the top of the procedure, note that Excel inserted some comments, which
consist of information from the Record Macro dialog box. These comment
lines (which begin with an apostrophe) aren’t necessary, and deleting them
has no effect on how the macro runs. If you ignore the comments, you’ll see
that this procedure has only one VBA statement:

ActiveCell.FormulaR1C1 = "Michael Alexander"

This single statement inserts in the active cell the name you typed while
recording.

Placing a single apostrophe in front of any text of creates a comment and is
called commenting a line. Commented lines will turn green and Excel will skip
these lines when running the macro. Comments allow you to add your own
notes in the code, giving you a chance to document what the code is doing,
any business rules you’ve applied, or any other information you feel would
help when reading the code.

13 Chapter 1: Macro Fundamentals

Testing the macro
Before you recorded this macro, you set an option that assigned the macro
to the Ctrl+Shift+N shortcut key combination. To test the macro, return to
Excel by using either of the following methods:

 ✓ Press Alt+F11.

 ✓ Click the View Microsoft Excel button on the VB Editor toolbar.

When Excel is active, activate a worksheet. (It can be in the workbook that
contains the VBA module or in any other workbook.) Select a cell and press
Ctrl+Shift+N. The macro immediately enters your name into the cell.

In the preceding example, note that you selected the cell to be formatted
before you started recording your macro. This step is important. If you select
a cell while the macro recorder is turned on, that cell will be recorded into
the macro. In such a case, the macro would always format that particular
cell, and it would not be a general‐purpose macro.

Editing the macro
After you record a macro, you can make changes to it (although you must
know what you’re doing). For example, assume that you want your name to
be bold. You could re‐record the macro, but editing the code is more effi-
cient because this modification is simple. Press Alt+F11 to activate the VB
Editor window. Then double‐click Module1 and insert the following statement
before the End Sub statement:

ActiveCell.Font.Bold = True

The edited macro appears as follows:

Sub MyName()
'
' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.Font.Bold = True

 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

Test this new macro, and you see that it performs as it should.

14 Part I: Holy Macro Batman!

Comparing Absolute and Relative
Macro Recording

Now that you’ve read about the basics of the Macro Recorder interface, it’s
time to go deeper and begin recording macros. The first thing you need to
understand before you begin is that Excel has two modes for recording: abso-
lute reference and relative reference.

Recording macros with absolute references
Excel’s default recording mode is absolute reference. When a cell reference in
a formula is an absolute reference, it does not automatically adjust when the
formula is pasted to a new location.

The best way to understand how this concept applies to macros is to try it
out. Open the Chapter 1 Sample File.xlsx file and record a macro that counts
the rows in the Branchlist worksheet. (See Figure 1-2.)

You can find the sample data set used in this chapter on this book’s compan-
ion website at www.dummies.com/extras/excelmacros. See this book’s
Introduction for more on the companion website.

Follow these steps to record the macro:

1. Make sure cell A1 is selected.

2. On the Developer tab, select Record Macro.

Figure 1-2:
Your

 pretotaled
worksheet
containing
two tables.

http://www.dummies.com/extras/excelmacros

15 Chapter 1: Macro Fundamentals

3. Name the macro AddTotal.

4. Choose This Workbook for the save location.

5. Click OK to start recording.

 At this point, Excel is recording your actions.

6. While Excel is recording, select cell A16 and type Total in the cell.

7. Select the first empty cell in Column D (D16) and type =
COUNTA(D2:D15).

 This formula gives a count of branch numbers at the bottom of column
D. You use the COUNTA function because the branch numbers are
stored as text.

8. Click Stop Recording on the Developer tab to stop recording the
macro.

 The formatted worksheet should look like something like the one in
Figure 1-3.

To see your macro in action, delete the Total row you just added and play
back your macro by following these steps:

1. On the Developer tab, select Macros.

2. Find and select the AddTotal macro you just recorded.

3. Click the Run button.

If all goes well, the macro plays back your actions to a T and gives your table
a total. Now here’s the thing. No matter how hard you try, you can’t make the
AddTotal macro work on the second table. Why? Because you recorded it as
an absolute macro.

Figure 1-3:
Your post‐

totaled
worksheet.

16 Part I: Holy Macro Batman!

To understand what this means, examine the underlying code by selecting
Macros on the Developer tab. The Macro dialog box appears, as shown in
Figure 1-4.

Select the AddTotal macro and click the Edit button. Visual Basic Editor
opens and displays the code that was written when you recorded your
macro:

Sub AddTotal()

 Range("A16").Select

 ActiveCell.FormulaR1C1 = "Total"

 Range("D16").Select

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

Pay particular attention to the two lines of code that select range A16 and
range D16. Because the macro was recorded in absolute reference mode,
Excel interpreted your range selection as absolute cell references. In other
words, no matter where your cursor is in your workbook, when you run the
recorded macro, Excel will select cell A16 and then cell D16. In the next sec-
tion, you take a look at what the same macro looks like when recorded in
relative reference mode.

Figure 1-4:
The Excel

Macro
 dialog box.

www.allitebooks.com

http://www.allitebooks.org

17 Chapter 1: Macro Fundamentals

Recording macros with relative references
A relative reference means relative to the currently active cell. So use caution
with your active cell choice — both when you record the relative reference
macro and when you run it.

First, make sure the Chapter 1 Sample File.xlsx file is open. (This file is avail-
able on this book’s companion website at www.dummies.com/extras/
excelmacros.) Then, use the following steps to record a relative reference
macro:

1. On the Developer tab, select the Use Relative References option,
as shown in Figure 1-5.

2. Make sure cell A1 is selected.

3. On the Developer tab, select Record Macro.

4. Name the macro AddTotalRelative.

5. Choose This Workbook for the save location.

6. Click OK to start recording.

7. Select cell A16 and type Total in the cell.

8. Select the first empty cell in Column D (D16) and type =
COUNTA(D2:D15).

9. On the Developer tab, click Stop Recording to stop recording
the macro.

At this point, you’ve recorded two macros. Take a moment to examine the
code for your newly created macro by selecting Macros on the Developer
tab to open the Macro dialog box. Choose the AddTotalRelative macro and
click Edit.

Figure 1-5:
Recording

a macro
with relative
 references.

http://www.dummies.com/extras/excelmacros
http://www.dummies.com/extras/excelmacros

18 Part I: Holy Macro Batman!

Again, Visual Basic Editor opens and shows you the code that was written
when you recorded your macro. This time, your code looks something like
the following:

Sub AddTotalRelative()

 ActiveCell.Offset(15, 0).Range("A1").Select

 ActiveCell.FormulaR1C1 = "Total"

 ActiveCell.Offset(0, 3).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

First note that the code does not contain references to specific cell ranges
(other than the starting point, A1). Note that in this macro, Excel uses the
Offset property of the active cell. This property tells the cursor to move a
certain number of cells up or down and a certain number of cells left or right.

In this case, the Offset property code tells Excel to move 15 rows down and
0 columns across from the active cell (A1). Because the macro was recorded
using relative reference, Excel will not explicitly select a particular cell as it
did when recording an absolute reference macro.

To see this macro in action, delete the Total row for both tables and do the
following:

1. Select cell A1.

2. On the Developer tab, select Macros.

3. Find and select the AddTotalRelative macro.

4. Click the Run button.

5. Select cell F1.

6. On the Developer tab, select Macros.

7. Find and select the AddTotalRelative macro.

8. Click the Run button.

Note that this macro, unlike your previous macro, works on both sets of data.
Because the macro applies the totals relative to the currently active cell, the
totals are applied correctly.

19 Chapter 1: Macro Fundamentals

For this macro to work, you simply need to ensure that

 ✓ You’ve selected the correct starting cell before running the macro.

 ✓ The block of data has the same number of rows and columns as the data
on which you recorded the macro.

I hope this simple example has given you a firm grasp of macro recording
with both absolute and relative references.

Other Macro Recording Concepts
At this point, you should feel comfortable recording your own Excel macros.
In this section, I describe some other important concepts you’ll need to keep
in mind when working with macros.

Macro‐enabled file extensions
Beginning with Excel 2007, Excel workbooks were given the standard file
extension .xlsx. Files with the .xlsx extension cannot contain macros. If your
workbook contains macros and you then save that workbook as an .xlsx file,
your macros are removed automatically. Excel warns you that macro content
will be disabled when saving a workbook with macros as an .xlsx file.

If you want to retain the macros, you must save your file as an Excel macro‐
enabled workbook. This gives your file an .xlsm extension. The idea is that
all workbooks with an .xlsx file extension are automatically known to be safe,
whereas you can recognize .xlsm files as a potential threat.

Macro security in Excel 2010
With the release of Office 2010, Microsoft introduced significant changes to
its Office security model. One of the most significant changes is the concept
of trusted documents. Without getting into the technical minutia, a trusted
document is essentially a workbook you have deemed to be safe.

If you open a workbook that contains macros in Excel 2010 or later, you see
a yellow bar message under the ribbon stating that macros (active content)
have been disabled.

20 Part I: Holy Macro Batman!

If you click Enable, the workbook automatically becomes a trusted document.
This means you no longer are prompted to enable the content as long as
you open that file on your computer. The basic idea is that if you tell Excel
that you trust a particular workbook by enabling macros, it is highly likely
that you will enable macros each time you open the workbook. Thus, Excel
remembers that you’ve enabled macros before and inhibits any further
 messages about macros for that workbook.

This feature is great news for you and your clients. After enabling your
macros one time, they won’t be annoyed at the constant messages about
macros, and you won’t have to worry that your macro‐enabled dashboard
will fall flat because macros have been disabled.

Any workbook you create from scratch will automatically be considered to
be trusted. That is, Excel will not require you to enable macros in the work-
books you create.

Trusted locations
If the thought of any macro message coming up (even one time) unnerves
you, set up a trusted location for your files. A trusted location is a directory
that is deemed a safe zone where only trusted workbooks are placed. A
trusted location allows you and your clients to run a macro‐enabled work-
book with no security restrictions as long as the workbook is in that location.

To set up a trusted location, follow these steps:

1. On the Developer tab, select the Macro Security button.

 This activates the Trust Center dialog box.

2. On the left, click Trusted Locations.

 The Trusted Locations menu appears (see Figure 1-6), displaying all the
directories that are considered trusted.

3. Click the Add New Location button.

4. Click Browse, and find and select the directory that will be considered
a trusted location.

After you specify a trusted location, any Excel file that is opened from this
location will have macros automatically enabled.

21 Chapter 1: Macro Fundamentals

Storing macros in your personal
macro workbook
Most user‐created macros are designed for use in a specific workbook, but
you may want to use some macros in all your work. You can store these
general‐purpose macros in the personal macro workbook so that they’re
always available to you. The personal macro workbook is loaded whenever
you start Excel. This file, named personal.xlsb, doesn’t exist until you record
a macro using the personal macro workbook as the destination.

To record the macro in your personal macro workbook, select the Personal
Macro Workbook option in the Record Macro dialog box before you start
recording. This option is in the Store Macro In drop‐down list (refer to
Figure 1-1).

If you store macros in the personal macro workbook, you don’t have to
remember to open the personal macro workbook when you load a workbook
that uses macros. When you want to exit, Excel asks whether you want to
save changes to the personal macro workbook.

The personal macro workbook normally is in a hidden window to keep it out
of the way.

Figure 1-6:
Add

 directories
that are

considered
trusted.

22 Part I: Holy Macro Batman!

Assigning a macro to a button
and other form controls
When you create macros, you may want to have a clear and easy way to
run each one. A basic button can provide a simple but effective user
interface.

As luck would have it, Excel offers a set of form controls for creating user
interfaces directly on spreadsheets. Several types of form controls are avail-
able, from buttons (the most commonly used control) to scrollbars.

The idea behind using a form control is simple. You place a form control
on a spreadsheet and then assign a macro to it — that is, a macro you’ve
already recorded. When the control is clicked, the macro is executed, or
played.

Take a moment to create a button for the AddTotalRelative macro you cre-
ated earlier. Here’s how:

1. On the Developer tab, click the Insert command, shown in Figure 1-7.

2. In the drop‐down list that appears, select the button form control.

3. Click the location where you want to place your button.

 When you drop the button control on your spreadsheet, the Assign
Macro dialog box appears, as shown in Figure 1-8.

4. Select the macro you want to assign to the button and then click OK.

At this point, you have a button that runs your macro when you click it! Keep
in mind that all controls in the Form Controls group (refer to Figure 1-7) work
in the same way as the button form control used in this example. That is to
say, you assign a macro to run when the control is selected.

Figure 1-7:
Form

controls
are on the
Developer

tab.

23 Chapter 1: Macro Fundamentals

Placing a macro on the
Quick Access toolbar
You can assign a macro not only to a form control on a spreadsheet but also
to a button in Excel’s Quick Access toolbar. The Quick Access toolbar sits
either above or below the ribbon. You can add a custom button that will run
your macro by following these steps:

1. Right‐click your Quick Access toolbar and select Customize Quick
Access Toolbar.

 The dialog box illustrated in Figure 1-9 appears.

2. On the left of the dialog box, click Quick Access Toolbar.

3. In the Choose Commands From drop‐down list, select Macros.

4. Select the macro you want to add and then click the Add button.

5. Change the icon by clicking the Modify button.

Figure 1-8:
Assign a

macro to the
button.

Form controls versus ActiveX controls
Note the form controls and ActiveX controls in
Figure 1-7. Although they look similar, they’re
quite different. Form controls are designed for
use on a spreadsheet, and ActiveX controls are
typically used on Excel user forms. As a general

rule, you should always use form controls when
working on a spreadsheet. Why? Form controls
need less overhead, so they perform better, and
configuring form controls is far easier than con-
figuring their ActiveX counterparts.

24 Part I: Holy Macro Batman!

Examples of Macros in Action
Covering the fundamentals of building and using macros is one thing. Coming
up with good ways to incorporate them in your reporting processes is
another. In this section, you take a moment to review a few examples of how
macros automate simple reporting tasks.

To follow along in this section, go to www.dummies.com/extras/excel
macros and open the Chapter 1 Sample.xlsm file.

Building navigation buttons
The most common use of macros is in navigation. Workbooks that have
many worksheets or tabs can be frustrating to navigate. To help your
 audience, you can create a switchboard, like the one shown in Figure 1-10.
When users click the Example 1 button, for example, they’re taken to the
Example 1 sheet.

Figure 1-9:
Adding a
macro to
the Quick

Access
toolbar.

http://www.dummies.com/extras/excelmacros
http://www.dummies.com/extras/excelmacros

25 Chapter 1: Macro Fundamentals

Creating a macro to navigate to a sheet is quite simple:

1. Start at the sheet that will become your starting point.

2. Start recording a macro.

3. While recording, click the destination sheet (the sheet this macro will
navigate to).

4. Stop recording.

5. Add a button form control on your starting point and Assign the
macro to a button by selecting your newly recorded macro in the
Assign Macro dialog box.

Excel has a built‐in hyperlink feature, which enables you to convert the con-
tents of a cell to a hyperlink that links to another location. That location can be
a separate Excel workbook, a website, or another tab in the current workbook.
Although creating a hyperlink may be easier than setting up a macro, you can’t
apply a hyperlink to a form control (such as a button). Instead of a button, you
use text to let users know where they’ll go when they click the link.

Dynamically rearranging pivot table data
In the example illustrated in Figure 1-11, macros allow a user to change the
perspective of the chart simply by selecting one of the buttons shown.

Figure 1-12 reveals that the chart is actually a pivot chart tied to a pivot table.
The recorded macros assigned to the buttons do nothing more than rear-
range the pivot table to slice the data using various pivot fields.

Figure 1-10:
Use macros

to build
buttons

that help
users navi-

gate your
reports.

26 Part I: Holy Macro Batman!

Here are the high‐level steps needed to create this type of setup:

1. Create your pivot table and a pivot chart.

2. Start recording a macro.

3. Move a pivot field from one area of the pivot table to the other, and
then stop recording the macro.

4. Record another macro to move the data field back to its original position.

5. Assign each macro to a separate button.

You can fire your new macros in turn to see your pivot field dynamically
move back and forth.

Offering one‐touch reporting options
The last two examples demonstrate that you can record any action that you
find of value. That is, if you think users would appreciate a certain feature
being automated for them, why not record a macro to do so?

Figure 1-12:
The macros

behind the
buttons

rearrange
the data

fields in a
pivot table.

Figure 1-11:
Users can

change the
perspective.

27 Chapter 1: Macro Fundamentals

In Figure 1-13, note that users can filter the pivot table for the top or bottom
20 customers. Because the steps for this filter have been recorded, users
save time and effort and can benefit from this functionality without having
to know the steps involved. Also, recording a specific action enables you to
manage risk because your users will interact with your reports in a method
that you’ve developed and tested.

Figure 1-14 demonstrates how you can give your audience a quick and easy
way to see the same data on different charts. Don’t laugh too quickly at the
apparent uselessness of this example. It’s not uncommon to be asked to see
the same data different ways.

Instead of taking up real estate with multiple charts, just record a macro
that changes the chart type. Your clients will be able to switch views to their
heart’s content.

Figure 1-13:
Prerecorded

views let
users ben-

efit from
advanced
features.

Figure 1-14:
Give your

users a
choice in
how they

view data.

28 Part I: Holy Macro Batman!

Getting Cozy with Visual
Basic Editor

In This Chapter
 ▶ Understanding Visual Basic Editor components

 ▶ Working with the project window

 ▶ Using the code window

 ▶ Customizing Visual Basic Editor

V
isual Basic Editor (VBE) is the environment where all Excel macros
are stored and processed. Each workbook you create comes with this

interconnected VBE environment free of charge. Even if you never record
one macro, VBE is in the background waiting to be used. When you create
a macro, VBE quietly comes to life ready to process the various procedures
and routines you give it.

In this chapter, you take your first look behind the curtain to explore Visual
Basic Editor.

Working in Visual Basic Editor
Visual Basic Editor is a separate application that runs when you open Excel.
To see this hidden VBE environment, you’ll need to activate it. The quickest
way to activate VBE is to press Alt+F11 when Excel is active. To return to
Excel, press Alt+F11 again.

You can activate VBE also by using the Visual Basic command, which is on
Excel’s Developer tab.

Chapter 2

30 Part I: Holy Macro Batman!

Understanding VBE components
Figure 2-1 shows the VBE program with some of the key parts identified.
VBE contains several windows and is highly customizable, so chances are
your window won’t look exactly like what you see in the figure. You can hide
 windows, rearrange windows, dock windows, and so on.

Menu bar
The VBE menu bar works just like every other menu bar you’ve encountered.
It contains commands that you use to do things with the various components
in VBE. Many menu commands have shortcut keys associated with them.

VBE also features shortcut menus. You can right‐click almost anything in VBE
and get a shortcut menu of common commands.

Toolbar
The standard toolbar, which is directly under the menu bar by default, is
one of four VBE toolbars. You can customize the toolbars, move them
around, display other toolbars, and so on. If you’re so inclined, use the

Figure 2-1:
VBE with

significant
elements

identified.

31 Chapter 2: Getting Cozy with Visual Basic Editor

View ➪ Toolbars command to work with VBE toolbars. Most people just leave
them as they are.

Project window
The project window displays a tree diagram that shows every workbook cur-
rently open in Excel (including add‐ins and hidden workbooks). Double‐click
items to expand or contract them. You’ll explore this window in more detail
in the “Working with the Project Window” section, later in the chapter.

If the project window is not visible, press Ctrl+R or choose View ➪ Project
Explorer. To hide the project window, click the close button (the X) in its title
bar. Alternatively, right‐click anywhere in the project window and select Hide
from the shortcut menu.

Code window
Every object in a project has an associated code window, which contains VBA
code. To view an object’s code window, double‐click the object in the project
window. For example, to view the code window for the Sheet1 object, double‐
click Sheet1 in the project window. Unless you’ve added some VBA code, the
code window will be empty.

You find out more about code windows later in the chapter in the “Working
with a Code Window” section.

Immediate window
The immediate window may or may not be visible. If it isn’t visible, press
Ctrl+G or choose View ➪ Immediate Window. To close the Immediate window,
click the close button (the X) in its title bar (or right‐click anywhere in the
Immediate window and select Hide from the shortcut menu).

The Immediate window is most useful for executing VBA statements directly
and for debugging your code. If you’re just starting out with VBA, this
window won’t be that useful, so feel free to hide it and free up some screen
space for other things.

Working with the Project Window
When you’re working in VBE, each open Excel workbook is a project. You
can think of a project as a collection of objects arranged as an outline. You
can expand a project by clicking the plus sign (+) at the left of the project’s
name in the project window. Contract a project by clicking the minus sign (−)
to the left of a project’s name. Or you can double‐click the items to expand
and contract them.

32 Part I: Holy Macro Batman!

Figure 2-2 shows a project window with two projects: a workbook named
Book1 and a workbook named Book2, expanded to display their objects.

Every project expands to show at least the Microsoft Excel Objects node. You
can expand this node to display an item for each sheet in the workbook (each
sheet is considered an object) and another object called ThisWorkbook
(which represents the Workbook object). If the project has any VBA modules,
the project listing also displays a Modules node.

Adding a new VBA module
When you record a macro, Excel automatically inserts a VBA module to hold
the recorded code. The workbook that holds the module for the recorded
macro depends on where you chose to store the recorded macro, just before
you started recording.

In general, a VBA module can hold three types of code:

 ✓ Declarations: One or more information statements that you provide to
VBA. For example, you can declare the data type for variables you plan
to use or set some other module‐wide options.

 ✓ Sub procedures: A set of programming instructions that performs some
action. All recorded macros are Sub procedures.

 ✓ Function procedures: A set of programming instructions that returns a
single value (similar in concept to a worksheet function, such as Sum).

Figure 2-2:
This project

window
lists two
 projects.

33 Chapter 2: Getting Cozy with Visual Basic Editor

A single VBA module can store any number of Sub procedures, Function
procedures, and declarations. How you organize a VBA module is up to you.
Some people prefer to keep all their VBA code for an application in a single
VBA module; others like to split up the code into several modules. It’s a
 personal choice, like arranging furniture.

Follow these steps to manually add a new VBA module to a project:

1. In the project window, select the project’s name.

2. Choose Insert ➪ Module.

Or you can

1. Right‐click the project’s name.

2. Choose Insert ➪ Module from the shortcut menu.

The new module is added to a Modules folder in the project window (see
Figure 2-3). Any modules you create in a given workbook are placed in this
Modules folder.

Removing a VBA module
You may want to remove a code module that is no longer needed. To do so,
follow these steps:

1. In the project window, select the module’s name.

2. Choose File ➪ Remove xxx, where xxx is the module name.

Figure 2-3:
Code

 modules are
visible in the

Modules
folder in

the project
 window.

34 Part I: Holy Macro Batman!

Or

1. Right‐click the module’s name.

2. Choose Remove xxx from the shortcut menu.

You can remove VBA modules, but there is no way to remove the other code
modules, those for Sheet objects or ThisWorkbook.

Working with a Code Window
As you become proficient with VBA, you’ll spend lots of time working in code
windows. Macros that you record are stored in a module, and you can type
VBA code directly into a VBA module.

Minimizing and maximizing windows
Code windows are much like workbook windows in Excel. You can minimize,
maximize, resize, hide, and rearrange them, and more. Most people maximize
the code window that they’re working on so that they can see more code and
reduce distractions.

To maximize a code window, click the maximize button in its title bar (right
next to the X) or double‐click the title bar. To restore a code window to its
original size, click the restore button (the icon that looks like a box) located
next to the X.

Sometimes, you may want to have two or more code windows visible. For
example, you may want to compare the code in two modules or copy code
from one module to another. You can arrange the windows manually, or
use the Window ➪ Tile Horizontally or Window ➪ Tile Vertically command to
arrange them automatically.

You can quickly switch among code windows by pressing Ctrl+Tab. If you
repeat that key combination, you keep cycling through all open code win-
dows. Pressing Ctrl+Shift+Tab cycles through the windows in reverse order.

Minimizing a code window gets it out of the way. You can also click the close
button (the X) in a code window’s title bar to close the window completely.
(Closing a window just hides it; you won’t lose anything). To open it again,
just double‐click the appropriate object in the project window. Working with
these code windows sounds more difficult than it really is.

35 Chapter 2: Getting Cozy with Visual Basic Editor

Getting VBA code into a module
Before you can do anything meaningful, you must have some VBA code in the
VBA module. You can get VBA code into a VBA module in three ways:

 ✓ Use the Excel macro recorder to record your actions and convert them
to VBA code.

 ✓ Enter the code directly.

 ✓ Copy the code from one module and paste it into another.

You have discovered the excellent method for creating code by using the
Excel Macro recorder. However, not all tasks can be translated to VBA by
recording a macro. You often have to enter your code directly into the
module, either by typing the code by or copying and pasting code you’ve
found elsewhere.

Entering and editing text in a VBA module works as you might expect. You
can select, copy, cut, paste, and do other things to the text.

A single line of VBA code can be as long as you like. However, you may want
to use the line‐continuation character to break up lengthy lines of code. To
continue a single line of code (also known as a statement) from one line to the
next, end the first line with a space followed by an underscore (_). Then con-
tinue the statement on the next line. Here’s an example of a single statement
split into three lines:

Selection.Sort Key1:=Range("A1"), _

Order1:=xlAscending, Header:=xlGuess, _

Orientation:=xlTopToBottom

This statement would perform the same way if it were entered in a single line
(with no line‐continuation characters).

VBE has multiple levels of undo and redo. If you deleted a statement that you
shouldn’t have, use the Undo button on the toolbar (or press Ctrl+Z) until
the statement appears again. After undoing, you can use the Redo button to
 perform the changes you’ve undone.

Ready to enter some real, live code? Try the following steps:

1. Create a new workbook in Excel.

2. Press Alt+F11 to activate VBE.

3. Click the new workbook’s name in the project window.

4. Choose Insert ➪ Module to insert a VBA module into the project.

36 Part I: Holy Macro Batman!

5. Type the following code into the module:

Sub GuessName()

 Dim Msg as String

 Dim Ans As Long

 Msg = "Is your name " & Application.UserName & "?"

 Ans = MsgBox(Msg, vbYesNo)

 If Ans = vbNo Then MsgBox "Oh, never mind."

 If Ans = vbYes Then MsgBox "I must be clairvoyant!"

End Sub

6. Make sure the cursor is located anywhere within the text you typed,
and then press F5 to execute the procedure.

F5 is a shortcut for the Run ➪ Run Sub/UserForm command.

When you enter the code listed in step 5, you might notice that VBE makes
some adjustments to the text you enter. For example, after you type the Sub
statement, VBE automatically inserts the End Sub statement. And if you omit
the space before or after an equal sign, VBE inserts the space for you. Also,
VBE changes the color and capitalization of some text. These changes are
VBE’s way of keeping things neat and readable.

If you followed the previous steps, you just created a VBA Sub procedure,
also known as a macro. When you press F5, Excel executes the code and
 follows the instructions. In other words, Excel evaluates each statement
and does what you told it to do. You can execute this macro any number of
times — although it tends to lose its appeal after a few dozen executions.

This simple macro uses the following concepts:

 ✓ Defining a Sub procedure (the first line)

 ✓ Declaring variables (the Dim statements)

 ✓ Assigning values to variables (Msg and Ans)

 ✓ Concatenating (joining) a string (using the & operator)

 ✓ Using a built‐in VBA function (MsgBox)

 ✓ Using built‐in VBA constants (vbYesNo, vbNo, and vbYes)

 ✓ Using an If‐Then construct (twice)

 ✓ Ending a Sub procedure (the last line)

www.allitebooks.com

http://www.allitebooks.org

37 Chapter 2: Getting Cozy with Visual Basic Editor

As mentioned, you can copy and paste code into a VBA module. For example,
a Sub or Function procedure that you write for one project might also be
useful in another project. Instead of wasting time reentering the code, you
can activate the module and use the normal copy‐and‐paste procedures
(Ctrl+C to copy and Ctrl+V to paste). After pasting the code into a VBA
module, you can modify the code as necessary.

Customizing the VBA Environment
If you’re serious about becoming an Excel programmer, you’ll spend a lot of
time with VBA modules on your screen. To help make things as comfortable
as possible, VBE provides quite a few customization options.

When VBE is active, choose Tools ➪ Options. You’ll see a dialog box with four
tabs: Editor, Editor Format, General, and Docking. Take a moment to explore
some of the options found on each tab.

The Editor tab
Figure 2-4 shows the options accessed by clicking the Editor tab of the
Options dialog box. Use the option in the Editor tab to control how certain
things work in VBE.

Figure 2-4:
The Editor
tab in the

Options
 dialog box.

38 Part I: Holy Macro Batman!

The Auto Syntax Check option
The Auto Syntax Check setting determines whether VBE pops up a dialog box
if it discovers a syntax error while you’re entering your VBA code. The dialog
box tells roughly what the problem is. If you don’t choose this setting, VBE
flags syntax errors by displaying them in a different color from the rest of the
code, and you don’t have to deal with dialog boxes popping up on your screen.

The Require Variable Declaration option
If the Require Variable Declaration option is set, the VBE will insert an Option
Explicit statement at the beginning of each new VBA module you add. When
the Option Explicit statement appears in your module, you must explicitly
define each variable you use. You get a detailed look at variables in Chapter 3.

The Auto List Members option
If the Auto List Members option is set, VBE provides some help when you’re
entering your VBA code. It displays a list that would logically complete the
statement you’re typing. This feature is one of the best in VBE.

The Auto Quick Info option
If the Auto Quick Info option is selected, VBE displays information about
functions and their arguments as you type. This behavior is similar to
the way Excel lists the arguments for a function as you start typing a new
 formula.

The Auto Data Tips option
If the Auto Data Tips option is set, VBE displays the value of the variable
over which your cursor is placed when you’re debugging code. This option is
turned on by default and is often quite useful. There is no reason to turn off
this option.

The Auto Indent setting
The Auto Indent setting determines whether VBE automatically indents each
new line of code the same as the preceding line. Most Excel developers are
keen on using indentations in their code, so this option is typically kept on.

By the way, use the Tab key, not the spacebar, to indent your code. Also, you
can press Shift+Tab to outdent a line of code. If you want to indent more than
just one line, select all lines you want to indent and then press the Tab key.

VBE’s Edit toolbar (which is hidden by default) contains two useful buttons:
Indent and Outdent. These buttons let you quickly indent or outdent a block
of code. Select the code and click one of these buttons to change the block’s
indenting.

39 Chapter 2: Getting Cozy with Visual Basic Editor

The Drag‐and‐Drop Text Editing option
The Drag‐and‐Drop Text Editing option, when enabled, lets you copy and
move text by dragging and dropping with your mouse.

The Default to Full Module View option
The Default to Full Module View option sets the default state for new
 modules. (It doesn’t affect existing modules.) If set, procedures in the code
window appear as a single scrollable list. If this option is turned off, you can
see only one procedure at a time.

The Procedure Separator option
When the Procedure Separator option is turned on, separator bars appear at
the end of each procedure in a code window. Separator bars provide a nice
visual line between procedures, making it easy to see where one piece of
code ends and another starts.

The Editor Format tab
Figure 2-5 shows the Editor Format tab of the Options dialog box. With this
tab, you can customize the way VBE looks.

Figure 2-5:
Change

VBE’s
look with
the Editor

Format tab.

40 Part I: Holy Macro Batman!

The Code Colors option
The Code Colors option lets you set the text color and background color dis-
played for various elements of VBA code. Most Excel developers stick with
the default colors. But if you like to change things up, play around with these
settings.

The Font option
The Font option lets you select the font used in your VBA modules. For best
results, stick with a fixed‐width font such as Courier New. In a fixed‐width
font, all characters are the same width. This type of font makes your code
easier to read because the characters are nicely aligned vertically. You can
also easily distinguish multiple spaces (which is sometimes useful).

The Size setting
The Size setting specifies the point size of the font in the VBA modules. This
setting is a matter of personal preference determined by your video display
resolution and how good your eyesight is.

The Margin Indicator Bar option
The Margin Indicator Bar option controls the display of the vertical margin
indicator bar in your modules. You should keep this option turned on;
 otherwise, you won’t be able to see the helpful graphical indicators when
you’re debugging your code.

The General tab
Figure 2-6 shows the options available on the General tab in the Options
dialog box. In almost every case, the default settings are just fine.

The most important setting on the General tab is Error Trapping. If you are
just starting your Excel macro‐writing career, it’s best to leave Error Trapping
set to Break on Unhandled Errors. This setting ensures that Excel can identify
errors as you type your code.

The Docking tab
Figure 2-7 shows the Docking tab. Its options determine how the various win-
dows in VBE behave. When a window is docked, it is fixed in place along one
edge of the VBE program window. Docking makes it much easier to identify
and locate a particular window. If you turn off all docking, you have a big,
confusing mess of windows. Generally, the default settings work fine.

41 Chapter 2: Getting Cozy with Visual Basic Editor

Figure 2-6:
The General

tab of the
Options

 dialog box.

Figure 2-7:
The Docking

tab of the
Options

 dialog box.

42 Part I: Holy Macro Batman!

The Anatomy of Macros
In This Chapter

 ▶ Exploring the Excel Object Model

 ▶ Leveraging variables in your Macros

 ▶ Utilizing event procedures

 ▶ Handling potential errors in your macros

T
he engine behind macros is VBA (Visual Basic for Applications). When
you record a macro, Excel is busy writing the associated VBA behind the

scenes. To fully understand macros, it’s important to understand the under-
lying VBA typically used in Excel macros.

This chapter starts you on that journey by giving you a primer on some of
the objects, variables, events, and error handlers you will encounter in the
macro examples found in this book.

An Overview of the Excel Object Model
Visual Basic for Applications is an object‐oriented programming language.
The basic concept of object‐oriented programming is that a software applica-
tion (Excel in this case) consists of various individual objects, each of which
has its own set of features and uses. An Excel application contains cells,
worksheets, charts, pivot tables, drawing shapes — the list of Excel’s objects
is seemingly endless. Each object has its own set of features, which are called
properties, and its own set of uses, called methods.

You can think of this concept just as you would the objects you encounter
every day, such as your computer, car, or refrigerator. Each of these objects
has identifying qualities, such as height, weight, and color. They each have
their own distinct uses, such as working with Excel, transporting you over
long distances, or keeping perishable foods cold.

Chapter 3

44 Part I: Holy Macro Batman!

VBA objects also have identifiable properties and methods of use. A work-
sheet cell is an object, and among its describable features (its properties) are
its address, height, and formatted fill color. A workbook is also a VBA object,
and among its usable features (its methods) are its capabilities to be opened,
closed, and have a chart or pivot table added to it.

In Excel you deal with workbooks, worksheets, and ranges on a daily basis.
You likely think of each of these objects as all part of Excel, not really sepa-
rating them in your mind. However, Excel thinks about these internally as all
part of a hierarchical model called the Excel Object Model. The Excel Object
Model is a clearly defined set of objects that are structured according to the
relationships between them.

Understanding objects
In the real world, you can describe everything you see as an object. When
you look at your house, it is an object. Your house has rooms; those rooms
are also separate objects. Those rooms may have closets. Those closets are
likewise objects. As you think about your house, the rooms, and the closets,
you may see a hierarchical relationship between them. Excel works in the
same way.

In Excel, the Application object is the all‐encompassing object — similar to
your house. Inside the Application object, Excel has a workbook. Inside a
workbook is a worksheet. Inside that is a range. These are all objects that live
in a hierarchical structure.

To point to a specific object in VBA, you can traverse the object model. For
example, to get to cell A1 on Sheet 1, you can enter this code:

Activeworkbook.Sheets("Sheet1").Range("A1").Select

In most cases, the object model hierarchy is understood, so you don’t have
to type every level. Entering this code also gets you to cell A1 because Excel
infers that you mean the active workbook, and the active sheet:

Range("A1").Select

Indeed, if you have your cursor already in cell A1, you can simply use the
ActiveCell object, negating the need to spell out the range:

Activecell.Select

45 Chapter 3: The Anatomy of Macros

Understanding collections
Many of Excel’s objects belong to collections, which are essentially groups of
like objects. Similarly, your house sits within a neighborhood, which is a col-
lection of houses. Each neighborhood sits in a collection of neighborhoods
called a city. Excel considers collections to be objects themselves.

In each Workbook object, you have a collection of Worksheets. The
Worksheets collection is an object that you can call upon through VBA. Each
worksheet in your workbook lives in the Worksheets collection.

If you want to refer to a worksheet in the Worksheets collection, you can
refer to it by its position in the collection, as an index number starting with
1, or by its name, as quoted text. If you run the following two lines of code in
a workbook that has only one worksheet called MySheet, they both do the
same thing:

Worksheets(1).Select

Worksheets("MySheet").Select

If you have two worksheets in the active workbook that have the names
MySheet and YourSheet, in that order, you can refer to the second worksheet
by typing either of these statements:

Worksheets(2).Select

Worksheets("YourSheet").Select

If you want to refer to a worksheet in a workbook called MySheet in a particu-
lar workbook that is not active, you must qualify the worksheet reference and
the workbook reference, as follows:

Workbooks("MyData.xls").Worksheets("MySheet").Select

Understanding properties
Properties are essentially the characteristics of an object. Your house has
a color, a square footage, an age, and so on. Some properties, such as the
color of your house, can be changed. Other properties, such as the year your
house was built, can’t be changed.

Likewise, an object in Excel such as the Worksheet object has a sheet name
property that can be changed, and a Rows.Count row property that cannot.

46 Part I: Holy Macro Batman!

You refer to the property of an object by referring to the object and then to
the property. For instance, you can change the name of your worksheet by
changing its Name property.

In this example, you rename Sheet1 to MySheet:

Sheets("Sheet1").Name = "MySheet"

Some properties are read‐only, which means that you can’t assign a value to
them directly. An example of a read‐only property is the Text property of cell,
which provides the formatted appearance of a value in a cell. You cannot
overwrite or change it.

Understanding methods
Methods are the actions that can be performed against an object. It helps to
think of methods as verbs. For example, you can paint your house; in VBA,
that might translate to

house.paint

A simple example of an Excel method is the Select method of the Range
object:

Range("A1").Select

Another is the Copy method of the Range object:

Range("A1").Copy

Some methods have parameters that can dictate how the methods are
applied. For instance, the Paste method can be used more effectively by
explicitly defining the Destination parameter:

ActiveSheet.Paste Destination:=Range("B1")

A Brief Look at Variables
Another concept you will see throughout the macros in this book is
the concept of variables. It’s important to dedicate a few words on this
 concept because it will play a big part in most of the macros you will
encounter here.

47 Chapter 3: The Anatomy of Macros

You can think of variables as memory containers that you can use in your
procedures. There are different types of variables, each tasked with holding a
specific type of data.

Some of the common types of variables you will see in this book follow:

 ✓ String: Holds textual data

 ✓ Integer: Holds numeric data ranging from −32,768 to 32,767

 ✓ Long: Holds numeric data ranging from −2,147,483,648 to 2,147,483,647

 ✓ Double: Holds floating‐point numeric data

 ✓ Variant: Holds any kind of data

 ✓ Boolean: Holds binary data that returns True or False

 ✓ Object: Holds an object from the Excel Object model

When you create a variable in a macro, you are declaring a variable. You do
so by entering Dim (abbreviation for dimension), then the name of your vari-
able, and then the type. For instance:

Dim MyText as String

Dim MyNumber as Integer

Dim MyWorksheet as Worksheet

After you create your variable, you can fill it with data. Here are a few simple
examples of how you could create a variable, and then assign values to it:

Dim MyText as String
MyText = Range("A1").Value

Dim MyNumber as Integer
MyNumber = Range("B1").Value * 25

Dim MyObject as Worksheet
Set MyWorksheet = Sheets("Sheet1")

The values you assign to your variables often come from data stored in
your cells. However, the values may also be information that you create. It
all depends on the task at hand. This notion will become clearer as you go
through the macros in this book.

Although it’s possible to create code that does not use variables, you’ll
encounter many examples of VBA code where variables are employed. There
are two main reasons for this.

48 Part I: Holy Macro Batman!

First, Excel doesn’t inherently know what your data is used for. It doesn’t see
numerals, symbols, or letters. It sees only data. When you declare variables
with specific data types, you help Excel know how it should handle certain
pieces of data so that your macros will produce the results you’d expect.

Second, variables help by making your code more efficient and easier to
understand. For example, suppose you have a number in cell A1 that you are
repeatedly referring to in your macro. You could retrieve that number by
pointing to cell A1 each time you need it:

Sub Macro1()

Range("B1").Value = Range("A1").Value * 5

Range("C1").Value = Range("A1").Value * 10

Range("D1").Value = Range("A1").Value * 15

End Sub

However, this macro would force Excel to waste cycles storing the same
number in memory every time you point to cell A1. Also, if you need to
change your workbook so that the target number is not in cell A1, but in, say,
cell A2, you would need to edit your code by changing all the references from
A1 to A2.

A better way is to store the number in cell A1 just once. For example, you can
store the value in cell A1 in an Integer variable called myValue:

Sub WithVariable()

Dim myValue As Integer

myValue = Range("A1").Value

Range("C3").Value = myValue * 5

Range("D5").Value = myValue * 10

Range("E7").Value = myValue * 15

End Sub

This approach not only improves the efficiency of your code (ensuring Excel
reads the number in cell A1 just once) but also ensures that you only have to
edit one line should the design of your workbook change.

49 Chapter 3: The Anatomy of Macros

Understanding Event Procedures
In many of the example macros in this book, code is implemented as an event
procedure. To fully understand why these examples use event procedures,
it’s important to get acquainted with events.

An event is nothing more than an action that takes place during a session
in Excel. Everything that happens in Excel happens to an object through an
event. A few examples of events are opening a workbook, adding a worksheet,
changing a value in a cell, saving a workbook, and double‐clicking a cell.

The nifty thing is that you can tell Excel to run a certain macro or piece of
code when a particulate event occurs. For example, you may want to ensure
that your workbook automatically saves each time it closes. You can add code
to the BeforeClose workbook event that saves the workbook before it closes.

In Chapter 2, in the section on adding a new VBA module, you discover how
to create a standard VBA module to hold the code you write. However, event
procedures are special in that they are not stored in standard modules. As
you see in the next few sections, event procedures are stored directly in each
object’s built‐in modules.

Worksheet events
Worksheet events occur when something happens to a particular worksheet,
such as when a worksheet is selected, a cell on the worksheet is edited, or
a formula on a worksheet is calculated. Each worksheet has its own built‐in
module where you can place your own event procedure.

To get to this built‐in module, you can right‐click the worksheet and select
the View Code option, as shown in Figure 3-1.

Figure 3-1:
Getting to

the built‐in
module for a

worksheet.

50 Part I: Holy Macro Batman!

Visual Basic Editor will automatically open to the built‐in module for the
worksheet. At the top of the module are two drop‐down boxes.

In the drop‐down box on the left, select the Worksheet option. The
SelectionChange event in the drop‐down box on the right is selected automat-
ically. This action also adds some starter code (see Figure 3-2), where you
can enter or paste your code.

Figure 3-2:
The default

Selection
Change

event.

Figure 3-3:
Choose

the most
appropriate

event.

The idea is to choose the most appropriate event from the Event
drop‐down box for the task at hand. Figure 3-3 illustrates the different
events you can choose.

The more commonly used worksheet events follow:

 ✓ Worksheet_Change: Triggers when any data on the worksheet is
changed

 ✓ Worksheet_SelectionChange: Triggers each time a new cell or an
object on the worksheet is selected

 ✓ Worksheet_BeforeDoubleClick: Triggers before Excel responds to a
double‐click on the worksheet

51 Chapter 3: The Anatomy of Macros

 ✓ Worksheet_BeforeRightClick: Triggers before Excel responds to a
right‐click on the worksheet

 ✓ Worksheet_Activate: Triggers when the user moves from another
 worksheet to this worksheet

 ✓ Worksheet_Deactivate: Triggers when the user moves from this
 worksheet to another worksheet

 ✓ Worksheet_Calculate: Triggers each time a change in the worksheet
causes Excel to recalculate formulas

Workbook events
Workbook events occur when something happens to a particular workbook.
For example, when a workbook is opened, when a workbook is closed, when
a new worksheet is added, or when a workbook is saved. Each workbook is
its own built‐in module where you can place your own event procedure.

To get to this built‐in module, you will need to first activate the Visual Basic
Editor (press Alt+F11). Then in the Project Explorer menu, right‐click on
ThisWorkbook, and then choose the ViewCode option (see Figure 3-4).

Figure 3-4:
Getting to

the built‐in
module for a

workbook.

The Visual Basic Editor will automatically open to the built‐in module for the
workbook. This module will have two dropdown boxes at the top.

Select the Workbook option in the dropdown on the left. This action will auto-
matically select the Open event in the dropdown on the right. As you can see

52 Part I: Holy Macro Batman!

in Figure 3-5, this will also added some starter code where you can enter or
paste your code.

Figure 3-5:
The default
Open event

for the
Worksheet

object.

Figure 3-6:
Click the

Event drop‐
down box
to choose

the most
appropriate

event.

The idea is to choose the most appropriate event from the Event dropdown
for the task at hand. Figure 3-6 illustrates some of the events you can choose.

The more commonly used workbook events are as follows:

 ✓ Worksheet_Open: Triggers when the workbook is opened

 ✓ Worksheet_BeforeSave: Triggers before the workbook is saved

 ✓ Worksheet_BeforeClose: Triggers before Excel closes the workbook

 ✓ Worksheet_SheetChange: Triggers when a user switches between sheets

53 Chapter 3: The Anatomy of Macros

Error Handling in a Nutshell
In some of the macros in this book, you’ll see a line similar to this:

On Error GoTo MyError

This is called an error handler. Error handlers allow you to specify what
 happens when an error is encountered while your code runs.

Without error handlers, any error that occurs in your code will prompt Excel
to activate a less‐than‐helpful error message that typically won’t clearly
convey what happened. However, with the aid of error handlers, you can
choose to ignore the error or exit the code gracefully with your own message
to the user.

There are three types of On Error statements:

 ✓ On Error GoTo SomeLabel: The code jumps to the specified label.

 ✓ On Error Resume Next: The error is ignored and the code resumes.

 ✓ On Error GoTo 0: VBA resets to normal error‐checking behavior.

On Error GoTo SomeLabel
Sometimes an error in your code means you need to gracefully exit the proce-
dure and give your users a clear message. In these situations, you can use the
On Error GoTo statement to tell Excel to jump to a certain line of code.

For example, in the following small piece of code, you tell Excel to divide the
value in cell A1 by the value in cell A2, and then place the answer in cell A3.
Easy. What could go wrong?

Sub Macro1()

Range("A3").Value = Range("A1").Value / Range("A2").Value

End Sub

As it turns out, two major things can go wrong. If cell A2 contains 0, you get a
divide by 0 error. If cell A2 contains a non‐numeric value, you get a type mis-
match error.

To avoid a nasty error message, you can tell Excel that On Error, you want
the code execution to jump to the label called MyExit.

54 Part I: Holy Macro Batman!

In the following code, the MyExit label is followed by a message to the user
that gives friendly advice instead of a nasty error message. Also note the Exit
Sub line before the MyExit label, which ensures that the code will simply exit
if no error is encountered:

Sub Macro1()

On Error GoTo MyExit

Range("A3").Value = Range("A1").Value / Range("A2").Value
Exit Sub

MyExit:
MsgBox "Please Use Valid Non-Zero Numbers"

End Sub

On Error Resume Next
Sometimes, you want Excel to ignore an error and simply resume running the
code. In these situations, you can use the On Error Resume Next statement.

For example, the following piece of code is meant to delete a file called
GhostFile.exe from the C:\Temp directory. After the file is deleted, a nice
message box tells the user that the file is gone:

Sub Macro1()

Kill "C:\Temp\GhostFile.exe"

MsgBox "File has been deleted."

End Sub

The code works great if there is indeed a file to delete. But if for some reason
the file called GhostFile.exe does not exist in the C:\Temp drive, an error is
thrown.

In this case, you don’t care if the file is not there because you were going
to delete it anyway. So you can simply ignore the error and move on with
the code.

By using the On Error Resume Next statement, the code runs its course
whether or not the targeted file exists:

Sub Macro1()

On Error Resume Next

55 Chapter 3: The Anatomy of Macros

Kill "C:\Temp\GhostFile.exe"

MsgBox "File has been deleted."

End Sub

On Error GoTo 0
When using certain error statements, it may be necessary to reset the error‐
checking behavior of VBA. To understand what this means, take a look at the
next example.

Here, you first want to delete a file called GhostFile.exe from the C:\Temp
directory. To avoid errors that may stem from the fact that the targeted file
does not exist, you use the On Error Resume Next statement. After that, you
try to do some suspect math by dividing 100/Mike:

Sub Macro1()

On Error Resume Next

Kill "C:\Temp\GhostFile.exe"

Range("A3").Value = 100 / "Mike"

End Sub

Running this piece of code should generate an error due to the fuzzy math, but
it doesn’t. Why? Because the last instruction you gave to the code was On Error
Resume Next. Any error encountered after that line is effectively ignored.

To remedy this problem, you can use the On Error GoTo 0 statement to
resume normal error‐checking behavior:

Sub Macro1()

On Error Resume Next

Kill "C:\Temp\GhostFile.exe"

On Error GoTo 0

Range("A3").Value = 100 / "Mike"

End Sub

This code will ignore errors until the On Error GoTo 0 statement. After that
statement, the code goes back to normal error checking and triggers the
expected error stemming from the fuzzy math.

56 Part I: Holy Macro Batman!

Part II
Making Short Work of

Workbook Tasks

 See the article at www.dummies.com/extras/excelmacros to uncover a
technique that will force your clients to enable the macros in your workbooks.

http://www.dummies.com/extras/excelmacros

In this part . . .
 ✓ Look at various techniques you can use to manipulate your

workbooks.

 ✓ See how you can leverage macros to automate the creation
and duplication of Excel files.

 ✓ Uncover macros that automate common worksheet tasks.

 ✓ Explore how you can use macros to protect and back up your
Excel workbooks.

Working with Workbooks
In This Chapter

 ▶ Creating a workbook

 ▶ Saving a workbook when a cell is changed

 ▶ Saving a workbook before you close it

 ▶ Protecting and unprotecting a workbook

 ▶ Opening a user‐defined workbook

 ▶ Determining whether a workbook is open or exists

 ▶ Printing all workbooks in a directory

 ▶ Creating backups of your workbook

A
workbook is not just an Excel file; it’s also an object in Excel’s Object
model (a programming hierarchy that exposes parts of Excel to VBA).

You can reference workbooks through VBA to do cool things like automati-
cally create new workbooks, prevent users from closing workbooks, and
automatically back up workbooks. In this chapter, you explore a few of the
more useful workbook‐related macros.

Creating a Workbook from Scratch
You may sometimes want or need to create a workbook in an automated
way. For instance, you may need to copy data from a table and paste it into
a newly created workbook. The following macro copies a range of cells from
the active sheet and pastes the data into a new workbook.

Chapter 4

60 Part II: Making Short Work of Workbook Tasks

How the macro works
As you’ll see when you read through the lines of the code, this macro is
 relatively intuitive:

Sub Macro1()

'Step 1 Copy the data
 Sheets("Example 1").Range("B4:C15").Copy

'Step 2 Create a new workbook
 Workbooks.Add

'Step 3 Paste the data
 ActiveSheet.Paste Destination:=Range("A1")

'Step 4 Turn off application alerts
 Application.DisplayAlerts = False

'Step 5 Save the newly created workbook
 ActiveWorkbook.SaveAs _
 Filename:="C:\Temp\MyNewBook.xlsx"

'Step 6 Turn application alerts back on
 Application.DisplayAlerts = True

End Sub

In Step 1, you simply copy the data that ranges from cells B4 to C15. Note
that you specify both the sheet and the range by name. This approach is
a best practice when working with multiple open workbooks.

In Step 2, you use the Add method of the Workbook object to create
a workbook. The blank workbook is equivalent to manually choosing
File ➪ New ➪ Blank Document in the Excel ribbon.

In Step 3, you use the Paste method to send the copied data to cell A1 of the
new workbook.

Pay attention to the fact that the code refers to the ActiveSheet object.
When you add a workbook, the new workbook immediately gains focus,
becoming the active workbook. (Excel does the same when you add a work-
book manually.)

In Step 4 of the code, you set the DisplayAlerts method to False, effectively
turning off Excel’s warnings. You do this because in the next step of the code,
you save the newly created workbook. You may run this macro multiple
times, in which case Excel attempts to save the file multiple times.

61 Chapter 4: Working with Workbooks

What happens when you try to save a workbook multiple times? That’s
right — Excel warns you that there is already a file with that name and then
asks if you want to overwrite the previously existing file. Because your goal is
to automate the creation of the workbook, you want to suppress that warning.

In Step 5, you save the file by using the SaveAs method. Note that you enter
the full path of the save location, including the final filename.

Because you turned off application alters in Step 4, you need to turn them
back on (see Step 6). If you don’t, Excel continues to suppress all warnings
during the current session.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

You’ll probably need to change the sheet name, the range address, and
the save location.

Saving a Workbook when a
Particular Cell Is Changed

Sometimes, you may be working on data that is so sensitive that you’ll want
to save every time a particular cell or range of cells is changed. The next
macro allows you to define a range of cells that, when changed, forces the
workbook to save.

In the example demonstrated in Figure 4-1, you want the workbook to save
when an edit is made to any of the cells in the range C5:C16.

62 Part II: Making Short Work of Workbook Tasks

How the macro works
The secret to this code is the Intersect method. Because you don’t want to
save the worksheet when any old cell changes, you use the Intersect method
to determine if the target cell (the cell that changed) intersects with the
range specified as the trigger range (C5:C16 in this case).

The Intersect method returns one of two things: a Range object that defines
the intersection between the two given ranges, or nothing. So in essence, you
need to throw the target cell against the Intersect method to check for a value
of Nothing. At that point, you can decide whether to save the workbook.

Private Sub Worksheet_Change(ByVal Target As Range)

'Step 1: Does the changed range intersect?
 If Intersect(Target, Range("C5:C16")) Is Nothing Then

'Step 2: If there is no intersection, exit procedure
 Exit Sub

'Step 3: If there is an intersection, save the workbook
 Else
 ActiveWorkbook.Save

'Step 4: Close out the If statement
 End If

End Sub

In Step 1, you simply check to see whether the target cell (the cell that
has changed) is in the range specified by the Intersect method. A value of
Nothing means the target cell is outside the range specified.

Figure 4-1:
Changing

a cell in
C5:C16

forces the
workbook

to save.

63 Chapter 4: Working with Workbooks

Step 2 forces the macro to stop and exit the procedure if there is no intersec-
tion between the target cell and the specified range.

If there is an intersection, Step 3 fires the Save method of the active work-
book, overwriting the previous version.

In Step 4, you simply close out the If statement. Every time you start an
If‐Then‐Else check, you must close it out with a corresponding End If.

How to use the macro
To implement this macro, you need to copy and paste it into the Worksheet_
Change event code window. Placing the macro here allows it to run each time
you make any change to the sheet:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click the sheet from which you want to trigger the code.

4. In the Event drop‐down list (see Figure 4-2), select the Change event.

5. Type or paste the code in the newly created module, changing the
range address to suit your needs.

Saving a Workbook before Closing
The macro presented in this section is an excellent way to protect users from
inadvertently closing their file before saving. When implemented, this macro
ensures that Excel automatically saves the workbook before closing it.

Figure 4-2:
Enter your

code in the
Worksheet

Change
event.

64 Part II: Making Short Work of Workbook Tasks

Excel will normally warn users who are attempting to close an unsaved
 workbook, giving them an option to save before closing. However, many
users may blow past the warning and inadvertently click No, telling Excel
to close without saving. With this macro, you are protecting against this
by automatically saving before closing.

How the macro works
The code is triggered by the workbook’s BeforeClose event. When you try
to close the workbook, this event fires, running the code within. The crux of
the code is simple — it asks the users whether they want to close the work-
book (see Figure 4-3). The macro then evaluates whether the user clicked OK
or Cancel.

The evaluation is done with a Select Case statement. The Select Case state-
ment is an alternative to the If‐Then‐Else statement, allowing you to perform
condition checks in your macros. The basic construct of a Select Case state-
ment is simple:

Select Case <some expression to check>
Case Is = <some value>
 <do something>
Case Is=<some other value>
 <do something else>
Case Is=<some 3rd value>
 <do some 3rd thing>
End Select

With a Select Case statement, you can perform many conditional checks. In
this case, you are simply checking for OK or Cancel. Take a look at the code:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Activate the message box and start the check
 Select Case MsgBox("Save and close?", vbOKCancel)

Figure 4-3:
The mes-
sage you

see when
you try to
close the

workbook.

65 Chapter 4: Working with Workbooks

'Step 2: Cancel button pressed, so cancel the close
 Case Is = vbCancel
 Cancel = True

'Step 3: OK button pressed, so save the workbook and close
 Case Is = vbOK
 ActiveWorkbook.Save

'Step 4: Close your Select Case statement
End Select

End Sub

In Step 1, you activate the message box as the condition check for the Select
Case statement. You use vbOKCancel argument to ensure that the OK and
Cancel buttons are presented as choices.

In Step 2, if the user clicked Cancel in the message box, the macro tells Excel
to cancel the Workbook_Close event by passing True to the Cancel Boolean.

If the user clicked the OK button in the message box, Step 3 takes effect.
Here, you tell Excel to save the workbook. And because you didn’t set the
Cancel Boolean to True, Excel continues with the close.

In Step 4, you simply close out the Select Case statement. Every time
you instantiate a Select Case, you must close it out with a corresponding
End Select.

How to use the macro
To implement this macro, you need to copy and paste it into the Workbook_
BeforeClose event code window. Placing the macro there allows it to run
each time you try to close the workbook:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down list (see Figure 4-4), select the BeforeClose
event.

5. Type or paste the code in the newly created module.

66 Part II: Making Short Work of Workbook Tasks

Protecting a Worksheet
on Workbook Close

Sometimes you need to send your workbook out into the world with spe-
cific worksheets protected. If you find that you’re constantly protecting and
unprotecting sheets before distributing your workbooks, the macro in this
section can help you.

How the macro works
The code is triggered by the workbook’s BeforeClose event. When you try
to close the workbook, this event fires, running the code within. The macro
automatically protects the specified sheet with the given password, and then
saves the workbook:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Protect the sheet with a password
 Sheets("Sheet1").Protect Password:="RED"

'Step 2: Save the workbook
 ActiveWorkbook.Save

End Sub

In Step 1, you’re explicitly specifying which sheet to protect — Sheet1, in
this case. You also provide the password argument, Password:="RED", which
defines the password needed to remove protection.

Figure 4-4:
Enter your

code in the
Workbook

BeforeClose
event.

67 Chapter 4: Working with Workbooks

This password argument is optional. If you omit it, the sheet will still be
 protected, but you won’t need a password to unprotect it.

Excel passwords are case‐sensitive, so you’ll want to pay attention to the
exact password and capitalization that you are using.

Step 2 tells Excel to save the workbook. If you don’t save the workbook, the
sheet protection you just applied won’t be in effect the next time the work-
book is opened.

How to use the macro
To implement this macro, you need to copy and paste it into the Workbook_
BeforeClose event code window. Placing the macro here allows it to run each
time you try to close the workbook:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down list (see Figure 4-5), select the BeforeClose
event.

5. Type or paste the code in the newly created module, modifying the
sheet name (if necessary) and the password.

Note that you can protect additional sheets by adding addition statements
before the Activeworkbook.Save statement.

Figure 4-5:
Enter your

code in the
Workbook

BeforeClose
event.

68 Part II: Making Short Work of Workbook Tasks

Unprotecting a Worksheet
on Workbook Open

If you’ve distributed workbooks with protected sheets, you likely get the
workbooks back with the sheets still protected. Often, you need to unprotect
the worksheets in a workbook before continuing your work. If you find that
you are continuously unprotecting worksheets, this section’s macro may be
just the ticket.

How the macro works
The code is triggered by the workbook’s Open event. When you open a work-
book, this event triggers, running the code within. This macro automatically
unprotects the specified sheet with the given password when the workbook
is opened:

Private Sub Workbook_Open()

'Step 1: Protect the sheet with a password
 Sheets("Sheet1").Unprotect Password:="RED"

End Sub

The macro explicitly names the sheet you want to unprotect — Sheet1, in
this case. Then it passes the password required to unprotect the sheet.

Excel passwords are case‐sensitive, so pay attention to the exact password
and capitalization that you are using.

How to use the macro
To implement this macro, you need to copy and paste it into the Workbook_
Open event code window. Placing the macro here allows it to run each time
the workbook is opened:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

69 Chapter 4: Working with Workbooks

3. Click ThisWorkbook.

4. In the Event drop‐down list (see Figure 4-6), select the Open event.

5. Type or paste the code in the newly created module, modifying the
sheet name (if necessary) and the password.

Opening a Workbook to a Specific Tab
In some situations, it’s imperative that your workbook be started on a
specific worksheet. With the next macro, if users are working with your
workbook, they can’t go astray because the workbook starts on the exact
worksheet it needs to.

In the example illustrated in Figure 4-7, you want the workbook to go immedi-
ately to the sheet called Start Here.

Figure 4-6:
Enter your

code in the
Workbook

Open event.

Figure 4-7:
Open the

workbook
to the Start
Here sheet.

70 Part II: Making Short Work of Workbook Tasks

How the macro works
This macro uses the workbook’s Open event to start the workbook on the
specified sheet when the workbook is opened:

Private Sub Workbook_Open()

'Step 1: Select the specified sheet
 Sheets("Start Here").Select

End Sub

The macro explicitly names the sheet the workbook should jump to when it’s
opened.

How to use the macro
To implement this macro, you need to copy and paste it into the Workbook_
Open event code window. Placing the macro here allows it to run each time
the workbook is opened:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down list (see Figure 4-8), select the Open event.

5. Type or paste the code in the newly created module, changing the
sheet name, if necessary.

Figure 4-8:
Enter your

code in the
Workbook

Open event.

71 Chapter 4: Working with Workbooks

Opening a Specific Workbook
Defined by the User

Want to give yourself or your users a quick way to search for and open a file?
The next macro uses a simple technique that opens a friendly dialog box,
allowing you to browse for and open the Excel file of your choosing.

How the macro works
This macro opens the dialog box you see in Figure 4-9, allowing the user to
browse for and open an Excel file.

Here’s how this macro works:

Sub Macro1()

'Step 1: Define a String variable
 Dim FName As Variant

Figure 4-9:
The Open

dialog box
activated by

the macro.

72 Part II: Making Short Work of Workbook Tasks

'Step 2: GetOpenFilename Method activates dialog box
 FName = Application.GetOpenFilename(_
 FileFilter:="Excel Workbooks,*.xl*", _
 Title:="Choose a Workbook to Open", _
 MultiSelect:=False)

'Step 3: If a file was chosen, open it!
 If FName <> False Then
 Workbooks.Open Filename:=FName
 End If

End Sub

In Step 1, the macro declares a Variant variable that holds the filename that
the user chooses. FName is the name of your variable.

In Step 2, you use the GetOpenFilename method to call up a dialog box that
allows you to browse and select the file you need.

The GetOpenFilename method supports a few customizable parameters. The
FileFilter parameter allows you to specify the type of file you’re looking for.
The Title parameter allows you to change the title that appears at the top of
the dialog box. The MultiSelect parameter allows you to limit the selection to
one file.

If the user selects a file from the dialog box, the FName variable is filled with
the chosen filename. In Step 3, you check for an empty FName variable. If the
variable is not empty, you use the Open method of the Workbooks object to
open the file.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11 on your keyboard.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

5. (Optional) Assign the macro to a button.

For details, see the section on assigning a macro to a button in
Chapter 1.

73 Chapter 4: Working with Workbooks

Determining Whether a Workbook
Is Already Open

The previous macro automatically opened a workbook based on the user’s
selection. As you think about automatically opening workbooks, consider
what may happen if you attempt to open a book that is already open. In
the non‐VBA world, Excel attempts to open the file again, with the message
shown in Figure 4-10 warning that any unsaved changes will be lost. You
can protect against such an occurrence by checking whether a given file is
already open before trying to open it again.

How the macro works
The first thing to notice about this macro is that it is a function, not a Sub
procedure. As you will see, making this macro a function enables you to pass
any filename to it to test whether that file is already open.

The gist of this code is simple. You’re testing a given filename to see if it can
be assigned to an Object variable. Only opened workbooks can be assigned
to an Object variable. When you try to assign a closed workbook to the
 variable, an error occurs.

If the given workbook can be assigned, the workbook is open; if an error
occurs, the workbook is closed.

Function FileIsOpenTest(TargetWorkbook As String) As
Boolean

'Step 1: Declare your variables
 Dim TestBook As Workbook

'Step 2: Tell Excel to resume on error
 On Error Resume Next

'Step 3: Try to assign the target workbook to TestBook
 Set TestBook = Workbooks(TargetWorkbook)

Figure 4-10:
Avoid this

warning
message.

74 Part II: Making Short Work of Workbook Tasks

'Step 4: If no error occurred, workbook is already open
 If Err.Number = 0 Then
 FileIsOpenTest = True
 Else
 FileIsOpenTest = False
 End If

End Function

The first thing the macro does is to declare a String variable that will hold the
filename that the user chooses. TestBook is the name of your String variable.

In Step 2, you tell Excel that there may be an error running this code an, in
the event of an error, resume the code. Without this line, the code would
simply stop when an error occurs. Again, you test a given filename to see if it
can be assigned to an Object variable. If the given workbook can be assigned,
it’s open; if an error occurs, it’s closed.

In Step 3, you attempt to assign the given workbook to the TestBook
Object variable. The workbook you try to assign is a String variable called
TargetWorkbook. TargetWorkbook is passed to the function in the function
declarations (see the first line of the code). This structure eliminates the
need to hard‐code a workbook name, allowing you to pass it as a variable
instead.

In Step 4, you simply check to see if an error occurred. If an error did not
occur, the workbook is open, so you set the FileIsOpenTest to True. If an
error occurred, the workbook is not open and you set the FileIsOpenTest to
False.

Again, this function can be used to evaluate any file you pass to it, via its
TargetWorkbook argument. This is the beauty of putting the macro into a
function.

The following macro demonstrates how to implement this function. Here,
you use the same macro you saw in the previous section, “Opening a
Specific Workbook Defined by the User,” but this time, you call the new
FileIsOpenTest function to make sure that the user cannot open an already
opened file:

Sub Macro1()
'Step 1: Define a String variable
 Dim FName As Variant
 Dim FNFileOnly As String

75 Chapter 4: Working with Workbooks

'Step 2: GetOpenFilename Method activates dialog box
 FName = Application.GetOpenFilename(_
 FileFilter:="Excel Workbooks,*.xl*", _
 Title:="Choose a Workbook to Open", _
 MultiSelect:=False)

'Step 3: Open the chosen file if not already opened
 If FName <> False Then
 FNFileOnly = StrReverse(Left(StrReverse(FName), _
 InStr(StrReverse(FName), "\") - 1))

 If FileIsOpenTest(FNFileOnly) = True Then
 MsgBox "The given file is already open"
 Else
 Workbooks.Open Filename:=FName
 End If
 End If

End Sub

With this macro implemented, you get the friendlier message box shown in
Figure 4-11.

How to use the macro
To implement this macro, you can copy and paste both pieces of code into a
standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

5. (Optional) Assign the macro to a button.

For details, see the section on assigning a macro to a button in
Chapter 1.

Figure 4-11:
A cleaner,

more
concise

message.

76 Part II: Making Short Work of Workbook Tasks

Determining Whether a Workbook
Exists in a Directory

You may have a process that manipulates a file somewhere on your PC. For
example, you may need to open an existing workbook to add data to it on
a daily basis. In this case, you may need to test to see whether the file you
need to manipulate exists. The macro described in this section allows you to
pass a file path to evaluate whether the file is there.

How the macro works
The first thing to notice about this macro is that it is a function, not a Sub pro-
cedure. Making this macro a function enables you to pass any file path to it.

In this macro, you use the Dir function, which returns a string that represents
the name of the file that matches what you pass to it. This function can be
used in lots of ways, but here, you use it to check whether the file path you
pass to it exists:

Function FileExists(FPath As String) As Boolean

'Step 1: Declare your variables
 Dim FName As String

'Step 2: Use the Dir function to get the filename
 FName = Dir(FPath)

'Step 3: If file exists, return True; else False
 If FName <> "" Then FileExists = True _
 Else: FileExists = False

End Function

Step 1 declares a String variable that holds the filename that returns from the
Dir function. FName is the name of the String variable.

In Step 2, you attempt to set the FName variable. You do this by passing the
FPath variable to the Dir function. This FPath variable is passed via the func-
tion declarations (see the first line of the code). This structure prevents you
from having to hard‐code a file path, passing it as a variable instead.

If the FName variable can’t be set, the path you passed does not exist. Thus
the FName variable is empty. Step 3 merely translates that result to a True or
False expression.

www.allitebooks.com

http://www.allitebooks.org

77 Chapter 4: Working with Workbooks

Again, this function can be used to evaluate any file path you pass to it. This
is the beauty of writing the macro as a function.

The following macro demonstrates how to use this function:

Sub Macro1()

 If FileExists("C:\Temp\MyNewBook.xlsx") = True Then
 MsgBox "File exists."
 Else
 MsgBox "File does not exist."
 End If

End Sub

How to use the macro
To implement this macro, you can copy and paste both pieces of code into a
standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

Closing All Workbooks at Once
One of the more annoying things in Excel is closing many workbooks at once.
For each workbook you’ve opened, you need to activate the work, close it,
and confirm the saving of changes. Excel has no easy way to close them all at
once. This little macro takes care of that annoyance.

How the macro works
In this macro, the Workbooks collection loops through all opened workbooks.
As the macro loops through each workbook, it saves and closes them down:

Sub Macro1()

'Step 1: Declare your variables
 Dim wb As Workbook

78 Part II: Making Short Work of Workbook Tasks

'Step 2: Loop through workbooks, save and close
 For Each wb In Workbooks
 wb.Close SaveChanges:=True
 Next wb

End Sub

Step 1 declares an Object variable that represents a Workbook object. This
allows you to enumerate through all the open workbooks, capturing their
names as you go.

Step 2 simply loops through the open workbooks, saving and closing them.
If you don’t want to save them, change the SaveChanges argument from True
to False.

How to use the macro
The best place to store this macro is in your personal macro workbook. This
way, the macro is always available to you. The personal macro workbook is
loaded whenever you start Excel. In the VBE project window, it is named per-
sonal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll
have record a macro using personal macro workbook as the destination.

To record the macro in your personal macro workbook, open the Record
Macro dialog box. In the Store Macro In drop‐down list, select Personal
Macro Workbook. Then simply record a few cell clicks and stop recording.
You can discard the recorded macro and replace it with this one.

Printing All Workbooks in a Directory
If you need to print from multiple workbooks in a directory, you can use the
macro presented in this section.

79 Chapter 4: Working with Workbooks

How the macro works
In this macro, you use the Dir function to return a string that represents the
name of the file that matches what you pass to it.

You use the Dir function to enumerate through all .xlsx files in a given direc-
tory, capturing each file’s name. Then you open each file, print it, and then
close it.

Sub Macro1()

'Step 1:Declare your variables
 Dim MyFiles As String

'Step 2: Specify a target directory
 MyFiles = Dir("C:\Temp*.xlsx")
 Do While MyFiles <> ""

'Step 3: Open workbooks one by one
 Workbooks.Open "C:\Temp\" & MyFiles
 ActiveWorkbook.Sheets("Sheet1").PrintOut Copies:=1
 ActiveWorkbook.Close SaveChanges:=False

'Step 4: Next file in the directory
 MyFiles = Dir
 Loop

End Sub

Step 1 declares the MyFiles String variable that will capture each filename in
the enumeration.

Step 2 uses the Dir function to specify the directory and file type you are
looking for. Note that the code is looking for *.xlsx, so only xlsx files will be
looped through. If you want to look for .xls files, you will need to specify that
(along with the directory you need to search). The macro passes any file-
name it finds to the MyFiles String variable.

Step 3 opens the file and then prints one copy of Sheet1. Needless to say, you
will probably want to change which sheets to print. You can also change the
number of copies to print.

Step 4 loops back to find more files. If there are no more files, the MyFiles
variable is blank and the loop and the macro end.

80 Part II: Making Short Work of Workbook Tasks

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module, modifying the
print statement as needed.

Preventing the Workbook from Closing
Until a Cell Is Populated

There are times when you don’t want a user closing out a workbook without
entering a specific piece of data. In these situations, it would be useful to
deny the user the ability to close the workbook until the target cell is filled in
(see Figure 4-12). This is where the next macro comes in.

How the macro works
This code is triggered by the workbook’s BeforeClose event. When you try
to close the workbook, this event fires, running the code within. This macro
checks to see if the target cell (cell C7, in this case) is empty. If it is empty,

Figure 4-12:
Prevent

closing until
a specific

cell is
populated.

81 Chapter 4: Working with Workbooks

the close process is cancelled. If C7 is not empty, the workbook is saved
and closed:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Check to see if cell C7 is blank
If Sheets("Sheet1").Range("C7").Value = "" Then

'Step 2: If cell is blank, cancel the close and tell user
 Cancel = True
 MsgBox "Cell C7 cannot be blank"

'Step 3: If cell is not blank, save and close
Else
 ActiveWorkbook.Close SaveChanges:=True
End If

End Sub

Step 1 checks to see whether C7 is blank.

If C7 is blank, Step 2 takes effect, cancelling the close process by passing
True to the Cancel Boolean. Step 2 also activates a message box notifying the
user of his or her stupidity (well, it’s not quite that harsh, really).

In Step 3, if cell C7 is not blank, the workbook is saved and closed.

How to use the macro
To implement this macro, you need to copy and paste it into the Workbook_
BeforeClose event code window. Placing the macro here allows it to run each
time you try to close the workbook:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down list (see Figure 4-13), select the BeforeClose
event.

5. Type or paste the code in the newly created module.

82 Part II: Making Short Work of Workbook Tasks

Creating a Backup of a Current
Workbook with Today’s Date

You know that backing up your work is important. Now you can have a
macro do it for you. This simple macro saves your workbook to a new file
with today’s date as part of the name.

How the macro works
The trick to this macro is piecing together the new filename as the path,
today’s date, and the original filename.

The path is captured by using the Path property of the ThisWorkbook object.
Today’s date is grabbed with the Date function.

By default, the Date function returns mm/dd/yyyy. Forward slashes would
cause the file save to fail, so you format the date using hyphens instead
(Format(Date, "mm‐dd‐yy")) because Windows does not allow forward
slashes in filenames.

The last piece of the new filename is the original filename. You capture it by
using the Name property of the ThisWorkbook object:

Sub Macro1()
'Step 1: Save workbook with new filename
 ThisWorkbook.SaveCopyAs _
 Filename:=ThisWorkbook.Path & "\" & _
 Format(Date, "mm-dd-yy") & " " & _
 ThisWorkbook.Name

End Sub

Figure 4-13:
Enter your

code in the
Workbook

BeforeClose
event.

83 Chapter 4: Working with Workbooks

In the one and only step, the macro builds a new filename and uses the
SaveCopyAs method to save the file.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

84 Part II: Making Short Work of Workbook Tasks

Working with Worksheets
In This Chapter

 ▶ Adding and naming worksheets

 ▶ Protecting and unprotecting worksheets

 ▶ Creating a table of contents

 ▶ Highlighting active rows and columns

 ▶ Hiding and unhiding worksheets

 ▶ Moving and sorting Worksheets

 ▶ Copying worksheets to new Workbooks

E
xcel analysts can save time and gain efficiencies by using macros to
automate tasks related to worksheets. Two common example tasks are

unhiding all sheets in a workbook and printing all sheets at the same time. In
this chapter, I cover some of the more useful macros related to worksheets.

Adding and Naming a New Worksheet
The chapter starts with one of the simplest worksheet‐related automations
you can apply with a macro: adding and naming a new worksheet.

How the macro works
When you read through the lines of the code, you’ll see that this macro is
relatively intuitive:

Sub Macro1()

'Step 1: Tell Excel what to do if error
 On Error GoTo MyError

Chapter 5

86 Part II: Making Short Work of Workbook Tasks

'Step 2: Add a sheet and name it
 Sheets.Add
 ActiveSheet.Name = _
 WorksheetFunction.Text(Now(), "m-d-yyyy h_mm_ss

am/pm")
 Exit Sub

'Step 3: If here, an error happened; tell the user
 MyError:
 MsgBox "There is already a sheet called that."

End Sub

You must anticipate that if you give the new sheet a name that already exists,
an error would occur. So in Step 1, the macro tells Excel to immediately skip
to the line that says MyError (in Step 3) if there is an error.

Step 2 uses the Add method to add a new sheet. By default, the sheet is
called Sheetxx, where xx represents the number of the sheet. You give the
sheet a new name by changing the Name property of the ActiveSheet object.
In this case, you’re naming the worksheet with the current date and time.

As with workbooks, each time you use VBA to add a new sheet, the newly
added sheet automatically becomes the active sheet. Finally, in Step 2, note
that the macro exits the procedure. It has to do this so that it doesn’t acci-
dentally go into Step 3 (which comes into play only if an error occurs).

Step 3 notifies the user that the sheet name already exists. Again, this step
should be activated only if an error occurs.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

87 Chapter 5: Working with Worksheets

Deleting All but the Active Worksheet
At times, you may want to delete all but the active worksheet. In these situa-
tions, you can use this next macro.

How the macro works
The macro in this section loops through the worksheets, matching each
worksheet name to the active sheet’s name. Each time the macro loops, it
deletes any unmatched worksheet. Note the use of the DisplayAlerts prop-
erty in Step 4. This effectively turns off Excel’s warnings so you don’t have to
confirm each delete.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

'Step 4: Turn off warnings and delete
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If

'Step 5: Loop to next worksheet
 Next ws

End Sub

The macro first declares an object called ws. This step creates a memory
container for each worksheet it loops through.

In Step 2, the macro begins to loop, telling Excel it will evaluate all work-
sheets in this workbook. There is a difference between ThisWorkbook and
ActiveWorkbook. The ThisWorkBook object refers to the workbook that
contains the code. The ActiveWorkBook object refers to the currently active
workbook. They often return the same object, but if the workbook running
the code is not the active workbook, they return different objects. In this
case, you don’t want to risk deleting sheets in other workbooks, so you use
ThisWorkBook.

88 Part II: Making Short Work of Workbook Tasks

In Step 3, the macro simply compares the active sheet name to the sheet that
is currently being looped.

In Step 4, if the sheet names are different, the macro deletes the sheet. As
mentioned, you use DisplayAlerts to suppress any confirmation checks from
Excel. If you want to be warned before deleting the sheets, you can omit
Application. DisplayAlerts = False. Omitting the DisplayAlerts statement will
ensure that you get the message in Figure 5-1, allowing you to back out of the
decision to delete worksheets.

In Step 5, the macro loops back to get the next sheet. After all the sheets are
evaluated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

When you use ThisWorkbook instead of ActiveWorkbook in a macro, you
can’t run the macro from the personal macro workbook. Why? Because
ThisWorkbook would refer to the personal macro workbook, not to the work-
book to which the macro should apply.

Hiding All but the Active Worksheet
You may not want to delete all but the active sheet as you did in the preced-
ing macro. Instead, a more gentle option is to simply hide the sheets. Excel
doesn’t let you hide all sheets in a workbook; at least one has to be dis-
played. However, you can hide all but the active sheet.

Figure 5-1:
Omit the
Display

Alerts
statement to
see warning

messages.

89 Chapter 5: Working with Worksheets

How the macro works
The macro in this section loops through the worksheets and matches each
worksheet name to the active sheet’s name. Each time the macro loops, it
hides any unmatched worksheet.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

'Step 4: Hide the sheet
 ws.Visible = xlSheetHidden
 End If

'Step 5: Loop to next worksheet
 Next ws

End Sub

Step 1 declares an object called ws. This step creates a memory container for
each worksheet that the macro loops through.

Step 2 begins the looping, telling Excel to evaluate all worksheets in this
workbook. Note the difference between ThisWorkbook and ActiveWorkbook.
The ThisWorkBook object refers to the workbook that contains the code.
The ActiveWorkBook object refers to the currently active workbook. They
often return the same object, but if the workbook running the code is not the
active workbook, they return different objects. In this case, you don’t want to
risk hiding sheets in other workbooks, so you use ThisWorkBook.

In Step 3, the macro simply compares the active sheet name to the sheet that
is currently being looped.

If the sheet names are different, the macro hides the sheet in Step 4.

In Step 5, you loop back to get the next sheet. After all sheets are evaluated,
the macro ends.

Note that you use xlsheetHidden in your macro. This property applies the
default hide state you would normally get when you right‐click a sheet and
select Hide. In this default hide state, a user can right‐click any tab and
choose Unhide, which displays all hidden sheets. But another hide state is
more clandestine than the default. If you use xlSheetVeryHidden to hide your

90 Part II: Making Short Work of Workbook Tasks

sheets, users will not be able to see them at all — even if they right‐click a tab
and choose Unhide. The only way to unhide a sheet hidden in this manner is
to use VBA.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

Unhiding All Worksheets
in a Workbook

If you’ve ever had to unhide multiple sheets in Excel, you know what a pain it
is. You are forced to use the Unhide dialog box shown in Figure 5-2 to unhide
one sheet at a time.

Although that may not sound like a big deal, it gets to be a pain fast when you
have to unhide 10 or more sheets. The macro in this section makes easy work
of the task.

Figure 5-2:
Without

a macro,
you’re stuck

using the
Unhide dia

log box to
unhide one
worksheet

at a time.

91 Chapter 5: Working with Worksheets

How the macro works
This macro loops through the worksheets and changes their visible state.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 3: Loop to next worksheet
 ws.Visible = xlSheetVisible
 Next ws

End Sub

Step 1 declares an object called ws. This step creates a memory container for
each worksheet that the macro loops through.

In Step 2, the macro starts the looping, telling Excel to enumerate through all
worksheets in this workbook.

Step 3 changes the visible state to xlSheetVisible. Then it loops back to get
the next worksheet.

How to use the macro
The best place to store this macro is in your personal macro workbook. That
way, the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In the VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro using personal macro workbook as the
destination.

92 Part II: Making Short Work of Workbook Tasks

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Simply
record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Moving Worksheets Around
We’ve all had to rearrange a spreadsheet so that some sheets come before or
after other sheets. If you find that you have to do this often, the macro in this
section can help.

How the macro works
When you want to rearrange sheets, you use the Move method of either the
Sheets object or the ActiveSheet object. When using the Move method, you
specify where to move the sheet to by using the After argument, the Before
argument, or both.

Sub Macro1()

'Move the active sheet to the end
 ActiveSheet.Move After:=Worksheets(Worksheets.Count)

'Move the active sheet to the beginning
 ActiveSheet.Move Before:=Worksheets(1)

'Move Sheet 1 before Sheet 12
 Sheets("Sheet1").Move Before:=Sheets("Sheet12")

End Sub

This macro demonstrates how to move the active worksheet to three
 locations:

 ✓ Move the active sheet to the end: When you need to move a worksheet
to the end of the workbook, you essentially want to tell Excel to move
the sheet after the last sheet. But there’s no code in VBA that lets you
point to the last sheet. However, you can find the maximum count
of worksheets, and use that number as an index for the Worksheets
object. For example, you could enter Worksheets(1) to point to the
first sheet in a workbook, and enter Worksheet(3) to point to the third
sheet in the workbook. To point to the last sheet in the workbook, you

93 Chapter 5: Working with Worksheets

could replace the index number with the Worksheets.Count property.
Worksheets.Count will give you the total number of worksheets, which
will always be the same number as the index for the last sheet. Thus
Worksheet(Worksheets.Count) will point to the last sheet.

 ✓ Move the active sheet to the beginning: Moving a sheet to the begin-
ning of the workbook is simple. Use Worksheets(1) to point to the first
sheet in the workbook, and then move the active sheet before that one.

 ✓ Move Sheet 1 before Sheet X: You can also move a sheet before or after
another sheet simply by calling that other sheet out by name. In the
example demonstrated in the preceding macro, you are moving Sheet1
before Sheet12.

How to use the macro
The best place to store this kind of a macro is in your personal macro work-
book so that the macro is always available to you. The personal macro work-
book is loaded whenever you start Excel. In the VBE project window, it is
named personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
 destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Simply
record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Sorting Worksheets by Name
You may often need to sort worksheets alphabetically by name (see Figure 5-3).
You would think Excel would have a native function to do this, but alas, it does
not. If you don’t want to manually sort your spreadsheets, use this macro to do
it for you.

94 Part II: Making Short Work of Workbook Tasks

How the macro works
The macro in this section looks more complicated than it is. The macro
simply iterates through the sheets in the workbook, comparing the current
sheet to the previous one. If the name of previous sheet is greater than the
current sheet (alphabetically), the macro moves the current sheet before it.
By the time all the iterations are completed, you have a sorted workbook!

Sub Macro1()

'Step 1: Declare your variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

'Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

'Step 3: Check current sheet against previous sheet
 If UCase(Sheets(PrevSheetIndex).Name) > _
 UCase(Sheets(CurrentSheetIndex).Name) Then

'Step 4: Move if current sheet comes before previous sheet
 Sheets(CurrentSheetIndex).Move _
 Before:=Sheets(PrevSheetIndex)
 End If

'Step 5 Loop back to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

Figure 5-3:
Sort your

worksheets
in alphabeti

cal order.

95 Chapter 5: Working with Worksheets

Note that this technique performs text‐based sorting, so you may not get the
results you were expecting when working with number‐based sheet names. For
instance, Sheet10 will come before Sheet2 because textually, 1 comes before 2.
Excel can’t do number‐based sorting (in which 2 would come before 10).

Step 1 declares two integer variables. The CurrentSheetIndex variable holds
the index number for the current sheet iteration, and the PrevSheetIndex
variable holds the index number for the previous sheet iteration.

In Step 2, the macro starts iteration counts for both variables. Note that the
count for PrevSheetIndex is one number behind CurrentSheetIndex. After the
counts are set, you start looping.

In Step 3, you check to see whether the name of the previous sheet is greater
than that of the current sheet. Note the UCase function, which you use to
get both names in the same uppercase state. This function prevents sorting
errors due to different case states.

Step 4 is reached only if the previous sheet name is greater than the current
sheet name. In this step, you use the Move method to move the current sheet
before the previous sheet.

In Step 5, you go back around to the start of the loop. Every iteration of the
loop increments both variables up one number until the last worksheet is
touched. After all iterations have completed, the macro ends.

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In the VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro

96 Part II: Making Short Work of Workbook Tasks

In drop‐down box and select the Personal Macro Workbook option. Simply
record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Grouping Worksheets by Color
Many of us assign colors to our worksheet tabs. You can right‐click any tab
and select the Tab Color option (shown in Figure 5-4) to choose a color for
your tab.

This technique allows for the visual confirmation that data in one tab is
related to data in another tab because both tabs are the same color. When
you have many colored sheets, it’s often useful to group tabs with the same
color for ease of navigation.

The macro in this section groups worksheets based on their tab colors.

How the macro works
You may think it’s impossible to sort or group by color, but Excel offers a way.
Excel assigns an index number to every color. A light yellow color may have
an index number of 36, whereas a maroon color has the index number 42.

Figure 5-4:
Choose a

tab color for
the sheet.

97 Chapter 5: Working with Worksheets

This macro iterates through the sheets in the workbook, comparing the tab
color index of the current sheet to that of the previous one. If the previous
sheet has the same color index number as the current sheet, the macro
moves the current sheet before it. By the time all the iterations are com-
pleted, all sheets are grouped based on their tab color.

Sub Macro1()

'Step 1: Declare your variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

'Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

'Step 3: Check current sheet against previous sheet
 If Sheets(PrevSheetIndex).Tab.ColorIndex = _
 Sheets(CurrentSheetIndex).Tab.ColorIndex Then

'Step 4: Move if current and previous color indexes match
Sheets(PrevSheetIndex).Move _

 Before:=Sheets(CurrentSheetIndex)
 End If

'Step 5 Loop back to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

Step 1 declares two integer variables. The CurrentSheetIndex variable holds
the index number for the current sheet iteration, and the PrevSheetIndex
variable holds the index number for the previous sheet iteration.

Step 2 starts iteration counts for both variables. Note that the count for
PrevSheetIndex is one number behind CurrentSheetIndex. After the counts
are set, the macro starts looping.

In Step 3, the macro checks to see whether the color index of the previ-
ous sheet is the same as that of the current sheet. Note the use of the Tab.
ColorIndex property.

Step 4 is reached only if the color index of the previous sheet is equal to
the color index of the current sheet. In this step, the macro uses the Move
method to move the current sheet before the previous sheet.

98 Part II: Making Short Work of Workbook Tasks

In Step 5, the macro goes back to the start of the loop. Every iteration of the
loop increments both variables up one number until the last worksheet is
touched. After all of the iterations have run, the macro ends.

How to use the macro
The best place to store this macro is in your personal macro workbook so that
the macro is always available to you. The personal macro workbook is loaded
whenever you start Excel. In the VBE project window, it is named personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Simply
record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Copying a Worksheet
to a New Workbook

In Excel, you can manually copy an entire sheet to a new workbook by
right‐clicking the target sheet and selecting the Move or Copy option.
Unfortunately, if you try to record a macro while you do this, the macro
recorder fails to accurately write the code to reflect the task. When you need
to programmatically copy an entire sheet to a new workbook, the macro in
this section delivers.

How the macro works
In this macro, the active sheet is first copied. Then you use the Before
parameter to send the copy to a new workbook that is created on the fly. The
copied sheet is positioned as the first sheet in the new workbook.

99 Chapter 5: Working with Worksheets

The use of the ThisWorkbook object is important here. It ensures that the
active sheet that is being copied is from the workbook that contains the
code, not from the newly created workbook.

Sub Macro1()

'Copy sheet, and send to new workbook
 ThisWorkbook.ActiveSheet.Copy _
 Before:=Workbooks.Add.Worksheets(1)

End Sub

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

Creating a Workbook for Each Worksheet
Many Excel analysts need to parse their workbooks into separate books per
worksheet tab. In other words, they need to create a new workbook for each
worksheet in their existing workbook. You can imagine what an ordeal this
task would be if you had to do it manually. The following macro helps auto-
mate this task.

How the macro works
In this macro, you are looping through the worksheets, copying each sheet,
and then sending the copy to a new workbook that is created on the fly. The
thing to note here is that the newly created workbooks are saved in the same
directory as your original workbook, with the same filename as the copied
sheet (wb.SaveAs ThisWorkbook.Path & "\" & ws.Name).

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet
 Dim wb As Workbook

100 Part II: Making Short Work of Workbook Tasks

'Step 2: Start looping through sheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Create new workbook and save it
 Set wb = Workbooks.Add
 wb.SaveAs ThisWorkbook.Path & "\" & ws.Name

'Step 4: Copy the target sheet to the new workbook
 ws.Copy Before:=wb.Worksheets(1)
 wb.Close SaveChanges:=True

'Step 5: Loop back to the next worksheet
 Next ws

End Sub

Not all valid worksheet names translate to valid filenames.

Windows has specific rules regarding filenames. You can’t use these charac-
ters when naming a file: backslash (\), forward slash (/), colon (:), asterisk
(*), question mark (?), pipe (|), double quote (“), greater than (>) and less
than (<).

The twist is that you can use a few of these restricted characters in your
sheet names; specifically, double quote, pipe, greater than, and less than.
So, as you run this macro, naming the newly created files to match the sheet
name may cause an error. For instance, the macro will throw an error if you
try to create a new file from a sheet called May|Revenue (because of the pipe
character).

Step 1 declares two object variables. The ws variable creates a memory con-
tainer for each worksheet through which the macro loops. The wb variable
creates the container for the new workbooks you create.

In Step 2, the macro starts looping through the sheets. The use of the
ThisWorkbook object ensures that the active sheet that is being copied is
from the workbook containing the code, not from the new workbook that is
created.

In Step 3, you create the new workbook and save it. You save this new book
in the same path as the original workbook (ThisWorkbook). The filename is
set to the same name as the currently active sheet.

Step 4 copies the currently active sheet and uses the Before parameter to
send it to the new book as the first tab.

Step 5 loops back to get the next sheet. After all sheets have been evaluated,
the macro ends.

101 Chapter 5: Working with Worksheets

This macro will not work on a workbook that has not been initially saved —
that is to say, saved at least one time.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

Printing Specified Worksheets
If you want to print specific sheets manually in Excel, you need to hold down
the Ctrl key, select the sheets you want to print, and then click Print. If you
do this often enough, you may want to consider using the simple macro in
this section.

How the macro works
This macro is easy. All you have to do is pass in an array the sheets you want
printed, and then you use the PrintOut method to trigger the print job. All the
sheets you have entered are printed in one go.

Sub Macro1()

'Print certain sheets
 ActiveWorkbook.Sheets(_
 Array("Sheet1", "Sheet3", "Sheet5")).PrintOut

Copies:=1

End Sub

Want to print all worksheets in a workbook? The following macro is even
easier:

Sub Macro1()

'Print all sheets
 ActiveWorkbook.Worksheets.PrintOut Copies:=1

End Sub

102 Part II: Making Short Work of Workbook Tasks

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In the VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro using Personal Macro Workbook as the
 destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro In
drop‐down box and select the Personal Macro Workbook option t. Simply
record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Protecting All Worksheets
Before you distribute your workbook, you may want to apply sheet protec-
tion to all the sheets. However, as you can see in Figure 5-5, Excel will disable
the Protect Sheet command if you try to protect multiple sheets at one time.
You will be forced to protect one sheet at a time.

You can use the macro in this section to protect all sheets at one time.

Figure 5-5:
The Protect

Sheet
 command

is disabled
if you try

to protect
more than

one sheet at
a time.

103 Chapter 5: Working with Worksheets

How the macro works
In this macro, you loop through the worksheets and simply apply protection
with a password. The Password argument defines the password needed to
remove the protection. The Password argument is optional. If you omit it,
the sheet will still be protected; you just won’t need to enter a password to
unprotect it.

Excel passwords are case‐sensitive, so you’ll want pay attention to the exact
capitalization you are using in your macro.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 3: Protect and loop to next worksheet
 ws.Protect Password:="RED"
 Next ws

End Sub

Step 1 declares an object called ws. This step creates a memory container for
each worksheet you loop through.

Step 2 starts the looping, telling Excel that you want to enumerate through all
worksheets in this workbook.

In Step 3, the macro applies protection with the given password, and then
loops back to get the worksheet.

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In the VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

104 Part II: Making Short Work of Workbook Tasks

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro using Personal Macro Workbook as the
 destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Then
simply record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Unprotecting All Worksheets
You may find yourself constantly having to unprotect multiple worksheets
manually. However, as you can see in Figure 5-6, Excel will disable the
Unprotect Sheet command if you try to unprotect multiple sheets at one
time. You’ll be forced to unprotect one sheet at a time.

You can use the macro in this section to unprotect all sheets automatically.

How the macro works
The macro loops through the worksheets and uses the Password argument
to unprotect each sheet:

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

Figure 5-6:
The

Unprotect
Sheet com

mand is
disabled if
you try to
unprotect
more than

one sheet at
a time.

105 Chapter 5: Working with Worksheets

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets
'Step 3: Loop to next worksheet
 ws.UnProtect Password:="RED"
 Next ws

End Sub

Step 1 declares an object called ws. This step creates a memory container for
each worksheet you loop through.

Step 2 starts the looping, telling Excel to enumerate through all worksheets in
this workbook.

Step 3 unprotects the active sheet, providing the password as needed, and
then loops back to get the worksheet.

The assumption is that all worksheets that need to be unprotected have the
same password. If this not the case, you need to explicitly unprotect each
sheet with its corresponding password:

Sub Macro1()

Sheets("Sheet1").UnProtect Password:="RED"
Sheets("Sheet2").UnProtect Password:="BLUE"
Sheets("Sheet3").UnProtect Password:="YELLOW"
Sheets("Sheet4").UnProtect Password:="GREEN"

End Sub

How to use the macro
The best place to store this kind of a macro is in your personal macro work-
book so that the macro is always available to you. The personal macro work-
book is loaded whenever you start Excel. In the VBE project window, it will
be named personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using Personal Macro Workbook as the
 destination.

106 Part II: Making Short Work of Workbook Tasks

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Simply
record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Creating a Table of Contents
for Your Worksheets

With the exception of sorting worksheets, creating a table of contents for the
worksheets in a workbook is the most commonly requested Excel macro.
The reason is probably not lost on you because you often work with files that
have more worksheet tabs than can easily be seen or navigated. A table of
contents like the one in Figure 5-7 helps.

The following macro not only creates a list of worksheet names in the work-
book but also ads hyperlinks so that you can easily jump to a sheet with a
simple click.

How the macro works
It’s easy to get intimidated when looking at the macro in this section because
a lot is going on. However, if you step back and consider the few simple
actions it does, it becomes less scary. The macro

 ✓ Removes any previous Table of Contents sheet

 ✓ Creates a new Table of Contents sheet

Figure 5-7:
A table of
contents
can help

you more
easily

 navigate
your

 workbook.

107 Chapter 5: Working with Worksheets

 ✓ Grabs the name of each worksheet and pastes it to the table of contents

 ✓ Adds a hyperlink to each entry in the table of contents

That doesn’t sound so bad. Now look at the code:

Sub Macro1()

'Step 1: Declare your variables
 Dim i As Long

'Step 2: Delete previous TOC if it exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets("Table Of Contents").Delete
 Application.DisplayAlerts = True
 On Error GoTo 0

'Step 3: Add a new TOC sheet as the first sheet
 ThisWorkbook.Sheets.Add _
 Before:=ThisWorkbook.Worksheets(1)
 ActiveSheet.Name = "Table Of Contents"

'Step 4: Start the i counter
 For i = 1 To Sheets.Count

'Step 5: Select next available row
 ActiveSheet.Cells(i, 1).Select

'Step 6: Add sheet name and hyperlink
 ActiveSheet.Hyperlinks.Add _
 Anchor:=ActiveSheet.Cells(i, 1), _
 Address:="", _
 SubAddress:="'" & Sheets(i).Name & "'!A1", _
 TextToDisplay:=Sheets(i).Name

'Step 7: Loop back and increment i
 Next i

End Sub

Step 1 declares an Integer variable called i to serve as the counter as the
macro iterates through the sheets.

Note that this macro is not looping through the sheets the way previous
macros in this chapter did. In previous macros, you looped through the
Worksheets collection and selected each worksheet there. In this procedure,
you use a counter (your i variable). The main reason is because you have to
not only keep track of the sheets but also enter each sheet name on a new
row in a table of contents. The idea is that as the counter progresses through

108 Part II: Making Short Work of Workbook Tasks

the sheets, it also serves to move the cursor down in the table of contents so
each new entry goes on a new row.

Step 2 essentially attempts to delete any previous sheet called Table of
Contents. Because there may not be any Table of Contents sheet to delete,
you have to start Step 2 with the On Error Resume Next error handler. This
handler tells Excel to continue the macro if an error is encountered here.
You then delete the Table of Contents sheet using the DisplayAlerts method,
which effectively turns off Excel’s warnings so you don’t have to confirm the
deletion. Finally, you reset the error handler to trap all errors again by enter-
ing On Error GoTo 0.

In Step 3, you add a new sheet to the workbook by using the Before argument
to position the new sheet as the first sheet. You then name the sheet Table
of Contents. As mentioned, when you add a new worksheet, it automatically
becomes the active sheet. Because this new sheet has the focus throughout
the procedure, any references to ActiveSheet in this code refer to the Table
of Contents sheet.

Step 4 starts the i counter at 1 and ends it at the maximum count of all sheets
in the workbook. Again, instead of looping through the Worksheets collec-
tion like you did in previous macros, you simply use the i counter as an index
number that you can pass to the Sheets object. When the maximum number
is reached, the macro ends.

Step 5 selects the corresponding row in the Table of Contents sheet. That is
to say, if the i counter is on 1, it selects the first row in the Table of Contents
sheet. If the i counter is at 2, it selects the second row, and so on.

You select rows by using the Cells item, which provides a handy way of
selecting ranges through code. It requires only relative row and column posi-
tions as parameters. So Cells(1,1) translates to row 1, column 1 (or cell A1).
Cells(5, 3) translates to row 5, column 3 (or cell C5). The numeric parameters
in the Cells item are particularly useful when you want to loop through a
series of rows or columns by using an incrementing index number.

Step 6 uses the Hyperlinks.Add method to add the sheet name and hyperlinks
to the selected cell. This step feeds the Hyperlinks.Add method the param-
eters it needs to build out the hyperlinks.

The last step in the macro loops back to increment the i counter to the next
count. When the i counter reaches a number that equals the count of work-
sheets in the workbook, the macro ends.

109 Chapter 5: Working with Worksheets

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in the newly created module.

Zooming In and Out of a Worksheet
with Double‐Click

Some spreadsheets are huge and you’re forced to shrink the font size down
so that you can see a decent portion of the spreadsheet on the screen. If you
find that you are constantly zooming in and out of a spreadsheet, alternating
between scanning large sections of data and reading specific cells, use the
handy macro in this section, which will auto‐zoom on a double‐click.

How the macro works
With this macro in place, you can double‐click a cell in the spreadsheet to
zoom in 200 percent. Double‐click again and Excel zooms back to 100 percent.
You can change the values and complexity in the code to fit your needs.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As
Range, Cancel As Boolean)

'Check current zoom state
'Zoom to 100% if at 100
'Zoom 200% if currently at 100
 If ActiveWindow.Zoom <> 100 Then
 ActiveWindow.Zoom = 100
 Else
 ActiveWindow.Zoom = 200
 End If

End Sub

110 Part II: Making Short Work of Workbook Tasks

The side effect of double‐clicking a cell is that it goes into edit mode. You can
exit edit mode by pressing the escape key (Esc). If you find it annoying to
keep pressing Esc when triggering this macro, add the following statement to
the end of the procedure:

Application.SendKeys ("{ESC}")

This statement mimics an Esc keypress.

How to use the macro
To implement this macro, you need to copy and paste it into the Worksheet_
BeforeDoubleClick event code window. Placing the macro there allows it to
run each time you double‐click the sheet.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click the sheet from which you want to trigger the code.

4. In the Event drop‐down list, select the BeforeDoubleClick event (see
Figure 5-8).

5. Type or paste the code in the newly created module.

Highlighting the Active Row and Column
When looking at a table of numbers, it would be nice if Excel could automati-
cally highlight the row and column you’re on (as demonstrated in Figure 5-9).
This effect gives your eyes a lead line up and down the column as well as left
and right across the row.

Figure 5-8:
Enter your

code in the
Worksheet

Before
DoubleClick

event.

111 Chapter 5: Working with Worksheets

The following macro enables the effect you see in Figure 5-9 with just a
simple double‐click. When the macro is in place, Excel highlights the row and
column for the active cell, greatly improving your ability to view and edit a
large grid.

How the macro works
Take a look at how this macro works:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As
Range, Cancel As Boolean)

'Step 1: Declare your variables
 Dim strRange As String

'Step 2: Build the range string
 strRange = Target.Cells.Address & "," & _
 Target.Cells.EntireColumn.Address & "," & _
 Target.Cells.EntireRow.Address

'Step 3: Pass the range string to a range
 Range(strRange).Select

End Sub

In Step 1, you first declare an object called strRange. This step creates a
memory container you can use to build a range string.

A range string is nothing more than the address for a range. “A1” is a range
string that points to cell A1. “A1:G5” is also a range string; it points to a range
of cells encompassing cells A1 to G5. In Step 2, you’re building a range string

Figure 5-9:
The high

lighted row
and column

make it easy
to track

data hori
zontally and

 vertically.

112 Part II: Making Short Work of Workbook Tasks

that encompasses the double‐clicked cell (called Target in this macro),
the entire active row, and the entire active column. The Address property
for these three ranges is captured and pieced together into the strRange
 variable.

In Step 3, you feed the strRange variable as the address for a Range.Select
statement. This line of the code finally highlights the double‐clicked selection.

How to use the macro
To implement this macro, you need to copy and paste it into the Worksheet_
BeforeDoubleClick event code window. Placing the macro there allows it to
run each time you double‐click on the sheet.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click the sheet from which you want to trigger the code.

4. In the Event drop‐down list, select the BeforeDoubleClick event (see
Figure 5-10).

5. Type or paste the code in the newly created module.

Figure 5-10:
Enter your

code in the
Worksheet

Before
DoubleClick

event.

Part I
One‐Touch Data

Manipulation

 Check out www.dummies.com/extras/excelmacros for a nifty trick that
enables your clients to sort columns by simply double‐clicking.

Part III

http://www.dummies.com/extras/excelmacros

In this part . . .
 ✓ Go beyond basic macros and look at some advanced techniques

for navigating ranges through with VBA.

 ✓ See how macros can automate the selection and manipulation
of specific cells.

 ✓ Explore how you can use macros to clean and transform the
data in your workbooks.

 ✓ Uncover techniques that can help you automate the data
exports.

Feeling at Home on
the Range

In This Chapter
 ▶ Selecting ranges

 ▶ Navigating the cells in your worksheets

 ▶ Inserting and deleting blank rows and columns

 ▶ Limiting range movement

 ▶ Finding and selecting the first blank row or column

O
ne of the most important things you do in Excel is navigate the
 worksheet. When you work with Excel manually, you’re constantly

 navigating to appropriate ranges, finding the last row, moving to the last
column, hiding and unhiding ranges, and so on.

When you attempt to automate your work through VBA, you’ll find that
 navigating your spreadsheet remains an important part of the automation
process. In many cases, you need to dynamically navigate and manipulate
Excel ranges, just as you would manually — only through VBA code. This
chapter provides some of the most commonly used macros in terms of
 navigating and working with ranges.

Selecting and Formatting a Range
One of the basic things you need to do in VBA is to select a specific range
to do something with it. The simple macro in this section selects the range
D5:D16.

Chapter 6

116 Part III: One-Touch Data Manipulation

How the macro works
In this macro, you explicitly define the range to select by using the Range
object:

Sub Macro1()

Range("D5:D16").Select

End Sub

After the range of cells is selected, you can use any of the Range properties to
manipulate the cells. The macro has been altered so that the range is colored
yellow, converted to number formatting, and bold.

Sub Macro1()

 Range("D5:D16").Select
 Selection.NumberFormat = "#,##0"
 Selection.Font.Bold = True
 Selection.Interior.ColorIndex = 36

End Sub

You don’t have to memorize all the properties of the cell object to manipu-
late them. You can simply record a macro, do your formatting, and then look
at the code that Excel has written. After you’ve seen what the correct syntax
is, you can apply it as needed. Many Excel programmers start learning VBA
this way.

Note that I refer to Selection several times in the preceding sample code. To
write more efficient code, you can simply refer to the range, using the With‐
End With statement. This statement tells Excel that any action you perform
applies to the object to which you’ve pointed. Note that this macro doesn’t
select the range. This point is key. In a macro, you can work with a range
without selecting it first.

Sub Macro1()

 With Range("D5:D16")
 .NumberFormat = "#,##0"
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

117 Chapter 6: Feeling at Home on the Range

Another way you can select a range is by using the Cells item of the Range
object. The Cells item gives you a handy way to select ranges through code.
It requires only relative row and column positions as parameters. Cells(5,4)
translates to row 5, column 4 (or Cell D5). Cells(16, 4) translates to row 16,
column 4 (or cell D16).

If you want to select a range of cells, simply pass two items to the Range
object. This macro performs the same selection of range D5:D16:

Sub Macro1()

Range(Cells(5, 4), Cells(16, 4)).Select

End Sub

Here is the full formatting code using the Cells item. Again, note that this
macro doesn’t select the range you are altering. You can work with a range
without selecting it first.

Sub Macro1()

 With Range(Cells(5, 4), Cells(16, 4))
 .NumberFormat = "#,##0"
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use the macro
To implement this kind of a macro, you can copy and paste it into a standard
module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert➪Module.

4. Type or paste the code into the code window.

Creating and Selecting Named Ranges
One of the more useful features in Excel is the capability to name your range
(that is, to give your range a user‐friendly name, so that you can more easily
identify and refer to it via VBA).

118 Part III: One-Touch Data Manipulation

Here are the steps you would perform to create a named range manually.

1. Select the range you want to name.

2. Go to the Formulas tab in the Ribbon, and choose the Define Name
command (see Figure 6-1).

3. In the New Name dialog box, give the chosen range a user‐friendly
name, as shown in Figure 6-2.

4. Click OK.

 Your range is named.

Figure 6-1:
Click the

Define
Name

 command
to name

a chosen
range.

Figure 6-2:
Give your

range a
name.

119 Chapter 6: Feeling at Home on the Range

To confirm that your named range was created properly, you can go to the
Formula tab and select the Name Manager command. The Name Manager
dialog box appears, as shown in Figure 6-3, and you can see all applied
named ranges.

Creating a named range through VBA is much less involved. You can directly
define the Name property of the Range object:

Sub Macro1()

Range("I1:J17").Name = "MyData"

End Sub

Admittedly, you’d be hard‐pressed to find a situation where you would need
to automate the creation of named ranges. The real efficiency comes in
manipulating them through VBA.

How the macro works
In this macro, you simply pass the name of the range through the Range
object. This object allows you to select the range:

Sub Macro1()

Range("MyData").Select

End Sub

Figure 6-3:
The Name
Manager

dialog box
lists all
applied
named

ranges.

120 Part III: One-Touch Data Manipulation

As with normal ranges, you can refer to the range using the With‐End With
statement, which tells Excel that any action you perform applies to the object
to which you’ve pointed. This technique not only prevents you from having
to repeat syntax but also allows for the easy addition of actions by simply
adding them between the With and End With statements.

Sub Macro1()

 With Range("MyData")
 .NumberFormat = "#,##0"
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use the macro
To implement this kind of a macro, you can copy and paste it into a standard
module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

Enumerating through a Range of Cells
One must‐have VBA skill is the capability to enumerate (or loop) through a
range. If you do any serious macro work in Excel, you’ll soon encounter the
need to go through a range of cells one by one and perform some action.

The basic macro in this section shows you a simple way to enumerate
through a range.

How the macro works
This macro uses two Range object variables. One variable captures the scope
of data you’re working with, and the other holds each individual cell as you

121 Chapter 6: Feeling at Home on the Range

go through the range. Then you use the For Each statement to activate, or
bring into focus, each cell in the target range:

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target range
 Set MyRange = Range("D6:D17")

'Step 3: Start looping through the range
 For Each MyCell In MyRange

'Step 4: Do something with each cell

 If MyCell.Value > 3000 Then
 MyCell.Font.Bold = True
 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

The macro first declares two Range object variables. MyRange holds the
entire target range, and MyCell holds each cell in the range as the macro
 enumerates through them one by one.

In Step 2, you fill the MyRange variable with the target range. In this example,
you use Range(“D6:D17”). If your target range is a named range, you could
simply enter its name — Range(“MyNamedRange”).

In Step 3, the macro starts looping through each cell in the target range,
 activating each cell as it goes through.

After a cell is activated, you would do something with it. That “something”
depends on the task at hand. You may want to delete rows when the active
cell has a certain value, or you may want to insert a row between each active
cell. In Step 4 of this example, the macro is changing the font to Bold for any
cell that has a value greater than 3,000.

In Step 5, the macro loops back to get the next cell. After all cells in the target
range are activated, the macro ends.

122 Part III: One-Touch Data Manipulation

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

Inserting Blank Rows in a Range
Occasionally, you may need to dynamically insert rows into your data set.
Although blank rows are generally bothersome, in some situations the final
formatted version of your report requires blank rows to separate data. The
macro in this section adds blank rows into a range.

How the macro works
This macro performs a reverse loop through the chosen range by using a
counter. It starts at the last row of the range, inserting two blank rows, and
then moves to the previous row in the range. It keeps doing the same insert
for every loop, each time incrementing the counter to the previous row.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target range
 Set MyRange = Range("C6:D17")

'Step 3: Start reverse looping through the range
 For iCounter = MyRange.Rows.Count To 2 Step -1

'Step 4: Insert two blank rows
 MyRange.Rows(iCounter).EntireRow.Insert
 MyRange.Rows(iCounter).EntireRow.Insert

'Step 5: Go to the next counter number
 Next iCounter

End Sub

123 Chapter 6: Feeling at Home on the Range

First, you declare two variables. The first variable is an Object variable called
MyRange that defines the target range. The other variable is a Long Integer
variable called iCounter that serves as an incremental counter.

In Step 2, the macro fills the MyRange variable with the target range. In this
example, you use Range(“C6:D17”). If your target range is a named range, you
could simply enter its name — Range(“MyNamedRange”). The macro sets
the parameters for the incremental counter to start at the max count for the
range (MyRange.Rows.Count) and end at 2 (the second row of the chosen
range). Note that you are using the Step‐1 qualifier, so Excel knows that
you will adjust the counter backwards, moving back one increment on each
iteration. In all, Step 3 tells Excel to start at the last row of the chosen range,
moving backward until it gets to the second row of the range.

When working with a range, you can explicitly call out a specific row in the
range by passing a row index number to the Rows collection of the range.
For instance, Range(“D6:D17”).Rows(5) points to the fifth row in the range
D6:D17.

In Step 4, the macro uses the iCounter variable as an index number for the
Rows collection of MyRange. This variable helps pinpoint the exact row
that the macro is working with in the current loop. The macro then uses the
EntireRow.Insert method to insert a new blank row. Because you want two
blank rows, you apply the EntireRow.Insert method twice.

In Step 5, the macro loops back to move to the next counter number.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

Unhiding All Rows and Columns
When you’re auditing a spreadsheet that you did not create, you often want
to ensure that you’re getting a full view of the spreadsheet’s contents. To
do so, all columns and rows must not be hidden. This simple macro auto-
matically unhides all rows and columns for you.

124 Part III: One-Touch Data Manipulation

How the macro works
In this macro, you call on the Columns collection and the Rows collection
of the worksheet. Each collection has properties that dictate where their
objects are hidden or visible. Running this macro unhides every column in
the Columns collection and every row in the Rows collection.

Sub Macro1()

Columns.EntireColumn.Hidden = False
Rows.EntireRow.Hidden = False

End Sub

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
 destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro
In drop‐down box and select the Personal Macro Workbook option. Then
simply record a few cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

Deleting Blank Rows
Work with Excel long enough, and you’ll find that blank rows can often cause
havoc on many levels. They can create problems with formulas, introduce
risk when copying and pasting, and sometimes cause strange behaviors in

125 Chapter 6: Feeling at Home on the Range

pivot tables. If you find that you are manually searching out and deleting
blank rows in your data sets, the macro in this section can help automate
the task.

How the macro works
In this macro, you use the UsedRange property of the ActiveSheet object to
define the range you are working with. The UsedRange property gives you a
range that encompasses the cells that have been used to enter data. You then
establish a counter that starts at the last row of the used range and checks to
see if the entire row is empty. If the entire row is indeed empty, you remove
the row. You keep doing the same delete for every loop, each time increment-
ing the counter to the previous row.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target range
 Set MyRange = ActiveSheet.UsedRange

'Step 3: Start reverse looping through the range
 For iCounter = MyRange.Rows.Count To 1 Step -1

'Step 4: If entire row is empty delete it
 If Application.CountA(Rows(iCounter).EntireRow) = 0

Then
 Rows(iCounter).Delete
 End If

'Step 5: Move to the next counter number
 Next iCounter

End Sub

The macro first declares two variables. The first variable is an Object
 variable called MyRange, which defines the target range. The other variable
is a Long Integer variable called iCounter, which serves as an incremental
counter.

In Step 2, the macro fills the MyRange variable with the UsedRange property
of the ActiveSheet object. The UsedRange property gives you a range that
encompasses the cells that have been used to enter data. Note that if you
wanted to specify an actual range or a named range, you could simply enter
its name — Range(“MyNamedRange”).

126 Part III: One-Touch Data Manipulation

In this step, the macro sets the parameters for the incremental counter to
start at the max count for the range (MyRange.Rows.Count) and end at 1
(the first row of the chosen range). Note that you use the Step‐1 qualifier, so
Excel knows you are going to adjust the counter backwards, moving back one
increment on each iteration. In all, Step 3 tells Excel to start at the last row
of the chosen range and move backward until it gets to the first row of the
range.

When working with a range, you can explicitly call out a specific row in the
range by passing a row index number to the Rows collection of the range.
For instance, Range(“D6:D17”).Rows(5) points to the fifth row in the range
D6:D17.

In Step 4, the macro uses the iCounter variable as an index number for the
Rows collection of MyRange. This variable helps pinpoint the row you are
working with in the current loop. The macro checks to see whether the cells
in that row are empty. If they are, the macro deletes the entire row.

In Step 5, the macro loops back to move to the next counter number.

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
 destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro In
drop‐down box and select the Personal Macro Workbook option. Next, record
a few cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

127 Chapter 6: Feeling at Home on the Range

Deleting Blank Columns
Just as with blank rows, blank columns have the potential of causing
 unforeseen errors. If you find that you are manually searching for and
 deleting blank columns in your data sets, use the macro in this section to
automate that task.

How the macro works
In this macro, you use the UsedRange property of the ActiveSheet object to
define the range you are working with. The UsedRange property gives you a
range that encompasses the cells that have been used to enter data. You then
establish a counter that starts at the last column of the used range, check-
ing to see if the entire column is empty. If the entire column is indeed empty,
you remove the column. You keep doing the same delete for every loop, each
time incrementing the counter to the previous column.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target range
 Set MyRange = ActiveSheet.UsedRange

'Step 3: Start reverse looping through the range
 For iCounter = MyRange.Columns.Count To 1 Step -1

'Step 4: If entire column is empty delete it
 If

Application.CountA(Columns(iCounter).
EntireColumn) = 0 Then

 Columns(iCounter).Delete
 End If

'Step 5: Move to the next counter number
 Next iCounter

End Sub

You first declare two variables. The first variable is an Object variable called
MyRange, which defines the target range. The other variable is a Long Integer
variable called iCounter, which serves as your incremental counter.

In Step 2, you fill the MyRange variable with the UsedRange property of
the ActiveSheet object. The UsedRange property gives you a range that

128 Part III: One-Touch Data Manipulation

 encompasses the cells that have been used to enter data. Note that if you
wanted to specify an actual range or a named range, you could simply enter
its name — Range(“MyNamedRange”).

In this step, you set the parameters for your incremental counter to start
at the max count for the range (MyRange.Columns.Count) and end at 1 (the
first row of the chosen range). Note that you are using the Step‐1 qualifier,
so Excel knows that you will increment the counter backwards, moving back
one increment on each iteration. In all, Step 3 tells Excel that you want to
start at the last column of the chosen range and move backward until you get
to the first column of the range.

When working with a range, you can explicitly call out a specific column in
the range by passing a column index number to the Columns collection of
the range. For instance, Range(“A1:D17”).Columns(2) points to the second
column in the range (column B).

In Step 4, the macro uses the iCounter variable as an index number for the
Columns collection of MyRange. This variable helps pinpoint the column you
are working with in the current loop. The macro checks to see whether all
the cells in that column are empty. If they are, the macro deletes the entire
column.

In Step 5, the macro loops back to increment the counter down.

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available to you. The personal macro workbook
is loaded whenever you start Excel. In VBE project window, it is named
 personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro In

129 Chapter 6: Feeling at Home on the Range

drop‐down box and select Personal Macro Workbook. Simply record a few
cell clicks and then stop recording. You can discard the recorded macro and
replace it with this one.

Limiting Range Movement to
a Particular Area

Excel gives you the ability to limit the range of cells that a user can scroll
through. The macro demonstrated in this section is one you can easily
 implement today.

How the macro works
Excel’s ScrollArea property allows you to set the scroll area for a particu-
lar worksheet. For instance, the following statement sets the scroll area on
Sheet1 so the user cannot activate any cells outside A1:M17:

Sheets("Sheet1").ScrollArea = "A1:M17"

Because this setting is not saved with a workbook, you’ll have to reset it each
time the workbook is opened. You can accomplish this task by implementing
the following statement in the Workbook_Open event:

Private Sub Worksheet_Open()

Sheets("Sheet1").ScrollArea = "A1:M17"

End Sub

If for some reason you need to clear the scroll area limits, you can remove
the restriction with this statement:

ActiveSheet.ScrollArea = ""

How to use the macro
To implement this macro, you will need to copy and paste it into the
Workbook_Open event code window. By placing the macro here, you allow it
to run each time the workbook opens.

130 Part III: One-Touch Data Manipulation

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down box, select the Open event (see Figure 6-4).

5. Type or paste the code.

Selecting and Formatting All
Formulas in a Workbook

When auditing an Excel workbook, it’s paramount to have a firm grasp of all
the formulas in each sheet. This means finding all the formulas, which can be
an arduous task if performed manually.

However, Excel provides a slick way of finding and tagging all formulas in a
worksheet. The macro in this section exploits this functionality to dynami-
cally find all cells that contain formulas.

How the macro works
Excel has a set of predefined special cells that you can select by using the Go
to Special dialog box. To select special cells manually, go to the Home tab on
the Ribbon and select Go to Special. The Go to Special dialog box appears, as
shown in Figure 6-5.

Figure 6-4:
Enter your

code in the
Workbook

Open event.

131 Chapter 6: Feeling at Home on the Range

In this dialog box, you can select a set of cells based on a few defining attri-
butes, including formulas. Selecting the Formulas option effectively selects all
cells that contain formulas (see Figure 6-6). At this point, you can color the
cells to indicate they contain a formula.

The macro programmatically does the same thing for the entire workbook
at the same time. Here, you use the SpecialCells method of the Cells collec-
tion. The SpecialCells method requires a type parameter that represents the
type of special cell. In this case, you’re using xlCellTypeFormulas.

In short, you refer to a special range that consists only of cells that contain a
formula. You refer to this special range using the With‐End With statement,
which tells Excel that any action you perform applies only to the range to
which you’ve pointed. Here, you’re coloring the interior of the cells in the
chosen range.

Figure 6-5:
The Go to

Special
 dialog box.

Figure 6-6:
Choose

Formulas
to tell Excel

to select
all cells

containing a
formula.

132 Part III: One-Touch Data Manipulation

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Avoid error if no formulas are found
 On Error Resume Next

'Step 3: Start looping through worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 4: Select cells and highlight them
 With ws.Cells.SpecialCells(xlCellTypeFormulas)
 .Interior.ColorIndex = 36
 End With

'Step 5: Get next worksheet
 Next ws

End Sub

Step 1 declares an object called ws. This step creates a memory container for
each worksheet the macro loops through.

If no formulas are in the spreadsheet, Excel will throw an error. In Step 2 you
tell Excel to continue with the macro if an error is triggered.

Step 3 begins the looping, telling Excel to evaluate all worksheets in the
active workbook.

In Step 4, the macro selects all cells containing formulas and then formats
them.

In Step 5, you loop back to get the next sheet. After all sheets are evaluated,
the macro ends.

How to use the macro
The best place to store this macro is in your personal macro workbook so
that the macro is always available. The personal macro workbook is loaded
whenever you start Excel. In VBE project window, it’s named personal.xlsb.

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click personal.xlb in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

133 Chapter 6: Feeling at Home on the Range

If you don’t see personal.xlb in your project window, the file doesn’t exist
yet. You’ll have to record a macro, using personal macro workbook as the
destination.

To record the macro in your personal macro workbook, display the Record
Macro dialog box before you start recording. Then click the Store Macro In
drop‐down box and select Personal Macro Workbook. Then record a few cell
clicks and then stop recording. You can discard the recorded macro and
replace it with this one.

Finding and Selecting the First
Blank Row or Column

You may often run across scenarios where you have to append rows or
 columns to an existing data set. When you want to append rows, you’ll need
to be able to find the last used row and then move down to the next empty
cell (as shown in Figure 6-7). Likewise, when you want to append columns,
you need to be able to find the last used column and then move over to the
next empty cell.

The macros in this section allow you to dynamically find and select the first
blank row or column.

How the macro works
These macros both use the Cells item and the Offset property as key
 navigation tools.

Figure 6-7:
Use a

macro to
 dynamically
find the first

available
cell in a row
or a column.

134 Part III: One-Touch Data Manipulation

The Cells item belongs to the Range object and provides a handy way to
select ranges through code. It requires only relative row and column posi-
tions as parameters. Cells(5,4) translates to row 5, column 4 (or Cell D5).
Cells(16, 4) translates to row 16, column 4 (or cell D16).

In addition to passing hard numbers to the Cells item, you can also pass
expressions.

Cells(Rows.Count, 1) is the same as selecting the last row in the spreadsheet
and the first column in the spreadsheet. In Excel, that essentially translates
to cell A1048576.

Cells(1, Columns.Count) is the same as selecting the first row in the spread-
sheet and the last column in the spreadsheet. In Excel, that translates to cell
XFD1.

Combining the Cells statement with the End property enables Excel to jump
to the last used row or column. This statement is equivalent to going to cell
A1048576 and pressing Ctrl+Shift+up arrow on the keyboard. When you run
this line of code, Excel automatically jumps to the last used row in column A:

Cells(Rows.Count, 1).End(xlUp).Select

Running this statement is equivalent to going to cell XFD1 and pressing
Ctrl+Shift+left arrow on the keyboard. This line of code gets you to the last
used column in row 1:

Cells(1, Columns.Count).End(xlToLeft).Select

When you get to the last used row or column, you can use the Offset property
to move down or over to the next blank row or column. The Offset property
uses a row and column index to specify a changing base point.

For example, the following statement selects cell A2 because the row index in
the offset is moving the row base point by 1:

Range("A1").Offset(1, 0).Select

This statement selects cell C4 because the row and column indexes move the
base point by three rows and two columns:

Range("A1").Offset(3, 2).Select

Pulling all these concepts together, you can create a macro that selects the
first blank row or column.

135 Chapter 6: Feeling at Home on the Range

This macro selects the first blank row:

Sub Macro1()

'Step 1: Declare your variables
 Dim LastRow As Long

'Step 2: Capture the last-used row number
 LastRow = Cells(Rows.Count, 1).End(xlUp).Row

'Step 3: Select the next row down
 Cells(LastRow, 1).Offset(1, 0).Select
End Sub

First, you declare a Long Integer variable called LastRow to hold the row
number of the last used row.

In Step 2, you capture the last used row by starting at the last row in the
worksheet and using the End property to jump up to the first nonempty cell
(the equivalent of going to cell A1048576 and pressing Ctrl+Shift+up arrow).

In Step 3, you use the Offset property to move down one row and select the
first blank cell in column A.

This macro selects the first blank column:

Sub Macro1()

'Step 1: Declare your variables
 Dim LastColumn As Long

'Step 2: Capture the last-used column number
 LastColumn = Cells(5,

Columns.Count).End(xlToLeft).Column

'Step 3: Select the next column over
 Cells(5, LastColumn).Offset(0, 1).Select

End Sub

First, you declare a Long Integer variable called LastColumn to hold the
column number of the last used column.

In Step 2, you capture the last used column by starting at the last column in
the worksheet and using the End property to jump up to the first nonempty
column (the equivalent of going to cell XFD5 and pressing Ctrl+Shift+left
arrow).

136 Part III: One-Touch Data Manipulation

In Step 3, you use the Offset property to move over one column and select
the first blank column in row 5.

How to use the macro
You can implement these macros by pasting them into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert➪Module.

4. Type or paste the code.

www.allitebooks.com

http://www.allitebooks.org

Manipulating Data with Macros
In This Chapter

 ▶ Converting values in a range

 ▶ Trimming and truncating text

 ▶ Replacing blanks cells with values

 ▶ Adding text to existing values

 ▶ Handling duplicates in a range

 ▶ Working with AutoFilter drop‐downs

W
hen working with information in Excel, you often have to transform
the data, cleaning, standardizing, or shaping it in ways that are appro-

priate for your work. Transforming data can mean anything from cleaning
out extra spaces to padding numbers with zeros to filtering data for certain
criteria.

This chapter shows you some of the more useful macros you can use to
dynamically transform the data in your workbooks. If you like, you can com-
bine these macros into one, running each piece of code in a sequence that
essentially automates the scrubbing and shaping of your data.

Copying and Pasting a Range
One of the basic data manipulation skills you’ll need to learn is copying and
pasting a range of data. Doing this manually is fairly easy. Luckily, it’s just as
easy to copy and paste by using VBA.

Chapter 7

138 Part III: One-Touch Data Manipulation

How the macro works
In this macro, you use the Copy method of the Range object to copy data
from D6:D17 and paste to L6:L17. Note the use of the Destination argument,
which tells Excel where to paste the data:

Sub Macro1()

Sheets("Sheet1").Range("D6:D17").Copy _
Destination:=Sheets("Sheet1").Range("L6:L17")

End Sub

When working with your spreadsheet, you likely often have to copy formulas
and paste them as values. To do this in a macro, you can use the PasteSpecial
method. In this example, you copy the formulas F6:F17 to M6:M17. Note that
you’re not only pasting as values by using xlPasteValues but also applying
the formatting from the copied range by using xlPasteFormats.

Sub Macro1()

Sheets("Sheet1").Range("F6:F17").Copy
Sheets("Sheet1").Range("M6:M17").PasteSpecial

xlPasteValues
Sheets("Sheet1").Range("M6:M17").PasteSpecial

xlPasteFormats

End Sub

Keep in mind that the ranges and sheet names specified here are for demon-
stration. Alter them to suit the data in your worksheet.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

139 Chapter 7: Manipulating Data with Macros

Converting All Formulas
in a Range to Values

Sometimes, you may want to apply formulas in a certain workbook, but you
don’t necessarily want to keep or distribute the formulas with your work-
book. In these situations, you may want to convert all the formulas in a given
range to values.

How the macro works
In this macro, you essentially use two Range object variables. One of the vari-
ables captures the scope of data you are working with, whereas the other is
used to hold each individual cell as you go through the range. Then you use
the For Each statement to activate or bring each cell in the target range into
focus. Every time a cell is activated, you check to see whether the cell contains
a formula. If it does, you replace the formula with the value shown in the cell.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook
 before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: If cell has formula, set to the value shown
 If MyCell.HasFormula Then
 MyCell.Formula = MyCell.Value
 End If

140 Part III: One-Touch Data Manipulation

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. MyRange holds the entire target
range, and MyCell holds each cell in the range as you enumerate through
them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because you’re changing data, you need the option
of saving the workbook before running the macro. Step 2 performs this task.
You call up a message box that asks if you want to save the workbook first.
You have three choices: Yes, No, and Cancel. Clicking Yes saves the workbook
and continues with the macro. Clicking Cancel exits the procedure without
running the macro. Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example,
you use the selected range — the range that was selected on the spread-
sheet. You can easily set the MyRange variable to a specific range, such as
Range(“A1:Z100”). Also, if your target range is a named range, you could
simply enter its name: Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell as it goes through.

After a cell is activated, the macro uses the HasFormula property in Step 5 to
check whether the cell contains a formula. If it does, you set the cell to equal
the value shown in the cell. This effectively replaces the formula with a hard‐
coded value.

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

141 Chapter 7: Manipulating Data with Macros

Performing the Text to Columns
Command on All Columns

When you import data from other sources, you may wind up with cells
where the number values are formatted as text. You typically recognize this
problem because no matter what you do, you can’t format the numbers in
these cells to numeric, currency, or percentage formats. You may also see a
smart tag on the cells that tells you the cell is formatted as text, as shown in
Figure 7-1.

It’s easy enough to fix this manually by clicking the Text to Columns com-
mand on the Data tab (see Figure 7-2). The Text to Columns Wizard dialog
box appears, as shown in Figure 7-3. You don’t need to go through all the
steps in this wizard; simply click the Finish button to apply the fix.

Although the Text to Columns fix is simple, Excel doesn’t let you perform this
action on multiple columns. You have to apply the fix one column at a time,
which is a nuisance when you have this issue in many columns.

This section provides a simple macro that can help save your sanity.

Figure 7-2:
Click the

Text to
Columns

command.

Figure 7-1:
Sometimes

imported
numbers are
formatted as

text.

142 Part III: One-Touch Data Manipulation

How the macro works
In this macro, you use two Range object variables to go through your target
range, leveraging the For Each statement to activate each cell in the target
range. Every time a cell is activated, you simply reset the value of the cell.
This macro in effect does the same thing as the Text to Columns command.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

Figure 7-3:
Click

Finish to fix
 incorrectly
formatted
numbers.

143 Chapter 7: Manipulating Data with Macros

'Step 5: Reset the cell value
 If Not IsEmpty(MyCell) Then
 MyCell.Value = MyCell.Value
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. The MyRange variable holds the
entire target range, and the MyCell variable holds each cell in the range as
the macro enumerates through them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because the macro is changing data, you need the
option of saving the workbook before running the macro. Step 2 performs
this task. Here, you display a message box that asks if you want to save the
workbook first. You have three choices: Yes, No, and Cancel. Clicking Yes
saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without
saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell as you go through.

After a cell is activated, the macro uses the IsEmpty function to make sure
the cell is not empty. You do this to improve performance a little by skipping
the cell if it’s empty. You then simply reset the cell to its own value. This step
removes any formatting mismatch.

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

144 Part III: One-Touch Data Manipulation

3. Choose Insert ➪ Module.

4. Type or paste the code.

Converting Trailing Minus Signs
Legacy and mainframe systems are notorious for outputting trailing minus
signs. In other words, instead of a number like −142, some systems output
142−. This obviously wreaks havoc on your spreadsheet — especially if you
need to perform mathematic operations on the data. The nifty macro in this
section goes through a target range and fixes all negative minus signs so that
they show up in front of the number instead of at the end.

How the macro works
In this macro, you use two Range object variables to go through your target
range, leveraging the For Each statement to activate each cell in the target
range. Every time a cell is activated, you convert the value of the cell into a
Double numeric data type by using the CDbl function. The Double data type
forces any negative signs to appear at the front of the number.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

145 Chapter 7: Manipulating Data with Macros

'Step 5: Convert the value to a Double
 If IsNumeric(MyCell) Then
 MyCell = CDbl(MyCell)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. The MyRange variable holds the
entire target range, and the MyCell variable holds each cell in the range as
you enumerate through them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because you’re changing data, you need the option
of saving the workbook before running the macro. Step 2 performs this task
by displaying a message box that asks if you want to save the workbook
first. You have three choices: Yes, No, and Cancel. Clicking Yes saves the
workbook and continues with the macro. Clicking Cancel exits the procedure
without running the macro. Clicking No runs the macro without saving the
workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name —
Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell as it goes through.

After a cell is activated, Step 5 uses the IsNumeric function to check to see
whether the value can be evaluated as a number. This step ensures that you
don’t affect textual fields. You then pass the cell’s value through the CDbl
function, which converts the value to the Double numeric data type, forcing
the minus sign to the front.

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

Because you define the target range as the current selection, you want to
be sure to select the area where your data exists before running this code.
You don’t want to select the entire worksheet because every empty cell in
the spreadsheet would be filled with a zero. To ensure that you don’t have
this problem, explicitly define the target range, such as Set MyRange =
Range(“A1:Z100”).

146 Part III: One-Touch Data Manipulation

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Trimming Spaces from All
Cells in a Range

A frequent problem when you import dates from other sources is leading
or trailing spaces. That is, the imported values have spaces at the begin-
ning or end of the cell. These extra spaces make it difficult to do things like
VLOOKUP or sorting. Here is a macro that makes it easy to search for and
remove extra spaces in your cells.

How the macro works
In this macro, you enumerate through a target range, passing each cell in that
range through the Trim function:

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

147 Chapter 7: Manipulating Data with Macros

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: Trim spaces
 If Not IsEmpty(MyCell) Then
 MyCell = Trim(MyCell)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. The MyRange variable holds the
entire target range, and the MyCell variable holds each cell in the range as
the macro enumerates through them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because you’re changing data, you need the option
of saving the workbook before running the macro. Step 2 performs this task
by displaying a message box that asks if you want to save the workbook first.
Your three choices are Yes, No, and Cancel. Clicking Yes saves the workbook
and continues with the macro. Clicking Cancel exits the procedure without
running the macro. Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name —
Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell as you go through.

After a cell is activated, the macro uses the IsEmpty function to make sure
that the cell is not empty. This function improves performance a bit by skip-
ping the cell if it’s empty. You then pass the value of that cell to the Trim
function, which is a native Excel function that removes leading and trailing
spaces.

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

148 Part III: One-Touch Data Manipulation

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Truncating Zip Codes to
the Left Five Digits

U.S. zip codes come in either 5 or 10 digits. Some systems output a 10‐digit
zip code, which is too many for a lot of Excel analysis. A common data stan-
dardization task is to truncate zip codes to the left five digits. Many of us use
formulas to do this, but if you’re constantly cleaning up your zip codes, you
might want to use the macro outlined in this section to automate the task.

It’s important to note that although this macro solves a specific problem,
the concept of truncating data remains useful for many other types of data
cleanup activities.

How the macro works
This macro uses the Left function to extract the left five characters of each
zip code in the given range:

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

149 Chapter 7: Manipulating Data with Macros

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: Extract the left 5 characters
 If Not IsEmpty(MyCell) Then
 MyCell = Left(MyCell, 5)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. MyRange holds the entire target
range, and MyCell holds each cell in the range as the macro enumerates
through them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because you’re changing data, you need the option
of saving the workbook before running the macro. Step 2 performs this task
by displaying a message box that asks if you want to save the workbook first.
Your three choices are Yes, No, and Cancel. Clicking Yes saves the workbook
and continues with the macro. Clicking Cancel exits the procedure without
running the macro. Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each cell.

After a cell is activated, Step 5 uses the IsEmpty function to make sure that
the cell is not empty. This function improves performance a bit by skipping
the cell if it’s empty. You then pass the cell’s value through Left function,

150 Part III: One-Touch Data Manipulation

which allows you to extract out the nth leftmost characters in a string. In this
scenario, you need the left five characters to truncate the zip code to five
digits.

Step 6 loops back to get the next cell. After all the cells in the target range are
activated, the macro ends.

As you may have guessed, you can also use the Right function to extract out
the nth right‐most characters in a string. As an example, it’s not uncommon
to work with product numbers where the first few characters hold a particu-
lar attribute or meaning, whereas the last few characters point to the actual
product (as in 100‐4567). You can extract out the actual product by using
Right(Product_Number, 4).

Because you define the target range as the current selection, be sure to select
the area where your data exists before running this code. In other words, you
wouldn’t want to select cells that don’t conform to the logic you placed in
this macro. Otherwise, every cell you select is truncated, whether you mean
it to be or not. Of course, you can ensure this is never a problem by explicitly
defining the target range, such as Set MyRange = Range(“A1:Z100”).

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11 on your keyboard.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Padding Cells with Zeros
Many systems require unique identifiers (such as customer number, order
number, or product number) to have a fixed character length. For instance,
you frequently see customer numbers that look like this: 00000045478. This
concept of taking a unique identifier and forcing it to have a fixed length is
typically referred to as padding. The number is padded with zeros to achieve
the prerequisite character length.

It’s a pain to do this manually in Excel. However, with a macro, padding num-
bers with zeros is a breeze.

151 Chapter 7: Manipulating Data with Macros

Some Excel gurus will be quick to point out that you can apply a custom
number format to pad numbers with zeros by going to the Format Cells
dialog box, selecting Custom on the Number tab, and entering “0000000000”
as the custom format.

The problem with this solution is that the padding you get is cosmetic only.
A quick glance at the formula bar will reveal that the data actually remains
numeric without the padding (it does not become textual). So if you copy
and paste the data into another platform or non‐Excel table, you will lose the
cosmetic padding.

How the macro works
Say that all your customer numbers need to be 10 characters long. So for
each customer number, you need to pad the number with enough zeros to
get it to 10 characters. This macro does just that.

As you review this macro, keep in mind that you need to change the padding
logic in Step 5 to match your situation.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: Pad with 10 zeros then take the right 10
 If Not IsEmpty(MyCell) Then

152 Part III: One-Touch Data Manipulation

 MyCell.NumberFormat = "@"
 MyCell = "0000000000" & MyCell
 MyCell = Right(MyCell, 10)

 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range
as the macro enumerates through them one by one.

When you run a macro, it destroys the undo stack, meaning that you can’t
undo the changes a macro makes. Because you are actually changing data,
you need to give yourself the option of saving the workbook before running
the macro. This is what Step 2 does. Here, you call up a message box that
asks if you want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with
the macro. Clicking Cancel exits the procedure without running the macro.
Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example,
you use the selected range — the range that was selected on the spread-
sheet. You can easily set the MyRange variable to a specific range such as
Range(“A1:Z100”). Also, if your target range is a named range, you could
simply enter its name: Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each cell.

After a cell is activated, Step 5 uses the IsEmpty function to make sure the
cell is not empty. You do this to save a little on performance by skipping the
cell if there is nothing in it.

The macro then ensures that the cell is formatted as text. This because a cell
formatted as a number cannot have leading zeros — Excel would automati-
cally remove them. On the next line, you use the NumberFormat property to
specify that the format is @. This symbol indicates text formatting.

Next, the macro concatenates the cell value with 10 zeros. You do this simply
by explicitly entering 10 zeros in the code, and then using the ampersand (&)
to combine them with the cell value.

Finally, Step 5 uses the Right function to extract out the 10 right‐most char-
acters. This effectively gives us the cell value, padded with enough zeros to
make 10 characters.

153 Chapter 7: Manipulating Data with Macros

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11 on your keyboard.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Replacing Blanks Cells with a Value
In some analyses, blank cells can cause of all kinds of trouble. They can cause
sorting issues, they can prevent proper auto filling, they can cause your pivot
tables to apply the Count function instead of the Sum function, and so on.

Blanks aren’t always bad, but if they are causing you trouble, this is a macro
you can use to quickly replace the blanks in a given range with a value that
indicates a blank cell.

How the macro works
This macro enumerates through the cells in the given range, and then uses
the Len function to check the length of the value in the active cell. Blank cells
have a character length of 0. If the length is indeed 0, the macro enters a 0 in
the cell, effectively replacing the blanks.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

154 Part III: One-Touch Data Manipulation

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: Ensure the cell has text formatting
 If Len(MyCell.Value) = 0 Then
 MyCell = 0
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

You first declare two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range
as the macro enumerates through them one by one.

When you run a macro, it destroys the undo stack. This means you can’t
undo the changes a macro makes. Because you are actually changing data,
you need to give yourself the option of saving the workbook before running
the macro. This is what Step 2 does. Here, you call up a message box that
asks if you want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with
the macro. Clicking Cancel exits the procedure without running the macro.
Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
are using the selected range — the range that was selected on the spread-
sheet. You can easily set the MyRange variable to a specific range such as
Range(“A1:Z100”). Also, if your target range is a named range, you could
simply enter its name: Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell.

After a cell is activated, you use the IsEmpty function to make sure the cell
is not empty. You do this to save a little on performance by skipping the cell

155 Chapter 7: Manipulating Data with Macros

if it’s empty. You then use the Len function, which is a standard Excel func-
tion that returns a number corresponding to the length of the string being
evaluated. If the cell is blank, the length with be 0, at which point, the macro
replaces the blank with a 0. You could obviously replace the blank with any
value you’d like (N/A, TBD, No Data, and so on).

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

Because you define the target range as the current selection, you want to
be sure to select the area where your data exists before running this code.
That is to say, you wouldn’t want to select the entire worksheet. Otherwise,
every empty cell in the spreadsheet would be filled with a zero. You can
ensure that this is never a problem by explicitly defining a range, such as Set
MyRange = Range(“A1:Z100”).

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11 on your keyboard.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Adding Text to the Left
or Right of Your Cells

Every so often, you come upon a situation where you need to attach data
to the beginning or end of the cells in a range. For instance, you may need
to add an area code to a set of phone numbers. The macro in this section
demonstrates how you can automate data standardization tasks that require
adding data to values.

How the macro works
This macro uses two Range object variables to go through the target range,
leveraging the For Each statement to activate each cell in the target range.

156 Part III: One-Touch Data Manipulation

Every time a cell is activated, the macro attaches an area code to the begin-
ning of the cell value.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target range
 Set MyRange = Selection

'Step 4: Start looping through the range
 For Each MyCell In MyRange

'Step 5: Ensure the cell has text formatting
 If Not IsEmpty(MyCell) Then
 MyCell = "(972) " & MyCell
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. MyRange holds the entire target
range, and MyCell holds each cell in the range as you enumerate through
them one by one.

When you run a macro, it destroys the undo stack, so you can’t undo the
changes a macro makes. Because you’re changing data, you need the option
of saving the workbook before running the macro. Step 2 displays a message
box that asks if you want to save the workbook first. Your three choices are
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with

157 Chapter 7: Manipulating Data with Macros

the macro. Clicking Cancel exits the procedure without running the macro.
Clicking No runs the macro without saving the workbook.

Step 3 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

Step 4 starts looping through each cell in the target range, activating each
cell as you go through.

After a cell is activated, you use the ampersand (&) to combine an area code
with the cell value. If you need to add text to the end of the cell value, you
would simply place the ampersand and the text at the end. For instance,
MyCell = MyCell & “Added Text”.

Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Cleaning Up Nonprinting Characters
Sometimes your data has nonprinting characters, such as line feeds, carriage
returns, and nonbreaking spaces. These characters often need to be removed
before you can use the data for serious analysis.

Now, anyone who has worked with Excel for more than a month knows about
the Find and Replace functionality. You may have even recorded a macro
while performing a Find and Replace (a recorded macro is an excellent way
to automate find‐and‐replace procedures). If so, your initial reaction may be
to simply find and replace these characters. The problem is that nonprinting

158 Part III: One-Touch Data Manipulation

characters are for the most part invisible and thus difficult to clean up with
normal Find and Replace routines. The easiest way to clean them up is
through VBA.

If you find yourself struggling with those pesky invisible characters, use the
general‐purpose macro in this section to find and remove all nonprinting
characters.

How the macro works
This macro is a relatively simple Find and Replace routine. You use the
Replace method, telling Excel what to find and what to replace it with. The
syntax is similar to what you would see when recording a macro while
manually performing a Find and Replace. The difference is that instead of
hard‐coding the text to find, the macro uses character codes to specify your
search text.

Every character has an underlying ASCII code, similar to a serial number. For
instance, the lowercase letter a has an ASCII code of 97. The lowercase letter
c has an ASCII code of 99. Likewise, invisible characters also have a code:

 ✓ The line‐feed character code is 10.

 ✓ The carriage‐return character code is 13.

 ✓ The nonbreaking‐space character code is 160.

This macro utilizes the Replace method, passing each character’s ASCII code
as the search item. Each character code is then replaced with an empty
string:

Sub Macro1()

'Step 1: Remove line feeds
 ActiveSheet.UsedRange.Replace What:=Chr(10), _
 Replacement:=""

'Step 2: Remove carriage returns
 ActiveSheet.UsedRange.Replace What:=Chr(13), _
 Replacement:=""

'Step 3: Remove nonbreaking spaces
 ActiveSheet.UsedRange.Replace What:=Chr(160), _
 Replacement:=""

End Sub

159 Chapter 7: Manipulating Data with Macros

Step 1 looks for and removes the line‐feed character, whose ASCII code is 10.
You can identify the code 10 character by passing it through the Chr func-
tion. After Chr(10) is identified as the search item, this step passes an empty
string to the Replacement argument.

Note the use of ActiveSheet.UsedRange, which essentially tells Excel to look
in all the cells containing data. You can replace the UsedRange object with an
actual range if needed.

Step 2 finds and removes the carriage‐return character.

Step 3 finds and removes the nonbreaking‐space character.

The characters covered in this macro are the most common nonprinting
characters. If you work with others, simply add a new line of code, specifying
the appropriate character code. You can enter “ASCII Code Listing” in any
search engine to see a list the codes for various characters.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Highlighting Duplicates
in a Range of Data

Ever wanted to expose the duplicate values in a range? The macro in this sec-
tion does just that. You can manually find and highlight duplicates in many
ways: using formulas, conditional formatting, sorting, and so on. However, all
these manual methods require setup and some level of maintenance as the
data changes.

This macro simplifies the task, allowing you to find and highlight duplicates
in your data with a click of the mouse, as shown in Figure 7-4.

160 Part III: One-Touch Data Manipulation

How the macro works
The macro enumerates through the cells in the target range, leveraging the
For Each statement to activate each cell one at a time. You then use the
CountIf function to count the number of times the value in the active cell
occurs in the range selected. If that number is greater than 1, you format the
cell yellow.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target range
 Set MyRange = Selection

'Step 3: Start looping through the range
 For Each MyCell In MyRange

'Step 4: Ensure the cell has text formatting
 If WorksheetFunction.CountIf(MyRange, MyCell.Value) > 1

Then
 MyCell.Interior.ColorIndex = 36
 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

Figure 7-4:
Dynamically

find and
highlight

duplicate
values in

a selected
range.

161 Chapter 7: Manipulating Data with Macros

Step 1 declares two Range object variables. MyRange holds the entire target
range, and MyCell holds each cell in the range as the macro enumerates
through them one by one.

Step 2 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

Step 3 starts looping through each cell in the target range, activating each cell.

The WorksheetFunction object provides a way to run many Excel spread-
sheet functions in VBA. Step 4 uses the WorksheetFunction object to run
a CountIf function in VBA. In this case, you count the number of times the
active cell value (MyCell.Value) is found in the given range (MyRange). If the
CountIf expression evaluates to greater than 1, the macro changes the inte-
rior color of the cell.

Step 5 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Hiding All Rows Except Rows
Containing Duplicate Data

With the preceding macro, you can quickly find and highlight duplicates in
your data. This technique in itself can be quite useful. But if you have many
records in your range, you may want to take the extra step of hiding all
 nonduplicate rows.

162 Part III: One-Touch Data Manipulation

Look at the example in Figure 7-5. You can easily see which rows have dupli-
cate values because they are the only rows displayed.

How the macro works
The macro enumerates through the cells in the target range, leveraging the
For Each statement to activate each cell one at a time. You then use the
CountIf function to count the number of times the value in the active cell
occurs in the range selected. If that number is 1, you hide the row in which
the active cell resides. If that number is greater than 1, you format the cell
yellow and leave the row visible.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target range
 Set MyRange = Selection

'Step 3: Start looping through the range
 For Each MyCell In MyRange

'Step 4: Ensure the cell has text formatting
 If Not IsEmpty(MyCell) Then

 If WorksheetFunction.CountIf(MyRange, MyCell) > 1 Then
 MyCell.Interior.ColorIndex = 36
 MyCell.EntireRow.Hidden = False
 Else
 MyCell.EntireRow.Hidden = True
 End If

Figure 7-5:
Only rows

that contain
duplicate

values are
visible.

163 Chapter 7: Manipulating Data with Macros

 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

Step 1 declares two Range object variables. MyRange holds the entire target
range, and MyCell holds each cell in the range as you enumerate through
them one by one.

Step 2 fills the MyRange variable with the target range. In this example, you
use the selected range — the range selected on the spreadsheet. You can
easily set the MyRange variable to a specific range, such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

Step 3 loops through each cell in the target range, activating each cell as you
go through.

In Step 4, you use the IsEmpty function to make sure that the cell is not
empty. In this way, the macro won’t automatically hide empty rows in the
target range.

You then use the WorksheetFunction object to run a CountIf function in VBA.
In this particular scenario, you count the number of times the active cell
value (MyCell.Value) is found in the given range (MyRange).

If the CountIf expression evaluates to greater than 1, you change the interior
color of the cell and set the EntireRow property to Hidden=False. This step
ensures that the row is visible.

If the CountIf expression does not evaluate to greater than 1, the macro
jumps to the Else argument. Here you set the EntireRow property to
Hidden=True. This ensures the row is not visible.

Step 5 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

Because you define the target range as the current selection, you want to be
sure to select the area where your data exists before running this code. You
wouldn’t want to select an entire column or the entire worksheet. Otherwise,
any cell that contains data that is unique (not duplicated) triggers the hiding
of the row. Alternatively, to ensure that this is never a problem, you can
explicitly define the target range — such as Set MyRange = Range(“A1:Z100”).

164 Part III: One-Touch Data Manipulation

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Selectively Hiding AutoFilter
Drop‐Down Arrows

It goes without saying that the AutoFilter function in Excel is one of the most
useful. Nothing else allows for faster on‐the‐spot filtering and analysis. The
only problem is that the standard AutoFilter functionality applies drop‐down
arrows to every column in the chosen data set, as shown in Figure 7-6. This
behavior is all right in most situations, but what if you want to prevent your
users from using the AutoFilter drop‐down arrows on some of the columns in
your data?

The good news is that with a little VBA, you can selectively hide AutoFilter
drop‐down arrows, as shown in Figure 7-7.

Figure 7-6:
AutoFilter

adds
drop‐down

arrows to all
columns in
your data.

165 Chapter 7: Manipulating Data with Macros

How the macro works
In VBA, you can use the AutoFilter object to turn on AutoFilters for a specific
range. For instance:

Range("B5:G5").AutoFilter

After an AutoFilter is applied, you can manipulate each column in the Auto
Filter by pointing to it. For example, to perform some action on the third
column in the AutoFilter:

Range("B5:G5").AutoFilter Field:3

You can perform many actions on an AutoFilter field. In this scenario, you
are interested in making the drop‐down arrow on field 3 invisible. For this,
you can use the VisibleDropDown parameter. Setting this parameter to False
makes the drop‐down arrow invisible:

Range("B5:G5").AutoFilter Field:3, VisibleDropDown:=False

Here is an example of a macro where you turn on AutoFilters and then make
only the first and last drop‐down arrows visible:

Sub Macro1()

With Range("B5:G5")
.AutoFilter
.AutoFilter Field:=1, VisibleDropDown:=True
.AutoFilter Field:=2, VisibleDropDown:=False
.AutoFilter Field:=3, VisibleDropDown:=False
.AutoFilter Field:=4, VisibleDropDown:=False
.AutoFilter Field:=5, VisibleDropDown:=False
.AutoFilter Field:=6, VisibleDropDown:=True
End With

End Sub

Figure 7-7:
With a little

VBA, you
can hide

certain
drop‐down

arrows.

166 Part III: One-Touch Data Manipulation

You are not only pointing to a specific range but also explicitly pointing to
each field. When implementing this type of macro in your environment, alter
the code to suit your particular data set.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Copying Filtered Rows
to a New Workbook

Often, when you’re working with a set of data that is AutoFiltered, you want
to extract the filtered rows to a new workbook. Of course, you can manu-
ally copy the filtered rows, open a new workbook, paste the rows, and then
format the newly pasted data so that all the columns fit. But if you are doing
this sequence frequently enough, you may want to use a macro to speed up
the process.

How the macro works
The following macro captures the AutoFilter range, opens a new workbook,
and then pastes the data:

Sub Macro1()

'Step 1: Check for AutoFilter and exit if none exists
 If ActiveSheet.AutoFilterMode = False Then
 Exit Sub
 End If

'Step 2: Copy the autofiltered range to new workbook
 ActiveSheet.AutoFilter.Range.Copy
 Workbooks.Add.Worksheets(1).Paste

167 Chapter 7: Manipulating Data with Macros

'Step 3: Size the columns to fit
 Cells.EntireColumn.AutoFit

End Sub

Step 1 uses the AutoFilterMode property to check whether the sheet has
AutoFilters applied. If not, you exit the procedure.

Each AutoFilter object has a Range property. This Range property obligingly
returns the rows to which the AutoFilter applies, meaning it returns only
the rows that are shown in the filtered data set. In Step 2, you use the Copy
method to capture those rows, and then you paste the rows to a new work-
book. Note that you use Workbooks.Add.Worksheets(1), which tells Excel to
paste the data into the first sheet of the newly created workbook.

Step 3 simply tells Excel to size the column widths to autofit the data you just
pasted.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Displaying Filtered Columns
in the Status Bar

When you have a large table with many columns that are AutoFiltered, know
which columns are filtered and which aren’t can be difficult. You could scroll
through the columns, peering at each AutoFilter drop‐down list for the tell‐
tale icon indicating that the column is filtered, but that can get old quickly.

The macro in this section helps by specifically listing in the status bar all
filtered columns. The status bar runs across the bottom of the Excel window,
as shown in Figure 7-8.

168 Part III: One-Touch Data Manipulation

How the macro works
The macro loops through the fields in your AutoFiltered data set. As you
loop, you check to see if each field is filtered. If so, you capture the field name
in a text string. After looping through all the fields, you pass the final string to
the StatusBar property:

Sub Macro1()

'Step 1: Declare your variables
 Dim AF As AutoFilter
 Dim TargetField As String
 Dim strOutput As String
 Dim i As Integer

'Step 2: Check if AutoFilter exists - if not, exit
 If ActiveSheet.AutoFilterMode = False Then
 Application.StatusBar = False
 Exit Sub
 End If

'Step 3: Set AutoFilter and start looping
 Set AF = ActiveSheet.AutoFilter
 For i = 1 To AF.Filters.Count

Figure 7-8:
All filtered

columns are
listed in the
status bar.

169 Chapter 7: Manipulating Data with Macros

'Step 4: Capture filtered field names
 If AF.Filters(i).On Then
 TargetField = AF.Range.Cells(1, i).Value
 strOutput = strOutput & " | " & TargetField
 End If
 Next

'Step 5: Display the filters if there are any
 If strOutput = "" Then
 Application.StatusBar = False
 Else
 Application.StatusBar = "DATA IS FILTERED ON " &

strOutput
 End If

End Sub

Step 1 declares four variables. AF is an AutoFilter variable that manipulates
the AutoFilter object. TargetField is a String variable that holds the field
names of any filtered field. strOutput is the String variable you use to build
out the final text that appears into the status bar. Finally, the i variable
serves as a simple counter, allowing you to iterate through the fields in your
AutoFilter.

Step 2 checks the AutoFilterMode property to see if a sheet even has
AutoFilters applied. If not, you set the StatusBar property to False, which has
the effect of clearing the status bar, releasing control back to Excel. You then
exit the procedure.

Step 3 sets the AF variable to the AutoFilter on the active sheet. You then
set your counter to count from 1 to the maximum number of columns in the
AutoFiltered range. The AutoFilter object keeps track of its columns with
index numbers. Column 1 is index 1; column 2 is index 2, and so on. The idea
is that you can loop through each column in the AutoFilter by using the i vari-
able as the index number.

Step 4 checks the status of AF.Filters object for each (i), where i is the index
number of the column you’re evaluating. If the AutoFilter for that column is
filtered in any way, the status for that column is On.

If the filter for the column is on, you capture the name of the field in the
TargetField variable. You actually get the name of the field by referencing
the Range of your AF AutoFilter object. With this range, you can use the Cells
item to pinpoint the field name. Cells(1,1) captures the value in row one,
column one. Cells(1,2) captures the value in row one, column two, and so on.

170 Part III: One-Touch Data Manipulation

As you can see in Step 4, you’ve hard‐coded the row to 1 and used the i vari-
able to indicate the column index. As the macro iterates through the col-
umns, it always captures the value in row one as the TargetField name (row
one is where the field name is likely to be).

After you have the TargetField name, you can pass that information to a
simple string container (strOutput in your case). strOutput keeps all target
field names you find and concatenates them into a readable text string.

Step 5 first checks to make sure that something is in the strOutput string.
If strOutput is empty, the macro did not find any filtered columns in your
AutoFilter . In this case, Step 5 simply sets the StatusBar property to False,
releasing control back to Excel.

If strOutput is not empty, Step 5 sets the StatusBar property to equal some
helper text along with your strOutput string.

How to use the macro
You ideally want this macro to run each time a field is filtered. However,
Excel does not have an OnAutoFilter event. The closest thing to that event is
the Worksheet_Calculate event. That being said, AutoFilters in themselves
don’t calculate anything, so you need to enter a volatile function on the sheet
that contains your AutoFiltered data. A volatile function forces a recalculation
when any change is made on the worksheet.

In the sample files that come with this book, note that you use the Now func-
tion. The Now function is a volatile function that returns a date and time.
With this function on the sheet, the worksheet is sure to recalculate each
time the AutoFilter is changed.

Place the Now function anywhere on your sheet by typing =Now() in any
cell. Then copy and paste the macro in the Worksheet_Calculate event code
window as follows:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it in order to see all the sheets.

3. Click the sheet from which you want to trigger the code.

4. Select the Calculate event from the Event drop‐down list, as shown in
Figure 7-9.

5. Type or paste the code.

171 Chapter 7: Manipulating Data with Macros

To make the code run as smoothly as possible, consider adding the following
two pieces of code under the worksheet calculate event:

Private Sub Worksheet_Deactivate()

Application.StatusBar = False

End Sub

Private Sub Worksheet_Activate()

Call Worksheet_Calculate

End Sub

Also, add this piece of code in the workbook BeforeClose event:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

Application.StatusBar = False

End Sub

The Worksheet_Deactivate event clears the status bar when you move to
another sheet or workbook, avoiding confusion as you move between sheets.

The Worksheet_Activate event fires the macro in Worksheet_Calculate. This
event brings back the status bar indicators when you navigate back to the
filtered sheet.

The Workbook_BeforeClose event clears the status bar when you close the
workbook, avoiding confusion as you move between workbooks.

Figure 7-9:
Enter your

code in the
Worksheet

Calculate
event.

172 Part III: One-Touch Data Manipulation

Part IV
Macro‐Charging Reports

and Emails

 Visit www.dummies.com/extras/excelmacros to discover how to send Excel
reporting data directly to PowerPoint by using VBA.

http://www.dummies.com/extras/excelmacros

In this part . . .
 ✓ Gain an understanding of how macros can be leveraged to

automate your reporting processes.

 ✓ Discover how to automate the more mundane aspects of building
pivot tables.

 ✓ See how macros can help work with the charts in your reports
and dashboards.

 ✓ Explore some of the techniques you can leverage to send
emails from Excel.

Automating Common
Reporting Tasks

In This Chapter
 ▶ Refreshing pivot tables with macros

 ▶ Leveraging macros to format pivot tables

 ▶ Applying pivot table restrictions

 ▶ Printing and exporting pivot data

 ▶ Resizing and aligning charts

 ▶ Exporting a set of disconnected charts

 ▶ Printing all charts on a worksheet

F
or those of us tasked with building dashboards and reports, PivotTables
and charts are a daily part of our work life. Few of us have had the

inclination to automate any aspect of these reporting tools with macros.
But some aspects of our work lend themselves to a bit of automation. In this
chapter, you explore a handful of macros that can help you save time and
gain efficiencies when working with pivot tables and charts.

Refreshing All Pivot Tables
in a Workbook

It’s not uncommon to have multiple pivot tables in the same workbook. Many
times, these pivot tables link to data that changes, requiring a refresh of the
pivot tables. If you find that you need to refresh your pivot tables en masse,
you can use the macro in this section.

Chapter 8

176 Part IV: Macro-Charging Reports and Emails

How the macro works
It’s important to know that each PivotTable object is a child of the worksheet
it sits in. The macro has to loop through the worksheets in a workbook first,
and then loop through the pivot tables in each worksheet. This macro does
just that — loops through the worksheets, and then loops through the pivot
tables. During each loop, the macro refreshes the pivot table.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet
 Dim pt As PivotTable

'Step 2: Loop through each sheet in workbook
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Loop through each pivot table
 For Each pt In ws.PivotTables
 pt.RefreshTable
 Next pt
 Next ws

End Sub

Step 1 first declares an object called ws. This step creates a memory con-
tainer for each worksheet you loop through. It also declares an object called
pt, which holds each pivot table the macro loops through.

Step 2 starts the looping, telling Excel you want to evaluate all work-
sheets in this workbook. Note that you’re using ThisWorkbook instead of
ActiveWorkbook. The ThisWorkbook object refers to the workbook that
contains the code. The ActiveWorkbook object refers to the currently active
workbook. They often return the same object, but if the workbook running
the code is not the active workbook, they return different objects. In this
case, you don’t want to risk refreshing pivot tables in other workbooks, so
you use ThisWorkbook.

Step 3 loops through all pivot tables in each worksheet, and then triggers the
RefreshTable method. After all pivot tables have been refreshed, you move to
the next sheet. After all sheets have been evaluated, the macro ends.

As an alternative method for refreshing all pivot tables in the workbook, you
can use ThisWorkbook.RefreshAll. This method refreshes all pivot tables in
the workbook — but it also refreshes all query tables. If you have data tables
that are connected to an external source or the web, they will be affected

177 Chapter 8: Automating Common Reporting Tasks

by the RefreshAll method. If this is not a concern, you can simply enter
ThisWorkbook.RefreshAll into a standard module.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Creating a Pivot Table
Inventory Summary

When your workbook contains multiple pivot tables, it’s often helpful to
have an inventory summary that outlines basic details about the pivot tables
 (similar to the one in Figure 8-1).

With this type of summary, you can quickly see important information such
as the location of each pivot table, the location of each pivot table’s source
data, and the pivot cache index that each pivot table is using.

The macro in this section outputs such a summary.

How the macro works
When you create a PivotTable Object variable, you expose the pivot table’s
properties, such as its name, location, and cache index. In this macro,
you loop through each pivot table in the workbook and extract specific
 properties into a new worksheet.

Figure 8-1:
A pivot table

inventory
summary.

178 Part IV: Macro-Charging Reports and Emails

Because each PivotTable object is a child of the worksheet it sits in, you have
to first loop through the worksheets in a workbook, and then loop through
the pivot tables in each worksheet.

Take a moment to walk through the steps of this macro in detail:

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet
 Dim pt As PivotTable
 Dim MyCell As Range

'Step 2: Add a new sheet with column headers
 Worksheets.Add
 Range("A1:F1") = Array("Pivot Name", "Worksheet", _
 "Location", "Cache Index", _
 "Source Data Location", _
 "Row Count")

'Step 3: Start cursor at cell A2 setting the anchor here
 Set MyCell = ActiveSheet.Range("A2")

'Step 4: Loop through each sheet in workbook
 For Each ws In Worksheets

'Step 5: Loop through each pivot table
 For Each pt In ws.PivotTables
 MyCell.Offset(0, 0) = pt.Name
 MyCell.Offset(0, 1) = pt.Parent.Name
 MyRange.Offset(0, 2) = pt.TableRange2.Address
 MyRange.Offset(0, 3) = pt.CacheIndex
 MyRange.Offset(0, 4) = Application.ConvertFormula _
 (pt.PivotCache.SourceData, xlR1C1, xlA1)
 MyRange.Offset(0, 5) = pt.PivotCache.RecordCount

'Step 6: Move cursor down one row and set a new anchor
 Set MyRange = MyRange.Offset(1, 0)

'Step 7: Work through all pivot tables and worksheets
 Next pt
 Next ws

179 Chapter 8: Automating Common Reporting Tasks

'Step 8: Size columns to fit
 ActiveSheet.Cells.EntireColumn.AutoFit

End Sub

Step 1 declares an object called ws. This step creates a memory container
for each worksheet you loop through. You then declare an object called pt,
which holds each pivot table you loop through. Finally, you create a range
variable called MyCell, which acts as your cursor as you fill in the inventory
summary.

Step 2 creates a new worksheet and adds column headings that range from
A1 to F1. Note that you can add column heading using a simple array that
contains your header labels. This new worksheet remains your active sheet
from here on out.

Just as you would manually place your cursor into a cell if you were to start
typing data, Step 3 places the MyCell cursor in cell A2 of the active sheet.
This step establishes your anchor point, allowing you to navigate from here.

Throughout the macro, you see the use of the Offset property. The Offset
property allows you to move a cursor x rows and x columns from an anchor
point. For instance, Range(A2).Offset(0,1) would move the cursor one column
to the right. If you wanted to move the cursor one row down, you would
enter Range(A2).Offset(1, 0).

In the macro, you navigate by using Offset on MyCell. For example, MyCell.
Offset(0,4) would move the cursor four columns to the right of the anchor
cell. After the cursor is in place, you can enter data.

Step 4 starts the looping, telling Excel you want to evaluate all worksheets in
this workbook.

Step 5 loops through all pivot tables in each worksheet. For each pivot table
found, it extracts the appropriate property and fills in the table based on the
cursor position (see Step 3).

You are using six pivot table properties: Name, Parent.Range, TableRange2.
Address, CacheIndex, PivotCache.SourceData, and PivotCache.Recordcount.
The Name property returns the name of the pivot table. The Parent.Range
property gives you the sheet where the pivot table resides. The TableRange2.
Address property returns the range that the PivotTable object sits in.

The CacheIndex property returns the index number of the pivot cache for the
pivot table. A pivot cache is a memory container that stores all the data for a
pivot table. When you create a new pivot table, Excel takes a snapshot of the

180 Part IV: Macro-Charging Reports and Emails

source data and creates a pivot cache. Each time you refresh a pivot table,
Excel goes back to the source data and takes another snapshot, thereby
refreshing the pivot cache. Each pivot cache has a SourceData property
that identifies the location of the data used to create the pivot cache. The
PivotCache.SourceData property tells us which range will be called on when
you refresh the pivot table. You can also pull out the record count of the
source data by using the PivotCache.Recordcount property.

In Step 6, each time the macro encounters a new pivot table, it moves the
MyCell cursor down a row, effectively starting a new row for each pivot table.

Step 7 tells Excel to loop back to iterate through all pivot tables and all
worksheets. After all pivot tables have been evaluated, you move to the next
sheet. After all sheets have been evaluated, the macro moves to the last step.

Step 8 finishes with a little formatting, sizing the columns to fit the data.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Adjusting All Pivot Data Field Titles
When you create a pivot table, Excel tries to help you out by prefacing each
data field header with Sum of, Count of, or whichever operation you use.
Often, this behavior is not conducive to your reporting needs. You want
clean titles that match your data source as closely as possible. Although it’s
true that you can manually adjust the titles for data fields (one at a time), the
following macro fixes them all in one go.

How the macro works
Ideally, the name of the each data item matches the field name from your
source data set (the original source data used to create the pivot table).

181 Chapter 8: Automating Common Reporting Tasks

Unfortunately, pivot tables won’t allow you to name a data field with the
same name as the source data field. The workaround for this limitation is to
add a space to the end of the field name. Excel considers the field name (with
a space) to be different from the source data field name. And the readers of
your spreadsheet don’t notice the space after the name.

The macro utilizes this workaround to rename your data fields. It loops
through each data field in the pivot table, and then resets each header to
match its respective field in the source data plus a space character.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields and adjust titles
 For Each pf In pt.DataFields
 pf.Caption = pf.SourceName & Chr(160)
 Next pf

End Sub

Step 1 declares two object variables. It uses pt as the memory container for
your pivot table, and pf as a memory container for the data fields. This step
allows the macro to loop through all the data fields in the pivot table.

The macro is designed so that you infer the active pivot table based on the
active cell. In other words, the active cell must be inside a pivot table for this
macro to run. The assumption is that when the cursor is inside a particular
pivot table, you want to perform the macro action on that pivot table.

Step 2 sets the pt variable to the name of the pivot table on which the active
cell is found. You do this by using the ActiveCell.PivotTable.Name property
to get the name of the target pivot.

182 Part IV: Macro-Charging Reports and Emails

If the active cell is not inside a pivot table, an error is thrown. For this reason,
you use the On Error Resume Next statement to tell Excel to continue with
the macro if there is an error.

In Step 3, you check to see whether the pt variable is filled with a PivotTable
object. If the pt variable is set to Nothing, the active cell was not on a pivot
table, thus no pivot table could be assigned to the variable. If this is the case,
you use a message box to tell the user, and then you exit the procedure.

If the macro reaches Step 4, it has successfully pointed to a pivot table. The
macro uses a For Each statement to iterate through each data field. Each time
a new pivot field is selected, the macro changes the field name by setting the
Caption property to match the field’s SourceName. The SourceName prop-
erty returns the name of the matching field in the original source data.

To that name, the macro concatenates a nonbreaking space character:
Chr(160).

Every character has an underlying ASCII code, similar to a serial number. For
instance, the lowercase letter a has an ASCII code of 97. The lowercase letter
c has an ASCII code of 99. Likewise, invisible characters such as the space
have a code. You can use invisible characters in your macro by passing their
code through the CHR function.

After the name has been changed, the macro moves to the next data field.
After all the data fields have been evaluated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Setting All Data Items to Sum
When creating a pivot table, Excel defaults to summarizing your data by
either counting or summing the items. The logic Excel uses to decide whether
to sum or count the fields you add to your pivot table is simple. If all cells in a

183 Chapter 8: Automating Common Reporting Tasks

column contain numeric data, Excel chooses Sum. If the field you are adding
contains a blank or text, Excel chooses Count.

Although this logic seems to make sense, in many instances a pivot field
that should be summed legitimately contains blanks. In these cases, you are
forced to manually go in after Excel and change the calculation type from
Count to Sum. That’s if you’re paying attention! It’s not uncommon to miss
the fact that a pivot field is being counted instead of summed.

The macro in this section aims to help by automatically setting each data
item’s calculation type to Sum.

How the macro works
This macro loops through each data field in the pivot table and changes the
Function property to xlSum. You can alter this macro to use any calcula-
tion choice: xlCount, xlAverage, xlMin, xlMax, and so on. When you go into
the code window and type pf.Function =, you see a drop‐down list with your
choices, as shown in Figure 8-2.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

Figure 8-2:
Excel dis

plays your
enumeration

choices.

184 Part IV: Macro-Charging Reports and Emails

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields and apply SUM
 For Each pf In pt.DataFields
 pf.Function = xlSum
 Next pf

End Sub

Step 1 declares two object variables. It uses pt as the memory container for
the pivot table and pf as a memory container for the data fields. This step
allows you to loop through all the data fields in the pivot table.

This macro is designed so that you infer the active pivot table based on the
active cell. The active cell must be inside a pivot table for this macro to run.
The assumption is that when the cursor is inside a particular pivot table, you
want to perform the macro action on that pivot.

Step 2 sets the pt variable to the name of the pivot table on which the active
cell is found. You do this by using the ActiveCell.PivotTable.Name property
to get the name of the target pivot.

If the active cell is not inside a pivot table, an error is thrown. For this reason,
you use the On Error Resume Next statement to tell Excel to continue with
the macro if there is an error.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not on a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, you
use a message box to tell the user, and then you exit the procedure.

If the macro has reached Step 4, it has successfully pointed to a pivot table.
It uses a For Each statement to iterate through each data field. Each time a
new pivot field is selected, the macro alters the Function property to set the
calculation used by the field. In this case, you’re setting all the data fields in
the pivot table to Sum.

After the function has been changed, you move to the next data field. After all
the data fields have been evaluated, the macro ends.

185 Chapter 8: Automating Common Reporting Tasks

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Applying Number Formatting
to All Data Items

A pivot table does not inherently store number formatting in its pivot cache
because formatting takes up memory. To be as lean as possible, the pivot
cache contains only data. Unfortunately, as a result, you need to apply
number formatting to every field you add to a pivot table. This process takes
from 8 to 10 mouse clicks for every data field you add. When you have pivot
tables that contain five or more data fields, you’re talking about more than 40
mouse clicks!

Ideally, a pivot table should be able to look back at its source data and adopt
the number formatting from the fields there. The macro outlined in this sec-
tion is designed to do just that. It recognizes the number formatting in the
pivot table’s source data and applies the appropriate formatting to each field
automatically.

How the macro works
Before running this code, you want to make sure that

 ✓ The source data for your pivot table is accessible. The macro needs to
see it to capture the correct number formatting.

 ✓ The source data is appropriately formatted. Money fields are formatted
as currency, value fields are formatted as numbers, and so on.

This macro uses the PivotTable SourceData property to find the location of
the source data. It then loops through each column in the source, captur-
ing the header name and the number format of the first value under each

186 Part IV: Macro-Charging Reports and Emails

column. After it has that information, the macro determines whether any data
fields match the evaluated column. If it finds a match, the number formatting
is applied to that data field.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim SrcRange As Range
 Dim strFormat As String
 Dim strLabel As String
 Dim i As Integer

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Capture the source range
 Set SrcRange = _
 Range(Application.ConvertFormula(pt.SourceData,

xlR1C1, xlA1))

'Step 5: Start looping through the columns in source range
 For i = 1 To SrcRange.Columns.Count

'Step 6: Trap the source column name and number format
 strLabel = SrcRange.Cells(1, i).Value
 strFormat = SrcRange.Cells(2, i).NumberFormat

'Step 7: Loop through fields in the pivot table data area
 For Each pf In pt.DataFields

187 Chapter 8: Automating Common Reporting Tasks

'Step 8: Check for match on SourceName then apply format
 If pf.SourceName = strLabel Then
 pf.NumberFormat = strFormat
 End If
 Next pf
 Next i

End Sub

Step 1 declares six variables. It uses pt as the memory container for your
pivot table and pf as a memory container for your data fields. The SrcRange
variable holds the data range for the source data. The strFormat and strLabel
variables are both text string variables used to hold the source column label
and number formatting, respectively. The i variable serves as a counter, help-
ing you enumerate through the columns of the source data range.

The active cell must be inside a pivot table for this macro to run. The
assumption is that when the cursor is inside a particular pivot table, you
want to perform the macro action on that pivot.

Step 2 sets the pt variable to the name of the pivot table on which the active
cell is found. You do this by using the ActiveCell.PivotTable.Name property
to get the name of the target pivot.

If the active cell is not inside a pivot table, an error is thrown. For this reason,
the macro uses the On Error Resume Next statement to tell Excel to continue
with the macro if there is an error.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not on a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, you
use a message box to tell the user, and then you exit the procedure.

If the macro reaches Step 4, it has successfully pointed to a pivot table. You
immediately fill your SrcRange Object variable with the pivot table’s source
data range.

All pivot tables have a SourceData property that points to the address of its
source. Unfortunately, the address is stored in the R1C1 reference style, like
this: ’Raw Data’!R3C1:R59470C14. Range objects cannot use the R1C1 style, so
you need to convert the address to ’Raw Data’!A3:N59470.

The fix is simple. You simply pass the SourceData property through the
Application.ConvertFormula function, which converts ranges to and from the
R1C1 reference style.

188 Part IV: Macro-Charging Reports and Emails

After the range is captured, the macro starts looping through the columns in
the source range. In this case, you manage the looping by using the i integer
as an index number for the columns in the source range. You start the index
number at 1 and end it at the maximum number of rows in the source range.

As the macro loops through the columns in the source range, you capture
the column header label and the column format. You do this action with the
aid of the Cells item. The Cells item gives you a handy way of selecting ranges
through code. It requires only relative row and column positions as param-
eters. Cells(1,1) translates to row 1, column 1 (or the header row of the first
column). Cells(2, 1) translates to row 2, column 1 (or the first value in the
first column).

strLabel is filled by the header label taken from row 1 of the selected column.
strFormat is filled with the number formatting from row 2 of the selected
column that is selected.

At this point, the macro has connected with the pivot table’s source data and
captured the first column name and number formatting for that column. In
Step 7, it starts looping through the data fields in the pivot table.

Step 8 simply compares each data field to see whether its source matches
the name in strLabel. If it does, this step will set the number formatting of the
pivot field to the same format as the source data field.

After all data fields have been evaluated, the macro increments i to the next
column in the source range. After all columns have been evaluated, the
macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Sorting All Fields in Alphabetical Order
If you frequently add data to your pivot tables, you may notice that new
data doesn’t automatically fall into the sort order of the existing pivot data.
Instead, it gets tacked to the bottom of the existing data. This means your

189 Chapter 8: Automating Common Reporting Tasks

drop‐down lists display existing data sorted alphabetically but display new
data at the bottom of the list.

How the macro works
The macro in this section resets the sorting on all data fields, ensuring that
any new data snaps into place. You should run the macro each time you
refresh your pivot table. In the code, you enumerate through each data field
in the pivot table, sorting each one as you go.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields and sort
 For Each pf In pt.PivotFields
 pf.AutoSort xlAscending, pf.Name
 Next pf

End Sub

Step 1 declares two object variables: pt is the memory container for the pivot
table and pf is the memory container for your data fields. This step allows the
macro to loop through all the data fields in the pivot table.

The active cell must be inside a pivot table for the macro to run. The assump-
tion is that when the cursor is inside a particular pivot table, you want to per-
form the macro action on that pivot.

In Step 2, you set the pt variable to the name of the pivot table on which the
active cell is found. You do this by using the ActiveCell.PivotTable.Name
property to get the name of the target pivot.

190 Part IV: Macro-Charging Reports and Emails

If the active cell is not inside a pivot table, an error is thrown. For this reason,
you use the On Error Resume Next statement to tell Excel to continue with
the macro if there is an error.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not on a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, the
macro displays a message box to notify the user and then exits the procedure.

Finally, in Step 4, you use a For Each statement to iterate through each pivot
field. Each time a new pivot field is selected, you use the AutoSort method to
reset the automatic sorting rules for the field. In this case, you’re sorting all
fields in ascending order. After all the data fields have been evaluated, the
macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Applying Custom Sort to Data Items
On occasion, you may need to apply a custom sort to the data items in your
pivot table. For instance, if you work for a company in California, your orga-
nization may want the West region to come before the North and South. In
these types of situations, neither the standard ascending nor the standard
descending sort order will work.

How the macro works
You can automate the custom sorting of your fields by using the Position
property of the PivotItems object. With the Position property, you can assign
a position number that specifies the order in which you would like see each
pivot item.

191 Chapter 8: Automating Common Reporting Tasks

In this example code, you first point to the Region pivot field in the Pvt1
PivotTable. Then you list each item along with the position number indicat-
ing the customer sort order you need:

Sub Macro1()

With Sheets("Sheet1").PivotTables("Pvt1").PivotFields _
 ("Region ")
 .PivotItems("West").Position = 1
 .PivotItems("North").Position = 2
 .PivotItems("South").Position = 3

End With

End Sub

The other solution is to set up a custom sort list, which is a defined list that
is stored in your instance of Excel. To create a custom sort list, choose
File ➪ Options ➪ Advanced, and then click the Edit Custom Lists button. Here,
you can type West, North, South in the List Entries box and choose the Add
button. After setting up a custom list, Excel will realize that the Region data
items in your PivotTable match a custom list and will sort the field to match
your custom list.

As brilliant as this option is, custom lists do not travel with your workbook.
So a macro helps when it’s impractical to expect your clients or team mem-
bers to set up their own custom sort lists.

How to use the macro
You can implement this kind of a macro in a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Applying Pivot Table Restrictions
When you send pivot table reports to clients, coworkers, managers, and
other groups of people, you might want to restrict the types of actions
your users can take on the reports. The macro outlined in this section
 demonstrates some of the protection settings available through VBA.

192 Part IV: Macro-Charging Reports and Emails

How the macro works
The PivotTable object exposes several properties that allow you (the
 developer) to restrict different features and components of a pivot table:

 ✓ EnableWizard: Setting this property to False disables the pivot table Tools
context menu that normally activates when clicking inside a pivot table.

 ✓ EnableDrilldown: Setting this property to False prevents users from
 getting to detailed data by double‐clicking a data field.

 ✓ EnableFieldList: Setting this property to False prevents users from
 activating the field list or moving pivot fields around.

 ✓ EnableFieldDialog: Setting this property to False disables the users’
ability to alter the pivot field through the Value Field Settings dialog box.

 ✓ PivotCache.EnableRefresh: Setting this property to False disables the
ability to refresh the pivot table.

You can set any or all these properties independently to True or False. In this
macro, you apply all the restrictions to the target pivot table.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Apply pivot table restrictions
 With pt
 .EnableWizard = False
 .EnableDrilldown = False
 .EnableFieldList = False
 .EnableFieldDialog = False
 .PivotCache.EnableRefresh = False
 End With

End Sub

193 Chapter 8: Automating Common Reporting Tasks

Step 1 declares the pt PivotTable Object variable that serves as the memory
container for your pivot table.

Step 2 sets the pt variable to the name of the pivot table in which the active
cell is found. You do this by using the ActiveCell.PivotTable.Name property
to get the name of the target pivot.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not on a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, you
use a message box to tell the user, and then you exit the procedure.

In the last step of the macro, you are applying all pivot table restrictions.

How to use the macro
You can implement this kind of a macro in a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Applying Pivot Field Restrictions
Like pivot table restrictions, pivot field restrictions enable you to restrict the
types of actions your users can take on the pivot fields in a pivot table. The
macro outlined in this section demonstrates some of the protection settings
available through VBA.

How the macro works
The PivotField object exposes several properties that allow you (the devel-
oper) to restrict different features and components of a pivot table:

 ✓ DragToPage: Setting this property to False prevents users from dragging
any pivot field into the Report Filter area of the pivot table.

 ✓ DragToRow: Setting this property to False prevents users from dragging
any pivot field into the Row area of the pivot table.

194 Part IV: Macro-Charging Reports and Emails

 ✓ DragToColumn: Setting this property to False prevents users from drag-
ging any pivot field into the Column area of the pivot table.

 ✓ DragToData: Setting this property to False prevents users from dragging
any pivot field into the Data area of the pivot table.

 ✓ DragToHide: Setting this property to False prevents users from dragging
pivot fields off the pivot table. It also prevents the use of the right‐click
menu to hide or remove pivot fields.

 ✓ EnableItemSelection: Setting this property to False disables the drop‐
down lists on each pivot field.

You can set any or all these properties independently to True or False. In this
macro, you apply all the restrictions to the target pivot table.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Apply pivot field restrictions
 For Each pf In pt.PivotFields
 pf.EnableItemSelection = False
 pf.DragToPage = False
 pf.DragToRow = False
 pf.DragToColumn = False
 pf.DragToData = False
 pf.DragToHide = False
 Next pf

End Sub

Step 1 declares two object variables: pt is the memory container for your
pivot table and pf is the memory container for your pivot fields. This step
allows us to loop through all the pivot fields in the pivot table.

195 Chapter 8: Automating Common Reporting Tasks

Set the pt variable to name of the pivot table on which the active cell is found
by using the ActiveCell.PivotTable.Name property to get the name of the
target pivot.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not in a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, the
macro notifies the user via a message box and then exits the procedure.

Step 4 of the macro uses a For Each statement to iterate through each pivot
field. Each time a new pivot field is selected, you apply all your pivot field
restrictions.

How to use the macro
You can implement this kind of a macro in a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

Automatically Deleting Pivot
Table Drill‐Down Sheets

One of the coolest features of a pivot table is that it gives you the ability to
double‐click a number and drill into the details. The details are output to a
new sheet that you can review. In most cases, you don’t want to keep these
sheets. In fact, they often become a nuisance because you need to take time
to delete them.

This behavior is especially a problem when you distribute pivot table reports
to users who frequently drill into details. There is no guarantee that they will
remember to clean up the drill‐down sheets. Although these sheets probably
won’t cause issues, they can clutter up the workbook.

Implement the technique described in this section, and your workbook will
automatically remove these drill‐down sheets.

196 Part IV: Macro-Charging Reports and Emails

How the macro works
The basic premise of this macro is simple. When the user clicks for details,
outputting a drill‐down sheet, the macro renames the output sheet so that
the first 10 characters are PivotDrill. Then before the workbook closes, the
macro finds any sheet that starts with PivotDrill and deletes it.

The implementation does get a bit tricky because you have two pieces of
code. One piece goes in the Worksheet_BeforeDoubleClick event, and the
other piece goes into the Workbook_BeforeClose event.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As
Range, Cancel As Boolean)

'Step 1: Declare your variables
 Dim pt As String

'Step 2: Exit if double-click did not occur on a pivot
table

 On Error Resume Next
 If IsEmpty(Target) And ActiveCell.PivotField.Name <>

"" Then
 Cancel = True
 Exit Sub
 End If

'Step 3: Set the PivotTable object
 pt = ActiveSheet.Range(ActiveCell.Address).PivotTable

'Step 4: If Drilldowns are enabled, drill down
 If ActiveSheet.PivotTables(pt).EnableDrilldown Then
 Selection.ShowDetail = True

 ActiveSheet.Name = _
 Replace(ActiveSheet.Name, "Sheet", "PivotDrill")
 End If

End Sub

Step 1 starts by creating the pt Object variable for your pivot table.

Step 2 checks the double‐clicked cell. If the cell is not associated with any
pivot table, you cancel the double‐click event.

If a pivot table is indeed associated with a cell, Step 3 fills the pt variable with
the pivot table.

197 Chapter 8: Automating Common Reporting Tasks

Step 4 checks the EnableDrillDown property. If it is enabled, you trigger the
ShowDetail method. This outputs the drill‐down details to a new worksheet.

The macro follows the output and uses the Replace function to rename the
output sheet so that the first 10 characters are PivotDrill. The Replace func-
tion replaces certain text in an expression with other text. In this case, you
replace the word Sheet with PivotDrill by using Replace(ActiveSheet.Name,
“Sheet”, “PivotDrill”).

Sheet1 becomes PivotDrill1; Sheet12 becomes PivotDrill12, and so on.

Next, the macro sets up the Worksheet_BeforeDoubleClick event. As the
name suggests, this code runs when the workbook closes.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 5: Declare your variables
 Dim ws As Worksheet

'Step 6: Loop through worksheets
 For Each ws In ThisWorkbook.Worksheets

'Step 7: Delete any sheet that starts with PivotDrill
 If Left(ws.Name, 10) = "PivotDrill" Then
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If
 Next ws

End Sub

Step 5 declares the ws Worksheet variable, which holds worksheet objects as
you loop through the workbook.

Step 6 starts the looping, telling Excel that you want to evaluate all work-
sheets in this workbook.

In the last step, you evaluate the name of the sheet that has focus in the loop.
If the left 10 characters of that sheet name are PivotDrill, you delete the work-
sheet. After all the sheets have been evaluated, all drill‐down sheets have
been cleaned up and the macro ends.

198 Part IV: Macro-Charging Reports and Emails

How to use the macro
To implement the first part of the macro, you need to copy and paste it into
the Worksheet_BeforeDoubleClick event code window. Placing the macro
here allows it to run each time you double‐click the sheet:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click the sheet in which you want to trigger the code.

4. In the Event drop‐down list box, select the BeforeDoubleClick event
(see Figure 8-3).

5. Type or paste the code.

To implement this macro, you need to copy and paste it into the Workbook_
BeforeClose event code window. Placing the macro here allows it to run each
time you try to close the workbook:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. In the project window, find your project/workbook name and click the
plus sign next to it to see all the sheets.

3. Click ThisWorkbook.

4. In the Event drop‐down list, select the BeforeClose event (see Figure 8-4).

5. Type or paste the code.

Figure 8-3:
Enter your

code in the
Worksheet

Before
DoubleClick

event.

199 Chapter 8: Automating Common Reporting Tasks

Printing a Pivot Table for
Each Report Filter Item

Pivot tables provide an excellent mechanism to parse large data sets into
printable files. You can build a pivot table report, complete with aggregations
and analysis, and then place a field (such as Region) into the report filter.
With the report filter, you can select each data item one at a time, and then
print the pivot table report.

The macro in this section demonstrates how to automatically iterate through
all the values in a report filter and print.

How the macro works
In the Excel object model, the Report Filter drop‐down list is known as
PageField. To print a pivot table for each data item in a report filter, you need
to loop through the PivotItems collection of the PageField object. As you
loop, you dynamically change the selection in the report filter, and then use
the ActiveSheet.PrintOut method to print the target range.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

Figure 8-4:
Enter your

code in the
Worksheet

Before
DoubleClick

event.

200 Part IV: Macro-Charging Reports and Emails

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

'Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox "Too many Report Filter Fields. Limit 1."
 Exit Sub
 End If

'Step 5: Start looping through the page field and its
pivot items

 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

'Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

'Step 7: Set print area and print
 ActiveSheet.PageSetup.PrintArea = pt.TableRange2.

Address
 ActiveSheet.PrintOut Copies:=1

'Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

Step 1 declares three variables: pt is the memory container for your pivot
table, pf is a memory container for your page fields, and pi holds each pivot
item as you loop through the PageField object.

The active cell must be inside a pivot table for this macro to run. The
assumption is that when the cursor is inside a particular pivot table, you
want to perform the macro action on that pivot.

201 Chapter 8: Automating Common Reporting Tasks

Step 2 sets the pt variable to the name of the pivot table on which the active
cell is found by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.

If the active cell is not inside a pivot table, the macro throws an error. You
use the On Error Resume Next statement to tell Excel to continue with the
macro if there is an error.

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not in a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, a
message box notifies the user and you exit the procedure.

Step 4 determines whether there is more than one report filter field. (If the
count of PageFields is greater than 1, there is more than one report filter.)
You do this check for a simple reason: You want to avoid printing reports for
filters that just happen to be there. Without this check, you might wind up
printing hundreds of pages. The macro stops and displays a message box if
the field count is greater than 1.

If you need to remove this limitation, simply delete or comment out Step 4 in
the macro.

Step 5 starts two loops. The outer loop tells Excel to iterate through all the
report filters. The inner loop tells Excel to loop through all the pivot items in
the repot filter that currently has focus.

For each pivot item, the macro captures the item name and uses it to change
the report filter selection. This effectively alters the pivot table report to
match the pivot item.

Step 7 prints the active sheet and then moves to the next pivot item. After you
have looped through all pivot items in the report filter, the macro moves to
the next PageField. After all PageFields have been evaluated, the macro ends.

How to use the macro
You can implement this kind of a macro in a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

202 Part IV: Macro-Charging Reports and Emails

Creating a Workbook for
Each Report Filter Item

Pivot tables provide an excellent mechanism to parse large data sets into
separate files. You can build a pivot table report, complete with aggregations
and analysis, and then place a field (such as Region) into the report filter.
With the report filter, you can select each data item one at a time, and then
export the pivot table data to a new workbook.

The macro in this section demonstrates how to automatically iterate through
all the values in a report filter and export to a new workbook.

How the macro works
In the Excel object model, the Report Filter drop‐down list is known as
PageField. To print a pivot table for each data item in a report filter, the
macro needs to loop through the PivotItems collection of the PageField
object. As the macro loops, it must dynamically change the selection in the
report filter, and then export the pivot table report to a new workbook.

Sub Macro1()

'Step 1: Declare your variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

'Step 2: Point to the pivot table in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.

PivotTable.Name)

'Step 3: Exit if active cell is not in a pivot table
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside a pivot

table."
 Exit Sub
 End If

203 Chapter 8: Automating Common Reporting Tasks

'Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox "Too many Report Filter Fields. Limit 1."
 Exit Sub
 End If

'Step 5: Start looping through the page field and its
pivot items

 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

'Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

'Step 7: Copy the data area to a new workbook
 pt.TableRange1.Copy

 Workbooks.Add.Worksheets(1).Paste
 Application.DisplayAlerts = False

 ActiveWorkbook.SaveAs _
 Filename:="C:\Temp\" & pi.Name & ".xlsx"
 ActiveWorkbook.Close
 Application.DisplayAlerts = True

'Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

Step 1 declares three variables: pt is the memory container for your pivot
table, pf is a memory container for your page fields, and pi holds each pivot
item as the macro loops through the PageField object.

The active cell must be inside a pivot table for this macro to run. The
assumption is that when the cursor is inside a particular pivot table, you will
want to perform the macro action on that pivot.

Step 2 sets the pt variable to name of the pivot table on which the active
cell is found. The macro does this by using the ActiveCell.PivotTable.Name
 property to get the name of the target pivot.

If the active cell is not inside a pivot table, an error is thrown. You use the On
Error Resume Next statement to tell Excel to continue with the macro if there
is an error.

204 Part IV: Macro-Charging Reports and Emails

Step 3 checks to see whether the pt variable is filled with a PivotTable object.
If the pt variable is set to Nothing, the active cell was not in a pivot table,
thus no pivot table could be assigned to the variable. If this is the case, the
macro uses a message box to notify the user and then exits the procedure.

Step 4 determines whether there is more than one report filter field. If the
count of PageFields is greater than 1, there is more than one report filter. You
do this check to avoid printing reports for filters that just happen to be there.
Without this check, you might wind up printing hundreds of pages. The
macro stops and displays a message box if the field count is greater than 1.

To remove the one report filter limitation, delete or comment out Step 4 in
the macro.

Step 5 starts two loops. The outer loop tells Excel to iterate through all the
report filters. The inner loop tells Excel to loop through all the pivot items in
the repot filter that currently has focus.

For each pivot item, Step 6 captures the item name and uses it to change the
report filter selection. This step effectively alters the pivot table report to
match the pivot item.

Step 7 copies TableRange1 of the PivotTable object. TableRange1 is a built‐in
range object that points to the range of the main data area for the pivot table.
You then paste to the data to a new workbook and save it. Note that you
need to change the save path to one that works in your environment.

Step 8 moves to the next pivot item. After the macro has looped through all
pivot items in the report filter, the macro moves to the next PageField. After
all PageFields have been evaluated, the macro ends.

How to use the macro
You can implement this kind of a macro in a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code.

205 Chapter 8: Automating Common Reporting Tasks

Resizing All Charts on a Worksheet
When building a dashboard, you often want to achieve symmetry and bal-
ance. In many cases, achieving symmetry in your dashboard requires chart
size standardization. The macro in this section gives you an easy way to set a
standard height and width for all your charts at once.

How the macro works
All charts belong to the ChartObjects collection. To take an action on all
charts at one time, you simply iterate through all the charts in ChartObjects.
Each chart in the ChartObjects collection has an index number that you can
use to bring it into focus. For example, ChartObjects(1) points to the first
chart in the sheet.

In this macro, you use this concept to loop through the charts on the active
sheet with a simple counter. Each time a new chart is brought into focus, you
change its height and width to the size you’ve defined.

Sub Macro1()

'Step 1: Declare your variables
 Dim i As Integer

'Step 2: Start looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

'Step 3: Activate each chart and size
 With ActiveSheet.ChartObjects(i)
 .Width = 300
 .Height = 200
 End With

'Step 4: Increment to move to next chart
 Next i

End Sub

Step 1 declares an integer object, variable i, to be used as a looping mechanism.

Step 2 starts the looping by setting i to count from 1 to the maximum number
of charts in the ChartObjects collection on the active sheet. When the code
starts, i initiates with the number 1. As you loop, the variable increments by
1 sheet.

206 Part IV: Macro-Charging Reports and Emails

Step 3 passes i to the ChartObjects collection as the index number to bring a
chart into focus. Then the width and height of the chart is set to the number
you specify in the code. You can change these numbers to suit your needs.

In Step 4, the macro loops back around to increment i by 1 and get the next
chart. After all charts have been evaluated, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in to the newly created blank module.

Aligning a Chart to a Specific Range
Along with adjusting the size of charts, many of us spend a good bit of time
positioning them so that they align nicely in our dashboards. This macro easily
snaps your charts to defined ranges, with perfect positioning every time.

How the macro works
Every chart has four properties that dictate its size and position: Width,
Height, Top, and Left. Interestingly enough, every Range object has these
same properties. So if you set a chart’s Width, Height, Top, and Left properties
to match that of a particular range, the chart essentially snaps to that range.

After you decide how you want your dashboard to be laid out, note the
ranges that encompass each area of your dashboard. Then use those ranges
in this macro to snap each chart to the appropriate range. In this example,
you adjust four charts to so that their Width, Height, Top, and Left properties
match a given range.

Note that you’re identifying each chart with a name. Charts are, by default,
named Chart and the number in which they were added (Chart 1, Chart 2,
Chart 3, and so on). You can see what each chart is named by clicking it, and
then going up to the Ribbon and choosing Format ➪ Selection Pane. This
command activates a task pane listing all the objects on your sheet, as shown
in Figure 8-5.

207 Chapter 8: Automating Common Reporting Tasks

You can use the Selection task pane to get the appropriate chart names for
your version of this macro.

Sub Macro1()

Dim SnapRange As Range

Set SnapRange = ActiveSheet.Range("B6:G19")
 With ActiveSheet.ChartObjects("Chart 1")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range("B21:G34")
 With ActiveSheet.ChartObjects("Chart 2")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range("I6:Q19")
 With ActiveSheet.ChartObjects("Chart 3")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Figure 8-5:
Your chart

objects and
their names.

208 Part IV: Macro-Charging Reports and Emails

Set SnapRange = ActiveSheet.Range("I21:Q34")
 With ActiveSheet.ChartObjects("Chart 4")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

End Sub

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code in to the newly created module.

Creating a Set of Disconnected Charts
When you need to copy charts from a workbook and paste them elsewhere
(in another workbook, in PowerPoint, in Outlook, and so on), it’s often best
to disconnect them from the original source data. In this way, you won’t get
any annoying missing link messages that Excel throws. The macro in this
section copies all the charts in the active sheet, pastes them into a new work-
book, and disconnects them from the original source data.

How the macro works
This macro uses the ShapeRange.Group method to group all the charts on
the active sheet into one shape. This action is similar to what you would do
if you were to group a set of shapes manually. After the charts are grouped,
you copy the group and paste it to a new workbook. You then use the
BreakLink method to remove references to the original source data. The
BreakLink method ensures that Excel hard‐codes the chart data into array
formulas.

209 Chapter 8: Automating Common Reporting Tasks

Sub Macro1()

'Step 1: Declare your variables
Dim wbLinks As Variant

'Step 2: Group the charts, copy the group, and then
ungroup

 With ActiveSheet.ChartObjects.ShapeRange.Group
 .Copy
 .Ungroup
 End With

'Step 3: Paste into a new workbook and ungroup
 Workbooks.Add.Sheets(1).Paste
 Selection.ShapeRange.Ungroup

'Step 4: Break the links
 wbLinks = ActiveWorkbook.LinkSources(Type:=xlLinkType

ExcelLinks)
 ActiveWorkbook.BreakLink Name:=wbLinks(1), _
 Type:=xlLinkTypeExcelLinks

End Sub

Step 1 declares the wbLinks Variant variable. The macro uses this variable in
Step 4 to pass the link source when breaking the links.

Step 2 uses ChartObjects.ShapeRange.Group to group all the charts into a
single shape. The macro then copies the group to the clipboard. After the
group is copied, the macro ungroups the charts.

Step 3 creates a new workbook and pastes the copied group to Sheet 1. After
the group has been pasted, you can ungroup so that each chart is separate
again. Note that the newly created workbook is now the active object, so all
references to ActiveWorkbook point back to this workbook.

Step 4 captures the link source in the wbLinks variable. The macro then tells
Excel to break the links.

This technique converts the chart source links to an array formula, so it can
fail if your chart contains too many data points. How many is too many? The
number can be different depending on the memory limits of the PC you’re
working with.

210 Part IV: Macro-Charging Reports and Emails

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Printing All Charts on a Worksheet
To manually print a chart, you can click any embedded chart in your work-
sheet and then click Print. This action prints the chart on its own sheet with-
out any other data on the sheet. Although manually printing a chart sounds
easy enough, but it can become a chore if you have to do it for many charts.
This macro makes short work of this task.

How the macro works
All charts belong to the ChartObjects collection. To take an action on all
charts at one time, you simply iterate through all the charts in ChartObjects.
Each chart in the ChartObjects collection has an index number that you can
use to bring it into focus. For example, ChartObjects(1) points to the first
chart in the sheet.

In this macro, you use this concept to loop through the charts on the active
sheet with a simple counter. Each time a new chart is brought into focus, you
print it.

Sub Macro1()

'Step 1: Declare your variables
 Dim ChartList As Integer
 Dim i As Integer

'Step 2: Start looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

211 Chapter 8: Automating Common Reporting Tasks

'Step 3: Activate each chart and print
 ActiveSheet.ChartObjects(i).Activate
 ActiveChart.PageSetup.Orientation = xlLandscape
 ActiveChart.PrintOut Copies:=1

'Step 4: Increment to move to next chart
 Next i

End Sub

Step 1 declares an integer object, variable i, as a looping mechanism.

Step 2 starts the looping by setting i to count from 1 to the maximum number
of charts in the ChartObjects collection on the active sheet. When the code
starts, i initiates with the number 1. As you loop, the variable increments
by 1 until it reaches a number equal to the maximum number of charts on the
sheet.

Step 3 passes i to the ChartObjects collection as the index number. This
brings a chart into focus. You then use the ActiveChart.Printout method to
trigger the print. Note that you can adjust the Orientation property to either
xlLandscape or xlPortrait, depending on what you need.

Step 4 loops back around to increment i by one and get the next chart. After
all charts have been printed, the macro ends.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

212 Part IV: Macro-Charging Reports and Emails

Sending Emails from Excel
In This Chapter

 ▶ Emailing your workbooks as attachments

 ▶ Emailing specific sheets or ranges as attachments

 ▶ Sending emails to all addresses in your contact list

 ▶ Saving email attachments to a specified folder

D
id you know that you probably integrate Excel and Outlook all the
time? It’s true. If you’ve sent or received an Excel workbook through

Outlook, you’ve integrated the two programs; albeit manually. In this chap-
ter, I show you a few examples of how you can integrate Excel and Outlook
in a more automated fashion.

The macros in this chapter automate Microsoft Outlook. For these macros
to work, Microsoft Outlook must be installed on your system.

Mailing the Active Workbook
as an Attachment

The most fundamental Outlook task you can perform through automation is
sending an email. In the sample code in this section, the active workbook is
sent to two email recipients as an attachment.

You may noticed that I am not using the SendMail command native to Excel,
which enables you to send simple email messages directly from Excel.
However, the SendMail command is not as robust as Outlook automation.
SendMail does not allow you to attach files or to use the CC and BCC fields
in the email. These limitations make the technique used by this section’s
macro a superior method.

Chapter 9

214 Part IV: Macro-Charging Reports and Emails

How the macro works
Because this code will be run from Excel, you need to set a reference to
Microsoft Outlook Object Library. Open Visual Basic Editor in Excel and
choose Tools ➪ References. Scroll down until you find the entry Microsoft
Outlook xx Object Library, where the xx is your version of Outlook. Select the
check box next to the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Open Outlook and start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 3: Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com;

mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add ActiveWorkbook.FullName
 .Display
 End With

'Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Step 1 declares two variables. OLApp is an Object variable that exposes the
Outlook Application object, and OLMail is an Object variable that holds a
mail item.

Step 2 activates Outlook and starts a new session. Note that you use OLApp.
Session.Logon to log in to the current MAPI session with default creden-
tials. Step 2 also creates a mail item, similar to manually selecting the New
Message button in Outlook.

mailto:admin@datapigtechnologies.com
mailto:mike@datapigtechnologies.com

215 Chapter 9: Sending Emails from Excel

Step 3 builds the profile of your mail item, including the To recipients, CC
recipients, BCC recipients, subject, body, and attachments. Note that the
recipients are entered in quotes and separates recipients with a semicolon.
The standard syntax for an attachment is .Attachments.Add “File Path”.
In this code, you specify the current workbook’s file path with the syntax
ActiveWorkbook.Fullname, effectively setting the current workbook as the
attachment for the email. When the message has been built, you use the
.Display method to review the email. You can replace .Display with .Send to
automatically fire off the email without reviewing.

Releasing the objects assigned to your variables is generally good practice to
reduce the chance of any problems caused by rouge objects that may remain
open in memory. As you can see in Step 4, you simply set the variable to
Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Mailing a Specific Range
as an Attachment

You may not always want to send your entire workbook through email. The
macro in this section demonstrates how to send a specific range of data
rather than the entire workbook.

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools➪References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next
to the entry.

216 Part IV: Macro-Charging Reports and Emails

Sub Macro1()

'Step 1: Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Copy range, paste to new workbook, and save it
 Sheets("Revenue Table").Range("A1:E7").Copy
 Workbooks.Add
 Range("A1").PasteSpecial xlPasteValues
 Range("A1").PasteSpecial xlPasteFormats
 ActiveWorkbook.SaveAs ThisWorkbook.Path &

"\TempRangeForEmail.xlsx"

'Step 3: Open Outlook and start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com;

mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path &

"\TempRangeForEmail.xlsx")
 .Display
 End With

'Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Step 1 declares two variables. OLApp is an Object variable that exposes the
Outlook Application object, and OLMail is an Object variable that holds a
mail item.

mailto:admin@datapigtechnologies.com
mailto:mike@datapigtechnologies.com

217 Chapter 9: Sending Emails from Excel

Step 2 copies a specified range and pastes the values and formats to a
 temporary Excel file. The macro then saves the temporary file, giving it a
file path and filename.

Step 3 activates Outlook and starts a new session. Note that you use OLApp.
Session.Logon to log in to the current MAPI session with default creden-
tials Step 3 also creates a mail item, similar to manually selecting the New
Message button in Outlook.

Step 4 builds the profile of the mail item, including the To recipients, CC
recipients, BCC recipients, subject, body, and attachments. Note that the
recipients are entered with quotes and separated with a semicolon.

You specify your newly created temporary Excel file path as the attachment
for the email. When the message has been built, you use the .Display method
to review the email. You can replace .Display with .Send to automatically fire
off the email without reviewing it.

You don’t want to leave temporary files hanging out there, so after the email
has been sent, Step 5 deletes the temporary Excel file you created.

It is generally good practice to release the objects assigned to your variables
to reduce the chance of any problems caused by rouge objects that may
remain open in memory. In Step 6, you simply set the variable to Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Mailing a Single Sheet as an Attachment
The macro in this section demonstrates how you would send a specific
 worksheet of data rather than the entire workbook.

218 Part IV: Macro-Charging Reports and Emails

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools ➪ References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next to
the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Copy worksheet, paste to new workbook, and save
it

 Sheets("Revenue Table").Copy
 ActiveWorkbook.SaveAs ThisWorkbook.Path &

"\TempRangeForEmail.xlsx"

'Step 3: Open Outlook and start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com;

mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path &

"\TempRangeForEmail.xlsx")
 .Display
 End With

'Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

mailto:admin@datapigtechnologies.com
mailto:mike@datapigtechnologies.com

219 Chapter 9: Sending Emails from Excel

Step 1 first declares two variables. OLApp is an Object variable that exposes
the Outlook Application object, and OLMail is an Object variable that holds a
mail item.

Step 2 copies a specified worksheet and pastes the values and formats to a
temporary Excel file. You then save the temporary file, giving it a file path
and filename.

Step 3 activates Outlook and starts a new session. Note that you use OLApp.
Session.Logon to log in to the current MAPI session with default credentials.
You also create a mail item. Step 3 also creates a mail item, similar to manu-
ally selecting the New Message button in Outlook.

Step 4 builds the profile of the mail item, including the To recipients, CC
recipients, BCC recipients, subject, body, and attachments. The recipients
are entered in quotes and separated by a semicolon.

In this code, you specify your newly created temporary Excel file path as
the attachment for the email. When the message has been built, you use the
.Display method to review the email. You can replace .Display with .Send to
automatically fire off the email without reviewing it.

You don’t want to leave temporary files hanging out there, so after the email
has been sent, you delete the temporary Excel file you created.

It is generally good practice to release the objects assigned to your variables
to reduce the chance of any problems caused by rouge objects that may
remain open in memory. As you can see in the code, you simply set the vari-
able to Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

220 Part IV: Macro-Charging Reports and Emails

Sending Mail with a Link
to Your Workbook

Sometimes, you don’t need to send an attachment. Instead, you simply want
to send an automated email with a link to a file. The macro in this section
does just that.

Note that your users or customers will have to have at least read access to
the network or location that is tied to the link.

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools➪References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next to
the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Open Outlook and start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 3: Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com;

mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "Monthly Report Email with Link"
 .HTMLBody = _
 "<p>Monthly report is ready. Click to Link to get

it.</p>" &
 "<p><a SPihref=" & Chr(34) &

"Z:\Downloads\MonthlyReport.xlsx" & _
 Chr(34) & ">Download Now</p>"

mailto:admin@datapigtechnologies.com
mailto:mike@datapigtechnologies.com

221 Chapter 9: Sending Emails from Excel

 .Display
 End With

'Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Step 1 declares two variables. OLApp is an Object variable that exposes the
Outlook Application object, and OLMail is an Object variable that holds a
mail item.

Step 2 activates Outlook and starts a new session. Note that you use OLApp.
Session.Logon to log in to the current MAPI session with default credentials.
This step also creates a mail item. Step 2 also creates a mail item, similar to
manually selecting the New Message button in Outlook.

Step 3 builds the profile of your mail item, including the To recipients, CC
recipients, BCC recipients, subject, and HTMLBody.

To create the hyperlink, you need to use the HTMLBody property to pass
HTML tags. You can replace the file path address shown in the macro with
the address for your file. Note that this macro uses the .Display method,
which opens the email for your review. You can replace .Display with .Send
to automatically fire off the email without reviewing it.

It is generally good practice to release the objects assigned to your variables
to reduce the chance of any problems caused by rouge objects that may
remain open in memory. In Step 4, you simply set the variable to Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

222 Part IV: Macro-Charging Reports and Emails

Mailing All Email Addresses
in Your Contact List

Ever need to send out a mass mailing such as a newsletter or a memo?
Instead of manually entering each contact’s email address, you can run the
following macro. In this procedure, you send one email, automatically adding
all the email addresses in your contact list to the email.

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools ➪ References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next to
the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object
 Dim MyCell As Range
 Dim MyContacts As Range

'Step 2: Define the range to loop through
 Set MyContacts = Sheets("Contact List").

Range("H2:H21")

'Step 3: Open Outlook
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Add each address in the contact list
 With OLMail

 For Each MyCell In MyContacts
 .BCC = .BCC & Chr(59) & MyCell.Value
 Next MyCell

 .Subject = "Sample File Attached"
 .Body = "Sample file is attached"

223 Chapter 9: Sending Emails from Excel

 .Attachments.Add ActiveWorkbook.FullName
 .Display

 End With

'Step 5: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Step 1 declares four Object variables: OLApp exposes the Outlook
Application object, OLMail holds a mail item, MyCell holds an Excel range,
and MyContacts holds an Excel range.

Step 2 points the MyContacts variable to the range of cells that contain your
email addresses. You’ll be looping through this range of cells to add email
addresses to your email.

Step 3 activates Outlook and starts a new session. Note that you use OLApp.
Session.Logon to log in to the current MAPI session with default credentials.
You also create a mail item. Step 3 also creates a mail item, similar to manu-
ally selecting the New Message button in Outlook.

Step 4 builds the profile of your mail item. Note that you are looping through
each cell in the MyContacts range and adding the contents (which are email
addresses) to BCC. You use the BCC property instead of To or CC so that
each recipient gets an email that looks as though it was sent only to him or
her. Your recipients won’t be able to see the other email addresses because
they are sent with BCC (Blind Courtesy Copy).

This macro uses the .Display method, which opens the email for your review.
You can replace .Display with .Send to automatically fire off the email without
reviewing.

It is generally good practice to release the objects assigned to your variables
to reduce the chance of any problems caused by rouge objects that may
remain open in memory. In Step 5, you simply set the variable to Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click project/workbook name in the project window.

224 Part IV: Macro-Charging Reports and Emails

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Saving All Attachments to a Folder
You may often find that certain processes lend themselves to the exchange
of data by email. For example, you may send a budget template out for each
branch manager to fill out and send back to you by email. Well, if there
are 150 branch members, it could be a bit of a pain to save all those email
attachments.

The following macro demonstrates one solution to this problem. In this pro-
cedure, you use automation to search for all attachments in the inbox and
save them to a specified folder.

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools➪References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next to
the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As MailItem
 Dim Atmt As Attachment
 Dim FileName As String

'Step 2: Set a reference to your inbox
 Set ns = GetNamespace("MAPI")
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

'Step 3: Check for messages in your inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox "No messages in folder."
 Exit Sub
 End If

225 Chapter 9: Sending Emails from Excel

'Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir "C:\Temp\MyAttachments\"

'Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

'Step 6: Save each attachment and then go to the next
attachment

 For Each Atmt In MItem.Attachments
 FileName = "C:\Temp\MyAttachments\" & Atmt.FileName
 Atmt.SaveAsFile FileName
 Next Atmt

'Step 7: Move to the next mail item
 Next MItem

'Step 8: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

Step 1 declares five variables. ns is an object that exposes the MAPI
namespace. MyInbox exposes the target mail folder. MItem exposes the prop-
erties of a mail item. Atmt is an Object variable that holds an Attachment
object. FileName is a String variable that holds the name of the attachment.

Step 2 sets the MyInbox variable to point to the inbox for the default mail client.

Step 3 performs a quick check to make sure that the inbox contains mes-
sages. If there are no messages, the macro exits the procedure and displays a
message box stating that there are no messages.

Step 4 creates a directory to hold the attachments you find. Although you
could use an existing directory, creating a directory specifically for the
attachments you save is usually best. Here, you create that directory on the
fly. You use On Error Resume Next to ensure that the code does not error out
if the directory you’re trying to create already exists.

Step 5 starts the loop through each mail item in the target mail folder.

Step 6 ensures that each mail item you loop through is checked for attach-
ments. As you loop, you save each attachment in the specified directory
you created.

226 Part IV: Macro-Charging Reports and Emails

Step 7 loops back to Step 5 until there are no more mail items to go through.

Releasing the objects assigned to your variables is good general practice
because it reduces the chance of any problems caused by rogue objects that
may remain open in memory. Step 8 simply sets the variable to Nothing.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Saving Certain Attachments to a Folder
In the preceding macro, you used automation to search for all attachments
in your inbox and to save them to a specified folder. However, in most situ-
ations, you probably want to save only certain attachments, such as attach-
ments attached to emails that contain a certain subject. In this example, you
get a demonstration of how to check for certain syntax and selectively save
attachments.

How the macro works
Because this code is run from Excel, you need to set a reference to Microsoft
Outlook Object Library. Open Visual Basic Editor in Excel and choose
Tools ➪ References. Scroll down to the Microsoft Outlook xx Object Library
entry, where the xx is your version of Outlook. Select the check box next to
the entry.

Sub Macro1()

'Step 1: Declare your variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As Object
 Dim Atmt As Attachment
 Dim FileName As String
 Dim i As Integer

227 Chapter 9: Sending Emails from Excel

'Step 2: Set a reference to your inbox
 Set ns = GetNamespace("MAPI")
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

'Step 3: Check for messages in your inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox "No messages in folder."
 Exit Sub
 End If

'Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir "C:\OffTheGrid\MyAttachments\"

'Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

'Step 6: Check for the words Data Submission in Subject
line

 If InStr(1, MItem.Subject, "Data Submission") < 1 Then
 GoTo SkipIt
 End If

'Step 7: Save each attachment with a log number
 i = 0
 For Each Atmt In MItem.Attachments
 FileName = _
 "C:\Temp\MyAttachments\Attachment-" & i & "-" &

Atmt.FileName
 Atmt.SaveAsFile FileName
 i = i + 1
 Next Atmt

'Step 8: Move to the next mail item
SkipIt:
 Next MItem

'Step 9: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

228 Part IV: Macro-Charging Reports and Emails

Step 1 first declares six variables. ns is an object that exposse the MAPI
namespace. MyInbox exposes the target mail folder. MItem exposes the
 properties of a mail item. Atmt is an Object variable that holds an Attachment
object. FileName is a String variable that holds the name of the attachment.
i is an Integer variable used to ensure that each attachment is saved as a
unique name.

Step 2 sets the MyInbox variable to point to the inbox for your default
mail client.

Step 3 performs a quick check to make sure that your inbox contains mes-
sages. If there are no messages, it exits the procedure and displays a message
box stating that there are no messages.

Step 4 creates a directory to hold the attachments you find. Note that it uses
On Error Resume Next to ensure that the code does not error out if the direc-
tory you’re trying to create already exists.

Step 5 starts the loop through each mail item in the target mail folder.

In Step 6, you use the Instr function to check whether the string “Data
Submission” is in the subject line of the email. If that string does not exist,
you don’t care about any attachments to that message. Therefore, you force
the code to go to the SkipIt reference (in Step 8). The line of code immedi-
ately following the SkipIt reference is essentially a Move Next command,
telling the procedure to move to the next mail item.

Step 7 loops through and saves each attachment in the specified directory you
created. You add a running integer to the name of each attachment to ensure
that each one is saved as a unique name, to avoid overwriting attachments.

Step 8 loops back to Step 5 until there are no more mail items to go through.

Releasing the objects assigned to your variables is generally good practice
because it reduces the chance of any problems caused by rouge objects that
may remain open in memory. In Step 9, you simply set the variable to Nothing.

How to use the macro
To implement this macro, you can copy and paste it into a standard module:

1. Activate Visual Basic Editor by pressing Alt+F11.

2. Right‐click the project/workbook name in the project window.

3. Choose Insert ➪ Module.

4. Type or paste the code into the newly created module.

Part

 Discover ten jobs that are available for Excel analysts who have Excel macro skills in
the article found at www.dummies.com/extras/excelmacros.

The Part of Tens
Part V

http://www.dummies.com/extras/excelmacros

In this part . . .
 ✓ Take a look at a few tricks that help you more efficiently use

Visual Basic Editor.

 ✓ Discover some of the debugging tips for avoiding errors in your
VBA code.

 ✓ Learn how to most effectively use the Excel Help system when
searching for VBA help.

 ✓ Gain insight into some of the resources available online to
 further your macro skills.

Ten Handy Visual Basic Editor Tips
In This Chapter

 ▶ Applying block comments

 ▶ Copying multiple lines of code

 ▶ Jumping between modules and procedures

 ▶ Teleporting to your functions

 ▶ Staying in the right procedure

 ▶ Stepping through your code

 ▶ Stepping to a specific code line

 ▶ Stopping code at a predefined point

 ▶ Seeing the beginning and end of variable values

 ▶ Turning off Auto Syntax Check

I
f you’re going to be spending time working with macros in Visual Basic
Editor, why not take advantage of a few of the built‐in tools that will make

your job easier? Whether you’re a fresh‐faced analyst new to programming,
or a jaded veteran living on Mountain Dew and sunflower seeds, these tips
will greatly improve your macro programming experience.

Applying Block Comments
Placing a single apostrophe in front of any line of code tells Excel to skip that
line of code. This technique is called commenting out code. Most program-
mers use the single apostrophe to create comments or notes in the code, as
shown in Figure 10-1.

It’s sometimes beneficial to comment out multiple lines of code. This way,
you can test certain lines of code while telling Excel to ignore the commented
lines.

Chapter 10

232 Part V: The Part of Tens

Instead of spending time commenting out one line at a time, you can use the
Edit toolbar to comment out an entire block of code.

To activate the Edit toolbar, go to the VBE menu and choose View➪
Toolbars➪Edit. Select the lines of code you want commented out and then
click the Comment Block icon on the Edit toolbar, as shown in Figure 10-2.

You can ensure that the Edit toolbar is always visible by dragging it up to the
VBE menu. It will anchor itself to the location you choose.

Copying Multiple Lines of Code
You can copy entire blocks of code by highlighting the lines you need, and
then holding down the Ctrl key while dragging the block. This old Windows
trick works even when you drag across modules.

Figure 10-1:
A single

apostrophe
in front of

any line
turns that
line into a
comment.

Figure 10-2:
Use the

Edit toolbar
to apply

 comments
to a block

of code.

233 Chapter 10: Ten Handy Visual Basic Editor Tips

You’ll know that you are dragging a copy when your cursor shows a plus
symbol next to it, as shown in Figure 10-3.

Jumping between Modules
and Procedures

After your cache of macro code starts to grow, it can be a pain to quickly
move between modules and procedures. You can ease the pain by using a
few hot keys.

 ✓ Press Ctrl+Tab to quickly move between modules.

 ✓ Press Ctrl+Page Up and Ctrl+Page Down to move between procedures
within a module.

Teleporting to Your Functions
When reviewing a macro, you may encounter a variable or a function name
that is obviously pointing to some other piece of code. Instead of scouring
through all modules to find where that function or variable name comes
from, you can simply place your cursor on that function or variable name and
press Shift+F2.

As Figure 10-4 illustrates, you are instantly teleported to the origin of that
function or variable name. Pressing Ctrl+Shift+F2 will take you back to where
you started.

Figure 10-3:
Ctrl‐drag

to create a
copy.

234 Part V: The Part of Tens

Staying in the Right Procedure
When your modules contain multiple procedures, scrolling through a particu-
lar procedure without inadvertently scrolling into another procedure can be
difficult. You will often find yourself scrolling up and then down, trying to get
back to the correct piece of code.

To avoid this nonsense, click the Procedure View button at the lower‐left
corner of VBE, as shown in Figure 10-5. Doing so limits scrolling to only the
procedure you’re in.

Stepping through Your Code
VBA offers several tools to help you debug your code. In programming, the
term debugging means finding and correcting possible errors in code.

Figure 10-5:
 Limit

 scrolling to
the active

procedure.

Figure 10-4:
Press

Shift+F2 on
a function

or variable
name to be
taken to it.

235 Chapter 10: Ten Handy Visual Basic Editor Tips

One of the more useful debugging tools is the capability to step through your
code one line at a time. When you step through code, you are watching each
line get executed.

To step through your code, you need to put your macro in debug mode.
Simply place your cursor anywhere in your macro and then press the F8 key.

The first line of code is highlighted and a small arrow appears on the code
window’s left margin, as shown in Figure 10-6. Press F8 again to execute the
highlighted line of code and move to the next line. Keep pressing F8 to watch
each line get executed until the end of the macro.

As a bonus, while stepping through the code, you can hover over any String
or Integer variable to see the current value of that variable.

To get out of debug mode, go up to the VBE menu and choose Debug➪Step Out.

Stepping to a Specific Code Line
In the last example, you saw how you can step through your code by plac-
ing the cursor anywhere in the macro and then pressing F8. Your macro
goes into debug mode. The first line of code is highlighted and a small arrow
appears in the code window’s left margin.

This is great, but what if you want to start stepping through your code at a
specific line? Well, you can do just that by simply moving the arrow!

Figure 10-6:
Press F8 to

step through
each line of
your macro.

236 Part V: The Part of Tens

When a line of code is highlighted in debug mode, you can click and drag the
arrow in the left margin of the code window upward or downward, dropping
it at whichever line of code you want to execute next, as shown in Figure 10-7.

Stopping Code at a Predefined Point
Another useful debugging tool is the ability to set a breakpoint in your code.
When you set a breakpoint, your code will run as normal and then halt at the
line of code where you defined as the breakpoint.

This debugging technique comes in handy when you want to run tests small
blocks of code at a time. For example, if you suspect there may be an error
in your macro but you know that the majority of the macro runs without any
problems, you can set a breakpoint starting at the suspect line of code then
run the macro. When the macro reaches your breakpoint, execution halts.
At this point, you can then press the F8 key on your keyboard to watch as the
macro runs one line at a time.

To set a breakpoint in your code, place your cursor where you want the
breakpoint to start, and then press the F9 key on your keyboard. As
Figure 10-8 demonstrates, VBA will clearly mark the breakpoint with a dot in
the Code window’s left margin, and the code line itself will be shaded maroon.

Figure 10-7:
Drag the

arrow while
stepping
through

your code.

Figure 10-8:
A breakpoint

is marked
by a dot and
shaded text.

237 Chapter 10: Ten Handy Visual Basic Editor Tips

When your macro hits a breakpoint, it will effectively be placed into debug
mode. To get out of debug mode, you can go up to the VBE menu and select
Debug➪Step Out.

Seeing Beginning and Ending
Variable Values

If you hover over a String or Integer variable in VBA while in debug mode,
you can see the value of that variable in a tooltip. This feature allows you to
see the values that are being passed in and out of variables, which is useful
when debugging code.

However, tooltips can hold only 77 characters (including the variable name),
so if the value in your variable is too long, it gets cut off. To see beyond the
first 77 characters, simply hold down the Ctrl key while you hover.

Figure 10-9 demonstrates what the tooltip looks like when hovering over a
variable in debug mode.

Turning Off Auto Syntax Check
Often times, while working on some code, you’ll find that you need to go to
another line to copy something. You’re not finished with the line; you just
need to leave it for a second. But VBE immediately stops you in your tracks
with an error message, similar to the one shown in Figure 10-10, warning you
about something you already know.

Figure 10-9:
The

 beginning
and ending
characters

in a variable
tooltip.

238 Part V: The Part of Tens

These message boxes force you to stop what you’re doing to acknowledge
the error by pressing the OK button. After a half‐day of these abrupt message
boxes, you’ll be ready to throw your computer against the wall.

Well, you can save your computer and your sanity by turning off Auto Syntax
Check. Go up to the VBE menu and choose Tools➪Options. The Options
dialog box appears, displaying the Editor tab shown in Figure 10-11. Deselect
the Auto Syntax Check option to stop these annoying error messages.

Don’t worry about missing a legitimate mistake. Your code will still turn red if
you goof up, providing a visual indication that something is wrong.

Figure 10-10:
An

 unfinished
line of code
results in a

jarring error
message.

Figure 10-11:
Prevent
warning

messages
while

 coding.

Ten Places to Turn
for Macro Help

In This Chapter
 ▶ Let Excel write the macro for you

 ▶ Use the VBA Help files

 ▶ Pilfer code from the Internet

 ▶ Leverage user forums

 ▶ Visit expert blogs

 ▶ Mine YouTube for video training

 ▶ Attend live and online training classes

 ▶ Learn from Microsoft Office Dev Center

 ▶ Dissect other Excel files in your organization

 ▶ Ask your local Excel genius

N
o one can become a macro expert in one day. VBA is a journey of time
and practice. The good news is that there are plenty of resources out

there that can help you on your path. In this chapter, you’ll discover ten of
the most useful places to turn to when you need an extra push in the right
direction.

Letting Excel Write the Macro for You
One of the best places to get macro help is Macro Recorder in Excel. When
you record a macro with Macro Recorder, Excel writes the underlying VBA
for you. After recording, you can review the code; see what the recorder is
doing, and then try to turn the code it creates into something more suited to
your needs.

Chapter 11

240 Part V: The Part of Tens

For example, let’s say you need a macro that refreshes all the pivot tables
in your workbook and clears all the filters in each pivot table. Writing this
macro from a blank canvas would be a daunting task. Instead, you can start
Macro Recorder and record yourself refreshing all the pivot tables and
 clearing all the filters. When you stop recording, review the macro and make
any changes you deem necessary.

Using the VBA Help Files
To a new Excel user, the Help system may seem like a clunky add‐on that
returns a perplexing list of topics that has nothing to do with the original
topic being searched. However, if you learn how to use the Excel Help system
effectively, it will often be the fastest and easiest way to get help on a topic.

You need to remember two basic tenants of the Excel Help system:

 ✓ Location matters when asking for help. Excel has two Help systems.
One provides help with Excel features and the other provides help with
VBA programming topics. Instead of doing a global search with your
criteria, Excel throws your search criteria only against the Help system
relevant to your current location, so the help you get is determined by
the area of Excel in which you’re working. If you need help on a topic
that involves macros and VBA programming, for example, you’ll need to
be in VBA Editor when you perform your search.

 ✓ Online help is better than offline help. When you search for help on
a topic, Excel checks to see whether you’re connected to the Internet.
If you are, Excel returns help results based on online content from
Microsoft’s website. If you aren’t, Excel uses the Help files that are
stored locally with Microsoft Office. One way to maximize the help you
get in Excel is to use the online help. Online help is generally better than
offline help because the content you find with online help is often more
detailed and includes updated information, as well as links to other
resources not available offline.

Pilfering Code from the Internet
The dirty secret about programming in the Internet age is that there is no
longer any original code. All the macro syntax that anyone will ever need has
been documented somewhere on the Internet. In many ways, programming
has become less about the code one creates from scratch and more about
how to take existing code and apply it creatively to a particular scenario.

241 Chapter 11: Ten Places to Turn for Macro Help

If you’re stuck trying to create a macro for a particular task, fire up your
favorite online search engine and describe the task you’re trying to accom-
plish. For the best results, enter Excel VBA before your description.

For example, if you’re trying to write a macro that deletes all blank rows in
a worksheet, search for Excel VBA delete blank rows in a worksheet. You can
bet that someone on the Internet has tackled the same problem, and you’ll
find example code that will give you the nugget of information you need to
jump‐start ideas for building your own macro.

Leveraging User Forums
If you find yourself in a bind, you can post your question in a forum and
get customized guidance. User forums are online communities that revolve
around a particular topic. In these forums, you can post a question and
experts will offer advice. The folks answering the questions are typically
volunteers who have a passion for helping the community solve real‐world
challenges.

Many forums are dedicated to all things Excel. To find an Excel forum, enter
the words Excel forum in your favorite online search engine.

Here are a few tips for getting the most out of user forums:

 ✓ Read and follow the forum rules before you get started. These rules
often include advice on posting question and community etiquette
guidelines.

 ✓ Use a concise and accurate subject title for your question. Don’t create
forum questions with vague titles such as Need advice or Please help.

 ✓ Keep the scope of your question narrow. Don’t ask questions like, "How
do I build an invoicing macro in Excel?"

 ✓ Be patient. Remember that the folks answering your question are vol-
unteers who typically have day jobs. Give the community some time to
answer your question.

 ✓ Check back often. After posting your question, you may receive
requests for more details about your scenario. Do everyone a favor and
return to your posting to either review the answers or respond to follow‐
up questions.

 ✓ Thank the expert who answered your question. Take a moment to post
a thank‐you to the expert who helped you out.

242 Part V: The Part of Tens

Visiting Expert Blogs
Several dedicated Excel gurus share their knowledge through blogs. These
blogs are often treasure troves of tips and tricks, offering nuggets that can
help build your skills. Best of all, they’re free!

Although these blogs will not necessarily speak to your particular needs,
they do offer articles that advance your knowledge of Excel and can even pro-
vide general guidance on how to apply Excel in practical business situations.

Here is a list of a few of the best Excel blogs on the Internet today:

 ✓ ExcelGuru: Ken Puls is a Microsoft Excel MVP who shares knowledge on
his blog (www.excelguru.ca/blog). In addition to his blog, Ken offers
several learning resources for advancing your knowledge in Excel.

 ✓ Chandoo.org: Purna “Chandoo” Duggirala is a Microsoft Excel MVP
out of India who burst on the scene in 2007. His innovative blog
(http://chandoo.org/) offers many free templates and article that
are aimed at “making you awesome in Excel.”

 ✓ Contextures: Debra Dalgleish is a Microsoft Excel MVP and the owner
of a popular Excel site (www.contextures.com). With an alphabetized
list of over 350 Excel topics, the site is sure to provide you with some-
thing of interest.

 ✓ DailyDose: Dick Kusleika is the owner of the longest‐running Excel blog
(www.dailydoseofexcel.com). He is the king of Excel VBA blogging,
with over ten years’ worth of articles and examples.

 ✓ MrExcel: Bill Jelen is a larger‐than‐life ambassador of Excel. This long‐
time Excel MVP offers over a thousand free videos and a huge library of
training resources on his site (www.mrexcel.com).

Mining YouTube for Video Training
Some of us learn better if we watch a task being done. If you find that you
absorb video training better than online articles, consider mining YouTube.
You might be surprised at how many free high‐quality video tutorials you can
find, run by amazing folks who have a passion for sharing knowledge.

Go to www.YouTube.com and search for the words Excel VBA.

http://www.excelguru.ca/blog
http://chandoo.org/
http://www.contextures.com
http://www.dailydoseofexcel.com/
http://www.mrexcel.com
http://www.YouTube.com

243 Chapter 11: Ten Places to Turn for Macro Help

Attending Live and Online
Training Classes

Live and online training events are an awesome way to absorb Excel knowl-
edge from a diverse group of people. Not only is the instructor feeding you
techniques, but the lively discussions during the class can provide a wealth
of ideas and new tips. If you thrive in the energy of live training events, con-
sider searching for Excel classes.

Here are a few site that provide excellent instructor‐led Excel courses:

 ✓ Excel Hero Academy: http://academy.excelhero.com/
excel‐hero‐academy‐tuition

 ✓ Chandoo.org: http://chandoo.org/wp/vba‐classes

 ✓ Exceljet: https://exceljet.net

Learning from Microsoft
Office Dev Center

The Microsoft Office Dev Center site is dedicated to helping new developers
get a quick start in programming Office products. You can get to the Excel
portion of this site by going to https://msdn.microsoft.com/en‐us/
library/office/fp179694.aspx.

Although the site can be a bit difficult to navigate, it’s worth a visit to see all
the free resources, including sample code, tools, and step‐by‐step instructions.

Dissecting Other Excel Files
in Your Organization

Like finding gold in your backyard, the existing files in your organization are
often a treasure trove for learning. Open Excel files that contain macros, and
see how others in your organization use them. Try to go through the macros
line‐by‐line and see if you can spot new techniques.

http://academy.excelhero.com/excel-hero-academy-tuition
http://academy.excelhero.com/excel-hero-academy-tuition
http://chandoo.org/wp/vba-classes
https://exceljet.net
https://msdn.microsoft.com/en-us/library/office/fp179694.aspx
https://msdn.microsoft.com/en-us/library/office/fp179694.aspx

244 Part V: The Part of Tens

You could find a few new tricks you never thought of. You may even stumble
upon entire chunks of useful code you can copy and implement in your own
workbooks.

Asking Your Local Excel Genius
Do you have an Excel genius in your company, department, organization,
or community? Make friends with that person today. You’ll have your own
 personal Excel forum.

Most Excel experts love sharing their knowledge. So don’t be afraid to
approach your local Excel guru to ask questions or seek out advice on how to
tackle certain macro problems.

Ten Ways to Speed
Up Your Macros

In This Chapter
 ▶ Halting sheet calculations

 ▶ Disabling sheet screen updating

 ▶ Turning off status bar updating

 ▶ Telling Excel to ignore events

 ▶ Hiding page breaks

 ▶ Suspending pivot table updates

 ▶ Steering clear of copy and paste

 ▶ Using the With statement

 ▶ Avoiding the Select method

 ▶ Limiting trips to the worksheet

A
s your macros become increasingly robust and complex, you may
find that they lose performance. When discussing macros, the word

performance is usually synonymous with speed. Speed is how quickly your
VBA procedures perform their intended tasks.

You can take steps to improve the performance of your macros. In this
 chapter, you find ten ways to help keep your Excel macros running at their
optimum performance level.

Halting Sheet Calculations
Did you know that each time a cell that affects any formula in your spread-
sheet is changed or manipulated, Excel recalculates the entire worksheet?

Chapter 12

246 Part V: The Part of Tens

In worksheets that have a large amount of formulas, this behavior can
 drastically slow down your macros.

If your workbook is formula intensive, you may not want Excel to trigger
a recalculation every time a cell value is altered by your macro. You can
use the Application.Calculation property to tell Excel to switch to manual
 calculation mode.

When a workbook is in manual calculation mode, the workbook will not recal-
culate until you explicitly trigger a calculation by pressing the F9 key.

Turning off the automatic calculation behavior of Excel can dramatically
speed up your macro. The idea is to place Excel into manual calculation
mode, run your code, and then switch back to automatic calculation mode.

Sub Macro1()

Application.Calculation = xlCalculationManual

‘Place your macro code here

Application.Calculation = xlCalculationAutomatic

End Sub

Setting the calculation mode back to xlCalculationAutomatic will automati-
cally trigger a recalculation of the worksheet, so there is no need to press the
F9 key after your macro runs.

If your macro relies on updated values during processing, you’ll want to
force a calculation so that the macro has the latest values. You can force
Excel to calculate by using the Application.Calculate method. Simply enter
Application.Caculate as a line in your code where appropriate.

Disabling Sheet Screen Updating
You may notice that when your macros run, your screen does a fair amount
of flickering. This flickering is Excel trying to redraw the screen to show the
current state of the worksheet. Unfortunately, each time Excel redraws the
screen, it takes up memory resources. In most cases, you don’t need Excel
using up resources to redraw the screen each time your macro performs
some action.

In addition to setting the calculation mode to manual, you can use the
Application.ScreenUpdating property to disable screen updates until your

247 Chapter 12: Ten Ways to Speed Up Your Macros

macro has completed. Disabling screen updating saves time and resources,
allowing your macro to run a little faster. After your macro code has finished
running, you can turn screen updating back on.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False

‘Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True

End Sub

After you set the ScreenUpdating property back to True, Excel will automati-
cally trigger a redraw of the screen.

Turning Off Status Bar Updates
The Excel status bar, which appears at the bottom of the Excel window, nor-
mally displays the progress of certain actions in Excel. For example, if you
copy and paste a range, Excel will show the progress of that operation on the
status bar. Often times, the action is performed so fast that you don’t see the
status bar progress. However, if your macro is working with lots of data, the
status bar will take up some resources.

It’s important to note that turning off screen updating is separate from turn-
ing off the status bar display. That is to say, the status bar will continue to
be updated even if you disable screen updating. You can use the Application.
DisplayStatusBar property to temporarily disable any status bar updates, fur-
ther improving the performance of your macro:

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False

‘Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True

End Sub

248 Part V: The Part of Tens

Telling Excel to Ignore Events
As discussed in Chapter 3, you can implement macros as event procedures,
telling Excel to run certain code when a worksheet or workbook changes.

Sometimes, standard macros make changes that will trigger an event pro-
cedure. For instance, suppose you have a Worksheet_Change event imple-
mented for Sheet1 of your workbook. Any time a cell or a range is altered, the
Worksheet_Change event will fire.

So if you have a standard macro that manipulates several cells on Sheet1,
each time a cell on that sheet is changed, your macro has to pause while the
Worksheet_Change event runs. You can imagine how this behavior would
slow down your macro.

You can add another level of performance boosting by using the
EnableEvents property to tell Excel to ignore events while your macro runs.

Simply set the EnableEvents property to False before running your macro.
After your macro code is finished running, you can set the EnableEvents
property back to True.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False
Application.EnableEvents = False

‘Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True
Application.EnableEvents = True

End Sub

Although disabling events can indeed speed up your macros, you may need
some events to trigger while your macro runs. Be sure to think about your
specific scenario and determine what will happen if your worksheet or work-
book events are turned off while your macro runs.

249 Chapter 12: Ten Ways to Speed Up Your Macros

Hiding Page Breaks
Another opportunity for a performance boost can be found in page breaks.
Each time your macro modifies the number of rows, modifies the number of
columns, or alters the page setup of a worksheet, Excel is forced to take time
recalculating the page breaks shown on the sheet.

You can avoid this behavior by simply hiding the page breaks before starting
your macro.

Set the DisplayPageBreaks sheet property to False to hide page breaks. If
you want to continue to show page breaks after your macro runs, set the
DisplayPageBreaks sheet property back to True.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False
Application.EnableEvents = False
Activesheet.DisplayPageBreaks = False

‘Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True
Application.EnableEvents = True
Activesheet.DisplayPageBreaks = True

End Sub

Suspending Pivot Table Updates
If your macro manipulates pivot tables that contain large data sources, you
may experience poor performance when doing things like dynamically adding
or moving pivot fields. Each change you make to the structure of the pivot
table requires Excel to recalculate the values in the pivot table for each pivot
field your macro touches.

You can improve the performance of your macro by suspending the recalcu-
lation of the pivot table until all pivot field changes have been made. Simply
set the PivotTable.ManualUpdate property to True to defer recalculation, run
your macro code, and then set the PivotTable.ManualUpdate property back
to False to trigger the recalculation.

250 Part V: The Part of Tens

Sub Macro1()

ActiveSheet.PivotTables("PivotTable1").ManualUpdate=True

‘Place your macro code here

ActiveSheet.PivotTables("PivotTable1").ManualUpdate=False

End Sub

Steering Clear of Copy and Paste
It’s important to remember that although Macro Recorder saves time by
writing VBA code for you, it does not always write the most efficient code.
A prime example is how Macro Recorder captures any copy‐and‐paste action
you perform while recording.

If you were to copy cell A1 and paste it into cell B1 while recording a macro,
Macro Recorder would capture the following:

 Range("A1").Select

 Selection.Copy

 Range("B1").Select

 ActiveSheet.Paste

Although this code will indeed copy from cell A1 and paste into B1, it forces
Excel to utilize the clipboard, which adds a kind of middleman where there
does not need to be one.

You can give your macros a slight boost by cutting out the middleman and
performing a direct copy from one cell to a destination cell. This alternate
code uses the Destination argument to bypass the clipboard and copy the
contents of cell A1 directly to cell B1.

Range(“A1”).Copy Destination:=Range(“B1”)

If you need to copy only values (not formatting or formulas), you can
improve performance even more by avoiding the Copy method all together.
Simply set the value of the destination cell to the same value found in the

251 Chapter 12: Ten Ways to Speed Up Your Macros

source cell. This method is about approximately 25 times faster than using
the Copy method:

Range(“B1”).Value = Range(“A1”).Value

If you need to copy only formulas from one cell to another (not values or for-
matting), you can set the formula of the destination cell to the same formula
contained in the source cell:

Range(“B1”).Formula = Range(“A1”).Formula

Using the With Statement
When recording macros, you will often manipulate the same object more
than once. For example, your code may change the formatting of cell A1 so
that it is underlined, italicized, and formatted bold. If you were to record a
macro that applies these formatting options to cell A1, you would get some-
thing like this:

 Range("A1").Select
 Selection.Font.Bold = True
 Selection.Font.Italic = True
 Selection.Font.Underline = xlUnderlineStyleSingle

Unfortunately, this code is not as efficient as it could be because it forces
Excel to select and then change each property separately.

You can save time and improve performance by using the With statement to
perform several actions on a given object in one shot.

The With statement utilized in the following example tells Excel to apply all
the formatting changes at one time:

 With Range("A1").Font

 .Bold = True
 .Italic = True
 .Underline = xlUnderlineStyleSingle

 End With

Getting into the habit of chunking actions into With statements will not
only keep your macros running faster but also make it easier to read your
macro code.

252 Part V: The Part of Tens

Avoiding the Select Method
If you were to record a macro while entering the value 1000 in cell A1 for mul-
tiple sheets, you would end up with code that looks similar to the following:

 Sheets("Sheet1").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

 Sheets("Sheet2").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

 Sheets("Sheet3").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

As you can see, Macro Recorder is fond of using the Select method to explic-
itly select objects before taking actions on them. Although this code will run
fine, it is not efficient because it forces Excel to take the time to explicitly
select each object that is being manipulated.

There is generally no need to select objects before working with them. In fact,
you can dramatically improve macro performance by not using the Select
method.

After recording your macros, make it a habit to alter the generated code to
remove the Select methods. In this case, the optimized code would look like
the following:

 Sheets("Sheet1").Range("A1").FormulaR1C1 = "1000"
 Sheets("Sheet2").Range("A1").FormulaR1C1 = "1000"
 Sheets("Sheet3").Range("A1").FormulaR1C1 = "1000"

Note that the nothing is being selected. The code simply uses the object hier-
archy to apply the needed actions.

Limiting Trips to the Worksheet
Another way to speed up your macros is to limit the amount of times you
reference worksheet data in your code. It is always less efficient to grab data
from the worksheet than from memory. That is to say, your macros will run
much faster if they do not have to repeatedly interact with the worksheet.

253 Chapter 12: Ten Ways to Speed Up Your Macros

For instance, the following simple code forces VBA to continuously return to
Sheets(“Sheet1”).Range(“A1”) to get the number needed for the comparison
being performed in the If statement:

For ReportMonth = 1 To 12

 If Range("A1").Value = ReportMonth Then
 MsgBox 1000000 / ReportMonth

End If

Next ReportMonth

A much more efficient method is to save the value in Sheets(“Sheet1”).
Range(“A1”) to a variable called MyMonth. This way, the code references
the MyMonth variable instead of the worksheet:

Dim MyMonth as Integer
MyMonth = Range("A1").Value

For ReportMonth = 1 To 12
If MyMonth = ReportMonth Then
MsgBox 1000000 / ReportMonth
End If

Next ReportMonth

Consider leveraging variables to work with data in memory as opposed to
directly referencing worksheets.

254 Part V: The Part of Tens

Index

Symbols
& (ampersand), 157
* (asterisk), 100
@ symbol, 152
\ (backslash), 100
: (colon), 100
" (double quote), 100
/ (forward slash), 82, 100
> (greater than), 100
< (less than), 100
| (pipe), 100
? (question mark), 100
_ (underscore), 35

• A •
absolute references, recording macros

with, 14–16
activating

Edit toolbar (VBE), 232
Visual Basic (VB) Editor, 3, 12, 29

ActiveCell.PivotTable.Name property, 181,
184, 187, 189–190, 193, 195, 201, 203

ActiveChart.Printout method, 211
ActiveSheet.PrintOut method, 199–200
ActiveSheet.UsedRange, 159
ActiveX controls, 23
Add method, 60, 86
adding

text to left/right of cells, 155–157
VBA modules, 32–33
worksheets, 85–86

addresses, mailing to contact list, 222–224
adjusting pivot data field titles, 180–182
aligning charts to specific ranges, 206–208
alphabetical order, sorting fields in, 188–190
ampersand (&), 157
Application object, 44
Application.DisplayStatusBar property, 247

Application.ScreenUpdating property,
246–247

applying
block comments, 231–232
custom sort to data items, 190–191
number formatting to data items,

185–188
pivot field restrictions, 193–195
pivot table restrictions, 191–193

ASCII code, 158, 182
assigning macros to buttons and form

controls, 22–23
asterisk (*), 100
@ symbol, 152
Atmt variable, 225, 228
attachment

mailing active workbook as an, 213–215
mailing single sheets as an, 217–219
mailing specific ranges as an, 215–217
saving to folders, 224–226, 226–228

Auto Data Tips option (Editor tab), 38
Auto Indent setting (Editor tab), 38
Auto List Members option (Editor tab), 38
Auto Quick Info option (Editor tab), 38
Auto Syntax Check

option (Editor tab), 38
turning off, 237–238

AutoFilter function, 164–166, 169
AutoFilterMode property, 166–167, 169
automatic calculations, turning off, 245–246
automating

defined, 1
reporting. See reporting

AutoSort method, 190
avoiding Select method, 252

• B •
backslash (\), 100
backups, creating with today’s date, 82–83
BeforeClose event, 64–67, 80–81

256 Excel Macros For Dummies

block comments, applying, 231–232
blogs, expert, 242
Boolean variables, 47
BreakLink method, 208
breakpoints, setting in code, 236–237
building

backups of workbooks with today’s date,
82–83

macros, 11
named ranges, 117–120
navigation buttons, 24–25
pivot table inventory summaries, 177–180
sets of disconnected charts, 208–210
table of contents for worksheets, 106–109
workbooks for each report filter item,

202–204
workbooks for each worksheet, 99–101
workbooks from scratch, 59–61

buttons, assigning macros to, 22–23

• C •
case-sensitivity, of Excel passwords, 68
cells

adding text to left/right of, 155–157
padding with zeros, 150–153
preventing workbooks from closing until

populated, 80–82
replacing blanks with values, 153–155
saving workbooks when cells changed,

61–63
trimming spaces from in ranges, 146–148

Cells statement, 134
Chandoo.org (blog), 242, 243
changing pivot data field titles, 180–182
characters, in filenames, 100
ChartObjects collection, 205–206, 210–211
ChartObjects.ShapeRange.Group, 209
charts

aligning to specific ranges, 206–208
creating sets of disconnected, 208–210
printing on worksheets, 210–211
resizing on worksheets, 205–206

Cheat sheet (website), 4
CHR function, 182
classes, training, 243

cleaning up nonprinting characters,
157–159

closing
saving workbooks before, 63–66
workbooks all at once, 77–78

code
ASCII, 158, 182
copying multiple lines of, 232–233
debugging, 234–235
finding on the Internet, 240–241
stepping through, 234–235
stepping to specific lines, 235–236
stopping at predefined points, 236–237

Code Colors option (Editor Format tab), 40
code window (VBE)

about, 31
getting VBA code into modules, 35–37
maximizing, 34
minimizing, 34
working with, 34–37

collections, 45
colon (:), 100
color, grouping worksheets by, 96–98
columns. See also rows

deleting blank, 127–129
displaying in status bar, 167–171
finding blank, 133–136
highlighting, 110–112
performing Text to Columns command

on, 141–143
selecting blank, 133–136
unhiding, 123–124

commenting a line, 12
commenting out code, 231–232
comments, 12
comparing absolute macro recording and

relative macro recording, 14–19
components

of macros, 12
Visual Basic (VB) Editor, 30–31

contact list, mailing addresses to, 222–224
Contextures (blog), 242
converting

formulas in ranges to values, 139–140
trailing minus signs, 144–146

Copy method, 138, 250–251

257257 Index

copying
filtered rows to new workbooks, 166–167
multiple lines of code, 232–233
ranges, 137–138
worksheets to new workbooks, 98–99

copying and pasting, avoiding, 250–251
Count function, 153
COUNTA function, 15
CountIf function, 160, 162–163
creating

backups of workbooks with today's date,
82–83

macros, 11
named ranges, 117–120
navigation buttons, 24–25
pivot table inventory summaries, 177–180
sets of disconnected charts, 208–210
table of contents for worksheets, 106–109
workbooks for each report filter item,

202–204
workbooks for each worksheet, 99–101
workbooks from scratch, 59–61

Ctrl+Page Down, 233
Ctrl+Page Up, 233
Ctrl+Tab, 233
CurrentSheetIndex variable, 95, 97
customizing VBA environment, 37–41

• D •
DailyDose (blog), 242
Dalgleish, Debra (blogger), 242
data manipulation

adding text to left /right of cells, 155–157
cleaning up nonprinting characters,

157–159
converting formulas in ranges to values,

139–140
converting trailing minus signs, 144–146
copying and pasting ranges, 137–138
copying filtered rows to new workbooks,

166–167
displaying filtered columns in status bar,

167–171
hiding rows, 161–164

highlighting duplicates in ranges of data,
159–161

padding cells with zeros, 150–153
performing Text to Columns command on

columns, 141–143
replacing blank cells with values,

153–155
selectively hiding AutoFilter drop-down

arrows, 164–166
trimming spaces from cells in ranges,

146–148
truncating zip codes to the left five digits,

148–150
date, creating workbook backups with

today’s, 82–83
debugging

code, 234–235
stepping to specific lines of code, 235–236
stopping code at predefined points,

236–237
declarations, 32–33
Default to Full Module View option (Editor

tab), 39
deleting

all but active worksheets, 87–88
blank columns, 127–129
blank rows, 124–126
pivot table drill-down sheets

automatically, 195–199
VBA modules, 33–34

Description (Record Macro dialog box), 11
Developer tab, 10, 29
Dir function, 76, 79
directories

determining if workbooks exist in, 76–77
printing all workbooks in, 78–80

disabling
Auto Syntax Check, 237–238
automatic calculations, 245–246
sheet screen updating, 246–247
status bar updates, 247

.Display method, 217, 219, 221, 223
DisplayAlerts method, 60, 88
displaying

Developer tab, 10
filtered columns in status bar, 167–171

258 Excel Macros For Dummies

DisplayPageBreaks property, 249
dissecting Excel files, 243–244
Docking tab (VBA), 40, 41
double quote ("), 100
double variables, 47
double-clicks, zooming in/out of

worksheets with, 109–110
Drag-and-Drop Text Editing option

(Editor tab), 39
DragToColumn property, 194
DragToData property, 194
DragToHide property, 194
DragToPage property, 193
DragToRow property, 193
drill-down sheets, automatically deleting

pivot table, 195–199
Duggirala, Purna (blogger), 242
duplicates

hiding rows except ones containing,
161–164

highlighting in ranges of data, 159–161

• E •
Edit toolbar (VBE)

about, 38
activating, 232

editing macros, 13
Editor Format tab (VBA), 39–40
Editor tab (VBA), 37–39
emails

saving attachments to folders, 224–226,
226–228

sending active workbook as an
attachment, 213–215

sending addresses to contact list, 222–224
sending mail with a link to your

workbook, 220–221
sending single sheets as attachments,

217–219
sending specific ranges as attachments,

215–217
EnableDrilldown property, 192, 197
EnableEvents property, 248
EnableFieldDialog property, 192
EnableFieldList property, 192

EnableItemSelection property, 194
EnableWizard property, 192
enabling

Edit toolbar (VBE), 232
Visual Basic (VB) Editor, 3, 12, 29

End property, 134, 135
enumerating, through ranges, 120–122
error handling

about, 53
On Error GoTo 0 statement, 55
On Error GoTo SomeLabel statement,

53–54
On Error Resume Next statement, 54–55

escape key (Esc), 110
events

about, 49
BeforeClose, 64–67, 80–81
ignoring, 248
OnAutoFilter, 170
Open, 68, 70
workbook, 51–52
Workbook_BeforeClose, 171, 196, 198–199
worksheet, 49–51
Worksheet_Activate, 51, 171
Worksheet_BeforeDoubleClick, 50, 196, 198
Worksheet_Change, 50, 248
Worksheet_Deactivate, 51, 171

Excel 2010, security in, 19–20
Excel experts, 244
Excel Hero Academy (website), 243
Excel Object Model

about, 43–44
collections, 45
methods, 46
objects, 44
properties, 45–46

ExcelGuru (blog), 242
Exceljet (website), 243
exiting debug mode, 235, 237
expert blogs, 242

• F •
F5, 36
fields, sorting in alphabetical order, 188–190
file extensions, macro-enabled, 19

259259 Index

FileName variable, 225, 228
filenames, characters in, 100
files, dissecting, 243–244
Find and Replace functionality, 157–158
finding

blank rows/columns, 133–136
code on the Internet, 240–241

folders, saving attachments to, 224–226,
226–228

Font option (Editor Format tab), 40
For Each statement, 121, 142, 144, 155–156,

160, 182, 184, 190, 195
form controls, assigning macros to, 22–23
Format Cells dialog box, 151
formatting

formulas in workbooks, 130–133
ranges, 115–117

formulas
converting in ranges to values, 139–140
formatting in workbooks, 130–133
selecting in workbooks, 130–133

forward slash (/), 82, 100
function procedures, 32–33
Function property, 183
functions

AutoFilter, 164–166, 169
CHR, 182
Count, 153
COUNTA, 15
CountIf, 160, 162–163
Dir, 76, 79
Function property, 183
Instr, 228
IsEmpty, 147, 149–150, 152, 154–155, 163
IsNumeric, 145
Left, 148–149
Len, 153–154, 155
Now, 170–171
Replace, 197
Right, 150, 152
Sum, 153
teleporting to, 233–234
Trim, 146–147
UCase, 95

• G •
General tab (VBA), 40, 41
GetOpenFilename method, 72
greater than (>), 100
grouping worksheets by color, 96–98

• H •
HasFormula property, 140
help, 239–244
hiding

all but active worksheets, 88–90
AutoFilter drop-down arrows, 164–166
page breaks, 249
rows, 161–164

highlighting
active rows/columns, 110–112
duplicates in ranges of data, 159–161

HTMLBody property, 221
Hyperlinks.Add method, 108

• I •
i variable, 228
icons, explained, 3
If statement, 63
ignoring events, 248
immediate window (VBE), 31
inserting blank rows in ranges, 122–123
Instr function, 228
Integer variable, 47, 237
Internet, finding code on the, 240–241
Intersect method, 62–63
IsEmpty function, 147, 149–150, 152,

154–155, 163
IsNumeric function, 145

• J •
Jelen, Bill (blogger), 242
jumping between modules and procedures,

233

260 Excel Macros For Dummies

• K •
Kusleika, Dick (blogger), 242

• L •
LastColumn variable, 135
LastRow variable, 135
Left function, 148–149
Len function, 153–154, 155
less than (<), 100
limiting movement of ranges, 129–130
line-continuation character, 35
links, sending for workbooks, 220–221
live training classes, 243
long variables, 47

• M •
Macro Name (Record Macro dialog box), 11
Macro Recorder, help with, 239–240
macro-enabled file extensions, 19
macros. See also specific topics

assigning to buttons and form controls,
22–23

components of, 12
creating, 11
defined, 1, 9
editing, 13
error handling, 53–55
event procedures, 49–52
examples of, 24–27
Excel Object Model, 43–46
help with, 239–244
manipulating data with. See data

manipulation
placing on Quick Access toolbar, 23–24
reasons for using, 9–10
recording, 9, 10–19
recording with absolute references, 14–16
recording with relative references, 17–19
speeding up, 245–253
storing in personal macro workbook, 21
testing, 13
variables, 46–48

manipulating data
adding text to left /right of cells, 155–157
cleaning up nonprinting characters,

157–159
converting formulas in ranges to values,

139–140
converting trailing minus signs, 144–146
copying and pasting ranges, 137–138
copying filtered rows to new workbooks,

166–167
displaying filtered columns in status bar,

167–171
hiding rows, 161–164
highlighting duplicates in ranges of data,

159–161
padding cells with zeros, 150–153
performing Text to Columns command on

columns, 141–143
replacing blank cells with values, 153–155
selectively hiding AutoFilter drop-down

arrows, 164–166
trimming spaces from cells in ranges,

146–148
truncating zip codes to the left five digits,

148–150
MAPI namespace, 225, 228
Margin Indicator Bar option (Editor Format

tab), 40
maximizing code window (VBE), 34
Menu bar (VBE), 30
methods

about, 46
ActiveChart.Printout, 211
ActiveSheet.PrintOut, 199–200
Add, 60, 86
AutoSort, 190
BreakLink, 208
Copy, 138, 250–251
.Display, 217, 219, 221, 223
DisplayAlerts, 60, 88
Excel Object Model, 46
GetOpenFilename, 72
Hyperlinks.Add, 108
Intersect, 62–63
Move, 92
Paste, 60

261261 Index

PasteSpecial, 138
PrintOut, 101
RefreshTable, 176
Replace, 158
Save, 63
SaveAs, 61
SaveCopyAs, 82–83
Select, 252
ShapeRange.Group, 208
SpecialCells, 131

Microsoft Office Dev Center, 243
Microsoft Outlook Object Library, 214, 215,

218–219, 220, 222, 224, 226
minimizing code window (VBE), 34
mistakes, using macros for avoiding, 10
MItem variable, 225, 228
modules, jumping between procedures

and, 233
Move method, 92
moving worksheets, 92–93
MrExcel (blog), 242
MyCell variable, 143, 147, 149, 152, 154,

156–157, 161, 163, 179
MyContacts variable, 223
MyInbox variable, 225, 228
MyMonth variable, 252–253
MyRange variable, 121, 123, 125–126,

127–128, 140, 143, 145, 147, 149, 152,
154, 156–157, 161, 163

• N •
name, sorting worksheets by, 93–96
Name Manager command, 119
naming worksheets, 85–86
navigation

building buttons for, 24–25
using macros for, 10

nonprinting characters, cleaning up,
157–159

Now function, 170–171
ns variable, 225, 228
number formatting, applying to data items,

185–188

• O •
Object variable, 47, 214, 216, 219, 221, 223
objects

about, 44
Application, 44
PageField, 199, 200, 201, 202–203, 204
PivotItems, 190–191
PivotTable, 177–179, 182, 187, 190, 192,

193, 195, 201, 204
ThisWorkbook, 176

Offset property, 133, 134, 135–136, 179
OLApp variable, 214, 216, 219, 221, 223
OLApp.Session.Logon, 214, 217, 219, 221, 223
OLMail variable, 214, 216, 219, 221, 223
On Error GoTo 0 statement, 53, 55
On Error GoTo SomeLabel statement,

53–54
On Error Resume Next statement, 53,

54–55, 184, 187, 190, 201, 203, 225, 228
OnAutoFilter event, 170
one-touch reporting options, 26–27
online training classes, 243
Open event, 68, 70
opening

workbooks defined by users, 71–72
workbooks to specific tabs, 69–70

Orientation property, 211

• P •
padding cells with zeros, 150–153
page breaks, hiding, 249
PageField object, 199, 200, 201, 202–203,

204
Password argument, 103, 104–105
passwords, case-sensitivity of, 68
Paste method, 60
PasteSpecial method, 138
pasting

copying and, 250–251
ranges, 137–138

personal macro workbook, storing macros
in, 21

262 Excel Macros For Dummies

pipe (|), 100
pivot cache, 179–180
Pivot Table object, 201, 204
pivot tables

adjusting data field titles, 180–182
applying restrictions, 191–193
applying restrictions to pivot fields,

193–195
automatically deleting drill-down sheets,

195–199
creating inventory summaries, 177–180
printing for each report filter item,

199–201
rearranging data, 25–26
refreshing in workbooks, 175–177
suspending updates, 249–250

PivotCache.EnableRefresh property, 192
PivotItems object, 190–191
PivotTable object variable, 177–179, 182,

187, 190, 192, 193, 195
PivotTable SourceData property, 185–186
PivotTable.ManualUpdate property,

249–250
placing macros on Quick Access toolbar,

23–24
Position property, 190–191
preventing workbooks from closing until

cells are populated, 80–82
PrevSheetIndex variable, 95, 97
printing

all workbooks in directories, 78–80
charts on worksheets, 210–211
pivot tables for each report filter item,

199–201
specified worksheets, 101–102

PrintOut method, 101
Procedure Separator option (Editor tab),

39
procedures

jumping between modules and, 233
troubleshooting, 234

project window (VBE)
about, 31–32
adding modules, 32–33
working with, 31–34

properties
about, 45–46
ActiveCell.PivotTable.Name, 181, 184,

187, 189–190, 193, 195, 201, 203
Application.DisplayStatusBar, 247
Application.ScreenUpdating, 246–247
AutoFilterMode, 166–167, 169
DisplayPageBreaks, 249
DragToColumn, 194
DragToData, 194
DragToHide, 194
DragToPage, 193
DragToRow, 193
EnableDrilldown, 192, 197
EnableEvents, 248
EnableFieldDialog, 192
EnableFieldList, 192
EnableItemSelection, 194
EnableWizard, 192
End, 134, 135
Function, 183
HasFormula, 140
HTMLBody, 221
Offset, 133, 134, 135–136, 179
Orientation, 211
PivotCache.EnableRefresh, 192
PivotTable SourceData, 185–186
PivotTable.ManualUpdate, 249–250
Position, 190–191
Range, 167
ScreenUpdating, 247
ScrollArea, 129
SourceData, 180, 187
SourceName, 182
StatusBar, 168–169
UsedRange, 125, 127–128
xlSum, 183–184

protecting worksheets, 66–67, 102–104
Puls, Ken (blogger), 242

• Q •
question mark (?), 100
Quick Access toolbar, placing macros on,

23–24

263263 Index

• R •
Range property, 167
ranges

about, 115
aligning charts to specific, 206–208
converting formulas in to values, 139–140
copying, 137–138
creating named, 117–120
deleting blank columns, 127–129
deleting blank rows, 124–126
enumerating through, 120–122
finding blank rows/columns, 133–136
formatting, 115–117
formatting formulas in workbooks, 130–133
highlighting duplicate in data, 159–161
inserting blank rows in, 122–123
limiting movement of, 129–130
mailing specific ranges as attachments,

215–217
pasting, 137–138
selecting, 115–117
selecting blank rows/columns, 133–136
selecting formulas in workbooks, 130–133
selecting named, 117–120
trimming spaces from cells in, 146–148
unhiding all rows/columns, 123–124

rearranging pivot table data, 25–26
Record Macro dialog box, 10–11, 78
recording

macros, 9, 10–19
macros with absolute references, 14–16
macros with relative references, 17–19

referencing worksheet data, 252–253
refreshing pivot tables in workbooks,

175–177
RefreshTable method, 176
relative macro recording, compared with

absolute macro recording, 14–19
relative references, recording macros with,

17–19
Remember icon, 3
removing

all but active worksheets, 87–88
blank columns, 127–129

blank rows, 124–126
pivot table drill-down sheets

automatically, 195–199
VBA modules, 33–34

repetitive tasks, using macros for, 9
Replace function, 197
Replace method, 158
replacing blank cells with values, 153–155
report filter

creating workbooks for each, 202–204
printing pivot tables for each, 199–201

reporting
adjusting pivot data field titles, 180–182
aligning charts to specific ranges,

206–208
applying custom sort to data items,

190–191
applying number formatting to data

items, 185–188
applying pivot field restrictions, 193–195
applying pivot table restrictions, 191–193
automatically deleting pivot table drill-

down sheets, 195–199
creating pivot table inventory summaries,

177–180
creating sets of disconnected charts,

208–210
creating workbooks for each report filter

item, 202–204
one-touch, 26–27
printing charts on worksheets, 210–211
printing pivot tables for each report filter

item, 199–201
refreshing pivot tables in workbooks,

175–177
resizing charts on worksheets, 205–206
setting data items to sum, 182–185
sorting fields in alphabetical order,

188–190
Require Variable Declaration option

(Editor tab), 38
resizing charts on worksheets, 205–206
restrictions

applying pivot field, 193–195
applying pivot table, 191–193

264 Excel Macros For Dummies

Right function, 150, 152
rows. See also columns

copying to new workbooks, 166–167
deleting blank, 124–126
finding blank, 133–136
hiding, 161–164
highlighting, 110–112
inserting blanks in ranges, 122–123
selecting blank, 133–136
unhiding, 123–124

• S •
sample files (website), 3
Save method, 63
SaveAs method, 61
SaveCopyAs method, 82–83
saving

attachments to folders, 224–226,
226–228

workbooks before closing, 63–66
workbooks when cells changed, 61–63

ScreenUpdating property, 247
ScrollArea property, 129
security, in Excel 2010, 19–20
Select Case statement, 64–65
Select method, 252
selecting

blank rows/columns, 133–136
formulas in workbooks, 130–133
named ranges, 117–120
ranges, 115–117

sending
emails. See emails
mail with a link to your workbook,

220–221
SendMail command, 213
setting

breakpoints in code, 236–237
data items to sum, 182–185

setup, of trusted locations, 20–21
ShapeRange.Group method, 208
sheet screen, disabling updating, 246–247
Shortcut Key (Record Macro dialog box), 11
Size setting (Editor Format tab), 40
SkipIt reference, 228

sorting
applying custom sort to data items,

190–191
fields in alphabetical order, 188–190
worksheets by name, 93–96

SourceData property, 180, 187
SourceName property, 182
spaces, trimming from cells in ranges,

146–148
SpecialCells method, 131
speed, of macros, 245–253
SrcRange variable, 187
standard toolbar (VBE), 30–31
statements

With, 251
about, 35
Cells, 134
For Each, 121, 142, 144, 155–156, 160, 182,

184, 190, 195
On Error GoTo 0, 53, 55
On Error GoTo SomeLabel, 53–54
On Error Resume Next, 53, 54–55, 184,

187, 190, 201, 203, 225, 228
If, 63
Select Case, 64–65
With-End With, 116, 131

status bar
displaying filtered columns in, 167–171
turning off updates, 247

StatusBar property, 168–169
stepping through

code, 234–235
to specific code lines, 235–236

stopping
code at predefined points, 236–237
pivot table updates, 249–250
worksheet calculations, 245–246

Store Macro In (Record Macro dialog box),
11

storing macros in personal macro
workbook, 21

strFormat variable, 187
String variable, 47, 237
strLabel variable, 187, 188
sub procedures, 32–33
Sum function, 153

265265 Index

• T •
Tab key, 38
table of contents, creating for worksheets,

106–109
tabs, opening workbooks to specific,

69–70
Technical Stuff icon, 3
teleporting, to functions, 233–234
testing macros, 13
text, adding to left/right of cells, 155–157
Text to Columns command, performing on

columns, 141–143
Text to Columns Wizard dialog box, 141
ThisWorkbook object, 176
Tip icon, 3
toolbar (VBE), 30–31
trailing minus signs, converting, 144–146
training classes, 243
Trim function, 146–147
trimming spaces from cells in ranges,

146–148
troubleshooting procedures, 234
truncating zip codes to the left five digits,

148–150
trusted document, 19–20
trusted locations, 20–21
turning off

Auto Syntax Check, 237–238
automatic calculations, 245–246
sheet screen updating, 246–247
status bar updates, 247

turning on
Edit toolbar (VBE), 232
Visual Basic (VB) Editor, 3, 12, 29

• U •
UCase function, 95
underscore (_), 35
Unhide dialog box, 90
unhiding

all worksheets in a workbook, 90–92
rows/columns, 123–124

unprotecting worksheets, 68–69, 104–106

updating
disabling sheet screen, 246–247
suspending pivot table updates, 249–250
turning off status bar updates, 247
website, 4

UsedRange property, 125, 127–128
user forums, 241
users, opening workbooks defined by,

71–72

• V •
values

converting formulas in ranges to, 139–140
replacing blank cells with, 153–155
of variables, 237

variables
about, 46–48
Atmt, 225, 228
beginning values of, 237
Boolean s, 47
CurrentSheetIndex, 95, 97
double s, 47
end values of, 237
FileName, 225, 228
i, 228
Integer, 47, 237
LastColumn, 135
LastRow, 135
long s, 47
MItem, 225, 228
MyCell, 143, 147, 149, 152, 154, 156–157,

161, 163, 179
MyContacts, 223
MyInbox, 225, 228
MyMonth, 252–253
MyRange, 121, 123, 125–126, 127–128, 140,

143, 145, 147, 149, 152, 154, 156–157,
161, 163

ns, 225, 228
Object, 47, 214, 216, 219, 221, 223
OLApp, 214, 216, 219, 221, 223
OLMail, 214, 216, 219, 221, 223
PivotTable object, 177–179, 182, 187, 190,

192, 193, 195

266 Excel Macros For Dummies

variables (continued)
PrevSheetIndex, 95, 97
Require Variable Declaration option

(Editor tab), 38
SrcRange, 187
strFormat, 187
String, 47, 237
strLabel, 187, 188
variant s, 47
wbLinks Variant, 209

variant variables, 47
VB (Visual Basic) Editor

activating, 3, 12, 29
code windows, 34–37
components, 30–31
project window, 31–34
removing VBA modules, 33–34
tips for, 231–238
working in, 29–31

VBA (Visual Basic for Applications)
about, 1
adding modules, 32–33
customizing environment, 37–41
Editor tab, 37–39
getting code into modules, 35–37
help files, 240
removing modules, 33–34

video training, on YouTube, 242
viewing

beginning variable values, 237
ending variable values, 237

Visual Basic (VB) Editor
activating, 3, 12, 29
code windows, 34–37
components, 30–31
project window, 31–34
removing VBA modules, 33–34
tips for, 231–238
working in, 29–31

Visual Basic for Applications (VBA)
about, 1
adding modules, 32–33
customizing environment, 37–41
Editor tab, 37–39
getting code into modules, 35–37
help files, 240
removing modules, 33–34

• W •
Warning! icon, 3
wbLinks Variant variable, 209
Web extras (website), 4
websites. See also blogs, expert

Chandoo.org, 243
Cheat sheet, 4
Excel Hero Academy, 243
Exceljet, 243
Microsoft Office Dev Center, 243
sample files, 3
updates, 4
Web extras, 4
YouTube, 242

With statement, 251
With-End With statement, 116, 131
workbook events, 51–52
Workbook_BeforeClose event, 171, 196,

198–199
workbooks

closing all at once, 77–78
copying filtered rows to new, 166–167
copying worksheets to new, 98–99
creating backups with today’s date,

82–83
creating for each report filter item,

202–204
creating for each worksheet, 99–101
creating from scratch, 59–61
determining if exists in directory, 76–77
determining if open, 73–75
formatting formulas in, 130–133
mailing active workbook as an

attachment, 213–215
opening defined by users, 71–72
opening to specific tabs, 69–70
preventing from closing until cells are

populated, 80–82
printing all in directories, 78–80
protecting worksheets on Workbook

Close, 66–67
refreshing pivot tables in, 175–177
saving before closing, 63–66
saving when cells changed, 61–63
selecting formulas in, 130–133
sending mail with a link to your, 220–221

267267 Index

unhiding all worksheets in, 90–92
unprotecting worksheets on Workbook

Open, 68–69
worksheet events, 49–51
Worksheet_Activate, 51, 171
Worksheet_BeforeClose, 52
Worksheet_BeforeDoubleClick, 50, 196, 198
Worksheet_BeforeRightClick, 51
Worksheet_BeforeSave, 52
Worksheet_Calculate, 51
Worksheet_Change, 50, 248
Worksheet_Deactivate, 51, 171
Worksheet_Open, 52
worksheets

adding, 85–86
copying to new workbooks, 98–99
creating table of contents for, 106–109
creating workbooks for each, 99–101
deleting all but active, 87–88
grouping by color, 96–98
hiding all but active, 88–90
highlighting active rows/columns,

110–112
mailing as attachments, 217–219
moving, 92–93
naming, 85–86
printing charts on, 210–211
printing specified, 101–102
protecting, 102–104
protecting on Workbook Close, 66–67
referencing data in, 252–253

resizing charts on, 205–206
sorting by name, 93–96
stopping calculations, 245–246
unhiding all, 90–92
unprotecting, 104–106
unprotecting on Workbook Open, 68–69
zooming in/out of with double-clicks,

109–110
Worksheet_SelectionChange, 50
Worksheet_SheetChange, 52

• X •
xlSheetHidden, 89–90
xlSheetVeryHidden, 89–90
xlSheetVisible, 91
.xlsm file extension, 19
xlSum property, 183–184

• Y •
YouTube, video training on, 242

• Z •
zeros, padding cells with, 150–153
zip codes, truncating to the left five digits,

148–150
zooming in/out, of worksheets with double-

click, 109–110

268 Excel Macros For Dummies

About the Author
Mike Alexander is a Microsoft Certified Application Developer (MCAD) with
more than 15 years’ experience consulting and developing office solutions. He
is the author of over a dozen books on business analysis using Microsoft Excel
and Access. He has been named Microsoft Excel MVP for his contributions to
the Excel community. Visit Mike at www.DataPigTechnologies.com, where
he offers free Excel and Access training.

http://www.DataPigTechnologies.com

Dedication
For my family.

Author’s Acknowledgments
My deepest thanks to everyone who helped bring this book to fruition. And a special
thank you to Mary, who will open this book long enough to read the dedication and
acknowledgments.

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Project Editor: Susan Pink

Copy Editor: Susan Pink

Technical Editors: Mike Talley

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Project Editor: Suresh Srinivasan

Cover Image: ©Getty Images/Roz Woodward

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used In This Book
	Beyond the Book
	Where to Go from Here

	Part I Holy Macro Batman!
	Chapter 1 Macro Fundamentals
	Why Use a Macro?
	Macro Recording Basics
	Examining the macro
	Testing the macro
	Editing the macro

	Comparing Absolute and Relative Macro Recording
	Recording macros with absolute references
	Recording macros with relative references

	Other Macro Recording Concepts
	Macro‐enabled file extensions
	Macro security in Excel 2010
	Trusted locations
	Storing macros in your personal macro workbook
	Assigning a macro to a button and other form controls
	Placing a macro on the Quick Access toolbar

	Examples of Macros in Action
	Building navigation buttons
	Dynamically rearranging pivot table data
	Offering one-touch reporting options

	Chapter 2 Getting Cozy with Visual Basic Editor
	Working in Visual Basic Editor
	Understanding VBE components

	Working with the Project Window
	Adding a new VBA module
	Removing a VBA module

	Working with a Code Window
	Minimizing and maximizing windows
	Getting VBA code into a module

	Customizing the VBA Environment
	The Editor tab
	The Editor Format tab
	The General tab
	The Docking tab

	Chapter 3 The Anatomy of Macros
	An Overview of the Excel Object Model
	Understanding objects
	Understanding collections
	Understanding properties
	Understanding methods

	A Brief Look at Variables
	Understanding Event Procedures
	Worksheet events
	Workbook events

	Error Handling in a Nutshell
	On Error GoTo SomeLabel
	On Error Resume Next
	On Error GoTo 0

	Part II Making Short Work of Workbook Tasks
	Chapter 4 Working with Workbooks
	Creating a Workbook from Scratch
	How the macro works
	How to use the macro

	Saving a Workbook when a Particular Cell Is Changed
	How the macro works
	How to use the macro

	Saving a Workbook before Closing
	How the macro works
	How to use the macro

	Protecting a Worksheet on Workbook Close
	How the macro works
	How to use the macro

	Unprotecting a Worksheet on Workbook Open
	How the macro works
	How to use the macro

	Opening a Workbook to a Specific Tab
	How the macro works
	How to use the macro

	Opening a Specific Workbook Defined by the User
	How the macro works
	How to use the macro

	Determining Whether a Workbook Is Already Open
	How the macro works
	How to use the macro

	Determining Whether a Workbook Exists in a Directory
	How the macro works
	How to use the macro

	Closing All Workbooks at Once
	How the macro works
	How to use the macro

	Printing All Workbooks in a Directory
	How the macro works
	How to use the macro

	Preventing the Workbook from Closing Until a Cell Is Populated
	How the macro works
	How to use the macro

	Creating a Backup of a Current Workbook with Today’s Date
	How the macro works
	How to use the macro

	Chapter 5 Working with Worksheets
	Adding and Naming a New Worksheet
	How the macro works
	How to use the macro

	Deleting All but the Active Worksheet
	How the macro works
	How to use the macro

	Hiding All but the Active Worksheet
	How the macro works
	How to use the macro

	Unhiding All Worksheets in a Workbook
	How the macro works
	How to use the macro

	Moving Worksheets Around
	How the macro works
	How to use the macro

	Sorting Worksheets by Name
	How the macro works
	How to use the macro

	Grouping Worksheets by Color
	How the macro works
	How to use the macro

	Copying a Worksheet to a New Workbook
	How the macro works
	How to use the macro

	Creating a Workbook for Each Worksheet
	How the macro works
	How to use the macro

	Printing Specified Worksheets
	How the macro works
	How to use the macro

	Protecting All Worksheets
	How the macro works
	How to use the macro

	Unprotecting All Worksheets
	How the macro works
	How to use the macro

	Creating a Table of Contents for Your Worksheets
	How the macro works
	How to use the macro

	Zooming In and Out of a Worksheet with Double‐Click
	How the macro works
	How to use the macro

	Highlighting the Active Row and Column
	How the macro works
	How to use the macro

	Part III One-Touch Data Manipulation
	Chapter 6 Feeling at Home on the Range
	Selecting and Formatting a Range
	How the macro works
	How to use the macro

	Creating and Selecting Named Ranges
	How the macro works
	How to use the macro

	Enumerating through a Range of Cells
	How the macro works
	How to use the macro

	Inserting Blank Rows in a Range
	How the macro works
	How to use the macro

	Unhiding All Rows and Columns
	How the macro works
	How to use the macro

	Deleting Blank Rows
	How the macro works
	How to use the macro

	Deleting Blank Columns
	How the macro works
	How to use the macro

	Limiting Range Movement to a Particular Area
	How the macro works
	How to use the macro

	Selecting and Formatting All Formulas in a Workbook
	How the macro works
	How to use the macro

	Finding and Selecting the First Blank Row or Column
	How the macro works
	How to use the macro

	Chapter 7 Manipulating Data with Macros
	Copying and Pasting a Range
	How the macro works
	How to use the macro

	Converting All Formulas in a Range to Values
	How the macro works
	How to use the macro

	Performing the Text to Columns Command on All Columns
	How the macro works
	How to use the macro

	Converting Trailing Minus Signs
	How the macro works
	How to use the macro

	Trimming Spaces from All Cells in a Range
	How the macro works
	How to use the macro

	Truncating Zip Codes to the Left Five Digits
	How the macro works
	How to use the macro

	Padding Cells with Zeros
	How the macro works
	How to use the macro

	Replacing Blanks Cells with a Value
	How the macro works
	How to use the macro

	Adding Text to the Left or Right of Your Cells
	How the macro works
	How to use the macro

	Cleaning Up Nonprinting Characters
	How the macro works
	How to use the macro

	Highlighting Duplicates in a Range of Data
	How the macro works
	How to use the macro

	Hiding All Rows Except Rows Containing Duplicate Data
	How the macro works
	How to use the macro

	Selectively Hiding AutoFilter Drop‐Down Arrows
	How the macro works
	How to use the macro

	Copying Filtered Rows to a New Workbook
	How the macro works
	How to use the macro

	Displaying Filtered Columns in the Status Bar
	How the macro works
	How to use the macro

	Part IV Macro-Charging Reports and Emails
	Chapter 8 Automating Common Reporting Tasks
	Refreshing All Pivot Tables in a Workbook
	How the macro works
	How to use the macro

	Creating a Pivot Table Inventory Summary
	How the macro works
	How to use the macro

	Adjusting All Pivot Data Field Titles
	How the macro works
	How to use the macro

	Setting All Data Items to Sum
	How the macro works
	How to use the macro

	Applying Number Formatting to All Data Items
	How the macro works
	How to use the macro

	Sorting All Fields in Alphabetical Order
	How the macro works
	How to use the macro

	Applying Custom Sort to Data Items
	How the macro works
	How to use the macro

	Applying Pivot Table Restrictions
	How the macro works
	How to use the macro

	Applying Pivot Field Restrictions
	How the macro works
	How to use the macro

	Automatically Deleting Pivot Table Drill‐Down Sheets
	How the macro works
	How to use the macro

	Printing a Pivot Table for Each Report Filter Item
	How the macro works
	How to use the macro

	Creating a Workbook for Each Report Filter Item
	How the macro works
	How to use the macro

	Resizing All Charts on a Worksheet
	How the macro works
	How to use the macro

	Aligning a Chart to a Specific Range
	How the macro works
	How to use the macro

	Creating a Set of Disconnected Charts
	How the macro works
	How to use the macro

	Printing All Charts on a Worksheet
	How the macro works
	How to use the macro

	Chapter 9 Sending Emails from Excel
	Mailing the Active Workbook as an Attachment
	How the macro works
	How to use the macro

	Mailing a Specific Range as an Attachment
	How the macro works
	How to use the macro

	Mailing a Single Sheet as an Attachment
	How the macro works
	How to use the macro

	Sending Mail with a Link to Your Workbook
	How the macro works
	How to use the macro

	Mailing All Email Addresses in Your Contact List
	How the macro works
	How to use the macro

	Saving All Attachments to a Folder
	How the macro works
	How to use it

	Saving Certain Attachments to a Folder
	How the macro works
	How to use the macro

	Part V The Part of Tens
	Chapter 10 Ten Handy Visual Basic Editor Tips
	Applying Block Comments
	Copying Multiple Lines of Code
	Jumping between Modules and Procedures
	Teleporting to Your Functions
	Staying in the Right Procedure
	Stepping through Your Code
	Stepping to a Specific Code Line
	Stopping Code at a Predefined Point
	Seeing Beginning and Ending Variable Values
	Turning Off Auto Syntax Check

	Chapter 11 Ten Places to Turn for Macro Help
	Letting Excel Write the Macro for You
	Using the VBA Help Files
	Pilfering Code from the Internet
	Leveraging User Forums
	Visiting Expert Blogs
	Mining YouTube for Video Training
	Attending Live and Online Training Classes
	Learning from Microsoft Office Dev Center
	Dissecting Other Excel Files in Your Organization
	Asking Your Local Excel Genius

	Chapter 12 Ten Ways to Speed Up Your Macros
	Halting Sheet Calculations
	Disabling Sheet Screen Updating
	Turning Off Status Bar Updates
	Telling Excel to Ignore Events
	Hiding Page Breaks
	Suspending Pivot Table Updates
	Steering Clear of Copy and Paste
	Using the With Statement
	Avoiding the Select Method
	Limiting Trips to the Worksheet

	Index
	EULA

