
Go from basics to
full-scale development

Write your own
FileMaker applications

Work on PCs or Macs,
in workgroups or solo

Cologon

The book you need to succeed!

If you want to learn FileMaker Pro,
you need this book

Before you start a FileMaker Pro project, make sure you
have this detailed how-to from renowned FileMaker
expert Ray Cologon. He draws upon years of experience
to provide pages of solutions, techniques, and instruction
you won’t find anywhere else. Discover what’s new
in FileMaker Pro 10, learn efficient coding, and create
industrial-strength databases with automation, scripting,
security, and more. From the fundamentals to full-scale
development, this is the FileMaker book you need to
succeed.

Shelving Category:
COMPUTERS/Database

Reader Level:
Beginning to Advanced

$39.99 USA
$47.99 Canada

Spine: 1.63"

Ray Cologon
is a FileMaker Pro consultant, a
member of the FileMaker Business
Alliance (FBA), and a widely known
and respected FileMaker Pro
developer and solutions provider.
Ray is the founder of NightWing
Enterprises, based in Melbourne,
Australia. He has been a speaker at
FileMaker Developer Conferences
in Phoenix, Orlando, and San
Francisco over the past four years
and is the recipient of an Award
for Leadership and Technical
Excellence in FileMaker Pro from
FileMaker, Inc.

Ray Cologon

Companion Web Site
• Example FileMaker Pro 10 application
• Demos, tips, and additional resources

F
ileM

ak
er

® P
ro

 10

FileMaker®
Pro 10

• Design dynamic layouts for screen and print

• Learn data modeling and examine data arrays

• Work with tables and SQL data sources, and migrate legacy data

• Manage lists, calculate summary data, and document your code

• Master scripting and the FileMaker Scripting Environment

• Apply security and maintain the integrity of your data

• Create custom functions and use standards-based approaches

• Employ third-party tools and plug-ins to extend FileMaker Pro’s reach

www.allitebooks.com

http://www.allitebooks.org

01_429006-ffirs.indd ii01_429006-ffirs.indd ii 3/25/09 6:58:11 PM3/25/09 6:58:11 PM

www.allitebooks.com

http://www.allitebooks.org

FileMaker® Pro 10
Bible

01_429006-ffirs.indd i01_429006-ffirs.indd i 3/25/09 6:58:11 PM3/25/09 6:58:11 PM

www.allitebooks.com

http://www.allitebooks.org

01_429006-ffirs.indd ii01_429006-ffirs.indd ii 3/25/09 6:58:11 PM3/25/09 6:58:11 PM

www.allitebooks.com

http://www.allitebooks.org

FileMaker® Pro 10
Bible

Ray Cologon, PhD

01_429006-ffirs.indd iii01_429006-ffirs.indd iii 3/25/09 6:58:12 PM3/25/09 6:58:12 PM

www.allitebooks.com

http://www.allitebooks.org

FileMaker® Pro 10 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-470-42900-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2009924155

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. FileMaker is a registered trademark of FileMaker, Inc.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product
or vendor mentioned in this book.

01_429006-ffirs.indd iv01_429006-ffirs.indd iv 3/25/09 6:58:13 PM3/25/09 6:58:13 PM

www.allitebooks.com

www.wiley.com
www.wiley.com/go/permissions
http://www.allitebooks.org

To my many colleagues in the FileMaker Developer
Community,whose commitment, ingenuity, and passion provide

constant inspiration!

01_429006-ffirs.indd v01_429006-ffirs.indd v 3/25/09 6:58:13 PM3/25/09 6:58:13 PM

www.allitebooks.com

http://www.allitebooks.org

vi

About the Author
Ray Cologon began using FileMaker in 1990, after having taught and worked with a number of
other database tools. He subsequently used FileMaker to compile and analyze data for his doctoral
thesis, as well as to design databases for a wide range of other purposes.

Ray has had a diverse career in the creative arts, education, and consulting. Over the past decade,
he has developed his own business, NightWing Enterprises, (www.nightwing.com.au/
FileMaker) which specializes in the design and development of bespoke FileMaker Pro solu-
tions and provides consulting services to developers and clients in various parts of the world. In
2005, Ray was recipient of the FileMaker Excellence Award for Leadership and Technical
Excellence in FileMaker Pro, and he has been a presenter at recent FileMaker Developer
Conferences in the United States. He has also been a significant contributor to and moderator of a
number of public forums on FileMaker and is a FileMaker Certified Developer.

Ray lives in Melbourne, Australia, where he is known for his sculpture and music, as well as his
innovative work with FileMaker Pro.

01_429006-ffirs.indd vi01_429006-ffirs.indd vi 3/25/09 6:58:13 PM3/25/09 6:58:13 PM

www.allitebooks.com

http://www.allitebooks.org

vii

Credits
Acquisitions Editor
Kyle Looper

Project Editor
Kelly Ewing

Copy Editor
Kelly Ewing

Technical Editors
Corn Walker
Jason DeLooze

Editorial Manager
Jodi Jensen

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Andy Cummings

Editorial Director
Mary C. Corder

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Andrea Hornberger
Sarah Philippart

Quality Control Technician
Melissa Cossell

Proofreading and Indexing
Bonnie Mikkelson
Sossity R. Smith
Broccoli Information Mgt.

01_429006-ffirs.indd vii01_429006-ffirs.indd vii 3/25/09 6:58:13 PM3/25/09 6:58:13 PM

www.allitebooks.com

http://www.allitebooks.org

01_429006-ffirs.indd viii01_429006-ffirs.indd viii 3/25/09 6:58:13 PM3/25/09 6:58:13 PM

www.allitebooks.com

http://www.allitebooks.org

ix

Acknowledgments . xxx

Introduction . xxxi

Part I: The Fundamentals 1

Chapter 1: Databases: The What, Why, and How .3
The Many Faces of Databases: Lists, Tables and Forms ...4

The limitations of paper-based databases ..4
Entering the digital age ..5
Preparing to get organized ...6

The Concept of a Relational Database ...6
Flat-file databases and data redundancy ..7
Opportunities for making connections ..7

The Anatomy of a Database Solution ...8
The data: Foundation and substance ...8
The interface: Screens, letters, forms, and reports ..9
The hidden helper: Process management ..12

How FileMaker Fits In ..13
What FileMaker Pro calls things ..13
Familiar ideas from the real world ...17
Integrating processes and information ...18
Knowledge is power — personal and professional ...18

Chapter 2: Putting FileMaker Pro in Perspective 21
What Makes FileMaker Pro Different from Other Database Development Tools?22

Some common misperceptions ..22
A unique approach to design ...25

The FileMaker Product Family ..26
Desktop and server..26
Scalability and flexibility ...27

FileMaker’s Hidden Talents ...28
The cross-platform chameleon ..28
Multiple technologies and formats ...29
Plug-ins and extensibility ..30
The FileMaker calculation engine: Simplicity and power ...31

Resources and Exemplars ..32
Examples and brainteasers ..32
Other resources and opportunities ..33

02_429006-ftoc.indd Sec1:ix02_429006-ftoc.indd Sec1:ix 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

x

Contents

Chapter 3: Getting Acquainted with FileMaker . 35
Getting FileMaker Working for You ..35

Starting and exiting from FileMaker ..36
Creating, saving, and closing files ..37
Handling files and data safely ..38
Earlier file formats and conversion issues ..40

Finding Your Way Around ..41
The modes and their uses ..43
Navigating and viewing data ...43
Searching and the FileMaker Find/Omit puzzle ...45
Screen elements and what they’re for ..47

Entering and Editing Data ...48
Creating and duplicating records ..48
Field definitions: Validation and dependencies ...49
The significance of commitment ..49

The Ins and Outs ..50
Importing and exporting data ..51
Previewing and printing options ...52
Send/Save as PDF and Excel ..53

Getting to Know the Relatives ...54
Ways to view and edit related data ..54
The importance of context ..55
Making complexity simple in practice ...55

Optimizing the Application ...55
Preference settings for your workstation ..56
File options for the current database ...59

Chapter 4: What’s New in FileMaker 10 . 63
Embracing Change ..63
Status Area Redesign ...64
Live Reports/Sub-summaries ...68
Maintain Record Sort Order ..70
Saved Find Requests ...72
Set Field by Name ...76
Script Events Triggers ...77

Layout object triggers ..78
Layout script triggers ...81
Timed interval script triggers ...84
File-based script triggers ...85
Avoiding trigger tangles ...85

New Calculation Functions ...88
Get(TriggerKeystroke) ...88
Get(TriggerModifierKeys) ..89
Code(text) ...89
Char(code) ..90

02_429006-ftoc.indd Sec1:x02_429006-ftoc.indd Sec1:x 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xi

Contents

GetFieldName(field) ..90
Get(DocumentsPathListing) ..91

External SQL Data Sources (ESS) Enhancements ..92
Additional SQL database support ..92
Value lists based on external SQL data ..92
Single Sign-On for remote Windows clients ..92
Handling of DATETIME values — MS SQL Server ..94

Bento Integration ..94
File Recovery Improvements ...96
Layout Mode Enhancements ...98

Inserting an object into the tab order ..98
Defining tooltips in Pro ...99
Additional font sizes in the format menu ...99

Send Mail by SMTP ...99
Quick Start Screen Enhancements...100
Import/Export Enhancements ...102
Save Target Printer ..104
The Manage Scripts Interface ..105
Other Useful Enhancements ..106

IPv6 Support ...106
Format changes for automatically generated log files ...106
Updated templates and themes..107
FileMaker Pro Advanced Script Debugger enhancements ..107
Relookup Replace and Field Contents no longer commit ..107
Only a single sharing error for multiple files ..107
Script error codes and control commands ...108

Part II: Introduction to Database Design 109

Chapter 5: Creating a Database . 111
Before Getting Started ...111
Creating a New Database File ..112

Adding tables and fields ..114
OrderLines ..117
Contacts ..117
Invoices ...117
InvoiceLines ..117

Working with the Field Options dialog: Validation and Auto-Entry118
Setting up simple calculations ...124
Capturing simple metadata..127
Creating relationships between tables ..129
Adding aggregating calcs ...132

Viewing and Interacting with Data ..135
Looking at the multiple uses of layouts ...136
Creating records and entering data ..136

02_429006-ftoc.indd Sec1:xi02_429006-ftoc.indd Sec1:xi 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xii

Contents

Editing or deleting data ...141
Finding and sorting data you’ve already entered ..141
Using special find symbols ..142
Searching with the range and wild card operators ...143

Avoiding the Need for Data Duplication ...143
Recognizing the visual cues to data relationships ...144
Information has a logical flow ...144
Anticipating the user ...146
Making complex things simple ..148

Getting Started with File Security ..148
Working with accounts and privilege sets ...148
Setting a default account and password ...151

Thinking about Usability ..152
Moving between records ...153
Managing context ..153
Moving between tables ..154
Using and changing views ...154
Using buttons for static and dynamic actions ..154

Chapter 6: The Interface: Layout Mode . 155
Initial Layouts ...155

A map of Layout mode ..158
Selection and then Action tools ...158
Drag-to-Layout tools ..158
Palette and Menu controls ...160

Organizing the presentation of information ...160
Applying formats to field and text objects ...162
Setting up layouts for printing ...166
Understanding lists and forms ...168
Layout parts and their purposes ..170

The Importance of Visual Structure ...171
Adding visual pointers and aids...172
Using white space ...174
Ergonomics and avoiding visual fatigue ...174
Giving information meaning..175

Defining Tooltips ..175
Using conditional tooltips ...176
Keeping track of tooltips ...177

Different Kinds of Layout Objects ...177
Static and dynamic objects ..178
Inherent object properties ...179
Conditional format attributes ..179

FileMaker as a Graphical Environment..181
Building graphic objects in FileMaker ...181
Default object formats and attributes ...183

02_429006-ftoc.indd Sec1:xii02_429006-ftoc.indd Sec1:xii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xiii

Contents

Controlling stacking and alignment ...183
Bringing in graphics from other applications ...184

Interacting with Layout Objects ..185
Keyboard control of a layout ...185
Setting the tab order ..186
Assigning names to layout objects ...186
Controlling visual spell-checking ..187

The Tab Control and Its Uses ..188
Defining and creating a tab panel ..188
Navigating between tab panels ..189
Tab panel limitations ...190

Displaying Related Data ..191
Working within layout context ..191
Setting up a portal ...191

The Magic of Buttons ..195
Defining buttons ...196
Button scope and button commands ...198
The button as an object ...199

The Web Viewer: Inviting in the World ..200
Setting up a Web viewer..200
Controlling a Web viewer..201
Complementary data concepts ..202

Reports and Data Output ..202
Considerations for printed output ...202
Using fonts ..202
Page sizes and page setup ..203
Paper output versus PDF or Excel output ..204
Composite PDFs from multiple layouts ...204

Chapter 7: The Structure: The Manage Database Dialog 205
Working with Tables ..206

Table concepts: A room with a view ..206
Adding, deleting, and renaming tables ..206
Moving tables between files ...208
Importing tables ..209

Specifying Fields ...212
Adding, deleting, and renaming fields ...213
Understanding field/data types and their significance ..214
Auto-Entry options..216
Field validation options ...218
Storage and indexing options ..221
Summary and Calculation fields ..222
Working with global fields ..227

Basic Calculations ...228
Creating a Calculation field ...229
Defining a calculation formula...233

02_429006-ftoc.indd Sec1:xiii02_429006-ftoc.indd Sec1:xiii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xiv

Contents

Entering literal text ..234
Referencing fields ..235
Understanding calculation functions and their syntax ...236

The List() function ..236
The Count() function ...237
The Date() function ..237
The Round() function ...237
The Length() function ..237

Doing some simple calculations ..238
Commission on earnings above a threshold ...238
Calculating initials from a person’s name ...239
Compound interest at a known rate over a given period239
Current quarter of the calendar year ..240
Changing ampersands to “and” in a block of text ...240
Record navigation text (record n of nn) ...240

The Relationships Graph ...241
Common misconceptions about the Relationships Graph ..241
Tables versus Table Occurrences ...243
Avoiding circular references ..244
Named and unnamed data sources ..245
Creating references to other FileMaker files ...246

Working with External SQL Data Sources ...247
Configuring ODBC drivers: Setting up a DSN ...247
Integrating SQL tables with FileMaker data ...252
Adding supplemental fields ...256

The Concept of Data Relationships ...257
Why bother with relationships anyway? ..257
How relationships work ..258
Solving problems by using relationships ...258
Deciding what goes where ...259
The FileMaker relational model ...259

Chapter 8: The Processes: FileMaker Scripting 261
Scripting: What It Is and What It Offers You...261

Building blocks of automation ...264
Context is everything ..266
Doing things in sequence ..267
Addressing objects by name ..267

Defining and Editing Scripts ...268
Script Editor windows ...268
Setting up a basic script ...271
How script commands function ..273
Changing the order of commands ...274
Assigning attributes to a command ..276

Using the Scripts Menu ...278
Managing the Scripts menu ...278
Other ways to trigger a script ..279

02_429006-ftoc.indd Sec1:xiv02_429006-ftoc.indd Sec1:xiv 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xv

Contents

Using the single-threaded script engine ...279
Working with the script stack and paused scripts ...280

Controlling Script Execution ...280
Using conditional statements ...281
Using repetition ..282
Pausing for user input ...283

Some Notable Script Uses ...284
Navigation and view controls ..285
Editing information via scripts ..286
Printing and managing files ...286

Ease of Editing in FileMaker Scripting...287
Selecting and duplicating multiple commands ..288
Copying and pasting scripts ..288
Copying and pasting script steps ...289

Organizing Scripts ..289
Creating list separators ..289
Script commenting ..290
Creating script folders ...291
Reordering and grouping scripts ...293
Filtering scripts by folder ..293
Searching for scripts by name ..294

Some Examples to Start With ..295
Performing a Find ...295
Printing a report ..295
Acting on user input..296

Calling Your Scripts ..297
The Scripts menu ..297
Script hotkeys ...297
Scripts assigned to custom menu commands ...298
Layout buttons ..298
Calling scripts from other scripts ...298
On Timer Script Triggers...299
File Open and File Close scripts ..299
Layout event Script Triggers ..299
Object event Script Triggers ..300
External script calls ...301

Part III: Beyond the Basic 303

Chapter 9: The FileMaker Power User . 305
Making Browse Mode Work for You ...306

Using multiple windows and views ...306
Filtering portals and creating pick lists ..306
Jump buttons: Shortcut navigation ..313
Controlling one window from another ..317

02_429006-ftoc.indd Sec1:xv02_429006-ftoc.indd Sec1:xv 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xvi

Contents

Performing Complex Search Operations ...317
Compound Find criteria: The AND Find ...318
Stacking Find requests: The OR Find ..318
Constraining and extending the found set ...319
Saving Finds and found sets ..319

Sorting Records ...323
Multiple sort keys ..324
Dynamic sort techniques ...324
Creating click-sort columns ...327
Sorting related data ...332

Understanding Formatting ..333
The management of formatting: A three-tiered approach ...334
Character-level formatting ...334
Paragraph-level formatting ..335
Layout format filters ..335
Precedence of number, date, and time formats ..336
Controlling formatting programmatically ..336
Creating style buttons ...337

Some Notes on Variables ...338
The three kinds of variables...339
Variables and memory usage ...339
Instantiating and destroying variables ...340
Keeping track of variables ...340

Understanding Indexing ...341
Text index types ..341

The word index ...341
The value index ...342

Indexing myths exploded ..342
Differences between numeric and text indexing ..343
Unicode and alternate language indexes ..344
Optimizing field index configurations ...345

The Table of Dependencies ...346
Cascading calculation operations ...346
The limits of dependency ..346
Tiers of dependency ..347

Caching Join Results ...347
What caching does for you ..347
Solving caching problems ..348
Gaining control of the cache ..349

Understanding Global Fields ...349
The behavior of global fields ...349
Uses for global fields ...350
When to avoid global fields ...350
Using global calculation fields ...350

02_429006-ftoc.indd Sec1:xvi02_429006-ftoc.indd Sec1:xvi 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xvii

Contents

Chapter 10: Building Advanced Interfaces . 351
Developing for Mac and Windows Users ...352

Selecting fonts ...352
Paying attention to differences in screen rendering ..353
Considering platform-specific window behavior ...354

Using Dynamic Screen Elements ...356
Disappearing/reappearing objects ..356

The portal invisibility trick ..356
Concealed and remotely operated Tab Control ..358
Using conditional formatting as a visibility control ..360

The hidden power of conditional formatting ...360
Multi-state buttons and objects ...361

Working with Sub-Summary Parts and Part Controls ...362
Building adaptable screens ..362
Stacking up multiple Sub-summary parts ..363
Using multiple break fields ..366
Controlling pagination and page breaks ..366

Designing for Print ..368
Nonprinting objects ..368
Sliding objects and reducing parts ...369
Using Merge fields ...371
Creating a letter generator ...372

Using Multiple Windows and Views ...373
Managing window placement and size ..373
Windows as pop-ups and drill-downs ...374
Simulating modal window behavior ..375

Employing Custom Dialogs as an Interface Tool ...375
Dialogs as a data-entry device ..376
Dynamic dialog attributes..377

Looking at Anchors and Resizable Layout Objects ..377
Objects that move according to window size ...378
Objects that grow and shrink ..379
Managing complex layout resizing ..379
Resizing behavior of enclosing objects ...382
Centering objects within the viewable area ..382

Implementing Shortcut Navigation ...382
The power of the Go to Related Record command ..383
One interface, many paths ...383
Building Back button functionality ..384

Building Depth and Dimensionality ..385
Using embossing and engraving effects ...385
Spatial cues for added meaning ...385
Delineation of element groups ...386
Color ...386
Transparency and translucency ...386

02_429006-ftoc.indd Sec1:xvii02_429006-ftoc.indd Sec1:xvii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xviii

Contents

Working with Tab Controls ..387
Organizers and space savers ..387
Tab navigation via keyboard ..388
Scripting tab operations ..389

Recognizing the Flexibility of Portals ..389
Lists in many guises ..389
Portals as a navigation device ..389
Dynamically sorted portals ..390
Innovative portal implementations ..391

Using Advanced Web Viewer Techniques ...391
Access to advanced functionality ...391
Rendering internally calculated content ...392
Scraping data from Web pages ..393

Progress Bars and Native Charting Techniques..394
Creating script progress monitors ..395
Native indicators and graphical displays ..396

Using Interface Elements ...397
Splash screens ...397
Main menus ..398
About and version info ..398
Online Help for your users ..398

Handling User Preferences ..399
A user-centric development philosophy ..399
Capturing state by user ...399
Example — a multi-lingual solution interface ...400

Chapter 11: Data Modeling in FileMaker . 405
Background in Relational Theory ..405

Set Theory in the management of data ..406
Modeling the real world ..406

Think about clarity of organization ..407
Keep the big picture in view ..407

Remembering some guiding principles ..408
Separate entities by type ..409
Delineate fields clearly ...409
Place multiples in a separate table..409
Store everything once only ..410
Identify the major players ..410
Put it into practice ...410

FileMaker Relationships Graph Symbols ...410
Visual cues and clues...410
The TO as a pointer ..412
Understanding the graph metaphor ...412

Relationship Operators ...413
Equi-joins and non-equal joins..414
Comparative operators (theta joins) ..415

02_429006-ftoc.indd Sec1:xviii02_429006-ftoc.indd Sec1:xviii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

www.allitebooks.com

http://www.allitebooks.org

xix

Contents

Cartesian joins...415
Multi-predicate relationships ...415

Alternative Relationship Techniques ...416
Multi-Key fields ...417
Compound keys ..418
One-way relationships ...418
Join tables ...419
Naturally occurring joins ...419

Working with Data Arrays ..420
Repeating fields as an array handler ..420
Collapsing and expanding arrays ...421
Relationship-based techniques for managing data ...421

Allowing creation via relationship..421
Using self joins ..422
The isolating relationship ..423

Graph Techniques — Spiders, Squids, and Anchor-Buoy ...423
Constellations and modular centers ...424
A satellite-based graph solution ...424
Segmentation on functional lines ...426

Documenting the Database Structure ..427
Graph annotations...427
Naming conventions ...428
Field commenting ...429
Ancillary notes and documentation ...430

The Concept of Layers ..431
“Back end” and “front end” ..432
The business or procedural layer ...432
FileMaker as an integrated environment ..433
Separation anxiety ...433

File Architecture versus Data Structure ...434
Multi-file solutions ..434
The modular approach ..435
Interface files ...436
Approaches to separation of data ...438
Costs and benefits of separation ..439

Separation and External SQL Sources ...439
Understanding the rules ..440
Working within constraints ...440
Supporting the user ...441

Implementing Separation in an Existing Solution ..442
Establishing data source(s) ..442
Re-pointing Table Occurrences ...442
Creating separate graphs ...444

Deployment Considerations ..445
Your remotest dreams ...445
The model of adaptability ..445

02_429006-ftoc.indd Sec1:xix02_429006-ftoc.indd Sec1:xix 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xx

Contents

Chapter 12: Calculation Wizardry . 447
Compound Calculation Expressions ...448

The language of logic ..449
Functions and schema references ..450

Making context explicit ...451
Avoiding circular references ..451

Structured syntax and nesting ...452
Putting it all together ...453

Order of Operations ..454
Boolean Operations ...456

Zero, empty, and everything else ...456
Implicit Boolean coding ..457
Explicit Boolean coding ...457

Variables — Calculation, Script, and Global ...458
Declaring calculation variables — the Let() function ..458
Understanding variables’ scope ...459
Benefiting from variables in a calculation ..460

Text Processing and Parsing Functions ...460
Substitute, Replace, and Trim ..461
Left, Right, and Middle ..462
Position and PatternCount ..463
The xWords suite ..465
Parsing in practice ...466

Text Formatting Operations ..467
Applying text formatting ...467
Removing text formatting ..468
Applying selective formatting ..468
Creating a Format button ..469

Dates, Times, and Timestamps ..470
How FileMaker manages dates ..470
Plotting time ...470
The number of seconds in 2009 years ...471
Juggling days, months, and years ..472

Summary Data ..473
Using aggregate functions ..473
The ballad of Max and Min ...474
Referencing summary fields ...475

Lists and Arrays ..476
Retrieving values as a list ...476
Managing lists — the xValues functions ..477
Extracting one value from a list ...478
Adding or inserting a list value ..478
Removing a value from a list ...479

02_429006-ftoc.indd Sec1:xx02_429006-ftoc.indd Sec1:xx 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxi

Contents

Layers of Abstraction ...480
Building blocks with GetField() ..480
Completing the circuit with GetFieldName() ..481
The value of Evaluate() ...482

Unstored Calculations ...483
Why and when calculations are unstored ..483
Understanding the benefits and trade-offs of unstored calculations484
Discovering the hidden secrets of unstored calcs ...485

Calculation Fields versus Auto-Enter Calculations ..486
The user over-ride capability ...486
Auto-enter calculations and storage ...488
The Do Not Replace option ...488

Global Calculations ...489
The moon follows you everywhere ..490
Managing global dependencies ..490
The freedom and efficiency of global calculations ..491

Environment and Metadata ...492
The Get() functions ..492
Design functions ...493

Calculations Using Custom Functions ...494
Documenting Your Code ..496

Code formatting ..497
Code commenting ...497

Chapter 13: Scripting in Depth . 499
Scripting the Control of Objects and Interface ..499

Addressing objects by name ..500
Locking down the interface ...501
Managing user interaction ...502

Trapping for Errors ...504
Retrieving error codes appropriately ..505
What the error codes mean ...505
Why bother with error handling? ..506
Handling errors ...507

Scripts and Access Privileges ...510
Privilege-based errors ..511
Run script with full access privileges ...511
Determining the substantive privileges ..512

Automating the Automation ..512
Defining a script to run on file open ..513
Housekeeping practices for start-up scripts ...514
Scripts that run on file close ..515
Script Triggers ...516

Harnessing the Power of Parameters, Results, and Variables ..517
Getting data into a script ...517
Branching according to state ...518

02_429006-ftoc.indd Sec1:xxi02_429006-ftoc.indd Sec1:xxi 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxii

Contents

Declaring variables ..519
Passing and retrieving multiple parameters ...521
Specifying and retrieving a script result ...523
Storing and accumulating data as you go ...525

Dynamic and Indirect Controls in Scripts ...526
Example — Go to Layout by name or number ..526
Dynamic file paths using variables ...527
Dynamically building Find criteria ..529
Editing field data on the fly (indirection) ...530

Using Nonlinear Logic ..531
Nested and sequential If/Else conditions ...531
Looping constructs ..532
Specifying exit conditions..533

Modular Script Code ...535
Using sub-scripts ...535
Script recursion ...536

Scripted Window Management ...536
Addressing windows by name (title) ...537
Moving and resizing windows ...538

Determining window dimensions ..539
Creating windows off-screen ...540
Freezing and refreshing the screen ..541

Scripting Data Import and Export ...542
Exporting field contents ..542
Exporting table data ..543
Selecting fields for export ..543
Import options ..545
Data matching for import ..546

Synchronizing and updating data ..546
Other import options ..547

Loading and unloading container objects ..548
Pivoting Data between Tables..549

Using utility relationships..549
Managing related data (walking through related records) ..549

Going over Some Practical Examples...550
Locating unique records ..550
Building a multi-part PDF report ...551

Part IV: Integrity and Security 553

Chapter 14: In Control with FileMaker Security 555
Concepts of Security ...555

Balance and perspective ..556
Identifying threats ...556
Assessing value ..556

02_429006-ftoc.indd Sec1:xxii02_429006-ftoc.indd Sec1:xxii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxiii

Contents

Protecting your investment..556
Interface vulnerabilities ...557

Taking things at interface value ...557
More than a semblance of security ...558
File-based security ...558

The Privilege Set ...558
Concepts of role-based security ...560
Defining and constraining access ...560
Schema privilege controls ..561

Granular Security ..562
Access to value lists and scripts ...563
The two dimensions of layout access ...563
Privileges for table, record, and field access ...564
Using and managing extended privileges ...566

User Authentication ..567
Creating user accounts ..568
Internal and external authentication ..568

Scripted Account Management ..570
Provision for automation of database security ..570
Working with multi-file solutions ...571
Safe scripting implementations ..572

Creating a Custom Logout Option ..573
The locked-down database ..573
Structuring a solution for logging out ..573
Security logging...575

How Much Security Is Enough? ..576
Ways to evaluate risk ..576
A balanced view of threats ...577
A strategic model for response ...577

The Importance of Physical File Security ...577
Layers of protection ...578
Alternative forms of protection ..578
A multi-faceted approach ..579

Security in Deployment: FileMaker Server ..579
Filtered display of files ..580
Secure Socket Layer encryption ...580
Server checks and logs ..580

Chapter 15: Maintaining Referential Integrity . 581
Pinpointing Common Causes of Referential Integrity Problems ...581

The potential impact on your solution ..582
Costs and benefits ...582

Using Unique Keys ...582
Key safeguards ..583
Keys and meaning (existence, persistence, uniqueness) ...584

02_429006-ftoc.indd Sec1:xxiii02_429006-ftoc.indd Sec1:xxiii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxiv

Contents

Generating Keys ..584
Serial numbers ..585
Record IDs ..586
Unique identification (UID) values ..587

Exploring Keys and Data Type ..588
Retrofitting Keys ...590
Deleting Redundant Records ...591

The use of cascading deletion ..592
Configuring relationships for referential integrity ..592
Privilege requirements for cascade delete ..593
Controlled cascading deletes at runtime ..594

Considering Other Integrity Issues ..595
Lookups and when to use them ..595
Auto-entry lookups and references ..595
Data design issues ...596

Managing Dependencies ...597
Literal text references ..597
Indirect object/element references ...597
Filename references ...598
Structural anomalies ..598

Chapter 16: Making FileMaker Systems Fail-Safe 599
Expecting the Unexpected ..599

Successful backup strategies ..599
Backup frequency ..600
An appropriate backup cycle ...600
The integrity of backups ..601
The location of backups ..601
Back up the code, not just the data ..601

The hazards of copying open files ...601
Backing up local files ...602
Backing up hosted files ..603

A Comprehensive Approach to Error Trapping ...603
Dealing with record locking ..604
Techniques to avoid in multi-user or multi-window environments606

Replace Field Contents ..606
Record marking and flagging techniques ...607
Uses of global fields ...607

Opening Remote Files ...607
Peer-to-peer hosting ..608
File sharing risks ...610
Network spaghetti ...610
Opener files ...611

02_429006-ftoc.indd Sec1:xxiv02_429006-ftoc.indd Sec1:xxiv 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxv

Contents

Sending an e-mail link ..612
Temporary Edit Interface Techniques ...613

The Data Viewer concept...613
The legitimate purpose of record locking ..615
Creating double-blind entry systems ...615

Field Masking, Filtering, and Error Rejection ..616
Applying standard data formations ..617
Dealing with trailing spaces and carriage returns ...618
Rejecting out-of-scope characters ..618
Handling styled source text ...619

Built-In Logging Capabilities ...619
Making use of auto-enter options ..619
Capturing and extending standard metadata ...620

Script Logging ...621
Infrastructure for script logging ...621
Tracking script execution ..622

Script-specific context variables ...622
Script diagnostics ..623

Capturing User Edits in Detail ..623
Trapping edits, field-by-field ...623
Incorporating ancillary data ..624
Logging record deletions ...626

Managing the Accumulation of Log Data ...626
Archiving options ..627
Generating secondary output ..627

Implementing Roll-Back Capabilities ..627
Chronological roll-back ...628
Alternative undo and roll-back capabilities ..629
Using logs to roll forward ..629

Alternative Logging Approaches ..630
Logs as Data ..630
Scripted and triggered logging ...630

Chapter 17: Maintaining and Restoring Data . 633
Some Notes on File Recovery ..633

Debunking common myths and misconceptions ...634
The Recover process ..635
Salvaging data ...637
Understanding file corruption ...638

Exporting and Importing Data ..639
File format considerations ...639
Exporting to and importing from a folder ..641
Delimiters and EOL markers ...642

02_429006-ftoc.indd Sec1:xxv02_429006-ftoc.indd Sec1:xxv 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxvi

Contents

Data Cleansing Operations ..643
Extract, transform, and load ..643
Data format considerations ..643

Data organization ..644
Data presentation ..644
Data domain ..645

Filtering capabilities in FileMaker ...646
Synchronizing Data Sets ..647

Import matching ...648
Importing selectively ...650

Handling Embedded Images and Stored Files ...651
Assigning and retrieving paths...652
Scripted field updates ..652

Text-Handling Considerations ..653
Export field contents ...653
Designing a custom export process..654

Part V: Raising the Bar 655

Chapter 18: FileMaker Pro Advanced Features . 657
Script Debugger ..657

Watching code in action ..658
Debugging restricted privilege scripts ..658
Getting used to the Debugger controls ..659

Data Viewer ..661
Current and Watch panels ..661

The Current panel ...662
The Watch panel ...664

Using the Viewer with the Debugger ...665
The Data Viewer sand box ...665
The Data Viewer and variables ..666

Database Design Report ..667
DDR capabilities ..668
Mining the DDR for information ...668
Tools and techniques for interpreting DDR data ..669

Creating Custom Menus ...669
Defining menus ...669
Editing individual menus ..671

Benefits of the Script Step action ...672
Benefits of window widgets ...672

Adding menus to sets ..673

02_429006-ftoc.indd Sec1:xxvi02_429006-ftoc.indd Sec1:xxvi 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxvii

Contents

Assigning menu sets throughout your file ...673
Setting the default menu set for a file ...673
Determining a menu set for each layout...674
Controlling menu sets via script ..675

Custom Functions ...675
Defining custom functions ..676
Custom functions as an aid to syntax readability ...678
Maximizing efficiency and ease of use ...678

Custom Functions and Recursion ...680
Things that only custom functions can do ...680
The stack and the limits of recursion ...681
Tail recursion in practice ...681
Some useful examples ...682

Creating an acronym from a supplied phrase ...682
Extracting a character set from a supplied block of text683
Removing an unspecified number of leading carriage returns683

Creating Runtime Applications ...684
Generating a stand-alone solution ...684
Binding for each platform ..685
Hosting runtime files ...686

Chapter 19: Efficient Code, Efficient Solutions . 687
Designing for Scale: Size Considerations ...687

The elephant in the cherry tree ..688
Predicting what will scale well ...688

Eliminating Redundancy ...689
Avoiding duplication of elements ..689
Using portable and reusable code ..690

Appropriate use of sub-scripts ...690
Appropriate use of custom functions ...691

Designing for Flexibility and Adaptability ...691
Layouts and adaptable design ..692
Concepts of reusability applied to the Relationships Graph692

Traveling the Shortest Distance Between Two Points ...693
Optimal calculation syntax ..693
Alternative syntax examples ..695

Working with modifier keys ..696
Working with Boolean values ..697

Avoiding dependency “spaghetti” ..698
Applying simplicity principles ...701

Transaction Modeling ...702
Live versus batch data ...702
Posting edits and propagating edits to related records ...703
Offline updates and processing ...704

02_429006-ftoc.indd Sec1:xxvii02_429006-ftoc.indd Sec1:xxvii 3/25/09 7:04:28 PM3/25/09 7:04:28 PM

xxviii

Contents

Robots and batch automation ..704
Host/server script execution ..704

Managing File Size ..706
Dealing with data in chunks ..706

Modularization strategies ...707
Considering segmentation ...707

Data archiving ...707
Images and Media in Databases ...708

Chapter 20: Extending FileMaker’s Capabilities 709
External Scripting Calls ...709

Using Send Event and VBScript ...710
Using VBScript with FileMaker Pro ...710
Calling Windows Command-Line scripts ..712

Perform AppleScript ..713
Cross-platform solutions and external script calls ..715
Third-party helpers and macros ..716

Rendering HTML and JavaScript ...716
Harnessing HTTP ..717
Bringing services to your solution..717
Handling hypertext ...718

Web Viewer Widgets ..719
Charting with Flash ...719
Applets and servlets ..719

FileMaker Plug-Ins ..720
Installing and enabling plug-ins ..720
Using external functions ..722
Script triggering ..723

Robust triggering implementations ..723
Available script triggering plug-ins ..725

Dialog capabilities ...725
File and media handling ..726
E-mail, HTTP, and FTP ...727
Charting and other functionality ...727

Web Deployment Options ..728
Instant Web publishing ...728
Custom Web publishing ...729

Working with XML and XSLT ...729
The FileMaker PHP API ...730
FileMaker’s PHP Site Assistant ...730

Finding Third-Party Tools ...731
Developer tools ...731
Analysis and documentation ...732
Shared information ...732

02_429006-ftoc.indd Sec1:xxviii02_429006-ftoc.indd Sec1:xxviii 3/25/09 7:04:29 PM3/25/09 7:04:29 PM

www.allitebooks.com

http://www.allitebooks.org

xxix

Contents

Part VI: Appendixes 733

Appendix A: Expanding Your Knowledge with Additional Resources . . . 735

Appendix B: About the Web Site . 741

Index . 743

02_429006-ftoc.indd Sec1:xxix02_429006-ftoc.indd Sec1:xxix 3/25/09 7:04:29 PM3/25/09 7:04:29 PM

xxx

In a project of the size and complexity of this book, many people are involved in the process
that delivers the final bound copy into your hands, and ’listing or individually thanking them
all isn’t feasible. However, I’d like to make a special mention of those at FileMaker, Inc. whose

sustained dedication and attention to detail has produced the remarkable application that is
FileMaker Pro 10.

Additionally, I’d like to thank my editor, Kelly Ewing, and technical reviewers, Jason DeLooze and
Corn Walker, for their attention to detail and their considerable contributions to the success of this
project.

03_429006-flast.indd Sec1:xxx03_429006-flast.indd Sec1:xxx 3/25/09 7:05:40 PM3/25/09 7:05:40 PM

xxxi

FileMaker first emerged as a database application in the 1980s and has steadily increased in
popularity in the decades since then. FileMaker is a veteran alongside well-established pro-
ductivity applications, such as Microsoft Excel and Microsoft Word. Moreover, FileMaker

Pro has been available as a cross-platform application (Mac and Windows) since 1992.

From its humble beginnings, FileMaker has acquired new features and capabilities with each suc-
cessive version. Version 10, the most powerful and flexible yet, retains much of the essential core
of earlier days, enabling rapid development and providing new users with a moderate initial learn-
ing curve. As a longstanding user of FileMaker (I began using FileMaker Pro with Version 2 in
1990), I have seen many of these changes and can unreservedly commend you on your choice.
FileMaker Pro has earned its reputation for a combination of ease of use and power — and if
you’re prepared to take the trouble to look a little more deeply into its capabilities (by reading this
book, for example!), you’’ll find that it’s also extraordinarily versatile and capable.

The FileMaker Pro 10 Bible features FileMaker Pro 10 and FileMaker Pro 10 Advanced. As a user
wishing to create basic solutions, FileMaker Pro 10 is an ideal place for you to start, and the bulk
of the information in this book will be immediately useful to you. For more complex requirements
or for serious development work, you’ll find that FileMaker Pro 10 Advanced offers numerous
advantages, with improved diagnostics and powerful developer-oriented features — and again,
you’ll find information herein to ensure that you’re able to get the most out of your purchase.

In addition, FileMaker, Inc. provides the server-based (Web and local network) deployment prod-
ucts FileMaker Server 10 and FileMaker Server 10 Advanced, providing you with options to host
FileMaker solutions for large workgroups. While the Server products aren’t the focus of the
FileMaker Pro 10 Bible, I nevertheless include some references to design considerations for multi-
user deployment.

About This Book
The content of this book leverages the wealth of information and examples in the bestselling FileMaker
Pro 9 Bible, re-orienting it to the new features of FileMaker Pro 10 and giving you substantial added
value. Radical new features, such as Script Triggers, have been incorporated, and I’ve reworked the text

03_429006-flast.indd Sec1:xxxi03_429006-flast.indd Sec1:xxxi 3/25/09 7:05:41 PM3/25/09 7:05:41 PM

xxxii

Introduction

with these features in mind. This edition and the one immediately preceding it represent a major step
forward (the previous book was a total ground-up rewrite) and are a substantial departure from earlier
books in the series.

The FileMaker Pro 10 Bible brings together practical advice and examples, bringing essential theory
together with explanations and techniques covering a wide variety of topics that you won’t find
covered in other books or in the user guide and Help files that ship with FileMaker Pro. I’ve
designed the book to provide value when read straight-through, as a place to quickly delve into a
particular topic or feature, or as a deep reference work when accessing information via the Index.

Although the early chapters (Parts I and II) assume no prior experience with FileMaker, I do assume that
you’re prepared to refer to the FileMaker Pro User Guide and the application’s online Help entries as
needed (so I don’t repeat the information contained in the documentation that installs by default with
the application). In the second half of the book, I cover more advanced aspects of material previously
introduced; however, when doing so, I refer you to the relevant introductory passages in case you need
to catch up on the basics first. For those occasions when you need to check a fact, find a technique, or
solve a problem, the book includes a comprehensive Index and an extensive Table of Contents that help
you find topics of interest.

FileMaker Pro 10 is a cross-platform product that operates similarly on Mac and Windows operat-
ing systems. In those cases where a feature is specific to one platform, I draw your attention to it
and discuss its use (including in cross-platform solutions). When referencing keyboard shortcuts, I
include the Mac shortcut and also the Windows shortcut (for example, Ô+T / Ctrl+T). In those few
cases where a dialog is significantly different on Mac or Windows, I provide screenshots of both
versions of the dialog the first time it’s encountered, but otherwise I show the Mac version in each
screenshot.

I’ve taken care to frame the explanations provided here in standard conventions and terminology
wherever possible. For example, I use standard notations, such as 1:n, where applicable and a tilde
(~) character to indicate an unspecified object (such as one or many records in a relationship).
When terms are used with a special meaning, you can find them in the glossary provided in
Appendix A.

Although this is a substantial volume, I nevertheless have a finite number of pages with which to
address a vast quantity of information; FileMaker Pro is a very big subject! Rather than reiterating
information already covered elsewhere, I have been at pains to employ available space within the
book to add value and focus on new material you don’t already have at your fingertips. In some
cases, this approach means presenting basic information in new ways or elucidating it beyond the
common understanding (how FileMaker really works, and why!). As part of that goal, I present
information that isn’t documented anywhere else, sharing with you insights gleaned from more
than a decade in the trenches with various versions of the FileMaker Pro suite of products.

As part of the Bible series, this book is intended to provide self-contained, comprehensive coverage
of its subject. With that aim in mind, this edition of FileMaker Pro Bible is the most comprehensive
ever and does more to help you become productive with FileMaker Pro.

03_429006-flast.indd Sec1:xxxii03_429006-flast.indd Sec1:xxxii 3/25/09 7:05:41 PM3/25/09 7:05:41 PM

xxxiii

Introduction

About This Book’s Target Audience
If you want to create databases and database solutions using FileMaker Pro 10 or FileMaker Pro 10
Advanced, you’re the target audience for this book. Whether you’re a serious amateur who’s creat-
ing a database solution for your family, club, or organization; a professional managing data as part
of your wider role; or a developer who’s building custom systems or turnkey solutions to sell or
license to others, FileMaker Pro 10 Bible can help you attain your goals.

I do make a few basic assumptions about you:

n I assume that you know how to use your computer and operating system, whether it’s a
PC running Windows XP or Windows Vista, or a Mac running Mac OS X.

n I assume that you have, or have access to, FileMaker Pro 10 or FileMaker Pro 10
Advanced. The book is more useful if you have access to FileMaker Pro 10 while you
read and work through the examples I present.

n The third assumption is that you want to both understand the database design process
and learn how to accomplish a broad range of tasks using FileMaker Pro 10.

How This Book Is Organized
In keeping with Bible tradition, FileMaker Pro 10 Bible is divided into parts, and each part is
divided into chapters. The parts of this book are as follows.

Part I: The Fundamentals
This part covers the basics of database theory and design and provides a high-level overview of the
features of FileMaker Pro 10.

Part II: Introduction to Database Design
This part is where you learn more details of database design theory and how to use FileMaker Pro
10 to actually create a database solution.

Part III: Beyond the Basics
In this part, you find out how to use more advanced FileMaker Pro 10 features in such tasks as
producing more comprehensive reports, implementing fault-tolerant input forms, designing lay-
outs for cross-platform use, designing target-specific (screen, print, and Web) layouts, and auto-
mating data processing.

Part IV: Integrity and Security
This part delves deeply into the concepts and implementation of data integrity, access control, and
risk management.

03_429006-flast.indd Sec1:xxxiii03_429006-flast.indd Sec1:xxxiii 3/25/09 7:05:41 PM3/25/09 7:05:41 PM

xxxiv

Introduction

Part V: Raising the Bar
Here, I delve into the additional features and capabilities offered by FileMaker Pro 10 Advanced
and explore tools and techniques facilitating professional-level database development processes.

Part VI: Appendixes
The appendixes provide a compendium of other references you might find valuable, such as tar-
geted technical books, related publications, and useful Web sites, and a synopsis of what you can
find on this book’s companion Web site.

Icons Used in This Book
The book includes a number of icons to call attention to specific passages throughout the book.
The icons are as follows:

NOTENOTE Indicates useful, but noncritical, information concerning the material being
presented.

TIPTIP Indicates information that makes performing a task easier or describes how a fea-
ture can be utilized in a useful, but not obvious, manner.

CAUTION CAUTION Indicates possible pitfalls or side effects arising from the use of the feature being
discussed.

CROSS-REFCROSS-REF Indicates where to look for additional (including prerequisite) information about
the material being discussed.

NEW FEATURENEW FEATURE Indicates a feature introduced in FileMaker Pro 10 or FileMaker Pro 10 Advanced.

ON the WEBON the WEB Indicates material that you can find on the book’s companion Web site at www.
wiley.com/go/filemaker10bible.

Where to Go from Here
If you’re new to creating databases, you should start with Part I. If you’re experienced at database
design but new to FileMaker Pro, try skimming Part I to learn the FileMaker Pro interface and fea-
ture set. If you’re an experienced FileMaker Pro user, you’ll probably want to check out Chapter 4
to see what’s new in FileMaker Pro 10 and then bounce around the book to those areas of particu-
lar interest (so the book’s Index should prove immediately useful to you).

All the example files for this book are available for download from the book’s companion Web site
at www.wiley.com/go/filemaker9bible.

03_429006-flast.indd Sec1:xxxiv03_429006-flast.indd Sec1:xxxiv 3/25/09 7:05:41 PM3/25/09 7:05:41 PM

Keeping track of information is a challenge you face in
every area of your life, and everything from a grocery
list to an inventory of books or music, to a company

annual report, is part of that challenge. For your information to
be useful, you’ll need ways to organize, store, retrieve and pres-
ent it when needed. I assume that you’re reading this book
because you recognize that using automated and computer-
driven data organizing tools such as FileMaker Pro offers you
many advantages — once you’ve taken the time to gain an
understanding of the fundamentals.

In this first part of the FileMaker Pro Bible, I offer you a broad
introduction to the terms and concepts that you’ll encounter
when coming to grips with FileMaker Pro. As well as describing
the ways computer database systems can help you to accom-
plish your goals, I highlight some of the special features and
attributes FileMaker Pro offers — those things that set it apart
from competing applications, including the support it provides
for novice or lay users. Moreover, this part provides a survey of
new features in FileMaker Pro 10 that will be of interest to read-
ers who have used previous versions of the application.

The Fundamentals

IN THIS PART
Chapter 1
Databases: The What, Why,
and How

Chapter 2
Putting FileMaker Pro in
Perspective

Chapter 3
Getting Acquainted with
FileMaker

Chapter 4
What’s New in FileMaker 10

04_429006-pp01.indd 104_429006-pp01.indd 1 3/25/09 7:08:12 PM3/25/09 7:08:12 PM

04_429006-pp01.indd 204_429006-pp01.indd 2 3/25/09 7:08:12 PM3/25/09 7:08:12 PM

3

You’ll find no shortage of references to data and databases in books,
magazines, TV shows, and Web articles. In fact, referring to databases
has become so commonplace that most people take it as shorthand

for the use of sophisticated computer techniques to track and analyze infor-
mation — and indeed computerized databases are everywhere. Despite this,
databases have existed much longer than computers, and the basic concept
has its origins in much more humble methods of information storage and
retrieval.

The term database refers to any collection of ordered information, whether a
computer is involved or not. So everything from the four-day weather forecast
to your grocery list to a pocket dictionary is a database. In fact, this book,
with its table of contents and index, is a database too, offering a compendium
of useful data and several useful ways to access it. In the same way, computer
databases mirror all the other familiar data management techniques that have
been used throughout centuries — allowing you to organize information,
store it, and access it efficiently.

The first and most important principle of any data organization method is
that what you get out is only as good as what went in. In many cases (unless
the way the information is organized is carefully conceived and followed),
information will always be as easy to find as you would hope. This general-
ization can apply equally to a handwritten list or a computerized data man-
agement tool, depending on the skill and care with which the data has been
arranged or entered, and on the suitability of the method for the uses to
which you will put the information.

Of course, using a computer to keep track of information offers you many
advantages, including speed and reliability, automation of common tasks,
and the ability to sort, search, and summarize your information efficiently.

IN THIS CHAPTER
Identifying the elements
of a database

Relating data

Solving problems by using
a database

Looking at FileMaker’s role in
streamlining data management

Databases: The What,
Why, and How

05_429006-ch01.indd 305_429006-ch01.indd 3 3/25/09 7:08:55 PM3/25/09 7:08:55 PM

4

The FundamentalsPart I

My purpose in this book is to provide you with a comprehensive overview of techniques and strat-
egies for taking control of your information, using the capabilities of one of the best Database
Management Systems available — FileMaker Pro 10!

The Many Faces of Databases:
Lists, Tables and Forms
The most common form of database is a list — any kind of list. Lists of things to do, shopping lists,
lists of names and addresses, and countless others are everyday databases that are so familiar that
you scarcely think about them. Lists that hold more than one kind of information are commonly
organized into tables with different columns for each kind of fact and a separate row for facts about
each item. (For example, a shopping list may have a column naming the items to be purchased and
an adjacent column listing the quantity of each item required.) As soon as you have two or more
pieces of interrelated information to manage, organizing your data into a tabular form provides a
framework that is clear and simple and makes it easy for you to locate the information you need.

A computer database holds one or more tables of information, where your data is held within an
organized structure that allows you to easily access it. Instead of columns and rows, however, the
elements of a FileMaker database are described by using slightly different language. Here are a few
of the basic terms:

n Field: In FileMaker, a field holds a discrete piece of information, such as a date, a name,
a price, or a ZIP code. Fields correspond to the columns in a conventional table, or to the
cells within a row of a spreadsheet.

n Record: One of a set of separate instances of a group of fields, containing a set of infor-
mation about a specific item — for example, a person, a place, or a product. Records are
analogous to the rows in a conventional table or spreadsheet.

n Table: A collection of records containing information about a number of similar items.

n Database: One or more tables containing organized information.

The limitations of paper-based databases
Information is commonly collected by having people fill out forms. Often, the completed forms are
filed in cabinets (for example, in alphabetical order), and essential parts of the information may be
transcribed into a log or tracked via entries in an index card system.

When information is stored on pieces of paper or on cards, to access it you must delve into the fil-
ing system to locate a particular card or form. When you remove it, you must be sure to put it
back in the same place. Large number of records take up lots of space, and it can be quite a job to
keep them all in order. In addition, this process is pretty inefficient and error prone. Should you
need to know general facts (such as the number of single males who have filled out a particular
form), you’ll have quite a task on your hands working through the entire collection of data and
counting up the relevant entries.

05_429006-ch01.indd 405_429006-ch01.indd 4 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

www.allitebooks.com

http://www.allitebooks.org

5

Databases: The What, Why, and How 1

After all the effort you might expend getting paper forms sorted and filing them, you’ll have them
arranged in a single order (for example, by name or date of birth). Should you need the informa-
tion sorted or grouped differently (such as by ZIP code so that you can claim a price break from
the post office when sending mail to all the people who filled out forms), you have a huge manual
task ahead. If you’re paying someone to assemble the information, such requirements can quickly
become too expensive to justify.

Finally, should you need to update any information in the forms stored in such a filing system,
someone will have to cross out the old information (such as an out-of-date phone number) and
write in different data. After there have been several changes of the same or similar information,
the forms (or cards or journal entries and so on) may become jumbled and difficult to read.

Entering the digital age
The impact of computerization has been felt in all corners of the globe. Even folk who don’t own
and may never aspire to owning computers benefit both directly and indirectly from the many
ways computers change the world we live in — from weather forecasting to traffic control to scien-
tific breakthroughs to library loans systems: The digital age is upon us. Databases are at the very
center of this world of change, because almost all computerized processes involve storing and
manipulating data in some way.

Because you’re reading this book, I assume that you’re familiar with one or more operating sys-
tems. However, it may not have occurred to you that in the process of opening and closing folders
and viewing the files they contain, you’re navigating a database. Your computer maintains a data-
base that tracks the locations (and names, types, and other characteristics) of all the files on each
disk drive. When you double-click a file inside a folder, the operating system looks up its database
to find out which application should be used to view or open the file in question. So you’ve been
using databases long before you found your way to a database management application such as
FileMaker Pro.

Storing your data digitally offers several compelling advantages:

n The data can easily be edited. (You don’t need erasers; you don’t make a mess crossing
things out; you can automatically track and reverse changes at will. . . .).

n You can use computer programs to search your data and find specific entries much more
quickly than you can do manually.

n Computers can repackage your information and present it to you in different formats —
or in different sort orders, all at the click of a button or the move of a mouse.

Each of these tasks would be painstakingly laborious to undertake manually by using conventional
(paper) records. And the more data you have, the slower a manual process becomes, whereas com-
puters can apply the same processes to 5 records or 5,000, often with barely any perceptible differ-
ence in the time they take to complete their task.

Ideally, a computerized database should provide all the advantages of a conventional records sys-
tem, without any of the disadvantages. As part of that, your computer databases should allow you
to transpose information from paper-based forms into screens that have a similar appearance and

05_429006-ch01.indd 505_429006-ch01.indd 5 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

6

The FundamentalsPart I

utility. That is, the information may be arranged in the same configurations, and the screen forms
may even resemble the familiar paper forms. When you print a form from a program that has been
designed to mirror the appearance of your paper forms, you can move information freely between
conventional filing systems and your digital database.

Adding to the advantages a digital database provides for entering, editing, searching, sorting, pre-
senting, and reformatting information, a further benefit is that you can use computers to summa-
rize data (automatically adding up totals or averages and so on), generate new data by using
calculations, analyze your data, create graphical representations of your data, or make the data
available remotely (such as via a Web page).

Preparing to get organized
Getting started on any significant task requires planning. Databases help you get your information
organized, but before you can use them effectively, you may need to spend time organizing the
database itself. In turn, to do that, you need to organize your thoughts.

The first thing you must establish in order to approach the task of getting organized is the kinds of
information you need the database to store. For example, to keep track of inventory for a retail
business, you’re likely to need product names, prices, and stock codes. You might also need to
know other facts, such as item sizes, availability, sources of supply, or packaging options (boxed or
single). In addition, you’ll likely need to keep track of how many of each item is on hand so that
you’ll know when to order more stock from the supplier. When you know what information you
need to track, you have a much clearer idea about what you need to put into your database.

Separately, you’ll need to determine what information your database should provide as outputs.
For example, a products database may be required to produce a catalog or price list, a checklist for
stock-take or a summary of items on special, and so on. When you consider what kinds of output
will be required, you’ll have a clearer idea what information your database will be required to
store.

The start of the process of defining and designing your database, therefore, should be to set out the
inputs and the outputs and to make sure that what is going in will be sufficient to provide what
you require to come out.

The Concept of a Relational Database
When information is arranged in a single table format (such as one you might create with columns
and rows on paper or in a spreadsheet program), it’s referred to as flat — or as a flat-file database.
It’s flat in the sense that it has only two dimensions — columns and rows. Most simple forms of
databases (whether computerized or not) are flat in this way. A flat-file database is a computer
database that contains a single table to hold all the fields (or columns or cells) of information
together in one place. In that regard, a simple spreadsheet is a prime example of a flat-file database.

05_429006-ch01.indd 605_429006-ch01.indd 6 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

7

Databases: The What, Why, and How 1

Flat-file databases and data redundancy
When working with flat-file databases, you’ll frequently encounter situations where the same infor-
mation must be entered in more than one record (row) of the table. For example, in a database
containing information about people, if one of the fields holds the home address and two of the
people (John and Mary) live in the same place, the same address must appear twice (once on the
record for John and again on the record for Mary). The immediate consequence of this duplication
of information is that if you find an error, you’re likely to have to correct it in both places — or
risk having your data contradicting itself and therefore becoming less dependable and useful.

Another issue you’ll encounter when using a flat-file database to deal with large amounts of informa-
tion is that it’s hard to view all the relevant information at once (such as when a table must become
very wide to accommodate a lot of fields). To make the process manageable, you may need to work
with subsets of the data. If using subsets involves separating the information into two or more
tables, you’re likely to find that you need to repeat some of the information from one table in the
other. For example, if you decide to use separate tables to track people and their addresses and peo-
ple and their jobs, some of the information (such as people’s names) must be in both tables. Again,
when this repetition of data occurs, any duplicated information that has to be corrected or updated
must be changed in two (or more) places to keep your data accurate and internally consistent.

Almost 40 years ago, an elegant solution to the problem of redundancy in databases was proposed
by Edgar F. Codd when he described an idea he called the relational model that could be applied to
enable Database Management Systems to manage interrelated sets of data more effectively. (You
can find a copy of the original article in which Codd described his breakthrough at http://
portal.acm.org/portal.cfm). The mathematical model Codd proposed applied set theory
and predicate logic as the basis of a system that would connect data in different sets (tables). For
your purposes, the significant thing is that Codd’s work led to the widespread creation of database
systems where you can relate information in tables based upon a common field.

In fact, long before relational databases became commonplace on computers, a similar concept was
in use in various other forms. For example, before teachers began using computers to record atten-
dance, assignment submissions, grades, and so on, many teachers employed special notebooks
containing a main page with basic student detail, plus adjacent narrower pages for the teacher to
enter columns of details against each student’s name (roll call, assignment results, test scores, and
so on). When the same basic concept is implemented within a relational database, a table of stu-
dent information is matched by a unique field value (such as student’s name or an ID number) to
corresponding information in other tables, where attendance, grades, and the like are recorded.

Opportunities for making connections
You encounter databases just about everywhere you turn. From the telephone book to your bank
statements, from game scores to the electoral roll, each time you need to look up some information,
you’re going to be reaching for a database. While some of these databases reside on computers (for
example, Internet search engines are in fact giant databases), even those that are in books or other
traditional formats often originate in computers (before being printed and bound into the form in
which you access them).

05_429006-ch01.indd 705_429006-ch01.indd 7 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

8

The FundamentalsPart I

By setting up an appropriate computerized database, you can create a framework within which to
work with your data so that you can easily access information you need and see connections between
corresponding information (which people live in which houses and so on). FileMaker Pro 10 pro-
vides an efficient environment that enables you to create flexible and powerful solutions to store and
retrieve your data. As part of the process of configuring your solution, FileMaker Pro lets you set up
relationships that link data in one table with corresponding data elsewhere in your solution.

An example of the kind of database solution you might create with FileMaker Pro 10 would be a
system to track your music collection, wherein songs, artists, and albums will each appear in sepa-
rate tables, with links between the tables to associate each song with an artist and with one or more
albums on which it appears. In the event you decide to loan some items from your collection to
friends, you might add a fourth table to record which items are on loan to whom (and presumably,
to mark them off when they’re returned).

Similarly, you might choose to create a database to keep track of the names, telephone numbers,
and addresses of your friends or business contacts. In this case, you might create a table of people,
a table of addresses, and a table of employers (companies or workplaces). In this case, one or more
people records may be associated with each address record, one or more people may be associated
with each employer, and each employer may be associated with one or more addresses. Note that
in this case, because all the addresses would be together in one table, separate joins are required to
connect both the people table and the employers table to the addresses table.

While the two examples I mention here are common requirements, there are many other possibili-
ties. From tracking your finances and expenditures to storing trip details and expenses for your
vehicle, to organizing your favorite recipes to tracking invitations and responses for as gala ban-
quet, there is no shortage of uses for custom database design skill.

The Anatomy of a Database Solution
You can find a number of basic components in any database solution, regardless of its purpose and
origins. These elements include tables to hold the organized data, screens or forms to enter and
view the data, reports to produce printed (or other) output. All but the simplest solutions can also
be expected to include relationships that make the connections between different categories of
information (linking people with companies, products with sales, and so on). The combination of
the components that make up a database enable you to enter, edit, and extract data in ways that
help you to get things done.

The data: Foundation and substance
Nearly everyone has a need to work with information in some area of their life — which is the rea-
son databases are so widely used. The information you need to manage is the whole reason for
considering having a database — so your data is the first, most important, and central component
of your database. At the simplest level, your data and the way they’re organized (into tables con-
taining records that in turn are comprised of fields holding individual facts) provide the core of
your database.

05_429006-ch01.indd 805_429006-ch01.indd 8 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

9

Databases: The What, Why, and How 1

The way your data is organized provides your database with structure — sometimes called its data
architecture — which provides the basis for every function and procedure you perform. The deci-
sions you make about data structure are important because they determine what will be possible,
and what won’t, when you’re working with your data.

The model for data relationships developed in the 1970s may seem abstract; however, it provides
an effective way of capturing relationships that exist in the real world and replicating them in the
information stored in your database. The goal is devising a structure for your data that’s a good
match for the things that data represents — and the relationships between them.

An ideal database structure is one that captures information about things (people, objects, places,
and so on) and also accurately represents the relationships between them. People have relationships
with each other — family and work relationships, for example — but they also have relationships of
ownership and association with objects and places. Your databases should provide a way to repre-
sent information and its interrelations.

The interface: Screens, letters, forms, and reports
When you interact with a computer database, you view and manipulate data onscreen. Different
views of data presented onscreen are therefore often called screens, irrespective of how they’re orga-
nized. A screen in this sense combines data, labels, and other control elements, such as menus and
command buttons, that enable you to interact with the data and navigate the solution. Frequently,
however, the visual elements of a screen are arranged in a way that is analogous to a familiar real-
world object, such as a list, form, letter, or report. In many cases, you’ll find it helpful to refer to
screens as forms or lists, as these terms are more descriptive.

The most common screen format is the digital form, which presents a selection of the fields of a single
record, arranged in a logical and useful order. A digital form therefore mirrors familiar real-world
paper forms and can be used for the same purposes — to create and update records. Figure 1.1
shows an example of an entry form used in the iTunes music database to interact with information
about a song.

If you’re familiar with creating lists or using spreadsheets, you’ve encountered lists or tables containing
so much data that they’re cumbersome. When a table has too many columns, it becomes unwieldy —
making the task of seeing connections and considering the data as a whole very challenging. Database
forms provide a way to ameliorate this problem by allowing you to view a subset of the fields (col-
umns) of data, arranged in a way that makes the connections clear. For example, the components of
an address — street, city, state, postal code, and so on — can be grouped together and viewed as a
whole. Similarly, a person’s name, title, and personal details will be grouped together. When viewed
in this way — rather than spread out across a row as in a conventional table or spreadsheet — you
can much more easily understand what the information means and how it interrelates.

Because you can arrange a selection of fields of data onto a form, you can deal with a situation where
there is too much information to fit comfortably on one screen. Just as a real-world paper form may
have multiple pages, you can divide a digital form across multiple screens. In this way, the data can
be broken into manageable sections, and the user won’t be overwhelmed with complexity or clutter.
This approach can make data entry simpler and swifter, while reducing the scope for error.

05_429006-ch01.indd 905_429006-ch01.indd 9 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

10

The FundamentalsPart I

 FIGURE 1.1

A form enables you to enter or update information in your database.

You can also use forms to retrieve your data, but that limits you to viewing one record at a time.
Moreover, forms frequently present a subset of a record’s data. Although working with forms
showing a subset of fields from record data may be advantageous during data entry — allowing
you to deal with the data in manageable “chunks” — separate forms may not provide a compre-
hensive view of the record’s data. That may be what you want some of the time, for example, when
printing an invoice. However, one of an electronic database’s major benefits is that you can quickly
and easily get a consolidated report, possibly with summary information, of your data or some
defined subset of that data. Figure 1.2 shows such a report — summary data from a music data-
base created with FileMaker Pro.

As the example in Figure 1.2 shows, reports are frequently arranged as a list of data from succes-
sive records in rows, along with headings and appropriate summaries or totals. Although the many
variations on this concept represent the most common kinds of reports required in a database,
there are some exceptions.

When you were in school, you probably received a report card at the end of every quarter or
semester that provided an overview of your achievements for the preceding period. Some schools
present these reports as a simple list of the classes taken and the grades awarded. However, some
school reports are arranged more like a form than a list, with classes and explanatory text arranged
in different parts of the page according to the way the curriculum has been structured. Moreover,
instead of listing many students, only a single student’s results are included. In both respects, this
is an example of a report employing the essential elements of a form rather than a list.

05_429006-ch01.indd 1005_429006-ch01.indd 10 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

11

Databases: The What, Why, and How 1

Another common use of information is as the basis of correspondence. Letters to colleagues, asso-
ciates, customers, or clients usually contain information that is relevant and specific to the recipi-
ent. These letters can be produced from a database as a kind of report — one in which the
elements of data and/or summary information are arranged within appropriate text, in a format
that is conventional for correspondence. In this way, using the data that is already in your data-
base, you can efficiently create dozens, or even hundreds, of different letters — each specific to the
addressee. This particular type of correspondence, sometimes called a form letter, is a common fea-
ture of word-processing applications, such as Microsoft Word. In Word, this feature is called Data
Merge, and you use it to retrieve data from a separate merge data file (such as an Excel or Access
file). FileMaker Pro lets you create such correspondence without involving other applications.

By enabling you to enter your data once and then retrieve it in a variety of configurations and for-
mats (as screens, forms, reports, summaries, lists, or letters), a database turns unwieldy tables of
data into a flexible and powerful tool.

 FIGURE 1.2

A report shows you multiple records at one time.

05_429006-ch01.indd 1105_429006-ch01.indd 11 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

12

The FundamentalsPart I

The hidden helper: Process management
So far I’ve talked about putting data into computer databases via forms and getting it back out in
reports of various kinds. Between the two ends of the process, however, databases make them-
selves useful in many other ways. Database solutions can be configured to filter information, con-
firm its validity, make connections, calculate new data from raw inputs, summarize sets of data,
and automate a variety of tasks involving data.

During the process of data entry, you first create a record and then enter information into the fields
within the record. Database applications may allow you to specify a default value for some or all
fields, so when a new record is created, some of the fields already have data in them. Sometimes
the data entered automatically in this way will be static (always the same), but on other occasions,
it may vary depending on the current situation. Examples of default values that vary are a serial
number, which will increment as each new record is created, or a date or time field that takes its
value from the computer’s internal clock and calendar.

Still more helpful is the ability to define values that will be created automatically, depending on the
values you enter. For example, you may enter an item’s unit price and the quantity purchased into
a database, and the database automatically fills in the sales tax and total price in other fields, saving
you time and effort and reducing the potential for mistakes.

Database screens are often set up with lists of values for particular fields, to prompt you to select an
appropriate value — and to speed up the process, enabling you to replace the work of many key-
strokes with a single click or just one or two keystrokes. Moreover, databases are often configured
with rules determining which values are valid and which should be rejected. The user can, thus, be
alerted when making an error during data entry, greatly reducing the incidence of data-entry errors.

Because of these capabilities, entering data into a well-designed database solution can be much
quicker and easier than typing a table in a word processor or even a spreadsheet, and the results
can be more accurate. If you have large amounts of data to manage, or if several different people
are involved, using a database has many advantages. These advantages go well beyond data entry
because you can automate many other aspects of a database solution.

When you work with data, you’ll frequently have to perform repetitive tasks as part of the process
of managing information. For example, if you’re maintaining a sales and billing system, you may
need to go through the purchase invoices, marking and dating those that have been paid and mail-
ing out receipts to the person or company that made each purchase.

If your sales and billing are done within a database, you might instead have the database automati-
cally cross-reference payments with outstanding invoices, update the invoices accordingly, create
the corresponding receipts, and send them to the printer in the mailroom. A whole morning’s
tedious work can be done in the time it takes to pour your first coffee — and without the errors
and omissions that are inevitable during manual processing in a busy office with endless interrup-
tions. If implemented well, process automation can free you from much of the drudgery of massag-
ing data, enabling you to do the more important work of dealing with clients, making decisions,
and making things happen. Let the computer do what computers are good at so that you’re freed
to get on with doing the things that humans are good at.

05_429006-ch01.indd 1205_429006-ch01.indd 12 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

13

Databases: The What, Why, and How 1

How FileMaker Fits In
In contemporary computing, you’ll find no shortage of database software — from relatively simple
desktop database programs to industrial strength enterprise systems. A few of these products are
excellent in the spheres where they operate, but most are not. FileMaker Pro 10, however, stands
apart from the rest in several key ways, not least of them being its unusual combination of power,
accessibility, and flexibility. However, each Database Management System also has its own terms,
techniques, and concepts, as well as its own particular strengths and quirks, with which its users
become familiar. To begin your FileMaker journey, I show you a few of the ways to “think”
FileMaker.

What FileMaker Pro calls things
In the section “The Many Faces of Databases: Lists, Tables and Forms,” earlier in this chapter, I
refer to database solutions, using that term’s general meaning. However, in the context of
FileMaker Pro, a solution refers to a database file or a collection of database files that interact with
one another to achieve a set of user-defined objectives. Whereas a file containing only a few tables
might be referred to as a database, the term solution is generally reserved for the whole set of (one
or more) database files forming a particular database system.

A FileMaker solution is composed of one or more files, which in turn may contain one or more
tables in which data can be stored. FileMaker offers a great deal of flexibility regarding the way a
solution is configured. You can put many tables into a single file, have many files each holding
only a single table — or even have some files that have no tables at all (that is, containing only
code or interface). You’ll make these choices depending upon the ways you want your solution
to work.

The English language is rich with names, and many things have more than one name. In a word-
processor table or a spreadsheet, information is entered into cells. In some SQL databases, adher-
ing to the terminology of E. F. Codd (see the section “Flat-file databases and data redundancy,”
earlier in this chapter), the equivalent place for entering a specific item of data is called an attribute.
However, in FileMaker, as noted previously, they’re called fields. Similarly, what you would refer
to as a row in a spreadsheet is called a record in FileMaker.

NOTENOTE Some folk argue that tuple is the appropriate term for a record or that join is the
correct name for a relation. However, in my view, the terms record and relation

have the advantage of being more widely used and understood (including by those who have no
background in advanced math). Should you decide to delve into technical papers on the subject
of data theory, you’ll encounter many such terms employed in discussion of the theory of rela-
tional databases. For everyday purposes, including when using FileMaker Pro, the terms in gen-
eral use are all you’ll need.

Most of the terminology used to describe the elements of a FileMaker solution differ little from
other database software: FileMaker uses terms such as field, record, table, and relation. However,
two notable exceptions are screens and searches. The design surface you use to create forms and
reports in FileMaker are called layouts. Figure 1.3 shows the appearance of the same solution

05_429006-ch01.indd 1305_429006-ch01.indd 13 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

14

The FundamentalsPart I

window in two different modes. At the left, the window is in Layout mode, where the objects on
the screen can be edited; at the right, the window appears in Browse mode, and you can see that it
is displaying data.

The use of the word layout is significant for two reasons. First, FileMaker provides a set of tools for
building screens and reports, which are not unlike those you would encounter in a graphic design
program — its interface builder is a layout builder. Second, layouts are vehicles for creating all dif-
ferent sorts of display and print output and can even create multipurpose screens that can be pre-
sented as a form or a list or printed as a report. Instead of providing separate objects and toolsets
for building each different kind of display or output (for example, a form builder and a separate
report builder), FileMaker provides a single highly flexible object — the layout. With the exception
of dialogs, borders, and the Status Area (the gray band at the top), everything you see in a
FileMaker window is a layout.

 FIGURE 1.3

A layout being edited in Layout mode (left) and displaying data in Browse mode (right).

Another way that FileMaker terminology differs from most other database systems is that what oth-
ers call search or query is referred to in FileMaker as a find, and the result of a find is termed the
found set. To find something in FileMaker, you fill in some information (such as a word or part of a
word) into a blank Find screen, shown in Figure 1.4, and FileMaker will subsequently locate any
matching records and present them to you. By contrast, to perform a search in many other database
environments, you have to create exacting queries, usually conforming to a standardized language
called SQL (short for Structured Query Language). A fairly simple query might be

SELECT * FROM Teams WHERE TeamName=’Design Team’

05_429006-ch01.indd 1405_429006-ch01.indd 14 3/25/09 7:08:56 PM3/25/09 7:08:56 PM

www.allitebooks.com

http://www.allitebooks.org

15

Databases: The What, Why, and How 1

to locate and return the contents of records in your Teams table where the TeamName field holds
“Design Team” as its value. An SQL query also requires that you specify which fields are to be
returned. (Otherwise, all fields in the table are returned.) Moreover, if you add further criteria to
an SQL query, it soon becomes quite long and complex. By comparison, FileMaker’s Find process
is quick and intuitive and less vulnerable to user errors. (It involves a lot less typing!)

As you can see in Figure 1.4, other than the tools provided in the panel on the window’s left side,
there is virtually no visual difference between a new, empty record (as shown in Figure 1.3) and a
Find request’s layout area.

In FileMaker, to find records that match given criteria, you go into Find mode, whereupon the cur-
rent layout is presented to you with blank fields. You fill in one or more of the blank field boxes
with your search criteria (in a layout that has the fields you want retrieved) and when you perform
the find (using the Perform Find icon at the top of the window), FileMaker locates the records that
match what you’ve entered. So, for example, when you’re viewing a screen that presents data about
teams, you can go to Find mode and enter part of a team name, shown in Figure 1.4, to locate
records for teams with names beginning with the letters you’ve entered. After performing the Find,
you can browse or print the resulting records.

 FIGURE 1.4

FileMaker lets you enter find criteria directly, rather than construct complex queries.

05_429006-ch01.indd 1505_429006-ch01.indd 15 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

16

The FundamentalsPart I

CROSS-REFCROSS-REF I cover Find requests in Chapter 3 and delve more deeply into them in Chapter 5.

Just as searches or queries are made easy via Find requests, retrieving data from related records is
made simple. In cases where only a single related record is to be displayed (for example, the name
of the school a student is attending), FileMaker allows you to simply place the relevant field from a
related table directly onto a layout. The first related value will then be displayed. However, in cases
where there is a need to display data other than the first related record or to display a list of related
records, FileMaker enables you to achieve this via the use of portals, groupings of fields on your lay-
out from tables related to the table on which the layout is based. The name derives from the portal
object being a window (or doorway) into related tables — maybe a little trite, but descriptive and
easy to remember. The list area appearing in the lower part of the Teams layout featured in Figures
1.3 and 1.4 is an example of a portal that displays a list of projects assigned to the current team.

CROSS-REFCROSS-REF I cover portals in detail in Chapter 6.

In FileMaker, the process by which default values — both static and varying —are assigned to
fields is referred to as Auto-Entry, and the automatic checking of data input against predefined cri-
teria for completeness and consistency is termed validation.

You can generate derived values and dependent variables in FileMaker in several ways, but one of the
most common is via the use of special kinds of fields in FileMaker: calculation fields and summary
fields. To support its extensive abilities for logical, textual, and mathematical manipulation, FileMaker
provides a sophisticated built-in capability for interpreting and applying your instructions, which is
often termed the calculation engine. Moreover, in order to keep its calculation results consistent with
your data, FileMaker keeps track of which fields depend on the values in other fields. The process of
keeping track of calculations so that they can automatically be updated appropriately is done behind
the scenes in what is sometimes referred to as FileMaker’s table of dependencies.

CROSS-REFCROSS-REF Look for additional details about Auto-Entry, validation, and calculation and sum-
mary fields in Chapter 7.

In database programs, there is sometimes a need to store a group of values as a cohesive set apply-
ing to a single data attribute. Value sets are often known as arrays. However, in FileMaker, fields
designated to hold data arrays are referred to as repeating fields and must be predefined for a spe-
cific maximum number of repetitions. Both data fields and memory variables in FileMaker can have
repetitions.

CROSS-REFCROSS-REF I discuss memory variables in depth in Chapters 9 and 12.

In general, the information held in a field, in a variable, or in a given repetition of a field or vari-
able is referred to as a value. However, a text field may hold multiple lines separated by carriage
returns — for example, a list — and in such cases, the content of each line is collectively regarded
as a value in its own right. In that respect, a single (nonrepeating) FileMaker text field may hold
multiple values.

05_429006-ch01.indd 1605_429006-ch01.indd 16 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

17

Databases: The What, Why, and How 1

Fields that are used to define joins (relationships) between tables are referred to as Key fields or Match
fields in FileMaker, with the default relationship type (an equi-join) being one requiring a matching
value in the Key fields of both tables being joined. However, if the Key fields are text fields and may
be expected to hold multiple values, each value is separately indexed and used to establish a pluralis-
tic relationship. In FileMaker, fields used in relationships in this way are referred to as Multi-Key fields.

CROSS-REFCROSS-REF Relationships and Key fields are explored in detail in Chapters 7 and 11.

Many computer programs and programming environments provide the ability to create stored pro-
cedures or macros (collections of instructions, actions, or commands that can be performed auto-
matically or called on at will by the user). In FileMaker Pro, these sets of stored instructions are
referred to as scripts, and the environment in which they’re created is called ScriptMaker. Scripts are
made up of sequences of script steps, sometimes also referred to as script commands. When scripts
are required to interact with fields, buttons, or other elements on one of the layouts in your solu-
tion, the elements they target are referred to as objects.

FileMaker provides support for storage of binary objects — movies, images, sounds, and even files —
in fields within the database. The type of field that provides this capability is called a Container field
and is capable of displaying the contents of a range of supported media (images, movies, and sounds
in a range of supported formats). Alongside this, FileMaker is able to render HTML and other Web-
related technologies within designated layout objects called Web Viewer objects.

When multiple database files are designed to operate together and interact as part of a solution,
individual files will be programmed to locate and use data or call scripts within other files in the
solution. Links and references to other files that allow this interaction to occur are called External
Data Sources in FileMaker 10 and can include FileMaker files and also supported SQL databases.

NOTENOTE In previous versions of FileMaker Pro, External Data Sources were referred to as File
References and included only FileMaker database files.

I’ve provided you with a quick overview of the central concepts and terms used in FileMaker, with
particular emphasis on areas where the terminology or its application differs from that found in
other databases. As you read on, you’ll encounter many other terms that are either in common use
or that I will explain within the text. You’ll also find a glossary of terms on the Web site, which will
be helpful if you encounter anything unfamiliar while browsing through the chapters.

Familiar ideas from the real world
From its very first versions in the 1980s, FileMaker has provided a rich graphical interface that
operates as a metaphor — mimicking familiar objects and ideas from the world around us. One of
the clearest illustrations of this is FileMaker’s ubiquitous navigation icon, which appears in the
Status Area at the top of each window and represents a Rolodex or spiral-bound book. In
FileMaker Pro 10, clicking the right page of the spiral-bound book icon moves you forward one
record; clicking the left page moves you back one record. The use of the FileMaker Pro navigation
icon sets the scene for a program that makes extensive use of visual metaphor and that has power-
ful graphical capabilities.

05_429006-ch01.indd 1705_429006-ch01.indd 17 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

18

The FundamentalsPart I

FileMaker offers a suite of layout design tools you can employ to create screens and printed output
that replicate the appearance of your real-world forms and reports. In addition to a basic suite of
drawing and text tools with which you can assemble the layouts that provide screens and printed
output, FileMaker supports direct import of image files (including PNG, JPEG, and GIF formats)
for display on layouts along with other layout elements. The combination of these elements lends
itself to the creation of graphically rich database applications. Moreover, layout elements can be
defined to be interactive so that clicking them performs a specific action or gives the user access to
a particular record, field, or screen. These capabilities have seen FileMaker used to build a start-
lingly diverse range of applications, from children’s games to boardroom presentation viewers —
as well as the many more conventional database exploits.

It would be a mistake, however, to assume that FileMaker’s strength lies primarily in its chameleon-
like interface capabilities. The real power of any database is in its ability to model information and
its relationships in the real world — to find order within complexity. FileMaker responds to this
challenge in a very particular way, by providing an extensive palette of tools and capabilities that
can be combined in many ways to solve a given problem. In this respect, FileMaker provides an
environment in which to model both the problems and the solutions of the real world.

Integrating processes and information
The real value of databases — and FileMaker is no exception — is not in their ability to store and
retrieve data, but in their ability to empower you to use your data more effectively. If all you hope
to do is store your information, a database is a good way to do so — but most information is part
of ongoing processes and is not static.

One of the simplest examples of the power of a database solution is the ability to enter your data in
one format (such as a form layout) and then retrieve subsets of it in another format, perhaps in a
different sort order and with totals or summary values added. These are everyday feats for a com-
puter database, yet they may be inordinately time consuming to achieve by using traditional
record-keeping techniques. This ability alone is empowering.

Even more valuable is the ability to create screens and data views that support a process and follow
it through from commencement to completion. This process requires that data be viewed as an
essential part of a larger process or project, and that the database be commissioned as a facilitative
tool. When viewed in this light, it’s clear that the role of the database is significant and can either
guide or hinder the progress of a project, depending on its design.

If your aim is to gain a greater command of data and the processes it supports, you have chosen
wisely in exploring the capabilities of FileMaker Pro. In the following chapters, I show you how
truly flexible and powerful a modern desktop database can be.

Knowledge is power — personal and professional
Without ready access to accurate and well-organized information, you cannot make optimal deci-
sions and that can have immediate and lasting implications for you, your employer, or your busi-
ness. The old saying ignorance is bliss does not apply. (Presumably it was coined by someone who
didn’t know any better. . . .) Rather, having good data to base your decisions on is the surest way
to a profitable day’s work and a good night’s sleep.

05_429006-ch01.indd 1805_429006-ch01.indd 18 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

19

Databases: The What, Why, and How 1

FileMaker Pro provides you with tools to enhance the ways you assemble, interpret, and interrogate
your data, enabling you to build and use purpose-built databases that match the way you work,
store only the data you need, reduce redundancies and errors, and automate tedious processes. The
data in question can be anything from your shopping list, weekly grocery budget, or sporting scores
to the sales, inventory, payroll, or research data for your business — any kind of information you
need to manage. Using the summary and reporting capabilities FileMaker provides, you’re able to
analyze your data, quickly viewing totals, averages, trends, or highlights. Alternatively, FileMaker
makes it easy to extract relevant data and export it in standard formats so that you can use other
applications (such as a spreadsheet program) to perform projections, evaluate scenarios, perform
analysis, or render charts from your data.

A further way that FileMaker can assist you is by performing a range of routine checks on your
information to ensure that it meets basic error-check criteria. For example, you can define rules
that stipulate that a particular field (such as client name) may not be left empty or that a value
must fall in a certain range. Similarly, you can save time and reduce the potential for errors by
defining default (auto-enter) values that will be generated when a new record is created. A com-
puter program can’t do all the work for you, but it certainly can assist you to use your time effec-
tively and focus on the things that matter most (the decisions only you can make)!

05_429006-ch01.indd 1905_429006-ch01.indd 19 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

05_429006-ch01.indd 2005_429006-ch01.indd 20 3/25/09 7:08:57 PM3/25/09 7:08:57 PM

21

FileMaker Pro is a widely used database application and development
environment, and it’s well established as the best-selling database on
Mac OS and among the most prevalent in Windows. However, several

things set FileMaker Pro apart from most other Database Management Systems.

The first version of FileMaker made its appearance as a Macintosh-only
application in 1985 (as a graphical interface version of an established DOS-
based database program called Nutshell, which had been developed and
marketed by Nashoba Systems). Early versions of FileMaker were relatively
simple by current standards (and were essentially nonrelational), but the
program offered a number of innovative features that made a significant
impression on the software market of the time.

After establishing a solid user base and undergoing successive enhancements
during the latter half of the 1980s, FileMaker was renamed FileMaker Pro in
1990, went cross-platform in 1992, and became relational in 1995. As a
cross-platform database, FileMaker Pro shares a common file format between
Mac OS and Windows, enabling users to access the same data simultane-
ously (including over a network). With the advent of relational capabilities,
FileMaker Pro became a sophisticated business tool capable of meeting com-
plex requirements efficiently.

FileMaker Pro has continued to evolve with every release, and its flexibility
and power has enabled it to retain its position at the forefront of the database
market. In 2004, the release of FileMaker Pro 7 provided a radical revision of
the power and scope of the application, greatly increasing capacity, flexibil-
ity, and power (and allowing multiple tables per file for the first time).
FileMaker Pro 10 represents a further leap forward with the introduction of
strategically important features such as an interface-based script event trigger
architecture and important interface updates along with a host of other
improvements.

IN THIS CHAPTER
Understanding what sets
FileMaker Pro apart from other
database environments

Introducing the FileMaker Pro
product family

Identifying surprising
capabilities in FileMaker Pro

Finding outside resources and
information about FileMaker

Putting FileMaker Pro
in Perspective

06_429006-ch02.indd 2106_429006-ch02.indd 21 3/25/09 7:09:43 PM3/25/09 7:09:43 PM

22

The FundamentalsPart I

Despite the many changes FileMaker has undergone in the 24 years since its debut, it remains ele-
gant and intuitive and is exceptionally easy to use given its power, flexibility, and the sophisticated
functionality of which it is capable.

What Makes FileMaker Pro Different from
Other Database Development Tools?
Perhaps the most significant difference between FileMaker Pro and the majority of other database
environments is that FileMaker provides a seamless environment where the application (the compo-
nents that provide interface and process support) is integrated with the database engine that pro-
vides structure and data storage for your solutions.

A further point of contrast is the scalability the FileMaker suite of products offers. While most
databases will accommodate a range of requirements, FileMaker is capable of covering an excep-
tionally broad spectrum. While FileMaker Pro operating alone can accommodate the requirements
of single users or small workgroups, FileMaker Pro Advanced provides capabilities for advanced
developers and solution providers. When coupled with FileMaker Server or FileMaker Server
Advanced, provision can be made for larger-scale networked deployments (up to 250 simultaneous
users with FileMaker Server and up to 999 simultaneous users with FileMaker Server Advanced)
and online data requirements. However, across this broad spectrum, the user interface, file format,
and database engine enjoy a high level of consistency.

NOTENOTE FileMaker, Inc., also offers Bento, an unrelated single-user database product exclu-
sively for Mac OS X Leopard users. FileMaker 10 supports data imports from Bento;

however, live data transfer and multi-user or simultaneous data access isn’t possible, and Bento
is better suited for personal rather than business or enterprise use. For modest data require-
ments on Mac OS X 10.5, Bento is an attractive option. Because this text focuses on meeting
demanding database requirements, Bento is outside the scope of this book.

Some common misperceptions
Misperceptions abound when it comes to data management and FileMaker Pro:

n All Database Management Systems are similar. You may be tempted to consider that
all Database Management Systems are similar. However, while database systems may have
comparable goals, the approach they take and the skills required to use them effectively
to build a solution may differ markedly. In the same way that a speed boat and a dune
buggy both provide means of transport yet operate quite differently and within different
domains, Database Management Systems serve comparable aims via different means.

n FileMaker Pro offers a gentle learning curve and therefore must lack power. The
apparent simplicity of use of various features of FileMaker Pro leads some to assume that
the program may be inflexible, offer narrow options, or be otherwise limited in scope.

06_429006-ch02.indd 2206_429006-ch02.indd 22 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

23

Putting FileMaker Pro in Perspective 2

Don’t be fooled — the reverse is true! Unlike many applications, FileMaker conceals its
complexities, allowing you to make good initial progress without a great deal of technical
know-how. However, as you gain confidence, FileMaker exposes deeper layers of func-
tionality and capability that you can use to access a rich resource of complex and
advanced features.

 To help novice users to be productive, while nevertheless providing power users with
advanced features, FileMaker Pro has been designed to simplify complex tasks, revealing
complexity only as and when it is needed. In addition, the interface has been designed to
work in a consistent way throughout, so that a single skill, when mastered, can be used
in a variety of contexts throughout the application. An example of this consistency is the
Specify Calculation dialog, shown in Figure 2.1. The Specify Calculation dialog is used
throughout the product, wherever you need to determine a result, so instead of present-
ing separate interfaces for performing math, processing text, defining a script parameter,
or composing a URL, the same dialog appears for all these tasks and more.

NOTENOTE In some situations, you can supply a parameter or result without delving into the
Specify Calculation dialog. For example, you can enter a static URL for a Web

Viewer object or a simple decision for conditional formatting without involving Specify
Calculation; however, the dialog is always available for the more complex decisions and
computations.

n Planning your data structure is an optional extra you can postpone until a rainy
day. New users often underestimate the importance of giving thought to the data struc-
ture (the tables and relationships between them) for their solution. When you’re starting
out, lumping everything together into a single table may seem easier. However, doing so
leads to complications and closes off opportunities for improved efficiency and clarity as
your confidence (and the complexity of your solution) increases.

n The boxes on the FileMaker Pro Relationships Graph are tables. FileMaker Pro uti-
lizes a Relationships Graph, shown in Figure 2.2, as the tool for viewing and defining
relationships between the tables of your solution. The boxes appearing on the graph
aren’t the tables themselves but pointers to them, commonly called Table Occurrences
(TOs). There can be multiple TOs for each table. Each TO in the graph provides a view
or connection to a selected table.

n You can connect anything to anything else on the FileMaker Relationships Graph.
FileMaker Pro doesn’t permit circular relationship paths; if you try to add a relationship
that would make the path circular, you’re prompted to create an additional occurrence of
one of the tables so that the circular reference will be avoided. Consequently, there is
only ever one path between any two TOs on the Graph. For example, in a company data-
base, you’re likely to have a table of employees that includes information about their
manager and the staff they supervise. However, the associated records for the manager
and subordinate staff will also be located within the employee table. In this situation,
FileMaker creates additional occurrences of the employee table for managers and subor-
dinate staff to enable you to implement these relationships without requiring circular
relationship paths.

06_429006-ch02.indd 2306_429006-ch02.indd 23 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

24

The FundamentalsPart I

 FIGURE 2.1

The Specify Calculation dialog is reused for multiple purposes throughout FileMaker Pro.

 FIGURE 2.2

The Relationships Graph represents relationships between the tables in your solution.

06_429006-ch02.indd 2406_429006-ch02.indd 24 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

www.allitebooks.com

http://www.allitebooks.org

25

Putting FileMaker Pro in Perspective 2

n The Relationships Graph is like an Entity Relationship Diagram (ERD). In some
respects, the FileMaker Pro Relationships Graph resembles an Entity Relationship
Diagram (ERD) commonly used to represent the essential elements of a data model.
However, don’t assume that you can treat the Relationships Graph as an ERD because of
the need to represent tables multiple times on FileMaker’s Relationships Graph to avoid
circular references (direct or indirect) and to support various navigation and interface
requirements — neither of which is required in an Entity Relationship Diagram. Thus,
the similarities are mostly superficial and are not generally helpful for understanding how
best to use the Relationships Graph in FileMaker.

n There is one best or correct way of doing anything. One of the defining characteristics of
FileMaker Pro is its flexibility. As part of that, you can frequently approach a problem in
more than one way — sometimes many different ways. The first way that occurs to you
may not be the best way for your particular situation. The way that is suggested in the man-
ual or Help documentation or in a forum post you locate via a search engine may not be the
best for your situation, either, though each method may work. In this book, I encourage
you to consider alternatives and to be creative in thinking of some of your own — but I
have room only to cover a fraction of the possible techniques in a volume of this size. The
fact that you’ve selected this book and are evidently reading it shows that you’re astute, dis-
cerning, and resourceful. So I’m assuming that you’re also eager to consider all the quirks
and possibilities that FileMaker Pro 10 has to offer and to creatively adapt and apply the
examples throughout the book to your own situation and your own solutions.

A unique approach to design
FileMaker offers you great breadth of creative scope when designing and implementing your solu-
tions. Everything from the appearance to the structure and the process logic of your solution can
be conceived and executed in a wide variety of ways. In that respect, FileMaker provides the tools
and the environment, but the ideas and the content are entirely yours. For example, FileMaker’s
layouts support imported graphics and free-form text, enabling you to produce highly customized
screen and report designs. However, you can also use layouts to display help text or instructions
on how to use your solution. The demonstration files provided by many solution developers
include instructive layouts like the one shown in Figure 2.3. This figure shows the Information
layout of the free Calendar View Demo from NightWing Enterprises.

To extend the scope of the design options FileMaker layouts afford, you have a choice of a variety
of field formats, allowing you to present users with checkbox, radio button, pop-up menu, or
drop-down list interface elements as alternatives to standard text boxes. You can configure field
validation requirements to constrain the data users can enter or to require a value in a given field.
You can use auto-entry options to prepopulate fields in new records with default values. You can
use tab objects to reuse one or more areas of your layouts to present alternative interface options
(or to save space and simplify complex layouts), and you can use portals to integrate data from
related tables into your layouts. By adding Web Viewers to your layouts, you can incorporate
browser capabilities and online content as part of your solution interfaces. In all these ways and
many more, FileMaker gives you open-ended creative potential, enabling you to adapt your solu-
tion to meet the needs of end-users.

06_429006-ch02.indd 2506_429006-ch02.indd 25 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

26

The FundamentalsPart I

 FIGURE 2.3

Including an informational layout (or layouts) is a common practice when providing a solution.

The storage architecture of your solutions is another area where FileMaker provides you with a
range of alternatives. While it is possible to have the code, interface, and data tables in a single
solution file, you can place the tables in a separate file or distribute them between a number of
files. Moreover, you can use FileMaker’s External SQL Source (ESS) feature to access one or more
data tables in a supported SQL database. Similarly, you can create multiple interfaces to a single
solution to serve the needs of different users or to manage version updates.

CROSS-REFCROSS-REF For an in-depth discussion of alternative file configurations, including the use of
separate files for data and interface, see Chapter 11.

The FileMaker Product Family
Although this book focuses (almost) exclusively on FileMaker Pro 10 and FileMaker Pro 10
Advanced, FileMaker, Inc., offers other related products to fill out its product line. There is consid-
erable integration between the main products in the range, so transitioning from one to another is
straightforward.

Desktop and server
FileMaker Pro 10 is a self-contained application that enables you to develop, maintain, and use
databases by employing a broad-based set of essential tools for designing, programming, and
deploying databases large and small. Included in FileMaker Pro are the layout design tools, rela-
tionship and schema editing capabilities, ScriptMaker, and a comprehensive suite of commands
and functions. Moreover, FileMaker Pro enables you to share databases from your workstation to
up to nine concurrent client connections and access them via a web browser by using built-in
Instant Web Publishing for up to five simultaneous sessions.

06_429006-ch02.indd 2606_429006-ch02.indd 26 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

27

Putting FileMaker Pro in Perspective 2

With FileMaker Pro 10 Advanced, you get an application that includes all the capabilities of
FileMaker Pro, plus some key extra powers enabling you to develop more rapidly, access extended
capabilities such as custom functions (for example, building a custom calculation function), custom
menus (for example, changing the contents and behavior of menus), and other powerful developer
features. Moreover, FileMaker Pro 10 Advanced lets you create runtime solutions — completely self-
contained single-user desktop databases that don’t require the user to have a copy of FileMaker Pro.
You can configure such solutions to work as kiosk implementations for customers to check on
product availability in your store or to sign in or out at the front desk of a business, including the
printing of a visitor’s badge. Runtime applications can also operate as stand-alone desktop applica-
tions serving a wide variety of purposes and needs.

CROSS-REFCROSS-REF I provide a more detailed exploration of the additional features and capabilities of
FileMaker Po 10 Advanced in Chapter 18.

In addition to the main desktop products — FileMaker Pro 10 and FileMaker Pro 10 Advanced —
the FileMaker suite includes two FileMaker Server products that offer enterprise-level distributed
database usage, web publishing capabilities, and integration with remote ODBC client applications.
FileMaker Server 10 enables you to securely and efficiently make your solutions available to up to
999 simultaneous FileMaker Pro users over a network and to make data available via PHP or XML
to an appropriately configured Web site.

When you install FileMaker Server 10 Advanced, you gain access to all the features of FileMaker
Server 10, plus two key additional capabilities:

n The ability to make FileMaker data available to remote client applications via ODBC or
JDBC protocols

n The ability to publish your databases to as many as 100 simultaneous Web users via
Instant Web Publishing (IWP)

Scalability and flexibility
FileMaker’s ability to adapt to the task at hand is sometimes surprising. Performing a quick analy-
sis of a few hundred records or sorting the invitations for a party are not too trivial a task for this
tool to accomplish. And yet, in some cases, FileMaker has been used to build applications of vast
complexity, accommodating millions of records in hundreds of tables. Everything in between these
two extremes can be encountered in schools and universities, business, government, and industry
the world over.

Despite the breadth of capability and extent of scalability that FileMaker offers, it’s nevertheless fair
to state that FileMaker is ideally suited to applications accessed by up to several hundred users that
typically handle tens of thousands of records. Moreover, the way a solution is designed is a signifi-
cant determining factor in its capability to scale. Features or designs that are acceptable in single-
user or small-scale solutions may be inappropriate for large or complex server-based
implementations.

CROSS-REFCROSS-REF For a detailed discussion about designing for scale and solution efficiency, refer to
Chapter 19.

06_429006-ch02.indd 2706_429006-ch02.indd 27 3/25/09 7:09:44 PM3/25/09 7:09:44 PM

28

The FundamentalsPart I

A key component of FileMaker’s strengths is its networkable and multi-user capability. A single
FileMaker solution hosted on an appropriate database server can be accessed simultaneously by
several hundred users or can be configured to provide the basis of a data-driven Web solution. At
its upper limits, FileMaker is capable of integrating with third-party technologies to synchronize
multiple servers so as to provide increased security, performance, or extensibility.

As well as providing for both large- and small-scale solutions, FileMaker incorporates a surpris-
ingly diverse feature set, supporting everything from powerful text formatting to workflow automa-
tion and document management, to multimedia presentation, playing digital video and sound
directly from fields in the database. Moreover, FileMaker provides built-in support for external
scripting protocols, such as AppleScript on the Mac and VBScript in Windows, so your solution
can interact with other scriptable applications, such as Microsoft Excel or iTunes, to retrieve data
or even to control the other application.

FileMaker’s Hidden Talents
FileMaker is available in multiple languages and supports multilingual functionality, using Unicode
as the technology for managing character sets. Text values can be indexed according to the conven-
tions of more than 26 languages and variants, and techniques are available to create multilingual
interfaces within a single solution (see Figure 2.4).

Additionally, the inclusion of ESS to access SQL data, plus ODBC (Open Database Connectivity)
support and the ability FileMaker provides to handle several different data formats (text, number,
date, time, image, movie, sound, file, and so on) provides a great breadth of scope and functionality,
enabling FileMaker to integrate with existing computing applications. FileMaker also provides a
plug-in interface that third-party developers can use to provide specialized extended functionality,
introducing an extensive array of additional features and further extending the ability to integrate
with external systems.

The cross-platform chameleon
Unlike other Database Management Systems, FileMaker Pro provides an almost-seamless cross-
platform experience, dealing with most platform differences behind the scenes. The file format is
the same on Mac OS and in Windows, and, with very few exceptions, the application controls,
menus, dialogs, and features are consistent between platforms. Consequently, you can create a
solution on one platform and have it work the same way on the other platform.

CROSS-REFCROSS-REF For an in-depth discussion of techniques and considerations for cross-platform
development, refer to Chapter 10.

Equally attractive is the capability to have a mix of Mac OS and Windows client computers access-
ing a single-served solution simultaneously. In mixed-platform work environments, this benefit
alone is an outstanding feature.

06_429006-ch02.indd 2806_429006-ch02.indd 28 3/25/09 7:09:45 PM3/25/09 7:09:45 PM

29

Putting FileMaker Pro in Perspective 2

 FIGURE 2.4

The Field Options dialog showing language indexing options for text fields in FileMaker Pro 10.

Multiple technologies and formats
FileMaker has a long history of working alongside a variety of other applications. First and fore-
most, it includes the capability to import and export data in a variety of formats, including com-
mon interchange formats, such as comma-separated values (CSV), tab-delimited files, and
Microsoft Excel files, and a number of other common desktop database formats (see Figure 2.5).

Instead of importing, if you simply drag a Microsoft Excel file (or various other supported file for-
mats) onto the FileMaker Pro icon, the file will be converted automatically and presented to you in
FileMaker database format. It really is that easy.

Equally significant is FileMaker’s ability to import and export eXtensible Markup Language (XML)
data, including from online XML data sources, and using parsing via eXtensible Style Language
Transformation (XSLT) style sheets. Again, this ability provides broad-based support for data
exchange and interoperability.

06_429006-ch02.indd 2906_429006-ch02.indd 29 3/25/09 7:09:45 PM3/25/09 7:09:45 PM

30

The FundamentalsPart I

 FIGURE 2.5

The available formats for data import from local files in FileMaker Pro 10.

Similarly, FileMaker’s ability to read and write seamlessly to data tables in supported versions of
MySQL, Oracle, and Microsoft SQL Server gives you extensive options and capabilities from desk-
top to enterprise systems. Moreover, you can mix and match the formats and technologies, using
FileMaker as the conduit. For example, a FileMaker database that uses one or more remote SQL
data sources can seamlessly generate reports or data outputs (Excel, PDF, and so on) containing
data from any one (or a combination) of the available sources. It’s therefore not unrealistic to use
FileMaker as the report generator or analysis tool for data that resides in other systems.

Plug-ins and extensibility
FileMaker doesn’t restrict you to data entered into a layout via the keyboard or by importing a file
from disc. With its plug-in architecture, you can access data from scanners, digital cameras, bar
code readers, and other such devices — but FileMaker doesn’t stop there.

When the engineers at FileMaker, Inc., first envisioned a plug-in Application/Program Interface (API)
for FileMaker, the primary intended purpose was adding the capability to perform complex math and
calculation operations outside the core feature set. However, ingenious third-party developers have
been devising unexpected uses of the API ever since.

Shortly after the plug-in API was released in 1997, third-party products began to emerge with such
diverse features as e-mail client capabilities, drawing and graphics tools, file manipulation tools,
charting capabilities, Internet telephony, serial port controllers, custom dialog generators, and
encryption tools — the complete list is much too long to include here (and would likely be out-
dated by the time this book made it to the shelves). Developers found that, via the API, they could

06_429006-ch02.indd 3006_429006-ch02.indd 30 3/25/09 7:09:45 PM3/25/09 7:09:45 PM

31

Putting FileMaker Pro in Perspective 2

pass data from a FileMaker calculation to a compiled application (in the form of a plug-in) and
then return a result — and despite some early limitations, this capability has provided the basis of
an enormous variety of plug-ins from vendors all over the globe.

Although many plug-ins serve a very specialized purpose — interfacing with specific hardware
(such as a TWAIN scanner) or exchanging data with a proprietary application (such as the elegant
accounting software suite from Cognito — www.cognito.co.nz) — a number of plug-ins have
focused on extending the core feature set of FileMaker itself. As a result, these plug-ins have
become widely recognized and used by FileMaker developers the world over. Examples include
SecureFM from New Millennium Communications (www.securefm.com), Troi File from Troi
Automatisering (www.troi.com), and xmCHART from X2max Software (www.x2max.com/en/
products/xmCHART/info.html). These and other plug-in-based products have found a place
as part of the mainstream of FileMaker development.

CROSS-REFCROSS-REF You can find a more complete discussion of plug-in extensibility in Chapter 20.

The FileMaker calculation engine:
Simplicity and power
Starting from promising beginnings in the 1980s, FileMaker’s calculation capabilities have been
steadily extended to the point where their diversity and scope is considerable. Although FileMaker
10 provides approximately 250 native calculation functions, each designed to accomplish a specific
range of objectives, you can combine these functions in compound calculation expressions in myr-
iad ways to solve a wide range of problems.

FileMaker’s calculation interface is consistent throughout the application. Additionally, the calcula-
tion expression syntax is straightforward and follows consistent rules. Defining simple calculation
formulas, therefore, requires no special expertise — it works intuitively and elegantly, so if you
enter 2 + 2 into the calculation engine (or quantity * price), you’ll get the expected results
directly and effortlessly. With a little effort and experience (and with the aid of this book), consid-
erably more challenging tasks are made easy.

CROSS-REFCROSS-REF I explore the uses of FileMaker’s calculation engine in depth in Chapters 7 and 12.

FileMaker Pro Advanced also provides a developer interface for creating custom functions. Using
the building blocks of the calculation engine, you can define new functions within a file, which
perform complex operations with a single function call. Significantly, you can define custom func-
tions to use recursive capabilities, further extending their scope and power.

NOTENOTE Even though FileMaker Pro Advanced is required to create custom functions,
FileMaker Pro is all that’s required to use these functions after they’re in the solution.

CROSS-REFCROSS-REF I discuss custom functions in greater detail, providing examples of their application,
in Chapter 18.

06_429006-ch02.indd 3106_429006-ch02.indd 31 3/25/09 7:09:45 PM3/25/09 7:09:45 PM

32

The FundamentalsPart I

Resources and Exemplars
The first and most important thing to know about FileMaker Pro is that a thriving global developer
community exists, made up of consultants and developers with considerable expertise and back-
grounds in an extraordinarily diverse range of industries. Although FileMaker Pro is an application
that you can use straight out of the box — and I encourage you to do so — be aware that, if you
want to extend your reach beyond what you can easily achieve on your own, there is no shortage
of professionals available to provide assistance or support.

The FileMaker developer community is vital for a number of other reasons as well. Within this
community, new ways to use the application and new insights into its capabilities frequently
emerge. An ongoing discourse between active and gifted developers in various parts of the globe
often results in new and ingenious approaches to puzzling or elusive problems. Just such a net-
work exists in the FileMaker community, and many have benefited from the resourcefulness and
generosity of its many members.

A secondary consequence of the thriving developer community’s existence is that the community
spawns a plethora of diagnostic tools and development aids, and many such tools and aids exist for
FileMaker. Analysis tools Inspector from FMNEXUS (www.fmnexus.com/products/inspector),
FMDiff from Huslik Verlag GmbH (www.fmdiff.com), BaseElements from Goya (www.goya.
com.au/baseelements), and various other examples provide extensive additional capability
and insight to what is already a powerful core product base.

In a further signal of the FileMaker development environment’s maturity, recent years have seen
the introduction of a worldwide developer certification program by FileMaker, Inc. This certifica-
tion program increases the visibility and viability of FileMaker as a platform for professional appli-
cation developers, as well as provides users and business clients with an indication of the skills and
credentials of professionals working in the field. Along with annual developer conferences in sev-
eral countries around the world, certification bodes well for an ongoing wealth of support and
expertise in all things FileMaker.

As an important adjunct to its other activities, FileMaker, Inc., offers several support and assistance
programs to companies and developers working across the FileMaker product line. Foremost among
these programs is FileMaker TechNet (www.filemaker.com/technet) — a membership-based
network of developers and users who participate on a technical mailing list/forum hosted by
FileMaker, Inc. Similarly, FileMaker, Inc., makes FileMaker Business Alliance membership (www.
filemaker.com/fba) available to businesses that have a substantial interest in or involvement
with FileMaker support, sales, or development.

Examples and brainteasers
Flowing directly from the fertile developer community are many thorny questions concerning the
best ways to approach particular problems or solve difficult development problems. As part of
their participation in this ongoing discourse, a number of developers in various parts of the world
publish examples, samples, tips, and tricks that provide insight into novel or elegant solutions to
various development challenges.

06_429006-ch02.indd 3206_429006-ch02.indd 32 3/25/09 7:09:46 PM3/25/09 7:09:46 PM

33

Putting FileMaker Pro in Perspective 2

You can find some of the many free professional-quality examples, tips, demos, and other
resources made by participants in the FileMaker developer community at the Web sites of compa-
nies in various parts of the world. In addition to the multitude of demos and example files avail-
able from NightWing Enterprises (www.nightwing.com.au/FileMaker), you can find a
wealth of resources and samples at sites such as Database Pros (www.databasepros.com),
Excelisys (www.excelisys.com), SeedCode (www.seedcode.com), and numerous others.
Moreover, online forums, such as FMForums (www.fmforums.com), and resources, such as the
inimitable user group network at FMPug (www.fmpug.com), provide both depth and breadth of
expertise, as well as a host of information and resource directories.

Other resources and opportunities
In addition to the many resources I describe in this chapter, FileMaker, Inc., maintains a network
of training partners who are ready and able to provide high-quality support and training to end-
users and aspiring developers.

Although I believe that FileMaker is remarkable for its easy learning curve and the way it enables
new users to ease into the realm of database design, don’t underestimate how much more there is
to know. Even after working through the many examples and explanations I provide in this book,
you’ll find value in exploring the wealth of training and support options available.

06_429006-ch02.indd 3306_429006-ch02.indd 33 3/25/09 7:09:46 PM3/25/09 7:09:46 PM

06_429006-ch02.indd 3406_429006-ch02.indd 34 3/25/09 7:09:46 PM3/25/09 7:09:46 PM

www.allitebooks.com

http://www.allitebooks.org

35

There is no substitute for experience when it comes to using a com-
puter application, so if you haven’t already done so, it’s time to get in
front of a computer and begin to use FileMaker. You can take the

book with you, if you wish. (In fact, that’s a good way to proceed.)

For the purposes of following the descriptions in FileMaker Pro 10 Bible,
you’ll need a copy of FileMaker Pro 10 or FileMaker Pro 10 Advanced,
installed on a supported version of either a Windows or Macintosh operating
system. In most respects, the Pro and Pro Advanced applications look identi-
cal, although there are a few additional menu commands and features in the
Advanced version. Screenshots throughout are generally applicable to both
versions and to both Mac and Windows systems, though the appearance of
window frames and dialogs differs slightly between platforms.

If this is your very first use of FileMaker, you may need to first run the installer
to get the software set up and ready for use. After FileMaker is installed, launch
it from the Dock (Mac) or by choosing Start ➪ All Programs ➪ FileMaker Pro
(Windows).

Getting FileMaker
Working for You
During installation, FileMaker Pro 10 will prompt you to enter an activation
code and register your product. Registering ensures that you will receive
update notices and e-mails with information about support, news, and mat-
ters of interest to users and developers.

IN THIS CHAPTER
Starting to use FileMaker

Navigating your database

Entering data in your database

Importing and exporting data

Dealing with related data

Configuring FileMaker

Getting Acquainted
with FileMaker

07_429006-ch03.indd 3507_429006-ch03.indd 35 3/25/09 7:10:41 PM3/25/09 7:10:41 PM

36

The FundamentalsPart I

After the launch sequence (during which the opening splash screen is displayed), FileMaker pres-
ents the Quick Start screen, providing access to three options, as follows:

n Create Database

n Open Database

n Learn More

Clicking the Create Database icon provides access to 30 starter templates that provide basic pre-
programmed functionality for a range of various types of business, education, and home databases.
The templates provide a rapid way to get started with a file that has some of the basic elements
already created for you; however, as you build your knowledge of FileMaker, you’ll want to cus-
tomize the files to meet your own requirements.

The Open Database icon at the left of the FileMaker Quick Start window provides a convenient list
of recently opened files. You may also add favorite files under either the Favorite Files (local) or
Favorite Files (remote) subheadings. To add a recently opened file (appearing in the recently
opened files list in the Quick Start window) to the relevant favorites menu, select it in the list panel
at the right of the window and click the Add to Favorites button appearing below the list. If the
selected file is hosted from another computer or server, it will be added to the Favorite Files
(remote) group. Otherwise, it will appear in the Favorite Files (local) list.

NOTENOTE The term local refers to FileMaker files that are located on disk drives attached to
the computer you are working on, or shared drives accessed from the current com-

puter. Remote files are those that are hosted on another computer (that is, opened in FileMaker
Pro 10, FileMaker Pro 10 Advanced or FileMaker Server 10) and accessed by using FileMaker’s
built-in networking.

In addition, the Quick Start screen includes an icon labeled Learn More that provides access to an
introductory video, links to the product documentation, and various sites for online information,
feedback, and guidance. This gathers together, in one location, a number of resources of interest to
you as you become acquainted with the application.

TIPTIP The Quick Start screen is optional. You can click the Do Not Show Quick Start
Again checkbox that appears at the bottom of the panel. If you do this, you can still

create new files and open existing files by using commands on the File menu.

Starting and exiting from FileMaker
Your computer operating system provides numerous ways to launch FileMaker Pro. Here are sev-
eral common methods:

n During installation, an icon for the application is installed (at your option) in the Dock
(Mac) or (by default) in the Start ➪ All Programs menu (Windows). Clicking the program
icon in the Dock or choosing it in the Start menu starts FileMaker Pro.

07_429006-ch03.indd 3607_429006-ch03.indd 36 3/25/09 7:10:42 PM3/25/09 7:10:42 PM

37

Getting Acquainted with FileMaker 3

n You may have an alias (in Windows, it’s called a shortcut) on your computer’s desktop
and/or in the Quick Launch toolbar (Windows). Double-clicking an alias/shortcut icon
starts FileMaker, as does selecting FileMaker from the Windows Quick Launch toolbar.

n You can locate the application itself and double-click it, or double-click a FileMaker file
anywhere on your desktop or within the disk directories on your computer.

NOTENOTE The default path to the FileMaker Pro application on the Mac is Macintosh HD/
Applications/FileMaker Pro 10/FileMaker Pro.app. In Windows, it’s C:\Program

Files\FileMaker\FileMaker Pro 10\FileMaker Pro.exe.

A few seconds after the application launches, you see the Quick Start screen (or if the Quick Start
screen has been disabled, a standard Open File dialog appears). You are then ready to create a new
database file or to locate and open an existing file.

When you’ve finished using FileMaker Pro for the moment, you may end the current application
session by choosing FileMaker Pro ➪ Quit FileMaker Pro (Mac) or File ➪ Exit (Windows). If you
have any database files open when you choose to end the application session, the files are automat-
ically saved and closed before FileMaker exits.

Creating, saving, and closing files
The steps in the process of creating a new database file depend on whether FileMaker is already
running and whether your computer is configured to use the Quick Start screen.

CROSS-REFCROSS-REF Details about how to change the configuration of FileMaker on your computer,
including enabling and disabling the Quick Start screen, are included in the

“Preference settings for your workstation” section, later in this chapter.

If FileMaker is not yet running, after you launch it you see a dialog with the option to create a new
database. If the Quick Start screen is enabled, you can choose whether to create a new empty file
or to use one of the starter templates that ship with the application. Otherwise, you’re presented
with a File dialog. On the Mac, the dialog includes a New button at the lower right; in Windows,
you must first enter a filename and then click the Open button, in order to be presented with a
dialog confirming that you want to create a new file.

If FileMaker is already running, you can begin creating a new database file by choosing File ➪

New Database.

NOTENOTE FileMaker database files for all versions from 7 to 10 inclusive use the filename
extension .fp7. Using this extension on all your database filenames is important

because the operating system uses it to associate the file with the FileMaker Pro application.

When you choose a folder, enter a suitable filename, and confirm the creation of the file, a new
database window is displayed. If you selected a template, the new file appears, ready to use or
modify. However, if you choose to create a new empty file, a blank layout window appears and the

07_429006-ch03.indd 3707_429006-ch03.indd 37 3/25/09 7:10:42 PM3/25/09 7:10:42 PM

38

The FundamentalsPart I

Manage Database dialog automatically opens. Because a database file cannot hold any data until
there are some fields in which to store the data, a default table (with a name corresponding to the
file name) is added, and you’re prompted to create fields for your new database.

To create one or more fields, enter a name in the Field Name box of the Manage Database dialog,
as shown in Figure 3.1, and click the Create button. Then click OK to close the dialog. At this
point, FileMaker generates a single default layout containing the fields you’ve created, plus a single
record. The cursor appears in the first field, ready for you to enter some data.

You now have a very simple database file, and you can begin to use it. It doesn’t yet have many
useful features, but those can follow. For the moment, try entering a few values into the field (or
fields) on the layout. If you have several fields you can use the mouse or the Tab key to move
between them.

Unlike many other computer applications, FileMaker saves data at two levels. When you change a
record or a layout, the change must be saved before you can go on to do anything else. By default,
FileMaker handles the saving of records automatically without asking you to confirm — so, when
you exit a record, its contents are saved. Similarly, the file must periodically be saved to disk and
this, too, is handled automatically. As data is entered and accumulates, FileMaker writes data to
disk progressively. You can change the default auto-save behavior for records on a layout-by-layout
basis by going to layout mode, choosing a layout, choosing Layouts ➪ Layout Setup, and, in the
Layout Setup dialog that appears, deselecting the checkbox labeled Save Record Changes
Automatically. Similarly, when you don’t want layout changes saved automatically, you can control
the auto-save behavior by choosing FileMaker Pro ➪ Preferences (Mac OS) or Edit ➪ Preferences
(Windows), and, in the Preferences dialog that appears, navigating to the Layout tab and clicking
the checkbox option labeled Save Layout Changes Automatically (Do Not Ask).

FileMaker handles the saving of data behind the scenes, so normally you don’t have to worry about
it. However, one consequence of this automatic operation is that, when a file is open, it’s in a fluid
state where, at any point, some parts of the file may not yet have been transferred to disk. Thus, if
you duplicate a file while it’s open, you can expect the resulting duplicate file to be incomplete
because FileMaker Pro has yet to write everything to disk. When the file is closed, any remaining
unsaved portions are saved to disk before the file closes.

To close a file, select its window (if you have more than one file or window open in FileMaker) and
then choose File ➪ Close (Ô+W or Ctrl+W). You may also close a file by closing all its windows.

TIPTIP A database file cannot be closed while it’s still in use. In particular, a file that is a
data source for another open file cannot be closed. If you choose File ➪ Close in

this situation, the file is hidden rather than closed.

Handling files and data safely
FileMaker reads data from disk into memory when a database file is opened. The contents of the
cache (data not yet written back to disk) are then maintained as fields and records are updated.
Cached data is written back to disk periodically, keeping the cache’s size within a defined range.

07_429006-ch03.indd 3807_429006-ch03.indd 38 3/25/09 7:10:42 PM3/25/09 7:10:42 PM

39

Getting Acquainted with FileMaker 3

 FIGURE 3.1

Creating the first field in a new database, using the Manage Database dialog.

CROSS-REFCROSS-REF You can find instructions for setting the cache size and the frequency with which
data is saved to disk in the “Preference settings for your workstation” section, later

in this chapter.

While FileMaker has a database open, the current state of the file includes some data that resides
on disk and some that is held in cache. Neither the disk nor the cache holds a complete copy of
the file. It isn’t until the file is closed that FileMaker fully reconciles the data held in cache with the
data on disk and thereby ensures that the copy on disk is complete and current. Consequently, in
the event that FileMaker quits prematurely — without first closing the files you have open — it is
possible that some data held in cache may not have been written to disk.

CAUTION CAUTION If a FileMaker database file is closed improperly (for example, a forced quit) some
recent changes may be lost. It is possible, however, that an untimely end to the

application session (for example, a power outage) may occur at a moment when FileMaker is
updating the disk and some parts of the record structure — or other file elements — may be only
partially written to disk. In such a case, there is a risk that the file may be damaged and may no
longer work properly. Fortunately, this is an extremely rare occurrence; however, you should
avoid situations where FileMaker is stopped when files have not first been properly closed.

07_429006-ch03.indd 3907_429006-ch03.indd 39 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

40

The FundamentalsPart I

Occasionally, you’ll encounter situations where you can’t avoid improper closure of files. Hardware
failures or power outages do occur, so despite your best efforts, there may be occasional mishaps.
In most cases, if a mishap occurs, the file opens again and no data has been lost. If you have diffi-
culty opening a file, refer to Chapter 17, where I discuss the recovery of files.

Unlike other applications, databases manage many different pieces of information, so they require
ready access to data from all parts of a file. This is in contrast to an application, such as a word pro-
cessor, that typically accesses only one or two sections of a file at a time. This, along with the fact that
FileMaker holds part of the file in cache, means that it is wise to open files from a reliable hard disk
that is directly and permanently connected to your computer, instead of opening files from a network
drive. This approach not only improves performance, it also reduces the risk of the network connec-
tion to the disk being lost during the session, perhaps compromising the integrity of the file.

TIPTIP No matter how careful your file handling, or how reliable your computer hardware,
I encourage you to make frequent backups of your files. That way, if you run into a

problem, you have a recent copy of your database files to go back to and you won’t lose much
work. The more important your data, and the more intense the rate at which data is added or
changed, the more frequently you should make backup copies.

NOTENOTE Avoid using the Macintosh Finder or Windows Explorer to make a duplicate of a file
while it is open. (You won’t get the whole file, because some of it is residing in

cache when open.) Either close the file first and then copy it, or in FileMaker choose File ➪
Save a Copy As to make a backup copy of your file.

Earlier file formats and conversion issues
FileMaker 10 opens and works directly with files created with versions of FileMaker Pro from ver-
sion 7 onward. All these files should have been saved with the .fp7 extension as part of their file-
names. Because the file format is the same, you can expect all .fp7 files to work in FileMaker 10
in the same way that they worked in the prior version of FileMaker in which they were created.

CAUTION CAUTION FileMaker 10 includes some capabilities that aren’t supported by previous versions.
If you make structural changes to a file in FileMaker 10, be aware that some of the

features you add may not work as intended if the file is reopened in an earlier version of
FileMaker. For example, Web Viewer objects aren’t recognized by FileMaker Pro 7 or 8, but they
are recognized by FileMaker Pro 8.5, 9, and 10.

If you want to open a FileMaker file that was created with a version of FileMaker prior to version 7,
you first have to convert the file to the .fp7 file format. The first time you attempt to open a file
that was created in FileMaker versions 3 through 6, you’re prompted to convert the file, and a new
file in .fp7 format is created.

NOTENOTE If you want to convert a file from a version of FileMaker earlier than version 3, for
use with FileMaker 10, you must first convert the file to either the .fp3 or .fp5 for-

mat by using a copy of FileMaker Pro 3.x, 4.x, 5.x, or 6.x. The resulting .fp3 or .fp5 file can
then be converted to the .fp7 format by FileMaker 10. (When you try to open the file with
FileMaker 10, you will be prompted to convert it.)

07_429006-ch03.indd 4007_429006-ch03.indd 40 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

41

Getting Acquainted with FileMaker 3

Because versions of FileMaker prior to 7 differed in a number of respects (as well as using a differ-
ent file format) from more recent editions of FileMaker, some calculations and other functionality
may no longer work as intended after conversion. In general, FileMaker does an excellent job of
anticipating many of the adjustments that must be made, and it applies them for you during the
automated conversion process. Consequently, if the file you’re converting is relatively straightfor-
ward in function and scope, it may require little or no further adjustment in order to operate to
specification in FileMaker 10. Nevertheless, you should test the operation of the file carefully
before proceeding.

In the case of complex multi-file solutions that were originally designed to operate in FileMaker
version 6 or earlier, some additional preparations for conversion may be warranted. Moreover, a
more thorough period of testing and revision to ensure that the solution functions effectively in the
.fp7 application environment is advisable. This process may be more or less time consuming,
depending on the design and coding approach used in a given solution.

A detailed examination of the intricacies of migrating legacy solutions is outside the scope of this
book. However, if you find yourself faced with this challenge, I recommend that you acquaint
yourself with resources that are freely available from the downloads area of FileMaker, Inc.’s Web
site. These include a comprehensive white paper entitled Migration Foundations and Methodologies
(www.filemaker.com/products/upgrade/techbriefs.html), which provides extensive
information and advice concerning issues that should be addressed to ensure a successful migra-
tion of a pre-.fp7 solution.

Finding Your Way Around
When you launch FileMaker Pro 10 and open a file, you immediately encounter two things: a
menu bar that includes familiar menus (File, Edit, and so on) and some database-specific menus,
and a database window with a title and a few controls at the lower left corner.

The contents of the window depend almost entirely on the particular database file (or collection of
files) you have opened. FileMaker windows show the contents of a layout, and their appearance
may vary widely. However, you’ll likely see a screen containing some mix of data, labels, buttons,
and/or images.

Basic FileMaker housekeeping operations (Open, Close, New Database, Print, and so on) are
located on the File menu. In Windows, the File menu also includes an Exit command; however, on
the Mac, the equivalent command is named Quit and it resides in the FileMaker Pro menu, con-
forming to the OS X standard. Meanwhile, a list of open windows appears in the Window menu. If
you’re new to FileMaker, many of the commands in the remaining menus may be unfamiliar to
you. The following pages help you to understand how FileMaker works and why, and assist you in
locating the commands you seek.

First, you should familiarize yourself with the standard window controls, as shown at Figure 3.2.
These appear at the lower left of every FileMaker database window.

07_429006-ch03.indd 4107_429006-ch03.indd 41 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

42

The FundamentalsPart I

The gray area that can be seen spanning the top of the window in Figure 3.2 is the Status Toolbar
and includes basic contextual information and navigation controls. At the lower left of the window,
are the window zoom controls. The zoom percentage appears at the far left. Clicking the percent-
age returns it to 100% (normal size) from whatever setting it may have. Clicking the percentage
again toggles you back to the last selected zoom ratio. The buttons adorned with close-up and dis-
tant horizon icons next to the percentage button are the zoom out and zoom in buttons — their
function is to reduce or enlarge the contents of the window.

The Status Toolbar control is beside the zoom controls at the lower left of Figure 3.2. Clicking this
button hides or shows the Status Toolbar at the top of the current window. Finally, to the right of
the Status Toolbar control is FileMaker’s Mini Mode menu, which indicates the current window
mode and can be used to change modes. These basic controls are present at the lower left of all
FileMaker database windows at all times.

 FIGURE 3.2

The standard controls at the lower left of a FileMaker window.

Status Toolbar Layout Area

Zoom Percentage

Zoom Controls

Status Toolbar Control

Min Mode Menu

07_429006-ch03.indd 4207_429006-ch03.indd 42 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

43

Getting Acquainted with FileMaker 3

The modes and their uses
The first and most important thing to know about FileMaker Pro is that it has several modes of
operation. What you can do in each mode is different, and how the application responds to com-
mands is also different. Until you grasp this essential concept, you may find FileMaker a little mys-
tifying; however, the modes actually simplify matters when you understand their functions.

There are four operational modes in FileMaker. They are listed at the top of the View menu as well
as in the Mini Mode menu. Buttons and icons provided in the Status Toolbar at the top of the win-
dow can also be used to change mode. The four operational modes are

n Browse: The mode used for viewing, entering, and editing data in your databases is
called the Browse mode. By default, databases open in Browse mode, and much of your
day-to-day database work is performed in Browse mode — you can think of it as the nor-
mal operational mode. The keyboard command to reinstate Browse mode from any other
mode is Ô+B or Ctrl+B.

n Find: So that you can search for records, FileMaker provides a Find mode (Ô+F or Ctrl+F).
In Find mode, layouts appear as they did in Browse mode, but the data fields are devoid of
data. This enables you to enter criteria for FileMaker to use in a search operation. When the
database enters Find mode, the Mini Mode menu changes to read “Find” and the Status
Toolbar controls change to provide support for the Find process.

n Layout: The third FileMaker mode is called the Layout mode (Ô+L or Ctrl+L) and it is in
this mode that FileMaker becomes a screen- and report-building environment. In Layout
mode, all the objects within the window take on the behavior of elements in a drawing
program, and the Status Toolbar populates with graphical tools you can use to change the
size, color, and placement of objects within the layout, and to add and remove objects at
will. In Layout mode, rather than changing the data in the database, you’re changing the
database’s interface.

n Preview: FileMaker provides a Preview mode (Ô+U or Ctrl+U) to display page images
that demonstrate how the current layout, using the current data, looks if printed on the
currently selected printer (and with current page size and printer settings).

Navigating and viewing data
Data in your database files can be viewed in Browse mode, using an appropriate layout in a data-
base window. With a new file, or a file relying on FileMaker’s built-in interface controls, you can
use the Status Toolbar to locate a layout and move around among the records within a table.

At the left of the Status Toolbar, as shown in Figure 3.3, below the navigation slider, you can see a
label identifying what you are viewing in the current mode. In Browse mode, you can view and
navigate through records, so the label says “Records”. (In other modes, it says “Requests”, “Pages”,
or “Layouts”.)

07_429006-ch03.indd 4307_429006-ch03.indd 43 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

44

The FundamentalsPart I

 FIGURE 3.3

The Status Toolbar controls in Browse mode.

Below the navigation tools and the “Records” label, a menu of viewable layouts is provided. From
this menu you’re able to select different layouts to provide different views of the data available to
the file. The layouts listed may relate to a single table of data, presenting different views or extracts
of it, or to a variety of different tables. Layout names ideally should give you some guidance about
the contents of each layout.

NOTENOTE The menu of available layouts, as with menus in many dialogs, conform to the User
Interface standards of the platform on which you’re working. Thus, on a Mac, the

menu will be implemented as a pop-up menu; in Windows, the menu will be shown as a drop-
down list. Rather than the more cumbersome pop-up menus/drop-down lists, I just refer to
them as menus.

When you select a layout, the controls available in the Status Toolbar change to reflect the state of
the records in the table with which the layout is associated. In the example shown in Figure 3.3,
the Status Toolbar indicates that you’re viewing record 2 of a total of 6 records on a layout called
Notes. FileMaker provides a navigation (spiral-bound book) icon and a slider at the left of the
Status Toolbar, providing you with the means to navigate through the records in the table being
viewed. Clicking the right page of the book icon takes you to the next record; clicking the left page
of the book icon takes you back to the previous record. Similarly, the position of the slider control
below the Rolodex represents the current location among the available records. Dragging the slider
to a new location takes you to the corresponding record in the current table.

NOTENOTE More precisely, dragging the slider takes you to the corresponding record in the
currently available records from the current table. Find mode, as I discuss in the

next section, can restrict the available records to a subset of the current table’s records.

Finally, you can move between records in three other ways:

n If you want to go to a specific record — say record 3 — you can enter the number 3 into
the Record field above the slider at the left of the Status Toolbar, and then press the Enter
(or Return) key on your keyboard.

07_429006-ch03.indd 4407_429006-ch03.indd 44 3/25/09 7:10:43 PM3/25/09 7:10:43 PM

www.allitebooks.com

http://www.allitebooks.org

45

Getting Acquainted with FileMaker 3

n You can choose Records ➪ Go to Record ➪ Next, Records ➪ Go to Record ➪ Previous, and
Records ➪ Go to Record ➪ Specify.

n You can move to the next and previous records by pressing Ctrl+up arrow and
Ctrl+down arrow.

Searching and the FileMaker Find/Omit puzzle
When you have just a few records in a FileMaker table, scrolling through them and looking for the
information you need isn’t too difficult. However, when your records accumulate to the point
where there are hundreds or even thousands of them in a table, a more efficient method of search-
ing is needed. That’s where FileMaker’s Find mode comes in.

On entering Find mode, the current layout remains in view, but all the fields that displayed data in
Browse mode appear empty, waiting for you to supply search criteria. Depending on the field
frames setting of the current layout, unselected searchable fields also show a magnifying glass icon
at the upper left when viewed in Find mode. Moreover, the Status Toolbar changes its appearance
when you enter Find Mode.

As you can see in Figure 3.4, when you place the database window into Find mode, the layout
menu and view buttons remain at the left of the Status Toolbar; however, the text underneath the
slider now refers to Find Requests rather than Records. Moreover, Include/Omit buttons and an
Insert Operators menu are included, and a Perform Find button appears in the upper toolbar area.
While these are the default Status Toolbar options, you can customize the Toolbar — adding,
removing, or repositioning icons — by choosing View ➪ Customize Status Toolbar.

If you want to locate all the records in the current data table referring to a person whose name
starts with the letters Da, you can simply enter Find mode, type Da in the Name field, and click
the Status Toolbar’s Perform Find button. If any records in the current table contain a name start-
ing with Da, such as Danielle, David, or Damon, those records are found.

 FIGURE 3.4

The Status Toolbar controls in Find mode.

07_429006-ch03.indd 4507_429006-ch03.indd 45 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

46

The FundamentalsPart I

When records are returned as the result of a Find, they are termed the Found Set and FileMaker
temporarily presents the found records to you in Browse mode — isolated, as though they’re the
only records available. The rest of the records are not lost at this point; they’ve simply been omit-
ted (ignored) for the moment.

When a Find has been conducted, the Status Toolbar indicates the number of found records as
well as the total number of records in the table. As is shown in Figure 3.5, the six records that were
indicated in the Status Toolbar in Figure 3.3 are still present, though only two are presently
“found.” Just as there is a found set of two records in this situation, there is also an omitted set of
four records, bringing the total up to six.

At any point, when the view of a table is split into a found set and (by implication) an omitted set,
you can bring the table back into a unified whole by choosing Records ➪ Show All Records (Ô+J
or Ctrl+J) or clicking the Show All icon that appears in the Status Toolbar. (The Show All icon is
accessible only when a found set is in place.) Alternatively, you can exchange the found and omit-
ted record sets by choosing Records ➪ Show Omitted Only. Moreover, choosing Records ➪ Omit
Record (Ô+T or Ctrl+T) and Records ➪ Omit Multiple (Ô+Shift+T or Ctrl+Shift+T) make it possi-
ble to manually fine-tune the found set, isolating a specific group of records of interest.

The found set principle gives you a mechanism to split up the records according to any criteria (or
even arbitrarily or manually), isolating any subgroup of records. This is an important feature that
provides support for producing extracts, summaries, and analyses of groups and subgroups of your
data set.

 FIGURE 3.5

Records returned as a result of a Find for Da in the Name field.

07_429006-ch03.indd 4607_429006-ch03.indd 46 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

47

Getting Acquainted with FileMaker 3

Screen elements and what they’re for
So far you’ve seen the window and Status Toolbar controls for Browse mode and Find mode and
you know how they work during navigation and Find procedures. However, much of the action
when you’re working with a database file takes place within the layouts themselves.

FileMaker database layouts include a variety of elements, some of which are purely visual. For
example, text labels, headings, shaded areas, lines, and even images may be included in a layout to
provide a frame of reference for the data or to contribute to the appearance of the layout. However,
other layout components perform a function in the database and are part of the way users interact
with the data. For example, field boxes, such as those in the white layout area in Figure 3.5,
dynamically display the data within the current record — and users may click into the field boxes
to enter or edit data within them.

The elements that make up layouts, in addition to static text and graphical elements, include fields,
buttons, portals, tab controls, and Web Viewers. In addition, layouts may be subdivided into
defined horizontal areas such as Header, Body, Footer, and so on, and these are referred to as parts.

A field, or field box, is a rectangular object drawn or placed (pasted) onto a layout in Layout mode
that is attached to a data field within a table of the database. Fields may be sized and positioned
and given other graphical attributes (color, outlining, embossing, and so on). In addition to their
graphical appearance, fields provide direct access to data when the layout is viewed or used in
Browse mode. The cursor may be placed into a field and the data inside that field selected, format-
ted, deleted, or supplemented.

Layout buttons are objects having an action or command assigned to them in Layout mode. When
an object has been defined as a button, clicking it in Browse or Find modes causes the assigned
action to be performed. FileMaker provides a special type of graphical object (an embossed rectan-
gle with an attached text label) to be used where buttons are required; however, in Layout mode,
any object or group of objects (except tab controls and object groups already containing a button)
can be designated as a button to perform a corresponding action. Thus images, lines, rectangles,
text objects, or even fields themselves can be defined to act as buttons.

Portals are rectangular layout objects that provide a virtual window into the data in another
(related) table. So, for example, in a table of kitchen ingredients, you might add a portal to display
a list of recipes that use a given ingredient.

Tab Control objects are collections of panels that operate like file index cards with labeled tabs
protruding at the top. Clicking the tab of a particular panel brings it to the front. Tab Controls pro-
vide an efficient method of organizing layout elements so that groups of related layout objects can
be brought forward and accessed as needed. One example might be in an automobile dealership
database, where passenger cars and trucks each have their own tabs containing fields specific to
that type of automobile (for example, trunk space and number of doors for cars, tow weight and
capacity specifications for trucks).

07_429006-ch03.indd 4707_429006-ch03.indd 47 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

48

The FundamentalsPart I

The FileMaker Web viewer is a powerful object capable of retrieving and rendering hypertext and
other related Web content, directly on a database layout. This allows your database users to access
browser capabilities from within the screens and reports of the database. Moreover, the content of
a Web viewer can be controlled directly from the data available within the database.

CROSS-REFCROSS-REF I cover Layouts in detail in Chapter 6 and explore interface design in depth in
Chapter 10.

The layouts appearing in FileMaker’s database windows present you with collections of the various
elements mentioned here, organized to provide you with the means to view, interpret, and interact
with the data stored within your database files.

Entering and Editing Data
So far I’ve talked about how you can view records and search for specific data. In many cases, your
database usage is not merely as a spectator, but as an active participant, adding data and making
changes to data, extending its usefulness or keeping it current.

If you need to make changes to existing data, you first need to locate the data to be changed. First,
you should use the layouts menu to go to an appropriate layout — one displaying records from the
table in which you want to make changes. Then you should locate the record or records that you
want to change — either by navigating through the records or by conducting a Find.

When you’ve located a record you want to edit, the first step is to place the cursor into a field. You
can do this by pressing the Tab key once to enter the first field and then repeatedly to move
through the fields, or by clicking directly on the field with the mouse. In either case, the field
becomes active and a text cursor appears within it. You can then enter, delete, or modify the data
in the field.

If you have changes to make or data to add to several fields in the same record, you can move
directly from field to field via the mouse or the Tab key, changing or adding information in each.
The changes are not committed (saved) until you exit the record.

NOTENOTE At any time until you commit the data by exiting the record or invoking a script with
a Commit command, you can return the record to the state it had upon entry by

choosing Records ➪ Revert Record. In fact, Revert Record will revert all record changes made
since data was last committed, so a single Revert may simultaneously undo changes in the active
record and one or more related records.

Creating and duplicating records
To add a record to the current table, choose Records ➪ New Record (Ô+N or Ctrl+N) or click on
the New Record icon in the Status Toolbar. A new record is added and the cursor is automatically
placed into the first field (that is, the first field in the Layout’s tab order, which is defined to allow
entry in Browse mode), ready for you to enter some data.

07_429006-ch03.indd 4807_429006-ch03.indd 48 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

49

Getting Acquainted with FileMaker 3

In some cases, you may prefer to copy an existing record (for example, a record that has similar
data to one you want to create). You can achieve this by choosing Records ➪ Duplicate Record
(Ô+D or Ctrl+D). As with the New Record command, the cursor is automatically placed into the
first field, ready for you to begin editing the newly created record.

NOTENOTE When a new record is first created, it initially exists only in memory — it has not yet
been stored. If you make a mistake and want to discard the new record, you can do

so by choosing Records ➪ Revert Record.

Some layouts show related records (for example, as a list in a portal). An example of such a layout
would be an invoice where multiple purchases are shown, one per line — where an invoice table is
used to store invoice details, but a separate table stores the details for each line. With a layout
designed to include the display of related records, providing the relationship between the tables is
appropriately configured, you are able to enter new related records by typing them directly into
the portal, dependent upon the relationship specification.

CROSS-REFCROSS-REF For additional details concerning relationships and the creation of related records,
see Chapter 11.

Field definitions: Validation and dependencies
Databases often include fields designed to hold specific values, or fields that are dependent on the
values in other fields. Frequently, such fields are set up to acquire a value automatically when the val-
ues they depend upon are entered. In other cases, the database is programmed to confirm that values
entered are valid before accepting them and saving the record.

An example of a dependent value is the name of the state, as it can be determined automatically (by
linking to a reference table) after the ZIP code for a location or address is entered. Similarly, a total
value may be computed for each line of an order, based on the quantity and item price entries.

You can access options for the creation of dependencies between fields, for defining rules for
acceptance of valid data, and for setting a variety of default or automatically entered values for each
field by choosing File ➪ Manage ➪ Database.

CROSS-REFCROSS-REF In Chapter 7, I look in detail at the uses of the Manage Database dialog.

In some cases, default values or values dependent on other inputs can be overwritten if you want.
However, fields created by using the explicit calculation field type cannot be overwritten (they
always display the result of the calculation with which you have defined them).

The significance of commitment
When you create a new record, duplicate a record, or make changes to the data in a record, the
changes are visible only on the current workstation, even if other users are sharing the file. It is not
until you finish making changes and exit the record that the new contents are saved as part of the
database and may be seen by other users.

07_429006-ch03.indd 4907_429006-ch03.indd 49 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

50

The FundamentalsPart I

The process of exiting a record is called record commit — the changes to the data are committed at
this point and can no longer be undone or discarded (though of course you can always go back
into the record and change it back to how it was).

Because exiting a record commits its contents, there are several different ways to save a record you
have been working on. One is to press the Enter key on the numeric keypad. Another is to click in
an open area of the layout, outside the field boxes. In some cases a script, button, or menu item
(attached to the Commit Records/Requests command) may also be available. When you commit
the record, by whatever means, the record is exited (the cursor focus is removed from the fields)
and any changes are saved. As noted earlier in this chapter, an optional setting for the Layout
(available by choosing Layouts ➪ Layout Setup in Layout mode) lets you specify whether record
changes should be saved automatically. When this option is not selected, the user is prompted to
save or discard changes when exiting the record in Browse mode.

A record can also be committed in less direct ways: by navigating to a different record, a different
table (that is, a layout that is based on another Table Occurrence), or by closing the file. In each
case, any changes made to the immediately preceding record are stored and the record becomes
available for editing by others (only one user can edit a record at a time).

Prior to the commit point, changes to a record have not been saved and can be reverted. This is
done by choosing Records ➪ Revert Record. When a record is reverted, all changes made since the
previous time the record was committed are discarded — so if you’ve changed the value in several
fields, all the changes are reversed if you revert the record.

NOTENOTE After a record is committed, the changes made to it are permanent and cannot be
undone. At this point, returning the record to its previous state would require that

it be edited again to reverse the changes.

When your solution is available to multiple users simultaneously over a network (that is, a multi-
user database), the process of committing a record has additional implications. While changes to a
record are being made by one user, the record is locked and other users are unable to make
changes to it — although they can see it — and can edit other records. The commit point releases
the lock and the record becomes available for other users to edit. Moreover, it is at the commit
point that changes you have made can be seen by other users viewing the record — that is, they
see your changes appear when you exit the record.

The Ins and Outs
Manually accessing, entering, and editing information in your solutions is a key part of maintaining
your data, but it is labor intensive and can also be error prone. Occasionally, the data you require
is already available in computerized form, so you may prefer to avoid entering the data by hand.

Similarly, there are occasions when the best solution to a problem is to take some data from your
FileMaker database and view, analyze, or print it in another application. There are a variety of rea-
sons you may choose to do this — to make use of existing chart templates in a spreadsheet appli-
cation, to submit information for publication in a word-processing format, to examine your data in
a statistical analysis tool, and so on.

07_429006-ch03.indd 5007_429006-ch03.indd 50 3/25/09 7:10:44 PM3/25/09 7:10:44 PM

51

Getting Acquainted with FileMaker 3

In any case, FileMaker’s powerful data import and export capabilities provide you with options
covering a broad range of requirements and support a wide variety of standard formats.

Importing and exporting data
FileMaker Pro makes it extremely easy to get data from text files (comma- or tab-separated data) or
Excel spreadsheet files into database files. In its simplest form, you drag and drop such files onto
the FileMaker icon and they are automatically converted into databases (you’re given the option to
use the first row of data in the source text file to provide field names in the resulting database file).
In just a few minutes you can start using the powerful searching, sorting, and organizing capabili-
ties of a database to work with your text or spreadsheet tables.

In cases where you already have a database file into which you want to bring data from existing
files in other formats, choose File ➪ Import Records ➪ File. When you choose this command, you’ll
first be prompted to locate the file holding the data you want to import. Then you’ll be presented
with a dialog prompting you to map the columns or cells in the file you’ve selected with the fields
in the table (Table Occurrence) associated with the current layout of the current database file, as
shown in Figure 3.6.

In the Import Field Mapping dialog (see Figure 3.6) the data elements found in the selected file are
displayed in a column at the left of the window. Navigation buttons below the column of incoming
data allow you to move through the rows of data to ascertain what content the file holds.
Meanwhile, the right side of the dialog provides a menu for selecting whether to import data via
the Table Occurrence that the current layout is based on, or to create a new table to accommodate
the imported data. When you make a selection from the target menu, the right column displays a
list of fields in the selected table.

Between the columns of fields in the Import Field Mapping dialog are two rows of symbols — a
horizontal arrow and a vertical handle symbol. The arrow can be clicked to enable or disable
import into a particular field, while the handle icon can be used to drag Target fields in the column
at the right up and down to position them adjacent to appropriate incoming data elements.

NOTENOTE On selecting a field in the right column of the Import Field Mapping dialog, you
may press Ô+up arrow or Ctrl+up arrow and Ô+down arrow or Ctrl+down arrow to

move the field up and down in the list. Similarly, when you select a number of fields in the right
column (by pressing Shift+Click or Ô+Click or Ctrl+Click), clicking an arrow symbol adjacent to
any selected field toggles the import state for all selected fields simultaneously.

The lower part of the Import Field Mapping dialog provides additional options relating to the
import process — including the capability to add records to the selected table, or to synchronize
the data with existing records in the found set. Also included is a key to the meaning of the alter-
nate field mapping symbols. Moreover, if the file chosen as the source of your import is a text file,
an additional option is provided, allowing you to choose the character set (text encoding) to use
when reading the contents of the file.

In a procedure comparable to the import process, FileMaker enables you to export data into a vari-
ety of supported file formats by choosing File ➪ Export Records. After you choose this menu
option, you’re prompted to choose a file format, provide a filename, and indicate a location for the
file to be created.

07_429006-ch03.indd 5107_429006-ch03.indd 51 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

52

The FundamentalsPart I

 FIGURE 3.6

The Import Field Mapping dialog — matching incoming data to database fields.

After you click the Save button in the Export Records to File dialog, you’re presented with a dialog
in which you specify and order the fields to be included in the export (see Figure 3.7). The menu
above the list of fields on the left enables you to select the context from which fields are located,
and the buttons in the middle of the dialog enable you to add fields to the export.

NOTENOTE The data exported is sourced from the current layout context and includes only the
current found set in the frontmost layout. If you add fields from other tables, the

values for inclusion depend on their table’s relationship to the current layout’s table.

If the data in the current found set is sorted, the grouping options at the upper right of the Specify
Field Order For Export dialog becomes active. When a group-by-field option is selected, records
with matching values in the selected field result in only a single entry in the exported file. This
provides a means to export data summaries.

TIPTIP Because exports are based on the found set in the current layout, you can easily
perform a Find then Export to create summaries and batch exports of subgroups of

records.

Previewing and printing options
One of the most common requirements when it comes to getting data out of your database is the
production of printed output. By default, FileMaker layouts operate on the WYSIWYG (what-you-
see-is-what-you-get) principle, so, for the most part, if you choose File ➪ Print (Ô+P or Ctrl+P),
what comes out of the printer closely resembles what you see onscreen.

07_429006-ch03.indd 5207_429006-ch03.indd 52 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

53

Getting Acquainted with FileMaker 3

 FIGURE 3.7

The Specify Field Order for Export dialog is where you determine which fields are to be exported and in
what order.

Before printing, however, it’s best to check the File ➪ Page Setup (Mac) or File ➪ Print Setup
(Windows) settings to check the current print driver settings and confirm page size and orientation
settings. Before proceeding to print, I also recommend that you pay a visit to the Preview mode
(Ô+U or Ctrl+U) to ensure that the way the output is going to be rendered matches your expecta-
tions. It’s always best to find out there is a problem before you’ve used up the last ream of paper
printing the contents of your database.

TIPTIP The available options and the accuracy of the match between the Preview mode dis-
play and the actual printed output depend on the installed/selected printer driver,

the printer itself, and the match between the two. When constructing the preview image,
FileMaker interacts with the printer driver to arrive at a rendering of the instructions the driver
prepares to send to the printer. While this is generally accurate, some combinations of drivers
and printers produce results that vary slightly from the preview images. If you encounter this, it
may signal that an update of the printer driver is required.

Send/Save as PDF and Excel
In addition to its comprehensive printing and data export options, FileMaker Pro 10 provides two
special-purpose output options — one to directly generate PDF files from the current found set
(using the current layout to format the data) and one to efficiently create an Excel spreadsheet file
from the current found set, including fields that appear on the current layout. You can access these
options by choosing File ➪ Save/Send Records As ➪ PDF and File ➪ Save/Send Records As ➪ Excel,
respectively.

The Save/Send Records As commands provide an elegant and immediate way to capture the cur-
rent context in a form that can be archived, viewed, or shared with others (for example, as an
e-mail attachment). The two supported file formats can be opened/viewed in a variety of applica-
tions on contemporary operating systems — so these options make your data very portable.

07_429006-ch03.indd 5307_429006-ch03.indd 53 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

54

The FundamentalsPart I

TIPTIP The Save/Send as PDF option operates in much the same way as the Print command —
it reflects the appearance of the current layout and also the current print driver

settings — and it requires database access with printing privileges. By contrast, the Save/Send
as Excel option operates along the lines of an export of data and requires database access with
exporting privileges.

CROSS-REFCROSS-REF The setting of database access privileges, including privileges for printing and
exporting, is described in Chapter 14.

Getting to Know the Relatives
In FileMaker solutions containing multiple tables connected via relationships, you require ways to
view and edit data from related tables. For example, if you have a customer table and an invoices
table, when viewing a customer record, you may want to be able to see details of that customer’s
invoices — and when viewing an invoice, you need to see the name and address of the customer
for whom it was created.

Ways to view and edit related data
You can see a single record from a related table, such as the name of the customer for a particular
invoice, by simply placing the Customer::Name field directly onto the invoice layout. FileMaker
locates and displays the first matching customer name. Moreover, the data in the corresponding
customer record is editable directly from the invoice layout, just as if it were in the invoice table.

In situations where there are multiple related records, viewing just the first is usually inadequate,
so FileMaker provides a layout Portal object supporting the display of a list of related records.
Thus, in order to display a list of invoices for the current customer (for example, on the Customer
layout), you should place a portal based on the Invoice table on the Customer layout. If desired,
invoice data can be entered or edited directly in the portal, without visiting the Invoice layout, and
any such changes are stored in the Invoice table and displayed on the Invoice layout when you
next visit it.

Relationships in FileMaker work in both directions, so a single relationship between the Customer
and Invoice tables should be sufficient to enable the relevant invoices to be displayed on the cus-
tomer layout and the customer details to appear on the invoice layout.

Although the capability to view related data directly on the current layout makes FileMaker’s inter-
face powerful and flexible, it’s also possible to jump directly to related records in their own table
and layout. FileMaker’s built-in Go to Related Records functionality (for example, via a button
command or a script) can be used to achieve this efficiently.

CROSS-REFCROSS-REF I cover advanced interface techniques, using the Go to Related Records command,
in Chapter 10.

07_429006-ch03.indd 5407_429006-ch03.indd 54 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

www.allitebooks.com

http://www.allitebooks.org

55

Getting Acquainted with FileMaker 3

The importance of context
Everything you do in FileMaker works from the current context. The current mode, the layout dis-
played in the frontmost database window, and the found set and the current record in that win-
dow, determine the context from which data in the solution as a whole are viewed. The effect of
any action, therefore, varies depending on context.

When you change records, the values in the match fields for relationships to other tables also
change. This means that the sets of related records that are available to view and edit (from the
current context) also change. If you navigate to a layout based on a different table — or on a differ-
ent graph representation (Table Occurrence) of the same table, then the relationship views alter
accordingly.

CROSS-REFCROSS-REF For a discussion of the workings of FileMaker’s Relationships Graph, see Chapter 7.

Likewise, summary and calculated data may vary according to the found set, so what you see when
viewing all records in a table may be different from what you see after performing a Find to isolate
a subgroup of records.

Making complexity simple in practice
On your first encounter with a relational data system, you may be tempted to throw up your
hands, thinking that it’s all too complicated. Surely it would be much easier to keep things in one
large table than to divide the data among multiple tables?

It’s important to realize that the purpose of setting up appropriate relationships within your data is
to simplify matters — to let the computer handle many trivial operations so that you don’t have to.
So, while it may be true that setting up relationships in your data structure takes a little more
thought, planning, and configuration at the outset, the resultant operational simplicity more than
justifies the effort.

Optimizing the Application
Many aspects of FileMaker Pro’s operation automatically adjust to your working environment. For
example, the settings for date, time, and language that are in place on the computer you are using are
automatically reflected in the FileMaker interface and in the ways that your solution files operate.

Nevertheless, a number of aspects of the FileMaker feature set are user configurable via two prefer-
ence settings dialogs. The first of these dialogs sets application preferences applying to all
FileMaker work done on the current computer. The second dialog sets preferences specific to the
current database file, regardless of the computer it’s used on.

07_429006-ch03.indd 5507_429006-ch03.indd 55 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

56

The FundamentalsPart I

Preference settings for your workstation
The Preferences dialog allows you to control the behavior of FileMaker on the current workstation.
You can access it by choosing FileMaker Pro ➪ Preferences (Mac) or Edit ➪ Preferences (Windows).

As you can see in Figure 3.8, the Preferences dialog is arranged into five panels, each selectable via
a tab at the top of the dialog panel.

The General tab allows several interface options — in the upper section, drag-and-drop text editing
functionality, the Quick Start screen, and the recent files submenu are enabled or disabled. Below
that, the General tab allows you to assign a custom name to the current workstation. Although this
is termed the User Name, it refers to the workstation instead of to an individual and isn’t to be con-
fused with the login account name. Finally, the General tab allows you to enable or disable automat-
ically checking the FileMaker, Inc., servers for application updates. The Preferences dialog’s Layout
tab, shown in Figure 3.9, provides access to options affecting the way the application works in
Layout mode. The Always Lock Layout Tools setting alters the behavior of the drawing palette in the
Status Toolbar in Layout mode so that when a tool (for example, the Line tool or the Text tool) is
selected, it remains active until another tool is selected; whereas, by default, a tool only remains
active for a single action, unless its icon is double-clicked. Additionally, the Layout tab provides an
option to add new fields to the current layout, and to save layout changes automatically.

TIPTIP If you’re doing complex or exacting layout work, you may be well advised to disable
the option to add new fields to the current layout (it’s on by default) because cre-

ation of a new field otherwise results in changes to layouts that you may have spent many hours
perfecting. You may also prefer to leave the Save Layout Changes Automatically option disabled
so that you have an option to discard changes when leaving a layout (or when leaving Layout
mode) after making modifications.

 FIGURE 3.8

The General tab of the FileMaker Pro 10 Preferences dialog.

07_429006-ch03.indd 5607_429006-ch03.indd 56 3/25/09 7:10:45 PM3/25/09 7:10:45 PM

57

Getting Acquainted with FileMaker 3

 FIGURE 3.9

The Layout tab of the FileMaker Pro 10 Preferences dialog.

Finally, the Layout tab of the Preferences dialog enables you to constrain or extend the color pal-
ette available in Layout mode. The settings you choose here may depend in part on your personal
tastes, but should also take account of the color support of the systems (both hardware and soft-
ware) via which users are to access the interfaces you create in Layout mode.

NOTENOTE The selected color palette gives you the convenience of a ready set of 88, 216, or 256
colors to choose from. However, you have the option to select Other Color from

the color palette and adjust the color settings (using Red, Green, Blue values or Hue Saturation
and Brightness settings and so on) to create a custom hue for any purpose.

The Preferences dialog’s Memory tab, shown in Figure 3.10, provides controls for the cache size
and save cycle of the application. When FileMaker is installed, a cache setting adequate for most
situations is set. Unless you encounter specific problems that may indicate memory management
issues, I recommend that you leave the cache setting at the default value. Similarly, the default save
setting During Idle Time is best for the majority of users.

The Plug-Ins tab of the Preferences dialog (see Figure 3.11) allows you to enable/disable and con-
figure third-party plug-ins and the Auto-Update utility (configurable to automatically load plug-in
updates from FileMaker Server over a local network).

CROSS-REFCROSS-REF In Chapter 20, I provide a more detailed exploration of the use of FileMaker’s plug-
in architecture.

At the right of the Preferences dialog is the Fonts tab (see Figure 3.12). It provides access to config-
uration options for default fonts for each supported character system, as well as synchronization
and font locking options (controlling the behavior of fields defined for a specific character system
when characters from outside that system are entered — for example, Roman characters entered
into a field defined to accept Kanji text).

07_429006-ch03.indd 5707_429006-ch03.indd 57 3/25/09 7:10:46 PM3/25/09 7:10:46 PM

58

The FundamentalsPart I

 FIGURE 3.10

The Memory tab of the FileMaker Pro 10 Preferences dialog.

 FIGURE 3.11

The Plug-Ins tab of the FileMaker Pro 10 Preferences dialog.

07_429006-ch03.indd 5807_429006-ch03.indd 58 3/25/09 7:10:46 PM3/25/09 7:10:46 PM

59

Getting Acquainted with FileMaker 3

 FIGURE 3.12

The Fonts tab of the FileMaker Pro 10 Preferences dialog.

File options for the current database
For each database file, you can access a range of additional configuration options by choosing
File ➪ File Options. Settings defined in this way are saved with the file and affect its behavior
whenever, wherever, and however it is opened.

The File Options dialog presents a range of controls grouped within three tab panels in Windows,
and with a fourth appearing when the file is open on a Mac (as in the case of the screenshot in
Figure 3.13). The first panel, shown in Figure 3.13, provides default settings for the behavior of
the file when it’s opened, allowing you to specify a default login account, specify a default layout,
and specify a script to run automatically when the file is opened. Similarly, an option is provided
to have a script run automatically when the file is closed.

The Spelling panel, shown in Figure 3.14, provides access to settings for visual and audible alerts
when the spelling of a word during data entry appears questionable (that is, when it is not in the
installed FileMaker dictionary).

TIPTIP When visual spell checking is enabled, you can override it on a field-by-field basis
by choosing Format ➪ Field Control/Behavior in Layout mode.

The Text panel of the File Preferences dialog (see Figure 3.15) includes a setting for the use of
smart quotes within the file (where straight quotation marks are automatically substituted with
curly typesetting quote marks oriented forward or backward, depending on their position with
respect to adjacent text). Also included are controls for the specification of line breaking (auto-
matic text line wrapping) for Roman and Asian lettering systems.

07_429006-ch03.indd 5907_429006-ch03.indd 59 3/25/09 7:10:46 PM3/25/09 7:10:46 PM

60

The FundamentalsPart I

 FIGURE 3.13

The Open/Close tab of the FileMaker Pro 10 File Options dialog.

 FIGURE 3.14

The Spelling tab of the FileMaker Pro 10 File Options dialog.

Surprisingly, the Text panel also includes a control to set the behavior of the file with respect to local-
ization settings for number, date, and time (including timestamp) formats. It is perhaps counterintui-
tive that such a control is located on a tab called “Text,” because its effects apply to the storage and

07_429006-ch03.indd 6007_429006-ch03.indd 60 3/25/09 7:10:46 PM3/25/09 7:10:46 PM

61

Getting Acquainted with FileMaker 3

display formats of data-entry field types other than text and Container fields, but you do enter them as
text before FileMaker (re)formats them to match the system-set representations. These controls are
important and provide the ability to configure a file to operate consistently on all systems (Always
Use File’s Saved Settings), to adapt to changing contexts (Always Use Current System Settings), or to
require the user to make a choice every time the file is opened on a system with settings that differ
from the environment in which the file was created (Ask Whenever Settings Are Different).

NOTENOTE The selection you make in the Data Entry panel of the Text tab in the File Options
dialog does not alter the way data is stored internally in your file. However, it does

alter the way data will be displayed in the file’s interface.

By default, FileMaker Pro 10 applies the Always Use Current System Settings option, which works
well in many cases.

TIPTIP I advise against choosing the Ask Whenever Settings Are Different option, because
users — unless they programmed the file themselves — are unlikely to appreciate

the implications of the choice when it is offered to them. Consequently, in addition to the
tedium of being repeatedly presented with a dialog they don’t understand, the option frequently
forces the user to make an arbitrary rather than informed choice.

Finally, on the Mac, a fourth tab titled Graphics appears at the right of the File Options dialog, as
shown in Figure 3.16. The Graphics panel includes a single control that enables/disables the auto-
matic initiation of photo import when a camera is plugged in on the Mac. Because this automation
option is not supported in Windows, the option is not displayed when a file is opened in
Windows.

 FIGURE 3.15

The Text tab of the FileMaker Pro 10 File Options dialog.

07_429006-ch03.indd 6107_429006-ch03.indd 61 3/25/09 7:10:47 PM3/25/09 7:10:47 PM

62

The FundamentalsPart I

 FIGURE 3.16

07_429006-ch03.indd 6207_429006-ch03.indd 62 3/25/09 7:10:47 PM3/25/09 7:10:47 PM

63

FileMaker 10 provides a significant enhancement of the application,
introducing essential new features to complement and extend its
power and versatility, while offering a range of enhancements to pre-

vious functionality. The changes in this version provide exciting new options
for simplification of processes and automation of your solutions, while also
ushering in updates to the look and feel of the interface to lend a more
contemporary appearance to your solutions.

This chapter offers an overview of the new features and enhancements in
FileMaker 10, along with a discussion of their use and their implications for
the ways you design and deploy your solutions.

Embracing Change
If you have created FileMaker solutions in previous versions of FileMaker,
you may be pleased to know that FileMaker Pro 10 uses the file format (and
the fp7 file extension) that has been current since the release of FileMaker 7
in 2004. Consequently, you can open solutions created in previous editions
of FileMaker in FileMaker Pro 10 without conversion, and you can also open
solutions created in FileMaker Pro 10 in the preceding versions.

Notwithstanding file format compatibility, you should consider a number of
other issues. Before deciding to access a pre-existing solution by using
FileMaker Pro 10, to access a FileMaker Pro 10 solution by using an earlier
version of FileMaker, or to host a solution to multiple users with mixed
versions of FileMaker, consider these important factors:

IN THIS CHAPTER
Introducing the new FileMaker
Status Toolbar

Exploring Live Sub-summaries
and maintenance of sort order

Using Saved Find Requests

Making use of Set Field by
Name

Understanding Script Events
Triggers and associated new
calculation functions

Taking advantage of ESS
Enhancements and Bento
integration

Considering File Recovery
improvements and changes

Inserting objects in the middle
of a layout’s object tab order

Importing, Exporting, Quick
Start Screen, and printer
selection Enhancements

What’s New in FileMaker 10

08_429006-ch04.indd 6308_429006-ch04.indd 63 3/25/09 7:12:50 PM3/25/09 7:12:50 PM

64

The FundamentalsPart I

n Changes to the size and position of the Status Area (now called the Status Toolbar) signif-
icantly impact the available/viewable layout area in your database windows, so layout
designs that were appropriate for previous versions of FileMaker may not be ideal when
the same layouts are viewed in FileMaker 10 (and vice versa). While the file format is
the same, the presentation format is not, so your pre-existing solutions may require
adjustment to work optimally in FileMaker Pro 10.

n Several new features of FileMaker 10 (as detailed throughout this chapter) provide
opportunities to design solutions that are more responsive to users or that are more effi-
cient in operation. For example, FileMaker Pro 10 Script Trigger capabilities provide
some new options for interface design, while the new Set Field By Name command will
engender more compact script code in some cases. However, because these and other
FileMaker 10 features are not available in earlier versions, solutions that depend on them
won’t work as intended if accessed in earlier versions. Conversely, solutions that don’t
make use of these powerful features may not make best use of (or be optimally designed
for) FileMaker Pro 10.

NOTENOTE
If you intend to make your solution available to users who may be using different
versions of FileMaker Pro, consider having your solution check the current version

of the application as the file is opened. Your solution can then either make adjustments (such as
changing to an appropriate layout) or present a dialog to alert the user to version issues.

To ascertain whether the current FileMaker application is FileMaker Pro 10 (or FileMaker Pro 10
Advanced) or later, you can add an If[] / End If script sequence to a script that runs on file
open, using a calculation expression such as GetAsNumber(Get(ApplicationVersion)) >
10 as the If[] test.

CROSS-REFCROSS-REF
For additional detail about the process of defining scripts to run on file open in
your solutions, refer to Chapter 13.

Status Area Redesign
For anyone who is familiar with previous versions of FileMaker Pro, the significant first impact of
opening FileMaker Pro 10 comes from the substantially redesigned interface for standard
FileMaker database windows. The Status Area that has been present in successive releases of
FileMaker for decades is no longer available at the left of every database window. Gone, too, are
the tear-off toolbars that made their appearance below the overhead menus (except in Layout
mode, where the Arrange and Align palettes remain available). Instead, FileMaker Pro 10 offers an
all-new Status Toolbar that appears (when active) across the top of each window, providing ready
access to a range of frequently used commands and features, as well as enhanced control and user
feedback about the navigation and search options appropriate to the mode of the current window.

The FileMaker 10 Status Toolbar provides you with functionality that is broadly equivalent to the
Status Area it replaces. In a few respects, the Status Toolbar offers added functionality, while in
others it adds elegance and intuitive touches that new and experienced users alike will appreciate.

08_429006-ch04.indd 6408_429006-ch04.indd 64 3/25/09 7:12:51 PM3/25/09 7:12:51 PM

65

What’s New in FileMaker 10 4

Aside from its location and horizontal orientation, the most striking difference between the
traditional Status Area and the Status Toolbar is its appearance. The Status Toolbar, shown in
Figure 4.1, has a contemporary, graduated and graphically refined appearance, with contrasting
elements, intuitive icons, and subtle simplicity.

 FIGURE 4.1

The FileMaker Pro 10 Status Toolbar, as it appears in Browse mode.

As with the Status Area, you can invoke or dismiss the Status Toolbar by clicking the (appropriately
redesigned) reveal icon at the lower left of a database window. Moreover, you can use the updated
View menu, shown in Figure 4.2, to show or hide the Status Toolbar by choosing View ➪ Status
Toolbar (Ô+option+S or Ctrl+Alt+S). The state of the Status Toolbar is specific to the window, so
when multiple windows are displayed (whether from the same database or from different database
files), each can have an independent (shown or hidden) Status Toolbar state.

NOTENOTE
The dimensions of a window designed to accommodate the Status Area in previous
versions of FileMaker may no longer be optimal when the same solution is opened

in FileMaker 10. It may be appropriate to make adjustments to layouts (to increase their width
and reduce their height) in order to achieve equivalent utilization of screen real estate when the
Status Toolbar is showing, when your solution is accessed by using FileMaker Pro 10.

 FIGURE 4.2

Using the View menu to toggle the display of the Status Toolbar.

08_429006-ch04.indd 6508_429006-ch04.indd 65 3/25/09 7:12:51 PM3/25/09 7:12:51 PM

66

The FundamentalsPart I

The FileMaker Pro 10 Status Toolbar is made up of two parts:

n The main Status Bar containing the record navigation tools at the left (including a pie
chart that represents the state of the found set — clicking on the pie swaps the found and
omitted record sets

n A row of buttons for a selection of commonly used commands, such as Show All, New
Record, Delete Record, Find, and Sort

Immediately below the main Status Bar, shown in Figure 4-1, the Layout Bar appears, providing
you with access to controls pertaining to the current window’s layout, including the layouts menu,
view buttons, a button to invoke Preview mode, a button to toggle the display of the formatting
bar, and at the far right, a button to invoke Layout mode.

The Status Toolbar adapts in appearance as you move between modes, presenting you with a range
of controls appropriate to the mode of the window. Moreover, the Layout bar becomes darker in
Layout mode and lighter in Find mode to help to visually differentiate those modes from Browse
and Preview modes. However, the selection of command icons displayed in each mode is not fixed;
you can choose a combination of icons to suit your work requirements at will by choosing
View ➪ Customize Status Toolbar. The process for adding or removing commands from the Status
Toolbar is a little different on each platform. On Mac OS, you’re presented with an editor dialog, as
shown in Figure 4.3.

 FIGURE 4.3

Using the Mac OS Customize dialog to change the Status Toolbar.

08_429006-ch04.indd 6608_429006-ch04.indd 66 3/25/09 7:12:52 PM3/25/09 7:12:52 PM

67

What’s New in FileMaker 10 4

Using the options laid out in the Mac OS Customize dialog, you can drag icons to or from the
Status Toolbar. If you have previously made changes, you can restore the default set (for the cur-
rent mode). Controls are also provided to adjust the display style (Icon & Text, Icon Only, or Text
Only) and to adjust the size of the icons displayed.

NOTENOTE
The Status Toolbar belongs to the application (and is specific to each application
mode), not to the solution or to the individual database window. Each user of your

solutions can freely customize the Status Toolbar within his own installation of FileMaker Pro 10,
so you can’t assume that specific command buttons will be present when your solution is being
accessed. Moreover, unlike custom menus, which you can control programmatically, there is
no mechanism for you as the developer to automatically configure the user’s Status Toolbar
appropriately for your solution.

In Microsoft Windows, the process is similar to that described in the preceding paragraph.
However, the dialog has a different appearance and is organized into tabs, as shown in Figure 4.4.
After choosing View ➪ Customize Status Toolbar, ensure that the Status Toolbar option is
selected in the Toolbars tab and then navigate to the Commands tab to access the list of available
commands. You can drag commands appearing in the list panel at the right of the Commands tab
to the Status Toolbar, as well as rearrange or remove commands on the toolbar.

 FIGURE 4.4

Using the Windows OS Customize dialog to change the Status Toolbar.

When you finish making changes to the Status Toolbar, dismiss the Customize dialog. The
updated toolbar will take effect in the applicable mode (the mode of the currently active window)
throughout all windows of the current installation of FileMaker Pro. Customization will remain in
effect on the current workstation until you make another change, such as reinstating the default
commands.

08_429006-ch04.indd 6708_429006-ch04.indd 67 3/25/09 7:12:52 PM3/25/09 7:12:52 PM

68

The FundamentalsPart I

NOTENOTE
Icons appearing on the Status Toolbar, along with their associated label text, are
dimmed when the command is unavailable. Toolbar commands will be dimmed and

inactive when the corresponding command is not present in the current menu set, so although
you can’t control which icons will be present on the Status Toolbar within your solution, you can
use custom menus to ensure that Status Toolbar icons (if present) will be dimmed and inactive at
times when their use would be inappropriate in your solution.

The FileMaker Pro 10 Status Toolbar also provides a control to reveal and hide the new Formatting
Bar, replacing the Text Formatting toolbar, as shown in Figure 4.5. The Formatting Bar is available
in both Browse and Layout modes.

 FIGURE 4.5

Using the Aa button on the Layout Bar to control the display of the Formatting Bar.

CROSS-REFCROSS-REF
For a detailed guide to the operation of the Status Toolbar in Layout mode, refer to
Chapter 6.

Live Reports/Sub-summaries
A significant evolution of the interface of FileMaker Pro 10 focuses on the ability to present sub-
summarized data displays in Browse mode. In previous versions of FileMaker, you could preview,
print, or export (for example, to a PDF document) grouped and summarized reports, but the
reports weren’t available while working with your data in Browse mode.

In FileMaker 10, Browse mode presents the data in your List View and Table View layouts in the
same grouped and sub-summarized formations as preview and print output, so instead of being
static “snapshots” of your data at a particular instant, sub-summarized list and Table Views can be
live and editable. This means that you’re able to see recalculated Sub-summary values in Browse
mode that will update as the data throughout your solution is edited. You can interact with the
data in report format and see the changes you make reflected in real time in the report summary
data.

Sub-summary parts appear only when the records are sorted by the field on which the part is
based (the break field for the Sub-summary part). In FileMaker Pro 10, when you sort the found set
by a field on which a Sub-summary part is based, the Sub-summary part will appear in Browse
mode, as shown in Figure 4.6.

CROSS-REFCROSS-REF
For additional details about working with Sub-summary parts and part controls,
refer to Chapter 10.

08_429006-ch04.indd 6808_429006-ch04.indd 68 3/25/09 7:12:52 PM3/25/09 7:12:52 PM

69

What’s New in FileMaker 10 4

 FIGURE 4.6

Viewing and editing a Sub-summary report in Browse mode.

To further consolidate the support for dynamic summary data, FileMaker Pro 10 introduces
important enhancements to the way Table View works. In particular, layouts in Table View are no
longer restricted to showing the same group of fields that are physically present on the layout.
Rather, you can modify the Table View to remove some fields (without deleting them from the
layout) and to add others that aren’t present on the layout.

To make changes to the Table View configuration of a layout, first view the layout in Browse mode
and switch to Table View. Then click the Modify button at the right of the Layout bar. The Modify
Table View dialog appears, as shown in Figure 4.7.

By deselecting the checkbox at the left of some of the fields listed in the Modify Table View dialog
and by using the + button at the lower left of the dialog to add other fields, you can customize the
Table View of a layout without making any changes to the way the layout appears in other views.

Table View in FileMaker Pro 10 also makes provision for the inclusion of Sub-summary parts
defined for the layout, according to the sort order of the found records in the current window.
FileMaker aligns any summary fields in the Sub-summary part with the column showing the data
field being summarized and adds a label according to the type of aggregation the summary field
performs (for example, Count or Total, as shown in Figure 4.7).

08_429006-ch04.indd 6908_429006-ch04.indd 69 3/25/09 7:12:53 PM3/25/09 7:12:53 PM

70

The FundamentalsPart I

 FIGURE 4.7

Modifying the fields included in the Table View of a layout without changing the layout.

Similarly, leading and trailing Grand Summary parts also now appear when a layout is displayed in
Table View. As grand summaries are not dependent on sort order, they will be displayed regardless
of the sort state of the found set.

NOTENOTE
Although the Browse mode appearance of layouts in List View and Table View in
FileMaker Pro 10 more closely resembles what you see in Preview mode (and in

printed output), several significant differences remain. For example, object attributes for sliding,
printing, or reducing part size don’t take effect in Browse mode, only in preview and print
(including PDF output). When you preview or print, what you see may still differ in several
respects from what appears in Browse mode.

Maintain Record Sort Order
As soon as the data in a field that is part of the sort order is edited — or a new record is added —
the sort sequencing of records that made sense before the change may no longer be appropriate.
Previous versions of FileMaker Pro changed the declared state (as shown in the Status Area) of the
found set to “Semi-sorted” in such cases. However, FileMaker Pro 10 solves this problem in an
entirely different way — by automatically updating the sort order after a data change affecting it is
committed. In this way, live Sub-summary data that depends on the sort order of the record set
remains current, and, as changes are made to data, the chosen sort order is maintained.

08_429006-ch04.indd 7008_429006-ch04.indd 70 3/25/09 7:12:53 PM3/25/09 7:12:53 PM

71

What’s New in FileMaker 10 4

The way FileMaker Pro 10 handles automatic updates of the sort order of the found set is designed
to disrupt the user as little as possible. To keep the feature as unobtrusive as possible, refreshes of
the sort order will occur during moments of idle time, as the screen refreshes to reflect other
changes. Re-sorting will not occur while a user is editing a record (that is, while there are uncom-
mitted changes) nor while a script is in progress, so the sort order will remain predictable during
the course of a script that updates records (for example, while looping through a found set of
records).

NOTENOTE
When you create a script to make changes that may affect the current sort order,
because re-sorting won’t occur while the script is running, if you don’t want the

records left in a partially sorted state, you should engineer your script to either unsort or re-sort
the current table before concluding.

There are no new controls to adjust to take advantage of the new FileMaker sorting behavior, so
there’s nothing to turn on or off. You simply apply a sort (for example, by choosing Records ➪ Sort
Records), and FileMaker will keep the records sorted in that order until one of the following events
occur:

n The records are unsorted.

n A different sort order is applied.

n The found set changes. (A Find is performed or the Show All Records or Find Omitted
commands are selected).

FileMaker Pro 10 maintains the sort order regardless of how the records came to be sorted,
whether it’s via the Sort Records dialog (accessible from the Records menu and the Contextual
menu), by clicking column headers in Table View, by clicking a button that has the Sort Records
command attached to it, running a script that includes a Sort Records command, or as a result of
calling a Go To Related Records command that acts through a sorted relationship.

When you manually change the value in a field that is defined as part of the current sort order, in
the first idle time after commit, the record is moved to a position in the current record set that
corresponds to the new value you have entered.

NOTENOTE
When FileMaker automatically changes the order of records to preserve the current
sort order, the active record does not change. However, in List or Table View, the

window scroll position is not adjusted when records are automatically re-sorted, so in some
cases, the active record in a List or Table View layout will no longer be in view (having been
sorted to a new position above or below the bounds of the current window).

If the current record is no longer in view after being re-sorted automatically, pressing theTab key
(to enter a field on the active record) will cause FileMaker to auto-scroll the window to bring the
active record into view.

Every sorted record set (as distinct from sorted portals and sorted relationships) is affected by this
new FileMaker Pro sorting behavior. The only notable exception is that FileMaker does not re-sort
records after an import operation (one that affects a current sorted found set) so that you’ll have an

08_429006-ch04.indd 7108_429006-ch04.indd 71 3/25/09 7:12:53 PM3/25/09 7:12:53 PM

72

The FundamentalsPart I

opportunity to view the records in their original order after the import, to decide whether or not
you want to re-sort. In this situation, FileMaker Pro 10 declares the records as “Semi-sorted”
in the Status Toolbar.

An important characteristic of the maintain sort order feature in FileMaker Pro 10 is that the
record order is updated to reflect changes made on the current workstation and also on remote
workstations when your solution is hosted. When a user elsewhere on the network makes changes
that will affect the sort sequence of a record that is part of a list of records you’re viewing and then
commits the record, your list will be updated (during the first idle time on your workstation) to
reflect the change. Moreover, instead of performing a complete re-sort (with the overheads that
would entail), FileMaker tracks only the records that have changed and relocates them within the
existing sort order so that the process remains efficient.

CAUTION CAUTION
Sort order is not always maintained when the sort depends on related fields that
are changed indirectly or by other users. Only changes to related data made locally

and from the current active record are tracked for the purposes of maintaining sort order.

Saved Find Requests
A useful new end-user feature introduced in FileMaker Pro 10 is the ability for users to rerun their
recent Finds and to save their Finds so that they can run them at will in the future. Using saved
Find requests is a great time-saving and convenience feature for individual users, enabling creation
of a customized and more efficient work process for Finds within each solution. This feature is of
particular benefit where specific users regularly perform complex or multi-request Finds that are
laborious to set up, yet they lack the scripting skills (or don’t have access privileges that allow
scripting) to automate the process for themselves.

Saved and recent Finds using this new feature are particular to each user account, so one user
can’t see or access Finds performed or saved by any other users of the same solution. Developers
wishing to create Finds that multiple users can apply can still do so by providing scripts to apply
repetitive complex Finds. However, FileMaker now provides a way for ad hoc Finds performed by
individual users to be readily reapplied without being painstakingly re-created each time.

Because the data about saved Finds is stored with the user’s account, saved Finds for a given user
will be available anywhere on the network they log in and will be maintained from one application
or login session to the next. When user accounts are set to log in using external authentication, a
separate option becomes available (accessible via the User Data button at the lower left of the Edit
Account dialog for any account set to authenticate via an external server) so that when you’re
administering accounts, you can view the accumulated user data and delete user data associated
with defunct user accounts.

CROSS-REFCROSS-REF
If you want to configure your solution so that ad hoc Finds performed by users will
be stored and available to be reapplied at will by other users (or groups of users) of

your solution, saved Finds will not be suitable and you will need to build your own method of
saving Finds so they will be shared among users. You will find an example of one such technique
described in detail in Chapter 9.

08_429006-ch04.indd 7208_429006-ch04.indd 72 3/25/09 7:12:53 PM3/25/09 7:12:53 PM

73

What’s New in FileMaker 10 4

The user performing the Finds can reuse his recent Finds without any special effort to save them.
Any Find you perform is automatically added to the Recent Finds menu, and you can re-apply it at
will by choosing it from the Records ➪ Saved Finds ➪ Recent Finds menu list, as shown in Figure
4.8. The Recent Finds list shows the most recent Finds performed by the current user up to a
maximum of ten, with each Find appearing in the form of a summary of the criteria used.

CAUTION CAUTION
Because the names of Finds stored on the most recent Finds menu don’t indicate in
which fields the criteria were entered, multiple different Finds may appear with

identical names in the Recent Finds menu list. This is a limitation of the recent Finds feature. If
you need to reuse Finds that used similar criteria (entered in different fields), you should
consider saving the Finds with names that differentiate them.

A further potential issue is that recent Finds give no indication of the layout or table to which
they relate, leaving the user to remember the context for each listed Find. You can address this
limitation of the recent Finds feature by creating saved Finds with appropriate detail in their
names.

As well as accessing the Saved Finds options from the Records menu, you can also access this new
feature from the Status Toolbar, either by clicking and holding on the Find icon (which is part of the
default icon set for the Status Toolbar) to access a drop-down menu, shown in Figure 4.9, or, if it has
been added via the Customize Status Toolbar option, you can use the Saved Finds Toolbar icon.

 FIGURE 4.8

Accessing a recent Find from the Records menu.

08_429006-ch04.indd 7308_429006-ch04.indd 73 3/25/09 7:12:53 PM3/25/09 7:12:53 PM

74

The FundamentalsPart I

CROSS-REFCROSS-REF
For a description of the process for customizing the Status Area, refer to the “Status
Area Redesign” section, earlier in this chapter.

NOTENOTE
When you re-use a Find by selecting it from the Saved Finds menu, FileMaker
performs the Find afresh against the data currently residing in the table. If you have

made changes to data since the Find was previously performed, the results may be different (for
instance, some records that previously met the Find criteria may no longer do so).

In addition, FileMaker Pro 10 provides you with the option to save the last Find performed on the
current layout, giving it a name so that it will be permanently available (when you are logged into
the current file with the current account) in the Records ➪ Saved Finds ➪ Saved Finds menu list.
To save a Find:

 1. Create a Find request and perform the Find in the normal way.

 2. Choose Records ➪ Saved Finds ➪ Save Current Find. The Specify Option for the Saved
Find dialog appears.

 3. Enter a descriptive name for the Find you performed in Step 1, as shown in Figure 4.10.

 FIGURE 4.9

Accessing a recent Find from the Find icon drop-down menu on the Status Toolbar.

08_429006-ch04.indd 7408_429006-ch04.indd 74 3/25/09 7:12:54 PM3/25/09 7:12:54 PM

75

What’s New in FileMaker 10 4

 FIGURE 4.10

Entering a Find name into the Specify Options for the Saved Find dialog.

 4. If you want to view or edit the criteria for the Find, click the Advanced button at the
lower left of the dialog.

 5. Click Save to in the Specify Options for the Saved Find dialog to complete the process.

Saved Finds you create by using the preceding procedure are displayed in the Saved Finds menu
for the current user account and will be available whenever you log in to the file with the same
credentials. To change the order of saved Finds in the menu, to rename a saved Find, to edit the
criteria for a saved Find, or to delete a saved Find, choose Records ➪ Saved Finds ➪ Edit Saved
Finds to invoke the Edit Saved Finds dialog, as shown in Figure 4.11.

 FIGURE 4.11

Making changes with the Edit Saved Finds dialog.

The procedure for editing Find requests in the Edit Saved Finds dialog is comparable to the
familiar process used to manage Finds and Find criteria associated with script and button
commands, such as Enter Find Mode[] and Perform Find[].

In all, the saved Find requests feature adds utility and convenience to the user interface of your
FileMaker solutions and provides a useful supplement to the functionality that can be provided via
the use of FileMaker’s scripting capabilities.

08_429006-ch04.indd 7508_429006-ch04.indd 75 3/25/09 7:12:54 PM3/25/09 7:12:54 PM

76

The FundamentalsPart I

Set Field by Name
A favorite of mine among the new features in FileMaker Pro 10 is the ability to set a field program-
matically without determining in advance (and specifying in hard code) which field is to be set.
The addition of the Set Field by Name [] script and button command brings a new level of
flexibility and agility to FileMaker programming, enabling developers to supply calculations that
will determine which field will be targeted by a Set Field operation.

Users of previous versions will be familiar with the Set Field [] command, which remains
unchanged in FileMaker Pro 10. Set Field [] admits two arguments, the first of which is the
target field that must be selected from a list of fields in the Specify Field dialog and the second of
which is a calculated result that is to be set into the target field.

The Set Field by Name [] command operates in the same way as the Set Field []
command with one important exception. The target field is not selected from a list dialog but
rather is supplied in the form of a calculation you enter that resolves to provide the name of the
target field. Using this new capability, you can set up script sequences with embedded conditions
so that different fields will be targeted depending on context. Consider, for example, the following
segment of script code that might have been seen in a solution developed in the previous version
of FileMaker:

If [Get(LayoutTableName) = “Invoices”]
 Set Field [Invoices::Status; “Complete”]
Else If [Get(LayoutTableName) = “Orders”]
 Set Field [Orders::Status; “Complete”]
Else If [Get(LayoutTableName) = “Payment”]
 Set Field [Payment::Status; “Complete”]
Else If [Get(LayoutTableName) = “Requisition”]
 Set Field [Requisition::Status; “Complete”]
Else If [Get(LayoutTableName) = “Diagnosis”]
 Set Field [Diagnosis::Status; “Complete”]
Else If [Get(LayoutTableName) = “WorkBrief”]
 Set Field [WorkBrief::Status; “Complete”]
Else If [Get(LayoutTableName) = “Specification”]
 Set Field [Specification::Status; “Complete”]
End If

While the preceding segment of script code extends to 15 lines, seasoned developers will have
encountered comparable requirements that extend to many multiples of the length of this example.
With the availability of the Set Field by Name [] command, the preceding example and many
others like it can be reduced to a single line of code, along the lines of

Set Field by Name [Get(LayoutTableName) & “::Status”; “Complete”]

The example I provide here is one of many possible uses for this new and powerful command.
With some ingenuity and a little patience, you can expect to see this command making your solu-
tions more powerful and more agile. Equally important, the ability to make set field operations
depend on context lets you create code that is more portable so that you can reuse it in a variety of

08_429006-ch04.indd 7608_429006-ch04.indd 76 3/25/09 7:12:55 PM3/25/09 7:12:55 PM

77

What’s New in FileMaker 10 4

places in your solution. Re-use of code helps you be more accurate and more efficient in develop-
ment and makes your code easier to maintain (such as when a change need be made only in one
place rather than several).

Of course, like any powerful tool or technique, the ability to calculate the target field to be set car-
ries some risks. If your calculation expression does not anticipate all the conditions that the script
will encounter, your command may set the wrong field — or no field at all. Moreover, because the
success of the Set Field by Name [] command depends on the result of the calculation match-
ing the name of a field in your solution, if you change a field name but don’t make a corresponding
change to the calculation expression, the command will stop working.

To assist in addressing the potential for problems when a field’s name is changed, FileMaker Pro
10 provides a new calculation function that enables you to retrieve the name of a field (as a literal
string) by referencing it: GetFieldName(). If you use the calculation function instead of
supplying the name of a field as literal text, the correct name of the field will be returned, even if
the name of the field has subsequently been changed.

CROSS-REFCROSS-REF
For additional details about the GetFieldName() function introduced in
FileMaker Pro 10, see the ”New Calculation Functions” section, later in this

Chapter.

The addition of the Set Field by Name [] function to the FileMaker Pro script arsenal
increases the level of flexibility and power that FileMaker offers to developers, helping them to
create and maintain solutions that meet real-world needs.

Script Events Triggers
Speaking of real-world needs, nearly every complex solution developed over the past decade has
called for ways to automatically trigger scripts in response to user actions or events or simply on a
timer or schedule. Third-party developers have provided a host of plug-ins as a first step toward
filling this need, because hitherto FileMaker has provided no native script events framework.
However, plug-in script triggering is limiting, being linked to the use of external functions within
calculations.

FileMaker Pro 10 introduces interface-driven script triggering that works at two levels: layout objects
and layouts. In addition, a third kind of script triggering is provided in the form of timer-based trig-
gers. These new capabilities are in addition to the existing feature that enables you to trigger scripts
on file open and/or on file close. Because the new script-triggering capabilities depend on the active
layout and/or layout object instead of depending directly on the data residing in your solution, the
new features supplement rather than replace the options provided by script-triggering plug-ins.
Nevertheless, this new feature significantly extends the power of FileMaker Pro.

Despite its power, I would be remiss if I didn’t state upfront that the implementation of triggers in
FileMaker Pro 10 is as an interface tool and therefore not a suitable mechanism for enforcing rules
or validations in your solutions. That is, triggers can readily be bypassed by the use of an alterna-
tive interface or by contriving ways to edit an object while its corresponding interface element is

08_429006-ch04.indd 7708_429006-ch04.indd 77 3/25/09 7:12:55 PM3/25/09 7:12:55 PM

78

The FundamentalsPart I

inactive (for example, via drag-and-drop). You should therefore look to script triggers as an aid to
the creation of easy interfaces for your users, but not as a means to maintain data integrity or aid
security. For those purposes, other mechanisms (including plug-ins that provide calculation-based
script triggering) are better suited.

TIPTIP Script triggers are associated with an event that occurs in relation to a specific
context. The context is established by the Layout object (for Layout Object triggers)

or by the Layout (for Layout triggers and so on, while the event is specific to the type of trigger.
For example, an OnObjectEnter event can be used to trigger a selected script when a particular
layout object is entered. In this example, the event is the user’s action (such as pressing the Tab
key or clicking the mouse button to enter a field), which causes the object trigger to fire.

Layout object triggers
FileMaker Pro 10 provides five kinds of layout object triggers, each of which can be set to fire
when the user (or a script) interacts with a specific layout object. When configured, layout object
triggers form part of your solution’s interface, responding to specific actions applied to the interface
object to which they are attached.

You can configure layout object triggers to operate in Browse mode, Find mode, or both. The
layout object script triggers available in FileMaker Pro 10 are as follows:

n OnObjectEnter

n OnObjectKeystroke

n OnObjectModify

n OnObjectSave

n OnObjectExit

Two of the five layout object triggers, OnObjectEnter and OnObjectModify, call the associated
script after the user performs the corresponding action on the object to which you assign the
trigger, in the mode(s) for which you enable the triggers. These two triggers are termed “post”
triggers because the user (or script) action occurs and then, immediately afterwards, the associated
script runs. For example, if you assign an OnObjectEnter trigger to a field in your solution and
enable it for Browse mode, when the user presses the Tab key to enter the field in Browse mode (or
clicks into the field with the mouse), the field will become active, and then the triggered script will
commence. Similarly, when you assign an OnObjectModify trigger to a field in your solution,
when the field is active (in the mode for which the trigger is enabled) and the user makes a change
to the data in the field (such as by pasting or typing), the data in the field will be changed, and
then the triggered script will commence.

The remaining three layout object triggers — OnObjectKeystroke, OnObjectSave, and
OnObjectExit — call the associated script prior to allowing the user action. These triggers are
termed “pre” triggers because the script runs before the corresponding action is processed.
Moreover, the action can be allowed or denied depending on the result of the script. For example,
when you assign an OnObjectKeystroke trigger to a field object and enable it for Browse

08_429006-ch04.indd 7808_429006-ch04.indd 78 3/25/09 7:12:55 PM3/25/09 7:12:55 PM

79

What’s New in FileMaker 10 4

mode, if the field is active in Browse mode and you press a key on the keyboard, the associated
script runs and then, only after the script completes execution and only if the script returns a
True result (or if the script is not configured to return any result), the keystroke is issued (and
affects the field, if it is still active). However, if the script returns an explicitly False result (either
zero or null), the triggering event — in this case, a keystroke — will be cancelled.

NOTENOTE
Script results, which control the fate of pre-event script trigger actions (keystroke,
save, and exit) are assigned by supplying an argument to the Exit Script []

command at the concluding line of the triggered script.

CAUTION CAUTION
If there is no script result defined, either because a triggered script does not
conclude with an Exit Script[] command or because the Exit Script[]

command does not specify a result, the triggering action will proceed as if the script returned a
True result. Only if an explicit False result (either zero or null) is returned will the triggering
action be cancelled.

In this case, there is a subtle (but crucial) distinction between a null script result and no script
result; so a concluding script line defined as Exit Script [] permits the triggering action,
whereas a concluding line defined as Exit Script [Result: “”] cancels the triggering
action.

You can assign a layout object script trigger to an object by entering Layout mode, selecting the
object to which you wish to assign a trigger, and then choosing Format ➪ Set Script Triggers. The
Set Script Triggers dialog appears, as shown in Figure 4.12. On selecting the checkbox adjacent to
one of the trigger options in the list box at the top of the dialog, you’re prompted to select a script
to assign to the trigger and (optionally) enter a script parameter. In the lower panel of the Set
Script Triggers dialog, you set associated properties for the selected trigger, including the mode(s)
in which the trigger will be enabled.

 FIGURE 4.12

Configuring a layout object script trigger in the Set Script Triggers dialog.

08_429006-ch04.indd 7908_429006-ch04.indd 79 3/25/09 7:12:55 PM3/25/09 7:12:55 PM

80

The FundamentalsPart I

NOTENOTE
You can also access the Set Script Triggers dialog from the object contextual menu
in Layout mode.

TIPTIP When you’ve defined a script trigger and want to disable it without deleting it, you
can do so by deselecting all the mode checkboxes in the settings panel. In this

scenario the trigger definition, including the assigned script and associated script parameter,
remain in place, but the trigger will not fire in any mode. You can enable the script trigger again
at any time by selecting it and enabling one or more modes.

You can assign layout object triggers to field box, button, tab control, portal, and Web Viewer
objects in your layouts. You can assign multiple triggers of different types to a single layout object.
When you have multiple instances of the same object (for example, field box) on a layout, the trig-
ger configurations are assigned separately for each instance. So whether a script is triggered, and if
so, which script, will depend on which instance of the field is active.

When you’ve assigned one or more script triggers to a layout object, it appears with a red asterisk
in the lower right corner of the object in Layout mode, provided that the View ➪ Show ➪ Script
Triggers menu option is enabled, as shown in Figure 4.13.

As a part of your solution’s interface, assigned script triggers will fire based on interaction with the
specific layout objects to which the triggers are assigned — whether the interaction occurs as a
result of user input or during the execution of a script. When a script command, such as Go to
Field [], activates a script trigger assigned to the field that the script has made active, the
triggered script will execute before the initiating script proceeds.

 FIGURE 4.13

Configuring a layout object script trigger in the Set Script Triggers dialog.

08_429006-ch04.indd 8008_429006-ch04.indd 80 3/25/09 7:12:55 PM3/25/09 7:12:55 PM

81

What’s New in FileMaker 10 4

In order for the triggers assigned to a layout object to take effect, the object must be active (have
current focus). When you perform an action that changes a field that is not presently the active
field, its triggers will not fire. Moreover, if you change the data in a field by any means that does
not work directly through the interface object that the script trigger is attached to, the trigger will
not fire. For example, if you click a button that uses the Set Field [] command to change a
value in a field, the field contents will be updated but, because the Set Field [] command
works behind the scenes, not through the interface, triggers attached to the field object on the
layout will not fire. Similarly, when you drag and drop content from one FileMaker field to
another, the source field remains active throughout, so triggers attached to the destination field for
the drag-and-drop action will not fire. This applies also to content dragged and dropped to a
FileMaker field from another application, except in the case where the destination field for the
external drag-and-drop is already the active field in FileMaker.

You should also bear in mind that bulk operations (those that may change many records as a result
of a single action or command) don’t cause object-related script triggers to fire. For the sake of
efficiency, as well as for logistical reasons (for example, scripts don’t run while modal dialogs are
displayed), triggers will be ignored when you perform any of the following operations:

n External scripted operations (such as AppleScript) that work on multiple records

n Find/Replace

n Import

n Refresh Window

n Relookup

n Replace Field Contents

n Spell checking

NOTENOTE
Script triggers do not fire as a result of user actions performed via a web interface
(either IWP or CWP). However, when a web-compatible script is triggered from a

web-user session, triggers activated by script actions will fire in the same way they do if the script
is run within the FileMaker Pro client application.

Layout script triggers
FileMaker Pro 10 provides seven kinds of layout triggers, each of which can be set to fire when the
user (or a script) interacts with the layout to which you assign one or more triggers. Like object
triggers, layout triggers form part of your solution’s interface, responding to user and script actions
involving the associated layout.

You can configure layout triggers to operate in Browse mode and/or Find mode, and in several
cases also in Preview mode. The Layout script triggers available in FileMaker Pro 10 are as follows:

n OnRecordLoad

n OnRecordCommit

08_429006-ch04.indd 8108_429006-ch04.indd 81 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

82

The FundamentalsPart I

n OnRecordRevert

n OnLayoutKeystroke

n OnLayoutLoad

n OnModeEnter

n OnModeExit

As with object triggers, some layout triggers are designed to fire after the associated event has
occurred, while some fire before the event. The OnRecordLoad, OnLayoutLoad, and
OnModeEnter triggers are “Post” triggers so the assigned script will run after the trigger event has
been processed. However the remaining layout triggers, OnRecordCommit, OnRecordRevert,
OnLayoutKeystroke and OnModeExit, are implemented as pre-event triggers so the assigned
script runs before the trigger event occurs, and the originating event will proceed only if the trig-
gered script returns a True result (or if the triggered script is not defined to return a result). If the
script assigned to a pre-event trigger returns a result that is zero or null, the triggering event will be
cancelled, and the solution will remain in the state that prevailed before the user action that acti-
vated the trigger.

You can assign a layout script trigger by entering Layout mode, choosing Layouts ➪ Layout Setup,
and then navigating to the Script Triggers tab of the Layout Setup dialog, as shown in Figure 4.14.

 FIGURE 4.14

Configuring a layout script trigger in the Script Triggers tab of the Layout Setup dialog.

TIPTIP You can also invoke the Layout Setup dialog by Ctrl+clicking/Right-Clicking in the
layout background in Layout mode and choosing Layout Setup from the contextual

menu.

08_429006-ch04.indd 8208_429006-ch04.indd 82 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

83

What’s New in FileMaker 10 4

As with object triggers described in the preceding section, on selecting the checkbox adjacent to
one of the trigger options in the list box at the top of the Script Triggers tab, you select a script to
assign to the trigger and, if desired, specify a script parameter. In the lower panel of the Layout
Setup Script Triggers tab, you can review and/or configure associated properties for the selected
trigger, including the mode(s) in which the trigger will be enabled.

You can assign multiple script triggers for each layout, one of each of the available types. Each
trigger can be assigned to call a different script and can be configured independently to operate in
one or more of the available modes.

TIPTIP Although you can assign only one of each trigger type to a layout, the script your
triggers call can itself call one or more sub-scripts, if desired. By creating a master

script that calls several other scripts in sequence and assigning the master script to be triggered
by a layout event, you can achieve the effect of assigning multiple scripts to a specific trigger.

NOTENOTE
There is no visual indication that a layout has script triggers assigned. To ascertain
the status of script triggers (if any) assigned to a layout, you must navigate to the

layout in layout mode, invoke the Layout Setup dialog, and review the settings in the Script
Triggers panel.

When you assign multiple script triggers, including layout triggers and object triggers, it is possible
for multiple triggers to fire resulting from a single action, in which case FileMaker follows an order
of precedence to determine the sequence of the triggered scripts. The following are examples of
three typical scenarios:

n When you assign an OnLayoutLoad trigger to a layout and also assign an
OnRecordLoad trigger to the same layout and then navigate to the layout, the
OnLayoutLoad script will fire first, immediately followed by the OnRecordLoad script
for the displayed record.

n When you assign an OnLayoutKeystroke to a layout and an OnObjectKeystroke
to a field on the layout, both enabled for Browse mode, and then in Browse mode place
the cursor into the field and press an alphanumeric key on the keyboard, the
OnObjectKeystroke script fires first. If the OnObjectKeystroke script returns
True, the OnLayoutKeystroke script commences. If the OnLayoutKeystroke
script also returns True, then the character corresponding to the key you pressed is
entered into the active field.

n When you assign an OnRecordCommit trigger and an OnRecordLoad trigger to a lay-
out and an OnObjectEnter trigger to the first field on the layout and then make
changes to a record in List View and subsequently click into the first field in another
record in the list, the OnCommit trigger fires on the originating record, then subse-
quently (if the OnCommit trigger script returns True and the commit event succeeds),
FileMaker will retry the initiating action of navigating between records, and the
OnRecordLoad script commences for the record you clicked into. Then after the
OnRecordLoad script completes, the OnObjectEnter script runs. In this example, a
single mouse click can result in three scripts being triggered in succession.

08_429006-ch04.indd 8308_429006-ch04.indd 83 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

84

The FundamentalsPart I

TIPTIP When a pre-event script runs and returns an explicit False (zero or null) result, the
initiating action is not processed. In the preceding example, if the OnCommit script

returns false, the current record is not committed and therefore remains active. Consequently,
any follow-on actions including navigation to a different record and entry into a field on that
record also fail.

NOTENOTE
The OnLayoutKeystroke and OnObjectKeystroke triggers do not respond to

command shortcuts, field changes made via a script or button command, mouse
actions (such as selecting a radio button), or a value list entry from a drop-down menu.

CROSS-REFCROSS-REF
FileMaker Pro 10 introduced new calculation functions to enable you to retrieve
and identify keystrokes used to trigger scripts, as described in the next section.

Timed interval script triggers
In addition to layout and object triggers, FileMaker Pro 10 provides the ability to set a timer to
trigger a script at a specified recurring interval. This new feature is implemented in the form of an
Install OnTimer Script [] command that can be called either within a script or as a button
action. You can find the Install OnTimer Script [] command in the “Control” group in the
list of available commands in the Edit Script and Button Setup dialogs.

The OnTimer script trigger is specific to the database window that is active when the trigger is
installed. When installed, the OnTimer trigger runs the assigned script every time the specified
interval (in seconds) has elapsed, provided that the system is idle (no other scripts are running, no
modal dialogs are displayed, and so on) and the window is in Browse mode, Find mode, or
Preview mode.

NOTENOTE
If a script is already running when the interval has passed, the OnTimer script will
be queued to run at the first idle time.

FileMaker allows you to specify only one timer-based trigger per window at a time. If you install
a new trigger in the same window, it supersedes the previous one. An OnTimer script trigger
continues to trigger the assigned script at the specified interval until

n A different OnTimer script trigger is installed in the same window.

n The OnTimer script trigger is cancelled.

n The window in which the OnTimer script trigger is installed enters Layout mode.

n The window in which the OnTimer script trigger is installed is closed.

While the window is in Layout mode, the OnTimer script remains in a suspended state and will
resume triggering if and when the window is restored to Browse, Find, or Preview mode.

To cancel an OnTimer script trigger, you issue a further call to the Install OnTimer Script []
command, with either a zero or null interval or with no script assigned.

Because you can have multiple windows open simultaneously, you can have multiple OnTimer
scripts installed, each assigned to a different window.

08_429006-ch04.indd 8408_429006-ch04.indd 84 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

85

What’s New in FileMaker 10 4

CAUTION CAUTION
OnTimer scripts can’t run from the Web (using either IWP or CWP), nor will they

run on FileMaker Server. OnTimer scripts are a feature of the FileMaker Pro client
application.

File-based script triggers
As in previous versions of FileMaker, provision is made for scripts to be assigned to run
OnFileOpen and OnFileClose. This capability has not changed in FileMaker Pro 10, and the
opening and closing scripts are defined by accessing the Open/Close tab of the File Options dialog
(choose File ➪ File Options).

Although the dialog options for the file-based script triggers refer to opening and closing the file, in
reality, the OnFileOpen script doesn’t run until the first window is displayed. Thus, when a file is
opened “hidden” (either via script or as a consequence of as an external data source for another
open file), the opening script will not be called. Only when and if a window is opened onscreen
will the opening script be triggered. Thus, the OnFileOpen script trigger might more properly be
considered an “OnFirstWindowDraw” trigger. Similarly, because a file that is referenced by
another open file won’t close until all the files referencing it also close, but the OnFileClose
trigger will fire when the last window associated with the file is closed, the OnFileClose trigger
might be better considered an OnLastWindowClose trigger

TIPTIP When a file has been opened without a window being drawn and is closed again
without a window ever having been drawn, neither the OnFileOpen script nor the

OnFileClose script will run.

Avoiding trigger tangles
Script triggering offers a world of open-ended functionality that is at once inviting and a little
awe-inspiring. You may be tempted to run amok attaching triggers to everything in sight, but
before you do, take a moment to consider which things triggers can do best and to contemplate
some of the potential pitfalls for the unwary developer.

If used sparingly and with careful planning, script triggers can significantly enhance your solution
interfaces, providing support to users and navigation finesse. Here are a few of the many things
you might consider using script triggering to implement:

n When your users select a value in a field, your solution can automatically navigate them
to the corresponding record or layout.

n When your users select a value from a value list, FileMaker can automatically perform a
Find to filter the displayed records to include only matching values.

n When your users enter a value that is out of range, FileMaker can post an alert before
they even leave the field (avoiding situations such as when the user enters far more text
than is permitted in a given field, but does not find out until they have wasted the effort
to type the text, leave the field, and only then see the validation error message).

08_429006-ch04.indd 8508_429006-ch04.indd 85 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

86

The FundamentalsPart I

n When your users navigate around your solution, FileMaker can keep a separate log of
their movements, allowing you to establish usage patterns as a basis to refine your
solution designs.

n When your users type search text into a field, FileMaker can filter an adjacent portal in
real time to display a list of possible matching entries.

There are many other examples of uses for script triggering, limited only by your imagination
and ingenuity. Notwithstanding the fertile ground that script triggers provide, I encourage you to
proceed with caution, keeping in mind the following broad guidelines:

n Use script triggers sparingly. Script triggers operate like trip wires in your solution, and
you should try to avoid getting your wires crossed or tangled. The actions of a script
called from one trigger may cause another trigger to fire. In the event that the actions of
the second trigger are such as to cause the first trigger to fire again, your solution will
enter a loop, and the user may assume that the application is frozen.

 For example, if the script called from an OnObjectModify trigger on field A inserts a
value into field B which in turn triggers an OnObjectModify script that (among other
things) inserts a value into field A, when you edit either field, the two triggered scripts
will be called alternately until you abort the running script (such as by pressing Ô+./esc)
or force-quit the application. In either case, the “crossing of the trigger wires” places your
solution into an unstable state.

 While the preceding example is a little contrived, you may stumble upon many other
configurations with similarly undesirable, unintended, or even spectacular consequences,
if you proceed without due caution.

n Consider all the ways users interact with your solution. Script triggering is a powerful
feature that provides you with scope to radically alter the behavior of FileMaker Pro.
However, unless you map out changes to functionality and account for all the ways a user
may cause a trigger to run and all the ensuing effects when the trigger script proceeds,
you may create situations that are immensely confusing to the user.

 For example, if your solution includes a list-view layout with an OnCommit trigger that
calls a script that navigates to the next record, users may find the arrangement convenient
in some situations. However, when users click another record to navigate to it in List or
Table View (or enters a record number into the navigation field in the Status Toolbar),
they may be frustrated and mystified to find that they’re not on the record they intended.
Moreover, in the event a user doesn’t notice the sleight of hand your trigger script has
caused, they may end up overwriting or deleting the wrong record.

 To minimize the chance of this scenario or others like it, I recommend that you develop a
process map for any complex interface procedure involving triggers. In your map, you
should plot each of the paths the user might conceivably take that would cause your trig-
gers to fire and ensure that the assigned script will gracefully handle each of the possible
process outcomes.

08_429006-ch04.indd 8608_429006-ch04.indd 86 3/25/09 7:12:56 PM3/25/09 7:12:56 PM

87

What’s New in FileMaker 10 4

n Don’t rely solely on script triggers to enforce rules in your solution. Although script
triggers are primarily an interface tool, you may be tempted to use them for a variety of
purposes that have more to do with data handling, validation, or security than with
supporting the user experience.

 For example, if you set an OnObjectExit trigger script to apply validation rules ensur-
ing the integrity or cleanliness of your solution’s data or to apply data formats or update
other fields to correspond to the data entered, bear in mind that the trigger scripts will
run only on those occasions when data is edited by directly interacting with the specific
layout object you have applied the trigger to. All bets are off, and your carefully built
validation scripts will be bypassed in the following situations:

n Data is modified by a script or a button or via a batch process, such as the Replace
Field Contents [] or Import [] commands.

n The field is present (without the same trigger assigned) on other layouts.

n The solution is accessed via the Web.

n Data is edited via a third-party application or utility, such as AppleScript.

n The user creates a separate file to use as an interface to the data in your solution.

 Despite the apparent convenience and flexibility of script triggers, in most occasions,
validation constraints applied at the schema level will have greater merit.

 While there are few absolutes in solution design and different solution requirements may
call for different approaches, I counsel you to view triggers first and foremost as a conve-
nience and a way to make your solutions more efficient and friendly, rather than as part
of the core data management functionality your solution depends upon.

From a practical viewpoint, although you can define script triggers freely by using FileMaker Pro
10, the additional capabilities of FileMaker Pro 10 Advanced will prove invaluable when designing
and troubleshooting complex operations involving one or more script triggers. In particular, the
Script Debugger in FileMaker Pro Advanced enables you to step through a sequence of scripts one
line at a time so that you can review the way they affect the data and interface of your solution in
different conditions and with different inputs.

It is important to note that when a script performs an action that results in another script being
triggered, the triggered script executes before the original script resumes. Moreover, FileMaker
treats the triggered script (and any script its actions in turn trigger) as sub-scripts of the substantive
script. When using the Script Debugger in FileMaker Pro 10 Advanced, therefore, advancing
through a script using the Step Into button (F6) will cause the triggered script to be displayed and
stepped in the Script Debugger, while pressing the Step Over button (F5) results in execution (out-
side the Debugger) of the triggered script(s) and allows you to proceed through the original script
uninterrupted.

TIPTIP The Script Debugger in FileMaker Pro 10 Advanced has been enhanced so that
when a triggered script is running, the area immediately below the control buttons

at the top of the Script Debugger window (where the name of the current script is displayed) also
states the type of script trigger that fired the script. If the current script did not execute as the
result of a trigger, the script name appears as it has in the past.

08_429006-ch04.indd 8708_429006-ch04.indd 87 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

88

The FundamentalsPart I

Because the presence of triggers associated with a script action is not evident when viewing the
script in the Script Debugger window, you will gain a more complete picture of the components
of a process — including the role of triggered scripts in the outcome — if you use the Step Into
button routinely to work through a script sequence in the Debugger, reserving the Step Over but-
ton for those occasions when you’re aware that the current steps will fire one or more triggers, but
want to continue with the underlying script without viewing the step sequence of the triggered
scripts.

CROSS-REFCROSS-REF
For additional discussion about the use of the Script Debugger in FileMaker Pro
Advanced, refer to Chapter 18.

New Calculation Functions
FileMaker Pro 10 includes six new calculation functions, four of which provide added support for
the use of script triggers based on keystroke events, a further function that is of especial value
when you are using the Set Field by Name [] command (although it has a range of other uses,
too), and a function that will assist with file-handling operations. In all, the new calculation func-
tions are

n Get(TriggerKeystroke)

n Get(TriggerModifierKeys)

n Char(number)

n Code(text)

n GetFieldName(field)

n Get(DocumentsPathListing)

When you use the four functions that provide added support for script triggering, you’re able to
determine which key was pressed when an OnObjectKeystroke or OnLayoutKeystroke
script has been triggered, including when the key pressed was an arrow key or other special key
(backspace, tab and so on). This enables you to control the behavior of triggered scripts to ensure
that they behave in the ways the user would expect, depending on the keystroke issued.

Get(TriggerKeystroke)
The Get(TriggerKeystroke) function is active while a script that was triggered by an
OnObjectKeystroke or OnLayoutKeystroke script trigger (or any subscripts it calls) is in
progress. It returns the character associated with the keystroke that triggered the script. For exam-
ple, when you place the cursor into a field box that has an OnObjectKeystroke assigned and
press the a key on the keyboard, the assigned script trigger fires. During the course of the script,
the Get(TriggerKeystroke) function returns a.

When a script has not been launched by an OnObjectKeystroke or OnLayoutKeystroke, or
when there is no script in progress, the Get(TriggerKeystroke) function returns a null
result.

08_429006-ch04.indd 8808_429006-ch04.indd 88 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

89

What’s New in FileMaker 10 4

The operation of the Get(TriggerKeystroke) function is useful for all cases where you press
an alphanumeric key that results in an OnObjectKeystroke or OnLayoutKeystroke trigger
firing. However, when the key you press does not return a recognizable character, such as when
you press backspace or an arrow key, you need a way to identify which key was pressed.
Moreover, if one or more modifier keys (such as Shift, Command, Control, Alt, or CapsLock) were
pressed while the keystroke was issued, you may also need a way to ascertain that. FileMaker Pro
10 provides the functions described in the following sections to assist.

Get(TriggerModifierKeys)
Like the function described in the preceding section, the Get(TriggerModifierKeys) func-
tion enables you to ascertain the combination of keys that set the script in motion during the
course of a script launched by an OnObjectKeystroke or OnLayoutKeystroke trigger. The
function returns a result that reflects the modifier keys that were pressed at the time when the trig-
ger was activated, regardless of which keys may be pressed while the triggered script is in process.

The result returned by the Get(TriggerModifierKeys) function is in the form of a number
representing the combination of modifier keys (if any) pressed when the keystroke that activated
the trigger was received. The format of the result is equivalent to the codified results returned by
the existing Get(ActiveModifierKeys) function.

CROSS-REFCROSS-REF
For detailed information on working with modifier keys, refer to the section by that
name in Chapter 19.

Code(text)
The Code() function is designed to return the Unicode character number(s) of one or more
characters supplied as text. If only one character is in the supplied text, the Unicode code point of
that character will be returned. However, if multiple characters are supplied, the code point for the
leftmost character in the supplied string will be returned as the low (rightmost) five digits of the
returned number; the code point value of the following characters will be in the next (to the left)
five digit blocks of the returned value.

TIPTIP Low ASCII characters (7-bit) have the same values in Unicode, so for a range of
common purposes, the value returned by the Char() function will be equal to

the ASCII value of the supplied character.

Therefore, because the Unicode code point for the letter A is 65, for B is 66, for C is 67, and for D
is 68, the expression Code(“ABCD”) returns 68000670006600065.

When you need to identify a keystroke character returned — especially a non-alphanumeric
character, such as a backspace, arrow key, or other key such as is returned by the
Get(TriggerKeystroke) function, you can do so by using an expression such as
Code(Get(TriggerKeystroke)).

08_429006-ch04.indd 8908_429006-ch04.indd 89 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

90

The FundamentalsPart I

Char(code)
FileMaker Pro 10 provides the Char() function to return a character by supplying its index
number in the Unicode character set. While this capability may have a range of applications in
text processing, cryptography, and so on, it provides a useful partner to the Code() function,
enabling you to ascertain the identity of characters passed into code points by the Code()
function.

If the number supplied as the parameter to the Char() function contains five or less digits (that
is, if it’s between 1 and 99,999 inclusive), the result will be a single character from the Unicode
standard. However, if the number supplied is comprised of more than five digits, multiple Unicode
characters are returned where the rightmost five digits determine the first character, the sixth to
the tenth digits from the right determine the second character, and so on.

Therefore, because the letter corresponding to Unicode code point 65 is A, to 66 is B, to 67 is C,
and to 68 is D, the expression Code(68000670006600065) returns ABCD.

TIPTIP Because Unicode permits multiple code points as the representation of a composite
character (such as an accented letter), number values greater than 99,999 may in

some cases be drawn as a single character with inflection.

GetFieldName(field)
There are a variety of situations when it is necessary to pass the name of a field (as a literal text
string) as an input parameter for a function or command. That’s not too hard to do, because you
can just type the field name between quotes and be done — but should you subsequently change
the name of the field, the literal text you entered will not match, and the code that depends on it
will no longer work.

The GetFieldName() function introduced in FileMaker Pro 10 provides a way to make
references to field names in your code more robust by tying them to the field itself. For example,
when you use

GetFieldName(Invoices::InvoiceDate)

rather than

“Invoices::InvoiceDate”

the fully qualified field name of the referenced field will be retrieved at run time, ensuring that the
correct and current name of the field will always be returned. This is very useful as an adjunct to
the new Set Field by Name[] command, allowing you to ensure that the calculation expres-
sions you use to specify the target field always return a valid field name. However, the ability to
calculate the name of a field at run time is also valuable when you’re using the GetField() and
Evaluate() functions, as well as any of the various design functions that require a field name as
an input parameter.

08_429006-ch04.indd 9008_429006-ch04.indd 90 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

91

What’s New in FileMaker 10 4

Get(DocumentsPathListing)
If you want to set your scripts to check that a file exists before importing it (or overwriting it), you
need a way to check the contents of a directory. Throughout many years, developers have con-
trived ways to have FileMaker Pro interact with files on the local computer, sometimes using
external technologies to supplement the capabilities FileMaker provides in this area. However,
FileMaker Pro 10 provides some assistance in the form of the Get(DocumentsPathListing)
function.

Using this new function, you can obtain a return-delimited list of files and directories within the
user’s documents directory on the current workstation. Be aware, however, that the path to the
documents folder will vary depending on the platform, operating system version, and configura-
tion of the computer where FileMaker is installed. The path to the documents folder on the current
workstation is returned by the Get(DocumentsPath) function in FileMaker Pro. The path may
take forms such as those set out in Table 4.1.

 TABLE 4.1

Examples of the Documents Path in Different Environments
Platform Path

On Mac OS X /Macintosh HD/Users/yourusername/Documents/

In Windows XP /C:/Documents and Settings/yourusername/My Documents/

In Windows Vista /C:/Users/yourusername/Documents/

NOTENOTE
The Get(DocumentsPathListing) function operates recursively to build a

complete list of the contents of the target (documents) folder, including the files
contained within folders that are nested within the documents folder. The function will delve
as many layers deep as it needs to, to return the fully specified paths of all the files contained
anywhere within the documents folder.

Because the text string returned by the Get(DocumentsPathListing) function is return-
delimited, you can use the GetValue() function to extract individual lines, or the
PatternCount() or Position() functions to check whether a specific file is present in the user’s
documents folder.

CAUTION CAUTION
Be aware that users commonly store all their files in the Documents folder
(including subfolders within the documents folder), and therefore the documents

path contents listing may include many thousands of files. In such cases, the Get(Documents
PathListing) function may take some time to evaluate, and the result may be an exceedingly
long text string. You should consider providing user feedback about what is happening during
this process.

08_429006-ch04.indd 9108_429006-ch04.indd 91 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

92

The FundamentalsPart I

External SQL Data Sources (ESS)
Enhancements
When support for External SQL Data Sources (ESS) was first introduced in FileMaker Pro 9, it
opened up a wealth of new opportunities and provided solutions for many longstanding problems
in integrating data from a variety of sources. FileMaker Pro 10 offers several additions to the
capabilities of ESS that increase its usability and extend its reach.

Additional SQL database support
FileMaker Pro 10 adds to the selection of mainstream SQL database management systems that are
supported for access via ESS. In addition to the products and versions supported previously,
FileMaker Pro 10 adds support for the following:

n Microsoft SQL Server 2008 (10.0.1049)

n Oracle 11g (11.1.0.6)

n MySQL Community Server 5.1

NOTENOTE
When you’re working on Mac OS, to configure and use ESS access to the additional
database systems supported by FileMaker Pro 10, you will require updated ODBC

drivers available from Actual Technologies.

Value lists based on external SQL data
In FileMaker Pro 10, when you’re defining a value list, you are now able to choose a field in an ESS
shadow table when you select the option to Use Values from a Field.

As shown in Figure 4.15, you can also choose the option to Include Only Related Values, provided
you first create an appropriate relationship to the relevant shadow table, in the Relationships
Graph of the current FileMaker Pro file.

Single Sign-On for remote Windows clients
When configuring an external data source, it’s previously been possible to choose settings to
prompt the user to provide authentication details (username and password) or to supply credentials
in the data source configuration (either as literal values or via calculation). FileMaker Pro 10 pro-
vides a third authentication option, allowing you to use Windows Authentication (Single Sign-on).

To use Single Sign-On for a data source defined to use ODBC, select the third radio button in the
Authentication panel of the Edit Data Source dialog. (You can access the Edit Data Source by
choosing File ➪ Manage ➪ External Data Sources and either selecting a data source and clicking the
Edit button, or clicking the New button). After selecting the option to Use Windows
Authentication, enter a Service Principal Name (SPN) into the text box provided, as shown in
Figure 4.16.

08_429006-ch04.indd 9208_429006-ch04.indd 92 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

93

What’s New in FileMaker 10 4

 FIGURE 4.15

Configuring a Value List to use values based on an ESS shadow field.

 FIGURE 4.16

Configuring an External Sequel Data Source to use Windows Single Sign-On.

08_429006-ch04.indd 9308_429006-ch04.indd 93 3/25/09 7:12:57 PM3/25/09 7:12:57 PM

94

The FundamentalsPart I

After you select the Windows Authentication option for a SQL data source, provided both the
client (FMP) and host (FMS) applications are version 10 (or later), Windows Single Sign-On
credentials will be forwarded to the SQL server during ESS connect.

NOTENOTE
If either FileMaker or FileMaker Server is still running version 9, when you connect,
you’ll be prompted to supply credentials.

Handling of DATETIME values — MS SQL Server
In Microsoft SQL Server (the 2000, 2005, and 2008 versions), dates, times, and timestamps are all
stored as attributes of data type DATETIME or SMALLDATETIME and, when accessed by using ESS
in FileMaker Pro, such fields are treated by default as timestamp fields. Previously, this presented
some difficulty in cases where the field was intended to be used for a date or a time, because the
timestamp format required the user to enter a redundant time value with each date, or a redundant
date value accompanying each time.

FileMaker Pro 10 provides you with the flexibility to specify the data type of an ESS shadow field
created from a Microsoft SQL Server DATETIME or SMALLDATETIME column. To change a
FileMaker shadow field that represents a Microsoft SQL Server column to operate as either a Date
or Time field rather than as a Timestamp, choose File ➪ Manage Database, navigate to the Fields
tab, and select the shadow table for the SQL table containing the DATETIME or SMALLDATETIME
value you want to change. From the Type drop-down menu, select a Date or Time and click the
Change button.

When you’ve specified a Date or Time data type for a DATETIME or SMALLDATETIME field,
FileMaker will not prompt for the redundant component (time when the value is to be entered as a
date, or date when the value is to be entered as a time), so the user will be able to work with the
field as they would if it were a FileMaker field of the appropriate type.

Bento Integration
If you’re a Mac user and make use of Bento 2 (or later), the personal database solution available
from FileMaker, Inc., you’ll be pleased to know that FileMaker Pro 10 includes support for direct
import of data from Bento. This provides you with a straightforward way to access your Bento 2
data (including Address Book and iCal data) and integrate it with existing data in your FileMaker
solutions.

As shown in Figure 4.17, an additional option has been added to the menu system as File ➪

 Import ➪ Bento Data Source, enabling you to load Bento data directly into an existing table in your
solution. When you choose Bento as the source of your import, the import field mapping dialog
(familiar from previous versions of FileMaker) enables you to align incoming data with fields in a
selected table of your FileMaker solution.

In addition to the option to import from Bento 2 into your existing FileMaker Pro 10 solution’s
tables, an option is provided to create a new database by using the structure and content of a
library from your Bento data as a starting point.

08_429006-ch04.indd 9408_429006-ch04.indd 94 3/25/09 7:12:58 PM3/25/09 7:12:58 PM

95

What’s New in FileMaker 10 4

To create a new file based on Bento data, invoke the Quick Start screen, select the option to Create
a Database From An Existing, and then use the drop-down menu to choose the Bento Source
option, as shown in Figure 4.18. After confirming the source data set and field map for import,
click OK.

 FIGURE 4.17

Selecting Bento as the data source for an import in your FileMaker Pro 10 solution.

 FIGURE 4.18

Creating a new file by using a Bento Source as the starting point.

08_429006-ch04.indd 9508_429006-ch04.indd 95 3/25/09 7:12:58 PM3/25/09 7:12:58 PM

96

The FundamentalsPart I

File Recovery Improvements
There have been significant changes to the way the File Recovery process is implemented in
FileMaker Pro 10, making the procedure more flexible and more robust, as well as giving you
greater control and additional feedback about what has occurred.

As a part of this change, the Tools ➪ File Maintenance option has been removed from FileMaker
Pro Advanced. In the process of rethinking the approach to salvage and data recovery operations,
the file maintenance feature has been superseded by more reliable and more extensive options
within the recovery procedure. As part of this change, the Optimize procedure that was previously
available from the File Maintenance dialog in FileMaker Pro Advanced is now performed routinely
when you select File ➪ Save a Copy As and choose the Compacted Copy (Smaller) option, using
either FileMaker Pro or FileMaker Pro Advanced.

In FileMaker Pro 10, when you choose File ➪ Recover, you gain access to a new option enabling
you to check the consistency of a file. The consistency check is nondestructive; it doesn’t change
anything in the selected file, but merely reports on its state. Consequently, the consistency check is
safe to perform at will as a routine health check on your files. To check the consistency of a file,
proceed as follows:

 1. Choose File ➪ Recover. The Select Damaged File dialog appears.

 2. Navigate through the folder structure to locate and select the file you want to check.

 3. Click the Check Consistency button at the right of the panel appearing below the file list.

 4. Review the consistency result dialog that provides results of the consistency check, as
shown in Figure 4.19.

 FIGURE 4.19

Using the Recover process to perform a consistency check.

08_429006-ch04.indd 9608_429006-ch04.indd 96 3/25/09 7:12:58 PM3/25/09 7:12:58 PM

97

What’s New in FileMaker 10 4

If you conclude that a file is damaged (for example, you’re experiencing problems with the file, and
it fails the consistency check), select the file in the Select Damaged File dialog and click the Select
button at the lower right of the dialog. (The Name New Recovered File dialog appears.) If you click
the Save button directly, default recovery options will be used to attempt to rebuild the file.
However, if you click the Use Advanced Options checkbox in the panel below the file list, you will
see the Advanced Recover Options dialog, shown in Figure 4.20, and you will be able to control
the way the Recover process works and which procedures will be applied as FileMaker Pro
attempts to rebuild the file.

 FIGURE 4.20

Specifying Advanced Recover Options to control the Recover process.

By adjusting the configured options in the Advanced Recover Options dialog, you can perform a
wide variety of modifications to the selected file, dealing with specific problem as required. For
example, if your file has exhibited anomalies with Finds or relationship matches but appears other-
wise intact, you may choose to select only the option to Rebuild Field Indexes. Each of the options
provided addresses a specific range of potential issues, resulting in different changes being made in
the recovered file.

NOTENOTE
The recovery process does not change the original file. Rather, it creates a newly
rebuilt file that contains selected components of the original file. If you try a combi-

nation of settings that don’t produce the result you desire, you can try again as many times as
necessary.

In addition to the control of file rebuild processes, the Advanced Recover Options dialog includes a
new option to bypass the startup script. When using this option, you’ll be required to authenticate
with a [Full Access] account for the file being recovered, whereupon the file options in the result-
ing (recovered) file will be altered to remove the OnFileOpen script selection. On accessing the

08_429006-ch04.indd 9708_429006-ch04.indd 97 3/25/09 7:12:58 PM3/25/09 7:12:58 PM

98

The FundamentalsPart I

Advanced Recover Options, you also gain access to two options that are new in FileMaker Pro 10,
namely the alternate first and second steps allowing you to copy the file as is or copy the logical
structure.

NOTENOTE
After each file recovery operation, FileMaker Pro 10 creates a log of the process
and stores it in a file called Recover.log located in the same folder as the file being

recovered. You can access the log directly by clicking on the button labeled Open Log File in the
lower left corner of the dialog reporting the recovery results.

The Recover procedure in FileMaker Pro 10 provides improved feedback and also gives you access
to a comprehensive log of the results of each part of the Recover procedure. In this respect, you
have considerably improved information about the process and the likely state of the resulting
recovered file(s).

CROSS-REFCROSS-REF
For additional information about file recovery, refer to Chapter 17.

Layout Mode Enhancements
There have been several changes in FileMaker Pro 10 that affect Layout mode, making it easier to use
than in previous versions. One small but useful change is the inclusion of the Manage Layouts com-
mand in the Manage submenu of the File menu. This placement means that (among other things)
you can now access the Manage Layouts dialog — and from there, the Layout Setup dialog —
without first going to Layout mode. In addition, when you are in Layout mode, the menu of lay-
outs on the Layout bar (the lower section of the Status Toolbar) includes the Manage Layouts
command at the top of the menu, above the first layout.

Inserting an object into the tab order
Additionally, FileMaker Pro 10 provides you with the ability to insert a layout object into the mid-
dle of the tab-through order on a layout. This enhancement addresses a long-standing irritation
among many developers, as in the past it was necessary to manually reassign tab sequence num-
bering to all the layout objects following the inserted object.

To insert an object into the middle of an existing tab order, you simply enter the new object posi-
tion number for the object in question. If the number you enter conflicts with the sequential num-
ber of an existing object in the tab order, the tab order will be automatically resequenced to
accommodate the change. For example, if your layout has a tab order that touches a total of 50
objects and you decide to move the 38th object to occupy the 12th position in the tab order, you
can do so by simply entering “12” for the 38th object. When you do, the objects previously num-
bered 12 through 37 are automatically renumbered to positions 13 through 38 in the tab order.

In the same way, you can move an object forward in the tab order, and the subsequent numbers
will be moved back to ensure continuity, saving you considerable time and frustration when edit-
ing the tab order on layouts that have more than a handful of fields in the tab order.

08_429006-ch04.indd 9808_429006-ch04.indd 98 3/25/09 7:12:59 PM3/25/09 7:12:59 PM

99

What’s New in FileMaker 10 4

Defining tooltips in Pro
In the past, mouse-over tooltips were visible in both FileMaker Pro and FileMaker Pro Advanced.
However, you could define or edit tooltips only in FileMaker Pro Advanced. However with the
advent of FileMaker Pro 10, you can also specify and edit tooltips in FileMaker Pro.

To add or edit tooltips for a layout object in FileMaker Pro, first enter Layout mode, select the
object, and then choose Format ➪ Set Tooltip. The Set Tooltip dialog appears, and you can enter a
literal value or a calculation expression to determine the mouse-over tip for the selected object.

Also new in FileMaker Pro 10 is the ability to enable display of Layout mode tooltip icons for
objects that have a tooltip attached. When you choose View ➪ Show ➪ Tooltips, FileMaker Pro will
now add a pale orange note icon at the lower right corner of any layout object that carries a tooltip.
(Previously, this view option was available only in FileMaker Pro Advanced.)

Additional font sizes in the format menu
While on the subject of Layout mode (where most of your font formatting likely takes place), I
should mention that FileMaker Pro 10 includes 11-point and 13-point sizes in the Format ➪ Size
submenu by default.

This change may not seem like big news until you consider that, previously, developers have had
to choose the Format ➪ Size ➪ Custom option and enter a custom size into the resulting dialog
each and every time an 11-point or 13-point font size was called for. The presence of these com-
monly used sizes on the menus will save some folk a lot of time.

In addition, FileMaker Pro 10 provides you with menu commands (with associated keyboard
shortcuts) to increase and decrease the font size of the currently selected text or active object. The
commands are Format ➪ Size ➪ Increase Size and Format ➪ Size ➪ Decrease Size and the corre-
sponding shortcuts are Ô+Shift+>/Ctrl+Shift+> and Ô+Shift+</Ctrl+Shift+< respectively.

Send Mail by SMTP
For many years, it has been possible to have FileMaker pass an outgoing message to the installed
(default) e-mail client application. However, exactly how such e-mails are then handled varies
between e-mail applications and is outside the scope of the initiating FileMaker action.

In FileMaker Pro 10, you can choose to send an e-mail message either via the e-mail client applica-
tion or directly via the SMTP server that handles your outgoing mail. When you choose the latter
option, FileMaker prompts you to supply sender details, the outgoing SMTP server address, and
login credentials, if applicable, as shown in Figure 4.21.

08_429006-ch04.indd 9908_429006-ch04.indd 99 3/25/09 7:12:59 PM3/25/09 7:12:59 PM

100

The FundamentalsPart I

NOTENOTE
The setup dialogs and procedure are the same whether the user selects the
File ➪ Send Mail option or whether the Send Mail[] script command is used.

Moreover, the Send Mail script command can run on the server provided the Via SMTP option is
used. In conjunction with scheduled server scripts, the Send Via SMTP option enables you to
configure your solutions to handle batch mail operations centrally.

 FIGURE 4.21

Providing SMTP server address and credentials to send e-mail directly from FileMaker Pro 10.

Quick Start Screen Enhancements
The Quick Start screen has had several changes made to it in FileMaker 10. This screen appears
when FileMaker Pro is first launched and when you choose File ➪ New Database command (pro-
vided the Show FileMaker Quick Start Screen option has not been disabled in the General tab of
the FileMaker Preferences dialog).

As shown in Figure 4.22, the Learn More group of links in the Quick Start screen is arranged into
four categories in FileMaker Pro 10. This new arrangement provides ready access to new tutorial
materials to provide an introduction to the main features of FileMaker Pro.

08_429006-ch04.indd 10008_429006-ch04.indd 100 3/25/09 7:12:59 PM3/25/09 7:12:59 PM

101

What’s New in FileMaker 10 4

 FIGURE 4.22

The new organization of the Learn More links on the Quick Start screen FileMaker Pro 10.

A further change to the Quick Start screen in FileMaker 10 is the inclusion of an additional option
in the Create Database tab. As shown in Figure 4.23, a new option to Create a Database from an
Existing has been added, with an adjacent pull-down menu providing the following options:

n Excel 95-2004 workbook (.xls)

n Excel workbook (.xlsx)

n Tab Delimited text file

n Comma Separated Values text file

n Merge file

n Bento Source

When you choose the option to create a database file with an existing Excel, Tab delimited, CSV,
Merge, or Bento data, FileMaker applies special defaults to create a file with the form (structure)
and content of the file you select.

08_429006-ch04.indd 10108_429006-ch04.indd 101 3/25/09 7:12:59 PM3/25/09 7:12:59 PM

102

The FundamentalsPart I

 FIGURE 4.23

The additional Quick Start option to create a database from an external file.

Import/Export Enhancements
The import and export options have undergone a face-lift in FileMaker Pro 10, with arcane and
obsolete formats (including VisiCalc, Lotus, Sylk, and dBase DOS) being purged from the menu of
supported file options and support for the most recent version of Microsoft Excel being added. In
addition to the ability to import from a Bento 2 source (as noted previously) and XML and ODBC
imports (also available previously), FileMaker Pro 10 provides you with support for import from
the following file types:

n FileMaker Pro Files

n Tab-Separated Text Files

n Comma-Separated Text Files

n Merge Files

n Excel 95 — 2004 Workbooks (.xls)

n Excel Workbooks (.xlsx)

Similarly, the supported file types for export have been updated and are as follows:

n Tab-Separated Text

n Comma-Separated Text

08_429006-ch04.indd 10208_429006-ch04.indd 102 3/25/09 7:12:59 PM3/25/09 7:12:59 PM

103

What’s New in FileMaker 10 4

n Merge

n HTML Table

n FileMaker Pro

n XML

n Excel 95 — 2004 Workbooks (.xls)

n Excel Workbooks (.xlsx)

You can access these options by choosing File ➪ Import Records ➪ File or File ➪ Export Records
commands respectively.

A further significant enhancement of Import and export capabilities in FileMaker Pro 10 is the abil-
ity to specify server-side scripts to include the Import Records and Export Records commands.
That is, if your solution is hosted on FileMaker Server 10, server-side scripts can perform import
and export operations.

TIPTIP In FileMaker Server 10, Server Activated Script Execution (SASE) is able to perform
imports and exports.

To underscore the new distinction between commands available for use in different contexts, a
new system for filtering available scripting commands has been implemented in the script editing
interface. Scripts can be executed now in three environments, and the capabilities of each is differ-
ent. Hence, FileMaker Pro 10 allows you to select from a Show Compatibility pull-down menu at
the lower left of the Edit Script window, as shown in Figure 4.24. When you select the compatibil-
ity filters for Server or Web Publishing, script commands that are unavailable in the selected envi-
ronment appear dimmed in the list of available commands and (where applicable) also in the script
definition. Your selection in the Show Compatibility is retained for the duration of your application
session in the FileMaker Pro client, but reverts to the default setting (Client) the next time
FileMaker Pro is launched.

CAUTION CAUTION
Server compatibility shown in the Edit Script window in FileMaker Pro 10 refers to
script commands that are executable in FileMaker Server 10. When you host a

FileMaker solution on a different version of FileMaker Server, script compatibility may differ
from that shown in FileMaker Pro 10.

NOTENOTE
Script steps that can work under SASE in some cases work only with certain config-
urations of options. For example, the Perform Without Dialog setting is required

(because the server can’t display a user dialog). When you choose Server from the Show
Compatibility pull-down menu and then add a command to your script with settings that are not
compatible, it will not appear dimmed in the script definition, but while the unsupported
options for the command are in place, FileMaker will append the words NOT COMPATIBLE in
parentheses within the arguments for the command.

08_429006-ch04.indd 10308_429006-ch04.indd 103 3/25/09 7:13:00 PM3/25/09 7:13:00 PM

104

The FundamentalsPart I

 FIGURE 4.24

Selecting the option to view Server compatible commands in the Edit Script window.

To provide additional support for import and export within SASE, a change to the behavior of the
Get(TemporaryPath) function has been made so that it now returns the path to a folder one
level deeper than in previous versions. In addition, the temporary path will point to a temporary
session folder on the local workstation. The session folder will be automatically created the first
time the Get(TemporaryPath) function is evaluated within each FileMaker (client or server)
application session. The session folder will be named with a leading S followed by a number
assigned by FileMaker to identify the application session.

At the conclusion of the application session (for example, when you quit FileMaker Pro), the tem-
porary files the application has spawned, including the session folder and all its contents, are
deleted.

Save Target Printer
When you create a script (or button) that calls the Print[] command, you’re able to specify
print options as one of the arguments for the command, and the resulting configuration dialog
allows you to choose (among other things) the target printer for the print operation.

NOTENOTE
In previous versions of FileMaker Pro, the identity of the target printer for a
scripted print operation was not saved on Mac OS. In Windows, it was saved only if

the printer name was 30 characters or less in length.

In FileMaker Pro 10, when you configure the print options for the Print[] script or button
command, the identity of the target printer is stored with the print settings and reinstated when
the command is executed.

08_429006-ch04.indd 10408_429006-ch04.indd 104 3/25/09 7:13:00 PM3/25/09 7:13:00 PM

105

What’s New in FileMaker 10 4

TIPTIP In cases where the printer you choose can’t be found as the command is (subse-
quently) executed, or if you don’t choose a printer when configuring the Print[]

command, FileMaker will select the printer that is designated as the default for the current user
account on your computer.

The application of the stored printer selection depends on the availability of the selected printer
and on the state of the Specify Print Options checkbox for the Print[] command. If you have
also selected the Perform Without Dialog checkbox, FileMaker will send the print job to the
selected printer (or the default printer, if the selected printer is not available). However, if you
don’t select the Perform Without Dialog checkbox, FileMaker will present the Print dialog with the
saved printer pre-selected, if available.

CAUTION CAUTION
Print options — including the target printer name — are defined separately for
each platform. If you define a print command to use a target printer on Mac OS, for

example, you’ll have to select the print options and choose the printer in Windows as well in
order to have the setting work as desired on each platform.

The Manage Scripts Interface
The pull-down menu beside the button labeled New at the lower left of the Manage Scripts win-
dow has changed. The option labeled New Script has been replaced by two options, the first being
Empty Script and the second being Default Script, as shown in Figure 4.25.

 FIGURE 4.25

Accessing the new Default Script option in the Manage Script window.

08_429006-ch04.indd 10508_429006-ch04.indd 105 3/25/09 7:13:00 PM3/25/09 7:13:00 PM

106

The FundamentalsPart I

When you select the Default Script option in FileMaker Pro 10, a new script is created and pre-
populated with three script commands for you to use as the basis of your new script. The default
steps added to your script are along the lines of the following:

Enter Browse Mode []
Go to Layout [“YourCurrentLayout” (CurrentLayoutTable)]
Show All Records

Additionally, in Windows, when you open the Manage Scripts window, it opens in a restored state
even if the current database window has been maximized — that is, opening Manage Scripts
reverts maximized windows to the restored state automatically.

Other Useful Enhancements
By now you’ve probably concluded that FileMaker Pro 10 is a significant release with a lot of
important new features and changes to the behavior of the application. If so, then I am in agree-
ment with you. The inclusion of script triggers alone makes this release a powerhouse of new
possibilities. However, while the features I’ve described in detail earlier in this chapter are what I
regard as the highlights of this new version, FileMaker Pro 10 includes a number of other changes
that make it more powerful, more flexible, or easier to use. In the closing pages of this chapter, I
will take a moment to mention some of the other ways in which this release departs from its
predecessors.

IPv6 Support
The Internet is approaching a time when IP addresses conforming to the prevailing standard (IPv4)
will be exhausted. In fact, some projections suggest that this is likely to occur within the coming
two years. The answer is a move to lengthier IP addresses by using the IPv6 format (which is 128
bits long, as compared to 32 bits for IPv4 addresses).

When FileMaker Pro 10 is running in an IPv6 network, functions such as Get(SystemIPAddress)
and Get(HostIPAddress) that return an IP address will return IPv6 addresses. Moreover, it’s
now possible to enter IPv6 addresses in dialogs (such as Open Remote and Open URL) that require
an IP address.

NOTENOTE
On Mac OS, the Send Mail command, when configured to use SMTP, is not com-
patible with IPv6. In Windows, however, IPv6 can be used to specify the address of

the SMTP server for outgoing e-mails.

Format changes for automatically generated log files
All log files created automatically by FileMaker (Conversion.log, Import.log, and Recover.log) now
use a tab-delimited format. Moreover, the timestamp format used in FileMaker Pro 10 .log files is
now the universal time format adopted for logs generated from FileMaker Server 9. That is, the
timestamp includes a reference to the UMT adjustment of the time zone where the computer is
located.

08_429006-ch04.indd 10608_429006-ch04.indd 106 3/25/09 7:13:00 PM3/25/09 7:13:00 PM

107

What’s New in FileMaker 10 4

Updated templates and themes
If you’re content with using templates and premade solutions as the basis of your work, you will be
pleased to know that the Starter Solution templates (accessible from the Quick Start screen) have
undergone a face-lift in FileMaker Pro 10. There are now 30 starter solutions to choose from, and
their layout designs have been improved and modernized.

Similarly, the New Layout Wizard in FileMaker Pro 10 will offer you a clutch of new layout themes
that will preformat your new layouts with background colors and fonts to save you a little time
dealing with the interface design requirements of your solution.

FileMaker Pro Advanced Script Debugger
enhancements
In FileMaker Pro 10 Advanced, the Step button in the Script Debugger has been renamed Step
Over, and it acts to dismiss paused states invoked by the current script step. Moreover, after you
complete a pause by using the Step Over button, the pause step remains the current step until you
click the button once again to advance to the next step.

In addition, the Step Over button executes any scripts triggered by the current step’s action, with-
out displaying them in the Debugger. If you want to view and step through any scripts triggered by
the current script’s actions, use the Step Into button instead.

Relookup Replace and Field Contents no longer
commit
When you change a value in a field and then, without taking any action that would commit the
record, choose Records ➪ Replace Field Contents or Records ➪ Relookup Field Contents, FileMaker
performs the requested action (including using the new uncommitted data as the basis of the
action on the current record) without committing the current record. Thus, even after the
Relookup or Replace action has completed its action across the found set, you will still be able to
revert the current record.

Only a single sharing error for multiple files
In FileMaker Pro 10, when you open the first file of a multi-file solution, in the event that a file
sharing error occurs (for example, you’re presented with a dialog that reads along the lines of
“FileMaker cannot share files because...”), the error will be displayed only once regardless of the
number of files in the solution you have just opened.

This change will be worth the upgrade fee alone if you have a solution that is comprised of 50 or
more files.

08_429006-ch04.indd 10708_429006-ch04.indd 107 3/25/09 7:13:00 PM3/25/09 7:13:00 PM

108

The FundamentalsPart I

Script error codes and control commands
In FileMaker Pro 10, the control steps in scripts no longer clear the error code returned by the
Get(LastError) function. This makes good sense because control steps can’t themselves gener-
ate an error — and it makes it easier to handle errors, because you can test for the error and then
handle it without losing access to the error result at the point where you test. The script commands
that are affected by this change are

n If []

n Else

n Else If []

n End If

n Loop

n Exit Loop If []

n End Loop

n Exit Script []

n Halt Script

With this change, it will no longer be necessary, in most cases, to commit the Get(LastError)
result to a variable (or otherwise store it) before testing — making your scripts shorter, quicker,
and easier to write, and a little quicker in execution.

08_429006-ch04.indd 10808_429006-ch04.indd 108 3/25/09 7:13:01 PM3/25/09 7:13:01 PM

An essential part of your journey of discovery with
FileMaker Pro involves designing and creating a new
database from first principles. In this second part of the

FileMaker Pro 10 Bible, I invite you to roll up your sleeves and
work through the creation of an example Inventory System that
will allow you to see procedures in context and to acquire many
of the basic skills and techniques you’ll need as you begin to
work with FileMaker.

In the development of the example solution featured here, you’ll
start with a completely fresh and empty database file, adding
structure and features progressively until, after several chapters,
you’ll have the basis of a simple working solution. Throughout
subsequent chapters and parts of the book, I will refer back to the
example commenced here, showing how you can use more com-
plex features and advanced techniques to extend and enhance
what you have created.

I invite you to follow along with the practical experience of creat-
ing the example as described. However, the book’s Web site pro-
vides copies of the completed example file from each chapter, so
you can download and compare (or simply work directly with)
the example file I’ve provided, if you prefer.

Introduction to
Database Design

IN THIS PART
Chapter 5
Creating a Database

Chapter 6
The Interface: Layout Mode

Chapter 7
The Structure: The Manage
Database Dialog

Chapter 8
The Processes: FileMaker
Scripting

09_429006-pp02.indd 10909_429006-pp02.indd 109 3/25/09 7:15:21 PM3/25/09 7:15:21 PM

09_429006-pp02.indd 11009_429006-pp02.indd 110 3/25/09 7:15:22 PM3/25/09 7:15:22 PM

111

In Part I, I provide you with broad background information concerning
databases, their uses, and FileMaker Pro and its role. I introduce you to
many of the terms and concepts that I feature throughout this book.

Much of the information thus far has been theoretical rather than practical —
but that’s about to change, so roll up your sleeves. To jump-start you into
the hands-on creation of databases, in this chapter I walk you through the
creation of an example database that illustrates many basic techniques and
that is developed further in subsequent chapters to explore alternative
approaches and more advanced techniques.

Before Getting Started
You need to consider several things before you proceed with the example
that follows:

n The completed example file for this chapter is available from the
book’s companion Web site (see Appendix B) at www.wiley.
com/go/filemaker10bible so that you can follow along if
you like or download the completed example and review it if you
prefer. Either way, the files available on the Web site provide you
with a point of reference.

n Although the procedures described in this chapter are lengthy, you
can stop and exit FileMaker at any point and then open the files
again and resume later. If you’re new to FileMaker, you may want
to take a break or two along the way.

IN THIS CHAPTER
Creating an empty database

Working with data

Making sure you avoid
duplicating data

Keeping your files secure

Considering usability

Creating a Database

10_429006-ch05.indd 11110_429006-ch05.indd 111 3/25/09 7:16:30 PM3/25/09 7:16:30 PM

112

Introduction to Database DesignPart II

n The database techniques I describe here are equally applicable to many other kinds of
solutions. Although I walk you through a specific example, I assume that you’ll be able to
transfer what you learn here and apply it within the context of your own solutions.

n The example discussed here isn’t offered as a complete solution for any particular need or
as an exhaustive representation of techniques for managing inventory. Rather, it’s a vehi-
cle to introduce a variety of useful concepts, skills, and methods, and to get you thinking
about the ways FileMaker Pro enables you to solve a variety of problems you’ll encounter
in your own solutions.

As I indicate in Chapter 3, the Quick Start window that appears when you first launch FileMaker,
or when you choose File ➪ New Database, includes lists of Starter Solutions. These Starter
Solutions provide ready-made files for a range of common purposes. However, the real strength of
FileMaker Pro is that it gives you the ability to custom build a solution to meet your own needs. If
a ready-made, one-size-fits-all solution were all you needed, then you could probably have found a
suitable shareware solution for a few dollars, and you wouldn’t be reading this book.

Starter Solutions, then, are what you might use on occasions when you don’t want to create a new
database file (that is, when you’re happy to simply use or adapt a solution that somebody else has
created for you). Here, however, I lead you through the process of creating your own database
from scratch, working through several stages of development to arrive at a workable and useful
solution.

The example I’ve chosen for this exercise is the creation of a simple system to keep track of inven-
tory. Although this is only one of the many situations where databases are useful, it clearly illus-
trates many of the challenges you’ll encounter when building your own solutions. In fact, an
inventory system that tracks products and sales has a lot in common with many other kinds of
solutions, such as a school solution that tracks students and courses or a research laboratory data-
base that tracks samples and test results. Consequently, the techniques I cover in this chapter and
throughout this book are applicable to many of the challenges you’ll encounter when creating your
own solutions, even though the names of the things you’re tracking may be different.

Creating a New Database File
To get started, follow these steps:

 1. Launch FileMaker Pro 10 and wait until the Quick Start screen appears. If FileMaker is
already running (and the Quick Start screen isn’t on display), choose File ➪ New
Database to begin.

 2. In the Quick Start screen, confirm that the Create Database icon is selected at the left,
select the Create an Empty Database radio button (see Figure 5.1), and click OK.

10_429006-ch05.indd 11210_429006-ch05.indd 112 3/25/09 7:16:31 PM3/25/09 7:16:31 PM

113

Creating a Database 5

 3. You’re prompted to select a location to save the file and to supply a name. I suggest that
you name the file Inventory.fp7 and that you save the file to the Documents folder
on a Mac or the My Documents folder in Windows. The database is created, its window
appears, and the Manage Database for “Inventory” dialog (shown in Figure 5.2) appears.

TIPTIP
The example file developed according to the procedures set out in this chapter (avail-
able from the book’s companion Web page at the link you’ll find in Appendix B)

 is named Inventory_Ch05.fp7.

NOTENOTE
All the files you create should be given an .fp7 suffix because that’s the extension
used by your computer’s operating system to associate files with the FileMaker Pro

application.

 FIGURE 5.1

Creating an empty database from FileMaker’s Quick Start Screen.

When you create a new file in the manner just described in the preceding steps, FileMaker creates
a single default table with the same name as the first part of the filename — in this case
“Inventory.” It then opens the Manage Database dialog to the Fields tab with the default table
selected, ready for you to begin adding fields to this new empty database. (A database is not much
use without fields in which you can store your data.)

10_429006-ch05.indd 11310_429006-ch05.indd 113 3/25/09 7:16:31 PM3/25/09 7:16:31 PM

114

Introduction to Database DesignPart II

 FIGURE 5.2

The new file, showing the Manage Database for “Inventory” dialog, ready to begin.

Adding tables and fields
Your new file is ready and waiting for you to create some fields — and nothing could be easier. To
begin, follow these steps:

 1. Check that the cursor is in the Field Name box and type the name Serial# for the first
field.

 2. From the Type menu (at the right of the Field Name box), select Number and click the
Create button near the lower left of the dialog. A line appears at the top of the list of
fields, showing the field that you’ve just created.

TIPTIP
You can use the keyboard to choose the Type for a field: Ô+T or Ctrl+T for Text,
Ô+N or Ctrl+N for Number, and so on (as you can see when the Type menu is

open).

 3. Repeat Steps 1 and 2 to create four additional fields, setting each as Text in the Type
menu and naming these additional fields: ItemID, Name, Description, and
SupplierID.

10_429006-ch05.indd 11410_429006-ch05.indd 114 3/25/09 7:16:31 PM3/25/09 7:16:31 PM

115

Creating a Database 5

 4. Create two Number fields called Cost and SalePrice, respectively. The dialog should
now resemble the one shown in Figure 5.3. Above the list of fields, it shows the name of
the table (Inventory) and number of fields (7), and the list of fields displays the name
and type of each field in the order in which you entered them.

TIPTIP
I recommend that you leave spaces out of field names and, instead, start each new
word with a capital letter. This practice is sometimes known as camel case, because

of the shape of the word forms it produces, or as intercapping. Alternatively, if you prefer, you
can use underscore charactersrather than spaces.

Although FileMaker permits spaces in field names, some other technologies don’t (Web and
ODBC, for example). So one reason for omitting spaces is that you may need to pass data to
another application or environment at some point. Omitting spaces also makes field names
slightly shorter, which may be visually convenient in some situations (such as when viewing lists
of field names in narrow dialogs).

 FIGURE 5.3

Creating fields in the Fields tab of the Manage Database for “Inventory” dialog.

10_429006-ch05.indd 11510_429006-ch05.indd 115 3/25/09 7:16:32 PM3/25/09 7:16:32 PM

116

Introduction to Database DesignPart II

After you enter the first few fields, you’ve created the basis for a single table in your new file — a
place to store some data. However, to make this into a useful solution, you need additional tables
to store information about what happens to each of the items listed in the main table. Because this
is an inventory solution, its purpose is not simply to list the various kinds of items on hand, but to
allow you to record where they come from and when, what they cost, where they go to, and how
many of each you have.

Therefore, to provide the basic framework for tracking inventory items, you need to record arrivals
of items, departure of items, and their source and destination. At this stage, I propose that you add
five more tables to start this example file. To create the additional tables, follow these steps:

 1. Navigate to the Tables tab of the Manage Database for “Inventory” dialog by clicking the
leftmost tab along the top of the dialog. In the Tables tab, a single table named
Inventory appears in the list — this is the default table (named according to the name
of the file) that FileMaker creates with a new file. The Details column of the Tables list
shows that the Inventory table has seven fields (these are the seven fields you just created
on the Fields tab) and zero records.

 2. Check that the cursor is in the Table Name box (at the lower left of the Tables tab) and
type the name Orders for the second table.

 3. Click the Create button. Two lines are displayed in the list of tables — the original
Inventory table, plus the Orders table you’ve just created.

TIPTIP
If you make an error — for example, misspell a table name — simply select the
table in the list, edit the name in the Table Name box, and click the Change button.

 4. Repeat Steps 2 and 3 to add four more tables to the file, naming them OrderLines,
Invoices, InvoiceLines, and Contacts, respectively. The dialog now resembles
the one shown in Figure 5.4, with the annotation above the tables list reading “6 tables
defined in this file.”

Now that you have six tables, you’re ready to add some appropriate fields to each of them. To
accomplish this, you need to select each of the new tables in turn on the Manage Database dialog’s
Fields tab. Alternatively, from the Tables tab, you can select a table and view the corresponding
Fields tab by double-clicking its entry in the list of tables. When you’re on the Fields tab, you can
move between different tables by selecting them from the Table menu at the upper left of the
Fields tab.

Follow these steps:

 1. Select the Orders table on the Fields tab, using the same procedure you followed when
adding fields to the Inventory table (as described earlier in this section).

 2. Add a Number field called Serial#, a Text field called OrderID, a Date field called
OrderDate, a Text field called SupplierID, and a Number field called Shipping.

10_429006-ch05.indd 11610_429006-ch05.indd 116 3/25/09 7:16:32 PM3/25/09 7:16:32 PM

117

Creating a Database 5

 3. Move through the remaining four tables, creating fields with name and field type as
outlined in the following tables.

OrderLines Contacts
Serial# Number Serial# Number

OrdLineID Text ContactID Text

OrderID Text Title Text

Qty Number FirstName Text

ItemID Text LastName Text

Price Number Organization Text

AddressLine1 Text

Invoices AddressLine2 Text

Serial# Number City Text

InvoiceID Text State Text

InvoiceDate Date PostalCode Text

BuyerID Text ContactType Text

Shipping Number SupplierID Text

BuyerID Text

InvoiceLines SupplierID Text

Serial# Number BuyerID Text

InvLineID Text

InvoiceID Text

Qty Number

ItemID Text

Price Number

You’ve now created a basic set of data fields in each of your tables. These data fields will provide
places to enter information that will accumulate, providing you with a history of items. However,
there are still several additional steps to complete before your new file’s data structure will be truly
useful.

TIPTIP
If you want to take a break and continue at a later time, simply click OK to dismiss
the Manage Database dialog. Then you can close the Inventory file and quit

FileMaker Pro. When you reopen the file to continue, choose File ➪ Manage Database to take up
where you left off.

10_429006-ch05.indd 11710_429006-ch05.indd 117 3/25/09 7:16:32 PM3/25/09 7:16:32 PM

118

Introduction to Database DesignPart II

 FIGURE 5.4

Adding tables on the Tables tab of the Manage Database for “Inventory” dialog.

Working with the Field Options dialog:
Validation and Auto-Entry
Some of the information required in each record in the tables you’ve created is routine enough that
FileMaker can create it for you. The first field in each table is a serial number — a good candidate
for automatic data entry. To begin setting up some automation of this kind, use the Table menu
near the upper left of the Fields tab in the Manage Database dialog to return to the list of fields for
the Inventory table. Then follow these steps:

 1. In the Inventory table field list, select the first line — the one showing the Serial#
field — and then click the Options button. The Options for Field “Serial#” dialog
appears.

TIPTIP
You can also invoke the Options for Field dialog by double-clicking a field in the
list or by selecting the field and then using the Ô+O (Ctrl+O) keyboard shortcut.

 When the Options for Field dialog appears, it displays the first of four tabs, showing a
group of controls under the heading Auto-Enter (see Figure 5.5). The Auto-Enter options
available on this panel include the capability to generate data in various ways; however,
on this occasion, the option you require is an automatic serial number for each record.

10_429006-ch05.indd 11810_429006-ch05.indd 118 3/25/09 7:16:32 PM3/25/09 7:16:32 PM

119

Creating a Database 5

 FIGURE 5.5

The Auto-Enter tab of the Options for Field dialog.

 2. To set automatic serialization of the Serial# field, follow these steps:

n Select the Serial Number checkbox.

n Leave Generate set to the default On Creation.

n Make sure that Next Value and Increment By are both set to 1.

n Select the Prohibit Modification of Value during Data Entry checkbox.

 When configured, the dialog should resemble the one pictured in Figure 5.5.

 3. Click OK to accept the settings and dismiss the dialog. When the Options for Field dialog
is closed and you’re back in the Manage Database for “Inventory” dialog, the Options/
Comments column of the field list includes the details of the settings you’ve applied to
the Serial# field. If you completed this step correctly, beside the Serial# field it will
say Auto Enter Serial, Can’t Modify Auto. If it doesn’t say this, you’ve missed a step, and
you need to return to the Options for Field dialog to rectify it.

The next field in the Inventory table is named ItemID and has been defined as a text field. At
this point, you may be wondering why I’ve suggested that you create both a serial number field
and a separate ID field. This is because for some purposes a numeric serial is useful, while for other
purposes a text identifier is preferable. So as a matter of course, it’s good practice to create both at

10_429006-ch05.indd 11910_429006-ch05.indd 119 3/25/09 7:16:33 PM3/25/09 7:16:33 PM

120

Introduction to Database DesignPart II

the outset for each table. Doing so gives you choices and flexibility later on. Similarly, even in cases
where other record identifiers (such as Social Security numbers or license numbers) are available, a
separately issued and controlled primary key value is still a good idea because it makes your database
more resistant to problems arising from duplicate values, data entry errors, and other mishaps.

CROSS-REFCROSS-REF
For a more detailed discussion of the use of serial and text values as primary record
identifiers (keys), refer to the section on alternative relationship techniques in

Chapter 11.

To tie the values of the first two fields together, I recommend that the ID field be based on the
Serial number field. That way, you can be confident that the two will never fall out of step — and
knowing one, you’ll be able to infer the value of the other. Follow these steps:

 1. Select the ItemID field and click the Options button. The Options for Field “ItemID”
dialog appears.

 2. Select the Calculated Value checkbox in the Auto-Enter panel. Another dialog appears,
prompting you to specify what the calculated value should be. Shortly, I discuss the use
of this dialog in more detail. For now, just place the cursor in the main text area in the
lower part of the dialog and enter the following formula:

SerialIncrement(“ITM00000”; Serial#)

 With the formula in place, the Specify Calculation dialog should look like the one shown
in Figure 5.6.

CROSS-REFCROSS-REF
For in-depth explorations of the creation and use of calculations, such as the one
shown here, refer to Chapters 7 and 12.

NOTENOTE
What this particular calculation does is create IDs consisting of “ITM” followed by
the serial number, with the numeric portion of the ID padded, if necessary, by lead-

ing zeroes to guarantee ItemIDs of at least eight characters in length.

 3. Click OK to accept the formula and dismiss the Specify Calculation dialog. You’re now
back at the Options for Field “ItemID” dialog.

 4. Enable the Prohibit Modification of Value during Data Entry checkbox and click OK to
apply the selected options. In the list of fields showing in the Manage Database dialog,
you should now see, in the Options/Comments area adjacent to the ItemID field, Auto
Enter Calculation, Can’t Modify Auto. If you don’t see this, retrace your steps to ensure
that you’ve completed the procedure as outlined.

TIPTIP
If you haven’t entered the formula exactly as it is shown in Step 2 of this list, or if
your field names don’t match the ones I’ve indicated, an error dialog will prevent

you from closing the Specify Calculation dialog. If that occurs, check the formula and make sure
that the field names used match the names of the fields as you entered them in the Manage
Database dialog.

10_429006-ch05.indd 12010_429006-ch05.indd 120 3/25/09 7:16:33 PM3/25/09 7:16:33 PM

121

Creating a Database 5

 FIGURE 5.6

Specifying the Auto-Entry calculation formula for the ItemID field in the Inventory
table.

When you successfully complete the preceding set of steps, repeat the process for the first two
fields of each table you’ve created. In each case, however, vary the prefix appearing at the start of
the formula for the ID field to provide an appropriate mnemonic for the table in question. I suggest
using the following formulas:

Field Formula

OrderID SerialIncrement(“ORD00000”; Serial#)

OrdLineID SerialIncrement(“OLN0000000”; Serial#)

InvoiceID SerialIncrement(“INV00000”; Serial#)

InvLineID SerialIncrement(“ILN0000000”; Serial#)

ContactID SerialIncrement(“CT00000”; Serial#)

10_429006-ch05.indd 12110_429006-ch05.indd 121 3/25/09 7:16:33 PM3/25/09 7:16:33 PM

122

Introduction to Database DesignPart II

NOTENOTE
Although some of the tables include more than one ID field, only the first ID field
in each table — the primary key for the table — should be configured as outlined

here.

Now that you’ve set up the serial and ID fields, the next step is to add validation rules. For
example, it makes no sense to add an inventory item without providing a name for it, so it would
be appropriate to make the Inventory::Name field a required value.

NOTENOTE
The standard convention for referring to a field in FileMaker is to provide the table
name, followed by a pair of colons, and then the field name. The table name used

for this purpose is the name given to the relevant table reference (usually called a Table
Occurrence or TO) in FileMaker’s Relationships Graph. In a new file, however, the Table
Occurrence names default to the same names as the corresponding table (as in case of the
Inventory TO).

To set up suitable validation for the Inventory table’s Name field, follow these steps:

 1. Select the Inventory table on the Fields tab of the Manage Database dialog (for
example, by selecting Inventory from the Table menu at the upper left of the dialog) and
then double-click the Name field. The Options for Field “Name” dialog appears. You
want to guarantee that the user enters a name for every item carried in inventory.

 2. In the Options for Field “Name” dialog, select the Validation tab and select the Not
Empty checkbox.

 3. Select the Display Custom Message If Validation Fails checkbox and enter the following
message into the text area below it:

You are required to enter a name for this item!

 The dialog should match the one shown in Figure 5.7.

 4. When you’re satisfied that the configuration is complete, click OK to accept the settings
and dismiss the Options for Field dialog. In the Manage Database dialog, you should now
see that the Options/Comments column adjacent to the Name field displays the legend
Required Value, Allow Override, Message. If you don’t see this, retrace your steps to
ensure that you haven’t omitted anything.

 5. Navigate to the field list for the Contacts table, select the ContactType field, and
click the Options button. The Options for Field dialog appears.

 6. Click the Validation tab (if it is not already selected) and select the Member of Value List
checkbox.

 7. Select the Manage Value Lists option from the Member of Value List menu.

 8. In the Manage Value Lists for “Inventory” dialog, click the New button. The Edit Value
List dialog appears.

 9. Enter ContactType in the Value List Name box at the top of the dialog.

 10. Enter the words Supplier and Buyer on separate lines within the custom values area
at the lower left of the dialog. Figure 5.8 shows how the Edit Value List dialog should
now look.

10_429006-ch05.indd 12210_429006-ch05.indd 122 3/25/09 7:16:34 PM3/25/09 7:16:34 PM

123

Creating a Database 5

 FIGURE 5.7

Specifying validation rules for the Name field in the Inventory table.

TIPTIP
It is preferable to avoid adding Return/Enter characters after the final entry in
your list of values, as trailing returns are hard to see and if you have more than one

trailing return, FileMaker will include an extra, empty value in the resulting list.

 11. Click OK to accept the settings and dismiss the dialog.

 12. Click OK in the Manage Value Lists dialog to accept and dismiss it.

 13. Click OK in the Options for Field “Contact Type” dialog to return to the Manage
Database dialog.

 14. In the field list adjacent to the ContactType field, the text By Value List, Allow
Override should now be showing.

You’ve now established some initial Auto-Entry and validation configurations for the new database.
However, some additional settings will depend on creating relationships between the tables, so
they can’t be added yet. I provide you with instructions for the remaining Auto-Entry options after
describing some basic calculation and relationship configurations.

10_429006-ch05.indd 12310_429006-ch05.indd 123 3/25/09 7:16:34 PM3/25/09 7:16:34 PM

124

Introduction to Database DesignPart II

 FIGURE 5.8

Creating a value list for validation of the ContactType field.

Setting up simple calculations
In addition to automatically entering data into some of the fields, you’ll want some data to be cal-
culated from the information you enter. To create such a calculation, follow these steps:

 1. Select the OrderLines table from the Table menu at the top left of the Manage Database
dialog’s Fields tab.

 2. In the Field Name box, enter cLineTotal.

 3. From the Type menu select Calculation (Ô+L or Ctrl+L).

 4. Click the Create button. The Specify Calculation dialog appears.

TIPTIP
I prepended a lowercase c to the field name so as to be reminded at all times that
the field is a calculation field type (that is, it can only acquire information via inter-

nal calculation, not by data entry, import, or any other means). Although prepending the lower-
case c is not essential, conventions of this sort can prove helpful as your databases become more
complex. (In programming terminology, this convention is known as Hungarian notation — the
use of leading characters in an identifier name to convey data type information.)

10_429006-ch05.indd 12410_429006-ch05.indd 124 3/25/09 7:16:34 PM3/25/09 7:16:34 PM

125

Creating a Database 5

CROSS-REFCROSS-REF
Field naming conventions and other development standards are discussed in
greater depth in Chapter 11.

 In the Specify Calculation dialog, you see a list of fields at the upper left, a list of
functions at the upper right, and, between them, buttons showing mathematical symbols
and operators (add, multiply, divide, and so on).

 5. Double-click the Qty field in the fields list. It appears in the calculation formula box in
the lower part of the dialog.

 6. Click the multiplication symbol button (*).

 7. Double-click the Price field in the fields list. You should see a complete formula in the
calculation area, as follows (see Figure 5.9):

Qty * Price

 8. When you confirm that the formula is correct, click OK to accept and dismiss the Specify
Calculation dialog. The Type and Options/Comments columns adjacent to the new
cLineTotal field should now show:

Calculation = Qty * Price

 FIGURE 5.9

Specifying a calculation formula for the cLineTotal field in the OrderLines table.

10_429006-ch05.indd 12510_429006-ch05.indd 125 3/25/09 7:16:35 PM3/25/09 7:16:35 PM

126

Introduction to Database DesignPart II

NOTENOTE
The calculation you just created is an instruction to multiply the quantity by the
price. In other words, the number found in the quantity field will be multiplied by

the number found in the price field on each record to return a total for that record. Although
you selected the field names from a list, you could have typed them in if you knew what they
were.

Although this is a very straightforward computation performing a very simple math operation,
the calculation capabilities of FileMaker are extensive, as you discover in later chapters. Many
forms of manipulation and formatting of numbers, text, dates, times, and other data types are
possible.

 9. Now repeat Steps 2 through 8 to create a cLineTotal field along similar lines (same
field name and same formula) in the InvoiceLines table.

TIPTIP
If you’re using FileMaker Pro 10 Advanced, you don’t have to repeat the procedure
to create a line total calculation in the InvoiceLines table. Instead, you can copy

and paste the field from the OrderLines table. Copying and pasting of fields in the Manage
Database dialog is not available in FileMaker Pro 10, although nothing is stopping you from
copying the formula from the calculation dialog for a field in one table and pasting it into the
calculation dialog for a field in a different table.

 10. Using a variation on the technique described in steps 3 through 8, go to the Contacts
field list, select the SupplierID field, and call up the Options dialog.

 11. On the Auto-Entry tab, select the Calculated Value checkbox. The Specify Calculation
dialog appears.

 12. Enter the following formula and click OK:

 If(PatternCount(ContactType; “Supplier”); ContactID)

 13. Uncheck the Do Not Replace Existing Value of Field (If Any) checkbox and click OK.
This ensures that the Supplier ID value will only exist if the contact is listed as a supplier.

NOTENOTE
In FileMaker Pro’s calculation syntax, a conditional expression is of the form If
(condition; then-clause; else-clause) where the then clause is exe-

cuted when the condition is true and the optional else clause is executed when
the condition is false. Therefore, in the foregoing example, if the character
string “Supplier” is present in the ContactType field, the ContactID is placed
in the SupplierID field; otherwise, the field’s value is left empty.

 14. Repeat Steps 10 through 13 for the BuyerID field, this time entering the formula

If(PatternCount(ContactType; “Buyer”); ContactID)

 With both of these formulae in place, a contact can be either a supplier or a buyer,
depending on the value entered into the ContactType field.

 15. Create a calculation field called cFullName in the Contacts table with the formula

FirstName & “ “ & LastName

 16. Set the calculation result type for the cFullName field to Text by using the Calculation
Result Is menu near the lower left of the Specify Calculation dialog and click OK. This
calculation brings together the text elements of the name on each record, for convenient
display in lists and reports.

10_429006-ch05.indd 12610_429006-ch05.indd 126 3/25/09 7:16:35 PM3/25/09 7:16:35 PM

127

Creating a Database 5

Capturing simple metadata
As part of the process of tracking what’s happening with your data, it’s often helpful to have some
additional fields that store reference information. This information can assist you in troubleshoot-
ing a problem, if you need to compare two versions of a database file, or if you need to synchronize
two copies of your data.

To facilitate such tracking, follow these steps:

 1. Return to the field list for the Inventory table (on the Fields tab of the Manage
Database dialog) and create a new text field called _GenAccount. This field will be used
to track the account associated with the genesis (or generation, if you prefer) of each
record. Note that I am suggesting an underscore prefix for your metadata fields to ensure
that they’re easily separated visually from other fields in your tables.

 2. Double-click the _GenAccount field. The Options dialog appears.

 3. Select the Creation checkbox, located near the top left of the Auto-Enter tab.

 4. Using the menu to the right of the Creation checkbox, choose the Account Name option.

 5. Select the Prohibit Modification of Value during Data Entry checkbox, located at the
lower left of the dialog. The dialog settings should match those shown in Figure 5.10.

 FIGURE 5.10

Configuring a field to automatically capture the creation login account for each record.

10_429006-ch05.indd 12710_429006-ch05.indd 127 3/25/09 7:16:36 PM3/25/09 7:16:36 PM

128

Introduction to Database DesignPart II

 6. Click OK to accept the settings and confirm that the Options/Comments field adjacent to
the _GenAccount field says Creation Account Name, Can’t Modify Auto.

 7. Create two more fields — a text field named _GenStation to capture the name associ-
ated with the workstation where each record is created and a timestamp field named _
GenStamp to capture the date and time of record creation. Configure options for these
two additional fields similarly to the _GenAccount field; however, when selecting from
the Creation menu, choose the Name and TimeStamp options, respectively.

NOTENOTE
A timestamp is a value generated by FileMaker, combining both date and time in a
single value. It is a compact and efficient way to track sequences of events spanning

days or even years.

 8. Now that you’ve defined your three _Gen fields in the Inventory table, proceed along
similar lines to create three fields capturing the modification account name, workstation,
and timestamp. I suggest you name these fields _ModAccount, _ModName, and _
ModStamp, respectively. When setting the options for each _Mod field, select the
Modification checkbox and choose the associated value from the adjacent menu. When
you’ve completed this process, the field list for the Inventory table should match the
one shown in Figure 5.11.

 9. Repeat the process outlined in Steps 1 through 8 to add a basic complement of metadata
fields to each of the tables in your new database.

 FIGURE 5.11

The Inventory table field list, including six metadata fields.

10_429006-ch05.indd 12810_429006-ch05.indd 128 3/25/09 7:16:36 PM3/25/09 7:16:36 PM

129

Creating a Database 5

Creating relationships between tables
Although you’ve added six tables and defined a number of fields in each table, they aren’t yet con-
nected in any way. In practice, you’ll employ a simple mechanism to associate each record with its
related records in other tables. That’s where relationships come in — links created in a visual
environment referred to as the Relationships Graph.

To access the Relationships Graph for your Inventory file, click the Manage Database dialog’s
Relationships tab. You’re presented with a series of boxes — one for each table — containing lists
of the fields you have defined. These boxes are referred to as Table Occurrences (TOs). The default
TO for each table has a header area containing, initially, the name of the table to which it refers.
(The default TO names can subsequently be changed if desired.) You can drag the TOs around by
their header bars to position them more conveniently.

In order to create relationships between tables, you point the mouse at a field in one TO, click and
drag to a corresponding field in another TO, and then release. A line representing the relationship
is created.

One of the relationships you’ll need is an association between order lines and their corresponding
order. To create this relationship, locate the TOs for OrderLines and Orders (if necessary,
reposition them so that they’re adjacent to each other) and then drag a line between the OrderID
field in each, as shown at Figure 5.12.

 FIGURE 5.12

Using the mouse to “drag” a relationship between the Orders and OrderLines TOs.

10_429006-ch05.indd 12910_429006-ch05.indd 129 3/25/09 7:16:36 PM3/25/09 7:16:36 PM

130

Introduction to Database DesignPart II

By default, when you create a relationship in this manner, FileMaker sets up the simplest kind of
relationship — one where records will be related if the value in the two fields used for the join is
the same in both tables. This kind of relationship is called an equi-join and is represented by the =
sign that appears on the box that bisects the line between the two tables.

CROSS-REFCROSS-REF
You can find a detailed discussion of different kinds of relationships and their uses
in Chapter 11.

The default equi-join relationship is suitable for the join between Orders and OrderLines;
however, an additional setting is required. Double-click the box containing the equal sign to bring
up the Edit Relationship dialog. As you can see in Figure 5.13, the two tables that the relationship
joins are listed on either side of the dialog, with corresponding settings and options listed below.
On the side of the dialog where the OrderLines table appears, select the Allow Creation of
Records in This Table via This Relationship checkbox.

Similarly, you’ll require a relationship between the Invoices and InvoiceLines TOs, so drag
a line between the InvoiceID fields in those two TOs and edit the relationship, selecting the
checkbox option allowing creation of records in the InvoiceLines table via the relationship.

So far, I’ve only been working with the default TOs for the six tables in the file. At this point, I
need to ensure that the graph reflects the fact that Contacts can be suppliers or buyers — and a
way to do this is to represent the Contacts table multiple times on the Relationships Graph.
Similarly, I need to monitor orders and invoices to track items purchased and sold. To implement
this, proceed as follows:

 1. Select the Contacts table’s TO and click twice on the third button from the left below
the Graph window. (The button bears a double-plus symbol in green.) Two duplicates of
the Contacts TO, called Contacts 2 and Contacts 3, respectively, are created.

 2. Double-click the Contacts TO. The Specify Table dialog appears.

 3. In the Name field, change the name to Suppliers and then click OK.

 4. Repeat Step 2, changing the Contacts 2 TO to ItemSupplier and then changing the
Contacts 3 TO to Buyers.

 5. Drag a line from the SupplierID field in the Orders TO to the SupplierID in the
Suppliers TO. Similarly, drag a line from the BuyerID field in the Invoices TO to the
BuyerID field in the Buyers TO.

NOTENOTE
If the fields you’re dragging relationship lines between aren’t visible in the TOs,
you can either scroll the field view in the TO by clicking the arrow at the bottom

center of the TO or enlarge the TO by dragging its bottom border downward until the desired
fields are visible.

 6. Drag a line from the SupplierID field in the Inventory table to the SupplierID
field in the ItemSupplier TO.

 7. To Select the OrderLines and InvoiceLines TOs and click the double-plus button
to duplicate them.

10_429006-ch05.indd 13010_429006-ch05.indd 130 3/25/09 7:16:37 PM3/25/09 7:16:37 PM

131

Creating a Database 5

 FIGURE 5.13

Configuring the relationship to allow creation of related records in the OrderLines table.

 8. Repeat Steps 2 and 3, renaming the OrderLines TO duplicate (OrderLines 2) to
ItemsPurchased and the InvoiceLines TO (InvoiceLines 2) duplicate to
ItemsSold.

 9. Draw lines from the Inventory TO’s ItemID field to the ItemID field in the
ItemsPurchased TO, and from the Inventory TO’s ItemID field to the ItemID
field in the ItemsSold TO (see Figure 5-14).

TIPTIP
When you have created multiple TOs assigned to the same base table, as in Steps 1
and 7 of the preceding instructions, it can be helpful to assign a color to each base

table and color each TO according to the base table it points to. You can assign a color to a TO
by selecting it and choosing a color from the color palette that appears among the tools along
the bottom of the Relationships tab of the Manage Database dialog.

After completing these steps, I enlarged the Manage Database dialog and arranged and colored the
TOs so that it’s easy to see at a glance what’s going on. The result is shown in Figure 5.14. As you
can see, three separate groups of related tables are now supporting distinct functions (inventory,
ordering, and invoicing).

10_429006-ch05.indd 13110_429006-ch05.indd 131 3/25/09 7:16:37 PM3/25/09 7:16:37 PM

132

Introduction to Database DesignPart II

 FIGURE 5.14

Arrangement of the Relationships Graph into three distinct Table Occurrence groups.

Adding aggregating calcs
When your file has a suitable relationship structure, some additional calculation capabilities
become available, enabling you to draw on data from related tables.

To begin setting up aggregating calculations, navigate to the Inventory table on the Manage
Database dialog’s Fields tab and create a calculation field called cStockLevel, entering the
formula

0 + Sum(ItemsPurchased::Qty) - Sum(ItemsSold::Qty)

Make sure that the Calculation Result Is menu, at the lower left of the Calculation dialog, is set to
Number and that the Do Not Evaluate If All Referenced Fields Are Empty checkbox is deselected
and then click OK to accept the calculation settings. With this calculation in place, FileMaker sub-
tracts the total number of sales of a given item from the total number of orders for the item to
automatically determine how many of each item remain. The Specify Calculation dialog for this
procedure is shown in Figure 5.15.

NOTENOTE
The leading zero in the calculation provided in the preceding formula may appear
redundant, but its inclusion ensures that FileMaker is able to return a value even if

no records are in either the ItemsPurchased or ItemsSold tables.

10_429006-ch05.indd 13210_429006-ch05.indd 132 3/25/09 7:16:37 PM3/25/09 7:16:37 PM

133

Creating a Database 5

 FIGURE 5.15

A calculation using relationships to determine aggregate stock levels.

Next, navigate to the Orders table on the Fields tab of the Manage Database dialog and add a
calculation field called cOrderTotal, entering the formula:

Sum(OrderLines::cLineTotal) + Shipping

Again, confirm that the calculation result menu is set to Number and then click OK to confirm the
settings and dismiss the dialog.

Similarly, navigate to the fields list of the Invoices table and add a calculation field called
cInvoiceTotal with the formula

Sum(InvoiceLines::cLineTotal) + Shipping

Check that the result is Number and click OK to accept the dialog.

10_429006-ch05.indd 13310_429006-ch05.indd 133 3/25/09 7:16:37 PM3/25/09 7:16:37 PM

134

Introduction to Database DesignPart II

Next, you instruct FileMaker to retrieve pricing information for the OrderLines table from the
Inventory table as follows:

 1. Choose the fields list for the OrderLines table.

 2. Double-click the Price field. The Options dialog appears.

 3. Select the Auto-Enter tab and select the Looked-Up Value checkbox near the bottom of
the dialog. The Lookup for Field “Price” dialog appears.

 4. From the Starting with Table menu, choose the ItemsPurchased TO.

 5. From the Lookup from Related Table menu, choose Inventory.

 6. Select the Cost field from the list at the lower left.

The completed settings for this dialog are shown in Figure 5.16. When the settings are in place,
click OK to accept the Lookup dialog and click OK again to confirm the settings for the
OrderLines::Price field.

 FIGURE 5.16

Configuring a lookup to retrieve the cost price of items from the Inventory table.

10_429006-ch05.indd 13410_429006-ch05.indd 134 3/25/09 7:16:38 PM3/25/09 7:16:38 PM

135

Creating a Database 5

Choose the field list for the InvoiceLines table and repeat Steps 2 through 6 for the
InvoiceLines::Price field, configuring the lookup to start from the ItemsSold TO. From
the list of fields to copy, select the SalePrice field.

NOTENOTE
With these lookups in place, when you select an item for an order or invoice,
FileMaker automatically enters the price for you, saving time and increasing the

accuracy of your work.

At this point, the initial structure of an inventory system is in place, so click OK to save your work
and exit to the new file. When you do, FileMaker creates an initial default layout for each of the
tables you created in the file, plus a record in the first (Inventory) table. On first leaving the
Manage Database dialog (if you followed my instructions regarding field validations), because the
Inventory table has been set to require a name for each item, you’ll be prompted to enter an
item name before leaving the first record. Enter the name of an item (for example, CD-ROMs) so
that you can exit the record and take a look around the file.

NOTENOTE
If you took a break and closed the Manage Database dialog before setting up field
validations in the Inventory table, you won’t see a prompt when you close the

dialog at this point.

TIPTIP
Instead of entering an item name to satisfy the validation requirement, you can
alternatively choose Records ➪ Revert Record to reverse the creation of the

Inventory table record, or you can click the No button on the validation message dialog to
override the validation.

Viewing and Interacting with Data
When you first exit the Manage Database dialog, the layouts created by default are very basic —
they simply present a list of the fields created, table by table, arranged one above the next in the
order in which they occur in the table’s list of fields. There is no logical grouping of similar ele-
ments (for example, the parts of an address); the layout is unadorned white on white, and the only
visual cues are field names positioned to the left of the fields. Nevertheless, you have a sufficient
basis to begin entering some initial data and testing the auto-enter fields, validation criteria, and
the defined calculations.

Before proceeding, you might find it helpful to take a quick tour of the layouts in the file (selecting
each in turn from the Layout menu at the lower left of the Status Toolbar). Note that as you navi-
gate among the layouts, the Status Toolbar indicates that there are presently no records in any of
the tables but the first (Inventory).

Looking at the multiple uses of layouts
It’s worth pausing again to note that FileMaker layouts are a multipurpose tool. They provide
screens for viewing, entering, and editing the data within records, but they also provide options for

10_429006-ch05.indd 13510_429006-ch05.indd 135 3/25/09 7:16:38 PM3/25/09 7:16:38 PM

136

Introduction to Database DesignPart II

List or Table Views and can be configured to provide printed output. Moreover, layouts serve
equally well as the query interface when you employ FileMaker’s Find mode.

While doing initial tests and familiarizing yourself with the default layouts in the Inventory file,
you might find it helpful to consider ways in which the information could be arranged to increase
clarity and usability. It won’t be long before you begin the process of organizing the information
and building the interface for this file.

CROSS-REFCROSS-REF
You can find additional details regarding the development of the solution interface
in Chapter 6.

Creating records and entering data
In order to test the basic structure that the Inventory file has in place, the first step is to enter some
data and observe how the file responds. To complete your preparations for testing, proceed as
follows:

 1. Navigate to the layout based on the Contacts table (for the moment, it will be called
Suppliers — or, if you did not follow earlier directions exactly, it may be called
Buyers, or ItemSupplier based on the TO of the same name).

 2. Before creating any records, go to the overhead menus and choose View ➪ Layout Mode
and then choose Layouts ➪ Layout Setup. The Layout Setup dialog appears, providing
access to the layout settings.

 3. Change the Layout Name to Contacts, shown in Figure 5.17, and click OK to save the
change.

TIPTIP
If you exited the Manage Database dialog early in the process of creating tables and
TOs (and resumed later to get to this point), a default layout may not have been cre-

ated based on the Contacts table. In that case, you should now go to Layout Mode and choose
Layouts ➪ New Layout/Report, select Contacts from the Show Records From pull-down menu,
enter “Contacts” into the Layout Name field, choose Standard Form as the layout type, and pro-
ceed through the layout wizard screens to create a default themed layout with all the fields from
the Contacts table on it.

While you are still in Layout mode, double-click the ContactType field. The Field/Control Setup
dialog for the ContactType field appears. At the upper left of the dialog, choose Checkbox Set
from the Display As menu. Choose ContactType in the Display Values From menu, as shown in
Figure 5.18. With the field configured in this way, the user will be presented with a prompt to
enter data by selecting from among the values in the value list you defined when setting up the
ContactType field’s validation rule.

After configuring the control style settings for the ContactType field as indicated, click OK to
accept the change and exit the dialog. Then choose View ➪ Browse mode to see the effects of the
changes you’ve made.

10_429006-ch05.indd 13610_429006-ch05.indd 136 3/25/09 7:16:38 PM3/25/09 7:16:38 PM

137

Creating a Database 5

 FIGURE 5.17

Editing the layout name in the Layout Setup dialog.

 FIGURE 5.18

Attaching the ContactType value list to the corresponding field via the Field/Control Setup dialog.

10_429006-ch05.indd 13710_429006-ch05.indd 137 3/25/09 7:16:39 PM3/25/09 7:16:39 PM

138

Introduction to Database DesignPart II

NOTENOTE
When changing mode or navigating to a different layout after making changes to a
layout in Layout mode, you may be presented with a dialog prompt to save changes

to the layout. If you’ve selected the option in the Layout tab of FileMaker Preferences dialog to
Save Layout Changes Automatically (Do Not Ask), as described in Chapter 3, you won’t see the
save dialog.

When in Browse mode, choose Records ➪ New Record and, using the Tab key and/or the mouse to
move between fields, enter data into the empty fields. Note that you don’t need to use the
AddressLine2 field for most addresses, and that you can’t directly fill in the SupplierID and
BuyerID fields — they acquire a value based on the selection in the ContactType field.

For testing purposes, the data you enter can be purely fictional — so stretch your imagination and
add four or so records to the Contacts table, using the Contacts layout (by choosing the
Records ➪ New Record command to create each new record in turn and then typing information
into the fields). An example Contacts record that I entered as described here is shown in Figure
5.19. When entering your test records, add a mix of suppliers and buyers.

 FIGURE 5.19

Entering some initial test data into the Contacts layout.

10_429006-ch05.indd 13810_429006-ch05.indd 138 3/25/09 7:16:39 PM3/25/09 7:16:39 PM

139

Creating a Database 5

Now that you have some Data in the Contacts table, you need to be able to refer to it from
elsewhere in the solution. One available option is to create value lists of suppliers and buyers that
can be attached to fields on other layouts. To do so, follow these steps:

 1. Choose File ➪ Manage ➪ Value Lists to display the Manage Value Lists dialog.

 2. Click the New button at the lower left of the dialog. The Edit Value List dialog appears.

 3. Type Suppliers into the Value List Name box.

 4. Select the Use Values from Field radio button. The Specify Fields for Value List
“Suppliers” dialog appears, ready for you to configure it, as shown in Figure 5.20.

 5. In the Specify Fields for Value List dialog, choose Suppliers from the Use Values from
First field menu at the upper left. Then locate and select SupplierID in the list of fields
that appears in the box at the left of the dialog.

 6. Select the Also Display Values from Second Field checkbox and locate the Suppliers
cFullName field, as shown at Figure 5.20.

 FIGURE 5.20

Setting up a value list to display suppliers from the data in the Contacts table.

10_429006-ch05.indd 13910_429006-ch05.indd 139 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

140

Introduction to Database DesignPart II

 7. When these settings are complete, click OK to exit the Specify Fields for Value List dialog
and click OK again to exit the Edit Value Lists dialog.

 8. Click the Manage Value Lists dialog’s New button again and repeat Steps 3 through 7 to
create a Buyers value list, choosing the BuyerID field from the Buyers TO for the first
field and the cFullName field (also from the Buyers TO) as the second. When you’ve
created both value lists, click OK to dismiss the Manage Value Lists dialog, saving the
changes you made.

 9. Navigate to the Inventory layout, choose View ➪ Layout Mode, and double-click the
SupplierID field to invoke the Field/Control Setup dialog.

 10. From the Display As menu, select the Drop-Down List option and from the Display
Values From menu, select the Suppliers Value List.

 11. Click OK to dismiss the Field/Control Setup dialog, and choose View ➪ Browse Mode.

NOTENOTE
FileMaker provides field control options for lists, menus, checkboxes, and radio
buttons, giving you alternative methods for selecting field values from a value list. I

chose to display the values in a drop-down menu in this instance because a drop-down menu
offers maximum user flexibility, works well with lists of differing lengths, and allows you to type
a value or choose from the list of already existing values.

 12. Complete your initial Inventory record by entering values in the Description,
SupplierID, Cost, and Sale Price fields. Note that the sale price may include a
markup, in line with the practice of buying wholesale and selling at retail prices.

 13. After completing the first record, choose Records ➪ New Record to add several additional
Inventory records for testing purposes, completing each with data, either real or ficti-
tious — it doesn’t matter for the purposes of the test.

 14. Navigate to the Orders layout and create an order record; then go to the OrderLines
layout and create a corresponding record, entering the OrderID of the order you have
just created, the ItemID for your first inventory item, and a quantity of 20. After you’ve
completed these two records, return to the Orders layout to confirm that the cOrder-
Total field is correctly showing the combined price of the 20 items plus shipping.

 15. Return to the corresponding Inventory item record in the Inventory layout and
confirm that the cStockLevel value is showing 20, which reflects the stock purchase
for which you have just entered an order.

 16. As a final check, navigate to the Invoices and InvoiceLines layouts and create a
record in each, completing them with details for a sale of 5 of the same item for which
you have entered an order above.

After completing the InvoiceLines entry, check that the correct total (including shipping) is
showing in the Invoices::cInvoiceTotal field, and that the Inventory::cStockLevel
field for the first inventory item is now showing 15, reflecting the number of items remaining after
you have purchased 20 and sold 5.

10_429006-ch05.indd 14010_429006-ch05.indd 140 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

141

Creating a Database 5

During the preceding process, you copied values from layout to layout — not a very efficient way
to work — so some additional value lists and interface tools are needed. However, if the various
tests have worked, then you’ve confirmed that the basic structure is operable, and that’s enough at
this stage. If anything didn’t work as expected, look back over the process to see what you missed
or compare your file to the copy of the file (for this chapter), available from the book’s companion
Web page at www.wiley.com/go/filemaker10bible, to see what you’ve done differently.

Editing or deleting data
Now that you have some data accumulating in the Inventory solution, you need to be able to effi-
ciently navigate it and update where necessary, adding, editing, and deleting record and field data.
Moreover, you need to know that when you make a change in one part of the solution, it will be
reflected elsewhere.

CROSS-REFCROSS-REF
For an introduction to basic FileMaker navigation techniques, refer to Chapter 3.

Navigate to the test record you entered on the InvoiceLines layout, click in the Quantity field,
and change its value from 5 to 3. As you tab or click out of the field, watch to confirm that the
InvoiceLines::cLineTotal value updates to reflect the change. Similarly, click in the Shipping
field in the Invoices layout, select its value, and make a change — again checking that when you
leave the Shipping field, the Invoices::cInvoiceTotal updates to the appropriate new value.

Now that you’ve changed the number of items sold to 3, the stock level should be 17 rather than
15. Pay a visit to the Inventory layout to confirm that the cStockLevel field is accurately reflect-
ing this change. You might also try switching to the InvoiceLines layout and choosing
Records ➪ Delete Record (you’ll be prompted to confirm), and then verify that the stock level
appearing on the Inventory layout has returned to 20.

Finding and sorting data you’ve already entered
In Chapter 3, I describe the workings of the FileMaker Find mechanism. If you haven’t already
done so, now is a good time to experiment with performing finds on your test data set.

In the Inventory layout, choose View ➪ Find Mode and enter the first few letters of the name of one
of the inventory items in your test data into the Name field. Click the Find button on the Status
Toolbar and confirm that FileMaker has located the record matching the Find criteria you entered. If
more than one record in your test set included a word in the name field starting with the same char-
acters, confirm that it was also returned as part of the found set after you clicked the Find button.

Because you have a found set in place, try choosing Records ➪ Show Omitted Only and confirm
that the records you’re viewing are now the group of items that were not found. Choose Records ➪

Show Omitted Only again, and you’ll have swapped back to the original found set. Now choose
Records ➪ Show All Records to cancel the find and bring all the available records back together,
noting that as you do so, the text adjacent to the slider on the Status Toolbar updates to reflect the
state of the records you’re viewing.

10_429006-ch05.indd 14110_429006-ch05.indd 141 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

142

Introduction to Database DesignPart II

When you’re viewing multiple records, you may want to sort them so that they display in a
predictable order. Unless sorted, records will appear in the order of their creation.

To sort the current found set of records (or all records, if there is no found set at present), choose
Records ➪ Sort Records. The Sort Records dialog appears. Select a field in the list of fields at the
upper left and click the Move button to add it to the Sort Order list panel at the upper right. If you
want to sort by multiple fields, repeat the process to add other fields to the sort order list.

NOTENOTE
When sorting by multiple fields, FileMaker sorts the records in the current table by
the uppermost value in the sort order. Only if there are multiple records with the

same value in the field that is first in the sort order is the next field in the sort order used and
then only to determine the presentation order of the records that have the same value in the
prior sort field(s).

When sorting by multiple fields, you can alter their precedence in the sort order by dragging them
up or down in the list at the upper right. To drag an item, position the mouse pointer over the
handle icon appearing to the left of the field name in the sort order list and click and drag it to a
new position in the list.

By default, the sequence of values for each field in the sort order will be ascending — for example,
from 0 to 99 for numeric values or from A to Z for text values. If you want to modify the presentation
order for a particular field in the current sort, select it in the sort order list at the upper right and
use the controls in the lower half of the dialog to select an alternative sort method.

When you finish establishing the desired sort order, click the Sort button at the lower right of the
dialog to start sorting. When the sorting process is complete, the Status Toolbar will indicate that
the records are sorted.

TIPTIP
To return the records to their default (creation) order at any time, choose Records ➪
Sort Records or click the Sort icon in the Status Toolbar (the Sort Records dialog

appears) and then click the Unsort button at the lower left of the dialog.

Using special find symbols
Searching for a word or number value, as you’ve just done, is useful but somewhat limited.
However, FileMaker presents a range of Find options that extend the scope of searching in various
ways.

Choose View ➪ Find Mode and place the cursor in the Inventory::cStockLevel field. Now
locate the Operators button to access the Symbols menu in the Status Toolbar and click it to bring
up FileMaker’s menu of built-in Find operators. These symbols alter the way your Find criteria are
interpreted. Select the fourth item (less than) from the symbols list and note that a less-than char-
acter (<) is placed into the selected field. Now type the numeral 1 into the field after the < symbol.
You are requesting that FileMaker locate any inventory items where the stock levels are below 1 (in
other words, out of stock).

10_429006-ch05.indd 14210_429006-ch05.indd 142 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

143

Creating a Database 5

Click the Find button in the Status Toolbar and confirm that FileMaker locates all test inventory
item records for which you have not yet created orders or for which the number of invoices is
equal to or greater than the number of orders for the corresponding item.

Searching with the range and wild card operators
Among the special Find operators included in the Find mode’s Status Toolbar Operators menu are
four worth mentioning of here. The first of these is the Range operator, represented by an ellipsis
(...) character.

TIPTIP
If you prefer, you can simply type the special Find symbols from the keyboard. In
the case of the ellipsis, FileMaker will accept a string of either two or three periods

in its place.

Try entering the Find criterion 1…20 into the Inventory::cStockLevel field, and note that
when you perform the find (for example, by clicking the Perform Find button in the Status
Toolbar), FileMaker locates all records that are showing stock levels between 1 and 20, inclusive.

Similarly, FileMaker supports the use of wild card operators in Find mode. Wild cards are special
characters that you can use to represent an unknown or unspecified character. The three wild card
operators available in FileMaker’s Find mode are

@ One character (either alphabetic or numeric)

One digit

n Zero or more characters

As an example, if you enter the criterion Jo*n into a text field, FileMaker will locate records that
have words such as Joan, John, Jon, or Jordan in that field. If you supply the criterion as Jo@n,
FileMaker will locate records containing John and Joan, but not Jon or Jordan. I encourage you to
experiment with these and other special find operators to become comfortable and practiced with
their use.

Avoiding the Need for Data Duplication
If you use paper-based record-keeping systems, or even if you use a spreadsheet or word processor
to create and manage invoices, you’ll enter the customer details on every invoice — a duplication
of effort that is inherently error prone (as well as mind-numbingly tedious and time consuming).

By contrast, the structure of the inventory system under development allows you to store each
contact only once in the Contacts table and then reference that one record by its ID whenever an
item record or a transaction involves that contact. In its present state, however, the database does
not show you the related data — you have to take it on faith that when you enter the ID CT00001
on an item record, it creates a link to the corresponding contact record.

10_429006-ch05.indd 14310_429006-ch05.indd 143 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

144

Introduction to Database DesignPart II

Recognizing the visual cues to data relationships
A solution is much more useful if you can see the relationships working and if the data is pre-
sented to you in ways that make sense of the connections and data flow. One example of this use-
fulness is that after you select a contact ID for an item record in the Inventory layout, you can
see brief details of the relevant contact record.

To make the connection between Inventory and Contact visible, follow these steps:

 1. Navigate to the Inventory layout and enter Layout mode (click the Edit Layout button
at the lower right of the Status Toolbar or choose View ➪ Layout Mode).

 2. Click the SupplierID field to select it (it will acquire black selection boxes at each cor-
ner) and drag the lower right corner left, reducing the size of the box. It needs to be only
about an inch wide to accommodate the ID values it’s designed to hold.

 3. Click on the Field/Control tool in the Status Toolbar and drag a rectangle on the layout,
to the right of the SupplierID field. When you release the mouse button, FileMaker
draws a new field in the current position and displays the Specify Field dialog.

 4. Click the menu near the top of the Specify Field dialog to access a list of available TOs
from which to retrieve data for the field you’re adding to the layout.

 5. Select the ItemSupplier TO, as shown in Figure 5.21. With the ItemSupplier TO
chosen in the Specify Field dialog’s menu, the fields from the Contacts table appear in
the main body of the dialog (each preceded by two colons to indicate that they’re located
in a different table from the layout’s primary table).

 6. Click the cFullName field to select it, deselect the Create Label checkbox, and click OK
to accept the selection.

 7. Choose View ➪ Browse Mode to return to Browse mode.

You’ve now added the supplier name field from the related record, so selecting a SupplierID
value immediately displays the corresponding supplier’s name. It’s important to note that the field
you’ve added simply displays the data located in the corresponding record in the Contacts table. If
the Contacts record is edited, the change is automatically reflected on every other record referenc-
ing it. Instead of having to manage multiple copies of the same information, keeping them in sync
whenever there is a change, the database now manages that for you.

Information has a logical flow
What you’ve seen so far is that it’s possible to create clean demarcations between different types of
data, placing each in its own logical group, so that contacts are stored in an ordered way in the
Contacts table, items in the Inventory table, and so on. Yet you’re able to use the relationships to
bring the data together in endless combinations, wherever you need to.

10_429006-ch05.indd 14410_429006-ch05.indd 144 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

145

Creating a Database 5

 FIGURE 5.21

Selecting a field from a related table to add to the Inventory layout.

The capability to combine data from different tables without duplicating the data (that is, simply
using the relationships to enable you to see the data in its original record) has many advantages
and many implications. For example, if a related field is editable, any changes you make when
viewing the field from a related table will be stored in the table of origin and will, therefore, be
visible everywhere that field appears. If you correct a spelling error in a contact’s name, you won’t
have to find all the items, invoices, or orders referring to that contact and repeat the correction,
because the name is stored only once.

The underlying concept driving the approach employed here is one of keeping everything in its
proper place. The information about individuals belongs in the Contacts table. You refer to it
from other places, via relationships, but the information itself stays put in the part of the data
structure designed for it.

The key to understanding how you can make the necessary connections is that the relationships
you create provide the logic for all information flow in a solution. When setting up relationships,
you’re defining one or more logical connections between different kinds of “things.”

10_429006-ch05.indd 14510_429006-ch05.indd 145 3/25/09 7:16:40 PM3/25/09 7:16:40 PM

146

Introduction to Database DesignPart II

Anticipating the user
When setting up the Inventory file, you defined several Auto-Entry options for fields throughout
the structure. In doing so, you are enabling the solution to anticipate the required data in some of
the fields. In some cases, the Auto-Entry options are creating information that is not directly useful
to the work the user is undertaking — serial numbers, creation timestamp, and so on. However,
these items have an essential role in supporting the structure of the database and allowing you to
track basic details of the origins of the most recent changes to the data.

The Auto-Entry lookup options you set up for the OrderLines::Price and
InvoiceLine::Price fields don’t merely manage solution data; they anticipate the user by
looking up and entering the current wholesale or retail price for the item the user has selected. By
setting default values and calculated values wherever appropriate, your solution can anticipate
users, reducing effort and likelihood of error.

CROSS-REFCROSS-REF
For an in-depth discussion of lookups and when to use them, refer to the section
on the subject in Chapter 15.

Similarly, the data and relationship structure can anticipate the user by grouping information
about different kinds of entities and ensuring that each piece of information need be entered only
once. This means that you can edit a name or address in the Contacts table (or any of the lay-
outs that point to it) and be confident that all references to it are updated. Similarly, it means that
you can enter a single value such as SupplierID, and all the information on the related
Contact record becomes available to the current Item or Order record — no need to enter the
address or any other details. They’re already there!

To make the relevant contact details visible on the Inventory layout, follow these steps:

 1. Return to Layout mode on the Inventory layout.

 2. Select the cFullName field and type Ô+D or Ctrl+D to duplicate it. The Specify Field
list dialog appears.

 3. Using the pull-down menu at the top of the dialog, choose the ItemSupplier TO and
then select the Title field from the list.

 4. Repeat the process in Steps 1 through 3 to place copies of the
ItemSupplier::Organization, ItemSupplier::AddressLine1,
ItemSupplier::AddressLine2, ItemSupplier::City,
ItemSupplier::State, and ItemSupplier::PostalCode fields onto the layout.

 5. Arrange the fields into an orderly group, as shown in Figure 5.22.

 6. Click the Text tool (the one labeled with a capital A) in the Status Toolbar and then click
above the group of fields you’ve just added and type Preferred Item Supplier Details:.

 7. Click a blank area of the layout (or press the Enter key on the numeric keypad) to con-
clude text entry.

 8. Choose View ➪ Browse Mode to view the results of your work.

10_429006-ch05.indd 14610_429006-ch05.indd 146 3/25/09 7:16:41 PM3/25/09 7:16:41 PM

147

Creating a Database 5

TIPTIP
If the font face, size, style, or color of fields or text you add to a layout don’t match
other similar elements already there, a quick way to achieve consistency is to use

the FileMaker Pro Format Painter. To use the Format Painter, go to Layout mode, select an item
with the appearance you desire, click the format painter icon (the rightmost of the layout tools in
the Status Toolbar in Layout mode), and then click the object you wish to transfer the formats to.
To reinstate the Format Painter to apply the same format to multiple objects, press the Enter key
(on the numeric keypad) and then click another target object to format it.

With the preceding steps complete, you’re ready to perform some tests. First, try selecting
different values in the SupplierID field and confirm that the fields you added update to show
the corresponding details from the Contacts table. Now, try editing the AddressLine1 entry
for the supplier address, using the field appearing on the Inventory layout, and navigate to the
corresponding record on the Contacts layout to confirm that the change has been stored there.
Finally, edit the same address on the Contacts layout and return to the Items layout to confirm
that the latest change is visible there, as well.

 FIGURE 5.22

An organized group of ItemSupplier fields added to the Inventory layout.

10_429006-ch05.indd 14710_429006-ch05.indd 147 3/25/09 7:16:41 PM3/25/09 7:16:41 PM

148

Introduction to Database DesignPart II

Making complex things simple
If you’re new to working with databases, the structure I’ve proposed for the inventory example
may at first have seemed unduly complex. As you can now see, however, its purpose is to intro-
duce both order and simplicity, enabling many data management and organizational tasks to occur
automatically or with minimal effort.

A question to ask when considering a data structure — or indeed any aspect of solution design —
is “Will this ultimately make things simpler?” It’s clearly worth wrestling for a few hours to get a
seemingly complex structure in place if it saves you hundreds or even thousands of hours a year by
linking up data consistently, fluently, and automatically.

CROSS-REFCROSS-REF
For an in-depth discussion of data modeling as a key part of the design of your
solutions, refer to Chapter 11.

Getting Started with File Security
Before proceeding further with the development of a solution, it’s important to pay some attention
to file security. If your work is worth doing and/or your data is worth organizing, then both are
worth protecting. Just as you would be unwise to leave your house wide open when going on
vacation or leave your car with the keys in the ignition while attending the theater, you’d be
unwise to leave your solution or the data it contains unsecured.

Working with accounts and privilege sets
FileMaker enables you to define different levels or kinds of access that can then be assigned to one
or more user accounts. These are called privilege sets, and they group together a range of settings
that define what the user can and cannot do in your solution.

Additionally, FileMaker supports creation of multiple user accounts, each having an Account
Name and password and assigned to a privilege set. Both accounts and privilege sets are defined on
a file-by-file basis and apply to all elements, layouts, records, value lists, records fields, and so on
within the file.

By default, a FileMaker file is created with three privilege sets — [Full Access], [Data Entry Only],
and [Read-Only Access] — and one active account named Admin, which has no password and is
assigned to the [Full Access] privilege set. Take a moment now to put some more useful and
appropriate settings in place, as follows:

10_429006-ch05.indd 14810_429006-ch05.indd 148 3/25/09 7:16:41 PM3/25/09 7:16:41 PM

149

Creating a Database 5

 1. Choose File ➪ Manage ➪ Accounts & Privileges. The Manage Accounts & Privileges dialog
appears.

 2. In the Accounts tab of the dialog, double-click the line identified as Admin. The Edit
Account dialog appears.

 3. In the Password box, enter BibleExample. The password will appear as bullets as you
type, (to conceal it from others who may have a view of your monitor), as shown in
Figure 5.23.

 4. In the Description box, enter “Developer access account”.

 5. Click OK.

TIPTIP
FileMaker passwords are case-sensitive (though account names are not).

 FIGURE 5.23

Specifying a password for the default Admin account.

10_429006-ch05.indd 14910_429006-ch05.indd 149 3/25/09 7:16:41 PM3/25/09 7:16:41 PM

150

Introduction to Database DesignPart II

 6. Navigate to the Privilege Sets tab of the Manage Accounts & Privileges dialog.

 7. Click the New button. The Edit Privilege Set dialog appears.

 8. In the Privilege Set Name box, enter Regular User.

 9. Under the Data Access and Design heading, use the menus to choose the following set-
tings (see Figure 5.24):

n Records: Create, Edit, and Delete in All Tables

n Layouts: All View Only

n Value Lists: All Modifiable

n Scripts: All Executable Only

 FIGURE 5.24

Creating access settings and options for a new privilege set.

10_429006-ch05.indd 15010_429006-ch05.indd 150 3/25/09 7:16:42 PM3/25/09 7:16:42 PM

151

Creating a Database 5

 10. Under Other Privileges, select the Allow Printing checkbox and the Allow Exporting
checkbox.

 11. Click OK.

 12. Navigate to the Accounts tab of the Manage Accounts & Privileges dialog.

 13. Click New.

 14. In the Account Name box, enter User01; in the Password box, enter mypassword; and
from the Privilege Set menu select Regular User.

 15. Click OK to close the Edit Account dialog and then click OK again to save and close the
Manage Accounts & Privileges dialog.

NOTENOTE
Before closing the Manage Accounts & Privileges dialog, FileMaker will prompt you
to enter a full access account and password. This is to prevent a situation where you

have set a full access password inaccurately and could, therefore, permanently lock yourself out
of the file.

Setting a default account and password
After you complete the steps outlined in the preceding section, FileMaker prompts you to enter an
account name and password every time the file is opened. This provides a way to reserve file access
for those you determine should have it — and to protect the structure of the file from inadvertent or
inappropriate changes by users whose purpose in using the file is limited to data entry or access to
the data (who will, therefore, log in by using an account assigned to the Regular User privilege set).

In some cases, defining a default privilege set is helpful so that the file opens automatically with a
particular account (without prompting the user for account name and password). For example, to
set the User01 account as the default, choose File ➪ File Options. Then in the upper area of the
Open/Close tab of the File Options dialog, ensure that the Log In Using checkbox is selected and
enter the account and password into their corresponding boxes.

When you click OK to close the File Options dialog after specifying a default account and pass-
word, an alert will appear, as shown at Figure 5.25, confirming that the settings have been
accepted (providing you enter valid credentials). If the details you enter don’t match the account/
password combinations in the file, an error dialog will be displayed.

NOTENOTE
As the alert message indicates, after a default account/password has been set, you
can still open the file by using a different account by holding down a modifier key

as you’re opening the file. On the Mac, you use the Option key to perform this function; in
Windows, you use the Shift key.

10_429006-ch05.indd 15110_429006-ch05.indd 151 3/25/09 7:16:42 PM3/25/09 7:16:42 PM

152

Introduction to Database DesignPart II

 FIGURE 5.25

Specifying a password for the default Admin account.

TIPTIP
In most circumstances, except during development, when you choose to set a
default account and password for a file, you should select a restricted-access

account as the default. In the previous example, the account with Regular User privileges is
assigned as the default. If you choose an account with [Full Access] privileges as the default in a
deployed file, you’re effectively negating all security in the file. (Anyone can then open the file
and do anything to it.)

Thinking about Usability
After working through the example described in this chapter, you have a basic file containing data
and capable of performing some essential operations. It has passed a few basic tests along the way,
but in most respects it isn’t yet very useful.

ON the WEBON the WEB
A copy of the database, as constructed through this chapter, is available on this
book’s companion Web site. The copy of the file containing the work described in

this chapter is named Inventory_Ch05.fp7.

10_429006-ch05.indd 15210_429006-ch05.indd 152 3/25/09 7:16:42 PM3/25/09 7:16:42 PM

153

Creating a Database 5

In particular, the file lacks a suitable interface — everything is pretty much wherever it fell, and
the only visual or functional aids are those that are provided by default by FileMaker itself. Such a
minimal interface is restrictive and inconvenient. In Chapter 6, I examine some of the techniques
you can use to build a more suitable interface.

Meanwhile, it is important to begin thinking about how the solution should operate, look, and feel.
Most important, this will be determined by the ways you want to use the solution, the order and
frequency you’ll need to perform different tasks, and the range of processes you need the solution
to support.

Moving between records
In this example, you’re presently moving between records by using the controls in the Status
Toolbar or perhaps the corresponding keyboard or menu commands (as outlined in Chapter 3).
However, you can move around your data in many other ways — lists to select from, buttons to
automatically take you to particular records, and so on.

As a central part of designing the interaction model for a solution’s interface, you need to determine
how users will move around the solution and what kinds of support the interface should give them
to facilitate this navigation. When considering navigation, think about other computer applications
you’re familiar with, from music players to photo viewers — all of which provide ways of moving
around that may provide models upon which you can draw.

Managing context
When creating the Relationships Graph for the inventory example, you connected TOs into
groups. As shown in Figure 5.14, earlier in this chapter, the file presently has three separate
“islands” of interconnected graph objects. Sets of TOs of this kind are often termed Table
Occurrence Groups (TOGs) and operate as separate contextual “environments” — each TO within a
group is able to “see” data from the other TOs in its group, according to the rules you set up for
the relationships in the group.

When you’re using the solution, you navigate to layouts attached to a specific TO and, therefore,
present a view of data from the perspective of that TO. This is referred to as Layout context. The
data you see and interact with depends on the current layout context and on the relationships radi-
ating from the underlying TO.

Because context determines what you see and when, one interface design challenge is ensuring that
the users can understand context and know how to interpret what they see on different layouts.
You can apply layout headings, colors, and other design cues to make context clear as the user
navigates around the solution.

10_429006-ch05.indd 15310_429006-ch05.indd 153 3/25/09 7:16:43 PM3/25/09 7:16:43 PM

154

Introduction to Database DesignPart II

Moving between tables
When you navigate from one layout to another, you may be changing context or not, depending
on whether the layouts you’re moving between are displaying records from different TOs. If the
layouts are displaying records from the same TO, you may be accessing a different view of the
same data. Similarly, if the layouts are based on different TOs within the same TOG, you may be
accessing alternate views of the same data. Consistent visual themes or elements on layouts based
on TOs within a functional group can help the user make these connections when using the
solution.

In other situations, navigating to another layout may take you to a vantage point that’s under-
pinned by a TO in a different TOG. For example, moving from the Orders layout to the Inventory
layout in the example solution you’ve been building takes the user to a different TOG context.
Both you and other users who may use the solution must be able to determine the operative
perspective at all times.

Using and changing views
Instead of changing context or perspective, it’s occasionally preferable to view the same data in an
alternate presentation format. FileMaker provides options to view a given layout in Form, List, or
Table presentations. Frequently, however, it’s best to provide separate layouts optimized for a
specific view and provide the user with an efficient means to switch between them.

CROSS-REFCROSS-REF
Details of the commands and processes for selecting alternate views (form list or
table) of your layouts are discussed in Chapter 6.

Using buttons for static and dynamic actions
A key to making usable solutions is the addition of control elements that guide and support you.
To achieve this, you can add screen devices (that is, layout objects) that perform actions or com-
mands. These provide you with signposts, shortcuts, and other forms of assistance when using
your solution.

With all the preceding considerations in mind, Chapter 6 examines a number of key techniques for
developing the interface and beginning to build an appropriate user interaction model of your
solutions.

10_429006-ch05.indd 15410_429006-ch05.indd 154 3/25/09 7:16:43 PM3/25/09 7:16:43 PM

155

So far, I’ve discussed various aspects of Layout mode’s role, and you’ve
seen a few of its basic capabilities. However, my primary focus has
been elsewhere. In this chapter, you come to grips with the practicali-

ties, working through a hands-on tour of the tools and techniques for build-
ing interfaces.

In many respects, a solution is only as good as its interface. Users do not
understand information if it’s presented in opaque or confusing ways, they
don’t use features they don’t know about, and they avoid working with solu-
tions that are perplexing or tedious to use. By contrast, a thoughtfully designed
solution interface makes everything easier and leads the user through the
processes that the solution is designed to support. Fortunately, FileMaker Pro
provides excellent tools for creating interfaces of the latter kind.

FileMaker’s Layout mode exemplifies two of the central concepts of the
application — simplicity and common sense. You need to be able to build a
variety of screens and reports, so FileMaker gives you a flexible environment
and a broad set of tools for your work. Each of the elements and each of the
tools are straightforward, and when you understand how they can be pieced
together, the power of FileMaker’s Layout mode becomes clear.

Initial Layouts
As you can see in Chapter 5, when you create a new database file, FileMaker
adds default layouts for each of the tables in the file. The default layouts are
arranged in a simple form presentation with the fields appearing in a list
with their names shown as labels on the left. Both the fields themselves and
the labels beside them appear in a default font, with black text and no fill,
and the layout’s background is white with no other adornments.

IN THIS CHAPTER
Setting up Initial layouts

Appreciating visual structure

Working with layout objects

Leveraging the FileMaker
graphical environment

Interacting with layout objects

Using Tab Controls

Employing navigation options
and techniques

Exploring the magic of buttons

Inviting the world in via the
Web viewer

Generating reports and data
output

The Interface: Layout Mode

11_429006-ch06.indd 15511_429006-ch06.indd 155 3/25/09 7:18:16 PM3/25/09 7:18:16 PM

156

Introduction to Database DesignPart II

Although the initial layouts get you started and enable you to see the fields and (in due course)
data in the file, they don’t present or group information in meaningful ways, nor do they aid the
user in comprehension, navigation, or use of the solution. Before you begin to change and enhance
the layouts, however, I recommend a couple of adjustments to FileMaker’s preference settings:

 1. Choose FileMaker Pro ➪ Preferences on the Mac or Edit ➪ Preferences in Windows to dis-
play the Preferences dialog.

 2. Click the Layout tab.

 3. Ensure that the Add Newly Defined Fields to Current Layout checkbox is deselected and
the Save Layout Changes Automatically (Do Not Ask) checkbox is selected, as shown in
Figure 6.1.

 These recommended settings allow you to work more efficiently when building the inter-
face in a new file. The option to add fields to the current layout is useful in some situa-
tions, but when you’re designing custom layouts, a change of schema results in undesired
changes to the layout if this option is in force. Similarly, when starting a new file, it’s gen-
erally most convenient to have layout changes save automatically. When the layouts are
taking shape and are complex, however, the safety net of a save prompt or the option to
revert or reject layout changes can be pretty convenient.

 4. In the lower part of the Preferences dialog’s Layout panel, select the Standard System
Palette (256 Colors) radio button. This ensures that you have a diverse selection of stock
colors available in the Formatting bar text, line and fill color palettes, as well as the text
color submenu that appears when you choose Format ➪ Text Color in Browse mode or
Layout mode.

 FIGURE 6.1

Adjusting settings in the Layout tab of the FileMaker Preferences dialog.

11_429006-ch06.indd 15611_429006-ch06.indd 156 3/25/09 7:18:17 PM3/25/09 7:18:17 PM

157

The Interface: Layout Mode 6

 5. Select the Fonts tab.

 6. Choose the Roman input type and select a default font from the menu below the list of
input types. The dialog should match the settings shown in Figure 6.2.

 FIGURE 6.2

Choosing a default font for the input and display of Roman characters.

NOTENOTE I recommend Verdana as the default font — both because it’s installed by default on
both Mac and Windows operating systems and because it renders well at a number

of sizes both onscreen and in printed output.

 7. Click OK to save the settings and dismiss the Preferences dialog.

If you haven’t already done so, open the copy of the Inventory solution discussed in Chapter 5.

ON the WEBON the WEB You can download the Chapter 5 Inventory solution from this book’s companion
Web site to use as your starting point.

CROSS-REFCROSS-REF For additional details about setting preferences and file options in FileMaker, refer
to Chapter 3.

If you made a change to the font input preference, before proceeding you should go into Layout
mode and select all objects on each layout and change their font to the newly selected default font.
To accomplish this, follow these steps:

 1. Navigate to the Inventory layout, using the Layout menu at the left of the Status
Toolbar.

11_429006-ch06.indd 15711_429006-ch06.indd 157 3/25/09 7:18:17 PM3/25/09 7:18:17 PM

158

Introduction to Database DesignPart II

 2. Choose View ➪ Layout Mode (Ô+L or Ctrl+L) or click the Edit Layout button at the right
of the Status Toolbar.

 3. Choose Edit ➪ Select All.

 4. Choose Format ➪ Font ➪ Verdana (or whichever alternate font you chose as your default).

 5. Now click in an open area of the layout to deselect all the objects and then repeat Step 4.
The default font changes, and any new objects you add to the layout subsequently will be
in the selected font.

A map of Layout mode
Before you begin serious work in Layout mode, take a moment to acquaint yourself with its various
tools and features. When you choose View ➪ Layout Mode, FileMaker’s Status Toolbar and Layout
Bar populates with a number of controls and tools that, at first glance, may appear daunting. If you
have any experience with a drawing or presentation application, some of the tools may seem a little
familiar.

As you can see in Figures 6.3 and 6.4, you can access many of the operations you perform in
Layout mode via the tools, palettes, and controls located in the Status Toolbar. The Status Toolbar
tools work in three distinct ways.

Selection and then Action tools
Using a single click, you can select the tools at the upper right of the Status Toolbar, starting with
the Object Selection tool and ending with the Format Painter (excepting the Field tool and Part
tool) can be selected with a single click (The tool becomes shaded to indicate that it’s active). A
subsequent mouse click/drag action in the main layout area selects the enclosed objects (if you
chose the Object Selection tool) or creates an object of the corresponding type (all other tools). For
example, when you click the Web Viewer tool and then drag across a section of the layout, a Web
Viewer object is created in the area where you drag the mouse. Similarly, when you click the line
tool and drag between two points in the layout area, a line is created between those points. In all,
12 tools in this group operate in a similar manner.

TIPTIP By default, after each use of any of the 12 select/act tools, the Object Selection tool
becomes active. However, if you double-click another tool, the tool is locked as the

active tool until you choose a different tool. When a tool is locked, it appears in a darker shade.
You can change the behavior to leave tools selected in Layout Preferences (by selecting the
Always Lock Layout Tools checkbox; refer to Figure 6.1).

Drag-to-Layout tools
Within the group of layout tools at the upper right of the Status Toolbar are two tools labeled Field
and Part, respectively. When the mouse button is depressed with the cursor positioned over either
of these tools, it takes the shape of a hand, indicating that you may drag from the tool to the layout
area to add the corresponding element (field or part) to the current layout. When you release the
mouse button over the layout, a field or part will be added at the location of the mouse coordinates.

11_429006-ch06.indd 15811_429006-ch06.indd 158 3/25/09 7:18:17 PM3/25/09 7:18:17 PM

159

The Interface: Layout Mode 6

 FIGURE 6.3

The anatomy of Layout mode.

Mode icon

Text font menu

Current Layout No

Layout Navigation
 slider

Layout Navigation
 flip book

Status toolbar

Layout
toolbar

No of layouts

New
Layout button

Selection tool

Text
Alignment

buttons

Text Style
buttons

Text tool

Line tool

Rectangle tool

Rounded rectangle tool

Oval tool

Field/Control tool

Button tool

Tab Control tool Portal tool

Web Viewer tool

Field tool

Part tool

Format Palette

Mini menu
 mode

Footer boundary Line color menu

Body boundary line Line width menu

Text color menu

Header boundary line

Text size menu

Object pattern
menu

Manage
sub-menu

Object effects
menu

Header part

Header part tab

Body part

Body part tab

Footer tab

Footer part tab Line pattern menu

11_429006-ch06.indd 15911_429006-ch06.indd 159 3/25/09 7:18:17 PM3/25/09 7:18:17 PM

160

Introduction to Database DesignPart II

 FIGURE 6.4

The controls of the Layout bar.

Layouts Menu

Layout Table Occurence Name

Alignment palette button

Save Layout button

Exit Layout Mode button

Arrange palette button Revert Layout button

Object info palette button

Formatting bar buttonLayout Setup button

Palette and Menu controls
When the Formatting bar is displayed (it can be toggled on and off by using the button labeled Aa
in the Layout bar — the dark gray area below the main body of the Status Toolbar), you have
access to menus of color, pattern, and appearance settings for the line (border) and fill attributes of
selected layout objects, and for the color and font attributes of text objects. These controls work
like conventional text menus: Click once to reveal the corresponding palette of options and then
click a second time on the option (color, pattern, or line/fill attribute) you want to apply to cur-
rently selected objects.

TIPTIP You can change the arrangement and selection of icons on the Status Toolbar by
choosing View ➪ Customize Status Toolbar and dragging icons (or groups of icons)

from the Customize dialog to the Toolbar, dragging icons off the Toolbar, or dragging icons to
new positions on the Toolbar. Changes you make to the Status Toolbar remain in effect for all
solutions and application sessions on the current workstation, until you make a further change.

For additional details of the processes for customizing the Status Toolbar, refer to Chapter 4.

Organizing the presentation of information
One of the keys that people use to understand information is its position relative to other informa-
tion. For example, if the name Martha has the name Samuel immediately to its right, you may con-
clude that you’re seeing the first and last names of an individual. Conversely, if the name Martha has
the name Samuel appearing immediately below it, a more likely conclusion is that you’re viewing a
list of names and that Martha and Samuel are two individuals who belong together in a group of
some kind. Simply by positioning information according to conventions of this type, you provide
intuitive cues to suggest meaning and relationships. When employing such techniques, labels
become a secondary aid, confirming what object placement has already suggested.

As an example of the way information can be grouped to make its meaning clearer, I made some
initial changes to the preceding chapter’s Inventory layout. You can see the result of these modi-
fications in Figure 6.5.

11_429006-ch06.indd 16011_429006-ch06.indd 160 3/25/09 7:18:17 PM3/25/09 7:18:17 PM

161

The Interface: Layout Mode 6

 FIGURE 6.5

Reorganizing the information in the Inventory layout into logical groupings.

At this stage, the only things that have been altered in the Inventory layout are the relative sizes
and placement of the elements. None has been added, removed, or otherwise altered. Yet the lay-
out already makes more sense and is easier to scan.

To make comparable changes in your Inventory layout, follow these steps:

 1. Click the Body tab at the lower left of the layout and drag it downward, enlarging the
layout area.

 2. Click the field and label objects and drag them around the screen to new positions.

TIPTIP You can Shift+click objects to make multiple selections and then drag a group of
selected objects to reposition them simultaneously. I recommend moving the labels

and fields simultaneously.

 3. To resize field boxes, click them once to select them — corner handles appear — and
then drag the lower right corner handle and release when the box is the desired size.

TIPTIP To make fine adjustments to the position of an object or group of objects, first
select the objects and then use the arrow keys to move them. They’re nudged one

pixel at a time in the direction of the arrow key you press.

11_429006-ch06.indd 16111_429006-ch06.indd 161 3/25/09 7:18:18 PM3/25/09 7:18:18 PM

162

Introduction to Database DesignPart II

Applying formats to field and text objects
You can apply a variety of formatting changes to selected layout objects, including text format (font
size, style, color, and so on) as well as graphical effects, such as line and fill color, embossing, and
drop shadow. You can use combinations of effects to reinforce the groupings and distinctions
between elements on your layouts. The following steps walk you through such a process:

 1. In Layout mode in the Inventory layout, select the Auto-Entry fields (Serial#,
ItemID, _GenAccount, _GetStation, _GenStamp, _ModAccount, _
ModStation, and _ModStamp).

 2. Click the Fill Color palette in the Formatting bar of the Status Toolbar and select the lilac
fill color, as shown in Figure 6.6.

 3. With the Auto-Entry fields still selected, choose the object effects palette (at the right of
the row of controls that includes fill color and pattern) and from the resulting menu,
select the Engraved option, as shown in Figure 6.7.

NOTENOTE The engraving effect creates an illusion of depth, giving the impression that you’re
looking into a shallow depression in the layout. This effect imparts the idea of look-

ing into something and is therefore useful for fields or other objects containing information.
(That is, one is “looking into” the database to see the contents of a field, so the engraving pro-
vides a useful visual analogy.)

 4. Choose Format ➪ TextColor and select a medium dark gray from the submenu color pal-
ette, as shown in Figure 6.8.

 5. Choose Format ➪ Field/Control ➪ Behavior. The Field Behavior dialog appears.

 6. Deselect the In Browse mode checkbox in the section labeled Allow Field to be Entered.

 7. Select the Do Not Apply Visual Spell-Checking checkbox, as shown in Figure 6.9.

 8. Click OK.

 9. Select the Name, Description, Cost, SalePrice, and SupplierID fields and
apply the lightest gray fill and the Engraved fill effect to them.

 10. Select the remaining fields and apply the second gray shade (one shade darker than the
lightest gray) fill to them and, again, apply the engraved fill effect.

NOTENOTE The slightly darker fill effect applied to the final group of fields differentiates them
from the light gray data entry input fields. The remaining fields acquire their values

automatically when the input values are entered.

 11. Select the Serial#, ItemID, Cost, SalePrice, cStockLevel, State, and
PostalCode fields and choose Format ➪ Align Text ➪ Center.

 12. Select the Cost and SalePrice fields.

 13. Choose Format ➪ Number. The Number Format for selected objects dialog appears.

11_429006-ch06.indd 16211_429006-ch06.indd 162 3/25/09 7:18:18 PM3/25/09 7:18:18 PM

163

The Interface: Layout Mode 6

 FIGURE 6.6

Setting a lilac fill color for selected fields in the Inventory layout.

 FIGURE 6.7

Applying the Engraved effect to selected fields in the Inventory layout.

11_429006-ch06.indd 16311_429006-ch06.indd 163 3/25/09 7:18:18 PM3/25/09 7:18:18 PM

164

Introduction to Database DesignPart II

 FIGURE 6.8

Setting a dark gray text color for selected fields in the Inventory layout.

 FIGURE 6.9

Configuring field behavior settings for a group of fields.

 14. Select the Format as Decimal radio button, the Fixed Number of Decimal Digits checkbox
(make sure that the adjacent number is 2), and the Use Notation checkbox (making sure
that Currency Leading/Inside is selected in the adjacent drop-down list and that the cor-
rect currency symbol appears at the right), as shown in Figure 6.10.

 15. Click OK.

 16. Choose View ➪ Browse Mode to view the results of your work. Your Inventory layout
should now resemble the one shown in Figure 6.11.

11_429006-ch06.indd 16411_429006-ch06.indd 164 3/25/09 7:18:19 PM3/25/09 7:18:19 PM

165

The Interface: Layout Mode 6

 FIGURE 6.10

Setting number display options for decimal currency.

 FIGURE 6.11

The Inventory layout in Browse mode with basic field formatting applied.

11_429006-ch06.indd 16511_429006-ch06.indd 165 3/25/09 7:18:19 PM3/25/09 7:18:19 PM

166

Introduction to Database DesignPart II

The preceding process is a first step toward providing an interface for the Inventory layout, but
already its appearance is transformed — it’s now easier to see what different elements are, and the
layout is already more usable.

Setting up layouts for printing
What works well onscreen is not always ideal when the document is sent to a printer. One aspect of
this is the use of color. Careful and tasteful use of color can make screens more attractive and more
readable, but many printers require black and white or grayscale, and even when color is available,
ink can bleed, making text against a color background harder to read. Moreover, the orientation and
arrangement of elements you want onscreen may not match printed output requirements.

One answer to this dilemma — sometimes the easiest or cleanest solution — is to create separate
layouts for printing. It’s certainly an option, and for some purposes — such as printing onto irreg-
ular or special-purpose paper such as labels or envelopes, or matching pre-existing forms or letter
formats — it is necessary. For relatively simple requirements, however, FileMaker provides you
with techniques to control the way things print.

Before making adjustments to a layout’s printing configuration, choose File ➪ Page Setup (Mac) or
File ➪ Print Setup (Windows) to choose an appropriate printer and page orientation. Next, go to
Layout mode and choose Layout ➪ Layout Setup and click the Printing tab of the Layout Setup dialog
that appears. Here you can set column printing and set fixed margin widths for the current layout.

NOTENOTE Print settings (orientation, scaling, page margins, and so on) also affect the output
FileMaker produces when you create PDF documents, such as when you choose

File ➪ Save/Send Records As ➪ PDF.

On first entering the Layout Setup dialog’s Printing tab for a particular layout, the Use Fixed Page
Margins option is disabled, and the margin widths are default values based on the current print
driver and page setup configuration. As shown in Figure 6.12, after selecting the Use Fixed Page
Margins checkbox, you can enter alternative margin widths. Bear in mind when doing so that, if
you specify fixed margins less than the minimums for the selected printer, the page is nevertheless
cropped. (That is, you can’t use margin settings to extend the printable area outside your printer’s
hardware limits.)

NOTENOTE For exacting printing requirements, you should set fixed page margins to ensure
that page dimensions and placement are not dependent on the printer and driver

selections. Note, however, that the paper size and orientation settings still impact the layout
dimensions.

In Layout mode (refer to Figure 6.3), a vertical dotted line appears to the right side of the main
window area. This line identifies the edge of the printable area, based on the current printer, page
setup (orientation, scaling, and so on), and the margin settings for the current layout. If you make
a change to any of these settings, the line appears in a new position, indicating the new width of
the layout that can be printed on the selected paper size.

11_429006-ch06.indd 16611_429006-ch06.indd 166 3/25/09 7:18:20 PM3/25/09 7:18:20 PM

167

The Interface: Layout Mode 6

NOTENOTE You can position objects outside the printable area of the layout. If you do, they
nevertheless appear onscreen and behave normally, with the exception that they

don’t appear (or are cropped, depending on placement) in the printed output.

After setting the Page Setup configuration and specifying margins, choose View ➪ Preview Mode to
view the placement of the current layout within the area of the printed page. With settings in place
for U.S. letter and landscape orientation, the preview should resemble Figure 6.13.

TIPTIP You can also choose View ➪ Page Margins to view the layout in context, with the
limits of the selected paper size and margin allowances shown. This technique can

be useful for preparing a layout for printing.

 FIGURE 6.12

Setting fixed page margins via the Printing tab of the Layout Setup dialog.

An invaluable feature when setting up pages for printing enables you to exclude particular layout
objects from the printed image. (That is, the printed output can optionally present a subset of the
layout objects.) In the Inventory layout example shown in Figure 6.13, you may want to print
only the data fields and their corresponding text labels, without the ancillary (metadata) fields
showing record generation and modification details.

To invoke the Do Not Print option, go to Layout mode and select the metadata fields and their
adjacent text labels; then choose Format ➪ Set Sliding/Printing. In the Set Sliding/Printing dialog
that appears (shown in Figure 6.14), select the Do Not Print the Selected Objects checkbox in the
lower left and then click OK to dismiss the dialog.

11_429006-ch06.indd 16711_429006-ch06.indd 167 3/25/09 7:18:20 PM3/25/09 7:18:20 PM

168

Introduction to Database DesignPart II

After applying the Do Not Print setting, return to Browse mode and confirm that the fields and
their labels still appear and display their data. Now return to Preview mode and note that the
metadata fields no longer appear there. If you want, try a test print to confirm that the printed out-
put corresponds to the preview image.

CROSS-REFCROSS-REF For a more in-depth discussion of the options for setting up layouts for print, refer
to Chapter 10.

 FIGURE 6.13

Preview mode shows how the current layout appears on the printed page.

Understanding lists and forms
FileMaker allows you to view a layout in a Form, List, or Table presentation format.

n Form View presents the data one record at a time in a manner analogous to paper forms.
To view a different record, you must navigate forward or backward (for example, using
the Flip book tool in the Status Toolbar).

n List View, as the name suggests, presents multiple records (assuming that the current
found set has than one record), one below another, allowing you to scroll through the
records.

n Table View also shows the records as a list but ignores the appearance of the current
layout, instead showing records in a display format resembling a spreadsheet.

11_429006-ch06.indd 16811_429006-ch06.indd 168 3/25/09 7:18:20 PM3/25/09 7:18:20 PM

169

The Interface: Layout Mode 6

 FIGURE 6.14

Setting selected objects as nonprinting (so that they’re not included in printed output).

To see the current layout in different views, enter Browse mode, check that you’re viewing a found
set of two or more records, and then (sequentially) choose the View ➪ View as Form, View ➪

View as List, and View ➪ View as Table commands. As you can see, FileMaker gives you a lot of
control over how your layouts are presented.

Commonly, your layouts are designed with a particular presentation format in mind. Form layouts
generally take up most of the screen and don’t work so well when viewed as List, whereas list lay-
outs are frequently designed to be wide and shallow so that many records fit on the screen.
Consequently, you may want to constrain users to view each layout only in the formats for which
you have designed them.

To specify the layout views available for selection by the user, navigate to the layout, enter Layout
mode, and choose Layouts ➪ Layout Setup to display the Layout Setup dialog. Select the Views tab,
as shown in Figure 6.15. By deselecting one or more checkboxes on the Views tab, you prevent
users from choosing to display the current layout in the corresponding presentation format. (The
menu commands for the disabled views are dimmed and unavailable when the layout is displayed.)

NOTENOTE When constraining a layout to a single view, you should consider providing an alter-
nate means for users to see data in a variety of appropriate formats. For example,

you may want to provide two or more layouts — one or more to show records from a table in a
summary list view and another to show more extensive detail of the same records in a form view.

11_429006-ch06.indd 16911_429006-ch06.indd 169 3/25/09 7:18:21 PM3/25/09 7:18:21 PM

170

Introduction to Database DesignPart II

 FIGURE 6.15

Constraining the available (user selectable) views for the current layout.

As a general principle, list views are more useful when they include a relatively small number of
essential fields, providing a summary of the data in a table, whereas form presentations are better
suited to the display of larger numbers (a dozen or more) fields. There is no hard rule about this,
but appropriate use of forms and lists reduces clutter and confusion in your solutions.

Layout parts and their purposes
The default layouts generated by FileMaker when you create a new file — or when you choose
Layouts ➪ New Layout/Report (in Layout mode) to generate a new blank layout — are subdivided
vertically into three parts identified as Header, Body, and Footer. At the left side of the boundary of
each part is a tab bearing its name. Clicking a part tab selects the part, and dragging a part tab up
or down changes the corresponding part’s size.

The purpose of a layout’s Header and Footer parts is to provide a reserved area for layout elements
that are to appear only once at the top or bottom of each screen or page (regardless of the number
of records displayed). These parts are useful for the display of headings, page numbers, logos, or
design elements, and anything else of a general nature (that is, applying to all records).

A layout’s Body area is repeated for each record in the layout’s table, giving all the detail that is par-
ticular to one record. In List View or when printed, multiple instances of the body part (one for
each record) may appear between each occurrence of the Header and Footer parts, depending on
the size of the body part, the size of the page, the part settings, and the number of records being
displayed.

11_429006-ch06.indd 17011_429006-ch06.indd 170 3/25/09 7:18:21 PM3/25/09 7:18:21 PM

171

The Interface: Layout Mode 6

When required, you may include additional layout parts to support summary information. You do
this by dragging the Status Toolbar’s Part tool to the place in the layout where you want to add a
part. In addition to the Header, Body, and Footer, FileMaker supports the following layout part
types:

n Title Header: Enables you to create a different header to appear on the first page

n Leading Grand Summary: Provides a place to include summary information that should
appear only once, at the top of a screen or start of a printout or report

n Sub-Summary When Sorted By: Enables you to include summary details before and/or
after each group of values in a sorted set

n Trailing Grand Summary: Provides a place to include summary information that should
appear only once, at the bottom of a screen or at the end of a printout or report

n Title Footer: Enables you to create a different footer to appear only on the first page

You may create layouts containing many parts. However, with the exception of Sub-summary
parts, each part type may only appear once in a layout. You can create up to two Sub-summary
parts per field — one leading (that is, preceding the Body part) and/or one trailing.

NOTENOTE A Sub-summary part is displayed in Browse mode, in Preview mode and print (or
PDF) output, when the records are sorted according to the corresponding field (the

break field associated with the Sub-summary part). You may create multiple Sub-summary parts,
each coming into play only if the current found set is sorted by an associated field.

A layout must have at least one part, but that part may be of any kind. Thus, you can define a lay-
out with sub-summaries but no body, for example, to display summary data about groups of
records without including details of the records themselves.

CROSS-REFCROSS-REF The creation and use of Sub-summary parts is explored in greater detail in Chapter 10.

The Importance of Visual Structure
In the section “Organizing the presentation of information,” earlier in this chapter, you moved the
fields on the Inventory layout into organized groups to give order and meaning to the data they
present. This provided a first step toward an intuitive interface — one leading the eye to the rele-
vant data in an ordered fashion.

To assist in the interpretation of information, you should arrange it in a sequence that users find
easiest to comprehend. Frequently, this order entails moving from the general to the specific. (For
example, users generally need to know what something is before learning about its history or other
attributes, so name and ID fields should generally come before descriptive details.)

11_429006-ch06.indd 17111_429006-ch06.indd 171 3/25/09 7:18:21 PM3/25/09 7:18:21 PM

172

Introduction to Database DesignPart II

Adding visual pointers and aids
In addition to the placement of fields on your layouts, a variety of graphical elements can help to
communicate the relationships between the elements and reinforce the visual effect of grouping
and placement. These elements may include text, lines, borders, boxes or panels, arrows, logos, or
other graphical indicators.

Using the Inventory layout as an example, in Layout mode, add a rectangle around the first
group of fields. To implement this, proceed as follows:

 1. Select the rectangle tool in the Status Toolbar.

 2. Draw a rectangle around the first group of fields. (Initially, the rectangle may obscure the
fields.)

 3. With the rectangle selected, choose Arrange ➪ Send to Back.

 4. Apply a light gray fill by using the Fill tool in the Status Toolbar.

 5. Select and apply the Engraved effect from the Object Effects palette in the Status Toolbar.

 6. Locate the Line Pattern menu (next to the Line Color tool in the Formatting bar section of
the Status Toolbar; see Figure 6.16), and choose the transparent line option at the upper
left of the menu of line patterns.

 FIGURE 6.16

Selecting the transparent line attribute from the Line Pattern tool in the Status Toolbar in
Layout mode.

After completing the preceding process, the layout should include an engraved rectangle posi-
tioned behind the group of five fields nearest the top of the screen, as shown in Figure 6.17.

Repeat the preceding steps to add boxes behind each of the remaining three groups of fields. Apply
the same shade of gray to the box behind the group of fields near the bottom of the layout, but
choose a lighter shade for the data fields in the middle two groups. Then proceed as follows:

 1. Click the Header part’s tab to select it.

11_429006-ch06.indd 17211_429006-ch06.indd 172 3/25/09 7:18:22 PM3/25/09 7:18:22 PM

173

The Interface: Layout Mode 6

 2. Select the lightest gray fill color from the Fill Color tool in the Status Toolbar. This
changes the Header part’s background color to light gray. Select the Footer by clicking its
tab and again apply the lightest gray fill to it.

 3. Select the Text tool in the Status Toolbar (the one labeled with an A), click near the top
left of each rectangle, and type a text label to identify the group of fields.

 4. Using the Text tool, click the field labels and (as appropriate) edit their names to conven-
tional English labels for clarity.

 5. Using the text tool, click in the Header area and type the word Inventory.

 6. With the heading text selected, choose Format ➪ Text Color and apply a mid-gray,

 7. Choose Format ➪ Size to enlarge the heading and Format ➪ Style to apply a bold type
setting.

 8. Increase the height of the header area (by dragging the Header tab downward a short dis-
tance) and drag the heading label text into a central position above the layout contents.

After completing these steps, return to Browse mode to view the effect of your work. Your
Inventory layout should resemble the one shown in Figure 6.18.

 FIGURE 6.17

Adding a rectangular box behind the first group of fields on the Inventory layout.

11_429006-ch06.indd 17311_429006-ch06.indd 173 3/25/09 7:18:22 PM3/25/09 7:18:22 PM

174

Introduction to Database DesignPart II

 FIGURE 6.18

The Inventory layout, showing added visual cues to improve readability.

Using white space
The proximity of layout elements is one of the cues indicating relationships between them, so
grouping elements is important. To achieve the desired effect, it’s equally important to leave space
between the groups of elements. In other words, the spaces you leave are as important as the ele-
ments you add, when it comes to the user interpreting the screen (or page) content.

It’s equally important to avoid clutter. If your table has many fields, consider showing only a man-
ageable number of fields or groups of data on any one screen — use multiple screens or multiple
panels of a Tab Control to create separation between groups of fields. Aim to present the user with
clear and striking ideas, allowing them to focus on the essential elements that are important at
each step.

Ergonomics and avoiding visual fatigue
One of the reasons you should avoid clutter is that it’s stressful and fatiguing for the user. As infor-
mation is processed, mental connections are made and held in memory. It requires much more
work and concentration to hold ten connections in mind than four or five. If you’re able to present
users with no more than a handful of interconnected ideas at any one time, your solutions become
much easier to use.

11_429006-ch06.indd 17411_429006-ch06.indd 174 3/25/09 7:18:22 PM3/25/09 7:18:22 PM

175

The Interface: Layout Mode 6

Consider the essential ideas presented by the Inventory screen in its present form. In broad
terms, the flow of ideas can be expressed as:

n There is an item record created by a certain user at a certain time.

n The item has a name, description, and price.

n I have a certain quantity of the item in stock.

n There is a preferred supplier with an associated address.

n The record was last modified by a certain user at a certain time.

With screen data grouped in this way, your users have a manageable group of ideas to digest at any
one time.

Just as a screen’s clutter or complexity affects the amount of user effort required, so do various
other design aspects. Rich, or bright, colors make a strong impression and grab the user’s attention,
so if you want to draw attention to important items, you may want to use strong colors. However,
if you overuse bright or strongly contrasting colors throughout a layout, the user is torn between
many items that are all shouting for attention, which is also fatiguing.

I recommend that you choose subtle and relatively gentle shades for the majority of your layout
areas, reserving strong or bright elements for those things that you want your screens to “shout”
about.

Giving information meaning
Most of the information you enter into the fields of a database means little on its own. The number
42 may be a profound answer — if your user knows what the question is. A fact such as 17 Priory
Lane may solve all problems — if your user knows where it fits or to whom it belongs. The table
and record structure of your solution provides a means of storing information in an ordered way,
but users rely on the interfaces you design to make the order clear.

While the techniques shown earlier in the chapter help your users understand the immediate con-
nections between fields within a single record, they have to be able to comprehend the wider con-
text. One aspect of the wider context is the overall data set encompassing the data subset displayed
on the current layout. Another is the solution process or processes that the current screen sup-
ports. To add cues for these larger purposes, some additional techniques are required.

Defining Tooltips
FileMaker Pro 10 includes the ability to define and display tooltips (text flags associated with layout
objects) in both Browse and Find modes. Tooltips make it easier for users to learn how your inter-
face works, giving ready reminders as users work. Moreover, most users are familiar with tooltips,
having experienced them on web browsers and productivity applications.

11_429006-ch06.indd 17511_429006-ch06.indd 175 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

176

Introduction to Database DesignPart II

To define a tooltip for an object in FileMaker Pro, follow these steps:

 1. Enter Layout mode and select the object.

 2. Choose Format ➪ Set Tooltip. (You can also access the Set Tooltip command from the
contextual menu by Ctrl+clicking/right-clicking with the mouse on the layout object.)
The Set Tooltip dialog appears, as shown in Figure 6.19.

 3. Type the tooltip text you want to use for a layout object and click OK. The relevant tip
rectangle appears when the mouse pointer is stationary above the object (in Find or
Browse mode) for a little more than a second, as shown in Figure 6.20.

TIPTIP To efficiently identify objects with tooltips attached when viewing your solution in
Layout mode, choose View ➪ Show ➪ Tooltips. A small, colored note icon appears at

the lower-right corner of objects with a tooltip defined.

 FIGURE 6.19

Defining a tooltip for a selected object via the Set Tooltip dialog.

 FIGURE 6.20

A button tooltip displayed in Browse mode.

Using conditional tooltips
In the preceding example, the tooltip was supplied as a literal text value. However, FileMaker Pro
supports the use of calculation syntax when defining tooltips, enabling you to define different tool-
tips to display in different circumstances or to implement a method of turning tooltips on or off
according to user preferences.

For example, if you have a script attached to a button that takes users to Find mode (if they’re cur-
rently in Browse mode) or performs the Find if the solution is already in Find mode, you may want
to vary the tooltip text according to the current window’s mode. You can achieve mode-dependent
tip text with a tooltip definition, using a calculation expression along the lines of

Choose(Get(WindowMode); “Go to Find mode...”; “Perform the current Find...”)

11_429006-ch06.indd 17611_429006-ch06.indd 176 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

177

The Interface: Layout Mode 6

NOTENOTE The Get(WindowMode) function returns 0 in Browse mode and 1 in Find mode.

Similarly, if your solution keeps track of user preferences in a Users table, you can set your login
script to store the user’s tooltip preference (whether or not the user wants tooltips displayed during
their sessions) in a global field, such as in a Utility table. With such a mechanism in place, you can
determine whether your tooltips appear, based on the user’s preference, by using a calculation
expression such as

If(Utility::gTooltipPref = 1; “Your tooltip text here...”)

Keeping track of tooltips
If your solution is complex, you’ll likely have many tooltips defined, and the same tooltip text may
appear in multiple places. For example, when defining a tip such as the one shown in Figure 6.20,
you’re likely to want the same tip text appearing on all main menu navigation buttons throughout
your solution — in other words, on most of the layouts.

When managing the text for a large number of tooltips, you should consider storing the tooltip
content in a single location to facilitate managing it and updating it as needed. For example, if your
solution has around 25 main menu buttons throughout, a better solution than defining (and sub-
sequently managing) all the tooltip text separately is to create a global field called gMain-
MenuButton in a table called Tooltips in your solution and then specify the tooltip for the main
menu buttons as

If(Utility::gTooltipPref = 1; Tooltips::gMainMenuButton)

With an approach of this kind, you can update the tooltip text for all the main menu buttons at
once by editing the default value in the Tooltips::gMainMenuButton field.

To enhance the usefulness of a centralized tooltip management approach, I suggest that you store
the reference text for each tooltip in your solution in separate records in the Tooltips table, loading
the relevant values into the global field(s) referenced by your tooltip calculation expressions, as a
sub-routine of your solution’s start-up script. That way, when the solution is hosted, the current
tooltip text is made available in the global fields in the Tooltips table at the commencement of each
client session.

Different Kinds of Layout Objects
In your work so far on the Inventory layout, you’ve dealt with three kinds of layout objects —
field boxes, text labels, and graphical rectangles. Of these, the field boxes are the only ones that
interact with the user or display different content from mode to mode or record to record. The text
labels and graphical rectangles serve their purpose in a more passive fashion.

11_429006-ch06.indd 17711_429006-ch06.indd 177 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

178

Introduction to Database DesignPart II

When using a database, you need a variety of ways to interact with the data and the interface. To
this end, FileMaker provides a number of additional object types, as represented by the main
group of 11 tools in the Status Toolbar.

Among the tools, the Object Selection tool is used to choose one or more objects in the layout; you
can also use it to drag objects (or groups of objects) to new locations in the layout. The remaining
two blocks of five tools represent various kinds of layout objects, as follows:

n Text objects

n Graphical line objects

n Rectangular (or square) objects

n Rectangles (or squares) with rounded corners

n Elliptical (or circular) objects

n Field controls (checkboxes, radio buttons, menus, and lists)

n Buttons

n Tab Controls

n Portals

n Web viewers

In addition to the ten layout object types listed here, two more types of objects are supported by
FileMaker. You can create the first of these objects, the field box, by using the Field tool immedi-
ately to the right of the main groups of tools. The final object type is any supported object (for
example, a picture or illustration) created in another application that you can paste into a layout or
add by choosing Insert ➪ Picture.

NOTENOTE FileMaker supports more than a dozen common image formats, enabling you to
place pictures and graphics from other applications directly onto FileMaker layouts.

Supported formats include .jpg, .gif, .tif, .png, .eps, .fpx, and .pdf image files.

Static and dynamic objects
Six of the 12 types of layout objects in FileMaker can be described as static — they add to the
appearance of the layout, but you can’t interact directly with them. In that regard, such objects
serve their purposes passively. Inherently static layout objects include text objects, lines, squares/
rectangles, round-cornered squares/rectangles, circles/ellipses, and inserted graphics/images.

By their nature, the remaining six layout object types support user interaction and can, therefore,
be characterized as dynamic objects. In brief, their properties are as follows:

n Field controls are dynamic — when you click them, a value in the field they’re attached
to changes.

n Portals display lists of related records that you can (optionally) scroll, select, add, delete,
or edit (depending on the portal and relationship configuration).

11_429006-ch06.indd 17811_429006-ch06.indd 178 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

179

The Interface: Layout Mode 6

n Tab controls let you click alternate tabs to view different layout content.

n Web Viewer objects display content from a remote (or local) Web site; they can be con-
figured to enable you to click hyperlinks and interact directly with the content.

n Field boxes enable you to “enter” a record and directly add, edit, or delete data within
the fields of the database.

n Buttons can be configured to execute any of 127 commands when you click them.

Now that I’ve told you that some objects are static and others are dynamic, I’m going to risk con-
fusing the issue by telling you that all but one type of object (a Tab Control) can also be formatted
to act as a button. So you can even give objects that are by nature static (such as lines, circles,
imported images, and so on) button properties so that a command is executed when the user
selects them (for example, by clicking them).

Inherent object properties
Each of the different kinds of objects has a number of inherent attributes, according to its intended
function. For example, you can assign color, style, size, and font attributes to text objects, and line
objects can have color, pattern, and thickness attributes. Additionally, you can assign a name to
each object you place on a layout, change its size and position, and apply a variety of other formats
and properties.

TIPTIP Object names, coordinates, and auto-resize properties are assigned by using the
Object Info palette, accessible in Layout mode by choosing View ➪ Object Info, or

by clicking the “i” button in the Layout bar.

According to its different appearance and behavior, each object type accepts a different range of
properties and attributes. In the case of dynamic layout objects, each has a configuration dialog, let-
ting you specify its behavior. Double-clicking dynamic objects in Layout mode causes the corre-
sponding configuration dialog to display so that you can edit the object’s properties and parameters.

In addition to properties particular to their function, you can assign all objects a variety of appear-
ance attributes, such as line and/or fill color, engraving or embossing effects, and so on. You can
apply these attributes efficiently by using the tools and controls in Layout mode’s Status Toolbar.

NOTENOTE The effect of applying graphical attributes to different kinds of objects varies
according to the nature of the object. For example, fill/line color or transparency

does not affect an inserted picture (because the picture’s appearance and transparency attributes
are set in the application in which it was created), but 3-D object effects can still be applied.

Conditional format attributes
When you create an object, adding it to a layout, you establish its appearance as well as its size and
placement on the layout. As you assemble the layout’s components, the layout’s overall appearance
emerges. Moreover, FileMaker 10 provides you with the ability to link the appearance of various
kinds of objects to the data within the database.

11_429006-ch06.indd 17911_429006-ch06.indd 179 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

180

Introduction to Database DesignPart II

TIPTIP In the Inventory layout, for example, you may want to alert users when the stock
level of an item falls below a certain level. One way to do that is to apply conditional

formatting so that the text is displayed in a different color when the stock level is low.

To apply conditional formatting, follow these steps:

 1. Enter Layout mode with the Inventory layout active.

 2. Select the cStockLevel field.

 3. Choose Format ➪ Conditional. The Conditional Formatting dialog appears.

 4. Click the Add button to create a condition.

 5. Using the menus in the Condition area of the dialog, enter a value for the condition (for
example, “Value is . . . less than . . . 5”).

 6. In the Format area of the dialog, choose the formatting attributes to be applied when the
condition is met. Figure 6.21 shows the settings for a condition that changes the text
color of the cStockLevel field to red when the stocking level of an item drops to fewer
than five.

 FIGURE 6.21

Settings to apply conditional text color to the cStockLevel field.

11_429006-ch06.indd 18011_429006-ch06.indd 180 3/25/09 7:18:23 PM3/25/09 7:18:23 PM

181

The Interface: Layout Mode 6

You can apply conditional formatting to textual objects, including fields, buttons, and Web view-
ers, and use it to control the text style, color, size, font, and background fill of the object.
Moreover, you can specify multiple conditions for an object, with conditions being evaluated in
the order in which they appear in the list at the top of the dialog.

CROSS-REFCROSS-REF For a more detailed discussion of the uses of conditional formatting, see Chapter 10.

FileMaker as a Graphical Environment
FileMaker’s Layout mode provides you with a drawing environment, enabling you to create graphi-
cal objects and assemble them into layouts. You can create designs, pictures, stationery, forms,
slide presentations, and many other visual displays by using Layout mode — with or without dis-
playing data from FileMaker’s database tables. The ability to insert images created in other applica-
tions further enriches FileMaker’s interface-building environment’s creative possibilities.

Layout mode’s flexibility is such that FileMaker has been used to create everything from board-
room presentations to store window advertising displays, shopping mall kiosks, and children’s
educational games. FileMaker enables you to arrange some pictures, shapes, and text and make
them “do stuff” — the rest is up to your imagination.

Building graphic objects in FileMaker
Using the Inventory layout as an example, try creating a graphical logo to appear in the header
part, as described in the following steps:

 1. Enter Layout mode for the Inventory layout.

 2. Select the Oval tool and draw an elliptical shape approximately 2 inches wide and 0.75
inch high.

 3. Using the fill color control, choose a dark mauve color, apply a dark blue line color and,
as shown in Figure 6.22, select the embossed option from the Object Effects palette.

 FIGURE 6.22

Applying a 3-D embossed effect from the Object Effects palette.

11_429006-ch06.indd 18111_429006-ch06.indd 181 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

182

Introduction to Database DesignPart II

 4. Create a slightly smaller ellipse, giving it a lighter shade (of a similar hue), apply the
Engraved effect, and position it centered on top of the first ellipse.

 To create a (fictitious) company name for the logo, the process is as follows:

 a. Choose the Text tool and type xyz as the logo name for this example.

 b. Using the Selection tool (arrow), click the text.

 c. Choose Format ➪ Font ➪ Courier New.

 d. Choose Format ➪ Size ➪ Custom and, in the resulting dialog, enter a custom size of 32
points. Click OK.

 e. Choose Format ➪ Style ➪ Italic.

 f. Click the text and drag it to the middle of the smaller oval shape.

 g. Choose Format ➪ Text Color and select white from the submenu palette of text colors.

 h. Choose Edit ➪ Duplicate to create a duplicate of the xyz text. The duplicate is posi-
tioned one grid space down and to the right. (A grid space defaults to six pixels, but
you can set a different value by choosing Layouts ➪ Set Rulers).

 i. Choose Format ➪ Text Color and select a dark purple color from the submenu palette
of text colors.

 j. Position the dark purple text object exactly on top of the white text object in the mid-
dle of the two oval shapes.

 k. With the dark purple text object still selected, press the up arrow key (on the key-
board) to nudge it upward by one pixel and then press the left arrow key to nudge it
left by one pixel.

 When you’ve completed these steps, your completed logo should resemble the one
shown in Figure 6.23.

 FIGURE 6.23

A logo image assembled in FileMaker from four graphical objects.

 5. Select all the logo parts at once by dragging a selection rectangle to encompass the entire
logo and then choose Arrange ➪ Group to lock the elements together.

11_429006-ch06.indd 18211_429006-ch06.indd 182 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

183

The Interface: Layout Mode 6

Default object formats and attributes
When you create an object in Layout mode, it appears with default formats including style, font,
color and line, although you can subsequently make alterations, if desired. If you’re creating a
number of similar objects, however, you’ll find it advantageous to set default formats before you
begin.

To set the default formats, first click with the Selection tool in a blank area of the layout to ensure
that no objects are selected. Then choose the formats you want to use as defaults for objects you’re
about to create (for example, text color, font, style, and size — and, for fields and graphical shapes,
fill, effects, and line attributes).

Now, when you select an object tool and create an object, the settings you’ve stored are used to
determine the initial formats and attributes of each object. You can, of course, still select the
objects and apply other settings if you want — setting default attributes simply saves you time by
allowing you to determine the initial appearance of objects.

TIPTIP If you want to change the formatting on multiple items at once, first select them all
(for example, by shift-clicking each in turn). Formatting and other attributes are

then applied simultaneously to all selected items.

Controlling stacking and alignment
When creating the xyz logo in the preceding example, each of its parts was created in order so that
each new part lay in front of the previous one. In this process, graphical objects are being stacked
up in a certain order to achieve the final effect. Each new object added to a layout goes on top of
the stack (in front of any other objects already on the layout).

In FileMaker, you have control over the stacking order of objects, so you can change it if necessary
to achieve the effect you desire.

To continue the developing visual theme of the Inventory layout, follow these steps:

 1. Choose the Rounded Rectangle tool and draw a rectangle approximately 8.5 inches wide
and a little less than 1 inch high. (Remember, you can use the Object Info palette —
View ➪ Object Info — to check the size and coordinates of selected layout objects.)

 2. With the rectangle selected, use the Object Effects palette to apply the Embossed effect
and the Fill Color palette to apply a pale lilac color and then select the transparency
option from the Line Pattern palette.

 3. Drag the resulting rectangle to a central position in the header. With the rectangle in the
header, you can no longer see the header text because the rectangle obscures it. The next
step addresses this.

 4. Move the mouse to a blank area at one side just below the header area and drag a selec-
tion rectangle that encompasses the area where the heading text object is located (but not
large enough to fully encompass the new rectangle you’ve placed in the header). When

11_429006-ch06.indd 18311_429006-ch06.indd 183 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

184

Introduction to Database DesignPart II

you release the mouse after dragging the selection rectangle, four selection boxes should
appear to indicate that the text object in the header is selected, even though it is presently
out of sight.

 5. Choose Arrange ➪ Bring to Front to alter the stacking order, bringing the selected text
object forward so that it appears in front of the colored rectangle.

 6. Select the logo object and drag it to a position within the left end of the rectangle in
the header. Because the logo was created before the rectangle, it disappears behind the
rectangle.

 7. Click the rectangle to select it and choose Arrange ➪ Send to Back (Ô+Option+] or
Ctrl+Alt+]) to place it behind the logo.

After you adjust the placement and stacking order of the logo, heading text, and embossed rectan-
gle, the Inventory layout should resemble the one shown in Figure 6.24.

 FIGURE 6.24

The Inventory layout with logo and header band stacked and positioned.

Bringing in graphics from other applications
Instead of building graphics such as logos in FileMaker, you may prefer to create them in another
application — or it may be appropriate to use photographs or other images you have on hand. In
that case, you can use the images as objects in FileMaker’s layouts.

11_429006-ch06.indd 18411_429006-ch06.indd 184 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

185

The Interface: Layout Mode 6

Although you can copy images from other applications and paste them into FileMaker layouts, this
method does not always produce optimal results, depending on the attributes of the original image.
I recommend that you save the image to disk in a standard format (such as .png, .gif, or .jpg)
and then bring the file directly into FileMaker.

To place a picture stored in a supported file format directly onto a FileMaker layout, go to Layout
mode, choose Insert ➪ Picture, locate the file you want to add, and then click OK. The file is
inserted and displayed on the layout, and you can move it, resize it, and position it within the
stacking order along with other layout objects.

Interacting with Layout Objects
The work you do in Layout mode creates layouts for you to use in other modes, when interacting
with your solution via its screens and reports. An important consideration when you build a layout
is how efficiently you’re able to use the layout in Browse mode and Find mode.

Keyboard control of a layout
Controlling the behavior of layout objects (fields, buttons, Tab Controls, and so on) in Browse
mode by clicking them with the mouse isn’t always the most efficient way for your users to work.
When entering data, many users prefer to perform common actions by using keyboard commands.

With appropriate preparation, you can ensure that your layouts can be navigated and controlled by
using the keyboard. Using the Field Behavior dialog (select a field and then choose Format ➪ Field/
Control ➪ Behavior), you can specify to go to the next object by using the Tab key, the Return key,
and/or the Enter Key. Figure 6.25 shows the Field Behavior dialog, displaying the settings for Go
to Next Object Using near the bottom.

 FIGURE 6.25

Setting the keystrokes for Go to Next Object Using in the Field Behavior dialog.

11_429006-ch06.indd 18511_429006-ch06.indd 185 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

186

Introduction to Database DesignPart II

NOTENOTE The Return key is the carriage return key at the right of the alphabetic section of the
computer keyboard (even though on some keyboards, especially those common to

Windows systems, it’s labeled Enter). In FileMaker, the Enter key refers specifically to the
numeric keypad’s Enter key.

By default, navigating layout fields follows a sequence that goes from left to right and then top to
bottom. By using the keystrokes defined in the Field Behavior dialog, you can move from field to
field through the layout in Browse and Find modes. The navigation sequence that enables you to
move around the layout in this way is referred to as the tab order.

CAUTION CAUTION Specifying the Return key as one of the Go to Next Field keystrokes for a field pre-
vents users from typing a carriage return into the field. (However, users are not

prevented from pasting carriage returns into the field from the clipboard.)

This technique can, of course, be useful for fields where the inclusion of carriage returns is not
desired or may present problems.

Setting the tab order
In many cases, you’ll find it beneficial to predetermine the order of navigation through fields in
your layouts, perhaps excluding some fields from the tab order. Moreover, you may want to
include any Tab Controls, buttons, or Web viewers on your layouts in the tab order so that they
can be controlled from the keyboard.

To edit a layout’s tab order, go to Layout mode and choose Layouts ➪ Set Tab Order to display the
Set Tab Order dialog. As shown in Figure 6.26, fields (and any other keyboard-controllable
objects) are displayed with adjacent arrows. The arrows attached to fields shown in the tab order
include numbers indicating the field’s position in the tab order sequence. Clicking the Clear All
button in the Set Tab Order dialog removes the tab order numbering throughout the layout.
Clicking the arrows in sequence enables you to edit the tab order or apply a new tab order.

NOTENOTE If a Tab Control object is included in the tab order, after you navigate to it by using
the keyboard, you can use the left and right arrows to select a specific tab and

either the spacebar or the Return key to bring the selected tab to the front. Similarly, if a button
object is included in the tab order, after selecting it by using the keyboard, you can execute the
button operation by using the spacebar or the Return key.

Assigning names to layout objects
FileMaker 8.5 introduced the ability to name objects on your layouts. Naming objects opens many
possibilities — including letting you control or reference an object by its assigned name when
you’re defining a script or button command.

11_429006-ch06.indd 18611_429006-ch06.indd 186 3/25/09 7:18:24 PM3/25/09 7:18:24 PM

187

The Interface: Layout Mode 6

 FIGURE 6.26

Specifying a custom tab order for fields on the Inventory layout.

As an example, if you create a button object assigned to the Go to Object command and supply the
object name of a field on the same layout, the button, when clicked, places the cursor into the cor-
responding field. You can use the same procedure to place focus on (or modify the behavior of)
portals, Web viewers, Tab Control panels, and so on.

Controlling visual spell-checking
A key usability feature in FileMaker Pro is visual spell-checking — automatic underscoring of
questionable words in the active field throughout a FileMaker file. However, it’s the nature of data-
bases that some fields are designed to hold values that don’t benefit from spell-checking (IDs,
codes, names, and so on). In these cases, visual spell-checking is an annoyance and a distraction.

TIPTIP You can disable the visual spell-checking feature for specific field objects on your
layouts. Figure 6.27 shows Layout mode’s Field Behavior dialog for the SupplierID

field (Format ➪ Field/Control ➪ Behavior) with the Do Not Apply Visual Spell-Checking option
enabled.

11_429006-ch06.indd 18711_429006-ch06.indd 187 3/25/09 7:18:25 PM3/25/09 7:18:25 PM

188

Introduction to Database DesignPart II

 FIGURE 6.27

Excluding a field from visual spell-checking via the Field Behavior dialog.

The Tab Control and Its Uses
In complex solutions, layouts can rapidly become cluttered and the clarity of the interface
impaired. FileMaker provides a useful organizational tool that lets you put groups of objects away
out of sight until you need them: the Tab Control.

One of the best uses of Tab Controls is to provide locations for alternative and low-use views of
data. A single click takes you to the data when you need it, but the rest of the time it’s not clutter-
ing up your view of the data.

Here is one such example: The Inventory layout shows the preferred supplier for each item, but
it may occasionally be useful to be able to view a list of buyers for the item. Because that’s a sec-
ondary purpose of the layout, it would be better included on a concealed panel until needed.

Defining and creating a tab panel
To add a tab panel to the Inventory layout, perform the following steps:

 1. Enter Layout mode for the Inventory layout.

 2. Delete the rectangular background behind the Preferred Supplier field.

 3. Click the Status Toolbar’s Tab Control tool and then drag across the area of the Preferred
Supplier fields. The Tab Control Setup dialog appears.

 4. Enter Preferred Supplier into the Tab Name field and click the Create button.

 5. Enter List of Buyers into the Tab Name field and click Create again.

 6. In the dialog settings at the right, choose Left from the Tab Justification menu and Square
from the Appearance menu, set the Tab Width menu to Label Width + Margin of:, enter
55 in the following field, and choose Pixels from the bottom menu, as shown in Figure
6.28.

11_429006-ch06.indd 18811_429006-ch06.indd 188 3/25/09 7:18:25 PM3/25/09 7:18:25 PM

189

The Interface: Layout Mode 6

 FIGURE 6.28

Adding a Tab Control to the Inventory layout.

 7. Click OK to accept the Tab Control settings.

 8. Choose Arrange ➪ Send to Back to place the Tab Control behind the existing supplier
fields.

 9. With the Tab Control still selected, choose lightest gray fill color and mid-gray line color
and select None from the Object Effects menu. If necessary, adjust the sizes and positions
of the Tab Control and other elements on the layout to achieve appropriate spacing
between objects and check that the font settings are appropriate.

After completing these steps, return to Browse mode to review the effects of your work. If all is
well, the modified layout should be similar in appearance to Figure 6.29.

Navigating between tab panels
In Browse mode, the default tab panel (Preferred Supplier) appears at the front, displaying the
fields previously enclosed by a static rectangular panel. The tab for the second panel (List of
Buyers) appears dimmed.

Click with the mouse on the List of Buyers tab and note that it comes to the foreground, obscuring
the Preferred Supplier tab and its contents (the Preferred Supplier tab is now dimmed). Now click
the Preferred Supplier tab, and it returns to the front, reinstating your view of the supplier fields.

11_429006-ch06.indd 18911_429006-ch06.indd 189 3/25/09 7:18:25 PM3/25/09 7:18:25 PM

190

Introduction to Database DesignPart II

 FIGURE 6.29

The appearance of the Inventory Layout tab panel when viewed in Browse mode.

Tab panel limitations
Although Tab Controls are powerful and flexible, an essential feature of their operation is that they
provide a view of the data in your database from the same vantage point (TO on the Relationships
Graph) as the layout where they’re placed. Tab Controls, like everything else on your layouts, are
context dependent.

In cases where you need to take the user outside the current layout context, you should consider
two options:

n Place a portal in the Tab Control and build a supporting relationship structure enabling
you to display the appropriate data from elsewhere in your solution.

n Create a separate layout based on an alternative TO that serves in place of the tab. To
provide comparable functionality, provide a button on each layout that the users can
click to move back and forth seamlessly between the two layouts. (If you set it up with
care, the user experience is comparable to the use of a Tab Control.)

CROSS-REFCROSS-REF For a more detailed exploration of the uses and advanced options available for Tab
Controls, refer to Chapter 10.

11_429006-ch06.indd 19011_429006-ch06.indd 190 3/25/09 7:18:25 PM3/25/09 7:18:25 PM

191

The Interface: Layout Mode 6

Displaying Related Data
The Inventory layout is based on the TO named Inventory and, by default, fields you place
on the layout are sourced from the current record in the Inventory table. In some cases, how-
ever, you need to show fields from other tables so, as in the case of the Supplier Details
group of fields, you choose an alternative (related) TO as the fields’ source.

When you’re working from a different layout (one based on a different TO), your view of the data
in your solution is from a different vantage point. When sourcing data from another table, you
must ensure that the TO you use to access fields from the other table is appropriately related to the
current table. If in doubt, consult the Relationships Graph.

During the course of this chapter, I’ve described in detail processes for initial refinement of the
Inventory layout. Before proceeding, take a few moments to work through the same processes
on the remaining layouts in the file, using the same techniques to bring them into line with the lay-
out and appearance of the Inventory layout.

Working within layout context
When making adjustments to the second layout (Orders) in the file, as well as defining the
SupplierID field as a drop-down list (choosing Format ➪ Field/Control ➪ Setup) and setting it to
display the Suppliers value list, you need to add relevant fields from the Contacts table.

Whereas on the Inventory layout related suppliers fields were sourced from the ItemSupplier
TO (related to Inventory), on the Orders layout, supplier fields must come from a TO that is
appropriately related to the Orders TO. If you consult the Relationships Graph (in the Manage
Database dialog, accessible by choosing File ➪ Manage ➪ Database), you’ll see that the TO named
Suppliers is directly related to the Orders TO.

On the Orders layout, when adding related fields to show the supplier details, you should source
the fields from the Supplier TO, as shown in Figure 6.30.

The Supplier fields, when placed on the Orders layout, do their job of showing related data.
There is one supplier for each order, and the relevant supplier details appear in the related fields
(on the Orders layout) when a value is selected in the Orders::SupplierID field.

Setting up a portal
Each order has only one supplier. However, a single order may consist of a number of items.
Simply adding fields from the OrderLines TO is not adequate; you need a method to show a list
of related records from the OrderLines TO. For this purpose, FileMaker provides the Portal
object.

To add a portal to the Orders layout, enter Layout mode, click the Portal tool in the Status
Toolbar, and drag the mouse across the area of the layout where you want to add the portal. The
Portal Setup dialog appears.

11_429006-ch06.indd 19111_429006-ch06.indd 191 3/25/09 7:18:26 PM3/25/09 7:18:26 PM

192

Introduction to Database DesignPart II

 FIGURE 6.30

Using the Specify Field dialog to source fields from the related Supplier TO for inclusion on the Orders
layout.

As shown in Figure 6.31, use the Show Related Records From menu near the top of the Portal
Setup dialog to choose the OrderLines table from the group of related tables appearing in the
list. Then select the Allow Deletion of Portal Records checkbox and enter 8 into the Number of
Rows field. Also, select the Alternate Background Fill checkbox and choose the second lightest gray
from the adjacent color palette. When you’re finished, click OK to accept the portal setup.

Immediately upon dismissing the Portal Setup dialog, you see the Add Fields to Portal dialog. In
the column at the left, select the OrderLines::Qty field and click the button labeled » Move »
to include it in the column at the right of the dialog. Repeat this procedure to include the
OrderLines::ItemID field, the OrderLines::Price field, and the OrderLines::
cLineTotal field (as shown in Figure 6.32). When complete, click the OK button.

You now have a portal on the Orders layout, but it needs some further configuration before it’s
ready for use. To complete the process, proceed as follows:

 1. Select the ItemID field in your new portal and choose Format ➪ Field/Control ➪ Setup
(Ô+Option+F/Ctrl+Alt+F).

 2. In the Field/Control Setup dialog, choose Pop-up Menu from the Display As menu at the
top left of the dialog.

11_429006-ch06.indd 19211_429006-ch06.indd 192 3/25/09 7:18:26 PM3/25/09 7:18:26 PM

193

The Interface: Layout Mode 6

 FIGURE 6.31

Adding a portal object (based on the OrderLines TO) to the Orders layout.

 FIGURE 6.32

Adding fields to the OrderLines portal.

 3. Choose Manage Value Lists from the Display values from menu (immediately below the
Display As menu).

 4. In the Manage Value Lists dialog, click the New button at the lower left.

11_429006-ch06.indd 19311_429006-ch06.indd 193 3/25/09 7:18:26 PM3/25/09 7:18:26 PM

194

Introduction to Database DesignPart II

 5. In the resulting Edit Value List dialog, enter AllItems into the field labeled Value List
Name. Then select the Use Values from Field radio button. The Specify Fields for Value
List “AllItems” dialog appears.

 6. Choose the Inventory TO from the menu above the column at the left of the Specify
Fields dialog.

 7. In the list in the left column of the Specify Fields dialog, select ItemID.

 8. Above the column at the right of the Specify Fields dialog, select the Also Use Values
from Second Field checkbox and then select the Name field in the list in the right
column.

 9. Near the bottom of the dialog, select the Show Values Only from Second Field checkbox.

 10. Click OK to accept and dismiss each of the dialogs in turn.

 11. In the portal, select all four fields and apply transparent line and fill attributes.

 12. Resize the OrderLines::Qty field to approximately 0.5 inch wide and move it to the
far left of the portal.

 13. Resize both the OrderLines::Price and OrderLines::cLineTotal fields to
approximately 1 inch wide each and move them to the right side of the portal.

 14. With the OrderLines::Price and OrderLines::cLineTotal fields still selected,
choose Format ➪ Number and select the options to Format as decimal, fixed number of
digits 2, use currency notation, and use thousands separator. Then click OK to accept the
number format settings.

 15. Choose Format ➪ Align Text ➪ Right.

 16. Reposition and resize the portal appropriately, applying a white fill and gray line attri-
butes to it.

 17. Immediately above the portal, add text labels for Qty, Item, Price, and Extended Price.

After you complete these steps, return to Browse mode to view the results of your efforts. The
Orders layout should now resemble Figure 6.33.

Try adding some items to the portal (by entering them into the first blank line). The portal accepts
and displays up to eight lines, automatically calculating the price, extended price, and order total
values. Of particular note is the way the value list operates in this case, automatically retrieving a
list of available items from the Inventory table so that you can select them when adding a line to
an order. In conjunction with the use of a portal to add OrderItems records, the value list in this
example provides powerful and flexible support to the user.

Before proceeding, take a little time to look over the other layouts in the file and bring them into
line with the changes you’ve made to the Orders layout. In particular, the Invoices layout should
be developed to closely resemble the Orders layout, including the use of a portal to display
invoice lines. The Contacts layout is simpler, and its presentation will more closely resemble the
Inventory layout.

11_429006-ch06.indd 19411_429006-ch06.indd 194 3/25/09 7:18:27 PM3/25/09 7:18:27 PM

195

The Interface: Layout Mode 6

 FIGURE 6.33

The Orders layout in Browse mode showing the completed OrderLines portal.

The Magic of Buttons
FileMaker provides a special tool in Layout mode’s Status Toolbar for the creation of buttons.
Buttons created with the Button tool are embossed rectangular text objects with a command
attached.

You should know two things about buttons:

n You can choose Format ➪ Button Setup to attach a command to any layout object (with
the exception of a Tab Control) — not just to objects created with the Button tool. So
almost anything can be a button.

n One of the commands you can attach to a button is more important than all the rest com-
bined. It’s the Perform Script [] command, and it’s important because it enables a button
to run a script containing many commands, capable of performing complex operations.

CROSS-REFCROSS-REF For further discussion about advanced uses of buttons, refer to Chapter 10.

11_429006-ch06.indd 19511_429006-ch06.indd 195 3/25/09 7:18:27 PM3/25/09 7:18:27 PM

196

Introduction to Database DesignPart II

Defining buttons
In the Inventory database, go to Layout mode on the Orders layout. To add a button to the
layout, follow these steps:

 1. Select the Button tool.

 2. Drag a rectangle approximately 2 inches wide into the footer area. When you release the
mouse button, the Button Setup dialog immediately appears.

 3. Choose the Go to Layout option in the list of commands at the left of the Button Setup
dialog, as shown in Figure 6.34.

 4. Use the Specify menu in the panel at the upper right to choose the Inventory layout.

 5. Click OK to accept the settings and dismiss the dialog.

 FIGURE 6.34

Creating a button in the footer area of the Orders layout.

 6. After you close the Button Setup dialog, the cursor flashes in the new button you’ve cre-
ated, waiting for you to enter a button label — type Inventory.

 7. Press the Enter key (on the numeric keypad) or click in a blank area of the layout to exit
the button.

11_429006-ch06.indd 19611_429006-ch06.indd 196 3/25/09 7:18:27 PM3/25/09 7:18:27 PM

197

The Interface: Layout Mode 6

Now you have a button in the footer area of the layout, and it’s assigned to the Go to Layout []
command. Further work is required, however, to bring its appearance into line with the design of
the layout. To style the button, proceed as follows:

 1. With the button selected, choose View ➪ Object Info. The Object Info command acquires
a tick and the Info palette appears.

 2. Click the scale values at the right of the palette (the ones that read “in,” “cm,” or “px”) to
toggle the scale until it displays measurements in px (pixels).

 3. Type 153 as the horizontal dimension and 22 as the vertical dimension.

TIPTIP The horizontal and vertical dimension parameters in the Object Info palette are
grouped together and identified by double-ended arrow symbols oriented horizon-

tally and vertically, respectively.

 4. Choose Format ➪ Size ➪ 12.

 5. Choose Format ➪ Style ➪ Bold.

 6. Choose Format ➪ Color ➪ [white].

 7. Select a medium gray from the Fill Color palette and the transparent option from the Line
Pattern palette.

After you complete these steps, your button has both form and function and is ready for duty as
part of the interface of your solution. To create a second button, select the Inventory button and
follow these steps:

 1. Choose Edit ➪ Duplicate (or type Ô+D or Ctrl+D). A second button appears.

 2. Position the duplicate button immediately to the right of the original button.

 3. Click the text tool in the Status Toolbar and then click the duplicate button and edit the
text to Orders.

 4. Change the text color of the duplicate button to match the background color of the logo
and change the fill color to two shades lighter gray.

 5. Double-click the Orders button. The Button Setup dialog appears.

 6. From the Specify menu in the upper-right area of the dialog, choose the Orders layout.

With both buttons complete and functional, the next task is to create corresponding buttons on
another layout so that you can navigate back and forth by using the buttons in the footer. To replicate
the two buttons you’ve created so far and to complete the navigation button set, follow these steps:

 1. Select both buttons

 2. Note the left and top coordinates shown in the Object Info palette.

TIPTIP The left and top coordinates in the Object Info palette are identified by an arrow
symbol pointing left and an arrow symbol pointing up, respectively.

11_429006-ch06.indd 19711_429006-ch06.indd 197 3/25/09 7:18:27 PM3/25/09 7:18:27 PM

198

Introduction to Database DesignPart II

 3. Choose Edit ➪ Copy.

 4. Navigate to the Inventory layout.

 5. Choose Edit ➪ Paste.

 6. Enter the left and top coordinates (as noted before leaving the Orders layout) into the
Object Info palette and press the Enter key (on the numeric keypad). This step results in
the pair of buttons being positioned identically in both layouts.

 7. Edit the colors of the text and fill for both buttons on the Inventory layout so that the
lighter gray fill is on the Inventory button and the mid-gray fill on the Orders button, the
text on the Inventory button matches the color of the logo background, and the text on
the Orders button is white.

 8. Make two duplicates of the Orders button.

 9. Change the text on the duplicate buttons to Invoices and Contacts, respectively.

 10. Edit the button setup of the duplicate buttons to go to the layouts corresponding to their
names.

 11. Position the Invoices and Contacts buttons side by side to the right of the first two but-
tons on both the Invoices and Orders layouts.

 12. Copy the four buttons and paste them at the same location in the footers of the
Invoices and Contacts layouts.

 13. Ensure in each case that the button corresponding to the current layout has lighter gray
fill and colored text and that all the other buttons have mid-gray fill and white text.

With these steps complete, return to Browse mode and click your new buttons. You can now navi-
gate to the four main areas of your solution by using simple mouse clicks in the footer, as shown in
Figure 6.35.

Button scope and button commands
As you saw in the preceding exercise, creating buttons is not difficult. Moreover, although all four
of the buttons you’ve created so far use the Go to Layout command, you’ve seen that the Button
Setup dialog provides access to a great variety of commands.

FileMaker buttons are an interface tool and have no meaning outside the layouts where they reside;
they always act from the context of the layout where you place them. For some button commands —
such as the Go to Layout command — context is not critical, and the command can be executed
from anywhere in the file. Other commands, however, require access to the data structure of the file
and are therefore constrained to operate from the perspective of the layout (and the TO associated
with the layout).

11_429006-ch06.indd 19811_429006-ch06.indd 198 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

199

The Interface: Layout Mode 6

 FIGURE 6.35

The Inventory layout complete with navigation buttons in the footer to provide direct access to the
other main screens in the file.

The button as an object
Like other objects, buttons can be assigned an object name. The object name is separate from the
label you type onto the button and is only seen in the Object Info palette when the button is
selected in Layout mode.

TIPTIP Object names for buttons and all other objects are entered and edited via the
Object Name field at the top of the Object Info palette.

When you’ve assigned a button’s object name, scripts or buttons can select it automatically by execut-
ing the Go to Object command (supplying the relevant object name as the command parameter).

Similarly, you can include buttons in the layout tab order, along with fields, Tab Controls, and
Web viewers. When you add a button to the tab order, you’ll be able to select it by using the key-
board command(s) assigned to Go to Next Object for the object preceding the button in the tab
order.

When you selecte a button — either via the Go to Object command or via the keyboard — you
can execute it by pressing either Return or Space.

11_429006-ch06.indd 19911_429006-ch06.indd 199 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

200

Introduction to Database DesignPart II

The Web Viewer: Inviting in the World
FileMaker’s Web Viewer object enables you to incorporate Web browser capabilities within defined
areas of the layouts of your solution. In FileMaker 10, you can deploy a Web viewer to retrieve
online content from the World Wide Web, render HTML content stored on your computer’s drives
or on a local network, or display content directly from your database.

Setting up a Web viewer
Implementing a Web viewer on your layout is neither difficult nor time consuming. Simply click
the Web Viewer tool in the Status Toolbar in Layout mode and drag across an empty area in your
layout. When you release the mouse button, the Web Viewer Setup dialog appears.

The Web Viewer Setup dialog provides automated setup options for a number of useful Web
resources. If you know the URL of the location you want to display, however, you can select the
Custom Web Address option in the Choose a Website list and enter the desired URL directly into
the Web Address field in the lower part of the dialog (see Figure 6.36).

 FIGURE 6.36

Specifying an Internet location (URL) in the Web Address field of the Web Viewer Setup dialog.

11_429006-ch06.indd 20011_429006-ch06.indd 200 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

201

The Interface: Layout Mode 6

After setting up a Web viewer in this way, you can view the Web page content in your layout in
Browse mode. Clicking hyperlinks enables you to navigate to other sites, download files, and so
on, just as you do in a browser.

CROSS-REFCROSS-REF You can find additional information about alternative configurations and uses for
Webviewers in Chapter 10.

Controlling a Web viewer
Although a Web viewer, as outlined in the preceding section, provides the direct Web surfing
capability such as you experience in a Web browser, it does not automatically provide the various
standard controls for operations such as back, forward, refresh, and so on. If you require addi-
tional functions of that kind, you have to build your own controls.

FileMaker provides a button and script command — Set Web Viewer — configurable in various
ways to provide either manual or automatic control of a Web viewer. To direct FileMaker to con-
trol a specific Web viewer (it’s possible to have more than one on the same layout), you must first
assign an object name to the Web viewer. You can then enter the Web viewer’s name into the
Object Name field when configuring the options for the Set Web Viewer command, as shown in
Figure 6.37.

 FIGURE 6.37

Setting options to control a Web viewer with the Set Web Viewer command.

11_429006-ch06.indd 20111_429006-ch06.indd 201 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

202

Introduction to Database DesignPart II

Complementary data concepts
The value of including Web content within your databases is greatest when it directly supports and
extends the core functionality of your solutions — such as providing maps to your supplier’s dis-
patch stations or retrieving catalog entries and prices for new products. In other words, data and
images from the Web can complement and enrich your solution.

If you have your own organization or business, you’re probably publishing key information on a
public Web site of your own, keeping your clients, customers, students, patients, or constituents
informed. Web viewers provide you with an excellent opportunity to view your organization’s
public information and your internal data side by side, placing the information you need at your
fingertips. For example, you may want to show a picture (from the Web) of each product in your
inventory system.

Reports and Data Output
This chapter has focused primarily on ways to make your solution functional and its interface
operationally efficient. Consequently, the layouts and examples provided have been directed
toward creating screens rather than useful printed output. However, while databases must first
enable you to add data, it is equally essential that you retrieve and present data efficiently.

I encourage you to consider making separate screens for printing information from your solution.
That way, you don’t have to compromise screen designs to accommodate the limitations of paper
sizes and printer capabilities — and your letters, lists, and summary reports are not constrained by
screen ergonomics.

Considerations for printed output
Most printed matter — from business correspondence to boardroom reports — is printed in black
(or dark) ink on white (or at least light) stationery. With a few exceptions, business documents are
preferred in portrait orientation, and efficient use of space on the page (packing a lot of informa-
tion in) is mandated.

In each of these respects, the requirements for printed output are at odds with the things that make
good and useable screens. Screens are typically landscape in orientation; judicious use of color is
beneficial, and it’s preferable to avoid packing the information too densely.

Creation of good reports is frequently an exercise in efficient organization of large amounts of
information into compact formats, using clean lines and simple (but elegant!) presentation.

Using fonts
Modern printers are capable of much higher resolutions than computer monitors. So, although
many people begin to complain of eye strain when reading screen lettering at sizes of 10 points or

11_429006-ch06.indd 20211_429006-ch06.indd 202 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

203

The Interface: Layout Mode 6

less, smaller font sizes are readily accepted in most printed formats. Moreover, the most readable
screen fonts are well spaced, rounded, and generally sans serif, whereas compact serif fonts work
best for printed output.

I’ve previously suggested Verdana as a good font for general purpose use, and it’s well suited to
onscreen data display. For some kinds of reports, Verdana also works well, but substitutions with
Trebuchet, Times, or other comparable fonts may be appropriate for more densely packed report
formats.

Whatever your choices of font, I offer two essential rules:

n Be consistent and moderate. Try to keep to one or two fonts throughout a solution
(logos and occasional special headings aside) and make sparing and judicious use of
alternate faces and weights (italic, bold, and so on).

n Ensure that whatever fonts you choose are available on every computer that the
solution is to be used on. If a font is not available, font substitution occurs, and its
effects can make an appalling mess of your carefully constructed layouts and reports.

Finally, be aware that fonts (even the same font family) are rendered slightly differently (including
different size) on different operating systems and can even vary depending upon the font supplier.
Typically, fonts appear slightly larger in Windows than they do on Macintosh, so you may need to
allow for this in your screen designs.

CROSS-REFCROSS-REF I discuss issues related to developing for cross-platform deployment in greater
detail in Chapter 10.

Page sizes and page setup
In most parts of the world, page sizes are standardized — unfortunately, to different standards. In
Australia, in Japan, and throughout Europe, the International Standards Organization (ISO) A4
standard is customary, while in the United States, the American National Standards Institute
(ANSI) letter format holds sway. With globalization and the increasing use of the Internet, it’s no
longer safe to assume that all users of a solution have access to the same kinds of stationery. I rec-
ommend that you make a margin allowance to ensure that your reports and letters can be accom-
modated on an alternative page format should the need arise.

Meanwhile, FileMaker Pro is accommodating with regard to the many printers, printer drivers, and
stationery formats — it provides you with options to save page specifications and other settings in
scripts that automatically generate your reports.

TIPTIP If you frequently switch among different paper sizes or orientations while printing
manually, consider making buttons to restore the settings for particular situations

(save sets of Page Setup settings in a button command configuration). In this manner, a single
mouse-click can (re)set the appropriate configuration for you.

11_429006-ch06.indd 20311_429006-ch06.indd 203 3/25/09 7:18:28 PM3/25/09 7:18:28 PM

204

Introduction to Database DesignPart II

Paper output versus PDF or Excel output
I’m not about to break into song about the dream of the paperless office — but I would neverthe-
less like to encourage you to save a few trees by taking advantage of FileMaker’s excellent support
for generation of data and reports direct to widely used formats such as Excel and PDF.

The capability to index and store documentation in electronic form is not only fast and ecofriendly,
it also saves you money, effort, and storage space. You can compress and store an entire filing
drawer of text documents on a single DVD. You can store terabytes of information in economical
and reliable hard drives. Further, when the inevitable time arrives where you need to update your
documentation, even more trees survive.

If you need any more encouragement, we note that FileMaker enables you to create a document
and automatically attach it to an e-mail — all as part of a single process. With a little thought and
planning, you can design your solutions to take fullest advantage of these capabilities.

CROSS-REFCROSS-REF More detailed coverage of techniques for generating reports and summaries in
FileMaker is provided in Chapter 10.

Composite PDFs from multiple layouts
Layouts are the face of your data. When printing or viewing data, you’re accessing the underlying
tables through a layout. Although layouts are very flexible, they constrain you to a specific perspec-
tive or vantage point within the structure of your solution. In some cases, you want a report to
combine content from several different vantage points, so you produce reports that combine pages
or sections from different layouts.

TIPTIP FileMaker Pro provides the capability to append pages to an existing PDF file via
script — so you can produce compact documents combining elements from any

part of your solution.

CROSS-REFCROSS-REF In Chapter 13 you can find a detailed discussion about the process of generating
composite PDF reports with FileMaker’s scripting engine.

In the last two chapters, you’ve seen and used most of the basic solution-building techniques,
including creating relationships to bring data together from different tables. You’ve seen some indi-
cations of the power at FileMaker’s core. Now it’s time to delve more deeply into the heart of the
database and take a closer look at the workings of the Manage Database dialog, where the structure
of your solutions takes shape.

ON the WEBON the WEB The example database we’ve been developing, as it exists at this point, can be
found on the companion Web site at www.wiley.com/go/filemaker10bible.

11_429006-ch06.indd 20411_429006-ch06.indd 204 3/25/09 7:18:29 PM3/25/09 7:18:29 PM

205

FileMaker presents you with different interfaces to perform different
tasks — and from the user’s perspective, Browse mode, Find mode,
and Preview mode cover most requirements. However, when you’re

in the process of developing or modifying your database, you’ll spend much
of your time in Layout Mode (discussed in Chapter 6), in the Manage Scripts
and Edit Script dialogs (see Chapter 8), and in the various tabs and panels of
the Manage Database dialog. The Manage Database dialog is thus one of the
three main developer centers within FileMaker and is where the plans and
specifications for your database reside, allowing you to build and edit the
tables and relationship structures that support your data.

Creating a database is a design process that involves a series of decisions,
each of which impacts the subsequent operation of the solution — affecting
its efficiency as well as the development time and complexity of the project.
A few good decisions early in the development cycle may save you a great
deal of stress and frustration later on.

FileMaker Pro is built around principles that take care of much of the tedium
of the database design process. FileMaker anticipates your needs in a number
of ways — from automatic creation of an initial default Table Occurrence and
layout for each table you create, to the automatic update of object names (for
example, field and table names) throughout your solution’s code whenever
you edit them. In these and a variety of other ways, FileMaker can be consid-
ered to be a rapid application development (RAD). As part of the commitment
to RAD principles, a simple change of your solution’s field or table definitions
in the Manage Database dialog flows on throughout your solution’s code and
interface, so references to the field in labels on layouts, in scripts, and even in
custom function definitions will be automatically updated, saving you what
would otherwise be a great deal of painstaking labor.

IN THIS CHAPTER
Organizing data with tables

Creating data structure with
fields

Doing basic calculations

Understanding the
Relationships Graph

Working with External SQL
Data Sources

Looking at data relationships

The Structure: The Manage
Database Dialog

12_429006-ch07.indd 20512_429006-ch07.indd 205 3/25/09 7:20:54 PM3/25/09 7:20:54 PM

206

Introduction to Database DesignPart II

Notwithstanding the various ways FileMaker anticipates your actions and makes various parts of
the process straightforward or even easy, the decisions you make when creating and updating the
structure of your database will require thought and skill because they have deep implications for
the ways your solution will work (or fail to work). In this chapter, many of the subtleties of the
Manage Database dialog are laid bare.

Working with Tables
Database tables are part of the organizing principle for your data. When you have things to orga-
nize, you group them together, first into broad (but clear) categories and then into finer categories.
All your clothes go into a certain closet, but within that closet, the socks go into a certain drawer,
the handkerchiefs into another. Tables provide a receptacle for information about a particular kind
or class of things, allowing you to establish hierarchies of order and clarity as a framework for
management of the information in your solution.

Table concepts: A room with a view
A good way for you to think about structures for organizing data is to consider how other familiar
things around you are organized. For example, houses are comprised of rooms in much the same
way as database solutions may incorporate a number of tables. The various rooms in a house have
different purposes — the kitchen, the laundry, the bedroom, and so on — and some rooms are
connected to others by corridors, doors, serving hatch, and the like.

Just like the rooms of a house, the tables of your solution can be connected to each other so that from
the perspective of one table, you have access to related data from another table. FileMaker provides a
Relationships Graph where you can manage these data connections to and between the tables you
define in your solution. Moreover, FileMaker allows you to place multiple occurrences of each table
onto the Relationships Graph — so they operate like multiple doors or windows into a given room,
each providing a different path to the data contained there, or, if you will, a different view.

The tabs of the Manage Database dialog are where you create the rooms (tables) for your database
and the Relationships Graph is where you add doors and windows to enable you to see from one
to another and to navigate between them.

Adding, deleting, and renaming tables
When working with the FileMaker Relationships Graph, you’re dealing with TOs that provide
views into your tables. Each TO is a specific view (like a window or a doorway) into a particular
table. Just as you may require several different points of access to a room in your house (to enable
entry from different places or for different purposes), you can add multiple TOs of the same table
and position them differently in the logical structure of your database. The Manage Database dialog
provides you with a Tables tab to create, modify, or delete tables and a Relationships tab where
you create, modify, or delete TOs.

12_429006-ch07.indd 20612_429006-ch07.indd 206 3/25/09 7:20:55 PM3/25/09 7:20:55 PM

207

The Structure: The Manage Database Dialog 7

NOTENOTE You can find out how many TOs of each table appear in the Relationships Graph
by counting them in the Occurrences in Graph column on the Tables tab of the

Manage Database dialog. If you have numerous occurrences, you may need to enlarge the
dialog to see them all. Alternatively, you can select one of the Table Occurrences in the
Relationships Graph and type Ô+U or Ctrl+U to select all TOs with the same source table and
then count the selected TOs.

The Inventory example file developed over the course of the previous two chapters has six
tables defined and ten TOs, as you can see in the Tables tab of the Manage Database dialog shown
in Figure 7.1. To access a fresh copy of the in-progress Inventory example at the end of the pre-
ceding chapter (to follow along with the examples here), download the Inventory_Ch6.fp7
file from the book’s companion Web site.

 FIGURE 7.1

Create, remove, and rename your tables in the Manage Database dialog’s Tables tab.

The Tables tab of the Manage Database dialog has relatively few controls, but it provides you with
some essential data about the basic structure and content of your solution. Among the information
the Tables tab makes available is the list (by name) of each table’s occurrences in the Graph that
appears in the right-hand column of the list area. This information is not immediately apparent from
looking at the Graph itself, nor from viewing layouts or dialogs elsewhere in your solutions. In addi-
tion, the Tables tab lists the tables’ names, their source (shown as FileMaker if the table is stored in
the current file, or as the name of the DSN from which the data is sourced if the table is external),
plus summary details regarding the number of fields and records in each table. (If a table is external,
its entry will be italicized, and the number of records will appear only if the table has been cached by
FileMaker. Otherwise, a question mark will appear in place of the number of records.)

12_429006-ch07.indd 20712_429006-ch07.indd 207 3/25/09 7:20:55 PM3/25/09 7:20:55 PM

208

Introduction to Database DesignPart II

NOTENOTE If you have access to a copy of FileMaker Pro 10 Advanced, you can make use of the
Database Design Report (DDR) option to obtain data about the structure and con-

tent of your solution. The DDR collects all the information about your solution — tables, fields,
relationships, scripts, and so on — into one consolidated report. (See Chapter 18 for additional
details.)

In the Manage Database dialog’s Tables tab, you can change the width of the columns by dragging
the column joins to the left or right. At the upper right, you’ll find the View By pop-up menu, from
which you can choose the presentation order for tables listed in the main data panel. You can
choose to show tables in creation order, alphabetically by table name, or in a custom (user-
defined) sequence. To specify a custom order, you can use the handle symbols at the left of the
table names to drag the corresponding line to a new position in the list. (Doing so automatically
changes the setting in the View By menu to show it’s a custom order.)

In Chapter 5, I provide details of the process for creation of a new table: You type a table name
into the text box provided below the main list of tables and then click the Create button to the
right of the text box. To change the name of a table, first select it (the selected table’s name will
appear in the Table Name field below the list of tables), modify the name in the Table Name
field, and click the Change button. (Note that the Change button is dimmed except when a name
edit is waiting to be saved.) Excising a table is equally simple: Just click on it in the list to select it
and then click the Delete button at the lower right. (You’ll be prompted to also remove occurrences
in the Graph of tables you’re deleting, which you’ll generally want to do unless you intend to
assign them to a different table — for example, a table in another file.)

When you make a change to the name of a table, FileMaker Pro updates both direct and indirect
references to it throughout the current file. For example, the names of associated TOs (either with
the same name as the table or the same name with an appended number) will be updated to reflect
the edited table name. Similarly, if you have layouts in the file that are associated with those TOs
(and have exactly matching names), they, too, will be renamed automatically. Moreover, if you
have references to the TOs that have been renamed (such as in calculations or script code), they,
too, will be automatically updated to show the revised naming.

NOTENOTE In some cases, you may not want cascading name changes throughout elements in
your solution. If you edit the names of the TOs so that they no longer exactly match

the source table name, FileMaker doesn’t apply any automatic changes when you change a table
name.

Moving tables between files
For a variety of reasons, you may find yourself wanting to move one or more tables between
FileMaker files. You may want to do so because you’ve created a table that would be useful in more
than one solution — or because you have a solution that has previously been in multiple files (for
example, a solution migrated from an earlier version of FileMaker), and you want to consolidate
the tables in a single file (or in a smaller number of files).

12_429006-ch07.indd 20812_429006-ch07.indd 208 3/25/09 7:20:56 PM3/25/09 7:20:56 PM

209

The Structure: The Manage Database Dialog 7

Assuming that you have access to a copy of FileMaker Pro 10 Advanced, one option available to
you is to open two files simultaneously, choose a source table in the tables tab of one of the files’
Manage Database dialog, and then choose Edit ➪ Copy (Ô+C or Ctrl+C). Then navigating to the
Tables tab of the Manage Database dialog for the target file, choose Edit ➪ Paste (Ô+V or Ctrl+V).

FileMaker Pro Advanced also provides a table import capability in the Tables tab of the Manage
Database dialog. This feature adds the table structure (fields and all their calculations validation
options and so on) but doesn’t import data, relationships, or any other associated elements.

Whether or not you’re using FileMaker Pro Advanced, you have the option of importing a table
from one solution into another by using the File ➪ Import Records ➪ File command, as described
in the following section.

Importing tables
Although nowhere near as efficient as copying and pasting, the process of importing a table from
another FileMaker file does more than replicate the source table. When you import a table into a
different file by choosing the File ➪ Import Records ➪ File command, you simultaneously add part
or all of the table’s field structure and its data contents. As with other kinds of import procedures
in FileMaker, if you establish a found set in the frontmost window of an open source file, only the
found records will be imported.

NOTENOTE When adding a table to the destination file, FileMaker always creates the entire
table. (All fields from the source table are created in the new destination table.)

However, you can use the Import mapping process to choose which fields to import data into.

CAUTION CAUTION Importing a table is an irreversible step; you can’t undo it. Before undertaking this
procedure, make sure that you have a recent backup copy of your solution.

Following is the procedure for importing a table from the Inventory example file (from the pre-
ceding chapter) into a new empty database file:

 1. Locate your copy of the Inventory example file named Inventory_Ch06.fp7 (if
necessary, download it from the book’s companion Web site — you’ll find the URL and
download details in Appendix B) and make a note of the path to the folder where you’ve
stored it.

 2. Choose File ➪ New Database and then (assuming the QuickStart screen is enabled) select
the option to create an empty database.

 3. Name the new database MyItems.fp7 (for the sake of this example). When you click
Save, the Manage Database dialog appears. Note that by default, FileMaker has created an
empty table with the same name as the file (MyItems).

 4. Click OK to dismiss the Manage Database dialog.

 5. Choose File ➪ Import Records ➪ File. In the Open File dialog that appears, choose the
Inventory_Ch06solution you located (or downloaded) in Step 1 and then click
Open. The Import Field Mapping dialog (see Figure 7.2) appears.

12_429006-ch07.indd 20912_429006-ch07.indd 209 3/25/09 7:20:56 PM3/25/09 7:20:56 PM

210

Introduction to Database DesignPart II

 FIGURE 7.2

Specify what fields to import data from (if any exist in the source file) here.

 6. Choose New Table (“Inventory”) from the Target pop-up menu. The Target Fields col-
umn now includes all the fields from Inventory table in the Chapter 6 example file,
with each source field pointing to its same-named Target field in the new table that is
to be created.

 7. Click Import. The Import Options dialog (see Figure 7.3) appears.

 After you click the Import button in the Import Options dialog, FileMaker creates a new
table called “Inventory” in the MyItems.fp7 file, populates it with data from the
Inventory table in the Inventory_Ch06.fp7 solution and displays a confirmation
dialog, as shown in Figure 7.4.

 FIGURE 7.3

You can specify additional import options in the Import Options dialog.

12_429006-ch07.indd 21012_429006-ch07.indd 210 3/25/09 7:20:56 PM3/25/09 7:20:56 PM

211

The Structure: The Manage Database Dialog 7

 FIGURE 7.4

FileMaker provides a confirmation via the Import Summary dialog.

 8. Click OK on the Import Summary dialog to complete the import process.

If you were using the procedure described in the preceding steps to commence development of a
new solution, the default table added to the file in the third step would presumably be superfluous
to your needs. However, it’s a simple matter for you to delete the default table and be left only with
the newly imported Inventory table.

An important part of the process of adding a table to your solution via import is that FileMaker
doesn’t simply add fields with the same names, but imports all the configurations and specifica-
tions for each field, including its data type (number, text, date, time, and so on), its Auto-Entry,
validation and storage settings (including indexing settings), and, in the case of calculation fields,
formulae. With all these characteristics preserved, plus with the data (if any) from the source table
also imported into your file, you have in effect completely transferred the table between files. As
shown in Figure 7.5, this procedure results in the Inventory table being transferred in its
entirety into the “MyItems” file.

In cases where an existing calculation field imported references fields in other tables, FileMaker
will look for fields with the same TO and field naming in the file to which you’re importing. If it
finds them, then it will preserve the calculation intact. Where a calculation field references fields
(in other tables) that aren’t present in the file into which you’re importing the table, the calculation
formulae will be enclosed within comment braces, and the calculation will not function until you
make a manual correction (to remove the comment braces and update the field references to ones
that are valid within the table’s new location).

CROSS-REFCROSS-REF For further details regarding code commenting and the use of comment braces,
refer to Chapter 12.

Each element of a FileMaker file — including fields and tables — is assigned its own internal ID
within your solution. When a table is being imported (or copied and pasted) between two different
files, the internal IDs of fields are preserved after import. So, for example, a field that had an inter-
nal ID of 341 in the original file still has the ID 341 in the new file to which the table has been
imported. The preservation of field IDs is important because when links are established between
files, FileMaker uses the internal IDs to keep track of elements in other files — so if you re-create
a table in a new file, the chances are that the IDs will not match (for example, if the fields aren’t

12_429006-ch07.indd 21112_429006-ch07.indd 211 3/25/09 7:20:56 PM3/25/09 7:20:56 PM

212

Introduction to Database DesignPart II

created in the same order). Because of the way FileMaker handles the assignment of internal IDs
during transfer of structure, the ability to import tables enables you to build new files that will
work interchangeably within an existing multi-file solution, with field references resolving cor-
rectly between files.

 FIGURE 7.5

The Manage Database dialog showing the fully configured Inventory table after import into the brand
new “MyItems” file.

TIPTIP The internal IDs that FileMaker assigns to each field you create are allotted sequen-
tially, just like the Auto-Enter ID fields created in this book’s Inventory example.

In general, you don’t need to worry about Field IDs, because FileMaker manages them behind
the scenes. However, when accessing data from outside the current file, FileMaker resolves all
references and relationships by using internal IDs.

Specifying Fields
At one time, most database systems required that you allocate a specific number of characters for
each field. If field contents were shorter than the allocated length of the field, the difference was
made up in spaces — and conversely, if anyone needed to enter a value that was longer than the
allocated field length, they were out of luck. Worse still, with such systems, adding a field into the
mix after the table was in place was a major headache. Fortunately FileMaker, along with most cur-
rent database technology, is far more flexible than this, providing for fields of variable size and
allowing you to add or remove fields with ease at any time.

12_429006-ch07.indd 21212_429006-ch07.indd 212 3/25/09 7:20:56 PM3/25/09 7:20:56 PM

213

The Structure: The Manage Database Dialog 7

Adding, deleting, and renaming fields
Using a technique similar to the one for adding, deleting, or renaming tables in your solution,
FileMaker lets you make changes, deletions, and additions to the fields within each FileMaker
table. Note, however, that you must have access to the file where a table resides in order to make
changes to either the table or the fields it contains. (You can access the table’s data from other files,
but changes to the table itself must be made from within the file that accommodates it.)

To add a field to an existing table:

 1. Navigate to the Fields tab of the Manage Database dialog and choose the table in question
from the drop-down menu at the upper left.

 2. Enter a name in the Field name box (below the list of fields).

 3. Choose a field type from the adjacent drop-down menu and then click the Create button.

To edit an existing field (for example, to change its type or modify its name):

 1. Select the field in the field list.

 2. Make changes in the type menu and/or name box below the list.

 3. Click the Change button.

Similarly, to remove a field permanently from the table, select it in the list and then click the Delete
button. (FileMaker will present a confirmation dialog before removing a field from your database.)
If you remove a field, any data it previously contained throughout your solution will be lost.

NOTENOTE The fields in an External SQL Data Source are not available for modification (you
can’t rename or delete them) from within FileMaker — such changes must be made

by using utilities provided by the source (SQL) database application. The exception is that you
can add summary and calculation fields that exist only in your solution and not in the external
file. Moreover, if you delete fields appearing in a SQL table in FileMaker, they’re removed from
the FileMaker view of the table, but not from the external database. (You can reinstate fields
deleted from a shadow table by clicking the Sync button that appears above the shadow table
field list in the Manage Database dialog.)

When you rename a field in FileMaker, a lot of useful things happen behind the scenes. FileMaker
helps you out by automatically updating all references in the Relationships Graph, scripts, calcula-
tions, and any corresponding layout labels to reflect the field’s new name. However, in cases where
you’ve modified a field’s layout label or moved it to a different part of the layout (so that it’s no
longer adjacent to the field box to which it relates), FileMaker no longer keeps track of the item,
and it won’t be updated when you change the corresponding field name.

Field deletion can occur either because you delete a field in the current FileMaker file (using the
Delete button on the Fields tab of the Manage Database dialog) or because you delete the table in
which a field resides (using the Delete button on the Tables tab of the Manage Database dialog), in
which case, all the table’s fields also will automatically be deleted.

12_429006-ch07.indd 21312_429006-ch07.indd 213 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

214

Introduction to Database DesignPart II

FileMaker disallows the deletion of any field referenced in a calculation or summary field within
the same table or within a calculation determining privileges for the table. In such cases, to delete
the field, you must first modify or delete the calculation(s) and/or summary field(s) referencing the
field. When the reference is no longer present, you can successfully delete the field. If a field you
want to delete is referenced in a script or used as a key field for a relationship, FileMaker posts a
warning dialog (citing the first script or relationship depending in the field) but nevertheless allows
you to proceed, if you want. If you disregard the warning and delete a field used in one or more
scripts or relationships, the relevant script(s) or relationship(s) will not work as intended until you
manually repair them. Finally, if a field you delete is referenced in a calculation in another table or
file (including within a script in another file), FileMaker will neither prevent deletion nor post a
warning, but external references to the field will be rendered inoperable.

When you delete a field that isn’t referenced locally (within the same table) or when you delete a
table, FileMaker posts a confirmation alert dialog, but doesn’t prevent you from proceeding.
However, if a field you have deleted on your layouts has references to it or in calculations, scripts,
button calculations, tooltips or elsewhere throughout your solution, they will display a placeholder
<Field Missing> flag. Moreover, any calculations referencing missing fields will (typically)
return null or inaccurate results (the same is true for summaries), while scripts that refer to missing
fields may produce undesired and perhaps unpredictable results.

Understanding field/data types and their significance
One of the most significant attributes of FileMaker Pro fields is their data type, which determines
the kind of information the field can store, the format for storage, and various other aspects of the
field’s behavior. Choosing the correct type for a field ensures that FileMaker accepts, presents,
indexes, and stores the data appropriately, while also determining what you’re able to do with the
data. For example, if you designate a phone number field as being numeric, leading zeros may be
ignored in some instances (such as sorting), and non-numeric characters common in phone num-
bers (such as spaces, dashes, or alphabetic sequences) may not be handled or displayed appropri-
ately. Phone numbers are not really numbers!

The data type of a field is determined by the Type pop-up menu below the fields list on the Fields
tab of the Manage Database dialog, shown in Figure 7.5. The Type pop-up menu provides eight
options, two of which are for derived data (calculation and summary fields), and the remainder of
which represent data storage formats. The available field types are as follows:

n Text fields can store any kind of alphanumeric data, including anything you can enter
directly via the keyboard (up to 1,000,000,000 characters).

n Number fields can also store alphabetic characters and may be referenced in some text
calculations. However, numeric indexing protocols are applied, so searching for alphanu-
meric strings will present difficulties. Although number fields can store up to a billion
characters, numeric values comprising up to 800 digits on either side of the decimal
point (up to 1,600 digits in total) are supported and indexed. Moreover, to be indexed
and referenced appropriately, values stored in number fields must be all on one line.

12_429006-ch07.indd 21412_429006-ch07.indd 214 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

215

The Structure: The Manage Database Dialog 7

n Date fields are stored internally as numeric data and can therefore be employed in calcu-
lations to determine the number of days between events. Date fields are restricted to val-
ues between 1 January 0001 and 31 December 4000 ce. Values stored in Date fields will
sort chronologically, as opposed to dates stored in Text fields, which are subject to alpha-
numeric sorts. By default, Date fields display according to the date formats determined by
the settings on the Text tab of the File Options dialog (that is, in line either with the cur-
rent system settings or the file defaults established at the time of file creation). Data entry
must be in the default date format as specified in File Options. However, you can specify
alternative display formats (for example, by choosing Format ➪ Date in Layout mode).

NOTENOTE If you enter dates in an abbreviated format (that is, with fewer than eight digits and
two separators), FileMaker makes certain assumptions about what date you’re refer-

ring to. The first assumption is that entering only a single number is invalid. However, two num-
bers separated by a forward slash or period (provided they fall in the 1..12 and 1..31 ranges,
respectively — or vice versa in most countries outside the United States) are interpreted as specify-
ing a date in the current year. Similarly, if you enter a two-digit year, FileMaker makes an assump-
tion about which year you’re referring to and converts your input into an imputed four-digit year.

n Time fields contain a time of day (or a duration) in hours, minutes, and seconds, separated
by colons. Times can be stored with a resolution of up to one microsecond. To have a time
field display a duration greater than 24 hours, choose Format ➪ Time in Layout mode for
that field and specify either Leave Data Formatted as Entered or 24-Hour Notation.
FileMaker stores times internally as numeric data (in seconds since midnight), so they, too,
can be used in calculations (for example, to determine the interval between two times).

TIPTIP If you enter a single number, FileMaker treats the entry as an hour value; two
colon-separated numbers are treated as hours and minutes. To enter a minute

value, the leading 0 for hours (and separating colon) is required. To enter a seconds value, the
leading 0s for both hours and minutes are required.

n Timestamp fields combine a date and time, separated by a space. You saw examples of
Timestamp fields in the Inventory database begun in Chapters 5 and 6. The respective
parts of a Timestamp value follow the Date and Time input requirements (except that the
time portion must be between 00:00:00 and 23:59:59.999999). FileMaker stores time-
stamps as a numeric value representing the number of seconds elapsed since 12:00:00
a.m. on 1 January 0001, so you can use these values, too, in computations to determine
the duration between two times on given dates.

n Container fields are the catchall for a variety of types of nontextual data. You can store
graphics, movies/multimedia (QuickTime supported file formats), sounds you record in
FileMaker Pro, or an arbitrary disk file. In Windows machines, you can also store Object
Linking and Embedding (OLE) objects.

n Calculation fields, the first of two derived data field types, consist of a formula specified to
returning one of the first six data types (including Container). Calculations are defined in
the Specify Calculation dialog. (See the “Basic Calculations” section, later in this chapter.)

12_429006-ch07.indd 21512_429006-ch07.indd 215 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

216

Introduction to Database DesignPart II

n Summary fields bear some similarities to Calculation fields, but instead of acting on val-
ues in a single record, they perform their calculation on a group of records (that is,
records in the current found set, or the current related set when evaluated from a layout
based on another table) in the table where they reside. Summary fields return aggregate
results over the current record set (found or related), such as sum, average, count, or
standard deviation.

FileMaker supports indexing of text, number, date, time, and timestamp field types. However, the
indexing protocols differ according to type. In particular, text fields are indexed and sorted accord-
ing to conventions that are not applicable to other field types. Number, date, time, and timestamp
fields are all numeric in basis, but FileMaker translates date, time, and timestamp values into
appropriate formats for display.

CROSS-REFCROSS-REF For additional detail regarding field indexing, refer to the section titled “Storage
and indexing options,” later in this chapter.

Auto-Entry options
As demonstrated in Chapter 5, situations arise where you want some fields to automatically
acquire a value when new records are created — serial numbers, account names, and creation/
modification dates are examples. In these cases, I chose to invoke the Prohibit Modification of
Value during Data Entry option because a user override of such values would compromise the
integrity or purpose of the data. Another common example benefiting from Auto-Entry is estab-
lishing a default value for a field — for example, initializing the State value in a contact record
where most of your customers live in the same state. In this situation, you want users to be able
to override the initial value, so the Prohibit Modification option is not appropriate. FileMaker
Pro offers you great flexibility when specifying Auto-Entry values through the Field Options dia-
log’s Auto-Enter panel (shown in Figure 7.6). You access the Field Options dialog by selecting a
field in the Manage Database dialog’s Fields tab and clicking Options (or by double-clicking the
field entry).

NOTENOTE I’m happy to report that I love the power and flexibility that FileMaker’s Auto-Enter
options provide — but to be frank, I also have to admit that I’m not thrilled with the

interface. The Auto-Enter panel presents you with seven checkboxes grouped together. In both
Mac OS and Windows, a checkbox grouping implies that you can select multiple items, but
that’s not what’s on offer here; the first five checkbox options are mutually exclusive, as are
the last two (that is, you can select up to two options — one of the first five and/or one of the
last two).

After you get over your puzzlement at the way the Auto-Enter interface works, you can configure
FileMaker to auto-enter values representing the record’s creation or modification date, time, or
timestamp; generate a serial number; populate a field with the value from the last record visited or
with a static default value; calculate a default value; or look up a value from a record in another
table. Here’s how the Auto-Enter options work:

12_429006-ch07.indd 21612_429006-ch07.indd 216 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

217

The Structure: The Manage Database Dialog 7

 FIGURE 7.6

The Options for Field dialog’s Auto-Enter panel.

n Select the Creation checkbox and choose from the associated pop-up menu to have
FileMaker automatically place the date, time, timestamp, username (a name assigned to
the instance of FileMaker on the current workstation), or account name (the user’s login
credential for the current file) active at the time the user creates the record.

n Select the Modification checkbox to have FileMaker enter the date, time, timestamp,
username, or account name active when any field in the record is modified.

n Select the Serial Number checkbox to have FileMaker generate automatic, incrementing
numeric, or alphanumeric serial values. When an alphanumeric serial format (that is, a
serial number incorporating both letters and numbers) is specified, only the rightmost
numeric portion of the value is incremented.

n Select the Value from Last Visited Record checkbox to have FileMaker initialize the field
with the previously viewed record’s value for the field. For the purposes of this feature, vis-
ited means entering a record (for example, by placing the cursor into a field — merely
scrolling past a record or viewing it does not qualify). Moreover, when a file is closed, the
last record visited isn’t saved, so if a record is created on first opening a file (before visiting
any records), the value from last visited record’s Auto-Entry option will return a null result.

n Select the Data checkbox to have FileMaker place a default value in the field each time a
new record is created— for example, when entering patient data for a local hospital in
Dallas, you probably want the State field to default to Texas. Type the default value in the
text box next to the Data checkbox.

12_429006-ch07.indd 21712_429006-ch07.indd 217 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

218

Introduction to Database DesignPart II

n Select the Calculated Value checkbox to have FileMaker compute a value based upon
other field values, system variables (for example, current computer’s IP Address), constants,
or any mix thereof, as in the Inventory example’s various ID and line total fields.

NOTENOTE By default, the Do Not Replace Existing Value of Field (If Any) checkbox is selected.
When this option is selected, changes the user makes to the auto-entered value persist.

If the checkbox is deselected, the field value will be overwritten if values it depends on change.

n Select the Looked-Up Value checkbox when you want FileMaker to retrieve and store a
value from a field in a related TO.

Field validation options
Your design goal may be to ensure that the data users enter into a field meets specified require-
ments, such as determining that a Social Security number is comprised of nine digits (with separa-
tors after the third and fifth digits); that product attributes, such as color or size, conform to
accepted standards (and are spelled correctly); or that product sale quantities do not exceed avail-
able stock. There are many such possibilities, depending on the nature of your solution and the
rules of the business it serves.

As shown in Figure 7.7, FileMaker provides a broad spectrum of validation capabilities in the
Options for Field dialog’s Validation panel.

 FIGURE 7.7

The Validation panel of the Options for Field dialog.

12_429006-ch07.indd 21812_429006-ch07.indd 218 3/25/09 7:20:57 PM3/25/09 7:20:57 PM

219

The Structure: The Manage Database Dialog 7

Here is a brief description of the options you’ll find on the Validation panel:

n The Validate Data in This Field section provides you with two radio buttons and a
checkbox that enables you to determine when validation occurs and whether it’s to be
strictly enforced.

n The Only during Data Entry radio button (the default) enables you to configure
FileMaker to validate the data only when the data is entered directly by the user (but
not, for example, when data is imported or modified by a script).

n The Always radio button tells FileMaker to also validate imported data and scripted
field modifications. When this option is selected, imports will ignore records that
don’t satisfy validation criteria, and scripts will be prevented from committing records
with invalid data (and may fail or otherwise malfunction unless appropriately coded to
deal with this condition).

n The Allow User to Override during Data Entry checkbox (selected by default) spec-
ifies whether enforcement is absolute (that is, FileMaker will prevent the modified
record from being committed unless the criteria are met) or optional (where FileMaker
warns the user but permits the user to instruct FileMaker to proceed with the
requested change anyway).

CAUTION CAUTION The validation options fall into two broad groups: those that apply at the field level,
such as Strict Data Type or Member of a Value List and so on, and those that apply

at the record level (specifically Validated By Calculation and Not Empty). Whereas script or
import actions that attempt to make an invalid modification to a field with a validation rule that
operates at the field level will fail and other changes to the record will proceed unhampered,
modifications that fail record level validation will result in the record either being skipped (dur-
ing an import process) or being unable to commit (during a script). When Validate Always is
selected and a record can’t be committed because a record level field validation rule is violated,
not even the Commit Records [Skip validation] command will permit the record to be
committed.

n The Require section is where you indicate specific validation rules and requirements.

n Strict Data Type enables you to specify that you want the data to be Numeric Only
(useful with Number fields), 4-digit Year Date to only allow entries having a millen-
nium compliant year format, or a Time of Day to accept only a valid time value (that
is, no durations, or at least none of 24 hours or greater). You can choose one of these
three options from the associated pop-up menu.

n Not Empty allows you to require that a value be present in the field. For example, the
Inventory table’s Name field in the book’s example Inventory solution is an
example of a required field.

n Unique Value and Existing Value are mutually exclusive, self-explanatory options.
Note that both these options use the field’s index to determine that the requirement is
satisfied during data entry.

12_429006-ch07.indd 21912_429006-ch07.indd 219 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

220

Introduction to Database DesignPart II

n Member of a Value List allows you to constrain the entered values to correspond to
values present on a value list you have defined. You can select the option to Manage
Value Lists from the pop-up menu, if you want to edit the value lists in your solution
or create an additional value list.

n In Range enables you to constrain the entered value to fall within a defined domain,
by entering minimum and maximum values allowed for a field. The most obvious uses
for this option are its application to Number, Date, Time, and Timestamp fields.
However, it also works with text values (according to their position in the collating
sequence for the field’s language — so that you can define a field to accept only names
from Aarom to Mulchahey, for example).

n Validated by Calculation presents you with the Specify calculation dialog, where you
can encode validation rules in the form of a formula to determine whether the data is
acceptable. For example, you may want to compare the entered value with values in
other fields on the record to make sure that the data is internally consistent — such as
when users are required to enter a minimum bid amount and a maximum bid amount
(where you may want to set up a rule to ensure that the maximum bid amount is
greater than the minimum amount entered).

n Maximum Number of Characters provides you with a way to limit the length of the
text a user can enter into a field. This option doesn’t prevent the user from typing a
long entry, but merely prevents the user from leaving the field if the entry is longer
than the stipulated maximum.

TIPTIP If you want to prevent the user from typing more than a specified number of char-
acters into the field (instead of simply preventing the user from committing the

record if they have entered more than the specified maximum number of characters), you can do
so by assigning an OnObjectModify script trigger (and an appropriately configured script) to
each instance of the field on your solution’s layouts. Additional detail about configuring Script
Triggers may be found in Chapter 8.

NOTENOTE The Not Empty and By Calculation validation criteria are evaluated at record com-
mit. All the other criteria are evaluated when you leave the field. This arises from

the distinction between field-level validations and record-level validations and affects the way
FileMaker behaves when a validation rule is violated.

n If you select one or more validation options, you have access to an additional option to
Display Custom Message if Validation Fails. This feature enables you to enter a message
that will be posted on user dialogs to indicate why data entry for the field failed validation
(and what to do to address the problem). Note that although multiple validation options
may be specified, only one custom message can be defined and must serve for all cases.

In a majority of cases, the built-in validation alert messages are sufficient, although the information
they provide is limited, providing only two alternative instructions to the user, depending on the
status of the Allow User to Override During Data Entry option. Examples of the two dialog config-
urations are provided in Figure 7.8.

12_429006-ch07.indd 22012_429006-ch07.indd 220 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

221

The Structure: The Manage Database Dialog 7

You don’t have control over the size of the native validation alert dialogs or the dialog button
labels. Moreover, the Revert button may or may not appear, depending on the state of the record
and the validation options in place.

CROSS-REFCROSS-REF Details of the options for using scripts to validate field contents and provide more
flexibility in communicating with the user are provided in Chapter 16.

 FIGURE 7.8

If the current user is permitted to override validation rules, an alert similar to the one on the top appears.
Otherwise, FileMaker displays an alert similar to that on the bottom.

Storage and indexing options
FileMaker has a remarkably no-fuss way of handling indexes — so much so that many basic opera-
tions can take place without requiring you to do anything. Indexing is controlled from the Storage
panel of the Options for Field dialog and defaults to Automatically Create Indexes as Needed.

Unless you specifically modify the index settings, each field you create will initially be unindexed.
Indexes will then be created on demand when any event requiring (or significantly benefiting
from) an index for a given field occurs. Examples of events prompting creation of a field index are
as follows:

n Performing a Find on the field

n Accessing records from the table where the field resides via a relationship for which the
field has been used as a key (that is, a match field)

n Creating a value list defined to use values from the field

n Setting up unique or existing validation for the field

n Displaying the View Index dialog by choosing Insert ➪ From Index (Ô+I or Ctrl+I)

12_429006-ch07.indd 22112_429006-ch07.indd 221 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

222

Introduction to Database DesignPart II

Additionally, the language option you choose for the indexing of a text field determines the default
sorting conventions that FileMaker will apply to it, although the index itself is not directly used for
sorting.

NOTENOTE You can override the default sorting convention for a field in a specific sort by
choosing the Override Field’s Language for Sort checkbox in the Sort Records dia-

log, while the field in question is selected in the Sort Order list.

For databases that you access in stand-alone mode, as well as for solutions of moderate size, you
generally need not concern yourself with indexing. Let FileMaker handle it. If your solution
becomes large and size and network performance are of concern, the details I provide in later
chapters about optimizing indexes will be of interest to you.

When indexing numeric data (that is, number, date, time, and timestamp fields), FileMaker creates
only a single type of index (a value index) comprising a sorted list of values in the field, referenced
to the IDs of the records where each value occurs.

For text fields, FileMaker manages two different types of indexes — a word index that’s used to
support Finds and a value index that’s principally used to support relationships and value lists.
However, FileMaker creates either type of index only when needed, so text fields may acquire only
one index. The fact that two types of index can exist for a text field is not evident in the Options/
Comments area of the Fields tab of the Manage Database dialog (which simply lists the fields as
indexed) but is indicated in the Storage panel of the Options for Field dialog, where text fields that
have only one type of index are shown with the Minimal indexing setting.

CROSS-REFCROSS-REF For a discussion of indexing in greater depth, including format and optimization
options, refer to Chapter 9.

Summary and Calculation fields
While the data users enter into your solution may provide the core of your records, you can con-
figure your database to generate new or additional data by combining or analyzing inputs. A sim-
ple example is that when the user enters a number of items on an order, you may require (or
desire) that the solution automatically add up the total value of the order and show that in a sepa-
rate field. FileMaker provides Calculation and Summary fields to enable you to produce derived
data that extends the usefulness of the primary (entered) information. Compared to a manual
record-keeping process (where totals and other derived values must be separately calculated and
entered manually), the ability to automatically calculate and summarize user inputs is one of the
great advantages of a well-designed computer database. As well as saving time and effort, the use of
calculation and summary fields can improve accuracy (eliminating the human error component).

For each field you create, you select the field type from the Type menu in the lower part of the
Manage Database dialog’s Fields tab. When you create a calculation field (or change an existing
field to calculation type), FileMaker presents the Specify Calculation dialog (as first described in
Chapter 2). Like other fields, however, a calculation’s result also has a data type, which you must

12_429006-ch07.indd 22212_429006-ch07.indd 222 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

223

The Structure: The Manage Database Dialog 7

select from the Calculation Result Is pop-up menu immediately below the formula box of the
Specify Calculation dialog. The calculation result data type options, shown in Figure 7.9, are Text,
Number, Date, Time, Timestamp, and Container.

NOTENOTE Originally, the Specify Calculation dialog was conceived solely as a mechanism for
defining calculation fields. However, as FileMaker’s functionality has increased, the

same interface has been used to allow you to create rules for a wide variety of other purposes
throughout the application — including determining record level access privileges, defining con-
ditional formatting, supplying the name of the target field for a Set Field by Name[] script
command, building complex validation rules for a field, assembling the URL for a button that
controls a Web viewer, and many more. The Specify Calculation dialog (and FileMaker calcula-
tion syntax) appears almost anywhere you require FileMaker to make a runtime decision that’s
calculated based upon the current status of the user’s data or the user’s system.

 FIGURE 7.9

The Specify Calculation dialog’s pop-up menu for choosing the data type of the calculation result.

Calculations that reside within a database table and reference other fields within the same table
have a predictable point of view (or context). That is, they sit within a record and compute a result
from values within that record. However, if you choose to include references to fields in other
tables within your calculation, FileMaker must use your solution’s relationships to gain access to
data located elsewhere. To do that, FileMaker requires both a start point and an end point for the
relationship via which it is to source related data. The relationship start point is the current table.
However, because you can create more than one TO of the current table (on the Relationships

12_429006-ch07.indd 22312_429006-ch07.indd 223 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

224

Introduction to Database DesignPart II

Graph), FileMaker provides a pop-up menu of context options at the very top of the Specify
Calculation dialog (the Evaluate This Calculation from the Context Of pop-up menu). Calculation
context determines the TO that will be used to establish relationships to fields in other TOs that
are referenced in the calculation formula. In cases where a table has only one TO, the pop-up pres-
ents only a single (default) option. However, when you have multiple TOs of the current table,
the context selection determines which of several possible evaluation paths will be used. For
example, the Inventory example’s OrderLines table has two occurrences: OrderLines
and ItemsPurchased. The OrderLines TO is related to the Orders TO, while the Items
Purchased TO is related to the Inventory TO and does not have any relationship path to the
Orders TO. If you want to create a calculation within the OrderLines TO that references a field
in Inventory, you must choose the ItemsPurchased TO as the context for the calculation
(that is, select ItemsPurchased from the Evaluate This Calculation from the Context Of pop-up
menu) in order to establish the relationship to be used to resolve the calculation.

When a calculation field’s formula references one or more fields within the same record, the calcula-
tion result is dependent on the values in the referenced fields (so if the value in any of the referenced
fields changes, FileMaker re-evaluates the calculation). For example, the Inventory example’s
OrderLines table includes the cLineTotal Calculation field, defined as = Qty * Price —
thus making cLineTotal calculation dependent upon the values in the Qty and Price fields
within the same record of the OrderLines table. Through an internal process called the table of
dependencies, FileMaker keeps track of which calculations (including Auto-Enter calculations) to re-
evaluate when a value in another field changes. FileMaker’s management of dependencies, however,
is limited to the current record of the current context’s TO — so references to related fields or global
fields are not tracked through the table of dependencies, and calculations will not be automatically
re-evaluated when a referenced field outside the current record is modified.

NOTENOTE When a calculation field references global or related fields, FileMaker automatically
changes its storage option to Unstored, whereupon the calculation will be re-

evaluated whenever it’s referenced (such as when the screen is redrawn), because there is no
mechanism for managing calculation dependencies outside the current record. Auto-Enter
calculations, however, are always stored and are therefore generally unsuitable for tracking the
current state of related data.

CROSS-REFCROSS-REF If you find you need to store calculated data that references related or global fields
(for example, so that the calculation result can be indexed for use in optimized

finds, value lists, or as a target key field for a relationship), alternative mechanisms will be
required to achieve the desired outcome. Examples of different approaches to problems of this
kind are discussed in subsequent chapters, including Chapter 19.

Calculation fields work well with localized computations (using a single set of inputs to derive a
result within the context of a single record), and you can use them with aggregating functions
(such as Max(), List(), Sum() and others) to return a result from a related set of records.
However, when you need a straightforward way to summarize values spanning a found set,
Summary fields provide an attractive alternative. Here are the steps you should follow to create
a Summary field:

12_429006-ch07.indd 22412_429006-ch07.indd 224 3/25/09 7:20:58 PM3/25/09 7:20:58 PM

225

The Structure: The Manage Database Dialog 7

 1. Enter a field name for your new Summary field into the Field Name box on the Fields tab
of the Manage Database dialog and then choose Summary (Ô+S or Ctrl+S) in the Type
pop-up menu.

 2. Click the Create button. The Options for Summary Field dialog appears, as shown in
Figure 7.10.

 3. Choose a summary function from the radio button options at the left of the dialog.

 4. Select the field you want to summarize in the Available Fields list.

NOTENOTE Only Number, Time, Date, and Timestamp fields (or Calculated fields returning one
of those data types) are available for summarization. Other field types will be dimmed

and cannot be selected in the Available Fields list in the Options for Summary Field dialog.

 Where the summary operation you have chosen has additional options available (such as
the Running Total and Restart Summary for Each Sorted Group option shown in Figure
7.10), they’re presented as checkbox options immediately below the Available Fields list.
As appropriate, you can also choose the method by which the values in separate field rep-
etitions (if used) are handled.

 FIGURE 7.10

The Options for Summary Field dialog.

 For a detailed overview of the various Summary functions and their options, refer to
Table 7.1.

 5. Click OK to accept the Summary field definition.

Summary fields produce live statistics reflecting the current state of data in your solution — and
this is both their strength and, potentially, their weakness, depending on how you choose to use
them. When data sets are relatively small (a few hundred records or less), recalculating complex

12_429006-ch07.indd 22512_429006-ch07.indd 225 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

226

Introduction to Database DesignPart II

summaries every time anything changes will be efficient and, in most cases, useful. However, in
solutions where the quantity of data is large — or will become large over time — users will tire of
delays introduced while summary data is recalculated with every small change.

For extensive data sets, therefore, you may prefer alternative approaches. Because Summary fields
are recalculated each time they appear onscreen, one solution is to exclude them from most
screens so that they’re evaluated and displayed only when the user specifically requires them.
Alternatively, you may consider a scripted approach, which computes summary data either pro-
gressively (via transactional modeling) or on demand.

 TABLE 7.1

Summary Functions, Descriptions, and Options
Name Description Option Option Description

Total of Sums the values in the
found set (or filtered set
when the Summary
field is viewed via a
relationship)

Running Total
Restart Summary
for Each Sorted
Group

If placed in the Body part, returns the cumu-
lative total for the found set up to and
including the current record.
The Restart option allows the Running Total
to operate separately within sub-summarized
data sets.

Average of Provides a simple arith-
metic mean of values in
the found or related set

Weighted
Average

Returns the average adjusted with respect
to (weighted by) another field’s value. For
example, in a database of maintenance costs,
the average cost per repair may be weighted
by the frequency of repair for each item, to
arrive at a more accurate indication of main-
tenance costs for a period.

Count of Returns the number of
records where the
selected field has a
value

Running Count
Restart Summary
for Each Sorted
Group

(See Running Total)
The Restart option allows the running count
to operate separately within sub-summarized
data sets.

Minimum Returns the numerically
lowest (or chronologi-
cally earliest) value in
the found or related set

N/A

Maximum Returns the numerically
highest (or chronologi-
cally latest) value in the
found or related set

N/A

12_429006-ch07.indd 22612_429006-ch07.indd 226 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

227

The Structure: The Manage Database Dialog 7

Name Description Option Option Description

Standard
Deviation Of

Returns a statistical mea-
sure of dispersion of a
group of values (the root-
mean-square of the devi-
ation of the values from
their mean)

By Population Uses a probability-based distribution method
to estimate the standard deviations of a sub-
set of records against an (imputed) whole
population.

Fraction
of Total

Indicates the fraction of
the total each value in
the summarized set rep-
resents.

Subtotaled Returns the fraction of a sub-summarized
group of records (rather than all records) rep-
resented. For example, the cost of each com-
puter’s repair might be expressed as a fraction
of the total computer repair costs rather than
as a total of all maintenance costs. Expressing
the cost as a fraction of the total is done by
subtotaling against item type (where comput-
ers are one of the item types represented).

Working with global fields
Most database values are specific to each record in a table, but in a few cases, you may find need to
store a value that applies to all records in a table. For example, the prevailing currency exchange
rate may affect all the records equally. While you could set such a value into a field in each record
(and update it throughout the table when the value changes), FileMaker provides global fields as a
more effective alternative. To define a global field in FileMaker:

 1. Create the field and click the Options button (in the Fields tab of the Manage Database
dialog).

 2. In the Storage panel of the Options for Field dialog, shown in Figure 7.11, specify that
the field should use global storage and then click OK.

When you choose the global storage option for a field, its contents are stored outside the table’s
record structure, and the field is available with the same value to all records in the table. Global
fields values form part of a (hidden) record zero of the table, and their values are not lost even if all
the records of the table are deleted.

Global fields have some properties in common with variables, as a convenient and efficient place to
store temporary values. Unlike variables, however, global fields are persistent as part of the schema
of the table where they reside, and, as fields, they can be included on layouts and designated as the
input fields for custom dialogs. In single-user solutions, their values persist between application
sessions. In both single-user and multi-user solutions, global fields provide an ideal place to store
graphics and resources (logos and so on) that will be used throughout the solution’s interface.
Using global fields to store interface resources has the advantage that any change made (with the
solution accessed offline) is propagated to all the instances of the field throughout multiple layouts.
Using this technique, your solutions can have an accessible library of images and interface ele-
ments that you can manage efficiently.

12_429006-ch07.indd 22712_429006-ch07.indd 227 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

228

Introduction to Database DesignPart II

 FIGURE 7.11

The Options for Field dialog’s Storage tab lets you set a field to use Global Storage.

CROSS-REFCROSS-REF Refer to Chapter 9 for coverage of script variables and a more in-depth discussion
of the roles, behavior, and uses of global fields.

Another useful aspect of global fields is that their value is specific to each user when a database is
shared over a network. As a result, when a global field is used to store temporary information (for
example, while a script is running), two users can use the field simultaneously without “colliding”
with the other. However, updates to global field values made by clients of a hosted database are
lost when the client session concludes.

Perhaps the most compelling advantage that global fields offer, however, is their accessibility from
other tables in your solution without a relationship. You can access global field values from unre-
lated tables, either for use within calculations or to display (and edit) on your solution’s layouts.
This easy access allows you to move data around your solution with considerable flexibility and
without adding to the complexity of your solution’s Relationships Graph.

Basic Calculations
You can use FileMaker calculations for a wide variety of purposes that go well beyond simple arith-
metic. While you can use FileMaker calculations to add and multiply numbers with ease by using
familiar math syntax, FileMaker extends the power of calculations to address diverse requirements
that include logic, text processing, and a broad range of general data-handling operations.

12_429006-ch07.indd 22812_429006-ch07.indd 228 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

229

The Structure: The Manage Database Dialog 7

Calculations of all kinds and for all purposes are created in the same way by using the FileMaker
Specify Calculation dialog, which, as noted previously, makes its appearance in many places
throughout the FileMaker interface — well beyond the confines of the Manage Database dialog.

Most of the terminology you encounter when dealing with calculations in FileMaker is familiar and
straightforward, so with only a few pointers, you’re able to make the environment work for you.
Many of the terms used are common enough that they have entered mainstream conversation.
However, there are a few exceptions. Some of the key terms (with special meanings) that you’ll
encounter are as follows:

n Result: The value produced when a calculation is evaluated.

n Function: A predefined, named component of a calculation formula that performs a
defined computation and returns a single result.

n Parameter: An input value to a command or function.

n Argument: An input value or expression that forms part of the syntax of a function or
parameter.

n Operator: A symbol used to denote an arithmetic, textual, or logical operation to be per-
formed, such as + (plus), – (minus), * (times), and & (concatenate).

n Literal: A precisely specified (and predetermined) value (42 and “Henry” are literals).

n Variable: A placeholder name for a value.

n Constant: A placeholder name for a literal value.

n Syntax: The order in which FileMaker expects to receive functions, arguments, and oper-
ators within a calculation (essentially, grammatical rules).

n Expression: A sequence of literals, constants, variables, and operators that, when evalu-
ated, returns a result. For example, 1.075 * (Qty * Price) is an expression that,
when evaluated, returns the amount due for a purchase in a locale with a 7.5 percent
sales tax rate. In FileMaker parlance, expression is sometimes used a little more loosely to
refer to sequences including functions and field references.

n Formula: The entire content of a calculation combining elements described in this list to
produce a result — sometimes used interchangeably with expression.

You’ll find it helpful to be familiar with these terms as you’re working with calculations because
calculation parlance appears frequently in FileMaker.

Creating a Calculation field
Creating a Calculation field is a straightforward operation, and you can see it in action in Chapter 5.
The Specify Calculation dialog (see Figure 7.12) provides all the tools and resources you need to
create a Calculation expression.

12_429006-ch07.indd 22912_429006-ch07.indd 229 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

230

Introduction to Database DesignPart II

 FIGURE 7.12

The Specify Calculation dialog and its many parts.

Table occurence pop-up

Fields list

Operator buttons

Context pop-up

Operator list Function group pop-up

Function list

Don’t evaluate checkbox

Result type pop-up

Expression text box

Repetitions text box

Storage Option button

The Specify Calculation dialog’s parts are as follows:

n Context pop-up: Where you choose a TO from which the calculation is to be evaluated.
When the current table in your Relationships Graph has only one TO, the pop-up is
disabled.

n Table pop-up: Where you choose a TO to source fields you want to reference in the cal-
culation. (The terminology here can be a little confusing — the table pop-up lists only
TOs, not the base tables they point to.)

n Fields list: Lists all the fields of the TO chosen in the Table pop-up.

n Operator buttons: Provide a palette of eight of the most commonly used arithmetic and
text operators.

n Operator list: A scrolling list with an additional 11 operators (logical and comparison)
that FileMaker recognizes.

12_429006-ch07.indd 23012_429006-ch07.indd 230 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

231

The Structure: The Manage Database Dialog 7

NOTENOTE There is some inconsistency in FileMaker’s naming of the Operator list because it
includes the caret (which is an exponentiation operator, yet FileMaker documenta-

tion refers to the list as logical and comparison operators). The problem is not immediately obvi-
ous, however, because the caret hides out of view at the bottom of the list, and you must scroll
down to find it.

n Function View pop-up: A filtering menu from which you can select a sub-group of
FileMaker functions to view them in isolation. The Function View pop-up is shown in
Figure 7.13.

n Function list: A scrolling list of the available functions, as filtered by your selection in
the Function View pop-up.

 FIGURE 7.13

The Function View pop-up menu filters your view of the available calculation functions.

n Expression text box (FileMaker Pro’s Help calls it the Formula box): The heart of the
Specify Calculation dialog. This text box is where your calculation’s expression appears as
you select functions, operators, fields, and type.

n Result Type pop-up: Where you specify what data type your calculation returns as a
result.

n Repetitions text box: Lets you specify whether your calculation is a repeating field (that
is, returns multiple results) and, if so, how many repetitions it comprises.

n Don’t Evaluate checkbox: Lets you tell FileMaker not to perform the calculation if none
of the referenced fields contains a value (such as in a new record). Note that if even one
of the referenced fields contains a value, FileMaker will evaluate the calculation.

n Storage Options button: Provides you with access to controls that determine how the
selected field will be incorporated into the structure of your solution, allowing you to
select global storage (one value for all records), control indexing options, specify repeti-
tions, and, in the case of calculation fields, make the field unstored (so that a result is cal-
culated only when needed).

12_429006-ch07.indd 23112_429006-ch07.indd 231 3/25/09 7:20:59 PM3/25/09 7:20:59 PM

232

Introduction to Database DesignPart II

When you become familiar with calculation syntax and the names of all the functions and fields
your expression references, you can simply type them directly into the Expression text box (and,
I’ll admit, that’s what I generally prefer to do). When in unfamiliar territory (obscure or lengthy
field names or working with infrequently encountered functions), however, employing the follow-
ing mouse-driven shortcuts the Specify Calculation dialog offers is useful:

n To use a function, double-click the function’s name in the Function list. The function
appears (along with prompts for the inputs it requires) at the cursor location in the
Expression text box and with the argument list preselected. Replace the placeholders in
the argument list (called parameters) with field names, literals, and/or expressions.

n To reference a field, double-click the field’s name in the fields list. The field name appears
at the cursor position (replacing a selection, if there was one) in the Expression text box.

n To enter a literal value, type it into the Expression text box. (Remember that numeric lit-
erals don’t require enclosing quotes, but text literals do.)

n To enter an arithmetic or text operator, click its button.

n To enter a logical or comparison operator, double-click it in the operator list.

TIPTIP If your calculation references fields in related tables and the current table has multi-
ple occurrences in the Relationships Graph, make sure that you select the appropri-

ate context for your calculation, as described in the “Summary and Calculation fields” section,
earlier in this chapter. Choosing the appropriate Evaluate From TO enables FileMaker to deter-
mine which relationship path to use to source data from related tables.

Specifying an appropriate result type for your calculation is important for several reasons. Perhaps
most important, some calculation functions and operations produce different results depending on
the data type of the result, as FileMaker determines whether to treat ambiguous elements as text
strings or numeric values. Moreover, FileMaker Pro references the result type when performing
many operations, such as indexing and sorting. If you specify that a Calculation field (or a regular
field) is a text field rather than a number field, 29 appears before 3. Similarly, with dates in a text
field, December sorts before November.

CROSS-REFCROSS-REF A more detailed discussion of indexing and sorting issues and conventions is
included in Chapter 9.

TIPTIP If you occasionally want to present data as a type other than its natural type, you can
use Calculation expressions to convert formats through the many type-conversion

functions, such as GetAsDate(), GetAsText(), and GetAsTimestamp().

I urge you to consider the use of descriptive field names, along with the use of Hungarian notation
(or some similar, consistent scheme) when naming calculation fields, global fields, and Summary
fields to make their nature clear while developing, working with, and maintaining your solution.

12_429006-ch07.indd 23212_429006-ch07.indd 232 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

233

The Structure: The Manage Database Dialog 7

Defining a calculation formula
Computers follow rules when interpreting your calculations, so as long as you understand the rules
and follow them, the results are consistent and accurate. However, because computers interpret
inputs literally, formulas must conform to syntax rules to be parsed correctly. Consequently, calcu-
lations take a form that is designed around the need for human comprehension (that is, it resem-
bles human language) but adapted to the requirements of the computer (its format follows clear
and unambiguous rules).

An essential principle of calculation syntax is that calculation operations follow a predetermined
order of precedence. Among the arithmetic operators, exponentiation has the highest precedence, fol-
lowed by multiplication and division, and then addition and subtraction. Operators of equal prece-
dence are evaluated from left to right, with expressions in parentheses performed first (from inside
out and then left to right). The following examples illustrate the impact of operator precedence:

8 + 5 * 4 returns 28, because the multiplication is performed first, followed by the addition

(8 + 5) * 4 returns 52, because the operation in parentheses is performed first

((8 + 2)^2 * 4) + 1 returns 401

(8 + 2^(2 * 4)) + 1 returns 265 (8 + 256 + 1)

((8 + 2^2) * 4) + 1 returns 49

To increase the readability (by humans) of the code, it is customary to include white space and line
breaks so that the code more closely resembles human language. If you’re anything like me, you
will find it easier to make sense of

If(Qty > 10; GetRepetition(gStockIndicator; 1);
 GetRepetition(gStockIndicator; 2))

than

If(Qty>10;GetRepetition(gStockIndicator;1);GetRepetition
(gStockIndicator;2))

In addition, the need for readability aids becomes increasingly important in longer formulas.

When a function accepts multiple parameters, FileMaker requires that the parameters be separated
by semicolons (as demonstrated in the preceding example regarding white space). Many functions
follow a fixed format, insofar as they always require the same number of parameters. However,
some parameters are optional for several functions.

A classic example of a function with optional parameters is the Case statement. A Case statement
includes at least one test and one result. However, Case statements can optionally include addi-
tional tests and results and may also include a closing result (to be used by default if none of the
tests returns true). For example, if you had a global repeating field containing graphics for
“Unavailable” “While Stocks Last” and “In Stock”, you could use the following Case statement to
display the unavailable graphic when the quantity on hand was zero, to display the While Stocks

12_429006-ch07.indd 23312_429006-ch07.indd 233 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

234

Introduction to Database DesignPart II

Last graphic when only one or two items are left in stock, and the In Stock image when three or
more items are available:

Case(Qty = 0; gStockStatus[1];
 Qty < 3; gStockStatus[2];
 gStockStatus[3])

The successive conditions you can include in a Case statement are evaluated from left to right and
top to bottom, with evaluation ceasing with the first test that returns true. Thus, in the preceding
example, if zero items are on hand, the second test (Qty < 3) isn’t performed.

NOTENOTE The process whereby FileMaker terminates evaluation upon reaching a true test is
called short-circuited evaluation and has implications. For example, tests can call

functions that reference related data requiring calls to a remote server, introducing a brief delay.
However, the cumulative impact of a series of such effects is dependent upon how many of the
tests are performed. Thus, the order in which tests are performed can influence the time
FileMaker takes to determine a result.

Entering literal text
Frequently, your calculations will require known values, which you’ll be able to enter directly into
the calculation formula. For example, when you need to determine whether the value in a text field
contains a specific word (such as “overdue”), you can employ an expression such as If(Pattern
Count(Collection::LoanStatus; “Overdue”) > 0; “Late”) returns the text “Late”
when the LoanStatus field contains “Overdue”, “Now Overdue”, or “More than a Week
Overdue”. In this calculation, Overdue, and Late are both literals.

FileMaker requires that text literals are enclosed in quotation marks. Consequently, the calculation
engine can distinguish between a literal and what may otherwise be interpreted as a function,
table, or field reference. Moreover, some functions, such as GetField() and Evaluate(), are
designed to process the contents of literal strings and the text results returned from other func-
tions. To ensure that a literal or the text value returned by a function will not be processed,
FileMaker provides the Quote() function. For example: Evaluate(“Pi”) returns the value
“3.1415926535897932”. However, Evaluate(Quote(“Pi”)) returns the text “Pi”.

Keep in mind that when you work with literal strings in a calculation, some FileMaker text-
processing functions are case sensitive, while others are not, which can be a significant determinant
of the result. For example, Substitute() is case-sensitive, but PatternCount() is not.
Moreover, it pays to keep in mind that some results will be required to be case-specific. (For exam-
ple, if your calculation is constructing a URL to be sent to a server, it may be required to be in a
specific case format because some Internet servers are case-sensitive.)

Within text in calculations, several characters are reserved — they have a special meaning as text
operators. Notably, the quote character is used to indicate the start and end of literal text, and the
pilcrow (¶) signifies a carriage return. So what can you do if you want to include quotes or pil-
crows within your literal text?

12_429006-ch07.indd 23412_429006-ch07.indd 234 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

235

The Structure: The Manage Database Dialog 7

To deal with this problem, FileMaker lets you use a prefix character (called an escape character) to
instruct the calculation engine to read the following character as written. The character used to
escape quotes and pilcrows is the backslash. So anywhere you want to insert a quote in literal text,
you must use \”. For example, the calculation

“You’re the kind of girl\¶that \”fits in\” with my world.”

returns

You’re the kind of girl¶that “fits in” with my world.

With those two problems (“ and ¶) solved, there remains the issue of how to deal with the back-
slash itself, which now has a special meaning as an escape character for the other reserved charac-
ters. Oddly enough, the answer is the same: You can escape the backslash character with itself, if
you want FileMaker to interpret it as a backslash rather than an escape character for what follows.
In other words:

 1. \” = “

 2. \¶ = ¶

 3. \\ = \

Referencing fields
It’s worth noting that when you create a formula referencing fields and tables, FileMaker simply
accepts the names you type (or select from lists). But if, after creating a calculation formula, you
change the name of one of the fields the calculation references, the next time you open the Specify
Calculation dialog, the new field name is already there staring back at you. The first time you see
it, it’s kind of spooky — although after the thrill wears off, it’s just mildly geeky. Either way, it’s
very cool. Even if you’ve referenced a field in dozens of places, when you change its name, they’re
all instantly updated without your having to lifting a finger. The same thing is true of many things
that have a name in FileMaker (for example, scripts, tables, layouts, and so on).

FileMaker achieves this feat by storing and tracking everything (behind the scenes) by an ID.
When you access a list of tables and fields — for example by opening the Specify Calculation dia-
log, FileMaker simply looks up and displays the current names for the tables and fields referenced
there. The use of internal IDs for objects throughout your solution gives you a lot of freedom to
change your mind and modify your solution as you build it.

However, some words and characters are off limits when it comes to field and table names.
Function names and various reserved words (words that have a special meaning as an argument for
a function) don’t make good choices for field names. Moreover, field names should not start with a
number or include any of the symbols used as operators.

If you do use an inappropriate name for a field or table, FileMaker deals with the problem by
enclosing references to the offending field (or table::field combination) within prefixed
braces as follows: ${ }. So, for example, if you have a field named Average, when you include it

12_429006-ch07.indd 23512_429006-ch07.indd 235 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

236

Introduction to Database DesignPart II

in calculations, it will appear as ${Average} so as not to be confused with FileMaker’s
Average() function.

When you create calculations within a table and reference fields in the same table (from the same
TO selected in the table pop-up at the upper left of the Specify Calculation dialog), FileMaker
accepts references to the field without a preceding TO name. However, in all other cases, fields
must be referenced in the form TOname::FieldName.

Finally, FileMaker manages calculation dependencies only within the current record. If a calcula-
tion references another field in the record, it will automatically update when the referenced field is
edited. However, if you create a calculation referencing a field outside the current record, such as a
field from another TO, FileMaker will make the calculation unstored, and it will be evaluated only
when a screen it appears on is displayed or refreshed (or when the calculation is otherwise refer-
enced). Similarly, calculation fields referencing global fields (even those defined within the same
table) are required to be unstored.

Understanding calculation functions and their syntax
Functions work rather like building blocks, letting you fabricate answers for all sorts of problems.
The FileMaker calculation engine includes close to 400 native calculation functions, which you can
combine in many interesting and useful ways. You can place one function within another so that
its result becomes one of the inputs (arguments) for the function enclosing it.

With so many functions, each able to be used in various ways, I could devote an entire book the
size of this one to exploring each in turn. Fortunately, that’s not necessary — FileMaker provides
the basic syntax for functions in the Function list at the upper right of the Specify Calculation dia-
log. Moreover, when you get started, you’ll discover that the process follows some straightforward
predictable patterns. The following sections describe a few examples.

The List() function
The List() function accepts one or more fields (separated by semicolons) and returns a carriage-
return separated list of all values it finds there on the current record (if the supplied fields are in
the current table) or on all related records (if the supplied fields are sourced from a related TO).

If the List() argument includes only one field, the function will look for multiple instances of
the field either in the current record (if it’s a local field) or in multiple related records (if it comes
from another TO) and will list any values it finds, one per line.

If, in the Inventory solution, you wanted to compose an e-mail confirming the contents of an
order, you would need a list of the order’s item stock numbers to include in the e-mail. From the
Order record, the expression List(OrderLines::ItemID) returns a list of stock numbers on
the current order. For example:

n ITM00001

n ITM00003

n ITM00002

12_429006-ch07.indd 23612_429006-ch07.indd 236 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

237

The Structure: The Manage Database Dialog 7

The Count() function
For the same Inventory example and e-mail of order details, the e-mail needs to include a sum-
mary line stating how many types of items are being stored. In the same way, as you create a list of
items, you can create a count of items: The expression Count(OrderLines::ItemID) for the
preceding order returns the number 3.

The Date() function
To convert a human-readable date into the internal numeric format that FileMaker uses to perform
computations with dates, FileMaker provides the Date() function, which accepts month, day,
and year as its arguments. So to supply FileMaker with New Year’s Day in a calculation, I can enter
Date(1; 1; 2008).

Among many other date and time functions, FileMaker provides the function Get(CurrentDate)
to let you retrieve the current date from the computer’s internal clock and calendar. Thus, to deter-
mine how long it is to (or since) January 1, you can use the following expression:

Date(1; 1; 2008) - Get(CurrentDate)

FileMaker returns a result which is the number of days between now and New Year.

The Round() function
In cases where fractions or percentages have been multiplied — for example, when you add tax or
deduct discounts from a total amount — you need to round the result (because most people don’t
deal with fractions of a cent) before displaying it in a letter or report. FileMaker’s Round() func-
tion accepts two arguments: the amount to be rounded and the number of decimal places to round
it to. Thus, the expression “$” & Round(37.25297; 2) returns a result of $37.25. In practice,
however, the first argument for such a calculation will likely either be a field holding the value to
be rounded or a calculation — or perhaps a combination of the two. If the amount is in a field in
the Orders table, you can achieve the desired result with the following expressions:

“$” & Round(32.822 * 1.135; 2)

“$” & Round(Orders::cFinalTotal; 2)

“$” & Round(Orders::cFinalTotal * 1.135; 2)

Note that you can supply the arguments (in this case, the first argument) in any form, which will
resolve when evaluated to pass the necessary input value to the Round() function.

The Length() function
FileMaker calculations work with all kinds of data (locating a relevant word or phrase, extracting
an e-mail address from a paragraph of text, checking that an address will display correctly in an
envelope window, and so on. (In fact, many calculations are designed to manipulate text for a wide
range of purposes.)

12_429006-ch07.indd 23712_429006-ch07.indd 237 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

238

Introduction to Database DesignPart II

The building blocks that FileMaker provides so that you can work with text in calculations are just
as straightforward as the other examples I cite in this list. For example, to determine the number of
characters (including all punctuation, spaces, and carriage returns) in a field, you use FileMaker’s
Length() function. For example,

Length(OrderItems::Name)

will return a number representing the length of the text in the indicated field.

All the examples listed in this section have several things in common. They start with a function
name that is plain English and give a clear and simple indication of the purpose of the function.
You could probably guess many of the function names correctly. In parentheses after each function
are one or more values (separated by semicolons) to determine what the function will work on and
what it will do — for example, what number is to be rounded, to what precision, and so on.

Although initially the building blocks will be unfamiliar, the process is consistent and follows
straightforward and largely intuitive principles.

Doing some simple calculations
After you know the basics of how FileMaker calculations are assembled, you’re ready to see some
concrete examples of formulae that you can use to solve common challenges and problems by the
clever use of calculations. The following examples are indicative of the range of tasks you can
address by using calculations. They also will give you some ideas to get started with when building
your own solutions.

Commission on earnings above a threshold
In any situation where you need to apply a rule to values that exceed a threshold, you will find it a
great help to put the logic into a database so that the work will be done for you and your logic will
be automatically applied according to the data available. For example, if you need to pay a 50 per-
cent commission to each sales representative in your company on the quarterly company earnings
they generate that exceeds an agreed threshold, you can create a field in your table of sales repre-
sentatives called QuarterlyEarnings (where you enter the income generated by each rep) and
a field named Threshold to store the agreed minimum target each rep must meet to qualify.
With these fields in place, you can create an unstored calculation field called cCommission with
a formula along the lines of the following:

If(QuarterlyEarnings ≥ Threshold; (QuartlerlyEarnings — Threshold) / 2; 0)

Approaching the problem in this way makes good use of the If() function, a staple of logical
expressions, but the formula isn’t as compact or as efficient in execution as it could be. If you have
a lot of data to process (or if you will in the future), you may want to consider a swifter path to the
same result:

Max(0; (QuarterlyEarnings - Threshold) / 2)

12_429006-ch07.indd 23812_429006-ch07.indd 238 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

239

The Structure: The Manage Database Dialog 7

Calculating initials from a person’s name
A frequent business practice is to include the initials of persons involved in the preparation of doc-
uments in a reference code or document number. This simple mnemonic makes remembering the
document’s origins or history in a busy organization easier. If your solution includes a table of staff
details, you may want to include a field that computes staff initials for inclusion on documents
generated by your database. If the staff’s names are stored in fields called FirstName,
MiddleName, and LastName, it will be a simple matter to create an additional field called
cInitials in the Staff table, defined with a formula such as

Left(Staff::FirstName; 1) & Left(Staff::MiddleName; 1) & Left(Staff::LastName;
1)

This calculation works its way through the values in the three name fields, extracting the first letter
from each and concatenating them into a single string of up to three characters. In the event that
the middle name field is blank for a given staff member (some people don’t have a middle name),
the second function will return a null result, and the initials will be two characters long rather than
three.

CAUTION CAUTION While the practice of adding initials to documents as handy mnemonics is reason-
able, you should never rely upon it as the definitive method of identifying a docu-

ment’s origins (lest, for example, more than one individual with the same initials enters the
company). The separate StaffID field should continue to provide the basis of an authoritative
link to the related records identifying the subject or originator of the record.

Compound interest at a known rate over a given period
There was once a time when people painstakingly calculated compound interest over lengthy peri-
ods as a series of manual computations, the results of which were then summed to arrive at a
result. Changing any of the dates or amounts required that the process be repeated — which, no
doubt, was enough to try the patience of even the most dutiful clerk. With the advent of programs
such as FileMaker — and with the application of a little skill with calculations — the process of
computing compound interest becomes effortless and immediate.

Compound interest is calculated by multiplying the principal amount by the interest rate plus one,
raised to the power of the number of periods. So, for example, if I were to invest $1,000 at a fixed
interest rate of 12 percent per annum (1 percent per month) for a period of 12 months, based on
month periods, the compound interest would be calculated as 1000*1.01^12. In FileMaker terms,
this formula is not difficult to apply as a calculation. Assuming that you have a table set up with
fields for the principal amount, the interest rate, and the number of periods of the investment, you
can create a calculation with the following formula:

Round(PrincipalAmount * (1 + MonthlyInterestRate) ^ Periods; 2)

With this formula in place, when you enter 1000 into PrincipalAmount, 0.01 (1/12 of the annual
interest rate) into MonthlyInterestRate, and 12 into Periods, you get the result $1,126.83.
Change any of the input values, and FileMaker will instantly return the resulting compounded value.

12_429006-ch07.indd 23912_429006-ch07.indd 239 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

240

Introduction to Database DesignPart II

Current quarter of the calendar year
The calendar year is often divided into quarters. Whether for financial reporting, scheduling short
courses, product releases, or sporting seasons, you may need to sort dates into the correct quarters
so that you can group records appropriately. FileMaker provides no direct method for converting
dates into calendar year quarter values, but with a little thought, you can build a calculation to do
just that task.

Following the custom where the quarter of the year is identified with the number of the quarter
(prefixed with a Q), followed by a slash and the final two digits of the year — for example, Q2/09
for the second quarter of 2009 — you’d require a calculation along the lines of

“Q” & Ceiling(Month(EventDate) / 3) & “/” & Right(Year(EventDate); 2)

In this expression, the quarter number is produced by applying the Ceiling() function to the
fraction produced by dividing the month component of the date by the number of months in a
quarter (3). Using Ceiling raises the resulting fraction to the next highest integer, thus returning
the number of the quarter in which the date value in the EventDate field falls.

Changing ampersands to “and” in a block of text
FileMaker provides extensive text-processing capabilities, and one of the staple procedures enabling
you to manage a variety of text handling requirements is the use of functions such as Substitute
() and Replace(). In this example, you see how you can replace occurrences of the ampersand
(&) character in a text field with the word and. FileMaker provides two calculations functions that
perform text replacement: Replace() changes a specified number of characters at an indicated
position in the text with a designated replacement string, whereas Substitute() changes all
occurrences of a search string throughout an indicated text block with the replacement string you
supply. In this example, the Substitute() function is best suited to the purpose at hand:

Substitute(YourTextField ; “&”; “and”)

TIPTIP You can use the Substitute() function to perform multiple substitutions simul-
taneously, as exemplified by the following example, which replaces ampersands

with and and virgules (forward slashes) with or.

Substitute(TextField; [“&”; “and”]; [“/”; “ or “])

Record navigation text (record n of nn)
The FileMaker Status Toolbar provides you with controls and information to aid in the navigation
of your solution. However, on occasion, you’ll not want users to have the complete freedom the
Status Toolbar affords. In such cases, you can lock the Status Toolbar out of harm’s way and pro-
vide users with layout objects (buttons and text) that offer similar functionality.

One of the most useful indicators on the Status Toolbar is the dynamic text area that tells the user
where in the table they’re presently located. To replicate this functionality within your layouts,
you’ll require a calculation formula that assembles comparable information about the state of

12_429006-ch07.indd 24012_429006-ch07.indd 240 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

241

The Structure: The Manage Database Dialog 7

navigation in the current table. With the aid of a couple of built-in FileMaker Get() functions,
the task of building an unstored calculation to return custom navigation text is readily achievable
as follows:

“Record “ & Get(RecordNumber) & “ of “ Get(FoundCount)

TIPTIP When you create a calculation that draws upon contextual information, such as the
navigation status data referenced in the preceding calculation, you need to set the

storage options for the calculation field to “Unstored” to ensure that the calculation will
refresh as you navigate from record to record.

In a List (or Table View) layout, a navigation indicator is best displayed in the header or footer.
However, on a form layout, you can incorporate navigation buttons and text into the main body of
the form, as an integral part of your layout design.

The Relationships Graph
The Relationships Graph in FileMaker Pro is both a visual metaphor to aid your understanding and
a tool through which you manipulate your solution’s data model. It seeks to provide you with a
single, all-encompassing view of your solution’s structure. It’s an ambitious aim, particularly as a
solution becomes complex, yet the Graph is undoubtedly a powerful tool — albeit one peculiarly
well suited to visual thinkers.

A number of divergent approaches to working with the Graph have appeared in the years since
FileMaker Pro 7 was introduced — one testament to the flexibility of the model it encapsulates. In
reality, however, a solution is multi-dimensional and the Graph is two-dimensional, so a certain
amount of awkwardness is inevitable. Perhaps the most significant contribution to complexity
arises because FileMaker relies on the Graph not only for underlying data frameworks but also for
direct support of the interface. TOs that provide data filtering, portal displays, or script support
mingle unfettered among core data dependencies defining the data structure fundamentals.
Keeping both in an orderly perspective is both the joy and the challenge of the Relationships
Graph.

Common misconceptions about the
Relationships Graph
Where the Relationships Graph is concerned, various myths and misconceptions abound.
Foremost among the misconceptions is the impression that those boxes you see on the Graph are
tables, rather than merely pointers to tables. The distinction is crucial; grasping it is essential to the
ease of understanding of all that flows from FileMaker’s context management model. The way the
interface is grafted to structure via the layout-TO-table pathway places the Graph at the heart of
everything.

12_429006-ch07.indd 24112_429006-ch07.indd 241 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

242

Introduction to Database DesignPart II

Confusion surrounding the distinction between tables and TOs is not helped, perhaps, by the fact
that, throughout FileMaker’s own interface, the distinction is blurred, with numerous dialogs dis-
playing TO names with labels such as Current Table, Related Tables, and so on distributed
among them. Figure 7.14 shows one such example.

 FIGURE 7.14

The Specify Field list dialog is one of many that exclusively lists TOs, yet refers to them throughout as
“Tables.”

The blurring of the distinction between TOs and the tables they point to is unfortunate because it
makes grasping the pivotal importance of context more difficult. Further, it makes the necessary
existence of multiple TOs for a given base table appear perplexing or even incomprehensible. This
misconception leads to a second one about the Relationships Graph — that it is essentially an
Entity Relationship Diagram (ERD). In glossing over the distinction between TOs and tables, fun-
damental differences between the Relationships Graph and a conventional ERD are obscured, and
inappropriate patterns of use appear both feasible and viable.

NOTENOTE I’ve yet to see a FileMaker solution of any complexity with a Graph resembling an
ERD, although I’ve seen a few hopelessly mired projects where it seems that the

developers tried to envision the Graph in this way.

Whereas an ERD serves to outline defining structures to tie operations to essentials — the database
equivalent of a floor plan — the Relationships Graph exists in curved space around a process bet-
ter understood as analogous to fission. You solve problems in FileMaker not by referencing back
always to a unified core, but by a more organic process of branching and enclosing structures;
alternate paths meet only within the substrata (that is, the underlying tables). If you try to work
with the Relationships Graph as though it were really an ERD with a different name, you’ll encoun-
ter the frustration of circular reference errors as a constant frustration — that is simply not how
FileMaker works.

12_429006-ch07.indd 24212_429006-ch07.indd 242 3/25/09 7:21:00 PM3/25/09 7:21:00 PM

243

The Structure: The Manage Database Dialog 7

Tables versus Table Occurrences
It’s a defining strength of FileMaker that the nexus between process and structure is chameleon-
like in its flexibility. TOs, as the building blocks of the Graph, operate as tokens — that is, they’re
analogous to shortcuts or aliases to tables in the underlying database structure and can be multi-
plied and repurposed at will to perform a variety of major and minor roles spanning the data layer,
the process layer, and the interface layer of your solutions.

Although tables are the central structural element in a FileMaker database’s data layer, TOs are the
conduit between the data and the process and interface layers. The structure of the Relationships
Graph is, therefore, dictated as much by process and interface considerations as it is by entity
relationships.

Key to the distinction between tables and TOs is that you can have many TOs associated with a
single table, each named however you choose. (None of the TO names need to resemble the under-
lying table name.) For example, a college database may have a table called People, which may have
spawned TOs named Students, Faculty,, AdminStaff, Alumni,, and BoardMembers —
each having a distinct and essential role in the solution, each related differently to various other
TOs in the Graph.

You can easily tell which table each TO is attached to by moving the mouse pointer over the reveal
arrow at the left of the header bar on a TO in the Relationships Graph. As Figure 7.15 shows, an
info panel appears indicating the source table, the data source, and (if applicable) the location of
the file in which the table is stored. When you have multiple TOs attached to a base table, this fea-
ture becomes especially useful.

 FIGURE 7.15

Creating multiple TOs pointing to a single table and viewing the info panel that reveals the source of data
for a TO.

12_429006-ch07.indd 24312_429006-ch07.indd 243 3/25/09 7:21:01 PM3/25/09 7:21:01 PM

244

Introduction to Database DesignPart II

Avoiding circular references
When you create a relationship between two TOs, you can reference related data via the relation-
ship by prefixing the name of a field with the name of the related TO. For this setup to work, you
must have only one path (direct or indirect) between any two TOs. Consider a sales force database
with a relationship between the customer and sales staff tables and also a relationship between cus-
tomer and bill-of-sale tables. Figure 7.16 shows what happens when you try to create a relation-
ship between the sale and the cashier who made the sale.

 FIGURE 7.16

The Add Relationship dialog prompts you to create an additional TO if a relationship you’re creating
would result in more than one path between two existing TOs.

If FileMaker permitted you to add a relationship between the BillOfSale and SalesForce
TOs, a reference to either of the other tables from any of the three would create confusion, because
the direct path or the indirect path (via the third table) would be equally valid, yet may produce
different results. For example, the cashiers for a customer’s purchases may not always have been
the sales rep assigned as their contact — so from a Customer layout, the assigned contact would be
returned via a direct link to the SalesForce TO, but a link that passes via the BillOfSale TO
may return the name of the cashier who sold the customer an appliance last week.

Instead, FileMaker requires that an additional TO be created, providing an alternate (and distinct)
path to the sales staff table, so that confusion is avoided. The result, as Figure 7.17 shows, is an
additional TO associated with the SalesForce table, supporting the desired logic while avoiding
conflict. Instead of being a circular reference, this path formation might be thought of as a spiral
form because it returns to the same point, yet a displaced location.

12_429006-ch07.indd 24412_429006-ch07.indd 244 3/25/09 7:21:01 PM3/25/09 7:21:01 PM

245

The Structure: The Manage Database Dialog 7

The requirement to avoid circular references and the consequent displacement of points of connec-
tion to the underlying table structure are central to grasping the way the Graph works. Unlike a
two-dimensional floor plan, it’s best thought of as an exercise in multi-dimensional modeling.

 FIGURE 7.17

A typical spiral formation in the FileMaker Relationships Graph.

Named and unnamed data sources
FileMaker keeps track of the locations of files you’re using. These locations include files containing
the tables associated with TOs on the Relationships Graph, files from which you’re importing data,
and also files your solution will create (files containing exported data, PDF files of database con-
tent, and so on).

When storing details about the identity or location of a file that your solution uses, FileMaker differ-
entiates between data sources (files containing one or more of the tables referenced on the
Relationships Graph) and all other files. A key aspect of this distinction is that files containing tables
referenced on the Relationships Graph are given a name and are stored for reuse. You can view and
edit a list of these named data sources by choosing File ➪ Manage ➪ External Data Sources. Named
Data Sources can include any mix of FileMaker files (both local and hosted) and SQL databases
sourced via ODBC (from hosts running supported versions of SQL Server, MySQL, or Oracle).

Referenced files not containing tables you’ve associated with TOs on the Relationships Graph
include files designated in script or button commands, such as Open File[], Import
Records[], Insert File[], Save Records as PDF[], and the like. In these cases, the
location of the file (its path or server address) is specified and saved as a property of the command
to which it relates via the Specify File dialog shown in Figure 7.18.

12_429006-ch07.indd 24512_429006-ch07.indd 245 3/25/09 7:21:01 PM3/25/09 7:21:01 PM

246

Introduction to Database DesignPart II

Whereas you can reuse named data source references, unnamed file specifications are specific to a
single command. Even if you’ve referenced the same file several times in one or more scripts, each
instance is specified and stored separately.

 FIGURE 7.18

The Specify File dialog that FileMaker provides for entering or editing unnamed file specifications.

Creating references to other FileMaker files
FileMaker presents the Specify Table dialog showing, by default, a list of the tables in the current
file when you add TOs to the Relationships Graph. At the top of the dialog is a pop-up menu of
available data sources (see Figure 7.19).

If you want to use a table in another FileMaker file as the basis for a TO in the current file and the
file isn’t already present in the Data Source list, you can choose to add it to the list by choosing
Add FileMaker Data Source (within the group of options at the bottom of the menu). Choosing
this option presents the standard Open File dialog, so you can choose a local or remote file. After
selecting a file, as long as you have appropriate access privileges to the file, it’s added to the menu,
and a list of available tables appears in the dialog.

As you add a FileMaker data source (as described in the preceding section), its name and location
are stored so that you can later view or edit them (after leaving the Manage Database dialog) by
choosing File ➪ Manage ➪ External Data Sources. When you choose this command, FileMaker dis-
plays the Manage External Data Sources dialog, listing each external data source referenced by the
current file, its type, and its location.

12_429006-ch07.indd 24612_429006-ch07.indd 246 3/25/09 7:21:01 PM3/25/09 7:21:01 PM

247

The Structure: The Manage Database Dialog 7

 FIGURE 7.19

Adding a TO to the current file in the Specify Table dialog.

Working with External SQL Data Sources
FileMaker Pro 10 provides you with seamless access to data from a variety of sources — and the
ability to combine data from disparate sources. In doing so, it delivers new power and simplicity.
When your connections are configured, you can work with remote data from one or more SQL
systems in the same ways in which you work with FileMaker data. In many cases, users need not
even be aware of the source of the data they’re accessing.

Support for External SQL Data Sources (ESS) not only lets you integrate data from FileMaker,
MySQL, SQL Server, and Oracle systems — allowing you to search, view, create, edit, and delete
records in the remote systems — but also enables you to output data from any mix of these sys-
tems to a variety of formats. You won’t need to write a single line of SQL to make it all work.

In many cases, systems to which you’ll connect by using ESS will be managed by others, and you
may have little influence over the form of the data or the nature of access available. Nevertheless,
you’ll be able to create calculations and summaries by using SQL tables, while working entirely
within the familiar environment of FileMaker.

Configuring ODBC drivers: Setting up a DSN
FileMaker Pro 10 lets you work directly with tables stored in supported SQL databases. Prior to
doing so, however, you need to configure your computer’s connection to the relevant ODBC host.
This configuration requires creating a Data Source Name (DSN) that points to the location of the
external database.

12_429006-ch07.indd 24712_429006-ch07.indd 247 3/25/09 7:21:01 PM3/25/09 7:21:01 PM

248

Introduction to Database DesignPart II

NOTENOTE ODBC stands for Open Database Connectivity and is a widely supported protocol
allowing data exchange between enterprise data systems. FileMaker uses ODBC as

the technology that enables its connections to supported SQL database hosts.

If you intend to use the database as a stand-alone solution, you’ll need the appropriate ODBC driv-
ers and DSN configuration on your workstation. However, when a FileMaker file is hosted by
using FileMaker Server 9 or 10, the ODBC drivers and DSN configuration are required only on the
server, not on individual workstations accessing the solution.

To begin, you’ll need appropriate ODBC drivers for the versions of SQL you’ll be accessing, which,
when installed, will be available for selection in the ODBC Data Source Administrator utility on
your computer.

TIPTIP If you’re working on a Windows computer, you can expect that the required drivers
are already installed. (They ship with the operating system.) On the Mac, however,

you’ll need to purchase and install the required drivers, which are available from Actual
Technologies (www.actualtechnologies.com).

To access the ODBC Data Source Administrator in Windows (XP or Vista), go to the Start menu
and navigate to Control Panel ➪ Administrative Tools ➪ Data Sources (ODBC). After selecting this
option, the ODBC Data Source Administrator control panel appears. Choose the System DSN tab
(see Figure 7.20).

 FIGURE 7.20

The ODBC Data Source Administrator control panel in Windows Vista.

12_429006-ch07.indd 24812_429006-ch07.indd 248 3/25/09 7:21:02 PM3/25/09 7:21:02 PM

249

The Structure: The Manage Database Dialog 7

To access the ODBC Administrator on Mac OS, open the Applications folder on your system disk
and locate and open the Utilities folder. Inside Applications/Utilities, you’ll find an application
called ODBC Administrator. Double-click it, and the ODBC Administrator utility window appears.
Click the padlock icon at the lower left and authenticate as an administrator for the computer.
Choose the System DSN tab to show the panel in Figure 7.21.

After you’ve accessed the ODBC Administrator on your computer (as described in the preceding
paragraphs), click the Add button at the upper right of the window. You’ll be prompted to select a
driver. Choose the driver appropriate to the source to which you’re connecting — MySQL, SQL
Server, or Oracle. (If the appropriate driver isn’t present in the list, you’ll first have to obtain and
install it.) Accept the driver selection, and you’ll be presented with the driver configuration panel.
Although there is some variation between drivers and systems, the process is similar, requiring you
to enter a name, a server address, and authentication details.

In the following steps, I show the process for creating a new DSN to connect to SQL Server from
Mac OS by using the Actual SQL Server driver:

 1. In the first configuration panel (shown in Figure 7.22), enter the name for this connec-
tion (I chose to call the connection AdminSys_SQL, but any recognizable name will do)
and the connection type (System), along with the address of the server, which may be in
the form of an IP address or a domain pointer (for example, data.yourdomain.com).
The description field, if available, is optional.

 FIGURE 7.21

The ODBC Administrator Utility in Mac OS.

12_429006-ch07.indd 24912_429006-ch07.indd 249 3/25/09 7:21:02 PM3/25/09 7:21:02 PM

250

Introduction to Database DesignPart II

 After you accept the settings on the first panel, a second panel asks for authentication
details, as shown in Figure 7.23. The login and password you enter here must match a
valid account in the host system you’re accessing.

 2. In this panel, you can click the Client Configuration button to change the network proto-
col or the connection’s port assignment. In my case, the default settings (TCP-IP, port
1433) were appropriate. As long as your login ID and password are valid (and the server
address, port, and protocol are correct), the connection is established and you’re taken to
a third screen (shown in Figure 7.24) that displays settings specific to the server.

 FIGURE 7.22

Configuring the DSN, Part 1: Connection name and server address.

 3. If necessary (that is, if your login provides access to more than one database on the
selected host), choose a database as the default. Options to change the default language
and regional settings and log file locations, plus a confirmation screen, appear.

12_429006-ch07.indd 25012_429006-ch07.indd 250 3/25/09 7:21:02 PM3/25/09 7:21:02 PM

251

The Structure: The Manage Database Dialog 7

 FIGURE 7.23

Configuring the DSN, Part 2: Authentication.

 FIGURE 7.24

Configuring the DSN, Part 3: Server-specific settings.

12_429006-ch07.indd 25112_429006-ch07.indd 251 3/25/09 7:21:02 PM3/25/09 7:21:02 PM

252

Introduction to Database DesignPart II

 4. I accepted all the default settings. On dismissing the confirmation panel of the driver con-
figuration panel, a new DSN was added to the ODBC Administrator panel, as shown in
Figure 7.25.

Although the configuration process described here and the accompanying images are on a Mac
using the Actual SQL Server driver, I repeated the process in Windows Vista (using the default
SQL Server driver in Windows), and the process was identical.

 FIGURE 7.25

The resulting DSN appearing in the ODBC Administrator Utility, after configuration of
the ODBC Driver.

Integrating SQL tables with FileMaker data
After establishing a DSN as described in the preceding section, you can add SQL tables directly
onto the Relationships Graph in FileMaker Pro 10. To do so, follow these steps:

 1. Choose File ➪ Manage ➪ Database and navigate to the Relationships tab.

 2. Click the New TO icon at the far left of the tools along the bottom of the dialog. The
Specify Table dialog appears, as shown in Figure 7.26.

 3. Select Add ODBC Data Source from the Data Source menu. You’re prompted to choose a
DSN (from a list of previously configured DSNs).

12_429006-ch07.indd 25212_429006-ch07.indd 252 3/25/09 7:21:02 PM3/25/09 7:21:02 PM

253

The Structure: The Manage Database Dialog 7

 FIGURE 7.26

Adding an ODBC Data Source via the Specify Table dialog.

 4. Select the appropriate DSN and click Continue. FileMaker displays the Edit Data source
dialog, as shown in Figure 7.27.

 The only essential settings when configuring your connection to a SQL database are a
valid System DSN and a name to identify the external source within FileMaker. (It can be
the same as the DSN name if you want.) You will, of course, need a valid username and
password to access the SQL host. However, you have the choice of being prompted to
authenticate for every connection or to save the authentication details when creating the
connection.

CAUTION CAUTION If you store authentication details for an SQL Host in your FileMaker file, ensure
that your solution is appropriately secured with its own account and password

authentication (see Chapters 5 and 14).

 For most purposes, you can leave the Filter options at the bottom of the Edit Data Source
dialog with the default settings, but it may vary depending on the nature and configura-
tion of the SQL database and the settings of the DSN on your computer. If you’re unfa-
miliar with the database to which you’re connecting, you may want to confer with the
database administrator to ensure that you have an appropriate account and other configu-
ration details.

 On accepting the Data Source settings, you’re returned to the Specify Table dialog, and a
list of tables available in the selected SQL database is displayed, as shown in Figure 7.28.

12_429006-ch07.indd 25312_429006-ch07.indd 253 3/25/09 7:21:03 PM3/25/09 7:21:03 PM

254

Introduction to Database DesignPart II

 FIGURE 7.27

The Edit Data Source dialog for configuration of an external SQL connection.

 FIGURE 7.28

Selecting from a list of SQL Server tables in the Specify Table dialog.

12_429006-ch07.indd 25412_429006-ch07.indd 254 3/25/09 7:21:03 PM3/25/09 7:21:03 PM

255

The Structure: The Manage Database Dialog 7

 5. For the purposes of this example, I’ve added three SQL tables to a file alongside a
FileMaker table called Students. With SQL tables appearing as TOs on the Relationships
Graph, as shown in Figure 7.29, you’re able to drag connections between the tables to
create relationships, exactly as you do when working with FileMaker tables.

NOTENOTE The names of TOs based on external tables (both FileMaker and SQL) appear in
italic in the header band of their boxes on the Relationships Graph.

With relationships in place, you can work with your solution, incorporating SQL data alongside
FileMaker data, performing Finds, and creating and editing records (subject to privilege restric-
tions, if any, of your account to the SQL host).

 FIGURE 7.29

Creating relationships to join FileMaker tables and SQL tables.

Because some of the tables in your solution are created and hosted elsewhere, you’ll be constrained
by the available fields and their formats. SQL fields don’t always behave in the same ways as
FileMaker fields. However, you’ll be able to define Auto-Enter options (default values, serial num-
bers, auto-enter calculations and lookups, and so on) and data validations for the fields in the SQL
tables in your solution. To facilitate the application of Auto-Entry options and creation of calcula-
tions for ESS tables, FileMaker creates shadow tables representing the content of the SQL tables
you’ve referenced, as shown in Figure 7.30.

12_429006-ch07.indd 25512_429006-ch07.indd 255 3/25/09 7:21:03 PM3/25/09 7:21:03 PM

256

Introduction to Database DesignPart II

 FIGURE 7.30

Shadow tables created by FileMaker to support SQL TOs added to the Relationships Graph.

Adding supplemental fields
In addition to specifying Auto-Enter and validation options for fields within shadow tables,
FileMaker lets you add summary and calculation fields (for use only within FileMaker).

Using the example shown in Figures 7.29 and 7.30, you can add data to create and update student
enrollment records in the remote SQL Server database. As subjects are added to a student’s enroll-
ment, the total attendance hours increase. However, the SQL database has no facility to calculate
the total. You can resolve an issue of this kind by adding a calculation field to the Enrollment table,
exactly as you would if it were a FileMaker table.

Figure 7.31 shows the FileMaker calculation field added to the Enrollments table. Supplemental
fields added in this way are re-evaluated as data is displayed in the same way as unstored calcula-
tions within native FileMaker tables.

CROSS-REFCROSS-REF For further discussion of the use of SQL data, you may want to consult the discus-
sion on the use of separated data in SQL sources in Chapter 11.

12_429006-ch07.indd 25612_429006-ch07.indd 256 3/25/09 7:21:04 PM3/25/09 7:21:04 PM

257

The Structure: The Manage Database Dialog 7

 FIGURE 7.31

A FileMaker supplemental field added to the SQL Enrollments table that calculates the sum of course hours
by using a FileMaker relationship between two SQL tables.

The Concept of Data Relationships
Previously, I’ve mentioned the value of investing time and effort in setting up appropriate data rela-
tionships in your solutions. Establishing a comfortable and “natural” fit between the information itself
and the structures where you store it greatly simplifies effective information management.

As well as mirroring reality, relational data systems make practical sense because they allow you to
store each piece of information once and connect it to other relevant information. The reduced
duplication not only saves labor but also reduces the scope for error.

Why bother with relationships anyway?
In a solution such as the Inventory example from the previous chapters, each kind of item has a
single corresponding record in the Inventory table. Wherever the item is purchased or sold — or
included on a list of acquisitions for a customer in the contacts table — the name and description of
the item, as stored in its Inventory record, is displayed. If you correct an error in the description of
an item, the change instantly propagates to every place in the system referencing the item.

12_429006-ch07.indd 25712_429006-ch07.indd 257 3/25/09 7:21:04 PM3/25/09 7:21:04 PM

258

Introduction to Database DesignPart II

Similarly, each buyer and supplier has a single record in the Contacts table. If a contact’s address
is updated, the change will be seen throughout the system without further effort on your part.

In coming years, the time and money you invest designing and implementing an appropriate struc-
ture (and solution to support it) for your databases will pay off many times over in the improved
accuracy and accessibility of your data and the time saved.

How relationships work
Relationships use one or more key fields, which are matched to corresponding values in another
table. The values used as keys follow three guidelines:

n They should be unique (duplicates cause instant confusion).

n They should be persistent (not changing periodically).

n They should not be empty.

Using an attribute such as a person’s name or initials (or some other data about them) as the key to
a record is generally unwise. The information may not be unique (people can have the same
name), and it may not be persistent. (People occasionally change their names.) For these and simi-
lar reasons, using serial numbers or code values as keys is often safer.

When you’ve chosen key values, FileMaker builds value indexes for the key fields so that relation-
ship matching can be undertaken efficiently. When your solution retrieves data from another table,
it’s the other table’s index that is used. The value of the key field in the current table is referenced
against the index of the related table to instantly locate matching records. For this reason, a rela-
tionship will work as long as the “other” table’s match field is indexed.

In FileMaker, most fields can be indexed, so most relationships work in both directions (from the
perspective of layouts associated with TOs at both ends of the join). However, in cases where a
global field or an unstored calculation has been used as the key field on one side of a relationship,
the relationship will work in one direction only.

Solving problems by using relationships
A useful feature of FileMaker relationships is that they match field values. In text fields, a value is
one line of text. Because text fields can hold multiple lines, however, a text field can hold multiple
key values. When you place multiple values (separated by carriage returns) into a text field that
you’ve defined as the key field for a relationship, matches to any of the values will be valid. A key
field used in this way is referred to as a Multi-Key field (or sometimes just a Multi-Key). By employ-
ing Multi-Key fields, you increase the possible matches, creating an OR relationship condition.
(That is, records will be related to the current record if they match one value or the other.) You can
use Multi-Key text fields on either side, or both sides, of a relationship. (In the latter case, the join
is valid if any of the values on one side matches any of the values on the other.)

12_429006-ch07.indd 25812_429006-ch07.indd 258 3/25/09 7:21:04 PM3/25/09 7:21:04 PM

259

The Structure: The Manage Database Dialog 7

FileMaker also lets you narrow the scope of a relationship by specifying additional pairs of key
fields, Relationships of this kind are called multi-predicate relationships. When more than one pair of
key fields has been assigned to a relationship, both criteria are applied, returning an AND condi-
tion. (The first pair of keys must match, and any subsequent pairs must match in order for the rela-
tionship to be valid.)

By far the most common kind of relationship is one in which values on either side of the relation-
ship must exactly match. This kind of relation is called an equi-join and is symbolized by the =
relationship operator. However, FileMaker provides a number of alternative operators that you can
use to control the behavior of relationships.

For example, when you want to relate an invoice record to the record for the customer who you’re
invoicing, your relationship between the Invoices and Customers TOs will be an equi-join
that connects the CustomerID fields in both tables. However, when you want to view a list of
previous invoices, your relationship between two TOs based on the invoices table will use the less
than operator to match the InvoiceDate fields in both TOs. In this latter example, the invoices
with dates earlier than (less than) the date of the current invoice will appear.

CROSS-REFCROSS-REF For additional detail about relationships and relationship operators in FileMaker,
refer to Chapter 11.

Deciding what goes where
A central principle of relational design is that of separating entities and describing their attributes.
From a data design perspective, each kind of entity warrants a table, and each attribute of an entity
warrants a field in the entity’s table.

In practical terms, tables are used to store information about a class of items. Whenever an item
has independence from another (with which it is associated), you should consider treating them as
separate entities and giving them separate tables.

Persons are entities, and they live at addresses. Because persons are not inseparable from their
places of residence, however, storing addresses in a separate table from persons often makes sense.
Similarly, employees occupy jobs for periods of time, but they can be viewed as discrete entities, so
it makes sense to have separate tables for them and relationships to show who is in which job and
when.

CROSS-REFCROSS-REF I provide a more extensive discussion of relational modeling and data design in
Chapters 11 and 15.

The FileMaker relational model
FileMaker offers you a very appealing combination of elements. It provides coverage for a wide
range of requirements from stand-alone systems to major server-based installations. It’s a stealth
weapon, concealing its power behind a demure interface and apparent ease of use.

12_429006-ch07.indd 25912_429006-ch07.indd 259 3/25/09 7:21:04 PM3/25/09 7:21:04 PM

260

Introduction to Database DesignPart II

A defining characteristic of FileMaker has been its integrated approach — wherein data, logic, and
interface are combined within a unified format. But in reality, FileMaker’s extraordinary flexibility
gives you many choices. The ability to work seamlessly with SQL data in FileMaker 10 further
extends FileMaker’s scope as an all-purpose tool.

However, powerful relational tools and good data modeling aren’t the only things that make
FileMaker an instant asset. Its capability to automate your work processes adds another dimension.
In Chapter 8, I delve into FileMaker’s capabilities as a process management tool.

12_429006-ch07.indd 26012_429006-ch07.indd 260 3/25/09 7:21:04 PM3/25/09 7:21:04 PM

261

A key benefit when you choose to embrace technology is that it can
make life easier for you. However, getting the most out of technology
means not only choosing well, but also using well. It is at the point

where you wish to gain maximum benefit from your use of FileMaker Pro
that the FileMaker built-in scripting environment comes to the fore.

In the preceding chapters, you’ve become acquainted with the tools and
techniques for building database structures and interfaces. Scripting provides
a third essential element that makes everything work together. When you
need your solution to take a more active role, you have to provide it with a
script. That’s where scripting comes in. Scripting enables you to store
instructions about tasks to be performed with your data; then a script per-
forms those tasks for you!

Any series of database tasks that you need to do repetitively may benefit
from being scripted and performed on demand. Scripting performs this
essential automation role, with the potential to take much of the drudgery
out of your digital days. The best thing is that you’ll find it very easy to get
started using scripting — and, when you do, you’ll wonder how you ever got
by without it!

Scripting: What It Is and What
It Offers You
At its inception, FileMaker scripting was analogous to a macro environ-
ment; its focus was to perform a number of simple tasks in the same ways
in which the users would perform the tasks. That was a couple of decades

IN THIS CHAPTER
Getting acquainted with
scripting

Creating and modifying
FileMaker scripts

Getting acquainted with Script
menu

Designing script automation

Identifying some notable
script uses

Organizing your scripts

Getting started with some
examples

Putting your scripts into action
in your solutions

The Processes:
FileMaker Scripting

13_429006-ch08.indd 26113_429006-ch08.indd 261 3/25/09 7:23:39 PM3/25/09 7:23:39 PM

262

Introduction to Database DesignPart II

ago, however, and scripting’s capabilities have been growing and evolving, version by version,
ever since. Nevertheless, scripting retains those original capabilities, making it easy for you to
get started.

A FileMaker script is essentially a sequence of instructions saved together — a stored procedure.
Scripts typically perform a series of actions in the same sequence in which you’d perform those
actions if you were stepping through a task manually. When the actions are set out in a script,
however, you can perform them as though they were a single action or command. For example,
when you create a database to keep track of customer details, you’ll find it useful to be able to
locate a customer’s details and then click a button to see corresponding orders. Similarly, you may
want to create an automatic procedure to create banking reconciliations or to delete inactive cus-
tomer records.

Before beginning a journey into the realm of scripting, it will help you become familiar with some
of the terms and concepts you’ll encounter as you work with scripts. You can get started creating
and organizing your own scripts in the Manage Scripts window in FileMaker by choosing
Scripts ➪ Manage Scripts or Shift+Ô+S/Ctrl+Shift+S). The instructions within a script are called
commands and are sometimes also referred to as steps or script steps. The FileMaker Edit Script win-
dows (you access the Edit Script windows from within the Manage Scripts window) present a list
of script commands groups within the following 12 functional categories:

n Control commands enable you to manage the flow of your scripts, determining when it
will exit, introducing conditions, repeating (looping) particular sequences, detecting
errors, and so on.

n Navigation commands allow your scripts to move the focus between layouts, fields, layout
objects (buttons, tab controls, Web viewers, and so on) and modes within your solution.

n Editing commands let your scripts make changes to data in the fields of your database,
selecting text, clearing values, inserting data, and cutting, copying, pasting, and replacing data.

n Fields commands enable you to programmatically set or update the value in a field or a
group of fields or to export the contents of a field.

n Records commands allow you to create, delete, save, duplicate, import, or export the
records in your database and to generate find requests when scripting search operations.

n Found Sets commands enable your scripts to perform and modify Finds, adjust found
sets, and sort records.

n Windows commands provide your scripts with control over the display, position, and
behavior of the database windows of your solution, enabling the creation of new win-
dows, selection of existing windows, closure of windows, and adjustment of window size
and position.

n Files commands allow your scripts to automatically control database files, creating, open-
ing and closing files; adjusting formats; and selecting printers and printing documents.

n Accounts commands give your scripts an interface to file security, allowing them to add
and delete user accounts, enable and disable accounts, update passwords, and change the
login status of the current file.

13_429006-ch08.indd 26213_429006-ch08.indd 262 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

263

The Processes: FileMaker Scripting 8

n Spelling commands provide script options for control of the spell-checking features and
dictionary support of FileMaker Pro.

n Open Menu Item commands offer your scripts a means to access a range of standard
menu actions to display key configuration dialogs, including Online Help, File Options,
Preferences, Sharing, Manage Database, and numerous others.

n Miscellaneous commands provide additional controls and extended functionality, from
toolbars and custom dialogs to Web viewer controls, SMTP e-mail external events, and
inter-application scripting.

Scripting in FileMaker is easier than text-based programming (in languages that require you to
write code directly) because FileMaker provides Edit Script windows that enable you to build
scripts by pointing and clicking. The Manage Scripts dialog and the Edit Script windows provide
you with lists of commands to select from, plus buttons, checkboxes, and menus for associated
parameters and controls so that you don’t have to be so concerned about remembering the syntax
or typing things out correctly. Instead, you can select the commands you require from the lists
provided and then configure the required parameters in a panel below the main script definition
panel. As you can see in Figure 8.1, dialogs such as the “New Window” Options dialog prompt
you to enter the necessary details to support each script command. Moreover, many dialogs, like
the one in Figure 8.1, include Specify buttons adjacent to many input fields, allowing you direct
access to the calculation dialog so that the script command’s parameter values can be determined
dynamically (that is, calculated as the script runs).

 FIGURE 8.1

Specify buttons present calculation dialogs where you can create calculations that will determine com-
mand parameters dynamically each time your script is executed.

13_429006-ch08.indd 26313_429006-ch08.indd 263 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

264

Introduction to Database DesignPart II

TIPTIP If your solution may be Web hosted or if you’re creating a script that you may need
to run remotely on FileMaker Server, make sure to visit the Show Compatibility

drop-down menu at the lower left corner of the Edit Script dialog. Knowing which steps won’t
function in a given environment allows you to adjust your approach or disable specific function-
ality when designing scripts to be run remotely.

Building blocks of automation
The FileMaker Scripting environment offers 15 Control commands, 11 Navigation commands, 8
Editing commands, 16 Fields commands (Mac) or 18 Fields commands (Windows), 14 Records
commands, 10 Found Sets commands, 14 Windows commands, 10 Files commands, 6 Accounts
commands, 7 Spelling commands, 11 Open Menu Item commands, and 15 Miscellaneous steps
(Mac) or 14 Miscellaneous steps (Windows), making a total of 137 script commands on Mac OS
and 138 script commands in Windows. However, two of the Miscellaneous commands (Perform
AppleScript and Speak) are Mac-only, and three (Insert Object, Update Link, and Send DDE
Execute) are Windows-specific, while the Send Event command is present on both platforms but
requires different syntax.

I won’t provide you with a blow-by-blow account of the operations of each of the 140 commands
(both platforms combined) here. If I were to give full details (listing and describing them all) here,
you would not get the best value because you already have lists and descriptions in the online Help
system that installs with every copy of FileMaker Pro (and the same information is also available on
the Web and in downloadable PDF documents from the FileMaker, Inc., Web site)

CROSS-REFCROSS-REF Refer to Appendix A for links to free and comprehensive resources detailing the
operation of each script command.

The FileMaker Specify Calculation dialog allows (but does not require) you to type your calcula-
tion expression. However, the Edit Script dialog requires that you create and edit scripts by select-
ing items from lists and configuring their predefined options. Some users start out performing
these selections and manipulations entirely via the mouse, but you’ll quickly find that you can use
keyboard commands to control the whole process efficiently. You select script steps (using the
mouse, the Tab and arrow keys, or type-ahead selection) in a list box at the left of the Edit Script
window. After you’ve located/selected the step you want, you can add it to the current script (by
double-clicking or by pressing Return). By default, new steps appear at the end of the current
script, but if you’ve selected a step in the current script, any new steps will be added immediately
after that step.

In the main working area of the Edit Script window, you use the same methods to select a script
step to configure, reposition, or delete. You can select options for a selected script step from check-
boxes (occasionally with adjoining Specify buttons) in the Script Step Options panel, as shown in
the lower portion of the dialog in Figure 8.2.

13_429006-ch08.indd 26413_429006-ch08.indd 264 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

265

The Processes: FileMaker Scripting 8

TIPTIP The Tab key provides a convenient way to shift the focus between the Script Name
text box, the Script Step list box, and the Script Definition list box. (Shift+Tab

changes focus in the reverse direction.)

When one of the two list boxes in the Edit Script window has focus (a blue border), you can use
the keyboard to select items/lines by typing the first letter(s) of the entry. For example, in Figure
8.2, typing en selects the End If script command line.

When a line is selected in the list box, press Return (or Enter or the space bar) to add it to the
current script. When a line in the script definition window is selected, press Return (or Enter or
the space bar) to open a configuration dialog.

 FIGURE 8.2

The Edit Script window with a command in the current script selected.

When you select a script command, configuration options are shown in the Script Step Options
panel immediately below the script definition panel, as shown in Figure 8.2. Moreover, script com-
mand options are summarized in square brackets ([]) adjacent to each configurable command in
the Script Definition panel. The additional information that command options provide are fre-
quently termed arguments or parameters. After a brief period working with FileMaker scripting,
you’ll find that you become familiar with the way commands are presented, and it becomes easier
to read a script definition and understand the arguments. Although FileMaker makes it relatively
easy, it is nevertheless a programming language that provides complex information in a compact
form, ready to be parsed and executed by the FileMaker script engine.

Some script steps are straightforward and have no parameters to be configured. Perhaps the best
example is the Halt Script command, which stops the script dead in its tracks. Another example is the
New Record/Request step, which requires no parameters and always simply creates a new record (if
the database is in Browse mode at the time) or a new Find request (if the database is in Find mode).

13_429006-ch08.indd 26513_429006-ch08.indd 265 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

266

Introduction to Database DesignPart II

Many script commands have multiple options and can perform a variety of different actions,
depending on the options you select. A simple example is the Undo/Redo command, which pro-
vides a menu of three options: Undo, Redo, or Toggle. In effect, the Undo/Redo command can
provide three different behaviors, depending on the parameter you select.

At the opposite extreme, however, are some commands that have many options and can be config-
ured to do a variety of different tasks within a single script step. One such command is Go to
Related Records[]. It can be configured to

n Select records from a related table.

n Choose an appropriate layout to display the selected records.

n Create a new window.

n Give the new window a custom title.

n Size and position the new window.

n Constrain the found set of records in the selected table.

With all these capabilities available simultaneously, this one particular command can do work that
would otherwise require a number of steps. In this manner, many of the available script commands
may be viewed as “packages” of functionality.

Similarly, when you create a script, you’re assembling a number of steps into a particular order
(and with particular options selected), such that the script itself becomes a package of functionality
in your solution. In other words, you can call your script with one action (for example, from a
menu or with an assigned keystroke), and it responds, delivering the full functionality of its
sequence of steps, at a single stroke.

Context is everything
FileMaker scripts act as though they’re the user — they temporarily take over control of your solu-
tion and perform a sequence of actions. In doing so, scripts are constrained to work with the solu-
tion’s layouts and windows (although they can be programmed to switch layouts or create new
windows if desired). Just like the user, a script must be focused on the appropriate screen before it
can act on the data that’s accessible from that screen.

The way your scripts depend on context is similar to the way you, as a user, depend on context when
using your solutions. From a particular layout, you can see data from the associated table and also
from related tables (for example, in a portal). Similarly, scripts can act on the current record or on
related records, based on the currently active layout and record as each script command executes.

Many script steps require not only that the correct layout be active but that the field or object
they’re programmed to act on also be present on the layout. For example, when your script
includes the command

Paste [Select; Contacts::ContactName]

13_429006-ch08.indd 26613_429006-ch08.indd 266 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

267

The Processes: FileMaker Scripting 8

The step will fail if you remove the ContactName field from the current layout.

NOTENOTE Although scripts act from the context established via the interface, some script com-
mands, such as Set Field [], work directly with the data structure available from

the current layout context, regardless of the presence of fields on the layout.

To ensure that your scripts work as intended, you should code them to manage context. Doing so
entails establishing the correct context before taking context-dependent actions (such as changing
data), testing for context where appropriate, and returning the user to a familiar context after com-
pleting their operation.

Doing things in sequence
Because scripts control the interface and act on your solution as a user does, they’re constrained to
perform actions in the same logical sequence that a user would. If you want to create a record in
the Invoice table, you have to make sure that you’re in Browse mode, navigate to an invoice lay-
out and then select the New Record command. To script the same procedure, you’d require three
commands as follows:

Enter Browse Mode []
Go to Layout [“InvoiceList” (Invoices)]
New Record/Request

A script is a list of instructions to be performed in the order in which they appear. In this respect,
your scripts are a detailed and sequential documentation of a specific process. If you’re able to
clearly document all the steps required to perform a specific task, then you’ll be able to script the
task by assembling the commands that represent each user action, in the order in which the
actions are to occur.

Addressing objects by name
Many script commands act directly on the solution interface, whether entering data into a field on
the layout or setting a URL into a Web viewer. To do this, scripts must move the cursor to the
appropriate field or layout, select the appropriate Web viewer, and so on.

Some layout objects types have a special command to place the focus on them. For example, the
commands

Go to Field []
Go to Portal Row []

are specially designed to move the focus to a specific field on the current layout or row of the cur-
rent portal. However, you can address objects of other types by first assigning an object name (via
the Object Info palette) and then using the command:

Go to Object []

13_429006-ch08.indd 26713_429006-ch08.indd 267 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

268

Introduction to Database DesignPart II

For example, if you have more than one portal on a layout called InvoiceSummary, in order to
place the cursor into a particular field in the last row in one of the portals, you could use a script
sequence such as:

Enter Browse Mode []
Go to Layout [“InvoiceSummary” (Invoices)]
Go to Object [“AvailableItems”]
Go to Portal Row [Last]
Go to Field [Items::QuantityAvailable]

By naming the portal in question AvailableItems and then addressing it explicitly by its name
in the script, you ensure that the script will locate the desired portal and the correct instance of the
Items::QuantityAvailable field.

In any situation where more than one instance of an object may be present on the layout, the Go
to Object [] command provides a way to ensure that your script will target the desired object.
Moreover, you can use the Go to Object [] command to place the focus on a variety of differ-
ent object types including tab panels, buttons, and Web viewers as well as fields and portals.

NOTENOTE An added advantage of the Go to Object [] command is the ability to determine
the name of the object it is to target by calculation. This command enables you to

program your scripts to behave more intelligently (for example, taking the user to the first empty
field, or selecting a field if it has a value in it, but if not, going to a different field).

Defining and Editing Scripts
In the sense that script commands and scripts themselves can be considered packages of function-
ality, you can view scripting as analogous to an object environment, where larger objects can be
assembled from smaller ones and then, in turn, used as components in the assembly of still other
objects. Just as you can supply parameters (or arguments) to a script command to determine its
behavior, you can pass and reference a script parameter within the script to control the behavior of
the script.

CROSS-REFCROSS-REF The use of script parameters is explored in detail in Chapter 9.

I encourage you to think about scripts as reusable objects — maps of action and process — and to
strive for a mix of simplicity and versatility. As you develop your skills with scripting, you may
come to view a script as operating like the roll of a player piano — encapsulating detail while re-
creating artistry.

Script Editor windows
When you choose File ➪ Manage ➪ Scripts (Ô+Shift+S or Ctrl+Shift+S), FileMaker displays the
Manage Scripts window for the current file.

13_429006-ch08.indd 26813_429006-ch08.indd 268 3/25/09 7:23:40 PM3/25/09 7:23:40 PM

269

The Processes: FileMaker Scripting 8

NOTENOTE An alternative way to invoke the Manage Scripts window is to choose Scripts ➪
Manage Scripts. Both commands take you to the same window.

As shown in Figure 8.3, the Manage Scripts window provides a list of scripts in the current file,
along with basic search and selection tools at the top of the window and a selection of controls
along the bottom.

The Manage Scripts window in FileMaker 10 is nonmodal, so you can leave it open (off to one side
of your monitor) while you continue to work with your solution in Browse mode, Layout mode,
and so on. Moreover, if you have more than one FileMaker database file open, you can display the
Manage Scripts windows for both files simultaneously. This ability is particularly useful for com-
paring different versions of the same file or copying and pasting scripts between files. The title bars
of the Manage Scripts windows show the name of the file to which each belongs.

 FIGURE 8.3

The Manage Scripts window and its controls.

Script Menu
 Checkerbox

Reorder Handle

Group Selection Menu

Script (and/or group) Names

Script Selection Highlignt

Search Filter Field

Script list

Title Bar
(Includes File Name)

Script Menu
Control

New (Script) Button Edit Selected Script button

Delete Selected Script button

Duplicate Selected Script button

Print Selected Script button
Import Scripts button

Run Selected Script button

New (Script/Default Script/Folder/Separator) Menu

13_429006-ch08.indd 26913_429006-ch08.indd 269 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

270

Introduction to Database DesignPart II

NOTENOTE The Include in Menu option adds the selected script(s) to the Scripts menu.
However, if you have access to FileMaker Pro 10 Advanced, you can create custom

menus to add script calls to other menus throughout your solution.

CROSS-REFCROSS-REF For a more detailed discussion of the creation and use of custom menus in
FileMaker Pro Advanced, refer to Chapter 18.

Although only three of the controls at the bottom of the Manage Scripts window have text labels,
mouse-over tooltips provide reminders about the function of the remaining four icon-only buttons.

To create a script, click the New button at the lower left. To edit an existing script, select it in the
list (it appears highlighted, as shown in Figure 8.3) and click the Edit button (or simply double-
click the script). In either case, an Edit Script window will be displayed for the script in question,
as shown in Figure 8.4.

 FIGURE 8.4

The Edit Script window and its controls and parts.

Script Name

Title bar (includes name of
 script and name of file)

Script Steps Filter

Steps in Current Script

Script Steps Selection

Full Access Privileges Checkbox

Show Compatibility pull-down menu

Script Step Controls

Script Step Options Panel

Script Definition Panel

Like the Manage Scripts window, the Edit Script window is nonmodal in FileMaker 10, meaning
that you can open the Edit Script window for multiple scripts (from the same or different files)

13_429006-ch08.indd 27013_429006-ch08.indd 270 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

271

The Processes: FileMaker Scripting 8

simultaneously. For comparison and also for copying and pasting commands (or groups of com-
mands) between scripts, this ability is advantageous.

When you open multiple Manage Script or Edit Script windows, each is added to the list of win-
dows appearing at the bottom of the Window menu. Selecting a window from the Window menu
will bring it to the front.

To save changes to a script in an Edit Script window, choose Scripts ➪ Save Script. To discard all
changes since the script was last saved, choose Scripts ➪ Revert Script.

To close an Edit Script window, or the Manage Scripts window (while either has focus), choose
File ➪ Close (Ô+W or Ctrl+W) or click the Close button in the window’s title bar. If you’ve made
changes to a script in an Edit Script window and you haven’t saved the changes, you’ll be
prompted to save (or discard) the changes when closing the window.

Setting up a basic script
The process of creating a script to perform a common task requires that you first identify the com-
ponent actions of the task. After you’ve done that, creating the script to put the actions into effect
is relatively straightforward. For example, to create a script that prints a list of acquired items in
the example Inventory database, follow these steps:

 1. Choose File ➪ Manage ➪ --Scripts. The Manage Scripts window appears.

 2. Click New. A new script is created, and an empty Edit Script window appears.

 3. In the Script Name field, replace the default text for the script name with Acquired Items
Report.

 4. In the list of commands at the left (under the heading Navigation), locate the Enter
Browse Mode [] command, and double-click it. An Enter Browse Mode [] step is
added to the script definition panel.

 5. Choose the Windows option in the View pop-up menu at the upper left of the Edit Script
window; then, in the resulting list of commands, double-click the Freeze Window
command.

 6. Select the Navigation group of commands; then locate the Go to Layout command and
double-click it.

 7. With the Go to Layout [] command selected in the script definition panel, click the
Specify menu in the Script Step Options panel and choose the OrderLines layout.

 8. Choose Found Sets in the filter menu that sits above the list of commands on the left in
the Edit Script window; in the resulting list of commands, double-click the Show All
Records command.

 9. From the Found Sets group of commands, double-click the Sort Records command.

 10. With the Sort Records [] command selected in the script definition panel, select the
Perform without Dialog checkbox in the Script Step Options panel; then click the Specify
Sort Order checkbox. The Sort Records dialog appears.

13_429006-ch08.indd 27113_429006-ch08.indd 271 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

272

Introduction to Database DesignPart II

 11. In the Sort Records dialog, locate the OrderLines table in the menu at the upper left
and double-click the ItemID field. It appears in the Sort Order panel at the upper right.

 12. Click OK to accept the Sort Records dialog settings.

 13. Choose Files in the filter menu at the top of the list of commands at the left of the Edit
Script window and, in the resulting list of commands, double-click the Print Setup
command.

 14. With the Print Setup [] command selected in the script definition panel, select the
Perform without Dialog checkbox in the Script Step Options panel and select the Specify
Page Setup checkbox. The Page Setup dialog appears.

 15. Choose page attributes for portrait orientation and either US Letter or A4 paper size (as
appropriate to your region); then click OK.

 16. Double-click the Print command in the list at the left.

 17. With the Print [] command selected in the script definition panel, select the Perform
without Dialog checkbox in the Script Step Options panel and select the Specify Print
Options checkbox. The Print Options dialog appears.

 18. Choose an appropriate printer, a single copy, and — from the FileMaker Pro section of
the dialog options — the Records Being Browsed radio button and click Print (Mac) or
OK (Windows).

 19. In the Navigation group of commands, locate the Go to Layout command and double-
click it. The content of the script is now complete, as shown in Figure 8.5.

 20. Choose Scripts ➪ Save Script (Ô+S or Ctrl+S) to save your work.

 FIGURE 8.5

The complete Acquired Items Report script definition as it is shown in the Edit Script
window.

13_429006-ch08.indd 27213_429006-ch08.indd 272 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

273

The Processes: FileMaker Scripting 8

 21. Choose File ➪ Close (Ô+W or Ctrl+W) to close the Script Editor window.

 22. In the Manage Scripts window, select the Acquired Items Report and the Include in Menu
checkbox.

 23. Choose File ➪ Close (Ô+W or Ctrl+W) to close the Manage Scripts window.

 24. Test your new script (by choosing Scripts ➪ Acquired Items Report) to ensure that it pro-
duces a printed data sheet from the OrderLines table and returns you to the layout you
were in when you chose the script from the Scripts menu.

NOTENOTE For reference purposes, a complete copy of the preceding script, with comments
added, is included in the Inventory example file for this chapter. For the purpose

of viewing the results of the script, I also made some rudimentary changes to the InvoiceLines
layout in this chapter’s copy of the Inventory example, so the printout produced presents infor-
mation in a list format.

CROSS-REFCROSS-REF In Chapters 9 and 10, I provide detailed instructions for formatting the
InvoiceLines and OrderLines layouts to achieve more useful output.

After completion of this process, you’ve created a simple eight-step script that fully automates the
process of creating a report from the OrderLines layout. You can generate the report by select-
ing the script from the Scripts menu from wherever you are in the solution. You will be returned to
the screen you started from as soon as the report has been created.

How script commands function
Script commands execute an action (or a folder of actions) in real time as the script runs. Some
commands, though, are more dependent on the interface than others. For example, commands
such as Cut, Copy, Paste, Clear, and Insert work directly with fields in the user interface, placing
the cursor into the field and acting on its contents. These commands are not only constrained by
the current layout context, but they’re also dependent on the relevant field being present on the
current layout (if you remove the field from the layout, these script commands will fail). Such
commands can be described as interface dependent.

A second category of commands replicate the actions of menu commands throughout FileMaker.
These commands include script commands, such as New Record/Request, Show All Records, and
Save Copy As. There are many commands of this kind, and they provide access to the broad range
of activities that are routinely available to the user of a solution.

In addition, scripting provides a number of commands that directly leverage the underlying
FileMaker engine. Commands such as Set Field [], Set Next Serial Value [], Add
Account [], and Set Selection [] exemplify this script step category. They allow your
scripts to reach around behind the interface, directly manipulating components of the solution.

Finally, a significant number of commands provide control over the script itself, managing the flow
of commands and altering their execution. You can find the majority of these commands in the
Control group of commands — they include If []/End If, Loop/End Loop, Perform Script
[], and numerous others.

13_429006-ch08.indd 27313_429006-ch08.indd 273 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

274

Introduction to Database DesignPart II

A significant aspect of script commands is that they provide controls and options that extend
FileMaker’s preset capabilities. You can achieve many actions via careful use of scripting that
are not available via the standard user interface of FileMaker. A few of the many examples are
Execute SQL [], Set Window Title [], Dial Phone [] (Windows only) and OpenURL [].
These commands and others like them extend FileMaker’s functional capabilities, enabling you to
use scripts to create a rich and varied experience for your solution’s users.

Changing the order of commands
When you’re editing your scripts, you’ll encounter situations where you need to move a command
to a position elsewhere within your script. The FileMaker Edit Script dialog offers the capability to
move a step by using either the mouse or keyboard. Alternatively, if you prefer, you can achieve a
similar result by copying and pasting one or more steps to a new location. (This approach isn’t par-
ticularly useful for a single line of your script, but it may be worth considering if you need to move
a group of commands together.)

NOTENOTE Unfortunately, no Cut command is available when editing scripts. To simulate the
effect of a Cut operation, you need to first copy the command (or group of com-

mands) and then click Clear to delete it. The copied code remains on the clipboard ready to be
pasted elsewhere.

When you move the mouse pointer over the column of symbols at the left of the script definition
panel, it changes to the familiar FileMaker handle cursor, showing double-headed arrows to signify
that you can drag the object up or down. You can click the handle, illustrated in Figure 8.6, and
drag the adjacent command to a new position in your script.

 FIGURE 8.6

Drag the command handle to move a script step to a new position.

13_429006-ch08.indd 27413_429006-ch08.indd 274 3/25/09 7:23:41 PM3/25/09 7:23:41 PM

275

The Processes: FileMaker Scripting 8

If you prefer, another way to move a script command is to select the step and press Ô+↑ or Ctrl+↑
to move the selected step upward and Ô+↓ or Ctrl+↓ to move the step to a position farther down
your script.

FileMaker doesn’t provide direct support for moving a block of script steps all at once, but two
methods are useful when you need to do this task: the copy/clear/paste method and the inline
duplication method.

Follow these steps to use the copy/clear/paste method:

 1. Select the block of commands you want to move.

 2. Choose Edit ➪ Copy (Ô+C or Ctrl+C).

 3. Click the Clear button.

 4. Select the script step immediately above the desired new location.

 5. Choose Edit ➪ Paste (Ô+V or Ctrl+V).

Follow these steps to use the inline duplication method:

 1. Select the block of commands you want to move.

 2. Press Ô+click or Ctrl+click to select a subsequent command immediately above the
desired new location.

 3. Click the Duplicate button.

 4. Select the final line of the resulting (duplicated) block of commands.

 5. Click the Clear button.

 6. Reselect the original block of commands.

 7. Click the Clear button.

Although inline duplication is less versatile, it has the advantage of working in earlier versions of
FileMaker and can be an effective method for some requirements in FileMaker 10. However, inline
duplication has the limitation that it’s convenient only if you require the duplicate lines below the
original lines you’re duplicating.

Adding a script command to your script (either by selecting it in the step list and clicking the Move
button or by double-clicking it in the step list) places that step immediately below the currently
selected line in the script definition window — or, if no line is selected, the command will be
added at the end of your script. However, you can easily reposition the step to a different location.

NOTENOTE When you select an item in the list of commands, FileMaker deselects any selected
steps in the Script Definition box. Nevertheless, FileMaker remembers which line was

selected. However, should you wish to add a command as the first line in your script (after adding
other lines), you need to add it first and move it to the top subsequently, because commands are
always inserted after, rather than before, the selected (or last) step in the definition panel.

13_429006-ch08.indd 27513_429006-ch08.indd 275 3/25/09 7:23:42 PM3/25/09 7:23:42 PM

276

Introduction to Database DesignPart II

I expand on these and other script-editing techniques in the “Ease of Editing in FileMaker
Scripting” section, later in this chapter.

Assigning attributes to a command
Some script commands, such as Select All or Open Record/Request, are self-contained,
requiring no parameters. However, most script commands accept (or require) configuration argu-
ments specifying the scope of (or content for) their action. For example, when your script creates a
new window by using the New Window []script command, you can (optionally) supply a win-
dow name, dimensions, and location for the window that is to be created. In this instance, if you
don’t supply one or more of the arguments, their values will instead be based on the currently
selected window.

The controls that appear in the Script Step Options panel relate to the currently selected script
command in the script definition panel, as shown in Figure 8.7. FileMaker assists you and aids
clarity by displaying only those controls pertinent to the selected step. The parameters are entered
and edited by using a variety of controls, such as checkboxes, pop-up menus, and Specify buttons,
which frequently invoke the Specify Calculation dialog (where you can enter a formula to deter-
mine the relevant parameter). When you click the relevant controls, FileMaker updates the corre-
sponding command definition in the Script Definition panel.

 FIGURE 8.7

Configure your script commands with the controls provided in the Script Step Options panel.

Clicking a Specify button presents a context-appropriate dialog, such as the Specify Field dialog,
shown in Figure 8.8, which appears when you select the Specify Target Field checkbox (or its asso-
ciated Specify button).

13_429006-ch08.indd 27613_429006-ch08.indd 276 3/25/09 7:23:42 PM3/25/09 7:23:42 PM

277

The Processes: FileMaker Scripting 8

 FIGURE 8.8

Clicking a Specify button presents a corresponding dialog.

NOTENOTE Double-clicking a command in the Script Definition Panel — or selecting a com-
mand and then pressing the Enter key — brings up the default dialog for commands

that have one or more parameters configurable by dialog.

You can see examples of the process of setting parameters in the Acquired Items Report script
described in the “Setting up a basic script” section, earlier in this chapter, where you selected
parameters for the Go to Layout [], Sort Records [], Print Setup [], and Print []
script steps.

One of the most frequently used script steps, Set Field [], has two Specify options, as shown
in Figure 8.8. One of the options determines the field to be set (the target field) via the Specify
Field List dialog; the other determines the value to be set in the target field. When the Set Field
[] command is selected in the Script Definition panel, you can access the Specify Field dialog by
any of the following means:

n Clicking the first Specify button

n Pressing the space bar, the Return key, or the Enter key (Mac) or pressing Alt+S
(Windows)

n Double-clicking the script step

Similarly, you can access the Specify Calculation dialog by any of the following means:

n Clicking the second Specify button

n Pressing the Ctl+Option+space bar (Mac) or pressing Alt+F (Windows)

n Option+double-clicking or Alt+double-clicking the script step

13_429006-ch08.indd 27713_429006-ch08.indd 277 3/25/09 7:23:42 PM3/25/09 7:23:42 PM

278

Introduction to Database DesignPart II

You can employ the same alternatives to access the Specify dialogs of most script commands that
use the Specify Calculation dialog.

You’ll encounter many circumstances where you don’t know the inputs for a script command in
advance. In fact, many script actions will depend on the values in your database at the time the
script runs. For example, when your script is designed to add the values in a series of records and
place the total into a field, the value it must write depends on the values present when the script is
executed. Similarly, you may want the script to act differently depending on the date or day of the
week (for example, to send batch reminder e-mails every Friday or as the end of the month
approaches).

For these and many other cases, you’ll find that you can define script step parameters as a calcula-
tion formula (to be resolved when the script runs), rather than a static (literal) value. When you
click a Specify button on the Script Step Options panel or within a configuration dialog for a script
command, in many cases, FileMaker presents you with the Specify Calculation dialog. This dialog
allows you to define a formula that will determine the command parameter when the script is exe-
cuted. When you have access to the Specify Calculation dialog, you can use any combination of
field values from your database and calculation functions, including the many Get() functions
FileMaker provides, to return a wide range of environment and status information.

Using the Scripts Menu
FileMaker enables you to display many scripts on the Scripts menu. Because menus provide a
widely understood user interface paradigm, this ability is a way of immediately delivering the func-
tionality of your scripts to your users.

If you want to provide a more complex menu interface incorporating your scripts (for example,
distributing them among other menus), you can do this via the Custom menus feature of
FileMaker Pro 10 Advanced.

CROSS-REFCROSS-REF For a more detailed discussion of the creation and use of custom menus in
FileMaker Pro 10 Advanced, refer to Chapter 18.

Managing the Scripts menu
The order in which scripts appear in the Scripts menu corresponds to the order of their arrange-
ment in the Manage Scripts window. Thus re-sorting, rearranging, or grouping scripts in the
Manage Scripts window directly affects the usability of the Scripts menu.

Only those scripts specifically enabled for menu access (via the checkboxes to the left of each
script’s name in the Manage Scripts window) appear in the Scripts menu, so the Scripts menu is
typically a subset of a file’s available scripts. Where a script’s functions are specific to only one area
of a file (for example, a group of layouts), you may prefer not to include it in the Scripts menu
(which is accessible throughout your solution), instead making it available only from those layouts
where it’s appropriate.

13_429006-ch08.indd 27813_429006-ch08.indd 278 3/25/09 7:23:42 PM3/25/09 7:23:42 PM

279

The Processes: FileMaker Scripting 8

When you add folders to the Manage Scripts window and place scripts within folders, the folders
will appear as submenus in the Scripts menu. When you add folders within folders, FileMaker cre-
ates corresponding cascading submenus in the Scripts menu.

TIPTIP Don’t go overboard with folders within folders. Users find traversing multiple layers
of cascading submenus awkward, visually confusing, and frustrating. Although not

cast in stone, two levels of submenus is a reasonable limit.

CROSS-REFCROSS-REF Additional information is provided in the “Organizing Scripts” section, later in
chapter.

Other ways to trigger a script
FileMaker provides a number of alternative ways to call scripts in your solutions:

n Scripts called from the Scripts menu (or submenus of grouped scripts on the Scripts
menu)

n Scripts designated to run automatically OnFileOpen and OnFileClose via the File
Options dialog (accessed by choosing File ➪ File Options)

n Scripts launched from Buttons by using the Perform Script [] button command

n Scripts called from within other scripts by using the Perform Script [] script step

n Scripts called from other menu commands and interface widgets throughout the applica-
tion, via the use of the FileMaker Pro 10 Advanced Custom Menus capability (see
Chapter 18)

n Scripts called by a script trigger assigned to a layout or layout object

n Scripts called by an Install OnTimer Script command on a button or in a script

n Scripts called by plug-ins, using the external function API (see Chapter 20)

n Scripts called by other applications or protocols (for example, AppleScript on the Mac or
ActiveX in Windows)

CROSS-REFCROSS-REF For a detailed discussion of various methods of triggering a script, refer to the sec-
tion “Calling Your Scripts,” later in this chapter.

Using the single-threaded script engine
Scripts are sequential in nature — they execute one step at a time and one script at a time.
Accordingly, script execution in the FileMaker client application is single threaded. Only one script
can be active at a time, and when a script is executing, the application is not available to the user.

To manage the execution of scripts, FileMaker keeps track of called scripts on a script stack. The
script at the top of the stack is the active script. However, if a script calls another script, the calling
script moves down the stack, waiting until the called script (often termed a sub-script) completes its
run. Then the calling script moves up the stack and continues to execute. In this way, focus may
move between a number of scripts during the completion of a single scripted procedure.

13_429006-ch08.indd 27913_429006-ch08.indd 279 3/25/09 7:23:42 PM3/25/09 7:23:42 PM

280

Introduction to Database DesignPart II

Because FileMaker is a multi-user application, each user has the ability to run his own separately
executing script thread. Although the client-specific execution of scripts has certain advantages
(users aren’t delayed while other users run scripts), it does have implications for the way you struc-
ture your scripts — you need to consider that multiple instances of a script may be running (on
different client workstations) simultaneously. For example, scripts that mark records as part of
their process will be apt to conflict if more than one user is running the script because one script
may delete marks as the other adds them, or one script may act on records marked by a different
script. Similarly, scripts should test for record locking before updating any data because users or
scripts may be modifying the current record. (FileMaker locks records while they’re being modi-
fied.) Without such checks, your scripts may fail intermittently due to conflicts with legitimate
activity on other client workstations.

Working with the script stack and paused scripts
When a script is indefinitely paused, it remains active. Meanwhile, the solution interface is made
available to the user so that input can be provided or action taken. To facilitate this setup, the solu-
tion’s functionality while in this state is limited. Because the solution is waiting for input from the
user, window switching and file closure are disabled, along with most other options and com-
mands. Such limitations remain until the script resumes and completes execution, or until the user
cancels the script. However, if the script includes the Allow User Abort [Off] command prior
to the pause, the user won’t have access to the Cancel button.

When a script is paused, the user can nevertheless run another script (or another instance of the
same script). If you use script pauses frequently in your solution, the user can encounter a situa-
tion where a number of scripts are paused and awaiting completion on the script stack. This situa-
tion is generally undesirable (because it’s hard to predict the effects of part-scripts executing out of
sequence) and should, therefore, be managed.

You can limit the likelihood of issues with multiple incomplete (paused) scripts by reducing users’
access to scripts during periods when a script is paused or by

n Appropriate use of the Halt Script command to terminate the current script and any
other paused scripts.

n Employing the FileMaker controls for script stack management when launching scripts
via buttons. An argument accepted by the Perform Script [] button command con-
trols the fate of any currently running script when the new script begins, providing you
with the option to halt, exit, resume, or pause the current script.

Controlling Script Execution
Manage Scripts provides a meta-command framework — a series of script commands that give you
control of the way other commands are executed. Using these process controls enables you to set
up scripts to repeat a process (that is, looping and recursion) or to conditionally omit or insert
sequences of commands within a process.

13_429006-ch08.indd 28013_429006-ch08.indd 280 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

281

The Processes: FileMaker Scripting 8

Using conditional statements
Occasionally, you need a script to perform the same sequence of actions every time it runs — con-
sistently and uniformly. Sometimes, however, you’ll want to set up a script that takes account of
different circumstances and responses accordingly. For example, your script that finds all the over-
due accounts and sends out reminders should not proceed if no accounts are overdue. Similarly,
you may want to have your script post an alert dialog and delete a record only if the user confirms
that it should be deleted. These examples and other cases like them require that your code incor-
porate mechanisms of conditional execution. To enable you to implement conditions in the logic of
your scripts, the FileMaker Scripting environment provides script commands such as If, Else
If, Else, and End If script commands.

NOTENOTE Conditional evaluation occurs in calculations as described in Chapter 7. In addition
to the If function, FileMaker provides functions such as Case and Choose. It’s

important to note that a number of parallels between the logical forms of calculation condition-
als and script conditionals, where tests and corresponding results are paired.

One of the most common forms of conditional implementation in scripting is a sequence of com-
mands enclosed between If and End If steps. The If command accepts an argument, and if the
argument evaluates as true, the enclosed commands are executed; otherwise, they’re skipped. For
example, if your invoice table has a PaymentDueDate field, you might include a conditional
statement in an invoice-processing script to change the invoice status to “Overdue” if the due date
has passed:

If [Invoice::PaymentDueDate < Get(CurrentDate)]
 Set Field [Invoice::Status; “Overdue”]
End If

NOTENOTE Unlike most other script commands, selecting the If command adds both an If and
an End If step to your script, ready to receive your conditional logic. The only

other script command that is added with a “partner step” is Loop, which is always accompanied
by an End Loop step.

When introducing conditional logic into your scripts, you’ll often need to deal with situations
where an alternative sequence of steps is required when the If condition fails. For this purpose,
FileMaker provides an Else step to delineate sequences of commands associated with true and
false results from the If test. For example, if you have a script that navigates to the associated sup-
plier record from the current order, it makes sense to implement a conditional sequence in your
script to provide user feedback in the event that there is no supplier record for the current order.
One way to achieve that is with the following script code:

If [not IsEmpty(Suppliers::ContactID]
 Go to Related Record [From table: “Suppliers”; Using layout: “Contacts”]
Else
 Beep
End If

13_429006-ch08.indd 28113_429006-ch08.indd 281 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

282

Introduction to Database DesignPart II

In cases with more than two alternatives, FileMaker provides scripting syntax that allows you to
extend the conditional logic, by using the Else If command to define successive conditions. For
example:

If [IsEmpty(Enrollment::Date]
 Set Field [Enrollment::Date; Get(CurrentDate]
Else If [Enrollment::Status = “Draft”]
 Set Field [Enrollment::Status; “In Progress”]
Else If [Enrollment::Status = “Complete”]
 New Record/Request
Else
 Beep
 Show Message [Enrollment is in Progress. Please confirm subject selections.]
End If

NOTENOTE A conditional script sequence may contain an extensive number of Else If steps,
enclosed by a single If and End If pair. However, you can only use a single Else

step immediately prior to the End If command. (That is, the Else If, when used, must precede
the final sequence of steps within the If/End If construct.)

Using repetition
One of the strongest arguments for using scripting is that it can help you avoid (or at least mini-
mize) repetitive tasks. The more frequently a task is repeated, the more ideal a candidate it is for
scripting. In particular, tasks that may need to be repeated many times over in quick succession
(such as when you need to update a value on all records in a set) can be very time consuming, and
a well-thought-out script makes it possible for you to save a lot of time. For this purpose,
FileMaker’s Loop command and the accompanying Exit Loop If and End Loop commands
provide a convenient mechanism. In addition, several navigation script commands include
an Exit After Last option that automatically terminates the loop when no more records remain.

Using looping script sequences allows you to define a series of steps that are repeated until a
defined condition is met. For example, to compile a countdown string of values in a text field, you
could use the following:

Set Variable [$counter; Value:8]
Set Field [Index::Countdown; “”]
Loop

Exit Loop If [$counter < 0]
Set Field [Index::Countdown; Trim(Index::Countdown & “ “ & $counter)]
Set Variable [$counter; Value:$counter - 1]

End Loop

When the script runs, FileMaker will update the Countdown field on each pass through the loop,
appending a decremented number. The field will acquire a series of numbers (with a space
between each) starting from 8 and ending with 0:

 8 7 6 5 4 3 2 1 0

13_429006-ch08.indd 28213_429006-ch08.indd 282 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

283

The Processes: FileMaker Scripting 8

While a countdown of numbers in a field is a simple way to illustrate the action of a looping script,
its simplicity is the main thing that makes it useful as an example. However, you can do a great deal
more with scripts. Consider for a moment that you can combine both Loop/End Loop and If/
Else/End If syntax to have your script perform a conditional action on each pass of the loop. For
example, to have your script work through a set of item records omitting any where the value in a bid
field is below the value in a threshold field (on the same record), you can use the following:

Go to Record/Request/Page [First]
Loop

If [Item::Bid < Item::Threshold]
 Omit Record
Else
 Go to Record/Request/Page [Next; Exit after last]
End If

End Loop

TIPTIP Your loop sequences should always include a valid escape condition — a situation
that will arise where the loop will be exited. Otherwise, the loop continues infinitely,

and the user will be apt to assume that the computer has stopped responding. (It hasn’t, but the
user won’t know that.) The preceding examples use alternate methods of exiting the loop, the first
with the Exit Loop If [] command and the second with the Exit after last option on the Go
to Record/Request/Page [] command. You can use any combination of exit conditions, and
the loop will terminate on the first pass when any of the exit conditions is met.

Pausing for user input
Important aspects in controlling your scripts are the ability to pause scripts and determine the tim-
ing of their execution. When you want to pause a script to provide the user an opportunity to pro-
vide input, you have several options:

n Display a custom dialog allowing the user to make a button selection (in the dialog) or to
enter information (into a dialog field).

n Select the Pause argument on a script step, such as a mode change command (for exam-
ple, Enter Browse Mode [Pause]).

n Add the Pause/Resume Script [Indefinitely] command.

In each case, the script will be placed on hold, and partial control of the solution interface will be
returned to the user, enabling the editing or entry of information, navigation in the current table,
printing, launching of another script, or resumption of the current script.

FileMaker also provides you with the ability to pause a script for a defined period, placing the
database into the same limited state, but automatically resuming the current script at the end of the
allotted time. You can achieve this process by configuring the Pause/Resume Script [] com-
mand, as shown in Figure 8.9.

13_429006-ch08.indd 28313_429006-ch08.indd 283 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

284

Introduction to Database DesignPart II

 FIGURE 8.9

The configuration dialog for the Pause/Resume Script [] command.

When defining a pause interval, you can enter a finite value in seconds or use the calculation
engine to determine a numeric value (also applied as seconds). Timed pauses are useful for creat-
ing processes that will run unattended.

NOTENOTE FileMaker will accept sub-second pause durations, and FileMaker 10 will apply them
with moderate error tolerances down to periods of around 50 milliseconds (0.05

seconds), below which the margin of error increases. Moreover, error varies between platforms
and hardware configurations, so sub-second pauses should be considered indicative. However,
FileMaker 10 does provide greater precision than previous versions, which is useful for more
accurate control of scripted process and more responsive procedures where pauses need not be
defined in whole seconds when shorter durations will suffice.

Some Notable Script Uses
Before you became familiar with the concept of scripting, you may have found it difficult to imag-
ine how you would use it. After you’ve made a start, though, the possibilities seem limitless.
Nevertheless, some processes are better suited to scripting than others, and it’s important to iden-
tify the best candidates.

Scripting is essentially a process of automation. Any process that is performed in essentially the
same way many times over may be a good candidate for automation — especially if it can be con-
structed to require minimal (or no) human intervention. However, the real test is

n Whether the amount of time saved (over a period of solution use) by scripting a process
exceeds the time taken to create the script

n Whether the accuracy of the process will improve significantly if it’s scripted (in which case,
the reduction in errors may justify the investment of time in automating the process)

In short, spending five hours automating a process doesn’t make sense if doing so saves the users
five minutes a year. But five hours would certainly be worth spending if the result is a much more
substantial saving or if doing so would reduce the scope for operator error.

13_429006-ch08.indd 28413_429006-ch08.indd 284 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

285

The Processes: FileMaker Scripting 8

Navigation and view controls
Although you can provide basic navigation capabilities (such as layout switching and record
browsing) by using button commands, scripting such navigation may provide an opportunity to
perform other functions, validations, or housekeeping operations, or to provide additional func-
tionality along the way.

In the Inventory example, I had previously configured navigation buttons in the footer area to
take the user to other main layouts. However, if these buttons call scripts instead of being attached
directly to the Go to Layout [] command, you can introduce additional functionality. To dem-
onstrate this concept, I created a script to find incomplete orders or invoices. I structured the script
so that

n It finds either orders or invoices, depending on the script parameter it receives.

n It finds all orders or invoices unless the Shift key is depressed.

n If the Shift key is depressed when the script runs, it finds only those orders or invoices
not marked as complete (that is, incomplete orders or invoices).

The definition of the script created for this purpose is shown in Figure 8.10. It’s called Show
Transactions [Type]. The bracketed suffix in the name serves as a reminder that the script
requires a parameter to indicate the type of transactions to be shown.

 FIGURE 8.10

Definition of the Show Transactions [Type] script in the Inventory example file.

13_429006-ch08.indd 28513_429006-ch08.indd 285 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

286

Introduction to Database DesignPart II

After installing the Show Transactions [Type] script and configuring the navigation buttons
to call the script (with an accompanying parameter of either Orders or Invoices, depending on the
function of the particular button), you can filter the displayed orders or invoices to include only
incomplete transactions by holding down the Shift key while clicking the corresponding button.

Editing information via scripts
You can use scripts to provide guidance for data entry or editing and to perform associated checks
and validations, providing the user with information and support and improving the quality of the
data. You can achieve this goal by

n Using dialogs and viewer windows for data entry: Your scripts can present the user
with a dialog (or a pop-up window controlled to behave in a way resembling a dialog)
with fields for entry of required information. A dialog or pop-up window can be advanta-
geous as a prompt for required information, where the user can’t proceed until the rele-
vant input is complete.

n Scripting for batch processing of data updates: Where a group of records periodically
need to be updated (for example, to reflect the current date or to recalculate with respect
to revised budget projections, and so on), a script can gather the necessary inputs and
then work its way through a large number of records, applying the required updates to
each in turn.

n Scripting find and data-cleansing routines: You can use scripts very effectively for
locating anomalous records and correcting known or anticipated issues. For example, if
data imported into your solution frequently has undesirable characters such as tabs or
trailing punctuation in the fields, you can create a script to search for records exhibiting
these problems and cycle through them, checking and correcting them.

Printing and managing files
As in the case of the example Acquired Items Report script you created in the section Setting up a
basic script,” earlier in this chapter, scripts provide an ideal mechanism for generating consistent
reports because they can apply the same criteria (find, sort, and so on) each time and produce
printed copy by using identical page and print settings. You can set up and refine all the details
and settings for a report once (in the script) and then be confident that you’ll get the correct output
every time you use the script to create the same report.

Similarly, you can use scripts to greatly simplify and improve the repeatability of data import and
export procedures, each of which can require painstaking configuration — with an attendant risk
of error over repeated occurrences.

Finally, you can create a simple script (employing the Save a Copy as [] command) to auto-
mate the process of generating backup copies of a solution while it’s used in stand-alone mode (or
hosted by using FileMaker Pro). An example of such a script is as follows:

13_429006-ch08.indd 28613_429006-ch08.indd 286 3/25/09 7:23:43 PM3/25/09 7:23:43 PM

287

The Processes: FileMaker Scripting 8

If [Get(MultiUserState) < 2]
 Set Variable [$path; Value:
 “file:” & Get(DocumentsPath) & Get(FileName) & “_BU_” &

Year(Get(CurrentDate)) &
 Right(“0” & Month(Get(CurrentDate)); 2) &
 Right(“0” & Day(Get(CurrentDate)); 2) & “_” &
 Right(“0” & Hour(Get(CurrentTime)); 2) &
 Right(“0” & Minute(Get(CurrentTime)); 2) & “.fp7”]
 Save a Copy as [“$path”; compacted]
Else
 Beep
 Show Custom Dialog [“Backups must be performed on the host computer.”]
End If

Whenever the preceding script is called, a fresh backup copy of the current database will be cre-
ated in the current user’s Documents folder with the filename, including the backup’s date and
time (in a canonical format). An automated backup procedure is a useful way to keep copies of a
file as you’re developing (enabling you to return to a previous version in case of a mishap).

CROSS-REFCROSS-REF For a discussion of the process of setting filenames by calculation, as used in the
preceding script, turn to Chapter 13.

ON the WEBON the WEB I’ve added the preceding script to the Inventory example file for this chapter so
that you can refer to it if you want. Look for the script named Save Local Backup.

NOTENOTE You can perform the preceding backup script only on the computer where the cur-
rent database is located (that is, being hosted) and is, therefore, not suitable for

solutions being accessed via FileMaker Server. FileMaker Server provides its own built-in backup
scheduling options.

Ease of Editing in FileMaker Scripting
FileMaker 10 enables you to open multiple Edit Script windows simultaneously, which has the
obvious advantage of letting you compare scripts and copy and paste steps or groups of steps
between scripts (from the same or different files). A less obvious advantage is that, in a hosted
solution, multiple developers can work in Manage Scripts concurrently — while only one user can
modify a specific script at a time, users can work on different scripts simultaneously.

TIPTIP When you open a script and make changes to it, an asterisk appears to the right of
the script name in the window’s title bar, indicating unsaved changes. Whenever

the asterisk is present, you can choose Scripts ➪ Revert Script to discard the changes and go back
to the last saved version of the script. Alternatively, you can close the Edit Script window and
select the Don’t Save option when FileMaker presents a dialog to prompt you to save changes to
the script.

13_429006-ch08.indd 28713_429006-ch08.indd 287 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

288

Introduction to Database DesignPart II

Selecting and duplicating multiple commands
To select contiguous blocks of script commands on both Windows and Mac, you can click the first
step and then Shift+click the last step of your selection. Similarly, you can select noncontiguous
blocks by Ô+clicking (Mac) or Ctrl+clicking (Windows). You can exclude individual steps from an
existing selection by Ô+clicking or Ctrl+clicking the step(s) you want to deselect.

TIPTIP You can use the keyboard to extend a selection downward by pressing Shift+↓ or
upward by pressing Shift+↑. After extending a selection, you can reduce it by using the

Shift key with the opposite arrow (opposite to the direction in which you extended the selection).

When you select noncontiguous blocks of script commands by using the methods described here,
you can clear, duplicate, or disable all the selected commands at once. When duplicating com-
mands by this method, note that the duplicated commands will be placed together immediately
after the last selected command.

An alternative method of duplicating script commands (or groups of commands) is to select them
and copy and paste. Note that when you paste, the commands from the clipboard will be inserted
after the current selection (or after the last command in the current selection, if multiple com-
mands are selected).

Copying and pasting scripts
In FileMaker Pro 10, you can copy and paste whole scripts in the Manage Scripts window (or
between the Manage Scripts windows of different files). You can copy and paste multiple scripts as
well as single scripts. The ability to open the Manage Scripts windows for multiple files simultane-
ously makes copying and pasting scripts easy to use.

In cases where you want to duplicate multiple scripts, copying and pasting them within the same
Manage Scripts window is one option.

NOTENOTE The naming methodology FileMaker uses when pasting multiple copies of a script is
different from the naming technique employed for duplicating scripts. For pasted

multiples, FileMaker appends the number 2 (separated from the name by a space), and subse-
quent copies acquire an incremented number (3, 4, 5, and so on). When using the Duplicate but-
ton, the first duplicate has Copy appended to the name (separated from the name by a space)
and subsequent duplicates acquire an incrementing number (Copy2, Copy3, and so on).

Every script in a FileMaker file has a unique internal ID assigned. References to scripts (from but-
tons and scripts using the Perform Script [] command) are resolved by using the assigned
ID. This ID lets you change the name of a script without affecting references to it.

When you paste a script, FileMaker assigns an internal ID to it. When a script you paste includes
references to other scripts, FileMaker will try to resolve those references by name at the point of
pasting. If the name doesn’t match any existing script (or any script currently being pasted), the
reference will be broken and will appear in the script as <unknown>. When this situation occurs,
you must manually reassign script references to correct the errors.

13_429006-ch08.indd 28813_429006-ch08.indd 288 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

289

The Processes: FileMaker Scripting 8

When copying and pasting scripts that include references to other scripts, you should do one of
the following:

n Copy and paste all the scripts (referring to each other) at once.

n Copy and paste the scripts that are referenced first and then copy/paste the scripts that
refer to them.

FileMaker resolves references to schema and other elements by name at the point when scripts are
pasted into a file in the same way it resolves references to other scripts. If a reference in a script is
being pasted to a field called Invoice::Serial#, FileMaker will look for an Invoice::
Serial# field in the file where you paste the script. If there is no exact match, FileMaker won’t
resolve the reference.

Copying and pasting script steps
FileMaker supports copying and pasting of script steps between scripts — either between scripts in
the same file or between scripts in different files. This capability is available in FileMaker Pro 10 as
well as in FileMaker Pro 10 Advanced.

Copying and pasting supports multiple (including discontiguous) script steps. The copied step (or
steps) will be added immediately after the current selection in the active Script Definition panel.

Organizing Scripts
Scripts are defined within a FileMaker file, and their scope of action is limited to the file where
they reside. Each file, therefore, has its own collection of scripts and a separate Manage Scripts
window in which to access and organize them.

Scripts accept free-form text names of up to 100 characters on a single line. (Carriage returns aren’t
permitted.) Within these limits, you can name scripts as you choose, but I recommend avoiding
obscure character sets and keeping names brief and explanatory.

Although FileMaker permits duplicate script names, you should take care to avoid duplicates in
cases where confusion may result. Moreover, some third-party products (such as plug-ins) refer-
ence scripts by name and may produce unintended results if script names are duplicated within
a file.

Creating list separators
Using scripts named with a single hyphen as separators in the Manage Scripts window is custom-
ary and is supported directly by FileMaker. In fact, the Separator option on the New Item menu
(near the lower left of the Manage Scripts window) automatically creates an empty script that uses
a hyphen as its name for precisely this purpose.

13_429006-ch08.indd 28913_429006-ch08.indd 289 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

290

Introduction to Database DesignPart II

When you create list separators in the Manage Scripts window and set the Include in Menu option
for them, they appear as menu separators in the Scripts menu. The use of a modest number of sep-
arators as a grouping or organizational cue can make the Scripts menu easier to use when you have
more than a handful of scripts to display there.

You can use scripts, script folders, or a combination of both to introduce order into the presenta-
tion of scripts in your solution. (See the section “Creating script folders,” later in this chapter.) The
ability to organize your scripts into folders serves the dual purpose of improving script manage-
ability during development and maintenance and improving the usability of the Scripts menu.

Script commenting
I counsel you to document your work — I can’t say it more directly than that. Unless you have a
perfect memory, you’ll benefit from a reminder in the future as to what you had in mind about a
script’s purpose and logic. Should you need to make changes or add new code to your solution,
you’ll be glad you left some pointers and notes for guidance. Similarly, should other developers
have occasion to make changes to your code, they’ll be thankful for the pointers that help them
understand what you’ve done and why.

You’ll hear different views about the amount of documentation that’s desirable. Large organiza-
tions, such as government departments, frequently require detailed descriptive and analytical doc-
umentation for each component of business applications they use. Frequently, such extensive
documentation gets in the road of development and, instead of aiding clarity, simply adds to the
bulk and burden of the code — but documentation shouldn’t be too burdensome to write, or too
tedious to decipher. You should exercise some caution in deciding how much commenting and
documentation is enough to be helpful without becoming more hindrance than help.

One general rule that applies in a majority of cases is that the commenting should be less bulky
than the code itself — and this is especially true if you’re able to create code that is in part self-
documenting. That is, the names and structure of the code itself is suggestive of its purpose and its
logic. In FileMaker, creating code that is self-documenting is relatively easy, especially if you use
human-readable field, table, script, layout, and custom function names. In such cases, relatively
simple scripts may need little or no commentary at all. More complex scripts may benefit from the
inclusion of comments explaining the presence of particular steps or notes of caution regarding
points of ambiguity or possible problems and errors. In lengthy or more complex scripts, it may
also be helpful to delineate the main sections of the script so that it’s easier to find your way
around and to locate blocks of functionality.

As a general rule, you should avoid commenting the obvious. For example, when the New Record/
Request script step appears, it does not require an adjacent comment stating that it creates a new
record. Such comments may actually reduce the clarity of the code because they add clutter with-
out amplifying meaning. In such cases, comments may be used to good effect to label groups of
steps to indicate their purpose.

13_429006-ch08.indd 29013_429006-ch08.indd 290 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

291

The Processes: FileMaker Scripting 8

Conversely, obscure aspects of the logic of your scripts should be elucidated so that they may be
readily understood by those who follow. You need to provide pointers not only to the logic of the
script itself, but also to its purpose and place in your solution.

FileMaker Scripting’s Comment function (appearing in the Miscellaneous category) inserts a com-
ment step represented by a leading hash symbol (#). The comment step provides a Specify button
that invokes a simple text entry dialog (see Figure 8.11) into which you can type comments and
details about the script.

 FIGURE 8.11

Enter your comment’s text in the Specify dialog’s text box.

NOTENOTE You may also employ Comment steps with no text as white space, to visually sepa-
rate blocks of steps. Moreover, an empty comment line at the end of a script may

prove useful when debugging sub-scripts in FileMaker Pro Advanced, because the Script
Debugger in FileMaker Pro Advanced will stop on the closing comment line if the prenultimate
script step has an error and the script is run in the debugger with the Pause on Error option
enabled.

Creating script folders
FileMaker lets you create folders, which serve as groups for organizing your scripts in the Manage
Scripts window. Folders can contain scripts, separators, and other folders, enabling you to build
ordered hierarchies of scripts.

When viewed in the Manage Scripts window, folders appear as a folder icon in the list of scripts,
with an adjacent disclosure triangle to display or hide the contents of the folder.

13_429006-ch08.indd 29113_429006-ch08.indd 291 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

292

Introduction to Database DesignPart II

To add a script folder, choose Folder from the New Items drop-down menu at the lower left of the
Manage Scripts window. An Edit Folder dialog appears to prompt you to enter a name for the
folder. If a script is selected when you create a folder, the folder will be added immediately below
the selected item; otherwise, the new folder will appear at the end of the list of items in the Manage
Scripts window.

You can move scripts into and out of folders either with the mouse or the keyboard:

 1. Open the script folder by clicking its disclosure triangle with the mouse or by selecting
the folder (using the keyboard arrow keys) and pressing →/{numeric keypad plus}.

 2. Use the mouse or keyboard to position the desired script immediately below the open
script folder.

 3. With the mouse, grab the desired script by its handle icon (a four-pointed arrow will
appear, as shown in Figure 8.12) and drag the handle to the right. (Or press the Ô+↑ or
Ctrl+↑ key combination to add the script to the folder.)

 FIGURE 8.12

Using the four-pointed arrow cursor to move the Sold Items Report script into the
Reports script folder in the Manage Scripts window of the Inventory example file.

You can move scripts out of folders by dragging them with the mouse or moving them with the
keyboard.

After you add scripts to a folder, those set to appear in the Scripts menu will be presented in cas-
cading submenus, as shown in Figure 8.13.

13_429006-ch08.indd 29213_429006-ch08.indd 292 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

293

The Processes: FileMaker Scripting 8

NOTENOTE If items within a folder are set to appear in the Scripts menu but the folder itself is
not, the items will appear on the Scripts menu at the previous level (that is, not in a

submenu for their enclosing folder). In this way, you can use script folders as an organizational
tool in the Manage Scripts window without affecting the arrangement of Scripts menu items.

 FIGURE 8.13

The Reports script folder appears as a Reports submenu on the Scripts menu.

Reordering and grouping scripts
You can drag script folders to new positions by using their handles or by using the keyboard com-
mands, in the same way you can move scripts. Moreover, you can move folders into or out of other
folders by using the procedures described in the preceding section. You can also create multiple
levels of script folders, although only 20 levels of cascading submenus are supported.

When you move a folder (whether on its own or as part of a larger selection of items) to a new
position in the Manage Scripts window, the folder’s contents are moved with it to the new location.

Filtering scripts by folder
When you create one or more script folders in the Manage Scripts window, you can filter your
view of the Manage Scripts list by folder. To filter, select the desired folder from the folder selec-
tion menu at the upper left of the Manage Scripts window, as shown in Figure 8.14.

13_429006-ch08.indd 29313_429006-ch08.indd 293 3/25/09 7:23:44 PM3/25/09 7:23:44 PM

294

Introduction to Database DesignPart II

NOTENOTE If you name a folder with a single hyphen, it will act as a separator in both the folder
selection menu and (if enabled for inclusion) the Scripts menu.

CAUTION CAUTION If you use a script folder as a separator, include it in the Scripts menu, and enclose
scripts within it, you won’t be able to access the enclosed scripts on the Scripts

menu, even if they’re enabled to appear there. (The submenu that would otherwise contain
them is inaccessible, being presented as a separator.)

 FIGURE 8.14

Filtering the Manage Scripts item list to display the contents of a specific folder.

Searching for scripts by name
If you have many scripts in your solution, FileMaker enables you to search for scripts by their
names. To do so, enter one or more characters into the search field at the upper right of the
Manage Scripts window. All character strings in a script name are targeted by the search.

Script folders containing scripts meeting the search criteria (or partial criteria as the search string is
entered) will be pulled open (if they were previously closed) to reveal their contents. Only those
scripts matching the entered criteria will be displayed while the search is active.

To disable a script search, delete the search string from the search field. All scripts will again be
displayed in the script items list.

NOTENOTE The search status of the Manage Scripts window has no effect on the contents of
the Scripts menu.

13_429006-ch08.indd 29413_429006-ch08.indd 294 3/25/09 7:23:45 PM3/25/09 7:23:45 PM

295

The Processes: FileMaker Scripting 8

Some Examples to Start With
Earlier in this chapter, I refer to sample scripts implemented in the Inventory example file to
illustrate techniques discussed here. In this section, I describe three straightforward scripts that
automate actions common to most solutions.

Performing a Find
If you need to view a list of items ordered but not received, you navigate to the layout listing
ordered items (the OrderLines layout) and perform a search for items for which the order status
is blank. (Enter Find mode, select the Order Status checkbox, select the Status Area’s Omit option,
and then click Find.) If any items are found, you may view or print the resulting list and return to
where you came from.

If you (or your users) need to perform a find frequently, setting up a script automating the process
makes sense. Before creating this script, perform the task manually so that you’re clear on the pro-
cess. Doing so also sets up the Find criteria for the script you’re about to create. When you’re
ready, create a script called Items on Order as follows:

Go to Layout [“OrderLines” (OrderLines)]
Set Error Capture [On]
Perform Find [Restore]
If [Get(LastError) ≠ 0]
 Go to Layout [original layout]
 Beep
 Show Custom Dialog [“Error:”; “No items were found.”]
End If

Printing a report
A frequent requirement in solutions of all kinds is to produce printed output of selected or sum-
marized data in a predetermined fashion. In the “Setting up a basic script” section, earlier in the
chapter, I give detailed instructions for the creation of an Acquired Items Report script. Along
similar lines, I’ve created a Sold Items Report script in the Inventory example for this
chapter.

The script definition for the Sold Items Report is as follows:

Enter Browse Mode []
Freeze Window
Go to Layout [“InvoiceLines” (InvoiceLines)]
Show All Records
Sort Records [Restore; No Dialog]
Print Setup [Restore; No Dialog]
Print [Restore; No Dialog]
Go to Layout [original layout]

13_429006-ch08.indd 29513_429006-ch08.indd 295 3/25/09 7:23:45 PM3/25/09 7:23:45 PM

296

Introduction to Database DesignPart II

Acting on user input
You can improve the flexibility and versatility of your scripts by structuring them to receive input
from the user. For example, when providing users with a script to display order data, you may
want to give them a choice of formats. One way to do so is to display a custom dialog and then use
the Get(LastMessageChoice) function to determine which selection the user has made.

For this example script, I configured the custom dialog with three buttons (corresponding to
Get(LastMessageChoice) values 1, 2, and 3), as shown in Figure 8.15.

The script definition for the View Order Data script is as follows:

Show Custom Dialog [“Note:” Do you wish to view Orders or an Order Items List?”]
If [Get(LastMassageChoice) < 3]
 Go to Layout [If(Get(LastMessageChoice) = 1; “Orders”; “OrderLines”)]
 Show All Records
End If

ON the WEBON the WEB The example file containing the scripts and associated code discussed in this chap-
ter is available among the download materials on the book’s Web site.

 FIGURE 8.15

Configuration of a custom dialog to prompt for user input.

13_429006-ch08.indd 29613_429006-ch08.indd 296 3/25/09 7:23:45 PM3/25/09 7:23:45 PM

297

The Processes: FileMaker Scripting 8

Calling Your Scripts
When you have created one or more scripts in your solution, you need to determine how and
when scripts will be called into action. FileMaker provides you with many options, and you may
frequently choose to make the same script available to be triggered in more than one way in your
solution interface. pointing the following sections, I provide a brief overview of the script calling
options available to you.

The Scripts menu
The most immediate and obvious point of access for your scripts is the Scripts menu. By default,
scripts you create are enabled to appear in the Scripts menu. (You have to turn off the checkbox at
the left of a script in the Manage Scripts window to remove it from the Scripts menu.)

NOTENOTE If a script is selected in the Manage Scripts window when you create a new script,
the new script will be placed immediately below the selected script and will acquire

the Include In Menu checkbox status of the selected item, overriding the default behavior noted
in the preceding paragraph.

If your solution has only a few scripts, this mechanism may be more than adequate for most users of
the solution — and it has the advantage of requiring little action or thought on your part. The chief
consideration to bear in mind for scripts that will be accessible from the Scripts menu is that you
should choose names for them that will be meaningful to your users (and preferably not too lengthy).

A further consideration when adding items to the Scripts menu is that the scripts on the menu,
unlike scripts attached to buttons, will be available from all layouts in your solution. You should
therefore take care to ensure that scripts you make accessible from the Scripts menu perform
appropriate checks and/or take any necessary steps to ensure that they operate in the intended
contexts only.

The Scripts menu is well suited for up to a dozen scripts, or perhaps even a few more. When your
solution has more than a moderate number of scripts, however, consider providing alternate ways
of launching them because scrolling through a lengthy menu will soon frustrate the users of your
solution.

Script hotkeys
The first ten scripts on the Scripts menu are automatically assigned to the keyboard shortcut com-
mands Ô+1 through Ô+0 on Mac or Ctrl+1 through Ctrl+0 in Windows. While shortcut keys are
convenient, they’re limited in several ways:

n The shortcut keys aren’t particularly ergonomic.

n The keys aren’t easy to remember.

13_429006-ch08.indd 29713_429006-ch08.indd 297 3/25/09 7:23:45 PM3/25/09 7:23:45 PM

298

Introduction to Database DesignPart II

n You’re limited to only ten shortcuts.

n The shortcuts are always tied to the position of the scripts in the menu. (If you delete or
move a script in the menu, the shortcuts will change, and your users will be apt to be
confused.)

Scripts assigned to custom menu commands
A more comprehensive solution to the use of menus and keyboard shortcuts to launch scripts in your
solutions is via the creation of Custom Menus. When your solution uses Custom Menus, you can
assign scripts to existing or new menu items, and you can edit or add keyboard commands (using the
mnemonic of alphanumeric and modifier key combinations to assist users to recollect them).

NOTENOTE Although you can access Custom Menus, when created, in FileMaker Pro, you need
FileMaker Pro Advanced to install and configure them.

An important advantage of the use of Custom Menus is that you can replace existing features of
FileMaker with scripts that provide alternative or supplementary functionality. When you do, the
scripts are launched not only when the menu command itself is selected, but also when the user
clicks on any associated widget in the Status Toolbar or the database windows of your solution.
For example, if you assign a script to the File ➪ Close menu command, the script will also run
when the user clicks the Close box on the title bar of the frontmost database window.

CROSS-REFCROSS-REF An example of the use of Custom Menus to support a Find logging process is pro-
vided in Chapter 9.

Layout buttons
When you add buttons to your layouts, you can assign to them a range of individual commands,
including the Perform Script[] command. Attaching commands enables you to provide a
comprehensive and context-appropriate interface for access to scripts associated with specific lay-
outs of your solution.

The use of buttons on your layouts, as exemplified in the Inventory example, is an ideal point of
access for navigation scripts throughout your solution. If your solution is complex, the ability to
locate buttons within the interface will be invaluable as a way to increase your solution’s usability.

CROSS-REFCROSS-REF For details of the procedures for defining layout objects as buttons, refer to Chapter 6.

Calling scripts from other scripts
Just as you can assign a button to the Perform Script[] command, you can also assign a step
within a script to call a script in the current file, or in any other file defined as a data source for the
current file. In fact, a script can also call itself via the Perform Script[] command, giving you
an alternative way to achieve a looping or recursive construct.

13_429006-ch08.indd 29813_429006-ch08.indd 298 3/25/09 7:23:45 PM3/25/09 7:23:45 PM

299

The Processes: FileMaker Scripting 8

When a script calls another script, the first script remains in progress awaiting the completion of
the second (sub-)script, whereupon the first script resumes, continuing until it concludes. By using
a combination of conditional steps and calls to other scripts, you can build a master script that
calls any of various other scripts depending on the context, timing, or other factors at the time the
script runs.

On Timer Script Triggers
As well as making direct calls to other scripts, FileMaker 10 enables you to configure your scripts
to call other scripts (or themselves) indirectly through the use of the Install OnTimer
Script[] command.

The Install OnTimer Script[] command accepts two arguments:

n The script to be called

n The interval (time in seconds) before the script should be called

You can enter the latter parameter as a literal value or calculate it when the script executes. You
can queue only one OnTimer script per window at a time, so the script will be called repeatedly at
the specified interval (subject to idle time being available on the current workstation) until you
cancel it.

To cancel an OnTimer event, you can issue a further call to the Install OnTimer Script[]
command with either the script or interval left blank, or with an interval specified as zero seconds.

File Open and File Close scripts
FileMaker provides options for you to specify a script to run at file open and a script to run at
file close. When you set a script to run at file open, it will be executed the first time a window
is drawn after the file is opened. So if a file is opened hidden, as would be the case if it’s drawn
open by a related file, the OnFileOpen script will not run until/unless the file window is
selected for display.

CROSS-REFCROSS-REF For details of the procedure for specifying a script to run on file open (and/or on file
close) refer to Chapter 13.

Layout event Script Triggers
FileMaker 10 provides seven kinds of event triggers that you can specify for each layout. They
include the following: OnRecordLoad, OnRecordCommit, OnRecordRevert,
OnLayoutKeystroke, OnLayoutLoad, OnModeEnter, and OnModeExit. You can configure
layout Script Triggers by selecting them on the Script Triggers tab of the Layout Setup dialog for
the relevant layout, as shown in Figure 8.16.

13_429006-ch08.indd 29913_429006-ch08.indd 299 3/25/09 7:23:46 PM3/25/09 7:23:46 PM

300

Introduction to Database DesignPart II

 FIGURE 8.16

Setting up a script to run on record load in the Layout Setup Script Triggers panel.

Among the layout triggers provided, OnRecordCommit, OnRecordRevert, OnLayout
Keystroke, and OnModeExit are designed to execute the selected script prior to the trigger
event, and the script when it runs determines whether the trigger event will proceed by passing a
script result, using the Exit Script[] command. That is, a script result of zero will cancel the
trigger event.

Object event Script Triggers
In addition, FileMaker 10 provides five more event triggers that you can specify for individual lay-
out objects (such as fields, tab controls, Web viewers, and so on). They include the following:
OnObjectEnter, OnObjectKeystroke, OnObjectModify, OnObjectSave, and
OnObjectExit. You can configure object Script Triggers by selecting the relevant object and
choosing Format ➪ Set Script Triggers. You then choose from the options presented in the Set
Script Triggers dialog, as shown in Figure 8.17.

Among the object triggers provided, OnObjectKeystroke, OnObjectSave, and OnObjectExit are
designed to execute the selected script prior to the trigger event, and a script result of zero will
cancel the trigger event.

CROSS-REFCROSS-REF You can find additional details about Script Triggers in FileMaker Pro 10 in Chapters
4 and 13.

13_429006-ch08.indd 30013_429006-ch08.indd 300 3/25/09 7:23:46 PM3/25/09 7:23:46 PM

301

The Processes: FileMaker Scripting 8

 FIGURE 8.17

Setting up a script to run OnObjectEnter in the Set Script Triggers dialog.

External script calls
While all the script calling methods detailed are native to FileMaker, options also exist for calling a
FileMaker script from alternate and external sources. Specifically, FileMaker scripts can be called
by AppleScript on Mac OS, by Active X in Windows, and by various third-party script-triggering
plug-ins.

CROSS-REFCROSS-REF For further discussion of the use of external scripting and third-party plug-ins for
FileMaker, refer to Chapter 20.

13_429006-ch08.indd 30113_429006-ch08.indd 301 3/25/09 7:23:46 PM3/25/09 7:23:46 PM

13_429006-ch08.indd 30213_429006-ch08.indd 302 3/25/09 7:23:46 PM3/25/09 7:23:46 PM

FileMaker Pro has something of a reputation for ease of
use — and it’s certainly true that you can accomplish
many things swiftly and without great effort, as you’ve

witnessed in the preceding chapters. Beneath its friendly inter-
face, however, FileMaker conceals considerable power and capa-
bility, positioning it as a high-end development environment for
desktop and networked solutions. If you’re ready for the chal-
lenge, there is a great deal more to discover and a wealth of
skills and techniques that will help you to gain command of the
tools FileMaker provides.

In this part, you begin an exploration of the more advanced
options available for creation of sophisticated interfaces, efficient
data organization, and enhanced usability and automation in your
solutions. It is here that I begin to reveal the flexibility and depth
of the development platform provided by FileMaker Pro 10 and
FileMaker Pro Advanced 10.

Beyond the Basics

 IN THIS PART
Chapter 9
The FileMaker Power User

Chapter 10
Building Advanced Interfaces

Chapter 11
Data Modeling in FileMaker

Chapter 12
Calculation Wizardry

Chapter 13
Scripting in Depth

14_429006-pp03.indd 30314_429006-pp03.indd 303 3/25/09 7:24:36 PM3/25/09 7:24:36 PM

14_429006-pp03.indd 30414_429006-pp03.indd 304 3/25/09 7:24:37 PM3/25/09 7:24:37 PM

305

In the preceding chapters, you’ve employed the fundamental database
creation techniques and used FileMaker’s scripting, calculation, and
interface tools. Along the way, you’ve glimpsed FileMaker’s depth and

power.

Because you’ve come this far, I figure you must be serious — and the fact
that you’re still reading means you’ve realized there is much more to learn.
You’re right — in fact, there is much more to know about FileMaker than I
can cover in detail, even in a book of this size. Consequently, I’ve chosen to
encourage you to seek out additional details about the basics, in available
resources such as the Users Guide, Help file, and online references. Going
forward, I won’t cover entire processes in great detail; instead, I’ll focus on
key insights and development strategies, to make best use of the available
pages in this book.

So far, you’ve acquired the skills to set the core elements of a database in
place — techniques that you’ll use repeatedly. However, FileMaker is noted
for, among other things, providing alternative ways of achieving any given
outcome. It is the mark of the experienced user to be aware of the options
and to make informed choices.

FileMaker is something of a chameleon insofar as it presents you with a
friendly, easy interface for a range of basic tasks, yet possesses the sophistica-
tion to deal with more complex requirements when needed. As a result, you’ll
encounter a steeper learning curve when transitioning to more demanding
tasks. This is the transition between FileMaker’s legendary ease of use and its
hidden power.

In the following chapters, I introduce a range of techniques and capabilities
that take you beyond the obvious and into the domain of the FileMaker
power user.

IN THIS CHAPTER
Working with Browse mode

Understanding the secrets
of search operations

Controlling the sort order
of your records

Formatting fields and text

Working with variables

Making sense of indexing

Discovering the table of
dependencies

Seeing the benefit of caching

Working with global fields

The FileMaker Power User

15_429006-ch09.indd 30515_429006-ch09.indd 305 3/25/09 7:25:37 PM3/25/09 7:25:37 PM

306

Beyond the BasicsPart III

Making Browse Mode Work for You
When you open a database, a window appears, enabling you to navigate between layouts and
records — following the thread of your work processes. Although clear delineations between
screens make sense structurally, work is apt to fall outside neat divisions. Interruptions and dis-
tractions often require that one task be paused so that another can be performed.

Lucky for you, many more tools are at your disposal in the FileMaker Browse mode. You’re not
constrained by a single screen and its Status toolbar. Using a combination of advanced techniques,
you can greatly increase the power and usability of your solutions.

Using multiple windows and views
When you choose Window ➪ New Window — or use the equivalent button or script command —
FileMaker leaves the current window in place and creates a new window in front of it. As you cre-
ate a new window, FileMaker creates a separate workspace, allowing you to take actions in the new
window without affecting the work you were doing in the previous window. This works in a way
analogous to having two separate users logged in: Each window can operate separately, but only
one can edit a given record at any given time.

One of the immediate advantages of opening a new window is that each window has its own cur-
rent layout, found set, and selected record. If you’re viewing a found set and an interruption
requires you to perform a search for a different group of records, you can do so in a new window
without disturbing the found set, sort order, or active record in the window you’re working in. You
can open as many windows as you require, navigating between them by clicking them (if a portion
is visible) or selecting them from the list appearing in the Window menu.

You can position windows in a variety of ways so that they overlay each other (the frontmost win-
dow obscuring the view of windows behind it), overlapping, or side by side. In the latter cases,
users can still view a previous window after opening another, allowing them to see and compare
information in different views. Thus, for example, one window may display a summary list of
available records while another window shows details of a selected record.

Filtering portals and creating pick lists
Displaying small floating windows configured to operate like dialogs is one way to take advantage
of the ability to show multiple windows, inviting the user to make a selection. After a selection is
made, the smaller window is closed, and the selection is applied to the original screen in the main
(underlying) window. Allowing your users to select items from a list — especially for cases when
the number of items on the list may be too long to be conveniently displayed in a radio button
field, a list, or a menu — is one common application of this technique.

An example where you can use a selection window is specifying the customer to invoice in the
Inventory example discussed in preceding chapters. Currently, the example provides a drop-
down menu displaying the contacts identified as buyers. However, as the number of customers
increases, the menu becomes unwieldy, and an alternate selection method is desirable.

15_429006-ch09.indd 30615_429006-ch09.indd 306 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

307

The FileMaker Power User 9

Implementing a pop-up selection window requires three separate components working in unison:

n A filtering relationship

n A utility portal layout

n A control script

To set up the filtering relationship, open the Inventory file and follow these steps:

 1. Choose File ➪ Manage ➪ Database. The Manage Database dialog appears.

 2. Select the Tables tab and create a new table named Utility.

 3. Double-click the new table’s entry in the tables list to select it on the Fields tab.

 4. Create a global text field named gFilter_txt.

 5. Create a global calculation field named cFilter_key with a result type of text and
enter the following formula:

If(IsEmpty(gFilter_txt); “0¶z”; gFilter_txt & ¶ & gFilter_txt
& “zzz”)

 6. Create a global text field named gType_key.

 7. In the Relationships panel, select the Buyers TO and click the duplicate button at the
lower left (third from the left with the double-plus sign icon).

 8. Double-click the duplicate TO and rename it ContactFilter.

 9. Position the ContactFilter TO next to the Utility TO and drag a join between the
Utility::gType_key field and the ContactFilter::ContactType field. Either
resize the ContactFilter TO box or scroll its field list until its ContactType field is
visible.

 10. Drag a second join between the Utility::cFilter_key field and the
ContactFilter::LastName field.

 11. Double-click the box bisecting the relationship line joining the Utility TO to the
ContactFilter TO. The Edit Relationship dialog appears.

 12. In the panel in the middle area of the Edit Relationship dialog, select the cFilter_key =
LastName join attribute line, choose the ≤ relationship symbol from the menu of operators
between the field list boxes at the top of the dialog, and click the Change button.

 13. Choose the ≥ relationship symbol from the menu of operators between the field list
boxes, and click the Add button to create a third relationship predicate. The Edit rela-
tionship dialog now resembles the one shown in Figure 9.1.

TIPTIP Testing for both ≥ and ≤ against a pair of key field values (as in this case) is a tech-
nique to return just those values starting with a sequence of characters. Testing for

equality returns only exact matches; however, the ≤ test eliminates any items starting with char-
acters subsequent to those in the second of the pair of search strings, and the ≥ test removes all
items starting with characters preceding those in the first of the search string pair.

 14. Click OK to close the Edit Relationship dialog and again to close the Manage Database dialog.

15_429006-ch09.indd 30715_429006-ch09.indd 307 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

308

Beyond the BasicsPart III

 FIGURE 9.1

The Edit Relationship dialog showing the completed relationship definition for the join
between the Utility TO and the ContactFilter TO.

You now have a relationship in place, using Utility table global fields to control a relationship
with the Contacts table. By changing the global field values, the relationship retrieves only a
selection of the available Contact records. You can use this mechanism to support selection func-
tionality in a pop-up window.

When you create the Utility table as described in the preceding steps, FileMaker creates a
default layout named Utility based on this table. Select the Utility layout and switch to
Layout mode to prepare the layout for use as a selection window, by following these steps:

 1. Drag the Header tab upward to the top of the layout to delete the Header part.

 2. Drag the Footer tab up to the body part boundary to delete the Footer part.

 3. Select the Body tab and choose a pale gray/mauve fill color.

 4. Delete the cFilter_key and gType_key fields and their labels.

 5. Select the gFilter_txt field box, apply the engraved effect, select lightest gray fill, and
position it near the upper left of the layout.

15_429006-ch09.indd 30815_429006-ch09.indd 308 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

309

The FileMaker Power User 9

 6. Edit the text label of the gFilter_txt field to read Filter:

 7. Place a text object (10pt, plain style, centered) near the top of the layout and enter the
this instruction: Enter one or more characters in the filter field to filter the list by
last name.

 8. Select the Portal tool and drag across the left area of the layout beneath the Filter field
to create a portal. Base the portal on the ContactFilter TO, specify a sort order by
the LastName field, enable the vertical scroll bar, enter 12 as the number of rows, and
choose an alternate background fill. Figure 9.2 shows the Portal Setup dialog with these
settings.

 FIGURE 9.2

The Portal Setup dialog for the filtered selection portal on the Utility layout.

 9. Click OK to accept the Portal Setup dialog settings. The Add Fields to Portal dialog
appears.

 10. Select the cFullName field, click the Move button to add it to the portal, and click OK
to dismiss the dialog.

 11. Create a button, attach it to the Close Window command, label it Cancel, and position it
below the portal.

 12. Create a button attached to the Go to Next Field command, label it Filter, and position it
to the right of the gFilter_txt field.

 13. Create a button attached to the Set Field command, set the target field as Utility::
gFilter_txt, specify the calculated result as null (“”), label the button Clear, and posi-
tion it to the right of the Filter button. Your Utility layout should resemble the one
shown in Figure 9.3.

15_429006-ch09.indd 30915_429006-ch09.indd 309 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

310

Beyond the BasicsPart III

You now have your selection window’s layout ready. The final preparations set a script in place to
control the window’s behavior. To create the required script, follow these steps:

 1. Choose File ➪ Manage ➪ Scripts. The Manage Scripts window appears.

 2. Click New to create a new empty script. The Edit Script window appears.

 3. In the Script Name field, enter Select Contact [Type].

 4. Using the command list at the left of the Edit Script window and, for each command,
using the configuration buttons below the script panel, create the following script:

If [not IsEmpty(Get(ScriptParameter))]
 #Display Selection Filter Window...
 Set Field [Utility::gFilter_txt; “”]
 Set Field [Utility::gType_key; Get(ScriptParameter)]
 New Window [Name: “Select “ & Get(ScriptParameter);
 Height: 458;
 Width: 340;
 Top: Get(WindowTop) + (Get(WindowHeight) — 400) / 2;
 Left: Get(WindowLeft) + (Get(WindowWidth) — 340) / 2]
 Show/Hide Status Area [Lock; Hide]
 Allow Toolbars [Off]
 Go to Layout [“Utility” (Utility)]
 Enter Browse Mode []
 Go to Field [Utility::gFilter_txt]
Else
 #Select Contact record
 Set Variable [$SelectID; Value:ContactFilter::ContactID]
 Close Window [Current Window]
 Freeze Window
 Go to Object [Object Name: “ContactID”]
 Set Field [$SelectID]
 Commit Records/Requests [Skip data entry validation; No

dialog]
End If

 5. Save the Select Contact [Type] script, close the Edit Script window, and then click
the New button in the Manage Scripts window to create another script.

 6. In the Script Name field, enter Refresh Portal.

 7. As in Step 4, create the following script:

#Refresh portal by updating key value
Set Variable [$CursorPosn; Value: Get(ActiveSelectionStart)]
Set Field [Utility::gFilter_txt; Utility::gFilter_txt]
Set Selection [Utility::gFilter_txt; Start Position: $CursorPosn;

End Position: $CursorPosn – 1]
##

 8. Save the script, close the Edit Script window, and close the Manage Scripts window.

 9. Select the gFilter field in the Utility layout and then choose Format ➪ Set Script
Triggers. The Set Script Triggers dialog appears.

15_429006-ch09.indd 31015_429006-ch09.indd 310 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

311

The FileMaker Power User 9

 10. In the Set Script Triggers dialog, choose the checkbox labeled OnObjectModify in the
list box. The Specify Script dialog appears.

 11. In the Specify Script dialog, choose the Refresh Portal script and then click OK to close
the dialog. The Set Script Triggers dialog should now be configured, as shown in Figure 9.3.

 12. Close the Set Script Triggers dialog and confirm that the left area of the layout is
arranged, as shown in Figure 9.3.

 13. Select the cFullName field in the ContactFilter portal of the Utility layout.

 14. Choose Format ➪ Field/Control ➪ Behavior. The Field Behavior for “cFullName” dialog
appears.

 15. Uncheck the options labeled In Browse mode and In Find mode at the top of the dialog,
and then click OK to dismiss the dialog.

 16. Choose Format ➪ Button Setup. The Button Setup dialog appears.

 17. Choose the Perform Script command in the column at the left.

 18. In the Current Script menu at in the panel at the right, choose Exit.

 19. Click the Specify button in the panel at the right of the Button Setup dialog. The Specify
Script Options dialog appears.

 20. Choose the Select Contact [Type] script in the list of scripts and click OK to dis-
miss the dialog.

 21. Click OK to close the Button Setup dialog.

 FIGURE 9.3

The Utility layout configured to include the ContactFilter portal and showing
the configuration of the Set Script Triggers dialog for the gFilter field.

15_429006-ch09.indd 31115_429006-ch09.indd 311 3/25/09 7:25:38 PM3/25/09 7:25:38 PM

312

Beyond the BasicsPart III

Your preparations are now complete. Now, it’s time to add controls to the Invoices layout so that
users can invoke the new selection window. To make the required adjustments, follow these steps:

 1. Navigate to the Invoices layout and enter Layout mode.

 2. Create a button to the right of the BuyerID field and attach the Perform Script command.

 3. In the Current Script menu in the panel at the right, choose Exit.

 4. Click the Specify button in the panel at the right of the Button Setup dialog. The Specify
Script Options dialog appears.

 5. Choose the Select Contact [Type] script in the list of scripts.

 6. In the Optional Script Parameter box, near the bottom of the dialog, enter Buyer.

 7. Click OK to dismiss the dialog.

 8. Label the newly created button Specify Buyer.

 9. Double-click the BuyerID field. The Field/Control Setup dialog appears.

 10. In the Display As menu, select Edit Box and click OK to dismiss the dialog.

 11. If the Info palette is not currently displayed, choose View ➪ Object Info.

 12. With the BuyerID field still selected, enter ContactID into the Object Name field.

 Your Invoices layout should be similar in appearance to the one shown in Figure 9.4.

 FIGURE 9.4

The Invoices layout with the addition of the Specify Buyer control button.

15_429006-ch09.indd 31215_429006-ch09.indd 312 3/25/09 7:25:39 PM3/25/09 7:25:39 PM

313

The FileMaker Power User 9

You’re ready to test your modifications. To begin, enter Browse mode on the Invoices layout
and click the Specify Buyer button. The Select Buyer window should appear centered over the
Inventory window, as shown in Figure 9.5. The pop-up window displays the portal you created on
the Utility layout. The portal lists all the Contacts who are flagged as buyers in the
Contacts table. Entering one or more letters into the Filter field should automatically reduce
the list of names showing in the portal to include only those contacts whose last name begins with
the letters you’ve typed.

Clicking a name in the portal should simultaneously close the window and enter the contact whose
name you clicked as the buyer for the current invoice.

Although the number of buyers in the Contacts table remains small, the filtering capabilities of
the new selection window aren’t needed. However, as the number of buyers extends to hundreds
or even thousands, the filtered selection list provides users with a very efficient method to locate
and select a specific customer for each invoice.

 FIGURE 9.5

Testing the Select Buyer pop-up window.

Jump buttons: Shortcut navigation
In Chapter 3, I cover the use of shortcut navigation to enable the user to move efficiently between rel-
evant views of data in your solutions. The Go to Related Record[] command, which you can
use to automatically display associated data in an alternate layout, underpins shortcut navigation.

15_429006-ch09.indd 31315_429006-ch09.indd 313 3/25/09 7:25:39 PM3/25/09 7:25:39 PM

314

Beyond the BasicsPart III

A useful Go to Related Record[] feature is the ability to simultaneously generate a new win-
dow to display the results. You can use this feature to show detail or summary data in a convenient
pop-up window, without losing the context (found set, sort order, active record) in the window in
which you’re working.

Using the Inventory example file, if you change the Contacts layout to be based on the
ItemSupplier TO, you can add a button to locate and display all the items available from the
current supplier.

NOTENOTE To change a layout to a different TO, navigate to the layout, go to Layout mode,
choose Layouts ➪ Layout Setup, and then change the setting in the Show Records

From menu.

After you make this change, you also have to reassign any field objects on the layout so that they
access the field via the appropriate TO. Double-click each field in turn to access the Field
Control Setup dialog and use the menu above the list of fields in the dialog to select the TO
identified as the current table.

After you’ve reassigned the Contacts layout, follow these steps to implement jump navigation to
display supplier items in a pop-up window:

 1. Navigate to the Inventory layout and choose Layouts ➪ Duplicate Layout.

 2. Choose Layouts ➪ Layout Setup. The Layout Setup dialog appears.

 3. Change the layout name to Inventory List and deselect the option to include it in the
Layout menu.

 4. Navigate to the Layout Setup dialog’s Views panel, deselect the options for Form View
and Table View, and click OK to dismiss the dialog.

 5. Rearrange the elements on the layout as shown in Figure 9.6, deleting superfluous
objects.

 6. Navigate to the Contacts layout, create a button at the lower right of the Contact
Details panel, and select the Go to Related Record command from the list at the left of the
Button Setup dialog.

 7. Click the Specify button in the panel at the upper right of the dialog. The Go to Related
Record Options dialog appears.

 8. Configure the Go to Related Record settings as shown in Figure 9.7.

 9. When you select the Show in New Window checkbox, the New Window Options dialog
appears. Configure the settings for the new window, as shown in Figure 9.8.

NOTENOTE You can either type the formulas in the Window Name, Distance from Top, and
Distance from Left text boxes or click the associated Specify buttons and create the

formulas in the Specify Calculation dialogs that appear. The latter method reduces the potential
for typographic errors.

15_429006-ch09.indd 31415_429006-ch09.indd 314 3/25/09 7:25:39 PM3/25/09 7:25:39 PM

315

The FileMaker Power User 9

 FIGURE 9.6

The arrangement of layout objects for the Inventory List layout.

 FIGURE 9.7

Settings in the Go to Related Record Options dialog for the Available Items button.

 10. Click OK to accept the settings and dismiss each of the dialogs.

 11. Label the new button Available Items, size and position it appropriately, and color it to
match the Contacts layout’s header panel.

15_429006-ch09.indd 31515_429006-ch09.indd 315 3/25/09 7:25:39 PM3/25/09 7:25:39 PM

316

Beyond the BasicsPart III

 FIGURE 9.8

The New Window Options configuration for the Go to Related Record command.

After completing these steps, return to Browse mode and locate a contact record with the Supplier
option checked and entered as Preferred Supplier on some inventory items in your Inventory file.

Click your new Available Items button to invoke a pop-up window showing a summary list of
items for the current supplier, as shown in Figure 9.9.

You can use variations of this technique to provide ease of access to related information and sup-
plementary detail throughout your solutions.

 FIGURE 9.9

The pop-up Available Items window listing Inventory items supplied by the current contact.

15_429006-ch09.indd 31615_429006-ch09.indd 316 3/25/09 7:25:40 PM3/25/09 7:25:40 PM

317

The FileMaker Power User 9

Controlling one window from another
A further example of the flexibility that FileMaker’s window management controls afford is the
ability to display multiple windows and control their appearance and behavior from a single
“main” window. To implement this functionality, you can create buttons and controls attached to
scripts by selecting the appropriate window, performing an action on it, and then returning the
focus to the controller window.

Careful use of this technique enables you to provide one or more controller palettes that allow
the user to navigate or manipulate images, text, or records in one or more windows displayed
elsewhere on the screen. For example, you can use such a technique to provide controls for
navigating a document preview where the controlling window is in Browse mode, as shown in
Figure 9.10.

 FIGURE 9.10

Using controls in one window to modify the display in another window.

Performing Complex Search Operations
The Find procedures discussed in Chapters 3 and 5 allow you to search for partial word matches
or whole word matches. The special Find Symbols you can select from Find mode’s Status Toolbar
extend the search capability, enabling you to search for ranges or employ wild card operators. But
there is much more to searching, as you can see in the following sections.

15_429006-ch09.indd 31715_429006-ch09.indd 317 3/25/09 7:25:40 PM3/25/09 7:25:40 PM

318

Beyond the BasicsPart III

Compound Find criteria: The AND Find
If your Finds are returning too many results, one option is to make your Find criteria more spe-
cific. FileMaker provides you with a straightforward way to approach this problem when con-
structing your initial Find criteria.

To extend the original Find criteria, you can enter additional detail into the search field (for exam-
ple, entering ja rather than j returns Jackson but not Johnson). Alternatively, you can enter criteria
into more than one field. For example, entering j in the LastName field and p in the FirstName
field tells FileMaker to return only those records satisfying both criteria (that is, those that have a
last name starting with j and a first name starting with p). You can enter Find criteria into as many
fields as necessary to locate the records you’re looking for.

Additionally, FileMaker permits the use of multiple sequential Find requests, and you can use the
second or subsequent requests to narrow the Find by omitting certain records from the found set.
To do so, create a Find request (with appropriate initial criteria) and then, while still in Find mode,
choose Requests ➪ Add New Request. A second find request appears, ready to accept additional
criteria. By selecting the Omit checkbox in the Status Toolbar, you can instruct FileMaker to
exclude from the found set those records returned by the first request meeting the second request’s
criteria.

NOTENOTE When you use multiple Find requests, FileMaker processes them in the order in
which you create them. When the Find is performed, the first request acts on all

records in the current table, and subsequent requests add or omit records from the found set
returned by preceding requests.

The processes outlined here provide ways to ensure that more than one criterion is applied in a
Find, with additional criteria acting in sequence to make the search more specific.

Stacking Find requests: The OR Find
You can create multiple simultaneous Find requests for Finds that return sets of records meeting
any of the request criteria. That is, when multiple requests are created without the Omit option (in
the Find mode Status Toolbar) selected, each request is independently evaluated, and its results are
added to any preceding requests’ results.

In this way, you can instruct FileMaker to search simultaneously according to different criteria,
increasing the scope of the search. For example, if you create a Find request and enter j in the
LastName field and then — before performing the Find — create a second request and enter p
into the FirstName field, FileMaker returns all records that have an entry in the LastName field
starting with j OR an entry in the FirstName field starting with p.

When creating multiple Find requests, you can set specific requests to omit certain records because
the Omit option is specific to each request. Thus, you can assemble complex search operations
involving multiple Find requests, combining many details to locate records according to very spe-
cific requirements.

15_429006-ch09.indd 31815_429006-ch09.indd 318 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

319

The FileMaker Power User 9

Constraining and extending the found set
Find criteria assembled in the ways described in the previous sections are applied to all the records
in the current table (as determined by the TO associated with the layout in the frontmost window).
However, at times, using the results of a previous Find as the starting point for your search is con-
venient. You can do this in either of two ways:

n If you want to search only within the records already showing in a found set on the
current layout, go to Find mode, create your Find criteria, and choose Requests ➪

Constrain Found Set. FileMaker locates only records within the current found set that
meet the criteria you supply.

n If you want to preserve the current found set and add to it any records meeting your
criteria, go to Find mode, create your Find criteria, and choose Requests ➪ Extend
Found Set. When extending the found set, FileMaker applies the supplied criteria to cur-
rently omitted records (that is, those not in the current found set), adding the results to
the preexisting found set.

In both instances, you’re able to refine an existing found set, thereby progressively building the cri-
teria until you’ve isolated the desired group of records.

Saving Finds and found sets
In any solution where you’re frequently performing complex Finds, you’ll occasionally want to
store Find criteria so that you can efficiently and reliably repeat specific Finds.

FileMaker provides for Find criteria to be stored within the properties of the Perform Find[]
button or script command. When the command is first selected, you have the option to specify
Find requests. On selecting this option, the Find properties automatically populate with the criteria
of the last Find performed. Thus, one way to store a Find is to first perform it manually and then
create a button or script to execute the Perform Find[] command, reinstating (and storing) the
criteria of the Find you just performed. Alternatively, the Perform Find[] command provides a
Specify Find Requests dialog to receive the criteria for one or more Find requests.

Although the creation of scripts or buttons to automate Finds is a great feature, end-users will
sometimes perform complex Finds manually and will want to be able to save a record of those
Finds. FileMaker Pro 10 provides a partial solution for this problem by allowing users to save their
own finds by choosing Records ➪ Saved Finds. This new feature stores finds against the user’s login
account so that you can reaccess previous finds at a later time. Although this feature is great for
cases where each user has his own particular Finds that won’t be of interest to other users, it
doesn’t allow one user to make use of the Finds created by other users of the same database.

If you want users to be able to share complex Finds and see a history of the Finds performed by
themselves and others, you need to build a method for capturing and storing find criteria (from
finds performed by all users) within the database. Ideally, you want to be able to provide an easy
way for users to reinstate saved Finds as well.

15_429006-ch09.indd 31915_429006-ch09.indd 319 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

320

Beyond the BasicsPart III

When discussing reinstating a Find, it’s important to consider that the data may have changed
since the Find was performed. Records that matched the criteria at the time of the Find may have
been edited so that they no longer match. Records that didn’t match may have been edited so that
they do, and, of course, records may have been added or deleted. To reinstate a Find, you can
either

n Locate the records that were located previously (if they still exist), whether or not
they still match the original Find criteria. This technique is useful when retrieving his-
torical data.

n Perform a new Find by using the original Find criteria to locate the records (if any)
matching those criteria now. Use this technique to determine the current status.

Using FileMaker’s scripting capabilities, you can configure your solutions to do either of the
preceding — depending on the requirements of the solution and its users. In either case, you need
a table (in the same file or another file) in which to store each Find and a script to build an array of
information and store that information array in a Finds table record.

If you decide to store a record of the specific records located in a Find (rather than the criteria), the
best way to do so is by gathering the unique key values of records in the found set. Traditionally,
developers have used a technique involving the use of the Copy All Records/Requests[]
command on a special layout and then a Paste command to store the contents of the clipboard. I
don’t recommend this approach because it modifies the clipboard and depends on the interface
(special layouts with the correct fields present). Instead, I prefer to employ a script looping
through the found set, gathering unique key values into a variable, and then to write the variable’s
contents into a text field in a new record in your Finds table.

NOTENOTE If you have access to FileMaker Pro 10 Advanced, another alternative for found sets
of moderate size is to create a custom function to recursively retrieve unique keys

for the found set via the use of the GetNthRecord() function. See Chapter 18 for a further dis-
cussion of custom functions and recursion.

CAUTION CAUTION If found sets in your solution may be large (for example, tens of thousands of
records or more), you should consider carefully whether an approach to gathering

and storing unique keys is viable, because doing so involves significant storage and processing
overhead.

The second approach to storing Finds entails the capture of the original Find criteria. It requires
creating a script to run when a Find is performed, working through the fields on each request to
gather the Find criteria into a text array for storage in your Finds table.

Because this approach is not as widely known as others, here’s an example of the essentials of a
script performing this task:

If [Get(WindowMode) ≠ 1]
 Beep
Else

15_429006-ch09.indd 32015_429006-ch09.indd 320 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

321

The FileMaker Power User 9

 Commit Records/Requests[Skip data entry validation; No dialog]
 Go to Record/Request/Page [First]
 Go to Next Field
 Set Variable [$Layout; Value:Get(LayoutName)]
 Set Variable [$FirstField; Value:Get(ActiveFieldName)]
 Loop
 Loop
 If [not IsEmpty(Get(ActiveFieldContents))]
 Set Variable [$Criteria; Value:If(not IsEmpty($Criteria);
 $Criteria & ¶) & Get(RecordNumber) & “»” &
 Get(RequestOmitState) & “»” & Get(ActiveFieldName) &
 “»” & Get(ActiveFieldContents)]
 End If
 Go to Next Field
 Exit Loop If [Get(ActiveFieldName) = $FirstField]
 End Loop
 Go to Record/Request/Page [Next; Exit after last]
 End Loop
 Set Error Capture[On]
 Perform Find []
 If [Get(LastError) = 0]
 Freeze Window
 Go to Layout [“StoredFinds” (StoredFinds)]
 New Record/Request
 Set Field [StoredFinds::LayoutName; $Layout]
 Set Field [StoredFinds::Criteria_array; $Criteria]
 Go to Layout [$Layout]
 Else
 Beep
 Show All Records
 Show Custom Dialog [Message: “No records were found.”]
 End If
End If

The preceding script requires that a StoredFinds table and layout be added to your solution
and that it include text fields called LayoutName and Criteria_array. You probably would
want to add other fields (such as a serial number, a date and/or time, a field to store the number of
records found, the name of the user, and perhaps a brief description of the purpose of the Find).
Whenever a Find is performed by using a script such as this one, a record is created containing
codified details of the complete criteria used for any and all requests in the Find in the
StoredFinds table.

TIPTIP If you have access to FileMaker Pro 10 Advanced, I recommend that you use the
custom menus feature to attach the preceding script to the Perform Find command

so that it automatically runs whenever a Find is performed.

15_429006-ch09.indd 32115_429006-ch09.indd 321 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

322

Beyond the BasicsPart III

When you implement a process to store Find criteria sets, your users can browse or search through
a complete Find history. You can also provide a simple process for users to automatically reinstate
a Find (that is, to rerun the Find against the current data in the relevant table). The essentials of a
script to reinstate a Find (stored in the form outlined earlier) are as follows:

Set Variable [$Criteria; Value:StoredFinds::Criteria_array]
Go to Layout [StoredFinds::LayoutName]
Freeze Window
Enter Find Mode []
Loop
 Set Variable [$RequestNo; Value:Leftwords($Criteria; 1)]
 Set Variable [$OmitState; Value:Let([
 p1 = Position($Criteria; “»”; 1; 1);
 p2 = Position($Criteria; “»”; 1; 2)];
 Middle($Criteria; p1 + 1; p2 — p1 — 1))]
 If [$OmitState]
 Omit Record
 End If
 Loop
 Set Variable [$FieldName; Value:Let([
 p1 = Position($Criteria; “»”; 1; 2);
 p2 = Position($Criteria; “»”; 1; 3)];
 Middle($Criteria; p1 + 1; p2 — p1 — 1))]
 Go to Next Field
 If [Get(ActiveFieldName) = $FieldName]
 Set Field [Let([
 p1 = Position($Criteria; “»”; 1; 3) + 1;
 p2 = Position($Criteria & ¶; ¶; 1; 1)];
 Middle($Criteria; p1; p2 — p1))]
 Set Variable[$Criteria; Value:RightValues(
 $Criteria; ValueCount($Criteria) - 1)]
 End If
 Exit Loop If[IsEmpty($Criteria) or Left($Criteria;
 Position($Criteria; “»”; 1; 1) — 1) > $RequestNo]
 End Loop
 Exit Loop If [IsEmpty($Criteria)]
 New Record/Request
End Loop
Perform Find []

When you attach the preceding script to a button on the StoredFinds layout, users are able to
click it to automatically view the results of a Find on the layout where the Find was originally per-
formed. A complete history of Finds performed is available in the StoredFinds table. Figure
9.11 shows a Find Log, implemented in the updated Inventory example file for this chapter.

ON the WEBON the WEB In case you want to view the preceding scripts in action or review them within the
Script Editor in FileMaker, I’ve added them to the example Inventory solution

(see the file for this chapter among the Web resources).

15_429006-ch09.indd 32215_429006-ch09.indd 322 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

323

The FileMaker Power User 9

 FIGURE 9.11

An implementation of the Stored Find technique in the Inventory example file.

Sorting Records
A common misconception about sorting is that it depends upon (or is made more efficient by) field
indexing. However, the truth is that sorting doesn’t use field indexes at all. When operating on
stored values (as opposed to unstored calculations), your sort operations are processed with the
same efficiency irrespective of any field indexing.

Although sorting doesn’t use indexes, it does depend on data type and, for text fields, the indexing
specification (that is, the selected language). For example, if you select Unicode as the default lan-
guage for indexing and sorting text on a text field’s Options for Field dialog’s Storage panel, sorting
on the field is case-sensitive (a, b, and c all come after X, Y, and Z).

When you choose a numeric data type (including date, time, and timestamp field types), FileMaker
applies a different sorting principle. In conventional text sorting, aa comes before b. When this
convention is applied to numerals, 11 comes before 2. Hence, a separate methodology is applied
when sorting fields having a numeric value.

TIPTIP In cases where you need to store numeric values as text without losing the ability to
sort according to numeric sequence, the solution is to pad the values with leading

zeros (or spaces) so that they’re of consistent length. Whereas a text sort places 11 before 2, 02
sorts before 11 (and 002 sorts before 011, and so on).

15_429006-ch09.indd 32315_429006-ch09.indd 323 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

324

Beyond the BasicsPart III

Multiple sort keys
Sorting your data by multiple fields is a hierarchical process. FileMaker looks at the first field in the
sort order first and applies it across the board. If there are two records with the same value in the
first sort field, they’re returned in default (creation) order unless there is a second field in the sort
order — whereupon they’re returned according to the sort order of the second field.

TIPTIP Only with very large or very constrained (that is, containing little variation in values
regardless of the number of records) data sets are you likely to need to create sorts

depending on more than one or two fields.

For relatively small or simple databases, FileMaker’s Sort dialog is easy to use, and end users are
able to achieve satisfactory results with it, as long as field names are relatively short and intelligible
to the user. However, when sorts must include data from multiple tables and the data model is
complex, sorting can present some challenges for end users.

Dynamic sort techniques
To provide a simple and efficient sorting interface for end users, a widely used technique is to store a
series of predetermined sorts within a script and provide users with a simplified menu of sort
options.

One variant of this technique involves creating a value list of sort options, a global field (where
users select a sort option by using a menu of values from the value list), and an adjacent button to
run a script configured to apply the appropriate sort. For example, if the desired options are to sort
by name, batch, or value, your value list requires values such as the following:

n Unsorted

n Name Order

n Batch Order

n By Value

When the value list is attached to a global text field (for example, called gSortSelecton), you
can construct your sort script (attached to the button next to the sort selection field) as follows:

If [Utilty:gSortSelection = “Name Order”]
 Sort Records [Restore; No Dialog]
Else If [Utilty:gSortSelection = “Batch Order”]
 Sort Records[Restore; No Dialog]
Else If [Utilty:gSortSelection = “By Value”]
 Sort Records [Restore; No Dialog]
Else
 Unsort Records
End If

15_429006-ch09.indd 32415_429006-ch09.indd 324 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

325

The FileMaker Power User 9

NOTENOTE In the preceding script, the sort order specified for each of the Sort Records[]
commands must be set to correspond to the selection named in the preceding If[]

or Else If[] command. For example, the first Sort Records[] command must be config-
ured to sort by the Name field, the second by the Batch field, and so on.

Although this technique provides an adequate solution in some cases, occasionally the number of
combinations makes it impractical (especially when sorts involving multiple fields are required).
For such cases, I offer an alternative technique. To create an open-ended three-tier sorting system,
follow these steps:

 1. Create a value list of the names of fields you want to be available for sorting.

 2. Create a value list called Switch with the value 1.

 3. Create three global text fields (gSortField1, gSortField2, and gSortField3),
place them on your layout, and configure them as menus, attaching the value list of fields
to each of them.

 4. Create three global number fields (gSortOrder1, gSortOrder2, and gSort
Order3), place them on your layout, configure them as checkbox fields, attach the
Switch value list to them, size them to 12px by 12px, and position them beside the three
global text fields.

 5. Create an unstored text calculation called cSort1_asc and enter the following formula:

Case(
gSortOrder1 = 1; “”;
MiddleWords(FieldType(Get(FileName); gSortField1); 2; 1) = “text”;
GetField(gSortField1);
Let([
nF = GetField(gSortField1);
nA = Abs(nF);
nS = nF > 0;
nT = Int(nA);
nM = Mod(nA; 1);
nX = If(nM; nM; “.0”)];
Case(
IsEmpty(nF; 0;
nS; “P” & Right(“0000000000000000” & nT; 12) & nX;
“N” & (9999999999999999 – nA))
)
)

 6. Create an unstored text calculation called cSort1_dsc and enter the following formula:

Case(
gSortOrder1 ≠ 1; “”;
MiddleWords(FieldType(Get(FileName); gSortField1); 2; 1) = “text”;
GetField(gSortField1);
Let([

15_429006-ch09.indd 32515_429006-ch09.indd 325 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

326

Beyond the BasicsPart III

nF = GetField(gSortField1);
nA = Abs(nF);
nS = nF > 0;
nT = Int(nA);
nM = Mod(nA; 1);
nX = If(nM; nM; “.0”)];
Case(
IsEmpty(nF; 0;
nS; “P” & Right(“0000000000000000” & nT; 12) & nX;
“N” & (9999999999999999 - nA))
)
)

NOTENOTE The calculation formulae presented here are designed to dynamically retrieve the
value of the selected sort field. They achieve this via the use of the GetField()

function. They then conditionally add leading zeros to ensure that numeric values will sort
appropriately although the result is returned as text.

CROSS-REFCROSS-REF The techniques used in these calculations and others like them are explored in
greater detail in Chapter 12.

 7. Create unstored text calculations called cSort2_asc and cSort2_dsc with the for-
mula along the same lines as those in Step 6, except substitute references to gSort-
Field1 and gSortOrder1 with gSortField2 and gSortOrder2.

 8. Create unstored text calculations called cSort3_asc and cSort3_dsc with the for-
mula along the same lines as those in Step 6, except substitute references to gSort-
Field1 and gSortOrder1 with gSortField3 and gSortOrder3.

 9. Go to Layout mode, create a button labeled Sort attached to the Sort Records[] com-
mand, configure the button setup to Perform without Dialog, and Specify the Sort Order
configuration depicted in Figure 9.12.

 Take particular note of the assignment of alternate ascending and descending sort order
properties to the six calculation fields.

When you complete these steps, return to Browse mode, select one or more field names in the
gSortField fields, and click the Sort button to confirm that the sort settings are applied.
Selecting the checkboxes in the gSortOrder fields reverses the direction of the sort for the corre-
sponding sort field.

Using this technique, you can create entirely customized sorting control interfaces, providing your
users with a clean and simple user experience that doesn’t involve scrolling through lengthy lists of
field names or negotiating a complex table structure. To illustrate the flexibility of such an arrange-
ment, with lists of ten fields for users to select from, a three-tier sort interface of this kind permits
users to select from well over 5,000 possible sort configurations.

Although I’ve described the process for creating an optional three-tier custom sort interface, you
can apply the same principles to the creation of custom interfaces for fewer tiers or for additional
tiers, according to the requirements of your solutions.

15_429006-ch09.indd 32615_429006-ch09.indd 326 3/25/09 7:25:41 PM3/25/09 7:25:41 PM

327

The FileMaker Power User 9

 FIGURE 9.12

The Button Setup sort order settings for your dynamic Sort button.

Creating click-sort columns
The dynamic sorting technique described in the preceding section enables you to provide users
with a custom sorting interface. You can also adapt the same approach to support a variety of other
user interaction models. By way of example, you can configure a three-field sorting mechanism to
provide column sorting where the user can click column headings to sort or, if already sorted,
reverse the sort order of the corresponding column.

To implement this variant of the technique in the Inventory example file, follow these steps:

 1. In the Utility table, create a global text field called gSortField.

 2. In the Utility table, create a global number field called gSortOrder.

 3. In the OrderLines table, create a calculation field called cSort_asc with result type
of text and enter the following formula:

Case(
Utility::gSortOrder ≠ 1; “”;
MiddleWords(FieldType(Get(FileName); Utility::gSortField); 2; 1) =

“text”;
GetField(Utility::gSortField);
Let([
nF = GetField(Utility::gSortField);
nA = Abs(nF);
nS = nF > 0;
nT = Int(nA);
nM = Mod(nA; 1);
nX = If(nM; nM; “.0”)];

15_429006-ch09.indd 32715_429006-ch09.indd 327 3/25/09 7:25:42 PM3/25/09 7:25:42 PM

328

Beyond the BasicsPart III

Case(
IsEmpty(nF); 0;
nS; Right(“000000000000” & nT; 12) & nX;
“000000000000” & (9999999999999 - nA))
)
)

 4. In the OrderLines table, create a calculation field called cSort_dsc with result type
of text and enter the formula

Case(
Utility::gSortOrder = 1; “”;
MiddleWords(FieldType(Get(FileName); Utility::gSortField); 2; 1) =

“text”;
GetField(Utility::gSortField);
Let([
nF = GetField(Utility::gSortField);
nA = Abs(nF);
nS = nF > 0;
nT = Int(nA);
nM = Mod(nA; 1);
nX = If(nM; nM; “.0”)];
Case(
IsEmpty(nF); 0;
nS; Right(“000000000000” & nT; 12) & nX;
“000000000000” & (9999999999999 - nA))
)
)

 5. Repeat Steps 3 and 4 to create identical calculation fields in the InvoiceLines table.

 6. Create a new script called ColumnSort and define it as follows:

If[Get(ScriptParameter) = Utility::gSortField]
 Set Field[Utility::gSortOrder; Abs(Utility::gSortOrder — 1)]
Else
 Set Field[Utility::gSortField; Get(ScriptParameter)]
 Set Field[Utility::gSortOrder; Abs(Get(ActiveModifierKeys)-2)

= 1]
End If
Sort Records [Restore; No dialog]

 Note: When defining the sort order properties for the final step of the script, select
the four calculation fields created at Steps 3, 4, and 5, configuring them as shown in
Figure 9.13.

 7. Go to the OrderLines layout and enter Layout mode.

 8. Delete the Serial#, _Gen, and _Mod field boxes from the layout and rearrange the
remaining fields in a horizontal row at the top of the Body part, with their corresponding
labels above them (at the bottom of the Header part).

15_429006-ch09.indd 32815_429006-ch09.indd 328 3/25/09 7:25:42 PM3/25/09 7:25:42 PM

329

The FileMaker Power User 9

 9. Reduce the height of the Body part so that it’s just high enough to accommodate the
fields.

 10. Choose Layouts ➪ Layout Setup. The Layout Setup dialog appears.

 11. Click the Views tab, disable the Form View and Table View checkboxes, and click OK to
dismiss the dialog.

 12. Click the tabs for the Header and Footer parts in turn, applying the lightest gray fill color
to each.

 13. Copy the header panel, label, and logo from the Orders layout, paste them into the
OrderLines layout’s header, reduce their size, and edit the label to read “Order Lines.”

 14. Choose File ➪ Manage ➪ Database (Shift+Ô+D or Ctrl+Shift+D), navigate to the
Relationships panel, add a TO based on the Inventory table called OrderItems, and
join it to the OrderLines TO matching the ItemID field in both TOs.

 FIGURE 9.13

Sort order properties for the final step of the ColumnSort script.

 15. Repeat Step 14 to add an InvoiceItems TO joined to the InvoiceLines TO (again,
matching the ItemID fields in both TOs).

 16. Return to Layout mode and add the OrderItems::Name field to the OrderLines lay-
out, positioning it beside the ItemID field.

 17. Select the field labels, apply the embossing 3-D effect, and apply gray fill (a shade darker
than the background fill of the Header part).

 18. Select the OrdLineID label and choose Format ➪ Button Setup. The Button Setup dialog
appears.

15_429006-ch09.indd 32915_429006-ch09.indd 329 3/25/09 7:25:42 PM3/25/09 7:25:42 PM

330

Beyond the BasicsPart III

 19. Select the Perform Script command in the column at the left, choose Exit from the
Current Script pop-up menu in the panel at the upper right, and then click Specify. The
Specify Script Options dialog appears.

 20. Select the ColumnSort script in the list of scripts and then, in the Optional script
parameter field near the bottom of the dialog, enter the formula

Get(LayoutTableName) & “::OrdLineID”

 21. Click OK in the Specify Script Options and Button Setup dialogs to return to Layout
mode.

 22. With the OrdLineID label still selected, choose Format ➪ Conditional. The Conditional
Formatting for Selected Objects dialog appears.

 23. Click the Add button and, in the field adjacent to the Formula Is menu selection, enter

Utility::gSortField = Get(LayoutTableName) & “::OrdLineID”

 24. Select the Fill Color checkbox in the format area near the bottom of the dialog and, from
the adjacent color palette, choose a medium-toned highlight color, such as gray-blue).

 25. Click the Add button again and in the Formula Is field, enter

Utility::gSortOrder = 1 and
Utility::gSortField = Get(LayoutTableName) & “::OrdLineID”

 26. Select the Text Color checkbox in the format area of the dialog and, from the color pal-
ette, choose white.

 27. Click OK to dismiss the Conditional Formatting dialog.

 28. Select each of the remaining text labels in turn, choose Format ➪ Conditional, and repeat
Steps 23 through 27 to configure them, varying the formulas to correspond with the
associated field.

 29. Adjust the widths of the field labels to correspond to the widths of the fields below them.

 30. Select the field boxes, choose Format ➪ Field/Control ➪ Borders, and apply light gray side
borders. Your OrderLines layout should resemble the one shown in Figure 9.14.

 31. Repeat the layout formatting process to make comparable changes to the
InvoiceLines layout.

Now, when you return to Browse mode on either layout, you can click the column headings to
apply an ascending sort by the corresponding field. The first click on a heading sorts the column in
ascending order, and the column label highlights with a light blue shade, as shown in Figure 9.15.
(You can see it in full color by opening the Inventory example database from the companion
Web site.) A subsequent click on the same column heading toggles the sort order between ascend-
ing and descending, and the highlight changes color accordingly. When you hold down the Shift
key during your first click on a column label, the initial sort order is reversed.

15_429006-ch09.indd 33015_429006-ch09.indd 330 3/25/09 7:25:42 PM3/25/09 7:25:42 PM

331

The FileMaker Power User 9

 FIGURE 9.14

The OrderLines layout reformatted as a list with dynamically sorting column headers.

 FIGURE 9.15

The InvoiceLines layout sorted by clicking one column heading.

15_429006-ch09.indd 33115_429006-ch09.indd 331 3/25/09 7:25:42 PM3/25/09 7:25:42 PM

332

Beyond the BasicsPart III

Sorting related data
In the preceding section, you set up a sorting mechanism for a series of fields, including a field
outside the table being sorted (for example, the OrderItems::Name field). When a related field
is included in the sort order, FileMaker resolves the relationship and sorts the records according to
the data it finds (for each record) in the related table.

In addition to letting you sort the current table by related fields, FileMaker provides mechanisms
for you to sort the related data so that when multiple records are related to the current record,
they’re presented in a specified order.

NOTENOTE If related records aren’t explicitly sorted, then they’re presented by default in the
order of their creation.

When defining a relationship between any two TOs, you can specify the sort order for the relation-
ship in either or both directions (that is, you can indicate the order in which records from either
table should be presented to the other). You do this by selecting the Sort Records checkbox on the
corresponding side of the Edit Relationship dialog, accessible from the Manage Database dialog’s
Relationships panel. You assign Sort properties by using the same Sort dialog you see when sorting
records in Browse mode, as shown in Figure 9.16.

CAUTION CAUTION Bear in mind that sorting a relationship adds to the work that FileMaker has to do to
return records for display in portals and found sets throughout your solution, espe-

cially when the number of records in the related table is large. Avoid redundant use or overuse
of sorted relationships to avoid unnecessary slowdowns of your solutions.

Regardless of a relationship’s sort status, you can independently sort portals. You can set up portal
sorting by selecting the Portal Setup dialog’s Sort Portal Records checkbox when adding or editing
the portal. When alternate sorts of the same data sets may be required in different parts of your
solution interface, leaving the relationship(s) unsorted and instead applying sorting to individual
portals as required makes sense.

NOTENOTE To provide click-sort column functionality by using portals, you can apply a variant
of the dynamic sorting technique to portal data.

CROSS-REFCROSS-REF I discuss the use of portals, including interfaces for dynamic portal sorting, in
Chapter 10.

15_429006-ch09.indd 33215_429006-ch09.indd 332 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

333

The FileMaker Power User 9

 FIGURE 9.16

Specifying the sort order for a relationship.

Understanding Formatting
FileMaker provides you with powerful mechanisms for applying and controlling text formatting.
However, in order to make full use of these features, you need a thorough understanding of the
way the different mechanisms interact. Format options include text style, text size, text font, text
color, and a range of paragraph attributes, such as indentation, margins, alignment, tab stops, and
line spacing. Moreover, you can apply formatting at several different levels, with attributes at some
levels overriding those at other levels.

FileMaker includes support for formatting protocols shared between computer applications, so you
can copy formatted content from a word processor, a Web browser, or another application and
paste that content into FileMaker with its formatting intact. In fact, if you want to paste text with-
out its original formatting, you need to use FileMaker’s Paste Text Only option.

15_429006-ch09.indd 33315_429006-ch09.indd 333 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

334

Beyond the BasicsPart III

The management of formatting:
A three-tiered approach
FileMaker manages formatting at three distinct levels:

n Calculated formatting

n Embedded character and paragraph formatting

n Layout format filtering (including conditional formatting)

Each of these tiers of formatting takes precedence over the next. If calculated formats are in place,
they override embedded or layout-based formatting. Embedded character/paragraph formatting
overrides attributes applied at the layout level.

Character-level formatting
You can apply formatting to individual characters of text within a FileMaker field. You can select a
single word or letter in a field and change its font, size, color, or style. When you do so, the attri-
butes you apply remain in place wherever the text appears, unless overridden explicitly by a calcu-
lation within the schema (or via a script). These formats are embedded.

In addition to applying formatting directly to selected text within a database field, you can paste
data from other applications, preserving the formatting applied elsewhere. This is part of the same
encoded character-level formatting stored with the data and displayed wherever the data appears.

NOTENOTE Only formatting options available within FileMaker are preserved. For example,
custom kerning or tracking from Adobe Illustrator and double-strikethrough from

Microsoft Word aren’t preserved.

To manually apply character-level formatting, click a field box, select one or more characters, and
use the commands on the Format menu to change the color, size, font, or style of the selected
characters. Any embedded formatting applied is retained by default even if the characters are cop-
ied and pasted to another field or combined with other data in a calculation (unless the calculation
includes formatting commands to coerce the result into a specific format).

The process for pasting content (copied from other applications or from elsewhere within
FileMaker) without including embedded formatting varies between operating systems. On the Mac,
you can hold the Option key down while choosing Edit ➪ Paste Text Only or use the keyboard
shortcut (Option+Ô+V). In Windows, you can choose Edit ➪ Paste Special and use the resulting
dialog to select the option for unformatted text or use the keyboard shortcut (Ctrl+Shift+V).

TIPTIP When you paste formatted text into a field in FileMaker Pro 10, FileMaker treats it as
performing two operations: pasting the text and then applying the formatting.

Thus, choosing Edit ➪ Undo (Ô+Z or Ctrl+Z) removes the formatting, leaving the unformatted
text in the field. (A further Undo command is required to remove the pasted text altogether.)

15_429006-ch09.indd 33415_429006-ch09.indd 334 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

335

The FileMaker Power User 9

Paragraph-level formatting
Just as you can apply embedded character formatting to specific text stored within the database,
you can also apply embedded paragraph attributes (alignment, line spacing, and orientation) and
store them with the data. Paragraph formats apply to the text preceding a carriage return (or text in
between two carriage returns, if multiple carriage returns are in a field).

As with embedded font, size, color, and style attributes, you can apply embedded paragraph attri-
butes directly to selected text in a field by using Format menu commands or by interacting with
the Text Ruler (accessible from the View menu in Browse mode).

As with character formatting, you can remove paragraph formatting when you paste text, by using
the Paste [No style] script step or button command or by choosing Paste Text Only (Mac) or
Paste Unformatted Text (Windows).

Unlike character formatting, however, you can’t override paragraph formatting by calculation because
FileMaker doesn’t provide calculation functions to control any paragraph format attributes.

Layout format filters
When you place a field box onto a layout, it includes a full complement of attributes for both char-
acter and paragraph formatting. These layout object formats operate as defaults for the single
instance they represent, applying only to characters and paragraphs that do not have embedded
formatting for a given attribute.

You can regard layout field boxes as passive filters that apply their formats to any unformatted text
viewed through them — but allowing formatted text to pass unmodified. The filtering effect
applies to all aspects of the displayed text not governed by explicit (embedded) format attributes.

In addition to embedded formats, layout format filtering is also overridden by calculated character
formatting.

Conditional formatting dynamically alters the filtering properties of layout objects, also operating
as a default applied only to characters that do not carry embedded or calculated format attributes.

A significant feature of the operation of layout object formats is the “apply-if-different” rule. When
you’re applying formatting to content within the database via a specific field box, formatting
instructions are interpreted by FileMaker with reference to the default formats specified for the
particular field box. When you select format options matching the formats of the current field box,
FileMaker removes embedded formatting. When you select format options different from the field
box defaults, they’re stored as embedded formats.

For example, if you select the text in a 10pt field box and choose Format ➪ Size ➪ 10pt, no embed-
ded character size formats are applied because the selected format matches the field box default.
However, if you switch to a different layout and select the same text in a 12pt field box and choose
Format ➪ Size ➪ 10pt, embedded character size formatting is applied because the selected format
differs from the field box default. Immediately, the selected text assumes 10pt size everywhere it

15_429006-ch09.indd 33515_429006-ch09.indd 335 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

336

Beyond the BasicsPart III

appears, regardless of the default sizes specified for the field boxes where it’s displayed. Conversely,
by applying a format that matches the attributes of the enclosing field box, you remove the attribute
instead of applying it. For example, if field text has an embedded size of 12pt and you format it to
9pt in a field box to which 9pt font size has also been applied, not only is the 9pt font size not
applied, but the 12pt embedded size attribute is removed.

Precedence of number, date, and time formats
In addition to character and paragraph style and format defaults, layout objects associated with
number, date, time, or timestamp fields accept formatting masks to control the way the relevant
data is presented (to conform to various date, time, currency, and other numeric conventions).
Unlike other layout-level format defaults, data masks take precedence over relevant formatting
stored with the data.

In versions up to and including FileMaker 8.5, data masks also suppressed character formatting in
some cases. For example, number formatting, including the option to display negative numbers in
a different color, took precedence over calculated text color. In FileMaker 10, however, the embed-
ded or calculated formats of the first character are reflected throughout the entirety of a masked
field. This applies to merge field text objects to which date, time, or number formats have been
applied, as well as to field boxes that carry data presentation formatting.

CAUTION CAUTION Although I applaud this behavior change, it may have implications for you if your
solution is used in a mixed environment where some users access your files by

using earlier versions of FileMaker.

Controlling formatting programmatically
FileMaker provides you with a suite of calculation functions to add and remove text font, size,
style, and color settings. You can combine these functions with other functions within calculation
expressions, enabling you to fully control the appearance of the text your calculations produce.

To supply a color value to the TextColor() function, you can pass individual color values for
red, green, and blue to the RGB() function. The RGB() function computes a composite number
by using the formula

red * 2562 + green * 256 + blue

Thus, the entire RGB color spectrum is represented by the sequence of numbers between 0 (black)
and 16,777,215 (white). In many cases, when you’ve determined a specific hue that you want
FileMaker to return in certain conditions, it makes sense to calculate the RGB result number once
and enter that directly into the calculation, instead of requiring FileMaker to compute it every time
it is required. So, for example, you can reduce

TextColor(“This is purple”; RGB(120; 40; 255))

to

TextColor(“This is purple”; 7874815)

15_429006-ch09.indd 33615_429006-ch09.indd 336 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

337

The FileMaker Power User 9

TIPTIP Even better is defining a global variable with a suggestive name to hold this constant
value (assign it once, when the solution opens). Seven- and eight-digit numeric lit-

erals don’t tell you all that much when you come back to your solution in a few months to make
enhancements or fix a bug.

By combining functions of this kind with logical and match operations, you can provide users with
subtle cues to the significance of different elements of the data in your solutions.

NOTENOTE A particularly useful technique is FileMaker’s use of auto-enter calculations and
their ability to self-reference. You can set up self-referencing by using the Self

function. By defining an auto-enter calculation to replace itself with colored text, you can set up
your database to respond dynamically (and colorfully) to data entry. For example, an auto-enter
(replaces existing value) calc applied to a number field with the formula

TextColor(Self; If(Self > 10; 11801640; 0))

automatically changes the color of any entered values greater than 10 to dark red.

Creating style buttons
Because FileMaker provides fine-grained control over character formatting, you can build interface
tools for your users that enable them to perform operations on text like those provided in a range
of familiar text-processing environments. You’re also able to tailor the functionality to suit your
solution’s specific requirements.

For example, if you create a button attached to the Set Field[] command, with the target field
left unassigned and the formula entered as

Let([
text = Get(ActiveFieldContents);
start = Get(ActiveSelectionStart);
size = Get(ActiveSelectionSize)];
Left(text; start - 1) &
TextStyleAdd(Middle(text; start ; size); bold) &
Right(text; Length(text) - start - size + 1)
)

clicking the button automatically applies bold character formatting to selected text in any field on
the current layout.

NOTENOTE A useful aspect of the Set Field[] command’s behavior is that when you do not
provide a target field parameter, it acts on the currently selected field (if any).

This example utilizes Set Field[] with Get() functions to supply selection parameters, the
Left(), Middle(), and Right() functions for text parsing, and the TextStyleAdd()
function to change the text appearance. When combined appropriately, these functions let you
automate the application of selective formatting.

15_429006-ch09.indd 33715_429006-ch09.indd 337 3/25/09 7:25:43 PM3/25/09 7:25:43 PM

338

Beyond the BasicsPart III

Although this kind of button does its primary task of applying formatting, it has one significant
shortcoming: After the formatting is applied, your text is no longer selected (the cursor is moved to
the end of the field contents). If this is of concern, you can incorporate the Set Field[] func-
tionality into a short script as follows:

Set Variable [$size; Value:Get(ActiveSelectionSize)]
If [$size]
 Set Variable [$text; Value:Get(ActiveFieldContents)]
 Set Variable [$start; Value:Get(ActiveSelectionStart)]
 Set Field [Left($text; $start — 1) &
 TextStyleAdd(Middle($text ; $start; $size); Bold) &
 Right($text; Length($text) — $start — $size + 1)]
 Set Selection [Start Position: $start;
 End Position: $start + $size — 1]
End If

You can attach the preceding script to your button by using the Perform Script command so that
when you click the button, the selected text acquires bold formatting. However, now the selection
is remembered and reinstated, making the process self-contained and seamless.

Style buttons such as the preceding one exploit the behavior of each of these elements (Set
Field[], TextStyleAdd[], Set Selection[], and so on) to provide users with useful
and context-appropriate interface tools.

Some Notes on Variables
FileMaker enables developers to store and manipulate information in temporary memory locations
called variables. Variables have several advantages:

n Variables are very quick because they don’t require FileMaker to reference the schema or
read/write to disk.

n Variables aren’t tied to the data structure, so you can reference them from a variety of
contexts and modes regardless of the availability/accessibility of fields and relationships.

To be fair, variables also have a downside:

n They’re difficult to keep track of in large and complex solutions.

n They’re not particularly secure.

n They’re specific to an individual file session.

Each of these issues simply requires some care and planning on your part as the developer.

Until the release of version 8, FileMaker did not provide native support for variables. Much of the
work that you can now do by using variables previously required the use of global fields. However,
global fields retain some properties that ensure their continued usefulness, despite the many bene-
fits of memory variables.

15_429006-ch09.indd 33815_429006-ch09.indd 338 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

339

The FileMaker Power User 9

The three kinds of variables
FileMaker provides three distinct kinds of variables, each working within a different scope:

n Calculation variables: This kind of variable is defined within the syntax of the Let()
function. You can use calculation variables to improve the efficiency and readability of
calculations. Any variable you create in a calculation that is not named with a $ or $$
prefix is a calculation variable.

n Local variables: So-called local variables have a lifespan determined by an individual
script thread in a single file on the current workstation (that is, they only exist while a
given instance of the script they’re associated with is running). Local variable names
always commence with a single dollar sign ($).

n Global variables: Identified by names commencing with two dollar signs ($$), global
variables persist throughout the file where they’re defined, while it remains open on the
current workstation.

Although these working definitions indicate the way variables are used, the boundaries are some-
what blurred. For example, you can declare local ($) or global ($$) variables within a Let() cal-
culation; then they have scope outside the calculation and can be retrieved by scripts or other
calculations.

Similarly, you can declare local variables when no scripts are running — with the result that
they’re associated with a hypothetical “script zero” and available only when the script stack is
empty.

Although variables are sometimes referred to as “script variables,” I consider this name something
of a misnomer, because you can define and reference all three kinds of variables both inside
and outside of scripts. A more apt description is the sometimes used memory variables, or simply
variables.

Variables and memory usage
In FileMaker, variables are created automatically when you assign a value to them; you don’t need
to specify or name them in advance. You can assign values to variables within any calculation
expression (via the use of the Let() function) or via the Set Variable[] script and button
commands. The value you assign to a variable is held in memory at a fixed location, enabling you
to retrieve the value within its scope of availability.

Because variables are stored in memory, they use a portion of the computer memory reserved for
FileMaker. If you intend to create a large number of variables or store a large quantity of data in a
variable, be aware that the amount of memory available for other operations is reduced, which may
impact performance.

FileMaker does not differentiate between an empty (null) variable and a nonexistent variable. Thus,
by setting a variable to null (“”), you can release the memory reserved for its contents and take it
out of play.

15_429006-ch09.indd 33915_429006-ch09.indd 339 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

340

Beyond the BasicsPart III

Instantiating and destroying variables
The creation of a variable is sometimes called instantiation (that is, creating an instance of the variable).
Because you can create and destroy variables at will, a number of instances of the same variable may
exist over the course of an application session. A variable is created simply by assigning it a value, so
the process of assigning a value to a variable is also frequently referred to as declaring a variable.

The most useful and flexible method of declaring variables is via a calculation expression. For
example, you can create a variable named something by using the calculation expression

Let(something = “107%”; “”)

Because the name of the something variable doesn’t include any leading $ characters, FileMaker
scopes it to the calculation function where it’s created (that is, it has meaning only within the
enclosing parentheses of the Let() function). However, if you add leading $ characters,
FileMaker interprets the variable as having local or global scope, and the accessibility and durabil-
ity of the variable is set accordingly. You can define any mix of differently scoped variables within
a single Let() expression.

In addition, FileMaker provides button and script commands you can use to directly instantiate a
local or global variable. Whether a variable you create by using the Set Variable[] command
is local (confined to the script where it’s created) or global is determined solely by whether you
prepend a single or a double dollar prefix to the name of the variable. Thus

Set Variable [$something; Value:”107%”]

creates a local variable that persists only while the current script is at the top of the script stack; it’s
not accessible by other scripts that the declaring script might invoke via the Perform Script[]
step.

Deleting the contents of a variable (setting the variable to null) is the only way you can destroy a
FileMaker variable. Thus, you destroy variables by using the same functions and commands that
you use to create them. For example, you can destroy a global variable by using the command

Set Variable [$$name; Value:””]

Because calculation variables and local variables have narrowly defined scope and expire after the
conclusion of the calculation or script in which they’re defined, explicitly destroying them is rarely
necessary. However, global variables persist throughout the current file session unless you destroy
them — so when a global variable is no longer needed, I suggest you destroy it so that FileMaker
can reclaim the memory it has occupied.

Keeping track of variables
When you configure a script or calculation to declare or reference a variable, you choose a name
for the variable. FileMaker has no mechanism to determine whether the name is correct (for exam-
ple, that it won’t overwrite an existing variable that is still needed). An ever-present danger when
working with variables is that you lose sight of them, writing or referencing them with mismatched
names or inadvertently overwriting them.

15_429006-ch09.indd 34015_429006-ch09.indd 340 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

341

The FileMaker Power User 9

When you work with calculation variables and local variables, because their scope is constrained,
the task of managing them and ensuring that you know what they’re for and how they’re named is
finite. Global variables, however, present you with a significant challenge. For this reason, some
developers prefer to avoid the use of global variables. Although I’m not about to tell you not to use
them, I recommend that you do so sparingly and with caution.

When you do use variables —global variables in particular — you need a reliable way of keeping
track of them. One way is to keep a register of variables in each solution, updating it each time
you create or reference a variable. This method is almost certainly preferable to tracking variables
retroactively — after you’ve forgotten where they originated and what exactly they were for.

Understanding Indexing
FileMaker does a great job keeping the complexities hidden from the user and even the developer.
Sometimes it does this a little too well so that few people know how the program actually works or
how best to use it. Field indexes in FileMaker have been the subject of myths of various kinds —
in part because the interface obscures their status and role.

Indexes have two primary roles and a number of secondary roles. The two primary roles are to

n Establish relationships

n Facilitate Finds

Both of these roles are important. However, although an index is essential for a relationship (it
won’t work without one), Finds can proceed (albeit more slowly) on unindexed fields.

Text index types
Many FileMaker users are aware that indexes support both relationships and Finds, but fewer users
understand that, for text fields, there are, in fact, two distinct types of index — one providing pri-
mary support for Finds and the other providing support for relationships.

The word index
The index that FileMaker uses to support Finds on text fields is an index of words stored in a field.
FileMaker treats most characters other than letters and numbers as word separators. So in addition
to spaces, characters (such as &, ?, +, $, ~, and so on) are also used to delimit words.

NOTENOTE The list characters used as word separators may vary on a field-by-field basis
depending on the default language setting on the Options for Field dialog’s Storage

panel. For example, if Unicode is chosen as the default for a field, most characters other than a
space, including those mentioned in the preceding paragraph, are indexed as part of words
rather than treated as word separators.

The word index is created for a field the first time you perform a Find on the contents of the field,
unless the default Automatically Create Indexes as Needed option has been disabled in the Storage
panel for the field.

15_429006-ch09.indd 34115_429006-ch09.indd 341 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

342

Beyond the BasicsPart III

If indexing is enabled for a field, you can view its word index by placing the cursor in the field, choos-
ing Insert ➪ From Index, and, in the resulting dialog, selecting the Show Individual Words checkbox.
As shown in Figure 9.17, FileMaker shows you each word as a separate entry in the index list.

CAUTION CAUTION If a word index has not been created for a field, displaying the View Index dialog as
described here causes FileMaker to create one, as long as the Automatically Create

Indexes as Needed option is enabled for the selected field.

The value index
FileMaker uses a value index to support relationship matching, value lists, some special Find
operations — for example, a duplicate values search — and uniqueness validation. Value indexing
is applied to numeric fields as well as text fields.

When FileMaker creates a value index for a text field, each line of text is treated as a single separate
index entry. When a field contains no carriage returns, its contents are treated as a single value.
However, when carriage returns are present, they serve as value separators.

NOTENOTE Although FileMaker indexes very long values, only approximately 110 characters are
used when determining uniqueness or matching values (the precise number varies

depending on the bit length of the characters involved). In other words, if the first 110 characters
of two values are the same, FileMaker treats the values as a match regardless of what follows.

FileMaker creates value indexes when the Automatically Create Indexes as Needed option is
enabled for a field, and a relationship or value list depending on the field index is used, or any
other user action is taken (for example, insert from index) requiring the value index.

Indexing myths exploded
Because I’m talking about myths, I start off by reminding you that indexes aren’t used for sorting,
even though the default language selection in the indexing area of the Options for Field dialog does
affect sort order. However, a field without an index sorts in exactly the same amount of time as a
field with an index.

Another area of frequent confusion centers on the relationship between storage and indexing.
Stored fields aren’t necessarily indexed. However, unstored calculations can’t be indexed. The fact
that a field is unstored means that it can’t be indexed. However, the fact that it’s stored doesn’t sig-
nify that it has an index.

Finally, you’ll encounter a common belief that the index settings None, Minimal, and All in the
storage tab of the Options for Field dialog equate to none, value index, and both value and word
index. However, the Minimal option refers to any case where only one of the indexes for a text
field has been created. If you create a value list by using values from an unindexed field with the
Automatically Create Indexes as Needed option enabled, the Minimal setting appears selected.
However, if you perform a Find on an unindexed field with the Automatically Create Indexes
Needed option enabled, the Minimal setting also appears selected. Thus, the minimal setting, as
shown in Figure 9.18, indicates that only one index is present, but it doesn’t indicate which one.

15_429006-ch09.indd 34215_429006-ch09.indd 342 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

343

The FileMaker Power User 9

 FIGURE 9.17

Viewing the contents of the word index for a text field.

If you encounter a solution (perhaps developed by someone else) with the Minimal index indicator
showing and the Automatically Create Indexes as Needed option disabled, how can you tell what
kind of index the field has? One answer would be to try to use the field as the basis of a value list —
if the field’s index is a word index, an error dialog is displayed. Perhaps the simplest method is to
choose Insert ➪ From Index to expose the View Index dialog. The Show Individual Words setting is
inaccessible but nevertheless appears enabled (checked) if the field has a word index or disabled
(unchecked) if the field has a value index.

Differences between numeric and text indexing
The most significant difference between the indexing of text and numeric fields is that text fields
provide the option for two indexes that operate independently, as noted earlier. However, the
sequence and behavior of a numeric index differs from a text index. As shown in Figure 9.19, if
you view the index of a number field, the index entries appear as you’d expect, arranged in ascend-
ing order according to their numeric value.

If a text field containing the same data as the field that produced the numeric index shown as
Figure 9.19 is indexed, the presentation order follows a different convention.

The convention for sorting text data follows different rules, so numeric data stored in a text field is
presented in a different format, as shown in Figure 9.20. In this circumstance, when you follow the
rules for alphabetic sorting, an ascending order places 12 before 2 and 207 before 21.

TIPTIP When you create relationships, make sure that the data types of the match fields are
the same so that the indexing rules produce predictable results for all cases.

Similarly, because the sorting conventions that FileMaker applies are adjusted to correspond to
the data type, you should use numeric fields in cases where you expect to see data sorted
according to ordinal values.

15_429006-ch09.indd 34315_429006-ch09.indd 343 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

344

Beyond the BasicsPart III

 FIGURE 9.18

The Minimal Indexing indicator in the Options for Field dialog.

 FIGURE 9.19

Index entries for a numeric field.

Unicode and alternate language indexes
The way FileMaker treats a text field’s character set is contingent on the Default language for index-
ing and the sorting text setting in the Storage tab of the Options for Field dialog. For most purposes,
you’ll achieve the desired results by using a language selection that corresponds to the language of

15_429006-ch09.indd 34415_429006-ch09.indd 344 3/25/09 7:25:44 PM3/25/09 7:25:44 PM

345

The FileMaker Power User 9

the operating system in the region where your solution is used. However, there are some notable
exceptions:

n If you specify Unicode as the language for indexing and sorting for a field, uppercase and
lowercase characters are indexed, sorted, and searched separately, enabling you to set up
case-sensitive relationship matching.

n If you choose the Default option for the Indexing and Sorting Language setting, then sort-
ing, searching, and matching aren’t case-sensitive, but nevertheless, accented characters
are differentiated from unaccented equivalents (for example, é does not match to e).

 FIGURE 9.20

The index of a text field containing numeric data.

Optimizing field index configurations
To support your solution design, some field indexes are essential. Relationships and field-based
value lists, in particular, require that the field they address be indexed. In most other cases, indexes
are optional.

When a field is used in a Find (especially if the record count is large), FileMaker can use the field
index to significantly improve the Find’s execution speed. This benefit comes at a cost because
FileMaker must do additional work to maintain the index as values in the database are added,
deleted, and changed, and the file’s size increases to accommodate the indexes (impacting server
and network performance in some cases).

It’s a trade-off between faster Finds and slower overall performance, or faster overall performance,
with some lengthy Finds on unindexed fields. In most cases, the best answer is to allow indexes to
remain on frequently searched fields (as well as value indexes on fields used for relationships and
value lists) and disable indexing on other fields. That may sound like a great theory, but it only
works well if you have reliable information about the fields where users frequently perform Finds.
In large solutions with many users, this information may not be readily available.

15_429006-ch09.indd 34515_429006-ch09.indd 345 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

346

Beyond the BasicsPart III

In the “Saving Finds and found sets” section, earlier in this chapter, I describe a technique for cap-
turing and storing a complete history of Find criteria. One useful side benefit of implementing
such a system is that it provides a comprehensive and reliable source of data about the frequency
of Finds on each field in the solution. With a little ingenuity and a small amount of additional
code, you’ll be able to capture other useful information about Finds performed by the users of your
solutions — such as the execution times of Finds and the number of records found.

The Table of Dependencies
The FileMaker Pro calculation engine is a thing of joy, with its combination of power and simplic-
ity. A significant part of the reason you can “set and forget” with FileMaker calculations is because
FileMaker does an excellent job of keeping track of things behind the scenes. In particular, calcula-
tions in FileMaker are supported by an internal table of dependencies. There is no direct user
interface to the table of dependencies; it works almost entirely behind the scenes, keeping track of
fields that reference other fields within a FileMaker table.

Cascading calculation operations
As noted in Chapter 7, when you define a calculation referring to values in other fields in the
record, you’re creating a dependency — thus, creating a flow-on effect of the initial change. The plot
thickens when you create calculations referencing other calculations. Then FileMaker keeps track
of dependencies extending through multiple stages (for example, when an input value changes, a
calculation referencing it is targeted for re-evaluation). However, it isn’t until FileMaker has com-
puted and returned a new result for this first calculation that other calculations depending on that
result can begin re-evaluation. Thus, complex dependencies can result in a cascade of operations.

CAUTION CAUTION Inexperienced developers sometimes create extensive chains of dependent calcula-
tions where every calculation is dependent on several others, which are dependent

on still others, and so on. In this situation, FileMaker is given a great deal of work to do when a
single input value is changed. Moreover, it must work sequentially through the chain of logical
dependencies until it has resolved them all. This type of poor solution design leads to perfor-
mance issues in large or complex solutions.

The limits of dependency
FileMaker manages calculation dependencies within the record structure of each table. In that
sense, a record in a table is a discrete entity that’s internally managed and resolved by the applica-
tion. However, FileMaker doesn’t track dependencies outside of the individual record.

You may be aware of several apparent exceptions to this rule. Lookups, for example, draw data
from a field in another table, but their dependency is on the relationship key field residing in the
same table, not on the related field. Similarly, unstored calculations may reference values in other
tables, but they’re re-evaluated when the screen is refreshed and not as a consequence of a change
in any field outside the table where they reside.

15_429006-ch09.indd 34615_429006-ch09.indd 346 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

347

The FileMaker Power User 9

The constraints on FileMaker’s internal management of dependencies establish a discipline with
which you must become familiar in order to anticipate the behavior of the application. Doing so
helps you design solutions harnessing and exploiting FileMaker’s strengths.

Tiers of dependency
When calculations reference other calculations, FileMaker uses its table of dependencies to deter-
mine an appropriate order of evaluation. In this respect, tiers of dependency are created where
directly dependent fields are re-evaluated before indirectly dependent fields. In many cases, you
don’t need to worry about this — it just happens!

In some cases, however, calculation logic does not resolve in a simple linear way. If Field C depends
on Field B, which in turn depends on Field A, FileMaker can establish a clear chain of dependency,
enabling it to perform evaluation A, then B, and then C. However, in a more complex arrangement —
for example, where C depends on both A and B, but B depends on both A and C — the logic does not
resolve into a clear evaluation order. In this type of case, fields B and C are evaluated in the order
in which the fields were created.

Caching Join Results
One of the challenges of relational data management is the way compound data accumulates. Via a
one-to-many relationship, a single record may reference several. Each of these several related
records may in turn reference several others. If the average number of related records is 10, as you
reference data from more remote tables, 10 becomes 100, and 100 becomes 1,000 — an exponen-
tial burden, potentially requiring retrieval of large numbers of records to calculate and display a
single screen of data.

What caching does for you
FileMaker tackles the potentially exponential challenge of delivering related data by storing related
data sets in a cache, thus reducing the number of disk reads and network calls required as you
work. The object of caching is transparency — holding data until needed, yet refreshing data auto-
matically as changes occur. FileMaker monitors the user to achieve this transparency, responding
to actions impacting cached data and anticipating requirements for fresh data from the host.

In most cases, caching increases the responsiveness of the application without perceptible compro-
mises. However, FileMaker can’t anticipate every possible combination of elements, so occasionally
situations arise when an update of cached data needs prompting. This occurs most commonly
when an action occurring outside the frame of reference of the current window (for example, via a
script) has implications for data on display.

15_429006-ch09.indd 34715_429006-ch09.indd 347 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

348

Beyond the BasicsPart III

Solving caching problems
FileMaker provides a direct and disarmingly simple remedy to cache control issues arising as a
consequence of scripted actions. The Refresh Window[] command includes options to flush
cached join results and/or flush cached SQL data. By including an appropriately configured
Refresh command at strategic positions in your scripts, you can correct most script-related cach-
ing issues.

In FileMaker Pro 10, a Refresh command is also available on the Records menu (Shift+Ô+R or
Ctrl+Shift+R), shown in Figure 9.21, as well as via a button command — so manual control of the
cache is possible.

If you’re confronted by a refresh issue not solved via these options, a further alternative that may
be useful in some cases is to make use of dependencies in the current table (that is, the table the
current layout is associated with). Any calculation dependency between a relationship key field
and a modified field in the local table prompts a refresh of related data.

 FIGURE 9.21

The Records ➪ Refresh Window command.

15_429006-ch09.indd 34815_429006-ch09.indd 348 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

349

The FileMaker Power User 9

Gaining control of the cache
Although I’ve suggested several ways you can ameliorate cache refresh problems should they arise,
prevention is better than cure. If you approach your solution design with a view to minimizing
complex dependencies on related data, issues are less likely to arise.

You can adopt several strategies to reduce the potential for refresh issues:

n By breaking down data views into focused groups of fewer elements and providing a
modular series of screen displays, you reduce the reliance on caching and gain greater
control over the data presentation sequence. Tab controls provide a useful interface
mechanism supporting data modularization.

n Another technique that assists you to avoid potential caching issues is the use of a
scripted solution interface. This approach is one where buttons and custom menu com-
mands are provided for all the basic operations the user undertakes. Because you can
script all interface actions, you can determine how and when displayed data is refreshed.

Understanding Global Fields
It’s all a matter of perspective, but I’ve been known to remark that global fields are not as global as
their name suggests. One of the notable characteristics of global fields is that in a multi-user solu-
tion, each user sees his own separate set of values. When viewed in this way, the behavior of global
fields seems decidedly parochial. So why are they called global?

A global field holds one value for all records within the table where it is defined. It’s global specifi-
cally with respect to the table. However, another useful (and more recently acquired) characteristic
of global fields is the fact that they’re accessible from anywhere in a file without a relationship.
That’s a rather different sense in which they might be considered global.

From their inception well over a decade ago, global fields have provided repositories for constants,
variables, and interface elements, as well as scratch fields and temporary storage. Several of these
uses have diminished with the advent of memory variables, but other uses have arisen to make
global fields indispensable.

The behavior of global fields
You have to understand several aspects of global field behavior before you can use them to best
advantage:

n They hold a single value (although that value might be a repetition) for all records and
can be accessed without a relationship.

n They can be read and written even when no records are in their table.

15_429006-ch09.indd 34915_429006-ch09.indd 349 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

350

Beyond the BasicsPart III

n Their value is saved only on the host computer (or when the file is edited in stand-alone
mode). Each user sees the saved values from the host when the file first opens, but any
changes the user makes are specific to that user’s workstation.

n They’re persistent in Find mode.

Uses for global fields
Global fields provide input fields for custom dialogs, key fields for utility relationships, filter and
option fields for interface controls, scriptable summary data fields for reports, portable accommo-
dation for interface elements and corporate logos, and flexible containers for layout text, instruc-
tions, or labels.

In short, resourceful developers have thought of many ingenious global field uses, and they have
become an essential ingredient in FileMaker’s interface tool box.

When to avoid global fields
The use of global fields isn’t desirable in several situations. Some of the most notable of these are

n When the persistency of values (between sessions) matters

n When data is to be shared among users in a multi-user solution

n When more expedient options are available

For many purposes, variables offer a good alternative to global fields — and they have certain
advantages:

n Variables don’t have to be defined within the schema — they can be created and
destroyed as needed.

n Reading and writing to variables is more efficient than reading and writing to fields.

Using global calculation fields
In the Storage Options dialog accessed from the Specify Calculation dialog, you can choose to
define a calculation as globally stored. When you do so, the calculation takes on several of the key
properties of all global fields, most notably one value for all records in the table, accessibility with-
out a relationship, and persistence in Find mode.

You can use global calculations to compute a result from values stored in global fields. However,
global calculation fields also have some useful attributes when used to reference standard data
fields. When used to reference standard data fields, they’re re-evaluated with respect to the record
where the referenced fields have been most recently edited on the current client workstation.

CROSS-REFCROSS-REF For a more detailed discussion of the use of global fields, including an overview of
the rules for re-evaluation of global calculations, refer to Chapter 12.

15_429006-ch09.indd 35015_429006-ch09.indd 350 3/25/09 7:25:45 PM3/25/09 7:25:45 PM

351

Computer software may be powerful and innovative, but, with few
exceptions, software is only as useful as its interface allows. The
user’s ability to understand what his computer is telling him and

effectively interact with it is an essential measure of a solution’s effectiveness.
Thus, your solutions’ success is determined as much by your command of
interface technique and design as any other single factor.

In Chapter 6, I introduced many of the essential concepts supporting
FileMaker’s interface building environment — Layout mode — showing you
how to use essential interface building tools. I also introduced a number of
design concepts, helping you make interface design choices that will enhance
the ergonomics and intuitiveness of your solutions.

The goals of good interface design are clarity and consistency, as well as ease
and efficiency of use. However, you also have to consider aesthetics. If you
expect users to spend lots of time working with your solution, you have to
keep in mind that your interface design choices will have a significant impact
on user fatigue. Don’t underestimate the solutions’ cumulative impact on the
user’s mood and morale.

In the following pages, I delve into a series of deeper challenges, providing
specific techniques and recommendations and enabling you to address a
variety of challenges, remedy shortcomings, and lend increased professional-
ism to your solution interfaces.

IN THIS CHAPTER
Developing for the cross-
platform world

Changing layouts dynamically

Summarizing, reporting,
and printing

Working with windows
and views

Dealing with custom dialogs

Building enhanced layouts

Making use of Tab Controls
and portals

Exploring advanced Web
viewer techniques

Delivering native charts and
progress bars

Customizing the user
experience

Building Advanced Interfaces

16_429006-ch10.indd 35116_429006-ch10.indd 351 3/25/09 7:27:40 PM3/25/09 7:27:40 PM

352

Beyond the BasicsPart III

Developing for Mac and Windows Users
One of several key benefits that FileMaker brings to the world of desktop databases is its cross-
platform capability. Users have every expectation that they’ll be able to choose freely among
available operating systems and hardware platforms, without forgoing access to critical business
applications. FileMaker’s ability to run the same solutions on both Macintosh and Windows oper-
ating systems is a powerful plus.

Many businesses accommodate a mix of computer operating systems. And many of those that don’t
currently accommodate a mix of operating systems have done so at some time in the past. Staff
members change, policies adapt, companies that resolutely embraced one technology for years
sooner or later find themselves confronted with the unexpected need to support another.

TIPTIP I advise you not to lock yourself in with support for a single operating system, even if
it seems unlikely at the outset that you’ll need FileMaker’s cross-platform capabilities.

In the following sections, I examine the key issues you must address to deliver solutions that work
well and look good on both Mac and Windows computers.

Selecting fonts
When you choose a display font for text in your solution, you may be surprised and disappointed
to see the result when the solution is opened on another computer (even if the operating system is
the same) where the chosen font is not installed. When the specified font is not available, operating
systems use a process of font substitution to find an alternative. However, the sizing, spacing, and
general appearance of characters may vary. On occasion, text is clipped or cropped, and lines wrap
in unattractive ways — sometimes to the point where legibility is compromised. Even if it isn’t that
bad, your efforts in creating a polished appearance for your screens will be lost if the screens aren’t
rendered as intended.

For solution portability, carefully select fonts installed as standard with the operating system. That
way, you have a high probability that, wherever the solution is viewed, the necessary fonts will be
available. Ideally, the fonts you choose should also offer a high level of readability and intelligibil-
ity, consistency between operating systems, and a crisp and open appearance.

TIPTIP For best results, I recommend Verdana, Times New Roman, Trebuchet MS, Georgia,
and Tahoma. For occasional touches, Impact, Arial Black, Comic Sans MS, Symbol,

and Webdings are other alternatives. All these fonts are part of the standard installation on current
and recent versions of both Mac OS and Windows.

Even with the most careful selection of fonts, differing font imaging technologies will result in the
same fonts rendering in different sizes on different platforms, with variations according to the sizes
and weights used. Frequently, plain styles render with slightly greater width in Windows, while
italic styles generally render with a shallower slant on the Mac. Both of these effects are most evi-
dent at smaller font sizes (that is, below 12 points).

16_429006-ch10.indd 35216_429006-ch10.indd 352 3/25/09 7:27:40 PM3/25/09 7:27:40 PM

353

Building Advanced Interfaces 10

When working with small font sizes, leave an allowance to accommodate different rendering
characteristics.

TIPTIP When designing layouts on the Mac, I recommend adding 2- to 3-pixel additional
height (per line) on field boxes and text objects and approximately 10 percent extra

length. This approach prevents overlapping and truncation of text when viewed in a Windows
workstation.

Paying attention to differences in screen rendering
To illustrate differences in font rendering between platforms, I created some text at three common
sizes on a Mac. I took screenshots of the text (still on a Mac) and pasted them above the text
objects. On opening the file in Windows, the text objects as rendered by the Windows operating
system could be directly compared to the adjacent images of the appearance of the text on the Mac.
I enlarged the results and show them in Figure 10.1.

As Figure 10.1 shows, differences in rendering of screen fonts at moderate sizes occur on the Mac
and Windows, for one commonplace cross-platform font in plain face. Comparable differences also
exist for other fonts. If you don’t allow for these differences when designing your layouts, they
won’t transition well between computers.

 FIGURE 10.1

Enlargement of screen renderings of Verdana at three difference sizes on Mac OS and Windows showing
differences in appearance and spacing.

9 pt Verdana on MacOS

10 pt Verdana on MacOS

9 pt Verdana on Windows

10 pt Verdana on Windows

11 pt Verdana on MacOS

11 pt Verdana on Windows

16_429006-ch10.indd 35316_429006-ch10.indd 353 3/25/09 7:27:40 PM3/25/09 7:27:40 PM

354

Beyond the BasicsPart III

In addition to font rendering issues, several other factors affect the appearance of solutions on
alternate platforms:

n Color differences: FileMaker uses the same color palette on both Windows and
Macintosh. However, minor differences in operating system and hardware configurations
(such as a different white point — 1.8 on Macs and 2.2 in Windows) generally result in
perceptible differences in color rendering and overall color temperatures. Differences of
this type may also be observed between computers of the same operating system, particu-
larly where different color bit depths have been set in System Preferences (Mac) or the
Control Panel (Windows). You’ll also often notice differences when using different moni-
tors, particularly when comparing LCD with CRT implementations.

n Screen layering: FileMaker renders layouts progressively, building them in layers
according to the layout objects’ stacking order (working from back to front). This often
results in some flickering or flashing, which is generally more noticeable in the Windows
platform due to different graphics handling.

TIPTIP You can reduce or eliminate screen display artifacts such as flashing by avoiding the
use of large and unoptimized images on layouts (these images load more slowly,

generating flicker) and by applying opaque fill to as many layout objects (including graphics) as
possible. You can further refine the appearance of screens as they’re rendered by altering the
stacking order of elements on the layout — particularly avoiding clusters of large graphical
objects loading early (that is, at the back of the stacking order), thus delaying the load of other
layout elements. Placing larger objects near the front of the stacking order generally results in a
more pleasing rendering sequence.

n Button click-shade highlighting: Another notable difference between the appearance of
your FileMaker solutions on Macintosh and Windows is the way buttons change appear-
ance when you click them with the mouse. In Windows, the button changes to a color
negative (inverted) image while the mouse button is depressed, whereas on Mac the but-
ton is shadowed (rendered several shades darker). This difference in visual effect is dra-
matic, especially when the buttons are large and/or rendered in bold tones. Check the
appearance of the click-shade effect on both platforms before finalizing your button
designs.

TIPTIP Very dark buttons lose most of the impact of the click-shading effect on the Mac.
(They can’t get much darker.) Conversely, mid-gray buttons show little click-shading

in Windows. (Their inverse is also mid-gray.) Because extremely light or dark buttons in Windows
show such a marked Click Shade effect, they may be unappealing. Mid-toned and colored but-
tons give the most pleasing overall effect when viewed on either platform.

Considering platform-specific window behavior
The most notable difference between the appearance and behavior of FileMaker on Macintosh and
Windows is that in Windows, all database windows are contained within a single larger application
window with the application’s menu bar across the top of the application window. By contrast,
database windows on the Mac appear separately, not enclosed by an application window, while the
application’s menus are fixed across the top of the screen.

16_429006-ch10.indd 35416_429006-ch10.indd 354 3/25/09 7:27:41 PM3/25/09 7:27:41 PM

355

Building Advanced Interfaces 10

The application window in Windows (see Figure 10.2) has its own discrete borders, title bar, and
controls, including the Application menus incorporated into the band immediately below the
application window title bar.

NEW FEATURENEW FEATURE A notable feature of the application window in previous versions of FileMaker Pro
in the Windows operating system is that, by default, a gray band called the status

bar (not to be confused with the Status Toolbar, which is the control strip at the top of each data-
base window) appeared along the bottom of the application window. The status bar is no longer
present in FileMaker 10. It didn’t do very much (and was mainly an annoyance), so its loss is
unlikely to cause any grief.

TIPTIP You can turn the status bar on the application window off or on by choosing
View ➪ Status Bar.

A less obvious — but no less important — consideration regarding the way FileMaker works on
Macintosh and Windows is the way dialogs work. In Windows, the general convention places the
Cancel dialog button at the lower right of dialogs and other buttons (for example, the OK button —
usually the default) to the left. However, FileMaker custom dialogs use the rightmost button as the
default, and only this button will result in data entered or edited into Custom Dialog Input Fields
being stored in the database. Unless you choose dialog and button text with care, Windows users
may find this inconsistency confusing.

 FIGURE 10.2

The application window contains all FileMaker database windows in the Microsoft Windows operating
system.

Database WindowApplication Menus

Application Window

Database Window Title Bar Status Toolbar

“Restored” Window

Minimized Database Windows

Windows Controls

16_429006-ch10.indd 35516_429006-ch10.indd 355 3/25/09 7:27:41 PM3/25/09 7:27:41 PM

356

Beyond the BasicsPart III

Using Dynamic Screen Elements
Computer users are accustomed to seeing interfaces change to reflect the currently available
options or program state. Buttons light up when ready to be clicked or dim when not applicable.
This is one way in which applications communicate their state to users. Even on the Web (com-
monly considered stateless), many sites devise ways to provide visual cues regarding state.

Because your solution’s user experience is dependent on how well the interface communicates to
the user, you need to provide visual cues about what’s going on. How well you deliver an intuitive
and appealing user experience depends on your command of dynamic interface techniques —
ways of changing what users see to help them understand what’s required or expected.

Disappearing/reappearing objects
One key way to make your interfaces dynamic is to add or remove elements according to the current
situation or context. For example, if your database requires users to enter only an e-mail address for
contact records where the preferred communication method is e-mail, you may want to have the
E-Mail field remain hidden except when E-Mail is selected in a MethodOfContact field.

There are a number of ways you can use FileMaker’s interface tools to make things appear or dis-
appear conditionally. In the following sections, I provide three examples.

The portal invisibility trick
This technique has been around in a variety of forms for many years. It relies on the fact that,
when a relationship is invalid (for example, if the key field on which it depends is empty), the con-
tents of a portal depending on the relationship will not be displayed. If you apply transparent line
and fill characteristics to the portal, neither it nor its contents will be visible until the relationship
is established.

Using the example file from the previous chapter’s Inventory layout, I provide an example of
the portal invisibility trick, displaying the Preferred Supplier tab’s supplier details only when the
user selects a valid value in the SupplierID field. To accomplish this, add a portal based on the
ItemSupplier table, as shown in Figure 10.3.

Configure the portal to show a single row (Initial row: 1, Number of rows: 1). On the
Preferred Supplier tab, size the portal just large enough to enclose the Supplier Details fields
and label, position it behind the fields, and apply transparent line and fill.

When you return to Browse mode, you’ll see that if you delete the value from the SupplierID
field, the Supplier Details fields no longer appear empty. Instead, the fields and their label
disappear completely, as shown in Figure 10.4.

The portal trick described in the preceding paragraphs has the advantage of being driven by the
data — no separate action (by the user or by a script) is required to determine and apply the visi-
bility state. Because it’s possible to create a calculation field to use as the key field for a portal rela-
tionship to determine visibility, you can define calculation rules to determine the visibility of
different layout objects.

16_429006-ch10.indd 35616_429006-ch10.indd 356 3/25/09 7:27:41 PM3/25/09 7:27:41 PM

357

Building Advanced Interfaces 10

 FIGURE 10.3

Setting up a single-row portal on the Inventory layout.

 FIGURE 10.4

Portal invisibility in action — hiding the Supplier Details fields until a SupplierID is entered.

16_429006-ch10.indd 35716_429006-ch10.indd 357 3/25/09 7:27:41 PM3/25/09 7:27:41 PM

358

Beyond the BasicsPart III

CAUTION CAUTION Although the portal invisibility trick can be useful for occasional requirements,
overuse can lead to undesirable clutter of additional calculation fields and relation-

ships. The example described here has the advantage of leveraging an existing relationship and,
therefore, has minimal impact on the solution.

Concealed and remotely operated Tab Control
Another way you can control what appears when on your layouts is to provide a Tab Control that
is remotely operated by scripts or buttons so that it changes to show (or hide) layout elements at
will. In FileMaker 10, you can assign a script that changes the state of a Tab Control to the Tab
Control itself (as an OnObjectModify script trigger) so that user actions that change the state of
the Tab Control will invoke a script that conditionally reverses the change or performs other
actions. Similarly, you can assign a script that selects an appropriate tab (according to the current
user’s access privileges, for example) as an OnLayoutLoad script trigger.

NOTENOTE To assign an ObjectModify script trigger to a Tab Control, go to Layout mode,
select the Tab Control, and choose Format ➪ Set Script Triggers. The Set Script

Triggers dialog appears. Choose the checkbox event labeled OnObjectModify and select a
script to be performed. To assign an OnLayoutLoad or OnRecordLoad script trigger, navigate
to the relevant layout, choose Layouts ➪ Layout Setup, and then navigate to the Script Triggers
tab of the Layout Setup dialog, where you can choose the relevant script event and select a script
to be performed. When assigning a script trigger, you can also choose whether it is to be active
in Browse and/or Find modes by using checkboxes provided in the lower part of the
ScriptTriggers dialogs.

NOTENOTE The visibility state created by using a Tab Control object will persist only for the
duration of the display of the current layout. When the user leaves the layout and

returns, the layout will be presented in its default state, unless an OnLayoutLoad script trigger
has been assigned to select a different tab or restore a previous tab selection when you return to
the layout. Moreover, the state of the Tab Control is not dependent on which record is dis-
played. If you require the state to change when the user navigates to a different record, a script
will be required. To manage tab changes on record navigation, you should assign a script to the
OnRecordLoad script trigger.

To implement this technique, follow these steps:

 1. Add a Tab Control to your layout with two (or more) tab panels. Give the tabs brief
names (such as numbers) to differentiate them and then click OK.

 2. Select each of the tabs in turn and, via the Object Info palette (View ➪ Object Info), spec-
ify a unique object name. For example, if you’re creating only two tabs, name them
“invisible” and “visible,” respectively.

 3. Leave the first tab blank, but add the objects that you want to conditionally appear or
disappear on the subsequent tab(s).

 4. Apply a fill color to the tabs matching the layout background’s fill color.

 5. Select both tab panels, choose Format ➪ Size ➪ Custom, and enter a size of 1 point.

16_429006-ch10.indd 35816_429006-ch10.indd 358 3/25/09 7:27:42 PM3/25/09 7:27:42 PM

359

Building Advanced Interfaces 10

 6. With the Tab Control selected, choose Format ➪ Tab Control Setup. The Tab Contol
Setup dialog appears.

 7. From the Tab Width pop-up menu at the lower right of the dialog, choose Fixed Width
Of. In the field that appears below it, enter 0, and select Pixels from the adjacent mea-
surement pop-up.

 8. Still in the Tab Control Setup dialog, choose a default front tab from the pop-up menu at
the upper right of the dialog, as shown in Figure 10.5. Select the tab you’ve assigned the
“invisible” object name to if you want the tab contents to be invisible by default.
Otherwise, select the other (another) tab as the default.

 FIGURE 10.5

Setting up the Tab Control for tab width and default tab.

 9. Click OK to accept the dialog settings.

 10. Finalize the size and position of the Tab Control and its contents on the layout.

 11. With the Tab Control selected, apply transparent line attributes and set the 3-D effects to
None. After you make these changes, the tab will blend into the background.

 12. Create a script or button using the following command:

Go to Object [“visible”]

 This displays the contents of the visible panel of the Tab Control.

 13. Create a script or button using the command:

Go to Object [“invisible”]

 This renders the contents of the tab panel invisible.

When these changes are complete, the scripts (and/or buttons) in your solution have control over
the state of the Tab Control and will, therefore, display or hide its contents when appropriate.

16_429006-ch10.indd 35916_429006-ch10.indd 359 3/25/09 7:27:42 PM3/25/09 7:27:42 PM

360

Beyond the BasicsPart III

One advantage this technique has over the portal-based technique is that, by using additional tabs,
a number of alternate options can be invoked in the same area of the screen. Conversely, its chief
disadvantage is that it requires scripted control to activate changes in the state of the Tab Control.

If you want to combine the flexibility of the Tab Control visibility approach with the comparatively
automatic operation of the portal visibility technique, you may want to set up a script trigger to
ensure that the relevant script will be called whenever a user changes tab panels.

CROSS-REFCROSS-REF For additional details about configuring Script Triggers in your solutions, refer to
Chapters 4 and 8.

Using conditional formatting as a visibility control
In addition to the many possible variations of portal and Tab Control techniques for controlling
object visibility, FileMaker 10 includes options that, in some circumstances, provide an attractive
alternative to the preceding techniques.

In the following section, I take a closer look at some of the ways you can use conditional format-
ting to achieve dynamic interface effects, including control of visibility.

The hidden power of conditional formatting
FileMaker’s conditional formatting options enable you to set up rules for applying formatting to
text objects, including fields, buttons, and layout text. Using these options, you can configure
FileMaker to make objects visible under specific conditions.

If you apply transparent line and fill characteristics to a text object, everything except the text it
contains will be see-through. Similarly, if you set an object’s font size to 1 point and choose a font
color that matches the background, the object will disappear from view. When you subsequently
apply conditional formatting to set the font color, font size, and/or fill color under specific condi-
tions (determined via calculation), the object becomes visible according to the rules you’ve defined.

As an example of this technique, you may want to adapt the widely used Web form prompt of an
asterisk next to required fields. Ideally, the asterisk should no longer appear after the field in ques-
tion has a value. To achieve that, using conditional formatting for the Inventory solution’s
SupplierID field, navigate to the Inventory layout and follow these steps:

 1. Add a text object to the layout to the right of the SupplierID field and enter an
asterisk (*).

 2. Select the asterisk and choose Format ➪ Size ➪ 18 Point.

 3. Choose Format ➪ Conditional. The Conditional Formatting dialog appears.

 4. Click the Add button and, in the Formula Is field, enter

IsEmpty(Inventory::SupplierID)

 5. Select the Text Color checkbox and, from the adjacent color menu, choose a dark red,
as shown in Figure 10.6.

16_429006-ch10.indd 36016_429006-ch10.indd 360 3/25/09 7:27:42 PM3/25/09 7:27:42 PM

361

Building Advanced Interfaces 10

 FIGURE 10.6

Applying conditional formatting attributes to an asterisk text object.

 6. Click the OK button to dismiss the Conditional Formatting dialog.

 7. With the asterisk text object still selected, choose Format ➪ Text Color and select a light
gray to match the color of the tab panel behind the asterisk.

When these changes are complete, return to Browse mode and note that the asterisk appears when
the SupplierID field is empty, disappearing when a value is entered or selected.

Using variations of this technique, you can configure your solution’s interface to direct the user’s
gaze to areas or elements on the screen requiring attention, post flags or messages, and/or highlight
point(s) where the next data entry should occur. When you employ a thoughtful combination of
measures of this kind, you achieve an interactive and adaptable visual interface, increasing the
intuitive quality of the user experience.

Multi-state buttons and objects
You can use variations of the technique outlined in the preceding section to create state-aware but-
ton objects that light up when the function they perform is available (and that otherwise dim). For

16_429006-ch10.indd 36116_429006-ch10.indd 361 3/25/09 7:27:42 PM3/25/09 7:27:42 PM

362

Beyond the BasicsPart III

example, a button that performs the Show All Records command after a Find has been performed
will be of use only when a found set is in place. To have such a button light up when the user is
viewing a found set and dim when all records are displayed, set default text and fill colors in pale
gray with low contrast (for the dimmed state) and then specify conditional formatting to apply fill
color and strong contrast (between text color and fill color), using the following formula:

Get(FoundCount) < Get(TotalRecordCount)

With this condition in place, the button automatically lights up when one or more records are
omitted, dimming again as soon as all records are returned to the display.

NOTENOTE For an example of dynamically configured Show All buttons using the technique
described here, refer to the lower right corners of the OrderLines and

InvoiceLines layouts in the copy of the Inventory example file for this chapter.

Similarly, you can use conditional formatting to change the appearance of background panels and
dividers according to the current context. For example, a layout text object can readily be repur-
posed to provide a colored background panel in Find mode. This useful visual cue reduces the
likelihood that users will inadvertently attempt data entry in Find mode (and lose their work on
returning to Browse mode).

A transparent text object placed at the back of the layout and formatted to apply colored fill with the
conditional formatting formula creates a sharp visual delineation between Find and Browse modes:

Get(WindowMode) = 1

If, before applying transparent fill to the text object, you first apply a 3-D effect (such as engraving),
the effect also becomes active when the fill color changes, further enhancing the drama of the effect.

Working with Sub-Summary
Parts and Part Controls
To enable you to group data and introduce summaries of the grouped data, FileMaker provides a
special type of layout part called the Sub-summary part. Sub-summary parts only appear in Browse
mode and Preview mode, when the previewed data is sorted according to a particular field.

Using Sub-summary parts, you can instruct FileMaker to dice up a data set, presenting it grouped
according to predetermined criteria — or even to dice your data multiple ways simultaneously (for
example, to summarize by groups within groups in a hierarchical arrangement).

Building adaptable screens
Clearly, not having to create a new layout for every version of a screen or report is preferable —
and in many cases, you don’t have to. Two factors work in your favor, enabling you to create lay-
outs that serve as both screen displays and versatile reports.

16_429006-ch10.indd 36216_429006-ch10.indd 362 3/25/09 7:27:42 PM3/25/09 7:27:42 PM

363

Building Advanced Interfaces 10

One of the keys to FileMaker’s adaptability is its support for nonprinting objects. Select any layout
object (or group of objects), choose Format ➪ Set Sliding/Printing, and, in the resulting dialog,
enable the Do Not Print the Selected Objects checkbox, and you can determine what prints. This
enables you to build a layout in layers, with the frontmost elements providing the screen view, yet
disappearing in preview and print output to reveal the layer of items behind them.

This technique lets you provide graphically rich screens employing color and subtlety, yet produce
clean and elegant grayscale printed output from the same layouts. Moreover, because Sub-summary
parts operate dynamically to introduce summary data into the layout according to the prevailing
sort order, they add a further dimension of flexibility.

Sub-summary parts are associated with values in a sort sequence. When adding a Sub-summary
part to your layout, you’re prompted to select a When Sorted By field, as shown in Figure 10.7. A
leading Sub-summary part (one that’s placed above the Body part) produces a heading above a
group of records within the sort sequence with which it’s associated, whereas a trailing Sub-
summary part appears below each sorted group. You can have both a leading and trailing Sub-
summary part associated with the same sort field. In FileMaker 10, Sub-summary parts appear in
both Browse and Preview modes, whenever the database is sorted by the designated field.

Stacking up multiple Sub-summary parts
FileMaker permits you to add multiple Sub-summary parts above and below the body part on your
layouts. You may have two (one above and one below) for a given sort field, but you may add many
additional Sub-summary parts associated with other sort fields. When the layout is viewed as a list,
each Sub-summary part remains dormant until the field with which it’s associated is included in the
sort order. Thus, by stacking up multiple Sub-summary parts, you can configure a single layout to
provide a variety of alternate presentation formats dependent upon the current sort order.

 FIGURE 10.7

Specifying the When Sorted By field for a Sub-summary part.

16_429006-ch10.indd 36316_429006-ch10.indd 363 3/25/09 7:27:43 PM3/25/09 7:27:43 PM

364

Beyond the BasicsPart III

As an example, the Inventory database for this chapter has Sub-summary parts added to the
OrderLines layout for both ItemID and OrderID sorts, as shown in Figure 10.8. In addition,
the OrderLines layout has been reconfigured, as described under the preceding heading, to
print only some of the layout items, thus producing a clean and simple appearance when the lay-
out is previewed or printed.

With the OrderItems layout so configured, the browse, preview, or print output can be broken
out and summarized by either Orders or Items, simply by changing the sort order. You can see
examples of layouts showing the alternate options in Figures 10.9 and 10.10. As well as illustrating
the differently summarized content of the report, Figures 10.9 and 10.10 also show the different
appearance of the Browse mode and Preview mode views of the layout. (See the section on
“Designing for Print,” later in this chapter, for additional details).

In the OrderLines layout, I chose to configure the appearance of the Sub-summary parts for the
two different sort configurations differently, so the content of the reports shown in Figure 10.9 and
Figure 10.10 are distinct in appearance. However, you can choose to make the appearance of the
Sub-summary parts identical if it suits the purposes of your solution.

 FIGURE 10.8

Configuration of multiple Sub-summary parts on the OrderItems layout.

16_429006-ch10.indd 36416_429006-ch10.indd 364 3/25/09 7:27:43 PM3/25/09 7:27:43 PM

365

Building Advanced Interfaces 10

 FIGURE 10.9

A Browse mode view of the OrderItems layout sorted by ItemID.

 FIGURE 10.10

A Preview mode view of the OrderItems layout sorted by OrderID.

16_429006-ch10.indd 36516_429006-ch10.indd 365 3/25/09 7:27:43 PM3/25/09 7:27:43 PM

366

Beyond the BasicsPart III

Using multiple break fields
Sub-summary parts are included (in Browse mode, Preview mode, and print output) whenever the
field with which they’re associated is included in the sort order. When you create Sub-summary
parts for multiple sort fields and then sort by multiple fields, FileMaker presents a hierarchical
breakout with group summaries nested within enclosing groups according to the order of prece-
dence of the sort order.

NOTENOTE In FileMaker 10, sort order is preserved in Browse mode, so when you add records
or edit data (in a field that is specified as part of the sort order), records will auto-

matically be repositioned to reflect the appropriate sort sequence. This means that Sub-summary
displays in Browse mode are “live” and will remain up-to-date as data changes.

If, for example, you sort the OrderLines entries by ItemID and then OrderID, the result will
be order summaries within each item summary. Conversely, by reversing the order of the sort
fields, you can generate a tiered report that summarizes items separately within each order. Figure
10.11 shows the appearance of the OrderLines layout when sorted simultaneously by OrderID
and ItemID (in that sequence).

As it happens, the dual-sort report in Figure 10.11 is not particularly useful — other than to illus-
trate a possibility. Rarely does an order have more than one line for the same item, so summarizing
the items per order doesn’t tell you anything. However, in many other cases, it may be highly
advantageous to produce a groups-within-groups summary report. For example, when a class of
students has completed a series of assessment tasks each term, you’ll want to be able to summarize
each term’s task results by student — and you may also want to summarize each student’s task
results by term.

Applying the logic of the preceding example, after creating Sub-summary parts for term and stu-
dent, the required reports would be achieved by sorting the data in the task results table by Term
and then Student (for the first report) and by StudentID and then Term for the second.

Controlling pagination and page breaks
Using Sub-summary parts in your layouts, in addition to controlling your reports’ content and
summary characteristics, also affords you a number of controls over where and how page breaks
occur when your layout is prepared for preview and printing.

As shown in Figure 10.7, the part controls for pagination include

n Page break before each occurrence

n Page break after every n occurrences

n Restart page numbers after each occurrence

n Allow part to break across page boundaries

n Discard remainder of part before new page

16_429006-ch10.indd 36616_429006-ch10.indd 366 3/25/09 7:27:44 PM3/25/09 7:27:44 PM

367

Building Advanced Interfaces 10

 FIGURE 10.11

A preview of the OrderItems layout sorted by OrderID and ItemID.

The descriptions of these pagination controls are for the most part self-explanatory. However, keep
in mind that these controls all relate to the position of page breaks with respect to parts — they
don’t give you control over the position of breaks relative to objects within parts. You need to make
separate provisions to ensure that page breaks don’t occur in the middle of a field or line of text.

When you specify a given report’s or printout’s paper size and orientation, adjust the size of the
margin allocation and/or header and footer parts so that the amount remaining for the body part
(or other parts) is an exact multiple of the line height of the text you’ll include on the layout. It
may help to set the line height to a specific fixed value to ensure consistent behavior.

TIPTIP To specify line height, select the relevant objects in Layout mode and choose
Format ➪ Line Spacing ➪ Custom. The Paragraph dialog will appear, and, at its upper

right, you’ll find controls for line height. You can specify line height in lines, pixels, inches, or
centimeters. When the height of all objects on the layout sums to a multiple of the line height
you’ve determined, and the layout itself is also a multiple of the line height, you can be confi-
dent that page breaks will fall between lines.

NOTENOTE The importance of designing complex print layouts to a height in multiples of the set
line height forms a general rule for achieving clean/unbroken lines of text at page

breaks. This rule of multiples becomes still more important when using sliding and reducing fea-
tures, as described in the “Sliding objects and reducing parts” section, later in this chapter.

16_429006-ch10.indd 36716_429006-ch10.indd 367 3/25/09 7:27:44 PM3/25/09 7:27:44 PM

368

Beyond the BasicsPart III

Designing for Print
When preparing layouts for printing, consider the printed page as a cohesive whole, arranging ele-
ments on the page to direct the reader’s eyes to the salient information. The factors making a
printed report easy to read and understand are its simplicity, clean lines, use of white space sepa-
rating distinct items, and the alignment and proximity of associated or related elements. FileMaker
provides you with a number of techniques to assist you in creating clean and intelligible printed
output, including the ability to determine which objects print (or are visible only onscreen), to
control the size and placement of objects with sliding and reducing settings and techniques for
merging data with static text.

Nonprinting objects
You can use FileMaker’s setting for nonprinting objects, a setting located in the Set Sliding/Printing
dialog (Format ➪ Set Sliding/Printing), shown in Figure 10.12, as part of the process of making
adaptable layouts. For example, your screens may include various button objects for navigation or
script control — objects that will serve only as a distraction on a printed report, so they should be
set as nonprinting.

 FIGURE 10.12

Setting an object (or group of selected objects) as nonprinting.

A further use of FileMaker’s option for nonprinting objects is to create alternate backgrounds for
screen and print. Your screen designs will benefit from subdued, colored, or dark-toned back-
grounds and may include graphical elements. By contrast, printed output generally serves best
with light or white backgrounds and clear, open arrangement of elements.

TIPTIP To help you see at a glance which layout objects are set to print and which are not,
choose View ➪ Show ➪ Non-Printing Objects. Objects set as nonprinting will then

be displayed with a screen border around them.

16_429006-ch10.indd 36816_429006-ch10.indd 368 3/25/09 7:27:44 PM3/25/09 7:27:44 PM

369

Building Advanced Interfaces 10

By creating layout objects to serve as screen backgrounds (for example, graphical rectangles) and
setting them as nonprinting, you can ensure that your layouts show one background when viewed
on screen but another when printed. Foreground objects set as nonprinting are stripped away to
reveal background elements more appropriate for print (especially monochrome print).

The header area of the layout pictured in Figures 10.9 and 10.10 is an example of this technique.
The various items appearing in the header of the layout in the Browse mode display shown in
Figure 10.9 are eliminated from the Preview mode and print output to leave a clear and simple
heading at the top of the page, as shown in Figure 10.10.

Sliding objects and reducing parts
When setting out fields for screen display, it’s customary to size them so that they’re large enough
to show the largest amount of content likely to be entered. For example, if you’ll be entering
descriptions of up to four lines, you make the description fields four lines high so that they show
all the text. Although that works well for screen display, fields with fewer lines of text will leave the
appearance of unwanted gaps when printed.

FileMaker enables you to configure fields to collapse and the fields beneath (or to the right) to slide
up (or across) to close unwanted gaps when the layout is previewed or printed. These settings are
applied by selecting the relevant objects in Layout mode and choosing Format ➪ Set Sliding/
Printing. The resulting dialog (refer to Figure 10.12) includes separate controls for horizontal and
vertical sliding.

TIPTIP As a reminder of which layout objects are set to collapse and slide, choose View ➪

Show ➪ Sliding Objects. Objects set to slide and remove white space will be identi-
fied with small black arrows. Text objects appear with arrows on their right and/or bottom sides
(according to the directions in which they’re set to collapse and slide), while other objects will
display corresponding arrows on the top and left sides.

When objects are set to collapse and/or slide upward, an additional control labeled Also Reduce
the Size of the Enclosing Part becomes available. Activating this option prevents blank pages from
appearing at the end of a printout (or a section of a printout) where collapsing or sliding fields
have been accommodated on a preceding page.

TIPTIP In order for a field or text object to collapse to the left, its contents must be left-
aligned. Similarly, in order to collapse upward, an object’s contents must be top-

aligned. This applies to container fields as well as text objects.

As an example, when printing a layout including names composed of a title, first name, and last
name, you don’t want the printed copy to include large gaps after each part of a name. Figure
10.13 shows a Browse mode view of fields arranged in columns with generous spacing — perfect
for data entry, but less than ideal for a printed list (or an address on a letter and so on).

16_429006-ch10.indd 36916_429006-ch10.indd 369 3/25/09 7:27:45 PM3/25/09 7:27:45 PM

370

Beyond the BasicsPart III

 FIGURE 10.13

Name fields in Browse mode — with ample room for long names.

By selecting each of the fields in layout mode, choosing Format ➪ Set Sliding/Printing, and setting
the option to slide left, as shown in Figure 10.14, the fields can be configured to print their con-
tents as a continuous line of text without gaps. Figure 10.15 shows the Preview mode appearance
of the same layout, where you can see the effect of the sliding attributes.

 FIGURE 10.14

Name fields set to slide left to remove blank space.

16_429006-ch10.indd 37016_429006-ch10.indd 370 3/25/09 7:27:45 PM3/25/09 7:27:45 PM

371

Building Advanced Interfaces 10

 FIGURE 10.15

The result: Name fields sliding left to remove blank space.

The careful application of sliding and reducing attributes helps you control field arrangement in
printed output such as reports, labels, letters, invitation cards, and so on. However, although slid-
ing deals with whole fields, it doesn’t have the flexibility to combine blocks of text from multiple
fields or text objects in a seamless way (for example, so that line wrapping will flow naturally
throughout). For that, you require Merge fields.

NOTENOTE When objects on your layouts are set to slide upward, the white space between
them is maintained. Even in cases where an object collapses entirely (for example, a

text field that is empty), the white space between it and the next object on the layout will remain.

Using Merge fields
Merge fields enable you to create layout text objects that include references to fields in the current
record within the static text. Using this capability, standard text constructions can include dynamic
elements, such as names, amounts, addresses, dates, and so on.

To use Merge fields, first create a text object in layout mode and then choose Insert ➪ Merge Field
(Ô+Option+M or Ctrl+M). The Specify Field dialog appears, prompting you to choose a field to
insert into the current text object. After you select a field, it will be added at the cursor as a tagged
reference enclosed in double angle brackets. The syntax for a Merge field reference is

<<TableOccurrenceName::FieldName>>

NOTENOTE The delimiters for a Merge field are two successive left angle brackets, paired with
two successive right angle brackets. Do not use the « and » single character quote

marks — they aren’t an acceptable substitute.

16_429006-ch10.indd 37116_429006-ch10.indd 371 3/25/09 7:27:45 PM3/25/09 7:27:45 PM

372

Beyond the BasicsPart III

If the field you select is sourced from the table the current layout is based on, the field name is
used for the Merge field placeholder. For all other cases, the table occurrence name and the field
name are required. Moreover, if you know the name of the table occurrence (if required) and the
field, you can type the Merge field placeholder directly from the keyboard; you don’t have to use
the menu command for this purpose.

TIPTIP A Merge field placeholder will be formatted according to the text formats (size,
color, style, and so on) applied to the leading chevron bracket enclosing it (except

where character formatting has been applied to the field contents of the referenced field — in
which case the character formatting will take precedence).

In addition, FileMaker supports a number of generic text placeholders for system and contextual
information:

// Resolves to the current date when the layout is displayed or printed

:: Resolves to the current time when the layout is displayed or printed

|| Resolves to the workstation username when the layout is displayed or printed

Resolves to the current page number when the layout is previewed or printed

@@ Resolves to the current record number (according to its current position in the found set
or in the current portal display) when the layout is displayed or printed

TIPTIP When a text object includes generic placeholders or Merge fields including dates,
times, timestamps, or numbers, you can control the format of the data when dis-

played by selecting the text object and choosing Format ➪ Number, Format ➪ Date, and/or
Format ➪ Time.

Merge fields and placeholders have a variety of uses. However, they have the limitation that you
can’t use them to edit field data in Browse mode. Thus, they’re suitable for displaying and printing
data, but not as an editing interface. Consequently, Merge fields are most frequently used on special-
purpose layouts, such as form letters, certificates, or various formal documents. In some situations,
the non-editable nature of Merge fields is a strength, so you may choose to use Merge fields to dis-
play field contents in cases where you don’t want the user to be able to copy or edit the data.

Creating a letter generator
Although Merge fields provide a flexible way to create free-form letters using your database’s data,
they require a familiarity with Layout mode and high-level access privileges. As a developer or
advanced user, you should have no hesitation creating or editing documents using layout text and
Merge fields. However, there are a few limitations:

n Solution users may not have the skills to make professional-looking letters in layout mode.

n If the data architecture of the solution is complex, users may have difficulty locating the
appropriate fields and table occurrences to base Merge fields on.

n Giving a large number of users access to creating or modifying your solution’s layouts
may be risky.

16_429006-ch10.indd 37216_429006-ch10.indd 372 3/25/09 7:27:45 PM3/25/09 7:27:45 PM

373

Building Advanced Interfaces 10

n If a lot of slightly different letters are required, over time the number of layouts required
to accommodate them all may grow to unacceptable — or at least, unwieldy — levels.

n Layouts are not tied to specific records (only to a table occurrence), so they provide no
indication which records were used to create which letters/documents or when.

If any of these issues are of concern, you require a different alternative — one that enables users to
create letters dynamically without creating or editing layouts, meanwhile maintaining a record of
the recipients of each letter. One way to achieve this aim is to set up a single letter layout where the
text of the letter is supplied by a calculation field. You can then provide users with a letters table in
which they can compose letters, using merge placeholders where they want to reference fields in
your solution. Your calculation field (the one producing the letter text) can then perform a substi-
tution to replace the merge placeholders with the appropriate field values for each record as the
letters are printed.

When you structure your solution in this way, each letter will be stored in its own record in a let-
ters table. Therefore, it’s a simple matter to record in a separate table, such as a join table, which
contacts were sent which letters and on which date(s).

If your letters are stored in a field called MergeLetterText in a table named Letters — and if
the text in MergeLetterText includes properly formatted field references in double angle
brackets — you can use a calculation formula along the lines of the following to resolve the
embedded placeholder tags, constructing the appropriate letter text for the current record in your
Contacts table:

Evaluate(“\”” & Substitute(Letters::MergeLetterText ; [“<<”; “\” & “]; [“>>”; “ &
\””]) & “\””)

Using Multiple Windows and Views
FileMaker enables you to display multiple windows showing the same or different views of a file’s
contents. Windows can be spawned manually by choosing Window ➪ New Window or via button
or script. In the latter case, your script can control the location and size of the displayed window,
as well as selecting which layout to present to the user.

Given that you have a high degree of programmatic control over the scripted display of database
windows, you can use them to perform the roles of pop-up information panels, graphs, auxiliary
and drill-down displays of data, selection windows, detail windows, image viewers, and countless
other related interface roles.

Managing window placement and size
When you use the New Window[] script or button command to create a window, the options are
available to set the window name, its height and width (in pixels), and its location. The location is
also set in pixels, supplied as coordinates relative to the monitor’s upper left corner of the desktop
area (Mac) or the Application window (Windows). You can enter each of these window parameters
either as a literal value or as a calculation to be evaluated at runtime.

16_429006-ch10.indd 37316_429006-ch10.indd 373 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

374

Beyond the BasicsPart III

For example, if you specify the Distance from Top parameter using the following formula, the
new window will be positioned 50 pixels farther from the top of the screen than the current active
window:

Get(WindowTop) + 50

Similarly, if you have specified the height and width of a window (for example, as 500 pixels wide
by 300 pixels high) and want to locate the window in the center of the viewable desktop area of
the user’s monitor, you can do so by using formulas for the Distance from Top and Distance from
Left attributes as follows:

n Distance from top: (Get(WindowDesktopHeight) – 300) / 2

n Distance from left: (Get(WindowDesktopWidth) – 500) / 2

When these formulas are evaluated, they return the correct coordinates to center the 500 x 300
window on the user’s monitor.

CAUTION CAUTION When naming a window, bear in mind that window names are not required to be
unique. However, if a window does not have a unique name, script commands

won’t be able to reliably select the window by name.

In addition to creating new windows at desired locations, you can move and resize existing win-
dows, addressing them by their window names. This is achieved by using the Move/Resize[]
script or button command, using similar parameter options to those described for the New
Window[] command. Similarly, the Select Window[] command brings a specified window
(or the current window, if none is specified) to the front, making it active.

NOTENOTE Parameters for size and location in both the New Window[] and Move/Resize
Window[] commands are optional. If you don’t specify a parameter, FileMaker

makes no change to it. In the case of the New Window[] command, the result is that the win-
dow takes on attributes for size and/or location from the currently active window. However,
where no window name is specified, the window name will be generated based on the active
window name, but with a hyphen and incrementing number appended.

Windows as pop-ups and drill-downs
FileMaker packs a lot of power and flexibility into the Go To Related Record[] command
(GTRR), enabling you to locate related records, determine the found set, independently select a
suitable layout, spawn a new window (or target the current window), and, if creating a new win-
dow, set the name, position, and size of the new window and select it, all in one step. That’s a lot
of functionality in a tiny package.

Using the Go To Related Record[] command, you can create simple layout buttons to move
around your solution, including to spawn pop-up windows showing details or related data for con-
tent of a current screen, or drilling down into additional detail (showing the source data for an
aggregate calculation and so on).

16_429006-ch10.indd 37416_429006-ch10.indd 374 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

375

Building Advanced Interfaces 10

As a further example of the use of windows as pop-up “reveal’ interaction elements, if you’re stor-
ing images of products or people in your solution, it may be appropriate to display a thumbnail-
sized image on the data-entry screen, configured so that clicking the thumbnail brings up a
full-sized image in a window in the foreground of the user’s monitor.

Simulating modal window behavior
A common feature of computer interfaces is the modal window — a window or dialog that remains
in front until the user takes an action to dismiss it. Most dialogs are modal, requiring you to click
OK or Cancel before you can resume other activities. In some cases, you may want to have your
database windows mimic modal behavior.

One of the ways developers achieve an effect similar to a modal window is by creating a new win-
dow in a script and terminating the script within a loop so that the window will be held frontmost
by the action of the script until the user cancels or takes some other action. The following script
demonstrates the technique:

New Window [Name: “Select Item”; Height: 400; Width: 340; Top: 200; Left: 350]
Go to Layout [“Select Item” (Items)]
Show/Hide Status Area [Lock; Hide]
Loop
 Select Window [Name: “Select Item”; Current File]
 Pause/Resume Script [Indefinitely]
End Loop

With this script sequence in place, the new Select Item window is displayed and locked as the
frontmost window until the user takes an action halting the script. You must, therefore, ensure that
the displayed layout provides access to one or more buttons that will halt the looping script and
restore control of the interface to the user.

CAUTION CAUTION Although simulation of modal window behavior may provide a useful mechanism to
guide the user, it should not be relied upon to enforce security. You can use vari-

ous techniques (including the use of the Mac OS’s Exposé feature) to partially or fully circumvent
a loop-locked window.

Employing Custom Dialogs
as an Interface Tool
Although harnessing database windows for a variety of dynamic interaction modeling techniques
provides power and flexibility, simpler requirements can frequently be met by employing FileMaker’s
native custom dialogs. Custom dialogs can include a heading label, up to four lines of text, up to
three buttons, and up to three input fields.

16_429006-ch10.indd 37516_429006-ch10.indd 375 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

376

Beyond the BasicsPart III

Providing standard and familiar interface techniques has a number of advantages, and users are
familiar with the interaction models associated with dialogs. All computer users understand dialogs
as alerts and as information entry prompts.

Dialogs as a data-entry device
Using custom dialogs to accept input from the user requires using the Input Fields option. You
configure these via the “Show Custom Dialog” Options dialog’s Input Fields tab, as shown in
Figure 10.16.

Custom dialog field input is always received as text, regardless of the data type of the fields selected
to store the data. Moreover, standard data type error alerts won’t be displayed when data is entered
into fields via a custom dialog. When using dialogs, you must, therefore, perform your own checks
for data type consistency.

Using global text fields to accept dialog input and then perform data checks and conversions (if
necessary) before writing the content into the appropriate fields in the current record has some
value. A single global text field with three repetitions (for example, located in a utility table in your
solution) suffices for this purpose.

When using a script to present a dialog containing input fields, placing the dialog call within a
loop with an exit loop condition based on a check for the presence of the required input is a com-
mon technique to confirm that data has been entered. A simple example of a script sequence
achieving this is as follows:

 FIGURE 10.16

Configuring input fields via the “Show Custom Dialog” Options dialog.

16_429006-ch10.indd 37616_429006-ch10.indd 376 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

377

Building Advanced Interfaces 10

If [IsEmpty(Person::Frequency)]
 Loop
 Show Custom Dialog [“Enter the contact frequency.” Person::Frequency]
 Exit Loop If [not IsEmpty(Person::Frequency) or Get(LastMessageChoice) = 2]
 End Loop
End If

Note that the Exit Loop If [] condition includes the Get(LastMessageChoice) test to
determine if the user has clicked Cancel.

CAUTION CAUTION Data entered into a custom dialog’s input field is discarded unless the user clicks
the first button (the button appearing at the far right of the dialog) when accepting/

dismissing the dialog.

Dynamic dialog attributes
FileMaker’s custom dialog’s heading and message attributes can be determined by calculation.
Thus, you can set them to reference fields in your solution or to incorporate system variables such
as time, account name, operating system, and so on.

To take advantage of the ability to set dialog attributes dynamically, click the Specify buttons in the
General and Input Fields panels of the “Show Custom Dialog” Options dialog. A Specify
Calculation dialog appears, and you can enter a formula to determine the text for use on the rele-
vant dialog caption.

NOTENOTE Although heading, message, and field labels can be calculated, the fields them-
selves, plus the button text, must be specified in advance.

Looking at Anchors and Resizable
Layout Objects
Over the course of the past decade, computer users’ experience with Web browsers and Internet
content has increasingly influenced their expectations. Browsers are designed to reposition the
content — and sometimes also resize it — according to the size of the browser window. The
arrival of ever-larger-format monitors increases appreciation of this capability.

In some cases, resizing components of a database window makes sense (so a field accepting free-
form text can be enlarged when there is a lot of text to read or enter/edit). Even when you think
that there’s no merit to resizing layout elements, you should consider setting window contents to
maintain their position with respect to the center of the window.

16_429006-ch10.indd 37716_429006-ch10.indd 377 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

378

Beyond the BasicsPart III

Objects that move according to window size
FileMaker provides a deceptively simple control mechanism for positioning and resizing layout
objects, in the form of a set of four anchor checkboxes. These controls appear on the lower section
of the Object Info palette (View ➪ Object Info). When you select an object in Layout mode (with
the Info palette in display), its anchor settings are shown and can be modified.

By default, all layout objects are anchored to the top left. That means when you select an object
and view its settings in the object Info palette, the default state is top and left anchors on, right and
bottom anchors off, as shown in Figure 10.17.

When you disable one or both of the default anchors, the selected object is free to move away from
the edge of the layout to which it was anchored. This means that if the window is enlarged above
the original layout size, the object moves in order to maintain an equal distance from the center
(horizontal) or middle (vertical) of the layout area.

NOTENOTE The original size of the layout (used as the reference size to determine object mov-
ing and scaling) is based vertically on the combined height of the layout parts and,

horizontally, on the distance from the left side of the layout to the right border of the rightmost
layout object.

A layout’s moving and resizing behavior in Browse and Find modes depends on the view format of
the layout. When you set a layout to List View (View ➪ View as List), vertical resizing is disabled
(enlarging the window exposes additional records rather than increasing the vertical size of
records). When you set a layout to Table View (View ➪ View as Table), both vertical and horizontal
resizing are disabled. Only in Form View (View ➪ View as Form) are both vertical and horizontal
resizing (and repositioning) attributes activated.

NOTENOTE Vertical repositioning and resizing is applied to objects in all layout parts. However,
if a layout part contains no objects set to reposition or resize vertically, that part will

not resize. Layout parts containing objects set to reposition or resize are scaled proportionally in
Browse and Find modes when the vertical height of the window is enlarged to a size greater than
the combined height of all layout parts.

 FIGURE 10.17

The default anchor state for all layout objects — anchored to the top and left.

16_429006-ch10.indd 37816_429006-ch10.indd 378 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

379

Building Advanced Interfaces 10

It’s common to leave some “breathing room” at the left and right sides of your layouts. In other
words, fields or labels are not positioned flush against the edges of the layout. When using reposi-
tioning and resizing (as when using the Adjust Window [Resize to Fit] command), you
need a way to ensure that FileMaker respects the surrounding space at the right side of your lay-
outs. One way to achieve this is to include an invisible object (for example, a graphical rectangle)
at the right edge of the layout area you’re using. This establishes a boundary that FileMaker
respects when resizing windows and the objects they contain.

TIPTIP I suggest that you use an empty text object to establish the right boundary. You can
then format it to acquire the same fill color as the background except when in

Layout mode (the conditional formatting formula to achieve this is Get(WindowMode) ≠ 4). This
means that the boundary object will always be visible in Layout mode (so that you can keep track
of it) but not in other modes or in printed output.

Objects that grow and shrink
When an object is simultaneously anchored to opposing edges of the layout (both top and bottom,
or both left and right), it will increase in size as the size of the window exceeds the size required to
accommodate the contents of the layout.

If your layout is area is configured to be 500 pixels wide (that is, the right edge of the rightmost
object is 500 pixels from the left edge of the layout), the width of a window sized to exactly accom-
modate the layout will be 515 pixels on the Mac and 528 pixels (in a restored database window) in
Windows. The difference of 13 pixels is due to the added size of the scroll bars and window bor-
ders in Windows.

When an object is anchored to both the left and right of the layout, its size will be increased in
Browse and Find modes when the window width exceeds the minimum width required to accommo-
date the layout. Given a layout width of 500 pixels, if the window size on the Mac is set to 600 pixels,
an object anchored at both left and right will be increased in width by 16 pixels (600 – 584 = 16).

CAUTION CAUTION Because the size increase of resizing objects is equal (rather than proportional) to
the size increase of the window, adjacent objects anchored to opposing sides will

overlap as the window size increases.

Managing complex layout resizing
Multiple objects set to resize in the same direction, within the same area of the screen, will collide
and overlap as the window size is increased. This may be ugly or disconcerting, but regardless, it
compromises usability in most cases. It’s incumbent on you to ensure that this sort of unintended
side effect is avoided when resizing.

I recommend a “zoning” approach to the management of resizing — zones being arbitrary horizontal
or vertical segments of your layout parts. Identify only one object to resize vertically within a given
vertical zone and horizontally within a horizontal zone. (You can choose to work with multiple
notional zones if you want.) To illustrate this approach, Figure 10.18 shows a layout comprising nine
fields, in which, by using the zoning method, you should identify one column for horizontal resizing
and one row to resize vertically.

16_429006-ch10.indd 37916_429006-ch10.indd 379 3/25/09 7:27:46 PM3/25/09 7:27:46 PM

380

Beyond the BasicsPart III

 FIGURE 10.18

An example layout of nine fields, at the minimum (default) layout size.

When determining how to gracefully apply resizing properties to the fields in the example layout
shown here, I first visualized the layout as comprising three horizontal zones and determined that
one field within each zone would expand horizontally. I chose to set Field02, Field04, and
Field09 as the horizontally expanding fields. In addition, I visualized the layout as comprised of
three vertical zones and chose to apply vertical resizing to Field07, Field08, and Field09.

NOTENOTE When you’ve anchored an object to both left and right, all objects to the right of it
should be anchored to the right and not anchored at the left. Likewise, all objects to

the left of it should be anchored to the left and not the right. This ensures that as the dual-
anchored object increases in size, objects to the right of it will move across to accommodate it.
Similarly, when an object is anchored at both the top and bottom, other objects below it in the
same layout part should be anchored at the bottom and not at the top. Likewise, all objects
above it should be anchored to the top and not the bottom.

With the appropriate anchor properties applied, the fields resize as the window is enlarged, with-
out colliding with one another, as shown in Figure 10.19.

Although the zoning method allows you to design layouts that work within the resizing limits of
FileMaker Pro 10, sometimes you may want to be able to resize all fields proportionally.
Proportional horizontal resizing is not supported in FileMaker 10.

There is, however, a technique you can use for proportionally resizing fields vertically in a Form
View screen layout. Because Sub-summary parts are displayed in form view, different “zones” can
be assigned to Sub-summary parts. A modified version of the file used as the example for this sec-
tion is pictured in Figure 10.20, showing the application of this technique to provide proportional
vertical resizing to all nine fields.

16_429006-ch10.indd 38016_429006-ch10.indd 380 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

381

Building Advanced Interfaces 10

CAUTION CAUTION The proportional vertical resizing technique described here is best suited for layouts
that will not be used for printing, because further work would be required to ensure

that layout parts used to control resizing appear in printed output (and in a desired sequence).

 FIGURE 10.19

Resizing according to the zone method to avoid overlapping objects.

 FIGURE 10.20

A workaround to achieve proportional vertical resizing for a screen-only layout.

16_429006-ch10.indd 38116_429006-ch10.indd 381 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

382

Beyond the BasicsPart III

Resizing behavior of enclosing objects
Unlike other layout objects, Tab Controls and portals influence the behavior of the objects they
enclose. The first thing to note is that when an object is placed within a portal or a Tab Control
object, its anchor settings no longer refer to the edges of the layout. The object is, instead,
anchored to the boundaries of the enclosing object. Thus, objects within an enclosing object
inherit (or are limited by) the anchor properties of the enclosing object.

Additionally, portals exhibit different vertical resizing behavior depending on the anchor proper-
ties of the objects within them. If all the objects within a portal are anchored to the top (but not to
the bottom) and the portal is anchored to top and bottom, when the portal height increases, it will
display additional rows. However, if any items within the portal are anchored to the bottom and/or
not anchored to the top (that is, set to move or resize vertically), the portal rows will increase in
height rather than number: The number of rows will remain constant, and their sizes will increase
proportionally as the portal is enlarged.

Centering objects within the viewable area
By disabling the anchors on opposing sides, an object is treated by FileMaker as being anchored to
the center of the viewable area of the layout (or, vertically, to the layout part). For example, this
setting allows you to ensure that a heading remains in the center of the header part when increas-
ing the window size.

Similarly, if an object in the body part has all its anchors disabled, it will float free and remain
equidistant from the center (both vertically and horizontally) of the body part as the window is
enlarged above the size required to accommodate the layout.

Although this technique does not increase the usability of individual layout objects in the way that
resizing may, it can contribute to the sense of balance, aesthetic appeal, and/or dynamism of your
solutions. This is clearly evident if you open an old solution designed for a small-format (for exam-
ple, 800 x 600) monitor and set to maximize on start-up. On a modern, large-format monitor, the
blank area at the right and bottom of the layout dwarfs the small usable area at the upper left.
Centering objects in the usable area of the window allows your solutions to transition between
screens of different sizes more gracefully.

NOTENOTE For examples of object centering, repositioning, and resizing, see the layout header
and footer objects in the Inventory example for this chapter. If your monitor is

not large enough to increase the window above the layout size, you’ll be able to view the effect
by zooming the layout to 75 percent or 50 percent.

Implementing Shortcut Navigation
A well-configured relational database manages the connections between all the components of your
data. Items having relationships to other items are intrinsically connected to them via the solution’s
structures.

16_429006-ch10.indd 38216_429006-ch10.indd 382 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

383

Building Advanced Interfaces 10

Why not exploit the structure of the relationships in your solution to provide navigational path-
ways from one place to other related places? Instead of requiring the user to laboriously exit from
an invoicing screen and then navigate into the products module and search for a product to view
its record, why not allow the user to jump directly to any product that appears on any invoice? If
you set up your solutions appropriately, the schema can serve as a network of “rabbit holes” for the
user to jump through.

The power of the Go to Related Record command
In Chapter 9, I describe in detail the implementation of jump buttons for shortcut navigation using
the Go to Related Record [] command (GTRR), and earlier in this chapter (in the “Windows
as pop-ups and drill-downs” section), I looked at some other applications of the same command.

Instead of providing isolated and idiosyncratic navigation options, well-thought-out use of the
GTRR command can provide a central and essential framework for navigation of your solution.
Each instance of a GTRR saves users multiple steps versus conventional navigation methods.

An important option that GTRR provides is its ability to isolate a group of records within a found
set on a layout associated with the related table (that is, the table where the related records are
stored). The resulting found set can be presented to the user in the current window, in a new win-
dow, or in another file (if the related table is stored elsewhere). This effectively enables you to
“find” a group of records without using Find mode.

Equally important is the ability of the GTRR command to transfer found sets between layouts
based on the same underlying table (but on different table occurrences). If you’ve performed a find
to locate a subset of records on the current layout, you can use any other layout associated with a
TO that (in turn) is associated with the same base table, to view the found set, by using GTRR to
navigate to the desired layout.

One interface, many paths
Sophisticated computer users are aware that you can access many computer features in multiple
ways. Menus, buttons, keyboard shortcuts, and so on all provide access to the same commands.
Similarly, in your solutions, alternative mechanisms should be available to move from one point to
another. In the interest of both utility and ergonomics, you should provide your solutions’ users
with alternatives suitable to different work processes and styles.

When your solution navigation is designed ergonomically and paths through layouts and records
are intuitive and follow work processes and business rules, users will rely less upon FileMaker’s
Status Toolbar tools and will use Find mode less frequently.

CROSS-REFCROSS-REF For further discussion of the design and implementation of navigation and menu
structures for your solutions, refer to the “Using Interface Elements” section, later

in this chapter.

16_429006-ch10.indd 38316_429006-ch10.indd 383 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

384

Beyond the BasicsPart III

Building Back button functionality
Something all users of the Internet rapidly learn is the value of being able to go back. Providing
similar functionality in FileMaker, however, may require that your solution keep a log of where the
user has been in relation to both layouts and records.

One relatively straightforward way to achieve an automatically updating log of where the user has
been is to set up an unstored calculation to capture the current context and append it to a global
variable. This can be done with a calculation along the following lines (where CurrentTable::
Serial# is a reference to the primary key in the current table):

Let([
Sn = CurrentTable::Serial#;
Bn = ValueCount($$trace);
Vc = GetValue($$trace; Bn);
Sc = RightWords(Vc; 1);
Lc = LeftWords(Vc; WordCount(Vc) - 1);
La = Get(LayoutName);
$$trace = $$trace & If(Sn ≠ Sc or La ≠ Lc; Left(¶; Bn) & La & “ “ & Sn)];
““)

Such a calculation would be required in every table on which a user-accessible layout is based —
and although empty, the field would be required to be present on each layout (it may, however be
both invisible and inaccessible). This method is seamless in operation, automatically capturing a
history of navigation steps between both records and layouts, regardless of the method(s) the user
uses to move around your solution.

TIPTIP If your solution includes fields that calculate values for display (for example, naviga-
tion text or the current user/account name, and so on), you can readily combine the

$$trace calculation with an existing calculation.

When a mechanism is in place to capture user navigation, you can use a single script, structured as
follows, to return through the list of previous locations in your solution:

If [ValueCount($$trace) < 2]
 Beep
Else
 Set Variable [$PrevCtxt; Value:GetValue($$trace; ValueCount($$trace) – 1)]
 Set Variable [$LastLayout; Value:LeftWords($PrevCtxt; WordCount($PrevCtxt)–1)]
 Set Field [Utility::gTrace_key; RightWords($PrevCtxt; 1)]
 Freeze Window
Go to Layout [“-” (Utility)]
 If [$LastLayout = “Inventory”]
 Go to Related Record [From Table:”Inventory_trace”; Using layout:$LastLayout]
 Else If [$LastLayout = “Orders”]
 Go to Related Record [...]
 # etc
 End If
 Set Variable [$$trace; Value:Let(Nt = LeftValues($$trace; ValueCount($$trace) – 1);

Left(Nt; Length(Nt) – 1))]
End If

16_429006-ch10.indd 38416_429006-ch10.indd 384 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

385

Building Advanced Interfaces 10

The technique as presented here requires a utility relationship for each base table in the solution
and a single corresponding GTRR command in the script to invoke the relevant relationship.

NOTENOTE A working example of Back button functionality has been implemented in the
accompanying Inventory example file for this chapter.

Building Depth and Dimensionality
A long time ago, humans discovered that the world is not flat. But even before that discovery, peo-
ple’s minds were wired for three dimensions. Humans are geared for spatial concepts and under-
stand the world in terms of three-dimensional space.

When you use a computer, your understanding and experience aid the interpretation of what the
monitor presents to you. Thus, the best computer interfaces are those you perceive as metaphors
for tangible objects and mechanisms you’ve encountered in the world around you.

Using embossing and engraving effects
The embossing effect (available in an elementary form on FileMaker’s 3-D effects pop-up menu in
Layout mode) provides a simple but effective illusion of depth, creating the appearance of a fore-
ground and background, introducing the semblance of spatial and even tactile qualities to the
screen image. As embossing raises, engraving recesses — and stacked (nested) 3-D objects increase
the perceived layers of depth.

Although the effect is a simple visual illusion, things that appear raised (with embossing) have the
illusion of inviting you to press on them — like buttons — or intruding upon you like neon signs
or placards. Conversely, engraved objects carry the illusion of depth, inviting you to enter or sug-
gesting interior or enclosed spaces. Moreover, engraved objects enclosed inside other engraved
objects appear to take you additional layers inward, suggestive of hierarchical structures.

For added impact, you may also want to create an embossed or engraved effect for key text ele-
ments in your interfaces. Although FileMaker does not directly support embossing and engraving
effects for text objects, you can produce such effects using native layout text objects by duplicating
the object, stacking the duplicate atop the original, shifting it 1 pixel left and 1 pixel up, and
changing its hue (darker for engraving, lighter for embossing). Alternatively, you can add text
effects in a third-party program and import the results.

CAUTION CAUTION I recommend that imported graphics be optimized and used sparingly, to avoid
unduly enlarging file sizes or impacting solution performance. This is a significant

consideration for solutions that will be remotely hosted.

Spatial cues for added meaning
The illusion of depth enhances your perception of a screen layout in several ways. The simplest of
these is the way in which it tricks the eye — the illusion helps reduce the fatigue associated with
long periods viewing flat objects at close range. Equally important, it taps into spatial associations,

16_429006-ch10.indd 38516_429006-ch10.indd 385 3/25/09 7:27:47 PM3/25/09 7:27:47 PM

386

Beyond the BasicsPart III

assisting you to visualize the relationships between groups of objects — it invokes spatial meta-
phors and, thus, makes screen arrangements easier to view and easier to interpret.

Careful and consistent use of protruding objects and receding or enclosing spaces creates a much
stronger sense of separation and spatial relationships than any flat lines and borders could. This
can aid the comprehension of information being presented. Understanding how these tools work is
the first step to using them effectively when designing interfaces for your solutions.

Delineation of element groups
Engraved areas of the screen create catchments within which you naturally understand elements to
be grouped in a relationship. An additional level, or tier, of engraving can enhance this effect.
However, employing more than two levels begins to lose impact and risks complicating rather than
simplifying the visual order being imparted.

Similarly, one or (at most) two levels of embossing can enhance the perceived order and separation
of elements in a layout. Moreover, embossed elements, seeming closer to the user, take on a more
present, urgent, or immediate quality.

Color
Bright colors grab attention and impress themselves vividly upon your eyes. Thus bright colors are
best reserved for those screen elements the user should see first, the ones that are most urgent or
important.

Overuse of strong or bright colors creates an impression of conflict and competition and is visually
fatiguing. An overly bright (or overly strong-colored) screen may seem loud and/or angry.
Conversely, softer tones are less fatiguing but also leave a fainter impression. Ideally, a screen
should contain a few splashes of color (used to draw the user’s eye to key elements) among
ordered and more subdued elements.

The use of clean subtle lines throughout your interface provides maximum scope for emphasis of
key elements and alerts, while serving to gently guide the user. After you have the user’s attention,
you don’t need to keep shouting (and it’s better if you don’t). I recommend the use of coordinated
themes of subtle tones and backgrounds, with one or two brighter colors for emphasis and contrast.

Transparency and translucency
Although FileMaker’s native graphic elements are basic, imported graphics are supported in a
range of formats. These include support for translucent and transparent effects in formats such as
PNG (Portable Network Graphics, an Internet graphic standard). Judicious use of graphics and
visual effects created in third-party graphics environments can significantly extend and enhance
the visual appeal of your FileMaker interfaces.

16_429006-ch10.indd 38616_429006-ch10.indd 386 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

387

Building Advanced Interfaces 10

TIPTIP To preserve the integrity of translucent and transparent images in supported for-
mats, choose Insert ➪ Picture in Layout mode. Images pasted from the clipboard

will not retain these properties.

Including graphical elements can also increase the tactile and dimensional quality of your screens,
introducing subtle shadows and light effects. This sort of subtle touch lends a strengthened illusion
of depth and space, reinforcing the spatial metaphors throughout your interface.

However, avoid excessive use of graphical elements in the interest of maintaining performance,
particularly overly busy network connections. For best performance, optimize your graphics for
smallest size, and after inserting once, duplicate the graphic within FileMaker, pasting copies to
other locations. FileMaker stores a single library copy of the graphic and references it elsewhere,
thus reducing the resources required to download and display interface images.

NOTENOTE The example Inventory database for this chapter includes several imported
graphical elements (in PNG format) to add shadow, light, and enhanced depth and

dimensionality to the screens.

Working with Tab Controls
In addition to designing your screens to form data into logical groups and present the user with a
natural sequence of information, it’s important to avoid presenting too much information at once.
Clutter is problematic because the user’s focus becomes lost.

One solution to the problem of clutter is to spread information out over a larger number of
screens. However, this introduces a different problem — fragmentation. An alternative solution
that avoids either problem is to nest data within a single screen, keeping data out of sight until it’s
needed. Tab controls provide an elegant way to achieve that aim.

Organizers and space savers
FileMaker’s Tab Controls can be as large as the layout or as small as a postage stamp. They can
work side by side in multiple arrays. Tab control panels can contain any combination of other
objects including fields, Web viewers, portals, or other Tab Controls. If you place Tab Controls
inside other Tab Controls, your layouts will be capable of holding large amounts of data in an
ordered hierarchy, while presenting the user with a clean and simple interface design.

The hierarchical principle introduced by Tab Controls is a familiar way of creating order, and your
users will instinctively understand. Just as buildings have levels that contain apartments that con-
tain rooms that contain cupboards that contain drawers, your solutions can organize information
into multiple levels of order. As long as the allocation of data to each place in a hierarchy makes
simple and logical sense, your users will have no difficulty grasping the principle and locating the
data they need.

16_429006-ch10.indd 38716_429006-ch10.indd 387 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

388

Beyond the BasicsPart III

Tab navigation via keyboard
By default, Tab Controls are mouse-driven. However, you can include a Tab Control into the lay-
out tab order so that users can select it by using the keyboard Tab key, just as they can move
between fields on your layouts (see Figure 10.21).

When a tab control has been added to the layout tab order:

n The first (or default) tab becomes selected when the user tabs to the Tab Control.

n The right arrow and left arrow keys will select alternate tabs across the top of the selected
Tab Control.

n The Return key or the space bar will bring the currently selected tab to the front.

By default, a Tab Control isn’t included in the layout’s tab order. However in FileMaker Pro 10, you
can insert a Tab Control object — or any other object (such as a field or button) that can receive
keyboard focus — into an existing tab order by selecting the arrow next to the object, typing the
number corresponding to the desired position in the tab order, and then clicking another arrow or
OK on the Set Tab Order dialog. After inserting a number that falls within the sequence of an exist-
ing tab order, the object that previously held the same number (the number you entered) is incre-
mented, and all objects that follow it in the preexisting tab order are resequenced to preserve (and
increment) their positions within the new tab order.

 FIGURE 10.21

Assigning a Tab Control to the layout tab order so it can be selected via the keyboard.

16_429006-ch10.indd 38816_429006-ch10.indd 388 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

389

Building Advanced Interfaces 10

Scripting tab operations
Alternatively, you can provide scripted navigation to take users directly to a specific tab on a given
layout. To do this, you must first select the tab panel in layout mode (the tab area of the panel will
become outlined in black when it’s selected) and assign an object name via the Object Info palette.
After you’ve named the panel, you’ll be able to script the selection of a specific tab with a sequence
such as

Go to Layout [“YourLayout”]
Go to Object [“YourTabPanel”]

Similarly, you can build custom menus including menu commands (using FileMaker Pro
Advanced) to take the user to specific tabs. To achieve this, a script such as the preceding one
should be assigned to a menu selection.

CROSS-REFCROSS-REF For additional information about the use of FileMaker Pro Advanced features, such
as custom menus, refer to Chapter 18.

Recognizing the Flexibility of Portals
FileMaker’s portal object is a powerful tool — providing you with the ability to create windows
into alternate spaces in your solutions, using them to combine data from multiple tables within a
single layout. Portals are also adaptable, enabling you to implement them in a variety of different
ways according to the needs of your solution.

Lists in many guises
By default, FileMaker portals present a range of records from a related table, appearing in a contin-
uous list. However, you can specify a commencing row for a portal (other than the first related
record), thus creating portal editions and displaying noncontiguous record sets.

Portals can include a scroll bar, configurable to snap back to the first related record (or first record for
the current portal) when the record is exited or to remain at the scrolled position. When the scroll
bar option is disabled, a portal presents a fixed list of a predetermined number of related records.

By using multiple portals in conjunction with a tab panel, portal displays can be paginated. For
example, the first 20 records can be shown on one tab, records 21 to 49 on a second tab, and so
on. This can provide a more convenient interface for addressing related records in defined ranges,
in situations where the maximum number of records you’ll need to display can be predicted.

Portals as a navigation device
A portal row can contain a button so that clicking the row (either a button contained within and
sized to occupy the entire row, or a button located at the edge of the row) executes a GTRR com-
mand, navigating to the relevant record on another layout. This navigation technique is useful for

16_429006-ch10.indd 38916_429006-ch10.indd 389 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

390

Beyond the BasicsPart III

moving the user between related locations in your solution. By providing a portal based on the
current table (for example, via a self-join relationship), a portal can provide an efficient navigation
tool for the current table.

When displaying records from the current table in a portal, you should consider how to treat the
portal display of the current record. One option is to configure the portal to display all records
except the current record. Another option is to display all records and highlight the current record
in the portal.

To omit the current record from a self-join portal, you should structure the relationship as a
Cartesian product (one where all records in the first table are matched with all records in the second
table, regardless of the value in the match fields), with an added predicate for a nonequal join (also
known as an anti-join), matching the primary key to itself. This compound join criterion will be
expressed in the relationship definition as the following (where TableID is the primary key for
the current table):

 TableID × TableID
AND TableID ≠ TableID

Alternatively, to highlight the current record in a self-join portal, you first need a method to cap-
ture and declare the ID of the current (displayed) record. One such method is to include an
expression declaring a global variable (setting it to the primary key of the current record) and
including the expression within an object set to evaluate as the layout (displaying the current
record) is drawn onscreen. The calculation can be included in an unstored calculation field dis-
played on the layout, in a Web viewer, or in a conditional formatting argument. The form of the
expression declaring the variable will be

Let($$ActiveRecord = YourTable::TableID; ““)

After the mechanism for capturing the ID of the active record is in place, you can set a conditional
formatted object to highlight the portal row with the following formula:

$$ActiveRecord = PortalTO::TableID

NOTENOTE The layout object being used to capture the ID of the current record should be set
at the back of the layout’s stacking order so that it’s drawn first, ensuring that its cal-

culation expression is evaluated (and the ActiveRecord variable instantiated) prior to evaluat-
ing the conditionally formatted object highlighting the portal row.

Dynamically sorted portals
A variety of methods are available for setting up dynamic portal sorting. One of the easiest to con-
figure involves the use of a Tab Control and a series of portals, each configured with a different
sorting criterion.

By setting the Tab Control’s tabs to match the columns and column widths of the portal, the tabs
can serve as portal heading labels. Multiple copies of the portal can then be positioned within each
panel of the Tab Control and adjusted to present the related records in the appropriate order. The
result is an efficient portal sorting mechanism that’s implemented in a matter of minutes.

16_429006-ch10.indd 39016_429006-ch10.indd 390 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

391

Building Advanced Interfaces 10

Innovative portal implementations
Occasionally, a conventional list of related records is a less-than-ideal way to view or interact with
related data. For example, calendars are customarily viewed in grids with one week occupying
each block in sequential rows of data.

Displays of data requiring grids or matrices call for a little extra ingenuity (and some additional
work) in implementing portals on your layouts. To create the effect or a horizontal portal or grid,
you can add a series of single-row portals each starting with a different related row. Thus, each
separate portal shows one row — a different row — of the data in the related table. These separate
“cells” of related data can then be arranged in whatever configuration you choose — according to
the seating plan of a theater, according to a calendar of the lunar cycles, according to the grid posi-
tions of a football team. . . . All these things and more are possible.

Using Advanced Web Viewer Techniques
In Chapter 6, I introduce the concept of using Web viewers as a way to extend your solution’s
scope, providing a window into related online information from a company’s own Web site or
from other online resources. The Web viewer has a number of other potential uses.

Because FileMaker’s Web viewer taps directly into the same operating system resources as Web
browsers, it provides access to the range of Web-compliant technologies including HTML,
JavaScript, CSS, Flash, and others. If you have skills in these or other related areas, the Web viewer
allows you to exploit them, and even if you don’t, the Web viewer still lets you tap into the vast
collections of Internet resources made available by others. I don’t propose to go into these fathom-
less possibilities in great detail — that’s not the focus of this book (and there are boundless
resources available if you need to explore Web technologies). However, I would like to outline the
scope of this FileMaker feature.

Access to advanced functionality
The FileMaker Web viewer can load and display Web-compliant code objects and widgets created
with Flash, JavaScript, or other technologies, without needing to load them from a remote site —
they can be stored locally. The most obvious way to achieve this is to reference objects as resources
stored on a local hard disk. Moreover, FileMaker 10 enables you to store resources as data and out-
put them at start-up to the Temp directory on the current computer. To script this process, you
can use the following code (where gSWFresource is a global container field holding a resource
file — in this case, a Flash file — that you want to export with the filename, Resource.swf, into
the Temp directory):

Set Variable [$path; Value:”file:” & Get(TemporaryPath) & “Resource.swf”]
Export Field Contents [Utility::gSWFresource; “$path”]

You can use this technique to make a variety of resources available, including images, to be refer-
enced via Web viewers in your solutions.

16_429006-ch10.indd 39116_429006-ch10.indd 391 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

392

Beyond the BasicsPart III

After you’ve created the required resources locally, they can be referenced directly (for example, in
a Web viewer) by dynamically inserting path references as URLs, using a calculation construction
such as

“file:/” & Get(TemporaryPath) & “FileName.xtn”

Using these supporting techniques, you can configure a Web viewer to address local resources as
well as remote URLs. The ability to so configure a Web viewer becomes much more useful and
powerful when you embed references to local or remote resources into source content that your
solution generates on demand.

Rendering internally calculated content
When you load a URL into a FileMaker Web viewer, the content of the file at the specified location is
retrieved, interpreted, and rendered in the Web viewer. However, FileMaker 10 makes it possible for
you to generate content within FileMaker and pass it directly to the Web viewer. For example, you
could store the text content of a page of HTML in a text field and have the Web viewer display it.

To pass content directly to the Web viewer (rather than a URL pointing to the location of some
content), you need to employ the data URL protocol. Assuming that you’ve placed the text of a
fully formed HTML page in a field called Content in a table in your solution called
ViewerData, you’re able to load the page into a Web viewer by specifying a Web viewer address
as follows:

“data:text/html,” & ViewerData::Content

Because you’re calling upon FileMaker’s calculation engine to form the syntax of the content to be
displayed, however, you can manipulate the HTML source via calculation, or combine elements
from a number of fields for the definition of the page to be displayed. For example, to produce a
fully formed HTML report based on a tagged report template stored in a global field in your solu-
tion, you can use a calculation such as the following:

“data:text/html,” &
Substitute(SystemData::gReportTemplate;
[“«Heading»”; SystemData::CompanyName & “ Report”];
[“«ReportYear»”; Year(Get(CurrentDate))];
[“«Preamble»”; ReportData::Notes]
[“«QuarterSum»”; ReportData::QuarterlyRevenue]
[“«YTD»“; Sum(Income::AmountReceived)]
[“«Projected»”; Sum(Budget::Income)]
)

This approach takes a basic, premade page layout (complete with hypertext formatting, links,
images, and other content), inserts relevant data from your solution, and passes the result to be
displayed in your Web viewer. Moreover, the content of the Web viewer is then linked live to your
data via the calculation engine — so in the preceding example, if a staff member on the next floor
processes an additional payment, you’ll see the Year to Date amount on your dynamic report
change to include the additional amount.

16_429006-ch10.indd 39216_429006-ch10.indd 392 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

393

Building Advanced Interfaces 10

Although this example is relatively simple, you can apply the same principles to dynamically mod-
ify almost every aspect of the content of a page to be displayed in a Web viewer. You can use varia-
tions on this approach to create and display live graphs of your data, dynamic summaries, diaries,
calendars — essentially any formatted representation of information in your solution.

Scraping data from Web pages
In addition to enabling you to create displays and render data by sending information directly to
the Web viewer, FileMaker provides tools you can use to retrieve data from the Web viewer and
store it in fields in your solution. This is the process commonly known as Web scraping.

Before attempting to retrieve data from a Web page on a remote Web site, you must first provide
the URL of the page you want to “scrape” and ensure that it has fully loaded into a Web viewer in
your solution. To start the process, begin a script with a command to load the required Web
address, such as the following:

Set Web Viewer [Object Name: “YourViewer”; URL: “http://www.RemoteSite.com”]

If you attempt to retrieve the content of the Web viewer before the page has fully loaded, you may
either get nothing or get only part of the page source. To ensure that the page has fully loaded,
pause and check for the presence of the closing body tag (</body>) before proceeding. In case
the Internet connection fails or the remote site is not available, you’ll require a timeout. Here’s an
example of a script sequence implementing the required pause and check:

Set Variable [$start; Value:Get(CurrentTimeStamp)]
Loop
 Pause/Resume Script [Duration (seconds): .1]
 Set Variable [$html; Value:GetLayoutObjectAttribute(“YourViewer”; “content”)]
 Set Variable [$elapsed; Value:Get(CurrentTimeStamp) - $start]
 Exit Loop If [PatternCount($html; “</body>”) or $elapsed > 9)]
End Loop
If [PatternCount($html; “</body>”) < 1]
 Show Custom Dialog [“Timeout Error: Remote site not responding.”]
Else
 # $html has been retrieved for processing:
 # etc...
End If

When this process runs, as long as the remote site responds within the allotted timeout (in this
case, approximately ten seconds), the source of the targeted page will be returned as text via the
variable named $html. It can then be parsed for use in your solution.

CAUTION CAUTION If a process such as this — which may entail a processing delay — will run while
users are accessing your solution, it’s important to provide ongoing feedback to

ensure that they’re aware the process is under way. This reduces frustration and avoids situa-
tions where users force-quit under the impression that the solution has stopped responding. (In
the “Progress Bars and Native Charting Techniques” section, later in this chapter, I suggest some
of the ways you might address this requirement.)

16_429006-ch10.indd 39316_429006-ch10.indd 393 3/25/09 7:27:48 PM3/25/09 7:27:48 PM

394

Beyond the BasicsPart III

To successfully complete the process of retrieving data from a remote site, you need to extract the
relevant information from the HTML source returned by the previous script sequence. To do that
successfully, first examine the HTML content to locate elements that identify the location of the
information you require.

If, for example, your script is automatically retrieving a list of movies shown at a local chapter
clubhouse, as posted on its Web site, it’s likely that the information you require will routinely fol-
low the segment of text Now Showing:<big> and will always immediately be followed by </
b></big>
. In that case, the required calculation expression to retrieve the name of the cur-
rently showing movie will be

Let([
p1 = Position($html; “Now Showing:<big>”; 1; 1) + 20;
p2 = Position($html; “</big>
”; p1; 1)];
Middle($html; p1; p2 - p1)
)

By adding a Set Field [] command configured to write the result of the preceding calculation
into a field in your solution, you’ll complete the process so that each time the script runs, the name
of the current movie feature will be retrieved and stored in your solution.

While the example used here involves a single piece of information (which you can look up and
copy/paste into your solution without a great deal more time or trouble), you can use the same
procedure to automate complex processes where hundreds of items are retrieved at intervals
throughout the day or night, saving a great deal of labor and bringing significant benefits to your
users. Alternatively, you could be extracting image source (IMG SRC) hyperlink references to
retrieve a graphic associated with the data, such as a book cover thumbnail from Amazon or a
product image from an online catalog.

Progress Bars and Native
Charting Techniques
User feedback is always a good idea, but when your solution runs a process that takes more than a
few seconds, it’s essential. Without it, the user is left hanging, wondering what’s going on and wor-
rying that the solution is nonresponsive. At best, users will become frustrated; at worst, they’ll
force-quit or restart, interrupting the process partway and risking damage to the solution files.

You can provide user feedback in many ways, some of which are very simple to implement. For
example, you can post a dialog before a lengthy process begins, saying, “This may take a while —
please come back after your coffee break.” However, contriving a form of feedback that stays in
place while the process is ongoing, providing a clear indication that the process is active, and that
gives some indication of the state of the process and how much longer it has to run, is even better.

16_429006-ch10.indd 39416_429006-ch10.indd 394 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

395

Building Advanced Interfaces 10

Creating script progress monitors
One of the simplest ways to display a dynamic progress indicator is to show a window, such as the
one in Figure 10.22, with a percentage-complete updating as the task progresses.

 FIGURE 10.22

A simple numeric progress indicator in a floating FileMaker window.

To update a percentage-complete progress indicator, first you need to estimate the size of the task
being undertaken and then update the display at intervals to indicate how much has been com-
pleted. Many intensive and time-consuming scripting tasks involve repetitive processing (for exam-
ple, when looping through a series of records). The following is an example of a looping script
used to control a progress display while summing the values in the found set:

Set Variable [$task; Value:Get(FoundCount)]
Set Field [System::gProgressPercent; 0]
New Window [Name: “Processing: please wait...”; Height: 200; Width: 370; Top:

Get(WindowTop) + 120; Left: Get(WindowLeft) + 350]
Go to Layout [“ProgressIndicator” (Meetings)]
Set Zoom Level [Lock; 100%]
Show/Hide Status Area [Lock; Hide]
Adjust Window [Resize to Fit]
Freeze Window
Loop
 Set Variable [$summary; Value:$summary + Meetings::Attendees –

Count(Apologies::Serial#)]
 Set Variable [$completed; Value:Int(Get(RecordNumber) / $task * 100)]
 If [$completed > System::gProgressPercent]
 Set Field [System::gProgressPercent; $completed]
 Refresh Window
 End If
 Go to Record/Request/Page [Next; Exit after last]
End Loop
Set Field [Person::Frequency; $summary]
Close Window [Name: “Processing: please wait...”; Current file]

16_429006-ch10.indd 39516_429006-ch10.indd 395 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

396

Beyond the BasicsPart III

With a few added steps, the preceding script maintains a record of its progress in a global number
field (System::gProgressPercent), with the result displayed onscreen as an incrementing
percentage complete. Although this technique is not difficult to implement, with very little addi-
tional effort, a variety of other attractive progress indicators are possible.

For solutions that will be deployed in a mixed environment, a graphical progress indicator can be
created relatively simply. For example, to create a text-based progress bar, you can create a global
calculation field with a formula such as

Substitute(10^System::gProgressPercent - 1; “9”; “|”)

The preceding formula will return a row of pipe characters (|) representing the percentage completion
of the process task (as per the incrementing number in the System::gProgressPercent field).
By stacking several copies of the field (offset by 1 pixel), applying transparent fill, and using bold
condensed text format, the appearance of a solid bar can be produced, as shown in Figure 10.23.

 FIGURE 10.23

A text-based progress bar in a floating FileMaker window.

If your solution will be accessed only by using FileMaker 9 or FileMaker 10, several additional pos-
sibilities are available for the creation of graphical progress indicators, using either conditional for-
matting or a Web viewer.

Native indicators and graphical displays
The FileMaker 10 Web viewer alternative for creating progress indicators provides an excellent
example of the ease with which data can be displayed visually using Web technologies. The prog-
ress indicator shown in Figure 10.24 uses a small rectangular Web viewer in place of the text field
used in the previous example.

To create the progressive movement of the indicator, the relative widths of two cells in an HTML
table are varied according to the value in the System::gProgressPercent global field. The table
cells can have graphic backgrounds (using standard HTML tags), including animated GIFs if desired.
The result is aesthetically pleasing, while having a very light footprint. The essence of the calculation
code used to implement this (enclosed within a standard HTML table with a single row) is:

“<td height=\”17\” width=\”“ & System::gProgressPercent * 2 & “\”> </td>
<td height=\”17\” width=\”“ & 200 - System::gProgressPercent * 2 & “\”> </td>“

16_429006-ch10.indd 39616_429006-ch10.indd 396 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

397

Building Advanced Interfaces 10

 FIGURE 10.24

A Web viewer progress bar in a floating FileMaker window.

A further advantage of the Web viewer progress-bar technique is that the same viewer can be used
to display other kinds of indicators — such as a barber’s pole indicator for processes of indetermi-
nate duration, or a variety of other animations, using Web-based image manipulations.

A wide variety of other graphical renderings of FileMaker data can easily be created using varia-
tions and alternate applications of this technique. As discussed in the section “Rendering internally
calculated content,” earlier in this chapter, graphs and live data visualizations can be achieved by
making use of the data URL capabilities of the Web Viewer object.

Using Interface Elements
Being different and challenging prevailing wisdom is fashionable, but it isn’t always wise. Computer
users have become accustomed to a number of ways of interacting with computer applications, and
collectively, these familiar patterns form a language. You, as a solution developer, use this language
to communicate with your users, and they communicate (impart information) in response. Users do
not want or need to learn a new interface vocabulary for every new computer application.

A number of widely understood user interface elements are common to most modern applications.
Because they’re familiar in function and (often) in operation, standard interface techniques can
provide guideposts, focusing the users’ attention on the tasks they’re supposed to perform.

Splash screens
The splash screen provides a first point of reference, often appearing as an application is first
launched. The splash screen performs a welcoming and orienting function — letting the user know
he is entering your solution and providing the context for what is to follow. As a first impression,
the splash screen sets the standard for your solution.

It is of most help to the user if your splash screen is distinctive in appearance and contains brief
essentials about version, authorship, and support of your application. Including ownership, copy-
right, and/or brief acknowledgments on the splash screen is customary. However, avoid clutter and
stick to essentials.

16_429006-ch10.indd 39716_429006-ch10.indd 397 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

398

Beyond the BasicsPart III

Users should be able to return to the splash screen at any time if they want to check the informa-
tion set out there (for example, the solution version). After doing so, users should be returned to
the place (screen or menu) they left.

Main menus
All but the simplest of solutions have too many functions for users to remember all at once. Ideally,
users should be presented with no more than five or six choices at any one time. Any more than
that and users have to work much harder to keep track of what the options do.

You can make it easier for users to find their way around your solution by grouping controls into
broad logical categories. When you’ve done that, you’ll have the essence of a main menu. How you
present that to users is a matter of style; users will rapidly adapt to your style provided it has clear
logical underpinnings and you’re consistent in its usage.

I recommend that all your decisions about the grouping of functions and controls in your inter-
faces be based on the way users do their work. The system should follow the natural workflow,
minimizing the frequency with which users must switch between sections/modules during a work
session. You may find it helpful to consider your interface as a series of interconnected role-based
modules.

As a general principle, users should always be able to return to familiar territory with a single click
of the mouse, and they should always be able to tell where they are.

About and version info
Although I’ve mentioned that splash screens often incorporate vendor, copyright, and version
information, providing this information separately can make sense. A simple menu command can
be invoked (for example, returning a custom dialog) to set out authorship, version, and support
information. Doing so leaves the splash screen less cluttered and creates a more positive impres-
sion. If you want, a link or button on the splash screen can invoke the version information.

Online Help for your users
I encourage you to consider providing built-in documentation for your solutions. In many cases,
the extent of documentation required to get users started and answer basic questions is not great,
and, if the system design conforms to intuitive principles, users may only infrequently have to call
to check the documentation. Providing answers to the top 10 or 20 questions that a user may ask
goes a long way toward building confidence in your solution and your work.

Ideally, because FileMaker is so good at managing data, your support documentation should be
made available as a searchable database within your solution. This has the advantage that it can be
readily updated and can provide a facility for users to make notes and additions or ask questions.
However, the documentation should also be available in a printed format or PDF and, preferably,
generated fresh from your solution’s Help database on request.

16_429006-ch10.indd 39816_429006-ch10.indd 398 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

399

Building Advanced Interfaces 10

A further option to consider is providing Help content via a Web viewer, where the source docu-
mentation is hosted remotely. This approach can have a number of advantages, allowing the devel-
oper to update and extend the documentation as questions are asked, problems are solved, or
changes are made to the solution.

Handling User Preferences
The best solutions are those that directly respond to the needs of the user, providing a tool to
accelerate productivity. However, unless you create solutions for only one user, you have the
dilemma of reconciling competing users’ needs and preferences.

The ideal answer to many competing requests and concerns is to accommodate a variety of system
behaviors by enabling users to control how some features work. When you do this, be sure to
structure your solution so that it keeps track of the selections made by each user, reinstating them
automatically when the user returns.

A user-centric development philosophy
One of the essential purposes of most solutions (including, but not limited to, FileMaker solutions)
is to free users from a variety of mundane and repetitive actions or tasks. Many solutions, however,
bring with them a host of new mundane and repetitive tasks, specifically because the developer
does not understand how the users want to get from point A to point B.

One answer is to have the developer watch users to determine repetitive sequences of tasks and
build the solution around the emerging patterns. Another approach is to build flexibility into the
interface and permit users to select how the solution will operate.

Capturing state by user
To capture information about users’ preferences and their use of your solution, I recommend you
include a users table, with a record automatically created for each login account. The users table
provides a place to store preference settings for each user so that when the user logs in again
(whether from the same or a different workstation), your login script can locate the user record,
retrieve the user’s preference settings, and configure the solution accordingly.

A convenient way to manage this process is to

 1. Load the user’s account name (after login credentials have been accepted) into a global
key field.

 2. Use a GTRR to isolate the corresponding record in the user table.

 3. Load the preference settings into global fields. Because global fields can be accessed with-
out a relationship, the user preferences will be available for read and write from anywhere
in your solution throughout the user’s login session.

16_429006-ch10.indd 39916_429006-ch10.indd 399 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

400

Beyond the BasicsPart III

 4. Restore the state (selected layout and record) where the user last left the solution. In most
solutions, this step should be optional — the user should be able to select whether he
wants his logout state restored on next login — and this should be stored as one of the
user preference settings.

At the conclusion of the user’s session (either logout or file close) your scripts should capture the
current state and return to the user table to write the current contents of the preference and state
global fields back to the appropriate record in the user table.

Example — a multi-lingual solution interface
One of the most profound kinds of user preferences is language. Many solutions are used by peo-
ple who speak different languages and who require (or desire) an interface that speaks their lan-
guage. Although I’ve seen a number of methods used to create multi-lingual interfaces, most of
them require many additional relationships; some stop working when the user enters Find mode
and may make working in Layout mode a chore. Here is a method that avoids these problems.

The technique I recommend entails some extra work during development, but after it’s in place,
providing support for additional languages requires only an additional record in the language
resource table. The technique adds two tables to your solution, but they don’t have to be related to
anything else (just to each other), and no other relationships are required. Moreover, field labels
remain reasonably compact and intelligible in Layout mode.

To implement a multilingual interface, follow these steps:

 1. Gather a list of the fields, headings, labels, tooltips, dialog messages, window titles, and
other text elements required throughout your solution.

 2. Create a table called LanguageResources with a primary key (LanguageID), a
LanguageName field, and a flag field (container type), plus one text field for every entry
in your list from Step 1. Name each field with the logical name (in your own native lan-
guage) of the element to which it corresponds.

 3. Create two or more records in the LanguageResources table, entering the appropriate
translations of the element names and text into their respective fields.

 4. Create a table named I. The uppercase I stands for Interface but is abbreviated for
compactness.

 5. In the I table, create a global field called gLanguageID, of the same data type as the
LanguageID field in the LanguageResources table.

 6. Create a relationship from I::gLanguageID to LanguageResources::
LanguageID.

16_429006-ch10.indd 40016_429006-ch10.indd 400 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

401

Building Advanced Interfaces 10

 7. For every field in the LanguageResources table, create a corresponding field in the I
table, making the I field a global calculation field with the following formula (where the
field in question is I::FirstName):

Evaluate(“LanguageResources::FirstName”; gLanguageID)

 8. Create a value list called InterfaceLanguages and define it to use values from a field.
Configure the value list to draw values from the LanguageResources::LanguageID
and LanguageResources::LanguageName fields and to show values only from the
second field, as illustrated in Figure 10.25.

 9. On your user preference screens (and elsewhere as appropriate), place the I::g
LanguageID field and attach the InterfaceLanguages value list.

 10. Adjacent to the I::LanguageID field, place the I::LanguageFlag field so that the
selected language will be identified with a corresponding national flag (for the benefit of
those not familiar with the language names).

 11. Configure the layouts throughout your solution with labels next to them in the form
<<I::FirstName>> where the field in question is called FirstName (as shown in
Figure 10.26).

 12. For all window titles and dialog messages, reference the relevant field in the I table.

 13. Create a field in your user table for preferred language.

 FIGURE 10.25

Configuration for the InterfaceLanguages value list.

16_429006-ch10.indd 40116_429006-ch10.indd 401 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

402

Beyond the BasicsPart III

 FIGURE 10.26

The format for field labels and headings in Layout mode.

 14. Script a prompt for preferred language the first time each user logs in.

 15. Set your login script to write the ID of the user’s preferred language into the
I::gLanguageID field.

 16. Set your logout and file close scripts to write the current value of the I::gLanguageID
field into the LanguagePreference field of the current user’s table. If the user changes
interface language preference during the session, the change will be remembered.

 Whenever the user makes a new selection in the I::gLanguageID field, all the text on
the layouts throughout your solution’s interface of your solution’s layouts changes to the
new language selection.

TIPTIP If you require the window title to change when a new language selection is made,
you have to script the language change procedure and reset the window title

according to the user’s new language selection.

The field labels, headings, and so on will be present in both Find and Browse modes. In Layout
mode, however, you can readily read and work with the labels, and adding more languages only
requires an additional record in the LanguageResources table.

NOTENOTE Although the language selection will control layout and custom dialog text, FileMaker’s
native dialogs will continue to display text in the language chosen at the operating

system level. For a full language makeover, system preferences must be updated as well.

16_429006-ch10.indd 40216_429006-ch10.indd 402 3/25/09 7:27:49 PM3/25/09 7:27:49 PM

403

Building Advanced Interfaces 10

CAUTION CAUTION FileMaker doesn’t provide an option to programmatically specify the button text for
custom dialogs, so if your solution will require language specific dialog button

labels, you’ll require a workaround. One option is to create separately specified dialogs for each
language (where the button text is required to be language-sensitive) and use conditional state-
ments within your scripts to select the dialog that corresponds to the current language choice.
Another way you can address this is to invoke dialogs via external script calls (using AppleScript
on Mac OS, VBScript in Windows) or by using a third-party dialog plug-in.

CROSS-REFCROSS-REF For additional discussion of the use of external scripting and third-party plug-ins,
refer to Chapter 20.

For international vertical market, runtime, or shrink-wrapped solutions, consider verifying the cur-
rent operating system language using Get(SystemLanguage)during your solution’s on-open
script, and making a corresponding language selection as the commencing (default) language for
your solution.

16_429006-ch10.indd 40316_429006-ch10.indd 403 3/25/09 7:27:50 PM3/25/09 7:27:50 PM

16_429006-ch10.indd 40416_429006-ch10.indd 404 3/25/09 7:27:50 PM3/25/09 7:27:50 PM

405

FileMaker is as much a problem-solving tool as it is a development plat-
form. As such, it provides you with the means to achieve a wide variety
of ends (and in the process, solve many problems). How you use the

tools FileMaker makes available is less important than the functionality your
solutions are able to deliver. Nevertheless, considering the underpinnings of a
well-formed relational data model is helpful — not so much so that you will
be bound to adhere rigidly to it, but so that you’ll be able to make informed
choices about how and when to depart from it.

Regardless how you choose to work in FileMaker, you need a clear plan for
the storage of data, including the main connections and interactions between
different data types. This over-arching plan is your data model. It doesn’t
matter where it exists — it could be in your solution itself, on a whiteboard
in your office, on a diagram in your diary, or a vision in your imagination.
However, without such a plan, little will work well, and your solutions will
quickly become mired in confusion and complexity.

A data model’s purpose is to establish clarity and simplicity, enabling you to
see — from any vantage point — what belongs where, and how to bring
together the available elements to achieve required outcomes.

Background in Relational Theory
Modern database applications — including FileMaker — take a set of ideas
based on the theoretical work of Edgar F. Codd (first made public in 1970,
while Codd was working at IBM) as a starting point for implementation of a
relational data management model. Databases implementing Codd’s central
ideas are commonly referred to as Relational Database Management Systems
(RDMS). Although relational principles are now widely used, no commer-
cially available RDBMS fully implements the detailed model articulated by
Codd and his colleagues.

IN THIS CHAPTER
Understanding relational
theory

Recognizing the FileMaker
Relationships Graph symbols

Using relationship operators

Exploring different relationship
techniques

Working with data sets and
arrays

Managing your Relationships
Graphs

Documenting the structure of
your database

Working with layers in your
solution

Understanding the differences
between file architecture and
data structure

Using separation and external
SQL sources

Implementing separation
retroactively

Considering deployment

Data Modeling in FileMaker

17_429006-ch11.indd 40517_429006-ch11.indd 405 3/25/09 7:52:37 PM3/25/09 7:52:37 PM

406

Beyond the BasicsPart III

An essential tenet of data theories (including relational theory) is that data form part of a model of
the universe. Each datum describes (accurately or otherwise) something in the universe. Thus, an
organized data collection represents a model of the universe (and this is true, whether or not the
organizers of the data recognize it).

The shortcomings, such as they are, of computer implementations of relational data management
concepts are due in part to pragmatism. In other words, rather than exhaustively modeling all the
intricacies of the universe, real-world system designers introduce compromises for various reasons.
Some of the reasons for compromise (economy, expediency, and business imperatives) are more
admirable than others (ignorance or carelessness).

Despite Codd’s efforts — publishing dozens of papers on the relational model between 1968 and
1988 — myths and misconceptions about its central tenets abound.

Set Theory in the management of data
When you collect and manage data (by whatever means), you’re collecting many facts to describe
the properties of an entity or class of entities. In the simplest analysis, you have sets of facts about
sets of things, which gives rise to the forms of tables where rows and columns organize things and
the facts about them, respectively.

An essential problem when the information you require pertains to more than one kind of thing is
that you then have multiple sets of data comprising part of a whole. For example, you can consider
an organized group of facts about people and an organized group of facts about houses a unified
fact set when it becomes clear that people live in houses. At this point, 19th-century posits regard-
ing Set Theory (first proposed by Georg Cantor) provide a way to resolve seeming conflicts in the
organization of complex data.

By using an organizing principle where facts about things (attributes of entities) are organized into
tables (one table per entity) and the relationships between those entities are expressed or managed
mathematically (which people live in which houses), you can model relationships in the real
world. This insight is at the heart of Codd’s genius.

Giving form to this concept are the applications of ratio principles to describe relations as one-to-one
(1:1), one-to-many (1:n), many to one (n:1), or many to many (m:n), and the concept of join types
such as the equi-join (=) and others describing the kinds of relationships between entities within
different tables (sets and subsets). These abstract concepts rapidly acquire concrete meaning and use-
fulness within applications, such as FileMaker, where they enable you to solve problems organizing
your data.

Modeling the real world
To model the world (or, at any rate, a part of it) using relational principles, you first need to be
clear about the entities each group of facts pertains to. Using the example of people and houses,
you may have a number of facts about each person, such as an address. In this simple scenario,
you have two entities (each requiring a table) and a relationship between them (based on people’s

17_429006-ch11.indd 40617_429006-ch11.indd 406 3/25/09 7:52:38 PM3/25/09 7:52:38 PM

407

Data Modeling in FileMaker 11

residency). Because more than one person may live at a house, the relationship from houses to
people may be one-to-many. By breaking information down into entities and defining relationships
between them, you establish a relational model of the real-world “things” your database describes.

A relational solution’s data organization centers around using tables to hold information about
each class of item (object, thing, or entity). Each row in the table holds all the information about a
particular instance of the kind of item, and each column holds a particular fact about the thing.
For example, if you have a people table, each person has a single row in the table, and each col-
umn holds a different kind of fact, such as eye color, date of birth, sex, and so on. A separate table
about vehicle models may have columns for engine capacity, number of seats, manufacturer, paint
color, and so on.

Think about clarity of organization
When applying the concept of relational modeling to your data, the first step is to separate differ-
ent kinds of entities and to group fundamentally similar entities. The purpose of this exercise is to
gain clarity about what belongs where — confusion at this first stage leads to conflicts in the data
model. An entity is a “thing in the modeled universe,” so people, vehicles, houses, and jobs are all
entities of different kinds.

CAUTION CAUTION Don’t describe different kinds of entities within the same table. Vehicles don’t
belong in a people table, for example. Similarly, you should avoid describing

different attributes in the same column within a table — for example, in a people table, eye color
doesn’t belong in the date of birth column, and vice versa. In addition, don’t separate funda-
mentally similar entities into different tables. You don’t need to put sports cars in one table and
sedans in another — rather, they’re all vehicles, and chassis type is one of their attributes, so it’s
properly represented as a column in the vehicle table. Similarly, you don’t require a separate
table for people with brown eyes, as eye color is clearly one of the attributes of a person and
should be represented as data in a column of a people table.

Keep the big picture in view
Although in simple examples the choices may appear obvious, other times the decision isn’t so
clear or easy. For example, if you’re designing a college database, you may think it’s reasonable to
have separate tables for staff and students — and many such implementations are in existence.
However, all of them produce anomalies when a staff member enrolls in a class or a student is
offered employment at the college. (The “solution” then involves creating a duplicate record for
that person and then manually keeping the two records in sync by entering everything twice.) This
situation is one example of how a departure from one of the central principles of relational design
can lead to confusion and burden you with extra work.

In the college database example, an alternative data model, in keeping with relational principles, is
to create three tables, not two. Instead of having two marginally different people tables for staff and
students, you could create tables for people, enrollments, and job roles, which then allows you to
have a single table for all people, with associated records in either or both of the related tables. By
the time a college expands its data requirements to keep track of donors, alumni, governors, and
visiting fellows (at which point some individuals may require six separate entries if each type of

17_429006-ch11.indd 40717_429006-ch11.indd 407 3/25/09 7:52:38 PM3/25/09 7:52:38 PM

408

Beyond the BasicsPart III

person is in a separate table), it becomes clear that storing each of these associated characteristics
as an attribute of a single record in the People table — with an associated table for accompanying
details or donations, visits, enrollments, and so on — is preferable.

Data structures are a way of describing reality. If, in reality, one person may be associated with sev-
eral different kinds of roles, a data model in which a single person’s record is associated with role
records in a number of related tables more accurately reflects reality.

NOTENOTE Any discussion of relational data modeling principles can rapidly descend into a
minefield of purist ideologies, conflicting interpretations, debates about “normal

forms,” and deeper esoterica. However, my interest here is to provide guiding insights and prac-
tical advice. A wealth of specialist resources exists for those who want to explore the intricacies
of relational theory.

Remembering some guiding principles
You need to be clear about the reasons for modeling data in a particular way. The central purposes
of relational modeling are clarity, simplicity, accuracy, and efficiency in managing the data (and,
incidentally, in representing the reality the data seeks to describe).

One essential way a good relational model achieves these aims is by storing each piece of informa-
tion only once (while providing access to it as needed, via data relationships). If your solution has
multiple people tables, then almost inevitably, you’ll end up having multiple records for some peo-
ple. As soon as this event happens, the following occur:

n Efficiency is compromised because data must be updated in two different places every
time a change occurs.

n Accuracy suffers because of the risk that data will be updated in some places but not oth-
ers. In other words, the potential for data integrity problems is increased.

n Clarity is reduced because it’s no longer obvious where to go to locate a particular piece
of information — and because when the information in alternate parts of the system dif-
fers, it’s not clear which is correct.

n Simplicity is eroded as increasing numbers of duplicate records move the data farther
away from a representation of reality, and system users are burdened with additional
work, such as the need to search in multiple tables to find data about a person, collate
multiple reports to summarize all information about one person, or aggregate information
about all persons. In such cases, working with the system involves negotiating burgeon-
ing lists of exceptions.

There are good reasons for investing your time and effort in clarifying data relationships early in
the solution design process. Of course, one solution isn’t necessarily right for all cases, and you
must make your own judgments about how and when to apply the principles I outline in the fol-
lowing sections. You should note, however, that the principles I am about to outline apply to the
data model rather than to specific fields and tables as you define them within FileMaker Pro — I
address details of schema design principles subsequently.

17_429006-ch11.indd 40817_429006-ch11.indd 408 3/25/09 7:52:38 PM3/25/09 7:52:38 PM

409

Data Modeling in FileMaker 11

Separate entities by type
Relational principles are best served by creating separate tables for each basic kind of entity, with
fields (columns) only for the attributes reasonably expected to apply to all the table’s entities.
Similarly, you should consolidate information about essentially similar entities in one table.

CAUTION CAUTION Although you may be tempted to view the methodology described here as absolute,
form your decisions with due consideration of the importance and purpose of each

kind of entity in relation to the business at hand.

For example, in a sales system, you may want to treat everything being sold as the same kind of
entity, storing it in the Products table. In a social club database, however, cars may belong in a
Vehicles table, whereas trampolines belong in a Facilities table. In yet another kind of
solution, both cars and trampolines may belong in an Assets table. You should consider an
entity’s basic nature, as well as its purpose, in context.

Delineate fields clearly
Each field in a table should hold a specific kind of fact, such as a date, color, or measurement,
about the entity described in the table. Try to minimize fields with general names like Appearance
or Facts, which are so nonspecific that they could hold all sorts of different kinds of information.
Try to minimize reliance on Notes, Comments or Other fields in each table.

TIPTIP Your users may insist on including a Notes or Comments field, and if so, I encour-
age you to consider doing so. If you have modeled the users’ data requirements

effectively, however, such ancillary fields will prove superfluous. (Take it as a measure of your
success when such fields are largely or entirely unused.)

Place multiples in a separate table
Frequently, multiple instances of an attribute for a particular entity are an indication that the attri-
bute should instead be classed as an associated entity and should be in a table of its own (with a
relationship to the current table). For example, where students may enroll in a variety of classes,
it’s clear that enrollments aren’t a student attribute; instead, they belong in a separate table.

As part of separating multiples, storing abstract objects, such as ownership or association, in sepa-
rate tables is often desirable. For example, if you have a table of people and a table of car models,
you may find that one person can own multiple vehicles (at once, or over time), in which case you
may want to create a separate table where the multiple cars for each individual are recorded (one
record for each). This kind of table is sometimes referred to as a join table or an association table. An
enrollment table is a good example because it joins a student with courses or classes.

CROSS-REFCROSS-REF I discuss techniques for implementing join tables — along with other methods of
managing multiple related values — in the section “Alternative Relationship

Techniques,” later in this chapter.

17_429006-ch11.indd 40917_429006-ch11.indd 409 3/25/09 7:52:38 PM3/25/09 7:52:38 PM

410

Beyond the BasicsPart III

Store everything once only
An objective of successful relational data modeling is that it allows you to store each piece of infor-
mation only once, yet refer to it from multiple locations within the solution. One benefit of achiev-
ing this goal is that when information is updated via one part of your solution interface, the
modified information then appears everywhere else the information is referenced.

A successful data model, therefore, is one where you can store each piece of information only once,
where it’s clear where the information should reside, and where the single instance of each piece of
information can nevertheless be accessed wherever required throughout your solution.

Identify the major players
In addition to the practical steps outlined in the preceding sections, I encourage you to discover
the centers around which your solution’s processes or workflow revolve. Most solutions have sev-
eral centers, while a few have only one. While it’s likely you’ll identify a number of entities requir-
ing tables in your solution, knowing which tables are the main focus points for the activities your
solution supports greatly aids the clarity of your model.

Put it into practice
A key to successful data design — in FileMaker or any other application — is establishing a clear
understanding about the nature of the information to be stored and accessed and the relationships
between its elements. By applying the broad guidelines outlined in the preceding sections, you
arrive at a map of the data your solution must support. The exercise I propose here is designed to
help you to get clear about the data model for your solution, prior to commencing implementation
in FileMaker Pro. Hence, at this preliminary stage, your outline is necessarily somewhat abstract.
In the ensuing sections, you give concrete form to a data framework supporting your data model,
using the relational toolset provided by FileMaker.

FileMaker Relationships Graph Symbols
The FileMaker Relationships Graph — as a spatial and visual metaphor for the data structure —
provides you with an environment where you can give form to your solution’s data architecture.
Nevertheless, given the practical and procedural implications for your solution’s operation, the
Relationships Graph is more an implementation tool than a visual model. Moreover, as your solu-
tion becomes more complex, essentials of the data model are obscured (on the Graph) as it becomes
increasingly crowded with components serving functional, rather than structural, purposes.

To make best use of the Graph and the tools it provides for creating and managing data relation-
ships, you need a deep understanding of the way each of its components fit together.

Visual cues and clues
The Graph presents a collection of miniaturized table icons commonly called Table Occurrences
(TOs) that are aliases or pointers to tables, not the actual tables. This is an essential distinction.
Several TOs can point to the same base table, and TO names need not relate in any way to the
names you’ve assigned to the underlying tables.

17_429006-ch11.indd 41017_429006-ch11.indd 410 3/25/09 7:52:39 PM3/25/09 7:52:39 PM

411

Data Modeling in FileMaker 11

TIPTIP Because TOs aren’t tables, as such, the Tables panel in the Manage Database dialog
provides more direct insight into the data structure. However, bear in mind that in a

multi-file solution, some or all of the tables may be defined in other files.

The lines connecting TOs on the Graph represent relationships and are drawn between the opera-
tive key fields in the tables represented by the TOs they join. However, FileMaker displays differ-
ent line endings according to the status of the field at each end of the relationship.

Figure 11.1 shows four relationships between a Main table and a Related table, where a differ-
ent Main field is used as the key field for each relation. Note that the lines all end in the “crows
foot” terminator where they connect to the Related~ TOs. This terminator signifies that the con-
nection to Related is valid and capable of supporting a ~to-many (1:n or m:n) join to records in the
Related table. The two determinants of this status are

 1. The match field in Related (“Key”) is indexed (or indexable), thus supporting the retrieval
of record data from the Related table via this relationship.

 2. There is no constraint or mechanism for uniqueness of the match field’s values.

In the Main TO, however, the line terminators show as

n A straight line connecting to the Serial# field, because the field is set to auto-generate
unique numbers

n A terminal line connecting to cUnstored because the field is an unstored calculation
and therefore can’t be indexed (so retrieval of record data from Main via this connection
isn’t supported)

n A terminal line connecting to gGlobal because, as a global field, it also can’t be indexed
and doesn’t support retrieval of record data from Main

n A crows-foot line connecting to Main::Indexed because it’s an indexable and (poten-
tially) non-unique data field supporting retrieval of record data from Main

These line terminators provide visual clues to the operative abilities of each of the relationships,
according to the definitions of the fields they connect. The crows-foot symbol doesn’t signify that a
relationship is used to support a ~to-many join, but merely that it may be.

Bisecting each relationship line on the Graph is a small, white box displaying a join symbol
describing the kind of relationship. By default, the join symbol is an equal sign (=), as shown in
Figure 11.1.

 FIGURE 11.1

Alternative relationship line representations.

17_429006-ch11.indd 41117_429006-ch11.indd 411 3/25/09 7:52:39 PM3/25/09 7:52:39 PM

412

Beyond the BasicsPart III

NOTENOTE The relationship operators and their uses are explained in the upcoming section
“Relationship Operators.”

The TO as a pointer
Because TOs aren’t actually tables but pointers to tables, you can refer to the same table in multiple
ways or in multiple places on the graph. By using separate TOs for multiple references to a table,
you avoid circular references so that there is never more than one relationship path between any
two TOs on the Graph, thus avoiding referential ambiguity.

Because you can have multiple instances of the same table on the Graph, you can establish multiple
views of the content of the same table. For example, by setting up a relationship based on a field
holding the current date, you can display all of today’s transactions in a portal. At the same time, a
relationship to the Transactions table on status will give you a portal display of outstanding
payments. Meanwhile, in the Customer table, you may require a filtered view of transactions for
each customer. By creating three separate TOs, each a pointer to the Customer table, you’re able to
connect in different ways (and from different places on your graph) to the same underlying table.

Similarly, the ability to add multiple occurrences of a table enables you to connect a table to itself. For
example, you may want to show fellow team members in a portal on a staff member’s record. Joining
two TOs of the relevant table (for example, matching TeamID in both TOs) achieves this goal.

Understanding the graph metaphor
The FileMaker Relationships Graph may contain elements of your data model, but it must also
contain a variety of functional and procedural elements supporting interface requirements and pro-
cess logic in and around those parts supporting the data model. If you try to use the Graph as the
locus of your data design, you risk becoming mired in a mass of extraneous information.

NOTENOTE A more extensive discussion of alternative graph modeling techniques appears in
the section “Graph Techniques — Spiders, Squids, and Anchor Buoy,” later in this

chapter.

Two alternative ways to consider the Relationships Graph are

n As a map of data flows and data controls

n As a context diagram linking interface to data structure

In either case, choose a TO as the current TO, and the Graph becomes instructional for data avail-
ability, access to records and tables, and related options possibilities and constraints from the cur-
rent layout’s vantage point.

17_429006-ch11.indd 41217_429006-ch11.indd 412 3/25/09 7:52:39 PM3/25/09 7:52:39 PM

413

Data Modeling in FileMaker 11

Relationship Operators
FileMaker creates relationships displaying an = symbol by default. The symbol is referred to as the
relationship operator and indicates the type of join. The = symbol signifies a type of join referred to
as an equi-join, where the relationship is based on matching values on opposing sides of the join.
Only records with the same value in the fields in both tables used for the relationship will be
related.

NOTENOTE The fields used in relationships are commonly referred to as match fields or key
fields. The unique ID field used to identify the records in a table is often referred

to as the Primary Key in that table. A Primary Key from another table may be referred to as a
foreign key.

The equi-join is one of seven relationship operators supported in FileMaker. To change the default
“=” operator to one of the other alternatives, you must edit the relationship. For an existing rela-
tionship, double-click the symbol box bisecting the relationship line to view the Edit Relationship
dialog. As shown in Figure 11.2, a drop-down list in the upper center of the dialog (between the
two field lists for the connected TOs) gives you access to the alternative operators.

 FIGURE 11.2

Accessing alternative relationship operators in the Edit Relationship dialog.

17_429006-ch11.indd 41317_429006-ch11.indd 413 3/25/09 7:52:39 PM3/25/09 7:52:39 PM

414

Beyond the BasicsPart III

Each relationship operator engenders different relationship behavior, giving you the capability to
filter and connect data to serve a variety of purposes, as detailed in the following sections.

Equi-joins and non-equal joins
Most relationships are based on exactly matching values in the connected fields in both tables and
therefore use the equi-join (=) operator. FileMaker looks up the value in the current record of the
current table in the index of values for the matching field in the related table and returns records
having a matching index entry.

Because the matching process uses the field index of the related table, the indexing method chosen
for the field(s) used in the relationship affects the way matching occurs. Thus, the data type, such
as whether it’s text or number, is significant, because numbers and text are indexed differently.
To achieve expected results, the key fields on both sides of a relationship should be of the same
data type.

If you’re using text fields for a relationship, alternative indexing protocols are available (via the
Options for Field dialog’s Storage tab). For example, if you choose English language indexing, rela-
tionship matches aren’t case sensitive (although punctuation and spaces are still observed when
matching), whereas if you choose Unicode as the indexing protocol, full-case sensitivity is observed
in relationship matching. Conversely, if you choose Default text indexing, accented characters are
differentiated from unaccented equivalents, but matching is not case sensitive.

TIPTIP The text index protocol for the key field in the related table determines the method
of matching.

For many purposes, you’ll require relationships matching key values (for example, to link invoice
items to an invoice or courses to a study program). In most cases, text matches based on the native
language of your solution (for example, English) will suffice. However, note that indexing in exter-
nal SQL tables is generally case-sensitive by default.

CROSS-REFCROSS-REF For an in-depth discussion of indexing and its implications, refer to Chapter 9.

FileMaker also provides an inverse of the equi-join, in the form of the not-equal join operator (≠), also
known as the anti-join. This operator makes a join for all records in the related table key field values
(including an empty value) that don’t match the key field value in the current record. On the other
hand, an empty key field value in the current record will not match any related records, even though
the empty value in the current record does not match non-empty values in the related key field.

Note regarding theta joins in relational algebra

In relational algebra, the category of joins known as theta joins also includes the equi-join and
anti-join. In common parlance, however, the term is frequently reserved for those members of the

join set other than equi- and anti-joins.

17_429006-ch11.indd 41417_429006-ch11.indd 414 3/25/09 7:52:39 PM3/25/09 7:52:39 PM

415

Data Modeling in FileMaker 11

Comparative operators (theta joins)
FileMaker provides four comparative operators (commonly referred to as theta joins), represented
by the less-than (<), greater-than (>), less-or-equal (≤), and greater-or-equal (≥) symbols, enabling
you to establish relationships based on a range of values.

Using the available comparative operators, you can make use of range-based joins with text, num-
ber, date, time, and timestamp data types, creating relationships for uses such as the following:

n Identifying records with a due date prior to the current date (in other words, overdue)

n Listing records with a family name in the range m to z

n Displaying records of customers with more than $200 outstanding

Cartesian joins
The last of the seven relationship operators is the Cartesian product operator (×), which provides a
join where all records in one table are matched to all records in the other, regardless of the values
(or lack of values) in the match fields. For this type of relationship, the selection of key fields is
immaterial, as their contents are ignored. In fact, if the fields chosen for the relationship are subse-
quently deleted, the relationship will nonetheless continue to function.

Cartesian product relationships (also referred to as a cross-join) are useful for relationships used to
aggregate whole-of-table data (for example, returning the Max() and Min() values for a related
table), for portal navigation where users will select from all available records, and a variety of pur-
poses, such as reference tables, preference tables, or logs, where access to a continuous data display
is desired.

Multi-predicate relationships
FileMaker supports multi-predicate (sometimes also called multi-criteria) relationships where you
select more than one pair of key fields to define the join. The effect of multiple predicates is
cumulative — all the matches must be satisfied for the join to be valid, meaning that only AND
predicate operators are permitted.

Multi-predicate relationships are created in the Edit Relationship dialog by selecting additional pairs
of match fields (and an associated operator) and clicking the Add button, as shown in Figure 11.3.

The relationship definition shown in Figure 11.3 is the one used for filtering a portal of contacts by
name and contact type in the Inventory example file, as discussed in Chapter 9. However,
multi-predicate relationships have many other uses. For example, you can use a relationship defi-
nition to locate records with dates falling between two dates:

 ItemDate > StartDate
AND ItemDate < EndDate

Multi-predicate relationships employing a mix of different operators are represented in the
Relationships Graph by the generic dyadic operator, as shown in Figure 11.4.

17_429006-ch11.indd 41517_429006-ch11.indd 415 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

416

Beyond the BasicsPart III

 FIGURE 11.3

Defining a multi-predicate relationship in the Edit Relationship dialog.

 FIGURE 11.4

The dyadic operator representing a mixed-operator, multi-predicate join.

Alternative Relationship Techniques
Frequently, FileMaker offers you a variety of methods to achieve similar outcomes. That’s certainly
the case when working with relationships, where you can use other means to produce many of the
effects you can achieve with different relationship operators and multi-predicate joins.

In the interests of an expanded toolkit of relationship management techniques, here is a brief survey
of alternative techniques.

17_429006-ch11.indd 41617_429006-ch11.indd 416 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

417

Data Modeling in FileMaker 11

Multi-Key fields
When you enter more than one line of text into a text field (separated by carriage returns), FileMaker
treats each line as a separate value. Related records that match either value (in accordance with the
relationship operator) are deemed valid. Key fields holding more than one value are termed Multi-Key
fields.

Because any value in a list of values (in a relationship key field) will provide a match, Multi-Key
fields provide one mechanism to support one-to-many or many-to-many joins. Moreover, because
multiple value matches occur simultaneously, Multi-Key techniques enable you to relax relation-
ship constraints, introducing OR logic into relationship definitions (whereas multi-predicate rela-
tionships permit only AND logic).

Among the many uses of the Multi-Key techniques in FileMaker is the calculation of exploded keys
to support partial match filtering. For example, if the target key in the related table is a calculation
rendering the value of a field in the related table as an exploded array in the form

e
ex
exp
expl
explo
explod
explode
exploded

then incomplete matches from a related table (via an equi-join relationship) become possible. As a
result, users can start typing part of a word or name and then select from a portal list of possible
matches. While this technique is useful in some situations, it imposes a penalty of increased stor-
age and indexing requirements in the related table.

An alternative application of a Multi-Key technique achieving similar functionality in some circum-
stances is the use of a calculation in the parent table, generating two values to represent the lower
and upper limits of a text range. For example, set up a field for user-entered data (say, a global text
field called gSearch) and an unstored calculation called cSearch (of result type text) in the
same table defined as

gSearch & ¶ & gSearch & “zzz”

Set up a relationship based on the calculation field defined along the following lines:

 cSearch ≤ RelatedKey
AND cSearch ≥ RelatedKey

With the preceding calculation and relationship in place, when the user enters ex into the
gSearch field, the cSearch field will produce a Multi-Key value array containing two values:

ex
exzzz

17_429006-ch11.indd 41717_429006-ch11.indd 417 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

418

Beyond the BasicsPart III

Because Multi-Key matches are evaluated simultaneously on all values (as an OR sequence), values
in RelatedKey that are both greater than and less than the two values in cSearch are those fall-
ing between ex and exzzz in alphabetical sequence. This method is suitable for a variety of range
matching, filtering, and partial completion relationships.

CROSS-REFCROSS-REF See Chapter 9 for implementation notes for a filter relationship using the essentials
of this technique.

Compound keys
Compound keys (usually calculation fields) concatenate the several values into a single value (or
group of values) for matching purposes. You frequently encounter keys of this type in solutions
migrated from earlier versions of FileMaker (for example, solutions created in FileMaker 6 or ear-
lier) because multi-predicate relationships were not directly supported prior to Version 7.

An example of the former use of concatenated keys is a relationship based on a concatenation of
last name and date of birth in both tables. When compound keys are matched in this way, only
records with the same value in both last name and date of birth will match — so the relationship is
functionally equivalent to a multi-predicate relationship referencing both fields. For this reason,
most uses of compound keys in current solutions serve other purposes.

A useful contemporary technique using compound keys is the creation of multi-purpose relation-
ships (relationships you can switch between different purposes at will). For example, if you have
three key fields in Table1 (keyA, keyB, and keyC) and three corresponding key fields in Table2
and you need at various times to relate Table1 and Table2 according to different pairs of keys,
you can achieve this with a single relationship by creating a compound key in Table2 (as a stored
text calc named cMasterKey) defined as:

“keyA” & Table2::keyA & “¶keyB” & Table2::keyB & “¶keyC” & Table2::keyC

In Table1, create a global text field called gKeySelection and an unstored calculation field
called cDynamicKey with the formula

gKeySelection & GetField(gKeySelection)

With the preceding fields in place, define a single relationship between Table1 and Table2 as

Table1::cDynamicKey = Table2::cMasterKey

With such a relationship in place, you can modify the relationship between Table1 and Table2
to match any pair of the three original (Table2) key fields by putting the name of the desired key
field for the relationship into Table1::gKeySelection.

One-way relationships
In most cases, FileMaker relationships work in both directions. So, for example, an InvoiceLines
layout can display data from the Invoices table sourced via the same relationship you use to display
InvoiceLines data on the Invoices layouts.

17_429006-ch11.indd 41817_429006-ch11.indd 418 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

419

Data Modeling in FileMaker 11

Relationships that are dependent on an unstored calculation work in one direction only, however,
because the matching of records utilizes the index of the key field(s) in the related table — and
unstored fields can’t be indexed. Although you can use such relationships to retrieve data from
other tables, data won’t flow in the other direction.

Similarly, global fields cannot be indexed, so relationships where the destination key field is a
global field do not return matching records. Instead, they act as Cartesian joins (when retrieving
records from the table where the global key field is located), returning all records, regardless of the
value (or lack of value) in the global field.

NOTENOTE The behavior of relationships that terminate with a global field is consistent regard-
less of the data type of the global field because no index matching occurs.

However, if the relationship is used in the opposite direction (assuming that opposing match
field is not a global field), the data types of the fields should match.

Despite their limitations, one-way relationships prove useful in a variety of situations because they
have other helpful behaviors. In many cases, a utility relationship from a global field to a related
table is useful for addressing individual records in the related table. Similarly, relationships where
one of the keys is an unstored calculation field exhibit more dynamic behavior than their stored-
key counterparts.

Join tables
While you can use Multi-Key fields to support various forms of one-to-many and many-to-many
relationships, in many cases storing associations between entities in an intermediary table is prefer-
able. Tables used in this way are commonly known as join tables.

The use of join tables is particularly advantageous in any situation where

n You need to store or process data connected with each join event.

n You need to track the joins and report on join activity.

For example, when associating people with clubs, you can create a Memberships table to manage
the connections. Each person would then have a record in the Memberships table for each club
they were a member of. In such a case, you need to store data connected with the join (such as the
person’s membership expiration date, their status, and perhaps the fee paid). You also need to be
able to track memberships — for example, producing membership pattern reports by year for each
club — which is much easier to do when you can search, sort, and summarize the records in the
memberships table.

Naturally occurring joins
Like the preceding memberships example, many types of data that are a familiar part of life that, in
database terms, are a join table. For example, a college Enrollments table is, in fact, a join table
connecting People and Courses. An Employees table is a join tables between People and
Companies. The Tickets register in an airlines database is a join table between Passengers
and Flights.

17_429006-ch11.indd 41917_429006-ch11.indd 419 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

420

Beyond the BasicsPart III

The preceding examples are so familiar that you’re likely to think of them as entities in their own
right. However, in each case (and there are many other examples), the joins have no independent
existence — they’re not tangible entities in the way that, say, people and companies are.

For the efficient management of data relationships involving ~to-many joins, facilitation of organi-
zational clarity and ease of reporting/summarizing available information often warrants creating
one or more join tables.

Working with Data Arrays
In any work you do with structured data, arrays make an appearance (whether you’re aware of it
nor not). An array is a group of data elements you can access via an index (value number). It can
be as simple as a numbered list or as complex as a compilation of keys and associated values from
a set of related records.

Any time you store a list of record IDs in a field, you have, in effect, an array — you can reference
the record IDs by their position in the list, using functions such as GetValue(). Similarly, value
lists, delimited text, and name/value pairs may all be considered array types.

Repeating fields as an array handler
FileMaker provides a built-in method of storing multiple discrete values in a single field and refer-
encing them according to a value’s index (position) within the set of values assigned to the field.
FileMaker calls this feature a Repeating Field. Moreover, FileMaker also supports repeating vari-
ables, so arrays can be stored and accessed efficiently in memory (and therefore outside your solu-
tions’ data structures).

Most programmers know that arrays can be really useful, yet repeating fields gets a bad rap among
old hands in the FileMaker developer community for two reasons:

n Historically (prior to the release of FileMaker Pro v3 in 1995), FileMaker provided only
rudimentary relationship support, so repeating fields provided a surrogate (albeit an
inadequate one). When relational structures became available, this type of use of repeat-
ing fields was deprecated.

n Inexperienced users without grounding in relational theory have been known to tie them-
selves in knots trying to use repeating fields for purposes far better served by related
tables.

Although these concerns have a legitimate basis, a variety of valid and appropriate uses of repeat-
ing fields as array-handling mechanisms exist. In particular, using global repeating fields as index
references or repositories for system resources, such as text and graphics for use in your solution
interface, aids efficiency and clarity.

17_429006-ch11.indd 42017_429006-ch11.indd 420 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

421

Data Modeling in FileMaker 11

Collapsing and expanding arrays
FileMaker provides a number of alternative forms for lists and arrays. On occasion, you may con-
sider using arrays to extend your data structure — for example, storage of anything from test mea-
surement sets in research databases to binomial indices in quantum plotters to rolling transaction
logs in audit systems.

In some cases, such as when a static array (one fixed in size) is appropriate to your needs, repeat-
ing fields may be adequate. However, in many cases, you may not know in advance how many ele-
ments you need to accommodate. In those cases, you should consider using text arrays (managed
using FileMaker’s ~Values() functions) for stored arrays or variables for temporary arrays. In
both cases, you can achieve dynamic array functionality, where the array size may be extended at
will, within the limits of available memory or FileMaker’s text field size limit of 1 billion characters.

TIPTIP Arrays are a great way to pass more than one parameter to a script — or returning
more than one result. Name/Value pair syntax is one of the formats many develop-

ers find ideal for this purpose.

Relationship-based techniques for managing data
One of the choices you make as soon as you start building a solution is what values to use as the
keys for relationship match fields. For each table in a relational database, it’s a good idea to have a
unique ID field to use as the primary key (and for all other purposes, to identify the record).

CROSS-REFCROSS-REF For a discussion of the selection requirements for key field values (especially
primary keys), refer to Chapter 7.

When you have relationships in place, a variety of useful options become available to you. For
example, you can use relationships in place of Finds to locate groups of records instantly (by using
the Go to Related Record [] command), and it becomes possible to automatically generate
dynamic (data-driven) value lists filtered via relationships.

From a single vantage point (layout or base table) within your solutions, your users (and the
scripts you provide them) can access related data and create, update, or delete related records. A
brief overview of techniques available for these purposes appears in the following sections.

Allowing creation via relationship
When you define a relationship, you can choose for either (or both) TOs of the relationship to
Allow Creation of Related Records in This Table via This Relationship. You make this specification
via a pair of settings in the lower panel of the Edit Relationship dialog, shown in Figure 11.5.

NOTENOTE The Allow Creation of Related Records option requires that key fields in either or
both tables be writable so that FileMaker can automatically synchronize key field

values when establishing the relationship to a new record. Moreover, the relationship definition
may only include the =, ≥, and ≤ operators. (Otherwise, FileMaker is unable to determine an
appropriate corresponding key value to establish a relationship match.)

17_429006-ch11.indd 42117_429006-ch11.indd 421 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

422

Beyond the BasicsPart III

 FIGURE 11.5

Setting the Allow Creation option to enable creation of new records in the OrderLines TO from layouts
based on the Orders TO.

When this setting is enabled, portals based on the TO in question acquire an empty last line into
which you can enter data to automatically create a new record. Thus, with a portal based on such a
relationship present on the current layout, a script sequence along the following lines will generate
a new related record:

Go to Portal Row [Last]
Set Field [RelatedTable::AnyWritableField; AnyValue]

NOTENOTE In the absence of a portal, you can still create related records via a relationship set
up as noted. However, a new related record is created only when no related

records exist for the current match key value(s). Nevertheless, you can use a utility relationship
to generate new related records (see “The isolating relationship” section, later in this chapter).

Using self joins
The self-join relationship is an important technique in creating sophisticated solutions. Self-joins
require two TOs of the same base table for the purpose of connecting them. The primary purpose
of self-join relationships is to permit records to read from and/or write to other records in the same
table.

17_429006-ch11.indd 42217_429006-ch11.indd 422 3/25/09 7:52:40 PM3/25/09 7:52:40 PM

423

Data Modeling in FileMaker 11

Self-join relationships serve a variety of different needs, including joins on the primary key to isolate
the current record (by using a GTRR to present it alone in a found set), joins on foreign keys, or
other attributes grouping or summarizing records on common characteristics (to see other person
records listing the same profession, other employee records in the same work group, other invoices
for the same customer, and so on). Self-joins are also frequently used for navigation, filtering, selec-
tion summarization, and new record creation.

The isolating relationship
You can employ utility relationships to create a temporary one-to-one relationship to any record in
a table so that its data can be retrieved or updated. Such relationships generally match a global
field in the current table to the primary key field in a TO based on the same or a different table. By
writing the ID (of any related record) into the global field, you can establish a temporary relation-
ship isolating the related record, without changing layouts or modifying the found set.

By this means, you can create a script to work its way through a group of related records (without
using a portal), updating each in turn. Alternatively, with a relationship configured to allow cre-
ation of related records, you can clear the global field and generate a corresponding related record
by writing a value into a field in the related table via the relationship. FileMaker will generate a
new auto-entered ID in the related table and will automatically add it to the global field to com-
plete the relationship.

TIPTIP After creating one or more related records via an Allow Create relationship, pro-
vided that you don’t commit records during the process, the whole operation can

be committed or reverted as a batch and therefore operates as a single transaction.

CROSS-REFCROSS-REF For a detailed description of scripted processes using an isolating relationship to
address groups of related records, refer to Chapter 13.

Graph Techniques — Spiders,
Squids, and Anchor-Buoy
When FileMaker first introduced the Relationships Graph (FileMaker Pro 7), many users assumed
it was primarily a data modeling tool and tried to build ERD-like structures. However, the required
supporting relationships for interface and process added complexity, and the original concept was
almost invariably lost. With a certain amount of irony, some developers have described the
Relationships Graphs from their early efforts as spider graphs, meaning that the clusters of TOs
amid myriad relationship lines resembled spiders in webs.

Over time, developers confronted with the need to manage the relationship structures of complex
solutions came up with alternative strategies for organizing the Graph’s elements and increasing its
manageability. One of the first — and perhaps least useful — methods to emerge (though it can be
argued that it has helped some developers make the transition to the .fp7 format) is an approach
that in its variants is sometimes referred to as either squid or anchor-buoy. These Graph management

17_429006-ch11.indd 42317_429006-ch11.indd 423 3/25/09 7:52:41 PM3/25/09 7:52:41 PM

424

Beyond the BasicsPart III

models introduce an orthodoxy in which a specific TO of each table is reserved for layouts, and
each reserved TO becomes the anchor (or squid-head) for a discrete group of TOs built entirely and
independently to support the needs of layouts based on the anchor TO. These methods make no
use of two-way relationships, introduce high levels of redundancy, and trap the developer in a con-
fined (though predictable) paradigm of relationship management closely analogous to the con-
straints operating in FileMaker 6 and earlier.

Meanwhile, among developers dissatisfied with the limits of these approaches, several other useful
Graph management models have emerged. Although I don’t propose to exhaustively explore the
possible techniques in the following sections, I’d nevertheless like to indicate some directions for
you to consider.

Constellations and modular centers
A useful emerging technique for managing the Relationships Graph in complex solutions is to
group Graph activity into modules around several functional centers that form a natural focus of
activity in the solution. Many solutions support several overlapping areas of activity and readily
lend themselves to being conceptualized in this way.

This modular-centric approach enables you to begin by building several independent ERD-like Graph
structures from the foundation tables of each modular center. These structures remain separate,
while you extend them by adding supporting TOs (drawn in some cases from base tables repre-
sented in the cores of other modular centers) to serve the range of process, interface, and reporting
requirements within each module.

While the Relationships Graph example shown in Figure 11.6 supports a solution of moderate
complexity, where five interactive functionality centers are used as the basis of organizing the sup-
porting relationship structures, it’s clear that each of the TO groupings is of manageable size and
complexity. In this solution, the ratio of TOs to tables is approximately 4:1, so there is moderate
redundancy, and the solution is efficient in operation and relatively straightforward to maintain. I
compare this solution to one of equivalent size and functionality developed using an anchor-buoy
approach, requiring over 500 TOs (ratio approx 15:1) and presenting a significant challenge to
development.

Some solutions lend themselves more readily to a modular Graph management approach than oth-
ers. This implementation style works best when each center has relatively few supporting tables (in
the case of my example, an average of seven tables per operational group) and where not all tables
from other groups are required to be accessed throughout the solution.

A satellite-based graph solution
When modularization of the Graph begins to reach burdensome levels of redundancy, you have
other alternatives. For example, you can draw together the essential elements of the data model
into a simplified cluster at the heart of your Graph design. For all operational requirements not
catered to within the simplified central group of TOs, you can add separate utility structures that
control specific functions, reports, and processes.

17_429006-ch11.indd 42417_429006-ch11.indd 424 3/25/09 7:52:41 PM3/25/09 7:52:41 PM

425

Data Modeling in FileMaker 11

 FIGURE 11.6

An implementation of Graph modeling based on the modular-centric approach, in a 35-table solution.

The Relationships Graph displayed in Figure 11.7 represents the final result of a process com-
mencing with solution design around an anchor-buoy graph model requiring more than 350 TOs.
When the original developer sought a more streamlined design, a modular approach was first con-
sidered. However, due to the nature of the solution, a modularized Graph would still have
required around 180 TOs.

By stripping the Graph model back to bare essentials and defining a limited number of two-
directional reusable satellite structures, you can deliver the same functionality using only 73 TOs,
as shown in Figure 11.7.

Although alternative approaches to Graph modeling, as illustrated by the preceding examples, can
result in more manageable and efficient data designs and Graph structures, the more radical reduc-
tions, such as the satellite-based approach, have implications for the solution’s logic. To use such a
model, the solution is heavily dependent on scripted processes transferring the action to appropri-
ate layouts to access Graph element utility clusters. So the solution is more tightly scripted than
would be required for some other data designs — and requires a significant number of ancillary
layouts to support the scripted processes.

17_429006-ch11.indd 42517_429006-ch11.indd 425 3/25/09 7:52:41 PM3/25/09 7:52:41 PM

426

Beyond the BasicsPart III

 FIGURE 11.7

A Graph implementation based on a cluster and satellite approach in a 23-table solution.

The use of a satellite Graph model, therefore, becomes a trade-off between competing concerns. A
reduction of complexity in one area of your solution may be counterbalanced by constraints or
complications elsewhere. When determining an appropriate Graph model, consider the balance of
requirements for your particular solution to identify a harmonious mix of elements.

Segmentation on functional lines
The foregoing examples of Relationships Graph models are best suited for solutions of moderate
size and complexity. To varying degrees, they take a task focus rather than an entity relationship
model as their alternative organizing principle. While these techniques are scalable within reason,
if you use this type of structure, you’ll encounter problems supporting solutions with hundreds of
base tables.

You need to think about the overhead any complex Relationships Graph imposes on FileMaker’s
cache management processes. To support a data-on-demand usage model, FileMaker maintains an
internal map of joins with respect to the layout (and its associated TO) of each window. When the
user (or a script) takes action impacting the joins, FileMaker must work its way through each
affected join, discarding outdated cache and (subsequently, when required) rebuilding it. A layout
that reaches out through hundreds of relationship joins therefore imposes a greater burden than
one with a more moderate Graph overhead.

17_429006-ch11.indd 42617_429006-ch11.indd 426 3/25/09 7:52:41 PM3/25/09 7:52:41 PM

427

Data Modeling in FileMaker 11

To ease concerns about interactions between large numbers of tables, you could consider separating
the Graph between two or more files. Even though all the base tables may reside in a single file, plac-
ing some components of the Graph functionality into alternate files (to support various script and
interface requirements) can yield noticeable benefits in both manageability and solution performance.

One of the candidates for segmentation is reporting. A large solution can benefit from separating
and modularizing reporting requirements, enabling them to be served by separate graph structures
that come into play only when the reporting functionality is required. Thus, data entry and busi-
ness process support can proceed without the added cache management associated with reporting
relationship structures. Conversely, reporting can operate unencumbered in a Graph environment
of its own when required.

NOTENOTE A deeper exploration of the separation of solutions into elements — including the
separation of data and interface — is provided in the section “Implementing

Separation in an Existing Solution,” later in this chapter.

Documenting the Database Structure
In every area of every solution, the value of documentation increases as the mix of elements and
structure becomes more complex, as time passes and memory fades, or as the number of people
working on a system increases or changes.

In a solution of less than a hundred lines of code, even if you’ve never seen it, you can probably
comprehend its entire scope and purpose in the space of an afternoon. A solution of a thousand
(or 10,000) lines of code, however, is a different proposition. At this point, some well-placed sign
posts may be the only thing preventing you from becoming hopelessly lost.

A problem, however, arises when you put off documenting your solutions — at first because
they’re small (everything starts small, after all), and then because you’re onto the next thing (and,
besides, you can remember where you’ve been). But soon, a solution grows to the point where ret-
rospectively documenting it is a major undertaking. When it comes to documentation, “Don’t wait,
or it will be too late” is an excellent motto.

Graph annotations
The FileMaker Relationships Graph provides a text tool for adding notes to the Graph. Conveniently,
the notes always sit behind TOs and relationship lines, so the essentials aren’t obscured. You can
add text notes as sticky labels, headings, explanatory notes, or frames and bounding boxes for
groups of TOs. Figure 11.8 shows a selection of styles and uses of Graph notes objects created with
the Text tool.

The upper right corner of the Graph text object (see Figure 11.8) provides a disclosure button.
Clicking the button collapses the note into a heading; subsequent clicks toggle the display of the
body area of the note. You can use this feature to add information and then tuck it out of sight
until it’s needed.

17_429006-ch11.indd 42717_429006-ch11.indd 427 3/25/09 7:52:42 PM3/25/09 7:52:42 PM

428

Beyond the BasicsPart III

 FIGURE 11.8

You can create a variety of text notes to provide supporting information on the Relationships Graph.

You can also apply color to notes, note text, and TOs on the Graph. By using color systematically
to identify TOs (either by the base table they point to or according to their function), you can
make the Graph considerably more comprehensible.

Naming conventions
A significant aspect of the trail you leave behind for yourself or others to follow is the way you
name the components of your solutions. Nowhere is naming more important than for tables, Table
Occurrences, and fields.

NOTENOTE FileMaker accepts free-form text names for most elements in the schema — you can
use spaces, alphanumeric characters, plus a variety of other characters or punctua-

tion marks. However, integration with other systems and technologies can be problematic if
your naming is nonstandard. For compatibility, use only alphanumeric characters, underscore,
and hash characters

I’m not about to instruct you to follow standards. The problem with standards is that they’re all
different. Numerous public documents recommend various possible approaches to naming in
FileMaker. Most recently, in November 2005, FileMaker, Inc. published a Development
Conventions paper documenting the practices and recommendations of a number of developers.
Although it contained some useful advice, along with a broad range of suggestions, it has gained
no more widespread acceptance than various other proposed standards that preceded it.

While I don’t insist on a specific standard, I strongly recommend that you take care to be consistent —
and to strive for simplicity, logic, and readability. I recommend the use of Hungarian notation (in
other words, a prefixed c or g) to identify calculation fields and global fields, along with the use of
CamelCase (often called intercapping) to delineate words in a compact way without spaces.

While some developers recommend suffixes such as _pk for primary keys and _fk for foreign keys,
I think the inclusion of ID in the name of a key field is sufficient for clarity in most cases. It’s
already obvious that an InvoiceID field is the unique identifier and serves as the primary key in

17_429006-ch11.indd 42817_429006-ch11.indd 428 3/25/09 7:52:42 PM3/25/09 7:52:42 PM

429

Data Modeling in FileMaker 11

an Invoices table — and it’s equally obvious when it appears in another table that it is a foreign
key. In both cases, suffixes would clutter without clarifying.

As a part of a common-sense and minimalist approach to naming, I do recommend care in ensur-
ing that your names are clear and descriptive. Try to avoid similarly named fields with different
purposes — and differently named fields with similar purposes. Aim for clarity.

Field commenting
In complex solutions, the importance of brevity in field names limits the amount of meaning or
explanation you can reasonably hope to pack into field and TO names. While FileMaker permits
names of up to 100 characters, long names are problematic and counterproductive. For example,
the long field name shown in Figure 11.9 is only 48 characters long — but only the first 27 char-
acters show in the default column width in the Fields panel of the Manage Database dialog.
Moreover, other dialogs, such as the Sort dialog, show even fewer characters of the field name and
can’t be enlarged.

In fact, if you choose the same starting characters for several fields, differentiating them only by the
characters at the end of the name, such as

Companies_Selection_update_ALL

Companies_Selection_update_CURRENT

Companies_Selection_update_NEXT_c

Companies_Selection_update_NEXT_g

 FIGURE 11.9

Long field names are truncated in many dialogs, including the Field Name list on the Fields tab of the
Manage Database dialog.

17_429006-ch11.indd 42917_429006-ch11.indd 429 3/25/09 7:52:42 PM3/25/09 7:52:42 PM

430

Beyond the BasicsPart III

you’ll encounter a usability issue when the field names are truncated in dialogs throughout the
application. Figure 11.10 displays fields that are indistinguishable from others because they all
start with the same characters.

 FIGURE 11.10

Long field truncated in the Sort Records dialog — presenting a usability issue for both developer and end
users.

NOTENOTE You can resize some FileMaker dialogs to enlarge the viewing area, but it doesn’t
solve the problem in cases where only the right-hand column is resizable.

I recommend field names of 25 characters or less. If you want to include more information than
fits comfortably within these constraints, use the field commenting facility to add an explanatory
note. As shown in Figure 11.11, you can enter field comments directly below the field name and, if
desired, view these in the main field list in the Manage Database dialog by clicking the column
heading labeled Options/Comments.

CROSS-REFCROSS-REF In addition to field comments and Graph notes, FileMaker supports the use of C
and C++ style commenting within calculation expressions. Refer to Chapter 12 for

additional details about the use of commenting in calculation expressions.

Ancillary notes and documentation
You can also leave additional notes within the database itself. For example, you might consider
adding a table called DeveloperNotes where you can store design concepts and annotations regard-
ing aspects of the structure and code so that you can have ready access to your notes about things
you need to remember.

17_429006-ch11.indd 43017_429006-ch11.indd 430 3/25/09 7:52:42 PM3/25/09 7:52:42 PM

431

Data Modeling in FileMaker 11

 FIGURE 11.11

Adding and viewing field comments via the Manage Database dialog.

In addition, accumulating programming notes during the course of solution development can pro-
vide various forms of input information as you begin to assemble user documentation and help
text for your solution. Users generally need slightly different information — and may need it
expressed in different terms. However, both kinds of documentation should often cover many of
the same broad issues.

The Concept of Layers
Database systems are frequently comprised of a collection of elements working together to provide
data storage, logical processing, and user interaction. Thus, it can be helpful to think about solu-
tion design in terms of the data layer, the logic layer, and the interface layer. FileMaker’s unified
file structure incorporates some elements of all three layers in every file — and permits you to
deliver your entire solution in one file, if you want.

FileMaker is nothing if not flexible, however. If you choose to do so, you can divide your solution
to some degree, delineating the purpose of different files according to layers of functionality — or
other criteria as dictated by the needs of your solution and its users.

Some developers believe that a benefit of considering the layers of your solution independently
(whether or not you choose to use a single file or multiple files) is that it gives you an opportunity
to think through the data structure and get it right before worrying about the logic or interface
aspects. I’m not persuaded by this viewpoint because in FileMaker the requirements of logic and
interface are substantially imposed on the Graph model (and vice versa); thinking about any one
layer in isolation may lead to decisions that are ultimately detrimental.

17_429006-ch11.indd 43117_429006-ch11.indd 431 3/25/09 7:52:42 PM3/25/09 7:52:42 PM

432

Beyond the BasicsPart III

“Back end” and “front end”
Another concept familiar to many database developers is the back end or data end of a solution.
Although FileMaker has layouts in the same files as tables, you enter a different environment (the
Manage Database dialog) to create or change the data structure, so it’s not difficult to recognize that
the data end requires somewhat different skills and has its own rules.

Because FileMaker enables you to set up references to external data — in other FileMaker files or
in SQL data sources — you have the option to create some degree of distinction between the data
storage function and the logic and interface functions in your solutions. For example, you can
choose to use a specific file primarily to store data and little else (giving it only the most rudimen-
tary interface and few scripts) and then create one or more files to use the data in the first file as
the basis of layouts and scripts to make a presentation layer for your solution. Arrangements of this
kind form the basis of what has become known as the separation model of FileMaker development.

The separation model is important to understand — not merely because it provides you with addi-
tional architectural options for your solutions, but also because understanding it is essential to
grasping the elements of the structural model FileMaker provides.

FileMaker ties code to data to the extent that a back-end file must always have more than just data
in it. For example, calculations or lookups require some supporting relationships in the file where
they’re defined. Moreover, FileMaker’s security model is file-based; to protect the data, you need to
build appropriate security in the data file. With this security in place, some scripts will be neces-
sary to let users log in appropriately in the data file so that they can access the information it con-
tains. In all these respects and others, it becomes clear that a purist approach to the separation of
data from the remaining frameworks of a solution is neither feasible nor desirable when working
with FileMaker. Nevertheless, you may choose to create one or more files primarily as data files
and others primarily as interface files.

Just as a FileMaker data file will never be purely or exclusively data, a FileMaker interface file will
necessarily include the logic (security and scripting) and probably also at least some data (if only
user preferences, global filter attributes, and the like).

The business or procedural layer
In some database development environments, the process or logic layer of a solution subsists in a
collection of stored procedures. FileMaker, on the other hand, distributes your solutions’ logic lay-
ers throughout a number of places.

The first and perhaps most important logical and procedural control FileMaker affords you is its
calculation capabilities. When you define a calculation, you’re in effect setting up a process that
automatically responds to certain inputs and follows the rules you specify to produce correspond-
ing outputs. This is true of calculations residing in the tables of your solution, but it’s also true of
calculations in scripts, on buttons, in conditional formatting, or anywhere else in your solution.
Calculations are one expression of rules governing how your solution should work and what
should happen when the user acts in a certain way.

17_429006-ch11.indd 43217_429006-ch11.indd 432 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

433

Data Modeling in FileMaker 11

FileMaker’s scripting capability is the second focus of logic and process in your solutions. In many
respects, scripts more closely resemble the procedure methods available in other environments and
their implementation provides self-contained process logic.

CROSS-REFCROSS-REF For a more detailed discussion of the FileMaker scripting engine’s logical capabili-
ties, refer to Chapter 13.

FileMaker as an integrated environment
One reason to consider a solution structure separating data and interface is the ability to modify
one part without affecting the other. Because FileMaker is designed as an integrated database tool,
you can view using it to create solutions comprising separate data and logic interface components
either as perverse or ingenious — your choice. You may not choose to adopt such an approach for
all cases, but it’s important to be aware that separation is available for occasions when it may be
desirable or even necessary.

When a solution created in a version of FileMaker prior to Version 7 is migrated to the current file
format (identified by the file suffix .fp7), it acquires a structure that reflects the constraints of the
legacy environment. Prior to the release of FileMaker 7, solutions were constrained to a single table
per file, so all relationships were between files. (Even self-join relationships were defined as a link
from a file to itself.) Migrated solutions, therefore, typically start out with tables distributed across
multiple files and with the interface elements related to a particular table residing in the same table
as the file.

Other reasons to depart from the obvious (single-file) architecture for your FileMaker solution
include

n Network performance considerations: You can keep your dependence on a slow net-
work connection to a minimum if you separate a solution into two components and place
the shared data component on a remote server and the static reference data, archival data,
and graphics-intensive interface files on the user’s local workstation.

n Divergent user requirements: If your solution serves different groups of users with dif-
ferent preferences or different needs (but common data requirements), you can provide
access to a single data source via multiple interfaces representing the different groups’
requirements.

FileMaker has the power to leverage a range of different structural models to deliver a variety
of user experiences — all underpinned by a seamless application delivering a holistic database
environment.

Separation anxiety
No matter how you’re considering separating your solution on data and interface lines, on modular
lines, or in some other way, you need to be aware of several issues and weigh the potential benefits
against possible concerns:

17_429006-ch11.indd 43317_429006-ch11.indd 433 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

434

Beyond the BasicsPart III

n When you choose a multiple-file structure, you need to duplicate some components of
code, content, and/or structure. For example, if you create a two-file solution, some
scripts may be required in both files (and some processes may require that a script in one
file call a script in the other and vice versa). Moreover, you need to configure appropriate
security settings in each file. These requirements add complexity and, therefore, may
increase development time.

n When you deploy a multi-file solution, you need to decide what goes where and (when
you have a choice) what combination or distribution of elements best serves the needs of
the users and the requirements of the solution. For example, you don’t want to have
users perform some actions, such as logging in, twice just because you have two files.

n You also need to be aware of what works where, such as how environment variables are
evaluated when a calculation is being performed in a different file. You must also under-
stand the scope of action of all the elements in play (variables, security, scripts, and so on).

File Architecture versus Data Structure
There is a long history of confusion between file architecture and data architecture. Since the
inception of the .fp7 file format, FileMaker has supported multiple tables per file up to 1 million,
according to the technical specifications published by FileMaker, Inc. (I’ll leave it to you to test that
assertion!)

A database system’s file architecture, however, doesn’t determine the relational structure —
FileMaker Pro has supported relational data architectures since the release of Version 3. Prior to
the release of Version 7, each file was constrained to contain only a single table, so a multi-table
relational solution required multiple files. Solutions converted to the .fp7 format from earlier ver-
sions retain their multi-file architecture initially — and, in fact, you can create new solutions in
FileMaker 10 that work this way, if you choose.

Remember that although the file structure has implications for how you work and how your solu-
tion appears to users, it’s entirely independent of the data structure. You get to choose where to
store and access each data table your solution uses.

Multi-file solutions
In a few situations, it’s advantageous to have every table in a single file, but it’s frequently useful
(or necessary) to build a solution around data residing in more than one file. Occasionally, a multi-
file solution architecture is required so that you can incorporate or reference data in a pre-existing
system (either a separate FileMaker solution or an external SQL database). Even when there is no
imperative to use multiple files for your solution, you may choose to do so for a variety of reasons:

n To improve network performance by storing static data or interface components on users’
local workstation

17_429006-ch11.indd 43417_429006-ch11.indd 434 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

435

Data Modeling in FileMaker 11

n To make installing an update of the interface or process components of a solution easier
(without the need to import current data into each new version)

n To give different users different views of the data or different functionality according to
their needs or preferences

n To reduce the complexity and overhead associated with each “module” in a complex sys-
tem where, for example, a single Relationships Graph supporting the entire solution
would be unduly complex

Your objectives dictate whether you seek to gather all data into a single file while providing one or
more other files to access it, present your interface in a single file with data being sourced from
multiple locations, or some combination of both. In other words, you may choose to create

n A single file comprising both data and interface

n A single data file and a single (separate) interface file

n Multiple data files supporting one interface file

n Multiple interface files accessing a single data file

n Multiple interface files sourcing data from multiple files

n A mixed-model solution incorporating multiple files, which may have both interface and
data elements within them

The modular approach
If you can readily divide your solution’s functionality into discrete (though perhaps overlapping)
areas of functionality, a mixed model or multiple interface approach may provide several benefits.
For example, you may choose to provide separate modules to support sales, inventory, and
accounts, even though the data for all three subsystems is stored in a single file.

With a modular approach, each department in an organization can have immediate access to the
results of the work being done elsewhere (using other system “modules”), yet each works within a
system specifically designed to support the needs, preferences, and business processes at hand. For
example, the screens, scripts, reports, and menus seen by Accounts personnel need bear no resem-
blance to those used in the warehouse or on the shop floor, even though the supporting tables and
relational structure of the back-end data file are common to all.

Other uses of a modular approach may involve separation of functionality along process lines. For
example, you can create a single file or pair of files (interface and data) to support data entry and
general solution functionality but provide a separate file for reporting. One advantage is that end
users may be given considerably broader access to make changes in the reporting file, while the
scripts and interface of the main files remain tightly secured.

While a modular approach can serve a number of needs, the advantages must be counterbalanced
against the additional file infrastructure requirements, version control, and complexity introduced.
There is, nevertheless, often a payoff from using a modular approach to solution architecture.

17_429006-ch11.indd 43517_429006-ch11.indd 435 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

436

Beyond the BasicsPart III

Interface files
Whenever you have a FileMaker file containing data and interface, you can create an interface file
by establishing an External Data Source reference from a new file to the existing file. For example,
in a new file, if you choose File ➪ Manage ➪ External Data Sources and then click the New button
in the lower left of the Manage Data Sources dialog (to expose the Edit Data Source dialog), you
can create a link to a copy of the Inventory example file, as illustrated in Figure 11.12.

NOTENOTE When you’re working on the Relationships Graph (in the Manage Database dialog),
you can also access the Manage External Data Sources dialog from the Data Sources

menu in the Specify Table dialog.

With a named reference to an external database in place, you can then begin to add TOs to the
interface file’s Graph (by clicking the + tool button in the lower left of the dialog, as described in
Chapter 5) referring to tables located in the external file, as shown in Figure 11.13. Once TOs are
in place, you’re able to work with the interface, developing scripts and layouts in the same ways as
if the tables were defined and stored within the file. However, all changes to the definitions of
tables and fields — and associated access privileges — must still be made directly in the file hous-
ing the tables.

 FIGURE 11.12

Creating a link between two files.

17_429006-ch11.indd 43617_429006-ch11.indd 436 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

437

Data Modeling in FileMaker 11

 FIGURE 11.13

Choosing an external file when adding a TO to the Relationships Graph in an interface file.

The most significant difference when you develop in a separated solution where the interface is in
one file and the data in another is the need to maintain an awareness of the location of different
elements and the scope of each component of the solution. For example:

n The Run Script with Full Access Privileges setting only influences the access privileges in
the file where the script resides — so a script in your interface file won’t gain full access
to data in the external data file when this option is selected. To achieve full access to the
data, you must either call a script (with appropriate privilege settings) in the data file, run
a re-login process to temporarily change the level of privileges in the data file, or other-
wise modify settings affecting the privilege status of the data file.

n Variables are scoped to the file where they’re declared — so calculations in the data file
won’t be able to “see” variables declared in the interface file and vice versa. To pass values
between files, your solutions will have to write the values to a field (for example, a global
field) or pass them as a script parameter or script result so that they can be accessed
externally.

n You should be mindful that environment data returned by Get() functions in the inter-
face file won’t always be applicable in the data file and vice versa. For example, if a script
in the data file evaluates the function Get(ActiveSelectionStart), it returns a
result with respect to whatever is (or is not) selected in the data file. Even if the user’s
cursor is in a data-file field in the current active window of the interface file, the function
being evaluated in the data file will not recognize it. To achieve the desired result, you
need to structure the scripted sequence to pass the relevant value(s) from the interface to
the data file via a script parameter or script result.

17_429006-ch11.indd 43717_429006-ch11.indd 437 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

438

Beyond the BasicsPart III

These concerns, and other examples like them, introduce some constraints and stringencies to
multi-file development. However, taken as a whole, FileMaker’s support for external data sources
is broad and effective, with most features operating the same way regardless of the file architecture.

One of the most challenging issues in a multi-file solution is the management of security, because
you need to script processes — such as login, logout, account creation, and password change — to
occur simultaneously in all files. That way, the user is not prompted for credentials multiple times,
and the appropriate access privileges are in place in all files throughout a work session.

Approaches to separation of data
Some developers take the view that to achieve separation of data and interface, the data file should
ideally contain nothing but data, and that one should aim to get as close to this ideal as possible.
Doing so, however, presents some challenges when working with FileMaker, preventing you from
using some of FileMaker’s features to the best advantage. For example, FileMaker’s calculation
fields and the schema to support them can be viewed as part of the logic of the solution rather than
strictly part of the data and therefore a strict separation would exclude their use.

Such an approach may enhance the ability to perform updates to a solution without a need to
import data to a new file by reducing the likelihood that updates will require modifications to the
data file. In extreme cases, however, this convenience is achieved at a considerable cost in foregone
functionality and produces inconvenience in other areas. I take the view that the more extreme
approaches to separation cost more than they gain in a majority of cases, and you should carefully
weigh the trade-offs before going to lengths to achieve “pure” separation.

A more conservative approach to separation, however — where schema, scripts, and calculations
are present in the data file, but kept to moderate levels and the majority of code and configuration
resides in the interface file — is highly tenable and provides a viable option for many solutions.

In this latter method, some redundancy occurs because the data file requires the essentials of a data
model for the solution, much of which may also be required in the interface file. Moreover, in
addition to login and security management scripts, some supporting sub-scripts (able to be called
from scripts in the interface file) may also be present in the data file, especially where actions
beyond the user’s access privileges are required.

Although the essential calculation requirements of a solution may be performed in the original data
file in a separation model solution, if you want to minimize changes to the data files after deploy-
ment, you can structure your solution to script the calculation and storage of derived values for all
calculation requirements not covered in the original implementation. Similarly, the addition of
reserved (unused) fields in tables in the data file can enable you to anticipate changes and make
adjustments to the implementation without modifying the data file.

CAUTION CAUTION Although the practice of adding unused fields to tables in a data file may help you
reduce the need to modify the data file in the event changes are needed in the

future, the practice is disadvantageous in some respects, because the unused fields can’t be
meaningfully dealt with in the scripting or security model for your solution, nor adequately
detailed in the solution documentation.

17_429006-ch11.indd 43817_429006-ch11.indd 438 3/25/09 7:52:43 PM3/25/09 7:52:43 PM

439

Data Modeling in FileMaker 11

Costs and benefits of separation
Data separation introduces a well-understood architecture common to many other data systems
with clarity regarding the independence of the interface and logic layers from the data layer of your
solution. This clarity is poised in counterbalance against the minor penalties and added complexi-
ties noted in the preceding sections, making the decision to opt for a separated solution difficult to
justify in the absence of other considerations.

One of the most frequently repeated arguments in favor of the separation of data and interface is
the added ease and efficiency of updates after deployment. In some cases, this contention is more
valid than others. For example, when a solution is in use around the clock and holds millions of
records, you want to avoid the inconvenience of taking the system offline to transfer records to an
updated database file, if possible. In such cases, if you’re able to construct the solution so as to
minimize the impact of updates, it makes sense to do so.

Conversely, if your solution is of moderate size or doesn’t need 24/7 availability, offline updates
involving migration of the data to a new master copy of the updated file are feasible and often
desirable because they

n Allow updates to the data structure, including calculations, additional fields, and data
relationship definitions to support changed or extended functionality.

n Enable you to refresh the file at each update with a pristine master copy of the develop-
ment file, thus minimizing the risk of corruption or data loss.

In the latter case, I recommend creating a migration utility to automate the transfer of data between
versions of the file. This utility increases the efficiency of an offline update so that it can be per-
formed routinely as required. You can view the creation and maintenance of an update utility as a
cost or trade-off associated with your decision to work with an integrated (single file) solution. You
can avoid the additional burden of creating and maintaining an update utility if you opt instead to
separate the data and interface between two or more files.

In addition to the considerations regarding updates, potential benefits for network optimization
and added deployment flexibility make various forms of separation and multi-file solution archi-
tectures attractive in a number of cases.

Separation and External SQL Sources
As part of the repertoire of options for accessing external data, FileMaker 10 provides support for
live access to data in supported external SQL databases. Because SQL systems can’t contain any
FileMaker script or calculation code, an instance of the use of live SQL data requires you to adopt
strategies for dealing with separation of data and interface, as outlined in the preceding section
(“File Architecture versus Data Structure”). In such a solution, you can rely entirely on one or more
SQL data sources for the data content of a solution, while using FileMaker to provide the interface
and business process logic.

17_429006-ch11.indd 43917_429006-ch11.indd 439 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

440

Beyond the BasicsPart III

The use of SQL data with FileMaker has several potential advantages, chiefly being the capability to
integrate seamlessly with other systems supporting SQL standards and the relative ease with which
supported SQL databases can accommodate very large data sets, making them available simultane-
ously to thousands of users.

Understanding the rules
You may be tempted to consider FileMaker a candidate for duties as a front end for SQL databases.
However, bear in mind that FileMaker doesn’t provide some capabilities normally found in SQL
front ends, including the ability to modify schema in the SQL back end and the ability to incorpo-
rate SQL syntax in its normal interactions with the data source.

NOTENOTE FileMaker includes an Execute SQL command you can use for scripted queries
against an ODBC data source. However, normal Find operations on SQL tables in

FileMaker use the native FileMaker Find interface, which is translated internally into SQL syntax
for transmission to the host database.

You should also be aware that FileMaker’s ability to deal with very large data sets (such as when
performing finds, sorts, or other data-management tasks) is constrained by its internal architecture
and may not be optimal when dealing with extremely large numbers of records. The performance
limits you encounter when working with data stored in a SQL database will not necessarily be sig-
nificantly different from those you deal with in native FileMaker deployments.

Also consider the absence of stored calculation capabilities in SQL databases. If you’re used to
defining calculations for a variety of purposes in FileMaker tables, you’ll have to adopt alternate
strategies when working with SQL data, which reduces some of the data modeling flexibility char-
acteristic of an all-FileMaker implementation.

Working within constraints
To work efficiently with SQL data sources, consider adopting some different solution design
approaches to compensate for the reduced data model flexibility. For example, one option is to
provide an editing interface where the data is presented in holding fields (for example, global fields
in the FileMaker interface file) and written back to the SQL database via script at the conclusion of
user editing. Such a model where all changes to the remote data are made via script allows you to
add calculations and perform operations on the data prior to storage.

If you’re working with SQL databases holding very large sets of data, consider defining your links to
the SQL data via views rather than direct to the SQL tables, as views can present more manageable
subsets of the data in large tables. Figure 11.14 shows the configuration at the lower right corner of
the Edit Data Source dialog where you can specify the form of SQL data to be presented to FileMaker.

NOTENOTE The extent of flexibility you have to set up links to an SQL database that use views in
an optimal way will depend on the way the SQL database is configured. If you don’t

have access to make changes to the configuration of the SQL system, you should communicate
with the administrator for the SQL database to ascertain the most appropriate options for making
connections to the SQL data.

17_429006-ch11.indd 44017_429006-ch11.indd 440 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

441

Data Modeling in FileMaker 11

NOTENOTE SQL data views don’t necessarily have predefined primary key values. If you choose
to access such a view in FileMaker, you’re required to identify a suitable key value

for use as a unique key.

 FIGURE 11.14

Configuring the settings for an external ODBC data source to present views instead of tables.

Supporting the user
Delivering solutions combining data from a variety of environments — even connecting simultane-
ously to multiple remote host systems — is challenging as well as exciting. The effort required to
resolve differences in the way different technologies are implemented is worthwhile because it
gives you the ability to provide enhanced support to the users of your solutions.

With user requirements in play, it’s important to set aside theoretical models and examine the
practical realities. The functional requirements and the best interests of the solution’s owners and
users dictate the decision to build a separated solution, an integrated solution, or a part FileMaker
and part SQL solution.

The starting point for any solution modeling exercise should be a user requirements audit. When
developers listen, it’s been my experience that users are more than ready to talk.

17_429006-ch11.indd 44117_429006-ch11.indd 441 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

442

Beyond the BasicsPart III

Implementing Separation
in an Existing Solution
When you create a single-file solution in FileMaker Pro 10, all the elements of the file — tables,
layouts, scripts, accounts and privileges, and so on — connect directly within FileMaker’s inte-
grated file format. Even after a solution is in an advanced stage of development, however, you can
redeploy with an alternative solution architecture, introducing layers of separation.

The simplest method for adding multi-file functionality to an existing solution is to create an addi-
tional file with links to the tables in the main file and configure the new file to provide specific
additional functions (for example, a search interface, an Instant Web Publishing interface, a report-
ing interface, and so on). However, converting the file into a completely separate data/interface
architecture is a more challenging task.

Establishing data source(s)
To begin the process of converting a solution from a single-file architecture to a separated architec-
ture, you should first store a backup copy of the file in a secure place and then create a duplicate of
the file, naming it appropriately for the data file of the solution. You now have two copies of the
file, both containing the existing interface and the existing data. Here’s how you convert a solution:

 1. Add the data file as an external data source in the interface file.

 2. Reassign the TOs in the interface file to point to the corresponding tables in the data file.

 3. Remove data tables (and their contents) from the interface file.

 4. Test to restore any functionality affected by the change.

 5. Remove or disable interface elements in the data file.

 6. Add scripts to manage security (login and logout) as required across the two files.

Figure 11.12 shows the method of adding a data file as an external data source by choosing
File ➪ Manage ➪ External Data Sources. After adding the path to the data source to the interface
file, it appears as an available option on the Data Sources menu when selecting or assigning a TO
to a data table in the Manage Database dialog.

Re-pointing Table Occurrences
The second step in implementing separation is to select each of the TOs in the Relationships Graph
and reassign it to the corresponding table in the external data file, as shown in Figure 11.15. Here’s
how to do so, making sure that you keep the same TO names:

 1. Note the table the TO is attached to.

 2. Copy the TO name.

 3. Select the external data source.

17_429006-ch11.indd 44217_429006-ch11.indd 442 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

443

Data Modeling in FileMaker 11

 4. Reattach it to the corresponding table in the external file.

 5. Paste the original TO name into the name field.

 6. Repeat Steps 1–5 for each TO.

After you’ve changed each TO, its name in the header band appears in italics to indicate that the
table it references is in an external file. After completing this process, visit the Manage Database
dialog’s Tables panel in the interface file. As shown in Figure 11.16, you now see nothing in the
Occurrences In graph column of the tables list. (If you do see some, then you missed one and
should go back to the Relationships tab to reassign it to the external data file.)

After you’ve confirmed that all the tables in the interface file are unreferenced, you can delete them
from the file. The solution now uses data exclusively from the data file.

As an important part of the redeployment procedure, you should conduct tests to confirm that the
solution’s functionality is intact, making any required modifications to restore the intended behav-
ior. In the case of the example Inventory solution, my testing revealed that the Back button
functionality required modifications because it depended on a $$trace variable declared within
the cTrace calculations in schema. The value of a variable declared in the data file where the
schema now resides is no longer available to the Go Back script in the interface file. This example
is typical of the kind of issue that arises when you change to a separation architecture, as noted in
the section “File Architecture versus Data Structure,” earlier in this chapter.

 FIGURE 11.15

Reconnecting a TO to the corresponding table in an external data source.

17_429006-ch11.indd 44317_429006-ch11.indd 443 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

444

Beyond the BasicsPart III

 FIGURE 11.16

No graph occurrences of tables appear in the Interface file.

I addressed this issue in the example files for this chapter by placing a variant of the cTrace
calculation expression into the conditional formatting calculation of replacement Back buttons in
the interface file. After this change, I deleted the cTrace fields from the tables in the data file.

Additionally, I made minor changes to the Go Back script to address a refresh issue arising from
cached external data in the Utility relationship used by the script. With these changes, I restored
the example solution to its former functionality, yet in a separated architecture.

Creating separate graphs
Once data sources for all TOs have been reassigned according to plan, rationalization of the two
identical Relationships Graphs can begin.

The first step toward tailoring each file for its new role is removing extraneous process and interface
support elements from the data file’s Relationships Graph. In the example Inventory solution, I
identified that 12 of the 24 TOs on the original Graph were required for script or interface support,
but they were nonessential to the schema in the data file. Consequently, I was able to halve the
number of TOs in the data file. Similarly, I removed scripts and layouts from the data file.

When making changes to both files at this stage in redeployment, multiple test cycles are a good
precautionary measure. Extra testing ensures that adjusting Graph and/or other elements in either
of the files allows preservation (or restoration, if necessary) of required functionality.

After making the preceding changes, the Inventory example reached the desired redeployment
aim: a more flexible architecture without sacrificing features or usability. The programming style
adjustments required to accommodate the structural change are minimal, and I could efficiently
make the required modifications at this stage of development.

17_429006-ch11.indd 44417_429006-ch11.indd 444 3/25/09 7:52:44 PM3/25/09 7:52:44 PM

445

Data Modeling in FileMaker 11

The more complex a solution is at the time a change of deployment strategy is indicated, the
greater the risks involved and the greater the work and testing required to ensure that the solution
will not be adversely affected by the change. However, while determining an appropriate architec-
ture for your solutions at the outset is desirable, change can be achieved.

Deployment Considerations
The option to separate elements of a solution makes a number of innovative deployment models
viable, including modularization, separation of data, and interface and integration of external SQL
data. However, I encourage you to carefully weigh the options to determine a mix that best serves
your solution.

The conventional deployment mode — where one or more FileMaker database files (comprising
both data and interface) reside on a network server and are accessed over a high-speed internal
network — is giving way to other innovative solution topographies.

Your remotest dreams
Employing solution separation architectures enables some elements of your solutions to reside on
network hosts (including multiple or remote/WAN hosts) while others are stored and accessed
locally from the end user’s workstation. Deployment models of this type permit new levels of flexi-
bility and performance for distributed systems.

Systems drawing agency data for supporting databases in branch offices at considerable distances
can now achieve satisfactory performance with appropriate optimizations — and a single server
can be used as the conduit for data from any mix of FileMaker and supported SQL data systems.

The model of adaptability
The introduction of FileMaker’s .fp7 file format in 2004 signaled a shift in focus only fully real-
ized with the release of the FileMaker 10 suite of products. FileMaker has evolved and, with the
introduction of support for external SQL data sources, the evolutionary leap is evident.

With FileMaker 10 as your tool of choice, a robust and ambitious feature set is available to you.
FileMaker delivers its own flexible relational database management system — and puts it, along
with a plethora of alternative (and even competing) technologies, into your hands. Access to these
capabilities enables you to combine technologies in new ways and to solve new problems by doing
so. It is up to you to devise data models and solution architectures to take advantage of FileMaker’s
new horizons.

17_429006-ch11.indd 44517_429006-ch11.indd 445 3/25/09 7:52:45 PM3/25/09 7:52:45 PM

17_429006-ch11.indd 44617_429006-ch11.indd 446 3/25/09 7:52:45 PM3/25/09 7:52:45 PM

447

In Chapter 7, I introduce you to the Specify Calculation dialog and demon-
strate a few aspects of its utility and capability. However, if you have the
impression that calculation is mainly about numbers, I have some sur-

prises in store for you. Calculating in FileMaker is about getting the computer
to work things out, but not necessarily just with numbers. In fact, calculations
are great for people who aren’t all that impressed with numbers. A bit of clear
thinking will go a very long way, and the computer can do the rest!

Like scripting, calculations are integral to structuring and automating your
solution. You can use calculations to determine access, control displays, and
implement a variety of other features in your solution, as demonstrated in
this chapter.

With FileMaker, a little work upfront can save you a lot of work later on.
Calculations are one of the most extreme examples of this principle. Set one
up, and it will keep chugging away producing results for thousands or even
millions of records — enough to wear the buttons off a whole storeroom full
of portable calculators.

You can employ the 249 built-in calculation functions FileMaker Pro 10
offers, each of which is designed to do something very particular. However,
what calculation functions can do on their own isn’t the subject of this chap-
ter, but how you can combine them together to achieve everything from
clever tricks to downright astonishing feats is.

NOTENOTE An alphabetical list of the calculation functions in
FileMaker Pro 10, including links to descriptions and

basic examples, is available at www.filemaker.com/help/html/help_
func_alpha.html. Moreover, you can find a complete FileMaker 10
Functions Reference in a PDF document at www.filemaker.com/
downloads/pdf/fmp10_functions_ref.pdf.

IN THIS CHAPTER
Building compound calculation
expressions

Understanding order of
operations and Boolean
constructs

Using variables in different
contexts

Processing, parsing, and
formatting text

Calculating with dates and times

Working with summaries and
arrays

Dealing with Layers of
Abstraction

Working with different kinds of
calculations

Employing global calculations

Making use of environment
and meta-data

Extending your code with
Custom Functions

Keeping track of what you’ve
done

Calculation Wizardry

18_429006-ch12.indd 44718_429006-ch12.indd 447 3/25/09 7:53:49 PM3/25/09 7:53:49 PM

448

Beyond the BasicsPart III

 Because these materials are so readily available, I don’t repeat their content in this book, reserv-
ing the space instead for usage recommendations and examples. I recommend that you down-
load the PDF reference and refer to it as a supplement to this book.

Compound Calculation Expressions
A formula is the statement of your calculation, and an expression is something that can be evalu-
ated. Thus, a formula is an expression, but not all expressions are necessarily formulas. Therefore,
when I say formula, I mean the entirety of what appears in the Specify Calculation dialog’s formula
box, and that formula will consist of one or more expressions.

A function is a named expression that, when provided with zero or more arguments (frequently
called parameters), returns a value. FileMaker Pro 10 provides a collection of precisely 249 calcula-
tion functions for you to employ in your formulae; however, they are black boxes in that you don’t
get to see the code that implements them.

Symbols such as +, -, *, /, ^, and also and, or, xor, and not are termed operators and instruct
FileMaker how to treat adjacent parts of your calculation expressions. The adjacent parts acted
upon by operators are often termed operands. In the calculation 2 + 3, for example, the 2 and the 3
are operands and the + is the operator.

CROSS-REFCROSS-REF You can supplement FileMaker’s built-in functions by creating your own custom
functions using FileMaker Pro 10 Advanced, as described in Chapter 18.

In the simplest of formulas, a function receives appropriate input parameters and returns a result.
For example, the expression Rightwords(“The Jean Genie”; 1) returns Genie, extracting
one word from the right of the supplied phrase. However, each parameter you supply to a function
such as RightWords() can be a literal value (as in the preceding example), a field (in which
case the function acts on the field’s value for the current record), or an expression combining one
or more functions, constants, and/or operands.

Because one function’s result can be passed as the input to another function, you can assemble
complex structures according to simple rules, using functions and expressions like the words and
phrases of a magical language that does the things it says.

If you begin with a simple function such as Get(CurrentDate) (which returns the current date
as per the current computer’s system clock) and enclose it within the Month() function as in
Month(Get(CurrentDate)), FileMaker returns the number of the current month (for exam-
ple, 3 for March, 7 for July, and so on). Similarly, enclosing Get(CurrentDate) within the
Year() function returns the number of the current year (for example, 2009).

All these numbers are moderately useful in themselves, but they’re more useful if you use them in
turn to supply arguments to the Date function:

Date(Month(Get(CurrentDate)) + 1; 1; Year(Get(CurrentDate)))

18_429006-ch12.indd 44818_429006-ch12.indd 448 3/25/09 7:53:49 PM3/25/09 7:53:49 PM

449

Calculation Wizardry 12

In this formula, 1 is added to the month number, and it’s passed as the month parameter to the
Date() function. The day is specified as the constant value 1, and the current year is provided as the
year parameter. Thus, the entire expression returns the date of the first day of the following month.

An important thing to understand about the foregoing Date trick is that it will still work even when
the current month number is 12. FileMaker is smart enough to accept the resulting month parame-
ter of 13, convert the month to 1 (January), and increment the year so that a valid date is returned
for all cases. This sleight of hand is typical of the FileMaker box of tricks.

NOTENOTE The Date() function also resolves zero and negative parameter values. So, for
example, if zero (0) is passed as the second parameter (day number) in the preced-

ing example, the result will be the last day of the current month, regardless of how many days
are in the current month.

The language of logic
In the example

Date(Month(Get(CurrentDate)) + 1; 1; Year(Get(CurrentDate)))

you’re instructing FileMaker to tell you the date where the month is the current month plus 1, the
day is the first of the month, and the year is the current year. The form — also called syntax — that
FileMaker requires you to use when asking it for a date is

Date(Month, Day, Year)

This form imposes a structure like any other language. First, you must say what you want to do and
then (in parentheses afterward) you must say how, when, or where (as the case may be). FileMaker’s
calc syntax is based on the English language, presented in a simplified and codified form. After you
get used to the structured language, it becomes easier to scan, write, and understand.

The calculation language’s rules are consistent and straightforward, and the vocabulary (function
names, operators, constants and some reserved words, plus the table and field names in your solu-
tion) isn’t too challenging. Most of the rules simplify things; prepositions and conjunctions are
omitted, and parentheses, semicolons, or operators are used in their place, as appropriate.

FileMaker’s native function set defines not only the core of the vocabulary of calculations, but also
the form and syntax. Each function in the vocabulary has simple rules for the inputs it requires and
the outputs it returns, all of which are defined in the FileMaker 10 Function Reference. (To access
this reference, go to www.filemaker.com/downloads/pdf/fmp10_functions_ref.pdf.)

Almost all native FileMaker calculation functions require parameters. The only five exceptions are

n DatabaseNames

n Pi

n Random

n Self

n WindowNames

18_429006-ch12.indd 44918_429006-ch12.indd 449 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

450

Beyond the BasicsPart III

Each of the first four functions stands alone, returning its appropriate value without qualification,
whenever you use it. The last, WindowNames, can stand alone or can accept an optional parame-
ter specifying the name of the file for which it is to return the names of current windows. All other
functions, however, require one or more parameters, either to control the way they work or to pro-
vide input.

When parameters are required, they’re always enclosed in parentheses immediately after the name of
the function they’re associated with. Multiple parameters are separated by semicolons. A few func-
tions (22 in total, including WindowNames) include optional parameters. Whereas WindowNames
has only one parameter, all other functions with optional parameters have one or more required
parameters. An example of a function with an optional parameter is the If() function:

If(test; resultIfTrue {; resultIfFalse})

The If() function can accept either two or three parameters — the first two are required, and the
third is optional. The first parameter is the test to determine the result the function returns. The
second parameter supplies the result if the test succeeds (is evaluated as true). The final, optional
parameter supplies a result to be returned if the test fails (proves false). A simple expression using
If() can therefore be written as

If(
Month(DateOfBirth) = Month(Get(CurrentDate)) and
Day(DateOfBirth) = Day(Get(CurrentDate));
“Happy Birthday, “ & FirstName
)

This formula returns a message such as “Happy Birthday, Jan” when the value in the FirstName
field is “Jan” and the month and day of the value in the DateOfBirth field is the same as the cur-
rent date on your computer’s system clock. However, if you want the function to return a result on
days other than Jan’s birthday, you can use the optional third parameter:

If(Month(DateOfBirth) = Month(Get(CurrentDate)) and
Day(DateOfBirth) = Day(Get(CurrentDate));
“Happy Birthday, “; “Welcome, “) & FirstName

In this example, whenever it is not the anniversary of Jan’s birthday, the optional second result is
returned, so the text will simply read “Welcome, Jan”. One day per year, the text returned will be
Happy Birthday, Jan”.

Functions and schema references
You can supply parameters to your functions in one of three ways:

n As text or numbers entered directly into the calculation: Parameters supplied in this way
are usually referred to as a constant or a literal value. Commonly, constant refers to numeric
values and literal to text values, but the names are applied somewhat interchangeably.

18_429006-ch12.indd 45018_429006-ch12.indd 450 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

451

Calculation Wizardry 12

n As a reference (by name) to a field or a variable in your solution: In this case,
FileMaker retrieves the current value of the field or variable at the time it evaluates the
calculation, using it as input to the function.

n As an expression: This expression can be made up of one or more functions, operators,
and other elements combined in such a way as to produce a result that will provide the
required parameter.

When you enter text literals into a calculation, they must be enclosed within quotes (“”). Numeric
literal values don’t require quotes. When you enter more than one item, an operator is required in
between them (and which operator you choose controls how they’re interpreted). For example, the
+ operator tells FileMaker to add the numeric values of the supplied values, whereas the & operator
tells FileMaker to append them as text. So the expression 23 + 4 will return 27, whereas the
expression 23 & 4 will return 234.

CROSS-REFCROSS-REF For a detailed discussion of the mechanics of defining calculations in the Specify
Calculation dialog, refer to Chapter 7.

Making context explicit
When you want FileMaker to retrieve the value from a field in your database, you must generally
supply the name of the field, preceded by the name of the relevant TO, in the form

TableOccurrenceName::FieldName

The only exception is when you define the calculation within the schema, and the field is returned
from the current record — in which case the TO name is optional.

Adding the TO name enables FileMaker to determine the relationship path to use when retrieving
a value from the field. Resolving the path requires both a start point and an end point. The TO
name you supply with the referenced field name defines the end point. The start point is set via the
Evaluate This Calculation From The Context Of menu at the top of the Specify Calculation dialog,
as shown in Figure 12.1.

Avoiding circular references
Because FileMaker requires that only one relationship path be between any two TOs on the
Relationships Graph (thus avoiding circular references on the Graph), supplying the starting and
ending TOs for a field reference is sufficient to indicate exactly from which instance of the field to
retrieve a value.

NOTENOTE When a relationship you use to reference a field in the current record points to
multiple related records, FileMaker returns the first related record (according to the

sort order for the relationship, if specified, or otherwise according to the creation order of
records in the related table). To reference a field in a record (other than the first related record),
enclose the field reference within the GetNthRecord() function, supplying (as the second
parameter) the number of the record you want to reference.

18_429006-ch12.indd 45118_429006-ch12.indd 451 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

452

Beyond the BasicsPart III

 FIGURE 12.1

Setting the context for evaluation of a calculation via the Specify Calculation dialog.

Structured syntax and nesting
Although I recommend that you obtain a copy of the FileMaker 10 Functions Reference and use it
as a supplementary resource, you don’t need to refer to it to remember the syntax required for each
calculation function. FileMaker lists all its available functions in the panel at the upper right of the
Specify Calculation dialog, along with a key to the syntax requirements of each function. The listed
functions may be filtered by category (in 16 predefined categories) to make it easier to find what
you’re looking for.

Two of the 16 categories of functions — Get functions and External functions — are included
only as a single reference each in the list of all functions by name. To see the available options in
each of these groups, you must choose the respective function category.

NOTENOTE Functions in the Specify Calculation dialog list are categorized by data type accord-
ing to the kind of input value they’re expected to receive, rather than the kind of

output they generate. For example, GetAsTimestamp() is listed as a text function because it
receives a text input, even though it returns its result as a timestamp value.

Similarly, the Length() function is listed among text functions because it treats the input
value as a text string, even though the result it returns will be a number (representing the length
of the supplied string).

18_429006-ch12.indd 45218_429006-ch12.indd 452 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

453

Calculation Wizardry 12

When you select a function from the Specify Calculation dialog functions list, it’s inserted into the
calculation panel at the current cursor position, along with the prompt for its syntax, such as
parentheses, semicolons, and names of the required parameters. For example, if you select the
Upper() function, it is inserted into your calculation as Upper (text)with the parameter
name (text) selected, ready for you to overwrite it with an appropriate value. You can supply the
parameter as a literal value (within quote marks):

Upper(“Strawberry Fields Forever”)

or as a reference to a field or variable:

Upper(Songs::SongName)

Upper($$CurrentSongName)

or as an expression, incorporating any combination of literal values, field or variable references,
and/or functions:

Upper(“Song Title: “ & Songs::SongName)

In each case, FileMaker first resolves any expressions within the enclosing parentheses and then
converts the result to uppercase text.

Putting it all together
To connect components of a calculation together, FileMaker provides six basic types of operators:

n Arithmetic operators: +, -, /, *, (,), and ^.

n Comparison operators: <, >, ≥, ≤, =, and ≠.

n Logical operators: and, or, not, and xor.

n Text operators: &, “ “, \, and ¶.

n Comment operators: /* */ and //.

n Reserved Name operator: ${ }.

NOTENOTE If you prefer, you can use the combinations <> in place of ≠, >= in place of ≥, and
<= in place of ≤.

Frequently, your calculations will involve a decision, taking action or applying logic accordingly.
For this purpose, the comparative and logical operators are indispensable. When two or more val-
ues are compared, FileMaker returns a true or false (Boolean) result that you can use to determine
the outcome of the calculation. For example, if you’re inviting interested parties to a house inspec-
tion on a different date depending on where in the alphabet their name falls (for example, A to M
on date 1 and N to Z on date 2), you might use a simple logic calculation along the following lines:

If(Visitors::LastName < “N”; VisitDates::Day1; VisitDates::Day2)

18_429006-ch12.indd 45318_429006-ch12.indd 453 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

454

Beyond the BasicsPart III

In this example, the logic hinges on the test Visitors::LastName < “N” returning either of
the two possible dates from the VisitDates table contingent on the test outcome. However, if
you also want to ensure that anyone who has made telephone contact is also invited on the first
available date, you need a more complex logic. Your calculation now appears as

If(Visitors::LastName < “N” or Visitors::PhoneContact = “Yes”; VisitDates::Day1;
VisitDates::Day2)

Again, the formula includes an expression and two alternative results; however, this time the test
brings together two comparisons (using the comparative operators < and = respectively) with the
logical operator or to accommodate the additional requirement. Note that the meaning of the cal-
culation is clear, and it reads almost like a narrative.

Order of Operations
When you place parentheses around part of a calculation, FileMaker resolves that part first.
Therefore, adding parentheses makes the order of evaluation explicit. Consider the classic example
of a simple arithmetic calculation:

24 – 2 * 3

The rules of math require that multiplication and division take place before addition and subtrac-
tion, so the correct answer is 18 (24 minus 6). However, if parentheses are used to re-order the
calculation as in

(24 – 2) * 3

the parentheses change the normal order of computation so that the subtraction must be per-
formed first — making the correct answer now 66 (22 times 3). Similarly, all FileMaker’s operators
have a natural or default order of operations for all cases except where you specify the order by
including one or more sets of parentheses. In fact, parentheses themselves are an operator acting
on the calculation to determine the outcome.

Although some operators take precedence over others, some are of equal weight (for example,
addition and subtraction). When these equal operators are combined in a calculation, the evalua-
tion proceeds from left to right (again, unless parentheses are included).

Each kind of operator serves a different purpose and produces a different kind of result. Arithmetic
operators perform sums and produce numeric results, whereas comparative operators perform tests and
return a Boolean result. Logical operators combine multiple tests to determine a composite test result,
and so on. Each has a clear role and operates according to basic (and largely intuitive) principles.

Filemaker Pro 10 applies the following default order of operations:

 1. Comment operators take precedence over all else.

 2. Reserved name operators and quotation marks are evaluated second, with whichever
occurs first or outside the other taking precedence.

18_429006-ch12.indd 45418_429006-ch12.indd 454 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

455

Calculation Wizardry 12

 3. Expressions in parentheses are evaluated next.

 4. The not operator is evaluated before all remaining operators.

 5. ^ is evaluated before any other arithmetic operator; * and / are evaluated before + and –.

 6. With the exception of quotation marks (see Step 2 on this list), arithmetic operators are
evaluated before text operators.

 7. Arithmetic and text operators are evaluated before comparison operators.

 8. With the exception of the not operator, comparison operators evaluate before logical
operators.

 9. The and operator is evaluated before or or xor.

This order of operations determines how your expressions are evaluated, except where you use
parentheses to determine the order of evaluation. Where no parentheses are included and opera-
tors are at the same level in the preceding hierarchy, evaluation takes place from left to right.

Although the order of operations I provide here may appear daunting at first glance, in most cases
the order supports natural flow and readability in your calculation expressions. In many cases,
beyond the rules of simple arithmetic, you don’t need to pay any special attention to evaluation
order because the default order determined by FileMaker is the correct order for a significant num-
ber of cases.

Take, for example, the test in the If() function cited in the preceding section:

Visitors::LastName < “N” or Visitors::PhoneContact = “Yes”

Because comparative operators take precedence over logical operators, both comparisons take
place first and are then joined by the evaluation of the or operator and no parentheses are
required to deliver the expected and desired outcome. In many such cases, FileMaker makes the
same sense of your code as you would make reading it, making your task simple.

You can combine elements to produce a desired result in many ways, and you can achieve many
calculations using alternative approaches. Some methods may be easier to read, while other meth-
ods may be more compact. Still others may be more efficient in operation. You get to decide which
is best for your purposes.

Because the parameters for a function can be supplied by a combination of calculation elements
(including functions), you can nest calculation functions within themselves. For example, you can
use the Replace() function with a size parameter of zero, to insert a phrase into a block of text:

Replace(“The fox jumps over the dog.”; 5; 0; “quick “)

This syntax returns “The quick fox jumps over the dog.” However by passing the preceding expres-
sion as the input parameter to a further Replace() function, you can insert a text string at a sec-
ond point in a single operation:

Replace(Replace(“The fox jumps over the dog.”; 5; 0; “quick “); 30; 0; “lazy “)

18_429006-ch12.indd 45518_429006-ch12.indd 455 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

456

Beyond the BasicsPart III

This expression returns “The quick fox jumps over the lazy dog.” Although the preceding expres-
sion is a conventional example of nesting, extending the scope of the original operation, you can
also place one function within another to perform complementary operations. For example, you
can make sure that a number never goes below 1 with the following expression:

Max(1; YourNumber)

The Max() function returns the highest number from those supplied to it as parameters, so if the
value in the field called YourNumber is greater than 1, it will be returned, but if it is lower, 1 will
be returned instead. Similarly, the Min() function can be used to determine an upper limit:

Min(10; YourNumber)

Here, the result will never exceed 10 because FileMaker will return the lesser of the two values
supplied. You can nest one expression within the other to ensure that YourNumber always falls
within the range from 1 to 10:

Max(1; Min(10; YourNumber))

With this expression in place (using a technique such as an auto-enter calculation/replaces existing
value, on the YourNumber field), you have set both upper and lower bounds for YourNumber,
using a single formula.

Boolean Operations
Many tasks you perform in a database implement decisions. If a student has achieved a certain
score, he may be admitted to the next grade. If the full amount of an invoice has been paid, its sta-
tus may be changed to Closed. These decisions are simple logical determinations you can build
into your database via calculations.

When you write a formula to compare values and determine a result, you use comparison opera-
tors. Comparison operators return a true/false result in numeric format where 1 is true and 0 is
false. This true/false result is called a Boolean result — meaning that the result is always either true
or false, and no other possibilities exist.

Zero, empty, and everything else
FileMaker interprets numbers (in fields, variables, and literal values) as Boolean according to the
rule that zero and empty values are false and other numbers (whether positive or negative, integer
or decimal fraction) are true. Text strings (containing no numerals), because they have no numeric
value, are treated as empty for the purposes of a Boolean test. However, text values that contain a
number (such as “Julie has 3 socks”) are interpreted as having a true Boolean value.

Date, time, and timestamp fields, because they also stored numeric values, are interpreted as true
when they hold a non-empty, nonzero value. Otherwise, they’re interpreted as false. Container
fields do not hold numeric data, but FileMaker interprets them as true if they’re not empty and
false if empty.

18_429006-ch12.indd 45618_429006-ch12.indd 456 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

457

Calculation Wizardry 12

CAUTION CAUTION If invalid data is imported into date, time, or timestamp fields, they can return false
when evaluated as a Boolean due to the presence of invalid data (that is, data that

doesn’t conform to the requirements of the field’s data type).

If you set up a number field to display a value list with only a single value of 1, checking or
unchecking the checkbox will change the value of the field from null (empty) to 1 and back.
Because FileMaker interprets null values as false and other values (such as 1) as true, such a field
can be used as a logical switch to control other calculations.

Implicit Boolean coding
Alternately, if you reference the AmountPaid field within an operation calling for a Boolean
result, FileMaker registers it as true if it contains an amount or false if it contains zero or is empty.
This coding is an implicit conversion of the field value to a true/false status. You might use this, for
example, to set a Paid flag on the invoice.

Although FileMaker handles this conversion for you, it is generally preferable to code your solution
explicitly rather than relying on FileMaker to interpret it for you. (That way, when you or another
developer looks at your code, you’ll have no doubt as to what you intended.)

Explicit Boolean coding
You can make Boolean behavior explicit in several ways. Perhaps the clearest and simplest is to
enclose the reference within FileMaker’s GetAsBoolean() function. So, for example,

GetAsBoolean(Invoice::AmountPaid)

always returns either zero (false) or one (true). Not only is this simple and direct, but it plainly
states the purpose of the expression.

Another way to make a reference to a field explicitly Boolean is to use it in a comparative operation:

Invoice::AmountPaid > 0

Because comparative operations always return a Boolean result, this expression is an acceptable
alternative way to make a field reference in your solution explicitly Boolean. However, in the case
of this example, you may want to avoid situations where a part-payment will set the payment flag,
so comparing the AmountPaid value to the TotalPayable value for the invoice is preferable,
rather than merely confirming that it is a nonzero amount. So the formula for your paid flag field
may best be

If(Invoice::AmountPaid ≥ Invoice::TotalPayable; “PAID IN FULL”)

When written in this way, your Boolean code is clear and unequivocal, leaving you in no doubt as
to its intent — and leaving FileMaker no room for alternative interpretations of your code.

NOTENOTE FileMaker’s interpretation of null values is also affected by the setting labeled Do Not
Evaluate When All Referenced Fields Are Empty. If this checkbox is enabled in the

Specify Calculation dialog, the calculation will return no result if the referenced fields are null.

18_429006-ch12.indd 45718_429006-ch12.indd 457 3/25/09 7:53:50 PM3/25/09 7:53:50 PM

458

Beyond the BasicsPart III

Variables — Calculation, Script, and Global
Memory variables — values such as calculation results or data held temporarily in application
memory — are both convenient and efficient (much faster than referencing a field, for example) as
ways to pass information between calculations or between expressions within a calculation.

FileMaker supports three essential kinds of memory variables for use in your solution:

n Calculation variables: Calculation scoped variables are those that have names that don’t
begin with a $ character.

n Local variables: This category includes all variables that have names commencing with
single $ character.

n Global variables: Global variables have names commencing with a pair of dollar sign
characters ($$).

The variable types differ in their scope and/or persistence and are therefore useful in different
ways. However, their usages aren’t immediately obvious from the names appearing in official docu-
mentation and common use. In particular, the use of the term script variables is misleading.

Significantly, all three kinds of variables can be defined in a calculation anywhere in your solution,
via the use of the Let() function. Moreover, although calculation variables can’t be defined or
referenced outside a calculation, the calculation in which they’re defined can occur within a script
or anywhere else in your code — for example, in schema, in a calculation defined as part of a but-
ton command, in a formula evaluated as part of conditional formatting, and so on.

Declaring calculation variables — the Let() function
Calculation variables exist only within the confines of a Let() statement within a single calcula-
tion expression. Such variables are defined singly or in a list at the beginning of the Let() func-
tion and persist only through to the closing parenthesis of the function they’re defined in (unless
explicitly cleared or redefined earlier in the function syntax). For example, the expression

Let(x = 10; 70 / x)

returns 7 because for the duration of the expression (between the enclosing parentheses of the Let()
function), the variable x has been declared as having a value of 10. When the expression 70 / x is
evaluated, x resolves to its declared value, and the formula is treated as 70 / 10. Similarly,

Let([x = 10; y = 70]; y / x)

also returns 7 because both the operative values x and y have been declared with their respective
values in the list expression (between the square brackets). Moreover, once a variable has been
declared, you can use it as part of the argument in the declaration of subsequent variables:

Let([x = 10; y = x * 7]; y / x)

18_429006-ch12.indd 45818_429006-ch12.indd 458 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

459

Calculation Wizardry 12

In this way, each named variable acquires a declared value for the purposes of the enclosed expres-
sion. If a variable name is reused in the list of variables in a single Let() statement, the later
declared values supercede earlier ones. If Let() statements are nested, the value of variables
declared in the enclosing statement can be accessed within enclosed statements, but not vice versa.
In other words, enclosed statement variables aren’t accessible outside the specific instance of the
Let() function where they’re declared.

Understanding variables’ scope
Variables with names not starting with dollar symbols are operable only within the confines of the
function where you define them. Thus, their scope is tightly constrained, they expire instantly, and
they can’t be referenced, even while evaluation is in process, anywhere else in the solution.

When a Let() statement variable’s name commences with a single dollar sign (for example, $x),
you can access the variable outside the calculation where you define it, but only while the current
instance of the currently running script is active (in other words, at the top of the script stack).

CROSS-REFCROSS-REF For a detailed discussion of FileMaker’s script-threading and the operation of the
Script Stack, refer to Chapter 8.

Such variables are termed local because, though accessible throughout the current file, they persist
only for the duration of the current script. They may also be considered script variables because in
addition to being declared in a Let() statement within a calculation expression, they can be cre-
ated independently by the use of the Set Variable[] script step or button command.

TIPTIP When no scripts are running, FileMaker deems a hypothetical Script Zero to be
at the top of the script stack. Therefore, if a local variable is declared while no

scripts are active (that is, in a calculation expression), it retains its value throughout the file
whenever the script stack is empty, for the remainder of the current file session.

When you declare a variable with a name commencing with two (or more) dollar signs, FileMaker
makes its value available throughout the current file regardless of the status of the script stack.
Variables of this type are called global variables because of their wider scope; however, they’re not
persistent — in other words, they’re constrained to the current file session. If you want a value to
persist between FileMaker sessions, you should store it in a standard (nonglobal) field and then set
your solution’s start-up script to retrieve and reinstate the value in a subsequent file session. Global
fields, like global variables, are session specific in a hosted solution.

NOTENOTE A file session is the period between when a file is opened and subsequently closed
on a particular workstation. If a file is closed and reopened, a new file session

begins, and any $$ variable values associated with the previous file session are lost.

Within their respective scope, each type of variable persists until explicitly destroyed. A variable is
destroyed in FileMaker by setting its value to null (“”), at which point the memory it has occupied
is released.

18_429006-ch12.indd 45918_429006-ch12.indd 459 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

460

Beyond the BasicsPart III

Benefiting from variables in a calculation
The use of the Let() function to declare variables in calculation syntax has several potential
advantages, especially in compound or complex expressions. Foremost among these advantages are

n The capability to calculate a component value once and use it multiple places in the calc
expression, thus reducing redundancy and minimizing the processor cycles required to
evaluate the expression

n The capability to break logic of a compound statement down into its elements and
improve readability, simplicity, and clarity

As an example of the elimination of redundancy, consider the following simple expression:

Item::Qty * Item::Price +
If(Item::Qty * Item::Price < 100; Item::Shipping)

The logic of this expression is straightforward: Customers aren’t charged shipping on orders over
$100. To resolve the logic, however, FileMaker must retrieve the Item::Qty and Item::Price
values from their respective fields twice and perform the multiplication twice, consuming slightly
more resources (processor cycles, memory, network bandwidth, and so on) in the process and tak-
ing slightly longer.

Instead, the components of the preceding calculation can be reworked as

Let(
Amt = Item::Qty * Item::Price;
Amt + If(Amt < 100; Item::Shipping)
)

In this reworking, you calculate the product of quantity and price only once, significantly reducing
the work involved in evaluating such a calculation — it’s almost halved. In more complex func-
tions where the time taken to calculate a component of the expression is significant, and especially
where one or more components may recur multiple times, the reduction in evaluation time is
greater and may make a significant difference to your solution usability.

CROSS-REFCROSS-REF For a further discussion of elimination of redundancy and efficient coding practices
in your solutions, refer to Chapter 19.

Text Processing and Parsing Functions
One useful capability in FileMaker’s calculation repertoire is the ability to modify text in your data-
bases in a wide variety of ways, including correcting errors; updating entries; organizing; sorting;
merging; separating words, lines, and sentences; and more.

18_429006-ch12.indd 46018_429006-ch12.indd 460 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

461

Calculation Wizardry 12

When your database contains e-mail addresses such as mary@greatgizmos.com, you’ll likely
need to convert them into a corresponding URL, such as one for the GreatGizmos Web site. Or
perhaps you need to extract all the part numbers from a file full of correspondence with a major
client. These tasks and many others are trivial when you’re familiar with the use of FileMaker’s text
processing functions.

Substitute, Replace, and Trim
One of FileMaker’s most versatile functions is Substitute(). You can use this function to swap
all occurrences of any character or sequence of characters in a field or text string for text you spec-
ify. For example, if you have a list of values (one on each line) that you’d prefer were presented
with a comma and space between each, you can achieve that elegantly with a calculation expres-
sion, such as

Substitute(YourList; ¶; “, “)

If the items on your list are preceded by bullet characters that have no place in your new comma sep-
arated presentation, you can remove them as part of the same function call by using the list syntax:

Substitute(YourList; [¶; “, “]; [“• “; “”])

TIPTIP Wherever parameter lists are supported in FileMaker calculations, each list item, as
in the preceding example, is enclosed within square brackets, and successive items

are separated by a semicolon.

The ability to perform multiple substitutions in a single function call makes your calculations both
powerful and efficient. Because the Substitute() function is case sensitive, if you need to
replace a word or phrase regardless of case, you may need to list all likely permutations. For exam-
ple, to ensure that the name of your database software is correctly capitalized wherever it occurs in
a text field, you could use

Substitute(YourTO::YourTextField;

[“filemaker; “FileMaker”];

[“Filemaker; “FileMaker”];

[“FILEMAKER; “FileMaker”];

[“FIleMaker; “FileMaker”];

)

When you need to replace a specific sequence of characters without regard to what they are, you’ll
be better served by the Replace() function. Unlike Substitute(), Replace() enables you
to specify the text to be modified by its position in the target string, rather than by matching it to a
string you supply.

18_429006-ch12.indd 46118_429006-ch12.indd 461 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

462

Beyond the BasicsPart III

Suppose that the value in a field always begins with a letter of the alphabet, followed by a punctua-
tion mark (but not always the same punctuation mark), a space or tab, and then some subsequent
text, and your objective is to make all of the second and third characters consistent. In such a situ-
ation, Substitute() is less useful — not only because the combination of characters to be
replaced may be different each time, but also because you don’t want to change other punctuation
later in the field. (You’re concerned only with the second and third characters in each field.) You
can achieve an update with surgical precision using a formula such as

Replace(YourTO::YourTextField; 2; 2; “. “)

which tells FileMaker to start at the second character and replace two characters with the string
you’re providing (a period followed by a space).

TIPTIP If you supply a zero as the third parameter for the Replace() function, it doesn’t
remove any text. Instead, it inserts text at the point determined by the second

parameter. For example, you can use this feature to add a space between the third and fourth
characters of a telephone number.

Before long, when editing or cleaning up text in your solutions, you face the challenge of superflu-
ous spaces at the start or (particularly) the end of a field value or text string. Spaces at the end of a
field can go unnoticed until you compare text or combine text together, such as when you’re adding
names to the top of a letter. As soon as you do, the extra spaces can create problems and produce
unwanted results.

FileMaker provides the Trim() function to enable you to efficiently discard leading and trailing
spaces without disturbing the spaces between words). So

Trim(“ The Hendersons will all be there… “)

returns “The Hendersons will all be there…” without all the extra space before and after. Similarly,:

TrimAll(“ For the benefit of Mr Kite… “; 1; 1)

returns “For the benefit of Mr Kite…” with just a single space between each word, as well as the
superfluous leading and trailing spaces removed.

NOTENOTE The TrimAll() function also has uses controlling full- and half-width spaces when
working with non-Roman characters and words. Consult the online help entry on

this function for full details of all its configuration options.

Left, Right, and Middle
When you get down to working with text, you frequently need to extract part of the text from a
larger block. For example, if names have been imported into your solution in a single field, but
you require them to be separated into Title, FirstName, and LastName fields, you’re facing a
minor challenge known as parsing.

18_429006-ch12.indd 46218_429006-ch12.indd 462 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

463

Calculation Wizardry 12

The Left(), Middle(), and Right() functions provide you with the means to extract a spe-
cific number of characters from either end, or anywhere within a string of text. For example, if
your ClientDetails field contains the name Mr Fandangle Pranderghast, the following three
expressions return the three separate text strings Mr, Fandangle, and Pranderghast, respectively:

Left(Contacts::ClientDetails; 2)

Middle(Contacts::ClientDetails; 3; 9)

Right(Contacts::ClientDetails; 12)

These functions are powerful and precise — provided that you’re able to accurately supply them
with the correct coordinates (more on that in the following section, “Position and PatternCount”).

Another example of using these great functions is the elimination of unwanted characters at the
start or end of a text string. For example, if you want to remove the punctuation from the end of a
sentence in a field, you can use

Left(YourSolution::YourTextField; Length(YourSolution::YourTextField) - 1)

Whatever is in the text field when this expression is evaluated will be returned with one character
removed from the right.

Similarly, when you have fields containing To Do list items in the form

A: Don’t forget your lunch!

and you want to discard the first three characters and the trailing punctuation mark, you can
accomplish that in a single stroke with the expression

Middle(ThingsToDo::Reminder; 4; Length(ThingsToDo::Reminder) - 4)

By starting at character 4, it leaves off the first three characters, and by running for the length of
the string minus 4, it stops short of the last character, giving as its result “Don’t forget your lunch”.

Position and PatternCount
The text processing operations’ capability increases greatly when you can instruct FileMaker to
look for particular characters or text strings and return their position or the number of them
encountered. FileMaker provides the Position() and PatternCount() functions for this
purpose, and they add flexibility and precision to the text-handling arsenal.

For example, in the following example, FileMaker is extracting text from the middle of a string
commencing at the fourth character:

Middle(ThingsToDo::Reminder; 4; Length(ThingsToDo::Reminder) - 4)

18_429006-ch12.indd 46318_429006-ch12.indd 463 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

464

Beyond the BasicsPart III

However, this syntax produces the desired result only if all the strings you apply the procedure to
are structured the same. If any of them has an additional (leading) character or missing initial char-
acter, the fixed start parameter results in an inappropriate result. In other words, the first character
of the required text may sometimes be 5 or 3 rather than 4.

Because Position() returns the exact location of a specified character or starting location of a
string, it can be incorporated to lend greater accuracy to the text extraction:

Position(ThingsToDo::Reminder; “: “; 1; 1)

This expression returns the location (in characters starting from the left) of the first occurrence of a
colon and space. By using the result of the Position() expression as a reference point (adding
two to it to determine the start of the extract string), you can make your Middle() operation
responsive to changes in the format of the Reminder text.

In the form shown in the preceding example, the Position() function is set (via its last two
parameters) to locate the first occurrence of the search string (“: “) starting from the first character
of the content of the ThingsToDo::Reminder field. However, you can structure the function to
operate differently by supplying different values for these parameters:

Position(ThingsToDo::Reminder; “: “; Length(ThingsToDo::Reminder); -1)

The preceding syntax instructs FileMaker to begin its search at the end of the field (Length
(ThingsToDo::Reminder)) content and to search backwards(-1). Thus, with this variant of
the expression, the last occurrence of the search string’s location is returned, rather than the first.

NOTENOTE If the search string is not present in the supplied text (or field value), the Position()
function returns a zero.

In some cases, however, you’ll want to confirm the presence or frequency of occurrence of the
search string before proceeding to act on it. For example, when you need to locate the middle
occurrence of an item in a continuous text sequence (where each item is prefaced by a label and
colon, as in the previous example), you can determine the number of items using the following
syntax:

PatternCount(ThingsToDo::Reminder; “: “)

Thus, to calculate the middle occurrence, you should divide by two and enclose the result in the
Ceiling() function:

Ceiling(PatternCount(ThingsToDo::Reminder; “: “) / 2)

To ascertain the location of the middle occurrence of the search string, you can use a compound
formula, where the preceding expression is supplied as the occurrence parameter for the
Position() function:

Position(ThingsToDo::Reminder; “: “; 1; Ceiling(PatternCount(ThingsToDo::Reminde
r; “: “) / 2))

18_429006-ch12.indd 46418_429006-ch12.indd 464 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

465

Calculation Wizardry 12

This result, in turn can supply the start parameter to the Middle() function, when you are seek-
ing to extract text from the middle To Do list item in a text block. By using a comparable tech-
nique to determine the location of the end of the middle item (and subtracting the end from the
start to determine the size of the middle item), you’re able to neatly extract (parse) the middle item
from a block of text containing multiple items. For example, when the text in the ThingsToDo::
Reminder field is as follows,

 A: Don’t forget your lunch! B: Deliver term papers to office. C: Collect bus pass! D: Pay electricity
bill. E: Photocopy timetable.

you can use a compound construction along the following lines to extract the middle item (Collect
bus pass!) from the field:

Let([
 ItemNo = Ceiling(PatternCount(ThingsToDo::Reminder; “: “) / 2);
 StartPos = Position(ThingsToDo::Reminder; “: “; 1; ItemNo) + 2;
 EndPos = Position(ThingsToDo::Reminder; “: “; StartPos; 1) - 2];
Middle(ThingsToDo::Reminder; StartPos; EndPos - StartPos)
)

NOTENOTE In the preceding example, I employed the Let() function to separately calculate
the expression’s components, declaring each as variables, and then combined

those variables in the final line. Determining parameters dynamically increases the clarity and
efficiency of a compound expression used to parse elements dynamically from a text string.

While combinations of Position() and PatternCount(), along with the Left(),
Middle(), Right() functions, are sufficient to isolate and extract a word or phrase from a lon-
ger text string, doing so can be challenging. FileMaker makes it easier by giving you a variety of
other options, including the ability to extract text in whole words rather than individual characters.

The xWords suite
The LeftWords(), MiddleWords(), RightWords(), and WordCount() functions
streamline many text operations, giving you a direct and simplified method of performing many
language and narrative related manipulations and analyses. Working in whole words takes much
of the drudgery out of parsing and assembling text.

When parsing text by whole words, FileMaker uses separator characters to recognize the start and
end of each word. The most obvious example of a word separator is the space, but FileMaker also
treats many common punctuation marks and glyphs as word separators. For example, in addition
to spaces, the following characters are treated as word separators:

n < > ? / ; “{ } [] | \ ~`! @ # $ % ^ & ¶ • * () _ + =

Additionally:

n A period is treated as a word separator if the characters on either side of it are a letter and
numeral, but not if both characters are of the same type, such as two letters or two
numerals.

18_429006-ch12.indd 46518_429006-ch12.indd 465 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

466

Beyond the BasicsPart III

n A forward slash, colon, comma, and hyphen are treated as word separators except when
the characters on both sides of them are numerals (useful for selecting dates, times, and
numbers as single words).

n An apostrophe is treated as a word separator except when the characters on both sides of
it are letters.

n Both a tab character and a carriage return, as well as a literal pilcrow (¶) character, are
treated as word separators for all cases.

By applying these rules, FileMaker offers a relatively automatic method of text manipulation. Using
this capability, text in the form

A: Don’t forget your lunch!

can be more easily reduced to “Don’t forget your lunch” with the expression:

RightWords(ThingsToDo::Reminder; 4)

Because an artifact of the xWords functions is that they omit leading and trailing word separator
characters from the returned (or counted) string, they’re often exploited as a way to strip unwanted
characters, including spaces, carriage returns, and punctuation, from the ends of a text string. For
example, the expression

LeftWords(“ • Endless rain into a paper cup??! ¶ “; 9999)

returns “Endless rain into a paper cup”, cleanly excising the bullet, tab, punctuation, carriage
return, and associated spaces from both ends of the text string — rather like a Trim() function
on steroids!

Parsing in practice
The logic of parsing operations (location and extraction of text within a field or other string or
value) conforms to a common set of principles whether you’re using functions such as Left(),
Middle(), and Right(), or the powerful yet simple xWords functions. Either way, you must
locate a start point and an end point and then pass these parameters to the appropriate function to
grab everything in between.

Sometimes, however, what you leave out, not what you include, makes the difference. Consider a
situation where you want to omit a particular text string that occurs in several thousand records.
For example, in a tournament database, each match will be entered in the following form:

Peter Van Elking - challenging - Jerry Glover

Janice Thorn - rematch - Jenny-Lee Shackles

Gemma P. Harding - face-off - Susan Marchent

18_429006-ch12.indd 46618_429006-ch12.indd 466 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

467

Calculation Wizardry 12

However, you may be asked to produce a program where the names are listed with a simple
comma between the opponents’ names instead. One way to do this is to use the Position()
function to locate the “–” characters and use that to reassemble the strings as follows:

Left(Game::Set; Position(Game::Set; “ – “; 1; 1) - 1) & “, “ &
Right(Game::Set; Length(Game::Set) - Position(Game::Set; “ – “; 1; 2) - 2)

When this expression is applied to each line (that is, each Game::Set field value) in turn, the
names are returned with a comma in place of the intermediary dashes and words.

In this expression, the location of each of the en dashes is determined by the Position() func-
tions and passed respectively to the Left() and Right() functions to extract the name from
either end of each string, despite the fact that the length of the intervening text is not consistent.
The two names are then joined in a new string using the concatenation operator (&), along with a
separating comma and space supplied as a text literal (and therefore enclosed within quote marks).

Text Formatting Operations
FileMaker’s suite of text formatting calculation functions enables you to control character level
(embedded) formats applied to text within fields in your database, including applying and remov-
ing custom text style, color, size, and font attributes.

You can display text you’ve formatted via calculation in calculation fields, set it into conventional
data fields via script, or apply (or remove) formatting using auto-enter calculations, depending on
the content of the field (or other fields in the record).

Applying text formatting
You can use any combination of the TextFont(), TextColor(), TextSize(), and
TextStyleAdd() functions to apply formatting. Formatting you apply with any one of these
commands is added to the specified text’s existing character formatting (if any).

To apply more than one style at once, you can list multiple style parameters within a single
instance of the TextStyleAdd() function:

TextStyleAdd(“Mad World”; bold + italic + underline)

The preceding expression results in the text Mad World.

Similarly, you can apply multiple formats simultaneously by nesting two or more format functions.
For example, to simultaneously change the font of a text string to Verdana and the size to 11 point,
you can use

TextSize(TextFont(“I Saw Her Standing There”; “Verdana”); 11)

Formatting applied in this way overrides field formats applied to the field object on a layout (and
also conditional formats applied to the layout field object).

18_429006-ch12.indd 46718_429006-ch12.indd 467 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

468

Beyond the BasicsPart III

CROSS-REFCROSS-REF For a detailed discussion of formatting and the different ways it’s applied and man-
aged in FileMaker Pro, refer to Chapter 9.

Removing text formatting
You can remove text formatting either selectively or indiscriminately. To remove all fonts, styles,
font size, and font color attributes from a text string, use the formula

TextFormatRemove(YourTable::YourTextString)

This calculation returns the text in the YourTable::YourTextString field as plain text that is
stripped of all character styles and paragraph formatting

However, if you prefer to remove some aspects of the custom formatting while retaining others,
you can do so with precision by using the TextFontRemove(), TextColorRemove(),
TextSizeRemove(), and TextStyleRemove() functions. You can remove a single format
with each of these functions by supplying an associated format parameter. Or you can remove all
formats of the relevant type by supplying a text string and no format (size, color, style, or font)
parameter. For example, to remove bold character styling while leaving other styles (italic, under-
line, and so on) in place, use an expression such as:

TextStyleRemove(YourTable::YourTextString; Bold)

As when adding formatting, you can nest multiple functions (if desired) to remove a number of
specific format attributes simultaneously (while leaving others in place).

Applying selective formatting
You can combine logic and formatting functions to apply to text (or parts of the text, such as indi-
vidual words) according to the data in your solution. For example, to display part of a sentence in
italics depending on the data available, you can use the following formula:

“This issue is “ &
TextStyleAdd(Issues::Status; If(Issues::Status = “Urgent”; Italic; Plain))

Alternatively, to spotlight all occurrences of a search term in a block of text using bold formatting,
you can use

Substitute(Issues::Description; Issues::gSearchTerm; TextStyleAdd(Issues::gSearch
Term; Bold))

This formula locates all occurrences of the value in the gSearchTerm field within the content of
the Description field, changing each to bold formatted text. Because formatting functions can
be nested, the preceding example can be extended to apply color as well as style attributes, by
enclosing the final part of the expression within an additional function:

Substitute(Issues::Description; Issues::gSearchTerm; TextColor(TextStyleAdd(Issu
es::gSearchTerm; Bold); RGB(0; 0; 255)))

18_429006-ch12.indd 46818_429006-ch12.indd 468 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

469

Calculation Wizardry 12

TIPTIP The TextColor() function accepts, as its second parameter, a color number in
the range from 0 (black) to 16777215 (white), where the 8-bit color value of red,

green, and blue (each in the range from 0 to 255) is combined using the following formula:

Red * 256^2 + Green * 256 + Blue

For convenience, FileMaker provides the RGB() function for computing this value from the
individual values for red, green, and blue. However, if you know or can precalculate the number
for a desired color, you can enter the number directly into the TextColor() function.

 Creating a Format button
If you routinely need to mark words or passages in a text field, you can easily create a button that
applies the marking to the selected text. For example, to underline text, follow these steps:

 1. Attach the Insert Calculated Result[] button command to your button.

 2. Disable the Select Entire Contents checkbox.

 3. Leave the Go To Target Field checkbox unchecked and specify the calculation as

Insert Calculated Result[
TextStyleAdd(Middle(Get(ActiveFieldContents);

Get(ActiveSelectionStart); Get(ActiveSelectionSize));
Underline)

]

 4. Close the Button Setup dialog and name the button (for example, with the U symbol).

You can then click the button to apply character formatting to selected text in any accessible field.

NOTENOTE Because the button described here works on the basis of insertion (overwriting the
current selection with a formatted copy of itself), the selection will be lost, and the

cursor will appear at the end of the selected text after the formatting is applied. If you don’t want
this to happen, consider attaching a script to the button and configure the script so that it cap-
tures and stores the selection (in a local variable), inserts the formatted text, and reinstates the
selection of the formatted text.

You can use the Get(ActiveSelectionStart) and Get(ActiveSelectionSize) functions
to capture the current selection (or cursor position) and the Set Selection[] script com-
mand to reinstate the selection subsequently.

In this case, the button applies but doesn’t remove the formatting. If you need to also simplify the
process of removing formatting, you can provide a second button using the essentials of the same
procedure while employing the TextStyleRemove() function. Alternatively, you can use a
more complex calculation to determine whether the selected text is underlined and either remove
or apply underlining accordingly. This enables a single button to toggle the underline formatting.

To determine within a calculation whether text is underlined, you can retrieve the selected text
as CSS using FileMaker’s GetAsCSS() function, search it for the presence of the text-
decoration:underline; tag, and modify the result accordingly. You can incorporate such an
expression into a scripted process to provide buttons that add or remove formats dynamically.

18_429006-ch12.indd 46918_429006-ch12.indd 469 3/25/09 7:53:51 PM3/25/09 7:53:51 PM

470

Beyond the BasicsPart III

CROSS-REFCROSS-REF The appendixes include references to online resources where you will find exam-
ples of techniques for creating scripted style buttons for Filemaker Pro 10.

Dates, Times, and Timestamps
As part of almost every solution I’ve seen, storing and tracking dates or times is needed, whether to
record the creation date of records, the acquisition date of assets, the start time of a recording ses-
sion, the expiration date of perishable goods, or myriad other temporal factors. In many cases, you
can significantly increase a solution’s utility by performing checks and calculations using date and
time values.

FileMaker uses a robust method of storing and manipulating date, time, and timestamp values, and
when you comprehend the basics, many operations become simple to understand and execute.

How FileMaker manages dates
FileMaker stores all dates internally as a numeric value representing the number of days since
1/1/0001 inclusive. For example, 2 January 0001 is stored as 2, whereas 1/1/2010 is stored internally
as the number 733773. You don’t normally see this value because FileMaker receives and displays
accepted date formats (according to the current file or system regional settings) — but you don’t need
to take my word for it. Enter this calculation:

GetAsNumber(Date(1; 1; 2010))

FileMaker returns the number 733773.

What is great about this storage format is that you can add and subtract using dates, and FileMaker
will resolve the calculation appropriately. For example, the expression

GetAsNumber(Date(3; 1; 2008)) - GetAsNumber(Date(2; 1; 2008))

returns 29, because there are 29 days between February 1 and March 1, 2008 (it was a leap year).

Although the examples here cite explicit dates for the sake of clarity, the calculations work the
same way when the values involved are references to date fields, variables containing date values,
or functions or expressions returning dates, such as Get(CurrentDate).

Plotting time
FileMaker stores all times internally as a numeric value representing the number of seconds since
midnight. For example, when you enter 9:25 a.m. into a time field, it’s stored internally as the
number 33900 but displayed as 9:25:00. Enter the following calculation expression:

GetAsNumber(Time(9; 25; 00))

It returns the number 33900.

18_429006-ch12.indd 47018_429006-ch12.indd 470 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

471

Calculation Wizardry 12

Storing values in this form enables you to perform calculations comparing times (to get the differ-
ence between them in seconds). So, for example, the following expression returns 180 — the num-
ber of seconds in three minutes:

GetAsNumber(Time(9; 28; 00) - Time(9; 25; 00))

However, if you remove the enclosing GetAsNumber() function, FileMaker returns the differ-
ence as a time value in the form 0:03:00.

Using these temporal arithmetic capabilities in your solutions could not be easier. For example,
when you have a start and stop time for any activity, you can determine the duration of the activity
with an expression such as:

Meeting::ConcludeTime - Meeting::StartTime

Similarly, you can calculate the appropriate end time of a scheduled 90-minute meeting that starts
at, say, 10:42:16 a.m., by entering the start time into a time field in FileMaker and using the fol-
lowing calculation expression:

Meeting::StartTime + 90 * 60

Such calculations enable you to deal with time calculations falling within a given day with ease.
However, when you encounter the need to calculate time periods spanning several days, the
Timestamp data format is better suited to the task.

The number of seconds in 2009 years
FileMaker stores timestamps internally as a numeric value representing the number of seconds since
midnight preceding 1/1/0001. In this way, a timestamp value combines both date and time into a
single reference value. Thus, the timestamp value for 9:25 a.m. on 1/1/2010 is stored internally as
63397934700— a fact that you can readily demonstrate by having FileMaker resolve the expression:

GetAsNumber(Timestamp(Date(1; 1; 2010); Time(9; 25; 00)))

Working with timestamp data, you combine the benefits of both date and time calculations,
enabling you to compare times many days apart to easily determine the amount of time elapsed
between them. For example, the expression

Timestamp(Date(1; 1; 2010); Time(9; 25; 00)) –
Timestamp(Date(1; 1; 2009); Time(9; 25; 00))

returns 8760:00:00, which is the number of hours in 365 days (365 × 24 = 8760).

Even if you’ve chosen to store date and time values in their own respective formats, you can still take
advantage of timestamp capabilities when resolving calculations spanning days or weeks. For example,

Timestamp(Trip::EndDate; Trip::EndTime) –
Timestamp(Trip::StartDate; Trip::StartTime)

is one of the more straightforward ways to calculate a trip of several days’ duration’s total length.

18_429006-ch12.indd 47118_429006-ch12.indd 471 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

472

Beyond the BasicsPart III

Juggling days, months, and years
When you’re working with either date or timestamp values, being able to perform simple math
operations on the component values can prove invaluable. For example, just as subtracting one
date from another works to give a duration, you can also add or subtract numbers from date val-
ues. For example:

Get(CurrentDate) + 7

returns the date of the corresponding day of the following week. Similarly,

Timestamp(Get(CurrentDate) + 7; Time(9; 0; 0))

returns 9:00am on the corresponding day of the following week.

By combining other options from among FileMaker’s date and time functions, you can calculate
many other useful intervals and dates. For example:

Get(CurrentDate) - DayOfWeek(Get(CurrentDate)) + 6

always returns the date of the current week’s Friday.

NOTENOTE FileMaker assigns day numbering based on a week starting on Sunday (day 1) and
concluding on Saturday (day 7). If you want to work with weeks that start on a dif-

ferent day (such as Monday), you’ll have to adjust your calculations for this.

Moreover, using the same principle, but with a little additional sleight of hand, you can use an
expression such as

DateValue + Choose(Mod(DayofWeek(DateValue), 7), -1, 1)

to return the date of the nearest week day. In other words, if the date falls on a Saturday, the date
returned is the preceding Friday; if the date falls on a Sunday, the date returned is the following
Monday; but if the date is a week day, it is returned without change.

By extending these techniques, you can calculate the date of the corresponding day of the next
month with the expression

Date(Month(Get(CurrentDate)) + 1; Day(Get(CurrentDate)); Year(Get(CurrentDate)))

NOTENOTE If no corresponding day is in the following month (such as when it is the end of the
month and the next month is shorter than the current month), FileMaker will return

an equivalent date value counting forward in days from the start of the next month. For example,
if the current date is 31 January 2009, the calculation provided will return 3 March 2009.

or the date of the last day of the preceding month (even when the current month is January) using

Date(Month(Get(CurrentDate)); 0; Year(Get(CurrentDate)))

18_429006-ch12.indd 47218_429006-ch12.indd 472 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

473

Calculation Wizardry 12

or the date of someone’s birthday in the current year, using

Date(Month(Person::DateOfBirth); Day(Person::DateOfBirth);
Year(Get(CurrentDate)))

Moreover, you can combine the preceding elements to accurately calculate a person’s current age
in whole years using a relatively simple expression such as

Year(Get(CurrentDate)) - Year(Person::DateOfBirth) -
GetAsBoolean((Month(Get(CurrentDate)) + Day(Get(CurrentDate)) / 100) <
(Month(Person::DateOfBirth) + Day(Person::DateOfBirth) / 100))

Many other examples are possible, using different combinations of FileMaker Pro 10’s available
date and time functions. With a little logic and ingenuity, you have all the resources you need to
gain mastery over a wide range of date and time calculation requirements.

Summary Data
FileMaker’s summary field options (Total, Average, Count, Minimum, Maximum, Standard
Deviation, and Fraction of Total) accommodate a variety of basic requirements for analyz-
ing and reporting on your data. However, you can greatly extend these capabilities’ scope by bring-
ing FileMaker’s calculation capabilities into play.

To complement summary fields, FileMaker provides you with a comparable range of calculation
functions to aggregate data in various ways, producing calculated summary data.

Using aggregate functions
You can use aggregate functions in three essentially different ways:

n To summarize values in a supplied array or in multiple designated fields on the current
record

n To summarize values in nonempty instances of a repeating field

n To summarize values in a field across all related records

FileMaker does not support combinations of the first two methods. If you supply a list of fields to
an aggregate function such as Sum(), the returned result ignores values in the second or subse-
quent repetitions of those fields. (In other words, only values in the first repetition of each refer-
enced field are summed.) Only where a single field is referenced do the aggregating functions
address values in field repetitions.

Similarly, you can’t combine the first and last methods. If you include a reference to a related field
in an array of fields being passed to a summary function, FileMaker ignores values in the second or
subsequent related records, summarizing the values on the current record along with the first
related record only.

18_429006-ch12.indd 47318_429006-ch12.indd 473 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

474

Beyond the BasicsPart III

You can, however, combine the last two methods. When you reference a related repeating field in
an aggregate function, FileMaker summarizes the values in all repetitions of all related records.

When you reference fields in the current TO within an aggregating calculation as in

Average(Score1; Score2; Score3)

FileMaker determines an average with respect to values in the Score1, Score2, and Score3
fields in the current record only, without regard to other records in the found set. Similarly, if you
reference a repeating field, such as

Average(Score)

in a record where the Score field has three repetitions, FileMaker determines an average of the
nonblank repetition values in the current record only. Meanwhile, if you reference a related field
within an aggregating function, such as

Average(Games::Score)

where Games is a related TO, FileMaker returns the average of values in nonempty instances of the
Score field on all Games records related to the current record.

When supplying an array of values to an aggregate function, you can include any mix of constant
values, field references, variables, and expressions. For example, if you enter the following expres-
sion into a calculation in an InvoiceLines table:

Min(100; InvoiceLines::Value; InvoiceLines::Qty * InvoiceLines::Price; $$var)

FileMaker returns a result representing the lowest of the four values:

n 100

n value (if any) in the InvoiceLines::Value field

n product of Qty * Price on the current InvoiceLines record

n numeric value (if any) of the $$var variable at the time the calculation is evaluated

NOTENOTE Should any of the supplied references or expressions in an array of values passed to
an aggregate function evaluate to null, they’re excluded from the calculation.

The ballad of Max and Min
Among the aggregating functions, Max() and Min() are particularly useful for the ways they
work together when you define limits or ranges.

In the example in the preceding section, given that the number 100 appeared as one of the values
in the array being passed to the Min() function, the number returned by the expression will
never be higher than 100. Thus, the Min() function is being used to set a maximum value for the
field to which it is applied. At first glance, this setup may seem counterintuitive, but its logic is
sound (so much for intuition!).

18_429006-ch12.indd 47418_429006-ch12.indd 474 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

475

Calculation Wizardry 12

Similarly, by applying Max(N; YourValue) to a value in your solution, you can establish a
minimum — the resulting value will never be lower than N. You can combine the two functions
into a single expression to set both an upper and lower limit, containing a value within a fixed or
variable domain.

CROSS-REFCROSS-REF For additional details on the use of the Max() and Min() functions, refer to the
example of their use with Evaluate() in the section titled “The value of Evaluate()”,

 later in this chapter.

Referencing summary fields
An essential difference between the ways summary fields and aggregate calculations behave lies in
the fact that summary fields always calculate with respect to the found set, whereas aggregate func-
tions act on the current record or the related record set, without regard to the found set. Moreover,
summary fields depend upon the sort order to tabulate and break the data into Sub-summaries
when viewed in Browse mode, Preview mode, or in printed output.

You can, however, combine calculation capabilities with the behavior of summary fields in various
ways, by including references to summary fields within calculations. For example, in a table con-
taining scheduled examinations for a college semester, summary fields defined to return the
Minimum of the ExamDate field and the Maximum of the ExamDate field will dynamically
return the start and end of the exam period for the semester. Additionally, when a Find is done to
locate the exams for a particular course or a particular student, the summary fields update to show
the start and end of the exam period for that course or individual.

In this example, when you need to determine the length of the exam period — either overall or for
a particular found set of exams — you can do so by defining a calculation field referencing the
summary fields:

1 + sLastExam - sFirstExam

Here, sLastExam and sFirstExam are the summary fields providing the maximum and minimum
of ExamDate, respectively. This example produces a valid result across the found set in the exams
table as a whole, but will not produce separate Sub-summary results for each student or course when
the data in the examinations table are included in a report. To have the calculation return separate
Sub-summary results for each group of records when the found set is sorted, you should enclose the
references to the summary fields within the GetSummary() function, as follows:

1 + GetSummary(sLastExam; cSortBy) - GetSummary(sFirstExam; cSortBy)

In this example, cSortBy is the field used to sort the examination table records by course or stu-
dent according to the report required. The calculation result returned now correctly reflects the
Sub-summary values of the sLastExam and sFirstExam summary fields for grouped data.

CROSS-REFCROSS-REF For a further discussion of techniques for calculating a multiple-use sort field for
retrieval of summary data according to two or more break fields (as per the

cSortBy field in the preceding example) refer to the section “Layers of Abstraction,” later in this
chapter.

18_429006-ch12.indd 47518_429006-ch12.indd 475 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

476

Beyond the BasicsPart III

Lists and Arrays
In solutions of all kinds, you frequently require ways to retrieve and manage sets of values — often
as lists or arrays. The essential techniques are much the same whether you’re retrieving a list of the
most common symptoms of an illness, a list of the top three students in each class, a list of low-
stock items to be reordered, or a list of tasks to be performed before next Monday’s meeting.

A list is any sequence of data elements (generally of the same or similar type), and an array is the
mechanism use to store or handle such data. The simplest structure for an array is a delimited list,
where each list item is separated from the next by a known (reserved) character or sequence of
characters — and the most ubiquitous form of such arrays is the carriage-return (CR) delimited list
where each list value is on a separate line. In this context, the character used as a delimiter is
reserved arbitrarily by the user or developer rather than by FileMaker (though FileMaker does pro-
vide support for external file formats using a variety of common delimiter characters, such as tabs
and commas).

Retrieving values as a list
FileMaker provides several powerful features for the retrieval of lists of values, each applicable to
different requirements and operating according to its own rules.

The first and longest-standing method is the creation of value lists (either custom lists, or lists depen-
dent on field indices), and the retrieval of their contents via the ValueListItems() function.
This method requires the separate configuration of the list (via the Manage ➪ Value Lists command
and associated dialogs) and a reference to it by name from within the preceding calculation function.
Values are returned as a CR-separated list in an order determined by the value list referenced — in
other words, where values are sourced from a database field, listed values are sorted in ascending
order according to the data type assigned to the referenced field.

A second method of retrieval of CR-separated values is via the List() function. As an aggregat-
ing function, you can use List() to return a list from an array of supplied elements including
any combination of constant values, referenced fields, expressions, and variables:

List(100; InvoiceLines::Value; InvoiceLines::Qty * InvoiceLines::Price; $$var)

As is the case for other aggregating functions, null values are ignored (and do not appear as empty
lines in the resulting list of values).

Similarly, you can use List() to return all nonblank values from a repeating field on the current
record, or from a related field (in which case values from all related records will be returned).

In addition, you can use the GetNthRecord() function, alone, in a compound expression, or in
a custom function to assemble a custom list of values, either from field values among records in the
found set, or from field values among related records.

CROSS-REFCROSS-REF For additional information regarding custom functions and their uses, refer to
Chapter 18.

18_429006-ch12.indd 47618_429006-ch12.indd 476 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

477

Calculation Wizardry 12

Similarly, if you’re working with repeating fields or repeating variables, you can use standard array
notation, such as YourField[7] or $YourVariable[8], to build a custom CR-separated list
of values for further manipulation. In the case of repeating fields, you can also use the
GetRepetition() function to reference the values in specific repetitions (cells).

Managing lists — the xValues functions
Extending the parsing functions detailed in the section titled “Text Processing and Parsing
Functions” earlier in this chapter, FileMaker provides you with a suite of functions purpose-built
for managing values in lists: LeftValues(), RightValues(), MiddleValues() and
ValueCount(). In combination, these functions enable you to combine lists, separate lists, and
add and remove list values.

CAUTION CAUTION Although the LeftValues(), RightValues() , and MiddleValues() func-
tions are in many respects equivalent in operation to the Left(), Right(), and

Middle() functions, dealing with whole lines of text rather than individual characters, an
important difference is that the xValues functions always include a trailing carriage return on
the result, even in cases where no trailing carriage return was present in the original string being
interrogated. For example:

LeftValues(“Line One.”; 1)

returns “Line one.¶” In other words, it adds a trailing carriage return not present in the original
string.

NOTENOTE Carriage return characters are always represented in calculation code by the pilcrow
(¶) character.

The PatternCount() function lets you measure a text string’s contents. This useful test helps
you confirm that a string contains what you’re looking for, before your calculation proceeds to
extract it, and also helps to determine the contents of a string without examining it exhaustively.
Why not let FileMaker do the work for you?

One of the many invaluable uses of PatternCount() is determining the number of times an
entry appears in a list. For example, if you have a list of late returns to your school Library, you
may want to check how many times the name of a certain student appears on the list. Although
PatternCount() can do this search for you, there is a trick to making it work reliably.

If you simply have FileMaker search the list for a name — say, “Mary” — you risk also inadver-
tently counting entries for Maryanne or perhaps Rosemary, or some other name of which Mary is
a substring. (Note: PatternCount() is not case-sensitive.) To address this problem, I recom-
mend that you enclose the search item within word or list delimiter characters. For example, with
a carriage-return delimited list, place a carriage return at either end of the search string to ensure
that only complete-value matches are counted. For this search to work, you must also ensure that
the list and each item within it is enclosed within leading and trailing carriage returns; otherwise,
the first and last list values, and any adjacent values, will not qualify to be counted because they
won’t match to a search value having a carriage return on either side. The resulting expression is

18_429006-ch12.indd 47718_429006-ch12.indd 477 3/25/09 7:53:52 PM3/25/09 7:53:52 PM

478

Beyond the BasicsPart III

PatternCount(¶ & Substitute(Library::LateReturnsList; ¶; “¶¶”) & ¶; “¶Mary¶”)

The preceding expression returns 3 if Mary’s name appears three times in the LateReturnsList
field.

Extracting one value from a list
As is often the case, FileMaker provides multiple ways to solve a given problem. And the extraction
of a specific value from a list is no different. One of several ways to extract, say, the third value
from a list is to use the MiddleValues() function, with a “start” parameter of 3 and “size”
parameter of 1:

MiddleValues(Library::LateReturnsList; 3; 1)

While the preceding method works and is straightforward to implement, it returns the text of the
third list entry with a trailing carriage return. If the purpose of your calculation is assembly of a
new list and you’re adding the extracted item to it, the trailing carriage return is of benefit because
you won’t have to add a carriage return before appending a subsequent item. However, for most
other purposes, the trailing carriage return is either redundant or problematic.

For cases where you want to extract a single list value without a trailing carriage return, FileMaker
provides the GetValue() function. Thus, the expression

GetValue(Library::LateReturnsList; 3)

performs the task with simplicity and efficiency, returning the referenced value (in this case, the
third) without a trailing return.

Adding or inserting a list value
Adding an item to the end of a list is straightforward if you know whether the list already has a
trailing carriage return. If it does, and assuming that the list is in a field called Roster in a table
called Library and the new value to be added is in a global field called gNewValue in a
Utility table, you can use

Library::Roster & Utility::gNewValue

If the same list doesn’t have a trailing return, you should use

Library::Roster & ¶ & Utility::gNewValue

The preceding example appends the required return as well as the new value. However, both these
approaches are fragile and may produce undesired results if the field is not in the state you expect.
A far more robust approach is to have your calculation check for the presence of a trailing carriage
return, adding one only if necessary:

Library::Roster & If(Right(Library::Roster; 1) ≠ ¶; ¶) & Utility::gNewValue

18_429006-ch12.indd 47818_429006-ch12.indd 478 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

479

Calculation Wizardry 12

The preceding technique is a robust way of adding a value to the end of your list, but if you want
to insert the new value into the midst of the list, you require a different approach. For example, if
you want to insert a value after the fourth value in a lengthy list, you could split and recombine the
list (inserting the new value between the parts) using an expression such as

LeftValues(Library::Roster; 4) &
Utility::gNewValue & ¶ &
RightValues(Library::Roster; ValueCount(Library::Roster) - 4)

By altering the number in the first and last lines of the formula, you can vary the position in the list
where the new value will be inserted. In the example, the new item becomes the fifth item in the
list. However, when you change both 4s to 7s, the new item is inserted as the eighth list item.

Although you can insert a value in other ways, such as by using the Replace() function, the
preceding method has the advantage that it gracefully handles a situation where the list contains
fewer items than the position specified in the formula. For example, if the list in the Library::
Roster field contains only two items, the preceding expression simply appends the contents of
Utility::gNewValue to the end of the list.

Removing a value from a list
You can approach the task of removing a value from a list in different ways, depending on the
nature of the list and the information you have about the item to be removed. For example, if you
are confident that the items on the list are unique, you can remove the value by substitution, using
an expression such as

Middle(
Substitute(¶ & Library::Roster & ¶; ¶ & Utility::gValueToRemove & ¶; ¶)
; 2; Length(Library::Roster) – 1 – Length(Utility::gValueToRemove))

Note that both the list and the value to be removed are first enclosed in carriage returns to ensure
that partial matches do not occur, and the Substitute() function is enclosed within a
Middle() expression (with a starting parameter of 2) to remove the leading and trailing carriage
returns that would otherwise be appended.

This method is unsuitable if the list may include duplicate values, because multiple non-adjacent
occurrences of the target value will be removed. However, by first identifying the list position of
the value to be removed, you can cleanly excise it using a variation of the split list technique. For
example, to remove the fourth item from the list, you could use the following expression:

LeftValues(Library::Roster; 3) &
RightValues(Library::Roster; ValueCount(Library::Roster) - 4)

This technique is clean and simple, but requires that you know — or can first determine — the list
position of the item to be removed. Assuming that you know the item but not its list position, you
can calculate the list position of the item’s first occurrence by using an expression such as

ValueCount(Left(Library::Roster;
Position(¶ & Library::Roster & ¶; ¶ & Utility::gValueToRemove & ¶; 1; 1)))

18_429006-ch12.indd 47918_429006-ch12.indd 479 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

480

Beyond the BasicsPart III

By incorporating the logic of this process into a composite expression with the preceding calcula-
tion, you can remove an item’s first occurrence in your list as follows:

Let([
p1 = Position(¶ & Library::Roster & ¶; ¶ & Utility::gValueToRemove & ¶; 1; 1);
n1 = ValueCount(Left(Library::Roster; p1));
v1 = LeftValues(Library::Roster; n1 - 1);
v2 = RightValues(Library::Roster; ValueCount(Library::Roster) - n1)];
v1 & Left(v2; Length(v2) – 1)
)

NOTENOTE For simplicity and brevity, I have used algebraic naming for the variables in the
Let() function. However, you’re at liberty to employ more descriptive names if

you prefer.

Layers of Abstraction
The previous calculation formula introduces a form of abstraction in that you don’t have to know
which list item is to be removed; the calculation determines where the item is in the list and then
uses that information to complete the process of item removal. Although this is a simple and rela-
tively minor form of abstraction, FileMaker’s calculation engine supports a number of more pro-
foundly abstract techniques, letting you structure your solution so that different outcomes occur
depending on the state of the data your calculations encounter.

The essential principle of code abstraction is the use of FileMaker to calculate what should be cal-
culated. A simple and direct example of this is the GetField() function.

Building blocks with GetField()
The GetField() function returns the value in the field named in its parameter, enabling you to
calculate the name of the field from which a value is to be retrieved, at the time the calculation is
evaluated.

At the conclusion of the “Summary Data” section earlier in this chapter, I proposed employing a
calculation field named cSortBy as the GetSummary() function’s break field parameter in a
case where it might be used to return exam period data either by course or by student. To achieve
this task, you can create a reference field (a global field in a Utility table) and store a value there
determining which field (CourseID or StudentID) the cSortBy calculation should reference.
A simple logical expression to achieve this would be

Case(
Utility::gSortField = “StudentID”; StudentID;
Utility::gSortField = “CourseID”; CourseID
)

18_429006-ch12.indd 48018_429006-ch12.indd 480 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

481

Calculation Wizardry 12

Although this approach is adequate when you have only two options that can be defined in
advance, an alternative and more flexible way to achieve the same result is with the expression

GetField(Utility::gSortField)

This expression returns the contents of whichever field (if any) is named in the Utility::g
SortField field. It has the advantage of simplicity and directness, but more importantly, it is
open-ended and can accommodate a variety of other sort fields of the same data type (requiring
only that they be named in the Utility::gSortField global field).

The GetField() function’s various uses enable you to build calculation code that can source
input values from different fields in your solution according to need or context, enabling you to
build a single calculation with multiple uses.

Completing the circuit with GetFieldName()
Supplying the name of a Table Occurrence and field — for example, as a literal text parameter for
the GetField() function — is a risky proposition. There is a risk that at some later time, the
Table Occurrence name or field name will be edited, and the text literal will no longer be accurate.
If you have many references to a field located in calculations within calculations, scripts, condi-
tional formatting, custom dialog messages and so on, any number of things will break when some-
one changes the field name.

FileMaker 10 provides a way to set up your code so that parameters requiring that fields be named
will not break if the field or Table Occurrence names change. The GetFieldName() function in
FileMaker 10 returns the fully qualified field name from a supplied field reference. With
GetFieldName(), you can pass a text literal, while preserving FileMaker’s ability to automati-
cally propagate field (and Table Occurrence) name updates throughout your solution. For exam-
ple, rather than supplying a literal text reference to a field in your solution in a form such as

GetField(“SalesItems::cSaleTotal”)

you can instead achieve the desired result in a more durable fashion with

GetField(GetFieldName(SalesItems::cSaleTotal))

Apart from the opportunity to avoid typographical errors when defining your code, the clear
advantage here is that the field name will always be retrieved afresh when the calculation is evalu-
ated — so in the event the name is subsequently edited, the latter expression will still be valid.

CAUTION CAUTION As with Get() functions and Design functions, the GetFieldName() function
won’t prompt re-evaluation of an expression where it has been used, if the name of

the field it references changes. When you use the GetFieldName() function in conventional
calculation field formulas, you’ll generally need to make the calculation unstored to ensure that
it updates appropriately.

18_429006-ch12.indd 48118_429006-ch12.indd 481 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

482

Beyond the BasicsPart III

The GetFieldName() function has application wherever a literal reference to a field may be
required. In addition to calculation functions such as Evaluate() and GetField(), it is well
suited to use in expressions supplying the target field to the Set Field By Name[] script and
button command.

The value of Evaluate()
While your solutions can operate more flexibly with judicious use of the GetField() function, a
range of considerably more powerful options is provided by the Evaluate() function, enabling
you to determine part or all of the syntax of a calculation expression within the calculation itself.

As usual, FileMaker’s online help gives a number of basic examples. Using the Evaluate() func-
tion, however, opens a range of new possibilities and provides alternate ways to solve problems.
Consider for a moment that you can use the Max() function to ascertain the highest value in a
related field, but there is no obvious way to use a calculation to determine the second-highest
value, should you need to.

One way to solve such a problem is to

 1. Retrieve all the related values using the List() function.

 2. Determine the maximum related value using the Max() function.

 3. Use the list management techniques described in the section titled “Lists and Arrays” ear-
lier in this chapter, to remove the first occurrence of the maximum related value from the
list of related values.

 4. Present the list of remaining values as an array formatted appropriately for the syntax
required by FileMaker’s aggregate functions.

 5. Pass the resulting string, enclosed within Max() function syntax, to the Evaluate()
function.

In this way, you use text and list manipulation functions to modify the inputs to the calculation,
eliminating the highest related value. Rather than acting on the raw related data, Evaluate() is
used to apply the Max() function to the modified text string.

The following composite calculation expression uses Evaluate() to determine the second-highest
related value in the Entries::Points field:

Let([
Lv = List(Entries::Points);
Lc = ValueCount(Lv);
Mv = Max(Entries::Points);
p1 = Position(¶ & Lv & ¶; ¶ & Mv & ¶; 1; 1);
v1 = ValueCount(Left(Lv; p1));
Lr = LeftValues(Lv; v1 - 1) & RightValues(Lv; Lc - v1);
Mf = “Max(“ & LeftWords(Substitute(Lr; ¶; “; “); Lc - 1) & “)”];
Evaluate(Mf)
)

18_429006-ch12.indd 48218_429006-ch12.indd 482 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

483

Calculation Wizardry 12

When seven related records contain values in the points field of 77, 65, 83, 22, 91, 58, and 63, the
function retrieves all the values as a list (Lv), identifies the maximum of 91 (Mv), eliminates 91
from the list (Lr), and then substitutes semicolon characters for carriage returns in the resulting
list, placing it in the text format of the Max() function (Mf). The value of the Mf variable is there-
fore resolved to the following text string:

“Max(77; 65; 83; 22; 58; 63)”

When the text string Mf is passed to the Evaluate() function on the final line of the calcula-
tion, the calculation is resolved, and the second-highest related value — 83 — is returned. By
using a calculation to determine what is to be calculated, this procedure is able to produce a result
outside the primary scope of native FileMaker calculation functions (there is no native function to
return the second-highest related value).

Although this example is somewhat arbitrary (albeit a useful technique in solutions where you
need to calculate penalties or handicaps or plot top scores), I offer it as an indication of the
extended scope of calculation capabilities made possible by creative uses of calculation abstraction.

Unstored Calculations
FileMaker manages dependencies within each record of each table so that if a field is updated, other
fields (stored within the same record) referencing it are re-evaluated. However, FileMaker provides
an option for calculation fields to be unstored, in which case they’re evaluated whenever referenced
or displayed (as well as when referenced fields in the same record are modified, if they’re currently
referenced or displayed when the modification occurs). Moreover, calculations directly referencing
fields outside the current record (global fields or related fields) are required to be unstored.
(FileMaker converts them to unstored data automatically when accepting the formula.)

NOTENOTE Unstored fields are commonly confused with unindexed fields, but they’re not the
same thing. There is a connection between storage and indexing insofar as a field

must be stored to be indexed. However, although all unstored fields are always necessarily unin-
dexed, stored fields my also be unindexed.

Unstored fields have both advantages and disadvantages. They have some capabilities and useful
properties that other fields don’t, but they also have several notable limitations.

Why and when calculations are unstored
An unstored calculation comes into being for one of several possible reasons:

n The calculation directly references one or more global fields, and FileMaker has automati-
cally converted it to unstored storage.

n The calculation directly references one or more related fields, and FileMaker has automat-
ically converted it to unstored storage.

18_429006-ch12.indd 48318_429006-ch12.indd 483 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

484

Beyond the BasicsPart III

n The calculation directly references one or more unstored fields, and FileMaker has auto-
matically converted it to unstored storage.

n The unstored option has been manually enabled in the Storage Options dialog for the field.

The first three reasons are required by FileMaker, because they introduce dependencies outside the
record and not tracked by FileMaker’s internal dependencies table. The fourth is optional; you may
decide to make a field unstored to save on storage space, to improve the performance of certain
tasks, or to enable the field to update to reflect the current state of system variables such as those
returned by FileMaker’s Get() functions. For example, a calculation defined with the expression

Get(CurrentTimestamp)

has no dependencies on fields or objects in your solution — it derives its value from your comput-
er’s system clock. If the calculation is stored, it records the date and time at its evaluation (when you
leave the Manage Database dialog after defining the calculation). If your intent is to simply display
the current date and time (when a layout is displayed) you should make the calculation unstored.
Note, however, that unstored calculations are re-evaluated only when the screen is re-drawn, so the
value shown on screen will not always be current.

Similarly, calculations created to display navigation details, such as the number of the current
record in the found set, login details, or a variety of other system or environment variables, will
only refresh if you define them as unstored.

Understanding the benefits and trade-offs
of unstored calculations
Unstored calculations have several benefits. When a calculation is unstored, the file size is reduced
because the results of the calculation are not written to disk. Some operations, such as the update
of dependent field values or import of records, may proceed with greater efficiency given that they
don’t require re-evaluating the calculation. Moreover, changing data in unstored calculations is
refreshed frequently; for example, every time a layout containing an unstored calc is refreshed, the
calculation is re-evaluated.

Conversely, unstored calculations use many processor cycles over time because they’re evaluated
whenever needed and, therefore, may be evaluated many times in the course of a work session
rather than being evaluated once and stored. The re-evaluation of unstored calculations can lead to a
processing burden that affects your solution’s speed of operation if the number of unstored calcula-
tions is large, and particularly if unstored calculations are implicated in actions repeated across large
record sets. If you’re sorting records by an unstored calculation field, for example, the sort duration
may be noticeably slower if the record set’s size is larger than a few thousand — especially on older,
slower hardware.

CAUTION CAUTION In cases where unstored calculations reference other unstored calculations,
FileMaker must resolve each in turn before a result can be displayed. If you create

multiple cascading dependencies of this kind, serious performance degradation often results
because you’re requiring FileMaker to resolve an extensive chain of dependencies at every turn.

18_429006-ch12.indd 48418_429006-ch12.indd 484 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

485

Calculation Wizardry 12

Design flaws of this kind can result in an unresponsive and inefficient solution and should be
avoided.

Discovering the hidden secrets of unstored calcs
Because an unstored calculation placed on a layout is re-evaluated each time it is referenced, you
can use it to track user activity, increment values in your solution, or, with the aid of a third-party
plug-in, perform other operations (for example, sending e-mail, updating a log file or polling a
server) automatically as users interact with your solution. These capabilities provide a useful sup-
plement to the automation options that script triggers make available to you.

For example, when you define an unstored calculation to increment or update a local or global
variable, the variable is re-created each time a user performs an action resulting in screen re-draw.
A practical example of one of the many uses of this capability is in Chapter 10 with the example of
adding “back-button” functionality to the Inventory sample file.

Similarly, you can use a calculation defined to declare the current record ID to a variable each time
the user navigates to a new record or layout as the basis of a conditional row-highlight in a portal.
In other words, where the portal displays the results of a self-join relationship, you can highlight
the current record’s row in the portal. Here’s how:

 1. Create a stored calculation field called RecordID in the current table defined with the
formula

Get(RecordID)

 2. Define (or modify) an unstored calculation displaying on the current layout to commence
with the expression

Let($$CurrentRecord = Get(RecordID); ...

 3. Add a text object containing only a space to the layout to provide the portal row’s back-
ground and apply conditional formatting to invoke a custom fill color with the formula

$$CurrentRecord = PortalTO::RecordID

 where PortalTO is the name of the Table Occurrence your portal is based on.

 4. Apply transparent fill to the text object, size it to fit in the portal row, and set it behind
other objects in the portal.

 5. Adjust the stacking order on the layout so that the unstored calculation field in Step 2 is
further back in the object order than the portal. To do so, select the portal and all its con-
tents and then choose Arrange ➪ Bring To Front.

On records where the portal display includes the current record, after you complete these steps the
portal row showing the current record is highlighted with the fill color you selected in Step 3.

Because other kinds of calculations, such as tooltip calculations, conditional formatting calcula-
tions, Web Viewer calculations, and so on, are also evaluated when the screen refreshes or when
users interact with your solution, you can exploit several alternatives to invoke functionality
depending on evaluation of calculations embedded in layout objects.

18_429006-ch12.indd 48518_429006-ch12.indd 485 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

486

Beyond the BasicsPart III

Calculation Fields versus
Auto-Enter Calculations
A FileMaker calculation field acquires a value according to the formula specified for it, updating
when local fields it references are edited. The same is true of an auto-enter calculation, when the
option labeled Do Not Replace Existing Value Of Field (If Any) is disabled, as shown in Figure
12.2. Consequently, some commentators have suggested that the calculation field is redundant,
and auto-enter capabilities suffice.

 FIGURE 12.2

De-selecting the Do Not Replace Existing Value of Field (If Any) option for an auto-enter calculation.

The functionality of conventional FileMaker calculation fields and auto-enter calculation fields
overlap. However, both kinds of calculations are useful in their own right, making them both
highly desirable in different circumstances.

The user over-ride capability
FileMaker calculation fields do not accept user input under any circumstances; their result is
always determined by the calculation expression defining them. Users can enter a calculation field
if you make it accessible on a layout, but although they can select and copy the contents, they can’t
overwrite them. Any attempt immediately results in the error dialog shown in Figure 12.3.

18_429006-ch12.indd 48618_429006-ch12.indd 486 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

487

Calculation Wizardry 12

 FIGURE 12.3

Users can’t modify conventional calculation fields.

Auto-enter calculation fields can partially mimic the behavior of conventional calculations when
you select the Prohibit Modification of Value During Data Entry option in the Options for Field
dialog. However, you can override this option using a variety of methods, including disabling the
Perform Auto-Enter Options While Importing option or by using a Set Field[] command on
either a button or a script.

In most cases, however, the user can freely overwrite auto-enter calculations. This feature is valu-
able for occasions when your users need to manually over-ride a value, such as to mark down the
price of a damaged stock item or waive a fee for a needy student. Whenever business rules call for
the exercise of discretionary powers, mechanisms to depart from calculated norms are called for.

Just as auto-enter calculations offer the user the capability to over-ride the calculation result, so,
too, can they be configured to respond to data input, overwriting the data entered by the user with
the result of the calculation expression. This feature is useful for automatically applying or remov-
ing formatting or cleaning up sloppy data entry. For example, an auto-enter calculation with the
formula

TextFormatRemove(Trim(Self))

accepts user input but immediately and automatically (as the user leaves the field) removes leading
and trailing spaces and formatting. Similarly, a phone number field (defined as a text field, with an
auto-enter/replaces existing value calculation) automatically updates to apply a standard telephone
number presentation format (mask), regardless of the way the data is entered, thanks to the follow-
ing formula:

Replace(Replace(Filter(PhoneNo; “0123456789”); 4; 0; “-”); 8; 0; “-”)

With this formula and configuration, entering any of the following

0123456789

012.345.6789

012 345 6789

results in the field displaying and storing the value 012-345-6789.

18_429006-ch12.indd 48718_429006-ch12.indd 487 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

488

Beyond the BasicsPart III

NOTENOTE The phone format formula is a simple and single example that indicates a way to
solve this genre of problem. You may need to vary this formula to match the

requirements of phone numbers in your area or to support multiple formats if your solution will
contain contact details from different provinces or countries.

Auto-enter calculations and storage
Auto-enter calculation options apply only to stored fields, so they don’t share the capability of con-
ventional calculations to be unstored and therefore to refresh “spontaneously” on screen re-draw.
The capability to define unstored calculations has a number of specific uses and benefits. (See the
section “Understanding the benefits and trade-offs of unstored calcs,” earlier in this chapter.) These
advantages are therefore unattainable with auto-enter calculations.

Conversely, in some cases, you can use auto-enter calculations to address shortcomings of
unstored calculations. Because an auto-enter calc can never be unstored, even if it references global
fields or related fields, the result of its calculation will be stored in the current record. In cases
where the related data will not change — or where changes will not be relevant to the current
record, such as where the data are part of a historical transaction record — incorporating related
data into a stored auto-enter calc result has the advantage that the field can then be indexed and
used for optimized searches, relational filtering and matching, and/or as a source of data for field-
based value lists.

CAUTION CAUTION Because calculation dependencies do not extend beyond the current record, an
auto-enter calculation field referencing related data will not automatically update

when the related fields it references are changed. Therefore, you should reference the data in
place in the related table (that is, place the calculation in the same table as the fields it refer-
ences) or use an unstored calculation, whenever current data is required.

The Do Not Replace option
Figure 12.2 shows the Options for Field dialog, containing the Do Not Replace Existing Value of
Field (If Any) setting. The way this option is named is perverse insofar as it results in a double neg-
ative when you deselect it — by turning it off, you are instructing FileMaker to “Do Not Do Not
Replace…” — all very sensible if you’re the kind of person who drives to work in reverse; for the
rest of us, it can be downright confusing.

Notwithstanding the convolutions of its naming, this option is a powerful and essential feature in
its own right, enabling you to configure auto-enter calculations to dynamically determine a default
value for a field and then remain in the background allowing free-form data entry thereafter.

When the Do Not Replace checkbox is selected, auto-enter calculations support the user unobtru-
sively, leaving the user entirely in control of the data and the process of updating/maintaining it.
When the option is turned off, the auto-enter calculations more closely mimic the behavior of con-
ventional calculations, overwriting their current contents whenever local fields they reference are
edited.

18_429006-ch12.indd 48818_429006-ch12.indd 488 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

489

Calculation Wizardry 12

Global Calculations
A rather underrated (and perhaps, poorly understood) feature of FileMaker is the global calcula-
tion field.

To define a calculation field as global, go to the Storage Options dialog by clicking Storage Options
in the lower right of the Specify Calculation dialog and, as shown in Figure 12.4, select the check-
box labeled Use Global Storage (One Value for All Records).

A calculation field defined to use global storage acquires the same essential (and valuable) charac-
teristics as other types of global fields, to wit:

n As indicated in the Storage options dialog, it returns a single value for all records in the
current table.

n It is accessible throughout your solution without requiring a relationship between the
current context and the TO where it is defined.

n Its value (if changed during a user session in a multi-user solution) is specific to the cur-
rent user and session.

n Its value does not depend on any records being present (or being present in the found
set) of the table where it resides.

n Its value is persistent in Find mode.

These advantages are surely powerful, providing reason enough to make use of global calculations.
However, global calculations exhibit some additional characteristics, making them especially useful
for a range of requirements.

 FIGURE 12.4

Defining global storage for a conventional calculation field.

18_429006-ch12.indd 48918_429006-ch12.indd 489 3/25/09 7:53:53 PM3/25/09 7:53:53 PM

490

Beyond the BasicsPart III

The moon follows you everywhere
Like a full moon in the late afternoon sky, global calculations shadow your movements, recalculat-
ing always with respect to the current user’s current context. Like all other calculation fields, their
dependencies are restricted to fields in the current table. However, they update according to
changes in the current record — whichever record that may be from the context of the current user.

Global calculations also have a unique role in relation to other kinds of global fields. Normally, a cal-
culation based on a global field value must be unstored. However, if the calculation is global, it will
respond to global fields as a regular calculation field responds to data fields within the record —
updating according to internally managed dependencies.

These two important behavioral attributes of global calculations give them considerable power.
Unfortunately, their unique combination of behavioral attributes has resulted in some confusion
about how they interact with other field types and when they will and won’t update. To assist you
in coming to grips with the behavior of global calculations and to understand and predict their
behavior, I’ve assembled a brief description of their characteristics.

Managing global dependencies
If you’re uncertain about the way global calculations behave with respect to changes in fields they
reference, the following 12 observations provide you with guidance. These characteristics of global
calculations apply to all versions of FileMaker supporting the .fp7 file format:

n A global calculation updates automatically if it references a global field that is located in
the same table and that field is edited by the current user.

n A global calculation updates automatically if it references a regular field that is located in
the same table (and referenced directly) when that field is edited on any record by the
current user. In this instance, the value of the global calculation depends on the value of
the referenced field in the record in which that field has most recently been edited.

n When a global calculation references multiple regular fields, its value depends on the val-
ues in the instances of all those fields located on the particular record where the most
recently edited (by the current user) of any of those fields resides.

n A global calculation does not update if it references a global field that is located in another
table, if that field is edited by the current user.

n A global calculation does not update if it references a global field (in the same table and
referenced directly, or in another table) that is edited by different user. (Users see their
own separate global values.)

n A global calculation does not update automatically if it references a regular field that is
located in the same table (and referenced directly) when that field is edited on any record
by another user.

n A global calculation does not update automatically if it references a regular field that is
located in a related table (even if a self-relation) if that field is edited on any record by the
current user or by another user.

18_429006-ch12.indd 49018_429006-ch12.indd 490 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

491

Calculation Wizardry 12

n If a global calculation references one or more related fields and also directly references a
local field, either global or regular, the value of the global calc depends on the related val-
ues that are current (for the current user) at the time when the local (to the table in which
the global calc resides) value(s) are edited.

n The value of a global calculation when a solution is opened remotely is the value that it
had on the host when last closed. (Sound familiar?)

n The values of global calculations in a hosted solution can be prompted to update at login
by changing a local field which they reference. For example, if you have several dozen
global calculations with formulas constructed along the lines of

If(not IsEmpty(GlobalsTable::RegularTriggerField);
RelatedTable::DataField)

 they all update to reflect the current (related) values at start-up when the start-up script
includes the command

Set Field [GlobalsTable::RegularTriggerField; “1”]

n Changes made to referenced regular fields on another workstation do not appear in
global calculation results until a refresh event has occurred on the current workstation —
such as the next time the start-up script runs. If no triggering mechanism occurs, then
remote changes do not appear at all until the solution is taken offline, updated in a client
session, closed, and reopened on the server, as is the case with noncalculating globals.

n When a global calculation field references regular fields located in the same table, it
retrieves values from the record in that table that is the current record at the time the cal-
culation is evaluated. If no current record exists at the time of such an update (for exam-
ple, the active layout is not based on the table containing the global calculation field and
there is no relationship from the current layout’s TO to the TO containing the field), the
current record is imputed to be “record zero” and the values of regular fields will be read
as null.

Within these constraints and guidelines, the behavior of global calculations is entirely consistent
and predictable. After you’re familiar with their behavior, they’re an invaluable addition to your
technical repertoire.

The freedom and efficiency of global calculations
In addition to their useful characteristics as global fields — they’re session specific, accessible with-
out a relationship, and so on — global calculation fields also share several key behaviors common
to regular calculations:

n They’re automatically triggered by dependencies according to specific rules as set out in
the preceding section titled “Managing global dependencies.”

n Their values are determined and cannot be overwritten, deliberately or inadvertently, as a
result of either user error or script error.

18_429006-ch12.indd 49118_429006-ch12.indd 491 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

492

Beyond the BasicsPart III

Taken as a whole, these attributes make global calculation fields indispensable for a variety of pur-
poses related to handling of user, state, and reference data, as well as process support and interface
elements in your solutions.

CROSS-REFCROSS-REF As an illustration of the use of global calculation fields to support extended solution
functionality, refer to the multilingual solution interface example in Chapter 10.

Environment and Metadata
Enabling your solutions to interact sensitively and dynamically with the environments where they
operate, FileMaker includes a significant number of functions allowing you to retrieve information
about the solution and the state of the hardware and operating system.

The Get() functions
An essential part of the calculation process, FileMaker provides Get() functions to return infor-
mation about process, context, and environment. Filemaker Pro 10 has 92 Get() functions, and I
urge you to familiarize yourself with each of them. The online Help files are a great place to start
for brief descriptions of each function.

As a simple illustrative example, the Get(ApplicationVersion) function returns a text string
identifying both the kind of access the current user has to the solution and the specific version and
revision number if applicable. Obtaining the application version number can be useful in several
ways. For example, the expression

GetAsNumber(Get(ApplicationVersion))

returns 10.01 when the solution is currently being accessed by FileMaker Pro 10.0v1, FileMaker
Pro Advanced 10.0v1, or a runtime created using FileMaker Pro Advanced 10.0v1. If your solution
has been created using features introduced in Filemaker Pro 10, such as script triggers, Set Field By
Name, or SMTP-direct email, it won’t work as intended if opened using an earlier version of
FileMaker. You should consider including a test, like the following, in the On Open script of your
solution, configured to alert the user to the required version and close the file if it evaluates as
false:

GetAsNumber(Get(ApplicationVersion)) ≥ GetAsNumber(“10.01”)

Alternatively, when your solution is accessible by a variety of means, you will find it useful to cal-
culate script branching (or otherwise tailor the functionality of your solution) using the following
expressions:

If(PatternCount(Get(ApplicationVersion); “Web”); ...

and

If(PatternCount(Get(ApplicationVersion); “Pro”); ...

18_429006-ch12.indd 49218_429006-ch12.indd 492 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

493

Calculation Wizardry 12

These calculation expressions enable you to determine whether the current user is accessing your
solution via Instant Web Publishing or one of the FileMaker client application versions (Pro or
ProAdvanced). With the information the calculations provide, you can set up calculation or script
functionality to branch according to version.

Similarly, when your solution may be accessed on a variety of computers, you should routinely test
for the computer platform and operating system version using Get(SystemPlatform),
Get(SystemVersion), and/or Get(SystemLanguage), enabling your solution to respond
differently according to the requirements of different computing environments.

The many available Get() functions in FileMaker Pro 10 offer you a rich source of information
about many aspects of your solution, its use, and the environment in which it is operating, each offer-
ing enhanced control over the results your calculations return and the ways your solution operates.

CROSS-REFCROSS-REF Refer to the appendixes for references and additional resources regarding the
abundant collection of Get() functions in FileMaker Pro 10.

Design functions
Like the Get() functions, design functions in FileMaker are principally concerned with the
retrieval of metadata and environmental information. Functions such as DatabaseNames, which
returns a list of the filenames of FileMaker databases open on the current workstation, or
FieldType(), which indicates the data storage type (number text, date, etc.) of a named field,
enable you to code your solution to adapt to present conditions.

Design functions also serve many more central purposes in your solution design. For example, if
you build code in your solution to refer to a specific layout by its layout number, the code may
cease working correctly if the layouts are reordered. However, if you refer to the layout by name
instead, you risk the code failing if the layout is renamed in the future. Instead, you can use design
functions to refer to a layout by its layout ID, which can never change. For example, to determine
the internal ID of a specific layout, you can first use a calculation expression such as

Let([
Ln = LayoutNames(Get(FileName));
ID = LayoutIDs(Get(FileName));
p1 = Position(¶ & Ln & ¶; ¶ & “Name of Layout” & ¶; 1; 1);
n1 = Left(Ln; p1);
p2 = ValueCount(n1)];
If(p1; GetValue(ID; p2))
)

Having ascertained FileMaker’s internal ID number for a specific layout, you can then code your
solution to determine the current name of the layout at any time, based on its ID, by passing the
ID to a calculation reversing the process:

Let([
ID = LayoutIDs(Get(FileName));
Ln = LayoutNames(Get(FileName));

18_429006-ch12.indd 49318_429006-ch12.indd 493 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

494

Beyond the BasicsPart III

p1 = Position(¶ & ID & ¶; ¶ & “ID of Layout” & ¶; 1; 1);
n1 = Left(ID; p1);
p2 = ValueCount(n1)];
If(p1; GetValue(Ln; p2))
)

NOTENOTE You can adapt these techniques to enable you to refer to a variety of other solution
elements by ID, including fields, Table Occurrences, scripts, and value lists.

Although this example shows you one way you can use design functions to improve the robustness
and adaptability of your solutions, you have many other options. FileMaker Pro 10 offers 21 design
functions to provide dynamic information about the essentials of your solutions.

Calculations Using Custom Functions
FileMaker Pro includes a category of functions available in calculation dialogs for custom func-
tions. You can see the functions listed in the menu of function types appearing at the top right of
the Specify Calculation dialog, as shown in Figure 12.5.

In a new database file created in FileMaker Pro 10, the Custom Functions category is empty. You
must create and install custom functions into a file using FileMaker Pro 10 Advanced. However,
this capability alone is well worth the cost difference between FileMaker Pro 10 and FileMaker Pro
10 Advanced, and I encourage you to consider the benefits of designing additional calculation
functions to serve the needs of your solutions.

 FIGURE 12.5

Selecting the Custom Functions category from the menu of function types in the Specify Calculation dialog.

18_429006-ch12.indd 49418_429006-ch12.indd 494 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

495

Calculation Wizardry 12

Once a custom function has been created and installed, you can select and use custom functions in
calculations in the same way that you use other kinds of functions, assuming that your account
does not have restricted access.

Here are three chief reasons why custom functions can significantly enhance the calculation code
of your solutions:

n You can use custom functions to simplify calculation syntax and improve legibility and
convenience in calculation code.

 For example, when your solution contains a custom function called Platform Is MacOS
defined as:

Abs(Get(SystemPlatform)) = 1

 you can check which platform your solution is presently running on with plain English
readable code, such as

If [Platform Is MacOS]

 This and many other examples like it can streamline development and add clarity to
your code.

n Custom functions can encapsulate complex, but frequently used, code in a compact and
convenient form, enabling you to reference the code with a single function call. Incor-
porating complex code within a custom function is not merely a simplifying move; it also
enables you to maintain the block of code in one place (the custom function definition)
knowing that any change to the stored function definition will propagate everywhere the
function is called throughout your solution.

NOTENOTE When you change a Custom function definition, previously stored values created
using the function will not automatically change, but any new values will be calcu-

lated using the revised function definition. If you want to update previous values, you’ll have to
prompt reevaluation of stored calculations using the Custom function.

 For example, in the preceding section, I provide a sample function to retrieve the current
name of a layout based on its ID number. If you plan to use such a function frequently, it
may be preferable to place the code within a custom function with the syntax

GetLayoutName (LayoutID)

 where the function definition is

Let([
ID = LayoutIDs(Get(FileName));
Ln = LayoutNames(Get(FileName));
p1 = Position(¶ & ID & ¶; ¶ & LayoutID & ¶; 1; 1);
n1 = Left(ID; p1);
p2 = ValueCount(n1)];
If(p1; GetValue(Ln; p2))
)

 With a GetLayoutName() custom function installed in your file, you can incorporate
it in your code whenever you want instead of repeating the more unwieldy expression it
represents.

18_429006-ch12.indd 49518_429006-ch12.indd 495 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

496

Beyond the BasicsPart III

n You can configure custom functions to perform feats not available to ordinary calcula-
tions. In particular, you can design custom functions to use recursion, a process where a
function repeatedly calls itself until predetermined conditions are met.

 As an arbitrary example of a recursive process, consider the elementary example of a cus-
tom function defined with the syntax ShuffleString(text) and with the definition

Let([
a = Length(text);
b = Int(Random * a) + 1];
If(a; Middle(text; b; 1) &
ShuffleString(Left(text; b - 1) & Right(text; a - b)))
)

 This simple recursive function is designed to receive a text string and return the supplied
characters in random order. The following example expression returns a result such as
BLFVWNAQUMOIRTGPYCSDJKHXEZ:

ShuffleString(“ABCDEFGHIJKLMNOPQRSTUVWXYZ”)

 Because the recursive process repeats its work until complete, the function can process
input strings of variable length. In doing so, it achieves a result that cannot readily be
matched using a conventional calculation expression. There are many kinds of problems —
both common and obscure — that you can solve elegantly using an appropriately con-
structed recursive function.

A comprehensive tutorial on the creation and use of custom functions is beyond this chapter’s
scope. Nevertheless, the calculation capabilities in FileMaker are powerful and extensible, well
beyond the limits of the 249 built-in calculation functions in FileMaker Pro 10.

CROSS-REFCROSS-REF For further discussion about the creation and use of custom functions using
FileMaker Pro Advanced, refer to Chapter 18.

Documenting Your Code
As you work with the calculation expressions in FileMaker, their syntax becomes increasingly
familiar, and you find them intelligible. To a degree, therefore, calculation code in FileMaker is
self-documenting. With only the most basic familiarity with the calculation engine, the following
expression can be accurately interpreted:

If(IsEmpty(Invoices::TimeField); Get(CurrentTime))

So much so that including an explanation along the lines of “if the invoice time field is empty, get
the current time” adds bulk without aiding clarity.

The use of descriptive field, table, and variable names aids the readability of your calculations.
When combined with the intelligibility of much of the FileMaker calculation syntax, the use of rel-
atively transparent naming makes it much easier to read and understand your calculations. In addi-
tion, keeping field and table names relatively short contributes to ease of comprehension of
calculation expressions.

18_429006-ch12.indd 49618_429006-ch12.indd 496 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

497

Calculation Wizardry 12

In some cases, however, your calculation code’s meaning or purpose is difficult to discern without
additional information — particularly when calculation expressions are long or complex, or where
they form a small part of the logic distributed between a number of solution components. In such
cases, the judicious use of code formatting and code commenting can improve intelligibility.

Code formatting
A variety of styles for the formatting of code are available, including use of line breaks and indent-
ing to delineate enclosing elements and map out the logic of compound expressions.

Although simple one-line expressions rarely require formatting, longer expressions do benefit from
some attention to the arrangement of elements for readability. For example, the definition of the
GetLayoutName() custom function in the previous section titled “Calculations Using Custom
Functions” would have been considerably more difficult to interpret if presented as follows:

Let([ID=LayoutIDs(Get(FileName));Ln=LayoutNames(Get(FileName));p1=Position(¶&ID&
¶;¶&LayoutID&¶;1;1);n1=Left(ID; p1);p2=ValueCount(n1)];If(p1;GetValue(Ln;
p2)))

As the expression is of moderate complexity, I chose to include line breaks to delineate the compo-
nents of the code. For more convoluted expressions, indenting may also help to clarify meaning.
For example, a fully formatted rendering of the same function definition is

Let(
 [
 ID = LayoutIDs(Get(FileName));
 Ln = LayoutNames(Get(FileName));
 p1 = Position(¶ & ID & ¶; ¶ & LayoutID & ¶; 1; 1);
 n1 = Left(ID; p1);
 p2 = ValueCount(n1)
];
 If(p1; GetValue(Ln; p2))
)

Here, like elements and enclosing braces are aligned to give the syntax maximum form and structure.

Code commenting
Another aid to comprehending complex code is the judicious use of commenting. FileMaker sup-
ports the inclusion of either C or C++ style commenting (or any mix thereof) within calculation
expressions. In general, C++ comment syntax is best suited to labeling and brief annotations,
whereas if you need to include extensive explanatory notes, C syntax will be preferable.

To add comments in C++ syntax, precede each comment with a pair of slashes and terminate it
with a line break:

//this is a C++ comment
//you can include multiple lines
//but each line must commence with a new pair of slashes.

18_429006-ch12.indd 49718_429006-ch12.indd 497 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

498

Beyond the BasicsPart III

Alternatively, you can provide more discursive multi-line comments by adopting the C syntax,
where a comment is preceded by a slash and asterisk (/*) and terminated with an asterisk and
slash (*/):

/* This is a C style comment, running across multiple lines
and enclosed at either end with the appropriate terminators.*/

As a general rule, commenting should highlight important or obscure points, providing signposts
and pointers to aid understanding. However, it should remain unobtrusive, contributing as little as
possible to code bloating.

18_429006-ch12.indd 49818_429006-ch12.indd 498 3/25/09 7:53:54 PM3/25/09 7:53:54 PM

499

Chapter 8 describes what FileMaker scripting does and how to use it —
I provide various practical examples of scripts automating a number of
frequently performed database tasks. The examples I show you in

Chapter 8, however, barely exercise the FileMaker scripting engine’s power. In
this chapter, I provide you with deeper insight into a number of central script-
ing concepts in FileMaker.

The FileMaker Pro 10 scripting engine evolved through previous versions
and has grown into a powerful coding environment. Originally, FileMaker
scripting offered a way to automate repetitive or tedious user actions.
Consequently, many scripts and script commands work with and through
the solution interface, performing actions and accomplishing work in the
same ways the user does. However, scripts can go far beyond mimicking the
user and provide an environment of power and extended functionality.

Scripts in FileMaker Pro 10 have the ability to act directly on data and file
elements and interact with other applications and services. Nevertheless, the
scripting framework retains some of its original focus on the interface as the
primary way of interacting with a solution. In this chapter, I explore a num-
ber of essential techniques to increase the depth of your command of
FileMaker scripting.

Scripting the Control of
Objects and Interface
Consider for a moment the ways your FileMaker solutions interact with
users. A FileMaker solution’s user interface is comprised of a series of layouts
containing a variety of objects, some of which are static, but many of which
have embedded attributes linking them to the solution’s data and code.

IN THIS CHAPTER
Controlling interface objects
via script

Handling errors gracefully

Scripting around access
privilege issues

Applying principles of
automation

Using parameters, results, and
variables in your scripts

Utilizing dynamic and indirect
controls in scripts

Applying nonlinear logic

Working with modular
script code

Managing database windows
via script

Automating import and export
of data

Moving data efficiently
between tables

Scripting in Depth

19_429006-ch13.indd 49919_429006-ch13.indd 499 3/25/09 7:55:10 PM3/25/09 7:55:10 PM

500

Beyond the BasicsPart III

The variety of FileMaker layout objects include static objects (text labels, graphical lines and
shapes, plus inserted images) augmenting the visual appearance of your solution but without an
active or interactive role. Other layout object types are designed as controls or devices with which
the user can access and interact with the solution’s code and data. These include

n Field boxes

n Buttons

n Portals

n Tab controls

n Web viewers

In FileMaker Pro 10, you can assign names to both layouts and layout objects. The object names
that you assign provide a basis for scripts to target and interact with specific objects. In fact, you
can explicitly name each of these kinds of objects and then have scripts specify an object by name
when the script needs to interact with the object.

TIPTIP You can assign or edit layout names while in Layout mode by choosing Layouts ➪
Layout Setup and entering a name in the name field in the upper part of the Layout

Setup dialog.

Object names are assigned when you enter them into the Object Name field in the Info palette
after selecting the object in Layout mode. Choose View ➪ Object Info command to display the
Info palette.

Addressing objects by name
After you create an object and place it on a layout in Layout mode (and after you save the changes
to the layout), it immediately becomes visible and available to users viewing the layout in Browse
or Find modes. Additionally, the object becomes accessible to scripts running in either of those
modes. When you assign a name to an object, scripts are able to select the object using its name.
Selected objects (by the user or via script) are said to be active or to have focus. Similarly, only one
layout — the layout showing in the frontmost window — is active at a time.

When interacting with objects, your scripts are constrained to those objects present on the current
(active) layout. Moreover, FileMaker’s current mode determines the possible forms of interaction with
each kind of object. Consequently, to ensure that your script can perform the intended action, you
should commence your script code with a command explicitly establishing the required mode and
then add commands navigating to the appropriate layout and (if appropriate) the desired record.

For example, to have your script place the focus on the FirstName data field (with an object
name of “Contact first name”) on the Contact Details layout in Browse mode in the most
recently added record of the Contacts table, commence it with the following six script steps:

Enter Browse Mode []
Go to Layout [“Contact Details”]
Show All Records

19_429006-ch13.indd 50019_429006-ch13.indd 500 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

501

Scripting in Depth 13

Unsort Records
Go to Record/Request/Page [Last]
Go to Object [Object Name: “Contact first name”]

The preceding sequence of commands sets the focus where you want it — on the FirstName field.
However, it only succeeds if a number of conditions are satisfied. In this case, the script requires that
the “Contact Details” layout exists, that there are (one or more) records in the Contacts table, and
that an instance of the FirstName field on the Contact Details layout has been assigned the object
name Contact first name. If any of these conditions aren’t met, the script fails.

TIPTIP Each object type mentioned at the start of this section can have focus.
Consequently, you can use the Go to Object[] script command in a sequence

such as the one shown here, to direct the focus toward named objects of any of the kinds listed.

The names you assign to objects must be unique within a given layout. FileMaker won’t accept an
object name if it’s already used on the current layout. Therefore, you can employ a single instance
of the Go to Object[] command to address an object even if it’s enclosed inside other objects
on the layout. For example, suppose that a named field object is located inside a named portal
that, in turn, is located inside a named tab control panel. You can place the focus on the field and
both its enclosing objects simply by addressing the named object’s unique name. This is sufficient
for the relevant tab and portal to also automatically acquire focus. You can use this behavior to
address a layout’s objects in a straightforward manner.

You should bear in mind that while object names must be unique within a layout, objects with the
same names may appear on other layouts. The process of directing focus to a named object with the
Go to Object[] command is valid only when the correct layout is active. Avoid using the Go to
Object[] command unless your script has previously established or confirmed
the layout context. In this and many other respects, context is crucial.

In fact, the concept of context, as outlined in Part I, governs every action that your scripts take.
The methods outlined in this section provide a key part of the strategy you can use to ensure that
your scripts manage context throughout their execution by placing the focus where required for
each scripted action.

TIPTIP I suggest that you first ascertain and store the user’s current context (mode and
record or request) so that the script can reinstate context at its conclusion and

return control of the database to the user in the same state as when it started.

Locking down the interface
When you configure your script to establish focus on a specific field, your purpose may be to have
the script prompt the user to enter a name for the most recent client contact record. If so, to
achieve its aim, your script relies on the user to provide necessary input.

To ensure that such a scripted procedure is completed successfully, you must ensure that the user
is unable to leave the selected layout until the required information is entered. In this case — and
other similar situations — it makes sense to prevent the normal use of navigation controls until the

19_429006-ch13.indd 50119_429006-ch13.indd 501 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

502

Beyond the BasicsPart III

matter at hand has been addressed. In this manner, you can configure your scripts to guide and
constrain users. Doing so establishes and enforces procedures and business rules in keeping with
the solution’s objectives.

Frequently, hiding and locking (disabling) the FileMaker Status Toolbar suffices to constrain navi-
gation. However, you may also want to set the layout size and magnification (zoom) level to ensure
that the field is in view and to ensure that the layout is being viewed as a form rather than a list or
table (so that the user cannot scroll to other records). You can implement these restrictions by con-
figuring the following four additional script commands:

Show/Hide Status Area [Lock; Hide]
Set Zoom Level [100%]
View As [View As Form]
Adjust Window [Resize to Fit]

Although a sequence of commands such as this one adds to the length of my script, it enhances the
script’s ability to meet its objectives, so its inclusion is justified.

TIPTIP When the Status Toolbar is hidden and locked, not only are the navigation controls
(the layout menu, rolodex, slider, and so on) inaccessible to the user, the scroll

wheel, standard keyboard navigation shortcuts, and menu commands for navigating between
layouts and records are also disabled.

Managing user interaction
In the previous sections, I describe a script that takes the user to a particular layout and record,
locks the interface, adjusts the window, and places focus on the FirstName field. However, you
can’t be certain that the user will know what to do next. Users are apt to have minds of their own.
Moreover, no process has been implemented for returning the users to their starting point after
they complete the required task.

In addition to setting the conditions for the task at hand — and doing all the heavy lifting — your
scripts should inform users what is required of them. One method is to post a dialog prompting
the user to enter a name in the name field. You can find the Show Custom Dialog[] script
command in the Miscellaneous group of commands near the bottom of the Edit Script window’s
script step list, as shown in Figure 13.1.

After adding and configuring the dialog command (to display a prompt along the lines of “Enter
the contact’s first name, then press enter”), you need a way to maintain scripted
control of the process. One way to do so is by having the script pause for user input and then
return the user to his previous location or context.

If using the pause-for-input approach, you should add a pause command after the Show Custom
Dialog[] command, followed by a further pair of commands that return the user to their previ-
ous layout and reinstate the Status Toolbar. The whole script now looks like

Enter Browse Mode []
Go to Layout [“Contact Details” (ItemSupplier]
Show All Records

19_429006-ch13.indd 50219_429006-ch13.indd 502 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

503

Scripting in Depth 13

Unsort Records
Show/Hide Status Area [Lock; Hide]
Set Zoom Level [100%]
View As [View As Form]
Adjust Window [Resize to Fit]
Go to Record/Request/Page [Last]
Show Custom Dialog [“Enter the customer’s name, then press Enter.”]
Go to Object [Object Name: “Contact first name”]
Pause/Resume Script [Indefinitely]
Go to Layout [original layout]
Show/Hide Status Area [Show]

With the script paused, as indicated at the third-last line of the script as set out here, pressing the
Enter key causes the script to resume from its paused state, at which point the subsequent com-
mand takes the user back to whichever layout was active when the script was triggered. However,
if the user presses Enter without first typing a name in the FirstName field, the script will pro-
ceed without the requested input.

So far, so good — the sequence of steps now appears workable. However, the process is more
heavy-handed than necessary, in part because it’s modeled on the series of actions a user would
take to perform the same task manually. While it’s not a bad starting place, you can use other
options to achieve similar results in a more streamlined fashion.

In this case, rather than taking the user on a whirlwind tour to the customer table and back, an
alternative is to use the custom dialog to collect the required information in one step (before even
changing layouts) and then perform the remaining action(s) efficiently behind the scenes without
the user’s knowledge or intervention. This process makes use of the custom dialog’s ability to
include input fields.

 FIGURE 13.1

You can select Show Custom Dialog from the Miscellaneous group of commands in the Edit Script window.

19_429006-ch13.indd 50319_429006-ch13.indd 503 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

504

Beyond the BasicsPart III

To achieve more graceful execution, try using alternative sequencing of essentially the same script,
such as the following:

Show Custom Dialog [“Enter the customer’s name, then press Enter.”;
Contacts::gTempText]

Freeze Window
Enter Browse Mode []
Go to Layout [“Contact Details”]
Show All Records
Unsort Records
Go to Record/Request/Page [Last]
Set Field [Contacts::FirstName; Contacts::gTempText]
Go to Layout [original layout]

This modification improves the script in several respects. The script accomplishes the same task
with fewer steps but, more importantly, it accomplishes its work with less interruption and visual
discontinuity for the user. The dialog appears and, after it’s closed, the window is frozen momen-
tarily while the rest of the work is done unseen.

NOTENOTE To collect the user input up front using a dialog requires a temporary place to store
the data until it can be used. A global text field is suitable for this purpose.

Trapping for Errors
A clean and simple user experience is certainly an improvement, but truly graceful execution also
requires that your script detect problems and handle them efficiently.

The script in the preceding section is vulnerable to a number of possible problems that you can
anticipate. Think about the following:

n The user might dismiss the dialog without entering anything into it.

n The Contact Details layout may have been deleted.

n While the user was entering a name in the dialog, another user on the network may have
deleted all the records in the contacts table.

n Another user may have added a new record to the Customer table, so that the last
record is no longer the one that the current user’s value should be entered against.

n Another user may presently be editing the last record in the Customer table, so it may
be temporarily locked, and the script is consequently unable to apply the change.

These and other similar conditions can cause one or more of the script commands to fail, in which
case the script may not complete or may complete with unintended results. At worst, the script
may write its data into the wrong record, perhaps overwriting data already stored there. Such
occurrences threaten a solution’s data integrity and are more common than many people suppose.

19_429006-ch13.indd 50419_429006-ch13.indd 504 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

505

Scripting in Depth 13

You can achieve a more robust script in two ways:

n Introduce additional code into the script to detect errors and respond appropriately.

n Further modify the design of the script so that it’s less vulnerable to error.

Both of these techniques are possible. For example, FileMaker Pro 10 provides error management
capabilities within scripts. As a script is executed, step by step, it returns a succession of error codes
(each of which refers to a specific error class or condition). The calculation function Get(LastError)
provides a means to determine whether an error was encountered and, if so, of what type.

Retrieving error codes appropriately
At any point in time, only one error code is available — the code relating to the most recently
executed script command. If another command executes (aside from the exceptions noted in this
section), its error code replaces the previously stored result. In other words, FileMaker does not
maintain a history or log of errors. It is up to you to retrieve the error codes and then act on them
or store them as you see fit when designing and implementing a script.

NOTENOTE In all cases, when no error has occurred (including when no script steps have yet
been executed), the Get(LastError) function returns zero.

Not all script commands return an error code. Most notably, #comment script lines are not evalu-
ated or executed in FileMaker Pro 10, so they return no code. Similarly, the Halt Script and
Exit Script[] commands are ignored by the error handler (the error result from the preceding
command will continue to be available). Additionally, various commands — including those in the
Control group, such as Allow User Abort [], Beep, Pause/Resume Script [], among
others — are not vulnerable to failure and routinely return a zero error result.

NEW FEATURENEW FEATURE A change in the behavior of scripts in FileMaker Pro 10 has been made so that the
most recent error code (the value returned by the Get(LastError) function) is

not cleared by the controls steps If, Else, Else If, End If, Loop, Exit Loop If, End Loop,
Exit Script, and Halt Script. This change makes it easier to test for an error from a preced-
ing step and then act on it in the following step.

The error code relating to the most recent script’s last action remains available even after the script
has concluded, so you may evaluate the Get(LastError) function at any time to discover the
error result of the most recent script’s last command. Moreover, error result codes are specific to
the FileMaker application session but not to the file, so even if the most recently run script was in
Solution A, its closing error result will remain available even after switching to Solution B — until
another script is executed (in either solution) or until you quit from FileMaker.

What the error codes mean
FileMaker Pro 10 provides a total 137 script commands. However, more than 200 error codes are
available, each relating to a particular problem (or category of problem) preventing a command or
process from executing successfully. You can find a complete list of the codes, with a brief explana-
tion of each, in FileMaker Pro 10 online help under the heading FileMaker Pro error codes.

19_429006-ch13.indd 50519_429006-ch13.indd 505 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

506

Beyond the BasicsPart III

In some circumstances, an error code is returned even though the script command may be regarded
as having succeeded. For example, a Go To Related Records[] command with the Match All
Records in Found Set option enabled will return error code 101 (Record is missing) if the
current record had no related records, even though other records in the found set had related
records that have been located and displayed. If there were no related records for any of the records
in the found set, FileMaker returns error code 401 (No records match the request), and the
command fails.

Not all the error conditions represented in the list of error codes are relevant to any one script
command. For example, error code 400 is defined as “Find Criteria are empty.” This error
code is clearly applicable only to those few script commands that you can use to execute a find and
that may therefore fail if no Find criteria have been provided. Similarly, error code 209 is defined
as New password must be different from existing one, which is applicable only to the
Change Password[] script command.

However, other results (such as error code 1, User canceled action or error code 9,
Insufficient privileges) can arise in a variety of situations and may be associated with
many of the available script commands. Although you may be able to anticipate specific error con-
ditions when using particular script steps, accounting for the possibility that other errors may also
arise is prudent.

Why bother with error handling?
In most cases, when an error is returned, something is amiss, and there are likely to be conse-
quences. FileMaker, as an application, is relatively tolerant of errors (that is, it rarely crashes or
hangs), but if a sequence of commands fail, the following scenarios may result:

n The user will be confused.

n Data will be inappropriately written or overwritten.

n Data that should be written won’t be.

n The wrong records will be deleted or duplicated.

n The user will be left stranded on the wrong layout.

n Any of a range of other unexpected events will occur.

The purpose of a script is generally to improve the efficiency, accuracy, and usability of your solution.
It is somewhat self-defeating if the script itself becomes the cause of errors or usability problems.

Scripts are executed sequentially from the first step to the last, so when a command partway
through a script can’t be performed, it may be problematic if the script proceeds. Conversely, if the
script stops partway through its run, the procedure it was intended to implement may be left in an
incomplete or otherwise unacceptable state (for example, an address that is partially updated may
be rendered meaningless).

19_429006-ch13.indd 50619_429006-ch13.indd 506 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

507

Scripting in Depth 13

In general, users are likely to embrace your solution if it supports their work, increases their effi-
ciency, or makes life easier, but not if it produces unpredictable results and leaves them confused.
To address this concern, you should selectively add code to trap errors as they occur during the
execution of your scripts.

Handling errors
FileMaker Pro 10 applies default error handling to many processes, which is what you see when an
error occurs while you’re operating the database manually. For example, if you go to Find mode
and then try to execute the Find without having entered any criteria, FileMaker posts a standard
alert dialog, as shown in Figure 13.2.

When a comparable error is encountered as a result of a script’s execution, FileMaker (by default)
posts an essentially similar dialog, with the addition of a button allowing the user to continue the
script regardless. In this case, the Cancel button not only cancels the current action but also termi-
nates the script. Figure 13.3 shows the variation of the dialog that appears by default when the
same error is encountered as a result of a failed Perform Find [] script command.

When comparing the dialogs shown in Figures 13.2 and 13.3, notice that apart from the addition
of a Continue button, the dialogs are identical. However, while the default dialog in Figure 13.2 is
generally adequate for a situation when the user initiates a Find without first providing criteria, the
dialog appearing when a script throws the same error is less helpful — especially because the user,
not being closely acquainted with your script code, may be unable to discern the cause or conse-
quences of the error.

 FIGURE 13.2

The native FileMaker error dialog for the empty Find criteria condition.

 FIGURE 13.3

The default script error dialog for the empty Find criteria condition.

19_429006-ch13.indd 50719_429006-ch13.indd 507 3/25/09 7:55:11 PM3/25/09 7:55:11 PM

508

Beyond the BasicsPart III

NOTENOTE When a scripted Find procedure is preceded by the Allow User Abort [Off]
command, a variant of the dialog shown in Figure 13.3 appears, with the Cancel

button omitted.

The default error dialog is unable to tell the user what role the failed command had within the
script or why it has failed on this occasion. Similarly, it does not explain the consequences of can-
celing or continuing, or what criteria it would be appropriate to enter if choosing the Modify Find
option. The user is placed into a position of uncertainty, if not confusion, and the choices he
makes to resolve this dilemma may only compound the problem. This is an inherent limitation
with reliance on default error handling within the context of a scripted procedure.

The first thing to do when implementing appropriate error handling within a script is to turn off
the default error messages within the script. You do this by adding the script command Set
Error Capture [On].

NOTENOTE After error capture is turned on, all default error handling is disabled until the script
concludes or error capture is explicitly turned off. Notable exceptions are errors aris-

ing from failed file handling procedures (such as import or export) and errors generated by the
operating system arising from a script action (for example, out of memory or permissions errors).

A script’s error capture state is also “inherited” by any and all sub-scripts that the script may call.
Changes to the error capture state occurring within sub-scripts will subsequently be inherited by
the calling script (when it resumes execution).

When you include the Set Error Capture [On] command at the start of a script, it is impor-
tant to ensure that you provide adequate error handling within the ensuing script sequence,
because no default error messages will be displayed. Otherwise, when the script encounters an
error while error capture is on, it will continue regardless.

TIPTIP You can use the Set Error Capture [] command to turn error capture on and off
at will during the course of a script (or script thread involving calls to sub-scripts).

If you determine that native error trapping will be adequate for some portion of a script, you may
want to turn on error trapping for only those passages that require custom error handling.

Whenever you enable error capture, you should add an error-check sequence after each command
that you might reasonably expect to fail under some conditions. I recommend that you trap for less
likely errors as well as highly probable ones.

Here is a practical example of a simple two-step script to which error trapping might be added:

Go to Layout [“Invoices” (Invoices)]
Perform Find [Specified Find Requests: Find Records;

Criteria: Invoices::Status: “Open”]

The preceding script is designed to locate and display open invoices, if there are any. Of course, if
no open invoices are in the Invoices table at the time of script execution, the second line pro-
duces an error, and the user is left stranded. Here’s a revised copy of the same script, including
error handling:

19_429006-ch13.indd 50819_429006-ch13.indd 508 3/25/09 7:55:12 PM3/25/09 7:55:12 PM

509

Scripting in Depth 13

Set Error Capture [On]
Go to Layout [“Invoices” (Invoices)]
If [Get(LastError) ≠ 0]
 Beep
 Show Custom Dialog [Title: “Find Open Invoices: Error Alert”;
 Message: “The Invoice Layout required for this process could not
 be accessed.¶¶Please report this problem to the developer.”;
 Buttons: “OK”]
 Exit Script []
End If
Perform Find [Restore; Specified Find Requests: Find Records;
 Criteria: Invoices::Status: “Open”]
Set Variable [$LastError; Value:Get(LastError)]
If [$LastError ≠ 0]
 Beep
 Show Custom Dialog [Title: “Find Open Invoices: Error Alert”;
 Message: Case(
 $LastError = 401; “There are no open invoices at present.”;
 $LastError = 9; “Your privileges do not permit this action.”;
 “An unexpected error occurred [ref#” & $LastError & “].¶¶Please
 report this problem to the developer.”
); Buttons: “OK”]
 Go to Layout[original layout]
End If

The original two-step script is now expanded to 14 steps, with the inclusion of the Set Error
Capture [] command and an If[]/End If sequence after each of the substantive steps.

NOTENOTE The example shown here illustrates two different approaches to error trapping. The
first (which follows the Go to Layout [] command) is generic and responds with-

out regard to the cause of the error, while the second approach stores the error code so as to be
able to respond in a way that is specific to the nature of the error.

At first glance, the implementation of error handling may seem unduly onerous. Consider the fol-
lowing before you throw your arms up in despair:

n In practice, you can greatly reduce the work required by placing the repetitive error trap-
ping code into a sub-script. (An example of this technique is described in detail in the
“Using sub-scripts” section, later in this chapter.)

n When the script is executed, if no errors are detected, the steps within the enclosing If/
End If commands will be bypassed, so the revised script does not take significantly lon-
ger to run.

n Adding error handling is a significant enhancement that greatly improves the user experi-
ence. In many cases, the quality of the data and reliability of the solution also improves
substantially.

19_429006-ch13.indd 50919_429006-ch13.indd 509 3/25/09 7:55:12 PM3/25/09 7:55:12 PM

510

Beyond the BasicsPart III

Scripts and Access Privileges
FileMaker scripts assume control of your solution for the duration of the tasks they perform, working
with your solution’s code and interface like a powerful (and extremely efficient) user. By default,
therefore, your scripts inherit the current user’s login account access privileges and constraints.

CROSS-REFCROSS-REF For a detailed discussion of security configuration and user accounts and privileges,
see Chapter 14.

You can take three approaches when dealing with access privileges within your scripts. You can

n Design your scripts to work within the limits of the current user’s account privileges,
working on the basis that if, for example, the user does not have record creation privi-
leges, then scripts running while the user is logged in should be similarly limited.

n Designate your scripts as super-users, granting them access to everything in the file
regardless of the privileges of the current user.

n Configure your scripts to re-login under an account of their own, changing the applicable
access restrictions one or more times during the course of execution (perhaps requiring
the user to re-authenticate at their conclusion).

Needless to say, you may mix and match — take one approach for some scripts and another for
others. Whichever approach you take, however, must be reflected in the way your script tests for
and handles privilege-related error conditions.

When you take the first approach indicated, your scripts will encounter different permissions
depending on the current user’s login account. Moreover, user access privileges may change over
the solution’s life, so you should assume that access restrictions may arise subsequently, even if
they’re not a consideration when your script is first created.

To take the second listed approach, you should enable the checkbox option at the lower edge of
the Script Editor window labeled Run Script with Full Access Privileges, as shown in Figure 13.4.

When your script is set to run with full privileges, access restrictions of the privilege set assigned to
the current user’s account are overridden for the duration of the script.

CAUTION CAUTION If a script set to run with full access privileges script calls other scripts via the
Perform Script[] command, the called scripts do not inherit the full privileges

setting (unless they’re also set to run with full access privileges; they’re constrained by the privi-
lege set assigned to the current user’s account).

If you decide to have your script log in with a different account to perform certain operations, be
aware that the user’s login session will be terminated. If you intend that users continue to use the
database by using their own login accounts after the script completes its task, you need to request
(or otherwise supply) the user’s password to re-login with the user’s account.

19_429006-ch13.indd 51019_429006-ch13.indd 510 3/25/09 7:55:12 PM3/25/09 7:55:12 PM

511

Scripting in Depth 13

 FIGURE 13.4

Select the full access privileges option for a specific script by using the checkbox at the bottom center of
the Script Editor window.

Privilege-based errors
When a script action fails due to privilege restrictions, the error code returned is not necessarily
directly related to privileges. For example, if the Contacts::FirstName field is configured as
“no access” for the Privilege Set assigned to the current user’s login account, the following script
command will return error 102, Field is missing:

Go to Field [Contacts::FirstName]

FileMaker returns this same error code if the field targeted by the Go to Field[] script com-
mand is not present on the current layout. In this example, and others like it, the error returned
may arise from a number of causes, of which privilege restrictions are only one.

In light of this, I recommend that you trap for a variety of errors in addition to the
Insufficient privileges error, when dealing with processes subject to access restrictions.

Run script with full access privileges
As indicated in Figure 13.4, you can set individual scripts to run with full access privileges. When
this option is enabled, your script behaves in all respects as though the current user is logged in
with an account assigned to the file’s default [Full Access] privilege set. As part of this, the
Get(PrivilegeSetName) function will return “[Full Access]” if evaluated while the
script is active. However, the Get(AccountName) function will continue to return the name of
the current user’s account.

19_429006-ch13.indd 51119_429006-ch13.indd 511 3/25/09 7:55:12 PM3/25/09 7:55:12 PM

512

Beyond the BasicsPart III

Be aware that the Run with Full Access Privileges option affects access only within the file where
the script is defined. If your users are accessing data, scripts, or other elements stored in other files
(either FileMaker files or external SQL data sources), privilege restrictions in those files remain
unchanged. When working with data or other content distributed between multiple files, the
options for overriding privilege restrictions within your scripts are consequently limited.

TIPTIP If your script needs to act on an external FileMaker file’s content and may encoun-
ter privilege restrictions in the source file, one possible solution is to create a script

within the external file to perform the required operations, set that external script to run with
full access privileges, and use the Perform Script[] command in your original script to call
the external script.

Determining the substantive privileges
If you’ve created a script to perform actions outside the privilege restrictions of the current user
(and have enabled the Run Script with Full Access Privileges option for the script), you may want
to set the script up to function differently according to the user’s assigned privileges. To do so,
your script will require access to the name of the current (substantive) user’s privilege set.
However, the Get(PrivilegeSetName) function does not return the substantive privilege set
during the execution of such a script. Here are two alternative options allowing your script to nev-
ertheless ascertain the current user’s assigned privilege set:

n Ensure the script is always called via a method that supports script parameters (for
example, a button or a custom menu command) and specify the script parameter using
the Get(PrivilegeSetName) function. Because the parameter expression is evalu-
ated prior to the script’s commencement, it’s not affected by the Run Script with Full
Access Privileges setting, and your script can retrieve the name of the substantive privi-
lege set by using the Get(ScriptParameter) function.

n Create a single step script (without the Run Script with Full Access Privileges option
enabled) containing the following command:

Exit Script [Result: Get(PrivilegeSetName)]

 Then call the script from within your original script, afterwards retrieving the name of the
user’s substantive privilege set by using the Get(ScriptResult) function. Note that
the same one-step script can serve this purpose for all the scripts in a solution file set to
run with full access privileges.

CROSS-REFCROSS-REF For additional details about defining custom menus using FileMaker Pro 10
Advanced, see Chapter 18.

Automating the Automation
Every solution has processes that can benefit from automation, so the question is not whether to
make use of Scripting’s ample capabilities, but which tasks to automate first and how to design the
automation so that it requires as little user input or intervention as possible.

19_429006-ch13.indd 51219_429006-ch13.indd 512 3/25/09 7:55:12 PM3/25/09 7:55:12 PM

513

Scripting in Depth 13

Most scripts — even the most self-contained and robust — require user initiative to launch them.
In Chapter 8, I detail seven methods of calling scripts, most of which depend on an explicit action
from the user (a button click or a menu selection). However, several script-triggering methods offer
less direct ways to set scripted procedures in motion.

I encourage you to consider all options for setting your scripts in motion at the appropriate times —
both in the interests of saving work for your users and also to improve the reliability and integrity of
the processes your scripts encapsulate. The most elegantly conceived script is only useful if it’s used!

Defining a script to run on file open
Among the indirect methods of launching a script are the “when opening” and “when closing” per-
form script options accessible in the Open/Close tab panel of the File Options dialog (File ➪ File
Options), as shown in Figure 13.5.

When you specify a script to run on file open, it’s automatically triggered every time the file is
opened, the first time a window from the file is displayed. When a file is opened in a hidden state —
such as when FileMaker opens it via a relationship or script call — the start-up script is not invoked.
However, if the file is selected for display, the start-up script will then be activated. When you open a
file directly, either by double-clicking its icon or by choosing File ➪ Open or File ➪ Open Recent, the
start-up script will run. However, if the file is opened indirectly as a result of a relationship or a script
call, it will open hidden, and the start-up script will be delayed to run if and when a window from
the file is first displayed.

Specifying a script to run when opening your solution files is as simple as selecting a checkbox and
choosing the script from a list of scripts defined in your file. However, determining what to include
in your opening script is a challenge of a different order.

 FIGURE 13.5

Setting the options to perform a script when opening or closing a file, via the File Options dialog.

19_429006-ch13.indd 51319_429006-ch13.indd 513 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

514

Beyond the BasicsPart III

Housekeeping practices for start-up scripts
The processes you include in your start-up scripts vary according to the needs of your solution,
but a range of operations common to many solutions’ start-up scripts are worth considering.

You should also keep in mind that a start-up script is considerably more useful if you can be confi-
dent it has launched and completed its run on every occasion your solution is accessed. One part
of ensuring this is to include the command

Allow User Abort [Off]

Placing this command at or near the commencement of the script reduces the likelihood that the
user will (intentionally or inadvertently) interrupt your script before it executes fully (for example,
by pressing the Escape key).

CAUTION CAUTION Don’t assume that the Allow User Abort option is an absolute guarantee of uninter-
rupted passage for your start-up script — or any other script, for that matter. A

knowledgeable user can contrive a number of ways to halt a running script. However, this option
is a reasonable first-line safeguard.

CROSS-REFCROSS-REF For a further discussion of start-up scripts and security considerations, refer to
Chapter 14.

Consider including the following when configuring your start-up scripts:

n Application verification: When your solution has been developed to take advantage of
the features of a recent version of FileMaker, it may be prudent to have your start-up
script confirm that it’s being opened with the required version (or later).

n Security and login procedures: Unless your solution is configured to prompt the user
for credentials prior to opening, your start-up script is an opportunity to present a
scripted login procedure.

n Window placement and management: Positioning and sizing of the window (or win-
dows) required for your solution’s optimal use should not be the first task for your solu-
tion’s users.

n Setting user preferences: When you’ve configured your solution to store a range of set-
tings, preferences, state variables, or other user-specific or computer-specific usage infor-
mation, the start-up script is a convenient place to restore the appropriate configuration
for the current user or workstation. The configurations sequence in your start-up scripts
may also include loading custom menu sets and ensuring your solution and/or its inter-
face options conform to the current computer’s language and regional settings.

n Usage logging: For diagnostic and planning purposes, have your solution maintain a
record of the history of its use, including opening and closing on different computers.
This, too, may be a job for the start-up script.

n Initialization of third-party plug-ins: If your solution’s functionality depends on plug-
ins, start-up is a good time to verify the availability of compatible versions of plug-ins and
to pass any registration or enabling codes to them for the current session.

19_429006-ch13.indd 51419_429006-ch13.indd 514 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

515

Scripting in Depth 13

n Refreshing any external resources required by your solution: For example, if you’ve
configured Web viewers to display Flash files, images, and so on, the start-up script pro-
vides an opportunity to install or update the required resources on the current workstation.

n Uploading or updating online content: When your solution depends on current infor-
mation from remote servers or Web sites, the start-up script can check the current online
information, downloading fresh data when necessary.

n Restoring global values and declaring variables: The start-up script is a good place to
establish the default state of any values and variables on which your solution depends.
Moreover, the practice of establishing solution-wide reference values in the start-up script
is a good discipline (and a point of reference for the existence and operational state of
any/all such values required by your solution).

n Providing the user with solution version confirmation, basic usage statistics (last
used, last back-up, file size, number of records, and so on), and/or support
resources and contact information: A splash layout displayed for the duration of the
starting script may be a good way to achieve this task.

You might also consider assigning a variety of other tasks to a start-up script in your solutions. The
previous list includes only some of the more common usages. However, as you can see, there is no
shortage of work in store for you as you prepare your solution for an encounter with its users.

Scripts that run on file close
Just as a start-up script can perform a wide variety of useful operations, a script set to run on file
closure can take care of numerous important checks, updates, and other housekeeping. Because
the user can choose to terminate the application (or file) session at any time, a first concern to be
addressed by the closing script is whether the data is in a valid state (for example, your closing
script might prompt the user to provide data to finalize a partially complete record, or to either
correct an invalid entry or discard the record containing it).

Like the start-up script, your closing script should restore the solution to its default state by

n Capturing and storing any preference or state data for the current user (for example, so
that the user’s session can be restored on next login)

n Updating any solution logs to indicate closure of the client session

n Ensuring any ancillary or supporting files are gracefully closed

n Presenting the user with any relevant statistics or exit system messages or data

You should also consider that in the event of a system or hardware failure (power outage or force-
quit, for example), your closing script may not run or execute completely. You may need to
include an additional subroutine in the start-up script that verifies that the previous session was
terminated appropriately and, if not, undertakes whatever checks and other remedial steps are
appropriate (updating logs, for example). To detect whether your closing script has run correctly,
have it set a value into a utility field when it runs and then have the start-up script reset the value
to indicate the file is open. If the start-up script finds the utility field with a value indicating an
open session, you’ve established that the shut down sequence did not execute completely.

19_429006-ch13.indd 51519_429006-ch13.indd 515 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

516

Beyond the BasicsPart III

Script Triggers
While your database is in use, a variety of circumstances will necessitate the execution of a script.
For this purpose, FileMaker 10 provides script trigger events that allow you to attach a script to a
layout or layout object.

You can assign a script trigger to a layout by choosing Layouts ➪ Layout Setup and navigating to
the Script Triggers tab. FileMaker 10 provides support for seven kinds of layout based script trig-
ger events:

n OnRecordLoad: Runs a script after a record becomes active on the layout to which the
trigger has been assigned.

n OnRecordCommit: Runs a script prior to committing a record on the layout. The script
can forestall the commit action by returning a script result of zero.

n OnRecordRevert: Runs a script prior to reverting a record on the layout. The script
can forestall the revert action by returning a script result of zero.

n OnLayoutKeystroke: The assigned script will run when an (noncommand) input key-
stroke is issued while on the layout, provided the keystroke isn’t intercepted by an
OnObjectKeystroke trigger. The script runs before the keystroke takes effect and can
be forestalled by returning a script result of zero.

n OnLayoutLoad: Runs a script each time the layout becomes active.

n OnModeEnter: Runs a script after entering a new mode on the layout.

n OnModeExit: Runs a script prior to exiting the current mode on the layout. The
assigned script can forestall the mode change by returning a script result of zero.

Similarly, FileMaker 10 provides a further five script trigger events that can be assigned to individ-
ual layout objects, as follows:

n OnObjectEnter: Runs a script after the selected object becomes active.

n OnObjectKeystroke: The assigned script will run when an (noncommand) input key-
stroke is issued while the selected object is active. The triggered script runs before the
keystroke takes effect and can be forestalled by returning a script result of zero.

n OnObjectModify: Runs a script after the selected object is modified. Modification can
include an edit action in a field box, a tab change in a tab control, and so on.

n OnObjectSave: Runs a script before a change to the object’s contents is validated and
saved. The assigned script can forestall the save event by returning a script result of zero.

n OnObjectExit: Runs a script before the selected object loses focus (is no longer the
active object). The assigned script can forestall the exit event by returning a script result
of zero.

You can assign Layout object triggers, as well as the OnRecordLoad, OnRecordCommit, and
OnRecordRevert triggers, to run in Browse mode, Find mode, or both. You can assign the
OnLayoutKeystroke, OnLayoutLoad, OnModeEnter, and OnModeExit triggers to run in
Browse, Find, and/or Preview modes.

19_429006-ch13.indd 51619_429006-ch13.indd 516 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

517

Scripting in Depth 13

You should exercise caution when assigning script triggers because they’re a powerful feature that
can take control of your solution. Used sparingly and wisely, triggers can provide seamless auto-
mation and invaluable assistance to your solution’s users. Take care, however, to avoid overuse of
triggers and test to ensure that one trigger event does not set off others resulting in a loop sequence
or creating other unintended or undesirable effects.

Harnessing the Power of Parameters,
Results, and Variables
In Chapter 8, I mention that a script parameter can be passed to a script and referenced within the
script as a way of controlling the script’s behavior. However, the concept isn’t pursued in depth in
the examples I provide. In the example provided in the “Scripts and Access Privileges” section, ear-
lier in this chapter, I suggest that you use a single line script to declare the name of the substantive
privilege set as a script result, for retrieval by a parent script, where the Run Script with Full Access
Privileges option is enabled. There are, however, many other benefits to the ability to pass data
directly to and retrieve data from your scripts.

Getting data into a script
FileMaker provides you the option to specify a script parameter — data to be passed as input to
the script — either literal text or the result of a calculation expression evaluated as the script is
queued when a script is triggered by the following methods:

n Using the Perform Script[] button command

n Being called as a sub-script from the current script

n Selecting an item in a Custom menu

n Using an external function (using FileMaker’s plug-in API with an appropriate third-party
plug-in installed)

For example, when configuring the Perform Script[] button command, the Specify Script
Options dialog, shown in Figure 13.6, includes a field for an optional script parameter below the
list of available scripts.

In Figure 13.6, the script parameter has been specified as literal text (enclosed in quotes).
However, the Edit button to the right of the parameter field provides access to the Specify
Calculation dialog in which you can define a calculation to determine the content of the parameter
based on the state of your solution at runtime (for example, when the button is clicked).

NOTENOTE An expression determining the parameter to be passed to a script is evaluated
before the script commences — which determines the state of local variables in

play, the scope of any local variables declared in the expression itself, the status of privileges
with respect to the “Run with Full Access Privileges” setting, and the value returned by the
Get(ScriptName) function. In all these respects, the context of evaluation of the script param-
eter expression reflects the state of play immediately before commencement of the script.

19_429006-ch13.indd 51719_429006-ch13.indd 517 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

518

Beyond the BasicsPart III

 FIGURE 13.6

Specifying a script parameter when defining a button on the Specify Script Options dialog.

Branching according to state
Your solution’s state when a script is triggered is largely beyond your control. By restricting the
means of triggering your script to a specific layout button (or to a set of custom menus assigned to
particular layouts), you can constrain users’ options a little — for example, you can be confident
that they are on an appropriate layout when launching the script. However, you can’t predict what
mode the user will be in, what record (or request) will be active, what the found set will be, what
other windows will be open, or what processes are running.

By capturing data about your solution’s state either at the commencement of the script or by pass-
ing the data as a script parameter (evaluated immediately prior to the script’s commencement), you
can ensure that your script has crucial information about the environment it is to act upon.
Additionally, you have the option to call the same script from different buttons, passing a different
parameter from each to determine alternate script behavior. For example, you may choose to use
the same script for two buttons, requiring different behavior for Browse and Find modes, thereby
producing four alternate script sequences.

One way to implement a branching of process and functionality within your script is to create a
control structure for your script by using FileMaker script control commands (those grouped in
the Control category of commands in the Edit Script window). For example:

If [Get(WindowMode) = 0]
 #Solution is in Browse mode
 If [Get(ScriptParameter) = “Button 1”]

19_429006-ch13.indd 51819_429006-ch13.indd 518 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

519

Scripting in Depth 13

 >>> {insert script sequence 1 here}
 Else If [Get(ScriptParameter) = “Button 2”]
 >>> {insert script sequence 2 here}
 End If
Else If [Get(WindowMode) = 1]
 #Solution is in Find mode
 If [Get(ScriptParameter) = “Button 1”]
 >>> {insert script sequence 3 here}
 Else If [Get(ScriptParameter) = “Button 2”]
 >>> {insert script sequence 4 here}
 End If
End If

A simple control framework such as the one shown in this example lets you apply process differen-
tiation to part or all of your script, contingent on mode and the trigger button selected. However,
although simple to design and implement, such a structure may lead to redundancy or repetition
in your scripting model.

CROSS-REFCROSS-REF For alternative approaches to branching and alternate script functionality according
to state or context, refer to the discussion of dynamic and indirect controls later in

this chapter.

By first mapping out an appropriate control structure for your scripts, you can accommodate vary-
ing (though related) functional requirements within a single script, enabling one script to serve for
diverse situations and contexts.

Two concerns you must address when structuring scripts for dynamic execution are the frequent
need to pass more than a single datum to the script as parameter and the desirability of establishing a
consistent framework of context indicators for the duration of the script. For example, the simple
control framework described earlier in this section directly tests for window mode during its execu-
tion. However, in a more complex script where branching may occur at intervals throughout its exe-
cution, the mode may change during the course of the script. Thus, it’s necessary to capture and store
context at the commencement of the script to provide a consistent point of reference throughout.

Declaring variables
I recommend that you declare relevant information in local ($var) variables during the commenc-
ing steps of your script so that you can capture context at the start of a script (or at key points
throughout its execution) and maintain the data for reference during the script. For example, you
can restructure the control framework discussed in the previous section as follows:

#Declare state variables:
Set Variable [$Mode; Value:Choose(Get(WindowMode); “Browse”; “Find”)]
Set Variable [$Button; Value:GetAsNumber(Get(ScriptParameter))]
#Process control:
If [$Mode = “Browse”]
 If [$Button = 1]
 >>> {insert script sequence 1 here}
 Else If [$Button = 2]

19_429006-ch13.indd 51919_429006-ch13.indd 519 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

520

Beyond the BasicsPart III

 >>> {insert script sequence 2 here}
 End If
Else If [$Mode = “Find”]
 If [$Button = 1]
 >>> {insert script sequence 3 here}
 Else If [$Button = 2]
 >>> {insert script sequence 4 here}
 End If
End If

In this rudimentary example, with only two state variables in play and a basic branching structure,
you can notice an improvement in readability because intelligible variable names replace function
calls and potentially convoluted expressions throughout the script’s body. The work of retrieving
parameter and environment data is performed once at the script’s commencement, and the vari-
ables are then available throughout the course of the script. Overall, structuring your scripts in this
way offers potential improvements in

n Efficiency: Functions and calculations determining state need be evaluated only once
and thereafter variables are available to be referenced. Variables are held in memory; ref-
erencing uses minimal resources.

n Reliability: Given values are determined once and remain in memory throughout, so if a
script action changes the state of your solution, the execution of the script’s logic is not
impacted.

n Readability: Variable names and values can be chosen to aid clarity and transparency of
the ensuing logic throughout the main body of the script.

n Maintainability: An adjustment to the calculation used to retrieve and declare a mode
variable requires a change in only one place. (Otherwise the change would be required to
be repeated throughout logical expressions distributed through the script.)

Although a series of Set Variable[] commands at the top of your script is moderately com-
pact, yet accessible and readable, an alternative approach is to use a single command containing a
Let() calculation declaring multiple variables within its syntax. Some developers prefer this
approach because it increases compactness of the code, tucking the variable definitions out of the
way until needed. I regard this decision as largely a matter of style or personal preference, and I
acknowledge that the desirability of having all the variables laid out may vary according to the
solution’s nature and complexity. If you prefer to use the hidden-until-needed approach, the first
three lines of the example cited previously would become

Set Variable [$All State Variables; Value:Let([

$Mode = Choose(Get(WindowMode); “Browse”; “Find”);

$Button = GetAsNumber(Get(ScriptParameter))]; “”)]

Because the bulk of the code in this construction is contained within the parameter of a single Set
Variable[] command, only one line of the script is used, and it stays out of sight until you
select and open the step for viewing.

19_429006-ch13.indd 52019_429006-ch13.indd 520 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

521

Scripting in Depth 13

Either of the methods outlined in this section provides the means to pass data efficiently into
appropriately named local variables to serve the needs of your script. The usefulness of these tech-
niques remains limited, however, until you find a way to pass more than a single parameter value
to your scripts.

Passing and retrieving multiple parameters
Although FileMaker accommodates a single text parameter when calling a script, you need not
regard it as a limitation. You can contrive to pass multiple parameter values several ways.

One of the most straightforward techniques for passing multiple parameter values is to place each
value on a separate line in a predetermined order and then write your script to retrieve each line of
the parameter separately, such as by using the GetValue() function to selectively appropriate
the individual values from the composite string passed as the original parameter. For example,
when you have a script designed to write a new value into a given field for a specific contact
record, you require the ability to pass three values to the script: ContactID, FieldName, and
NewValue.

When a script you define requires parameters, I recommend that you append their names to the
name you give the script (preferably listed at the end in square brackets), as in

Update Contact Record [ContactID, FieldName, NewValue]

Having determined the order that you will pass the parameter values, you can then specify the
script parameter using an expression such as

Contacts::ContactID & “¶AddressLine1¶” & Utility::gUpdateValue

This expression passes to the script a carriage-return separated list of values such as

CT00004

AddressLine1

17 Coventry Road

Within the opening lines of your script, you can then efficiently retrieve the separate elements of
the parameter, declaring them as separate named variables, with the following commencing steps:

Set Variable [$ContactID; Value:GetValue(Get(ScriptParameter); 1)]
Set Variable [$FieldName ; Value:GetValue(Get(ScriptParameter); 2)]
Set Variable [$NewValue; Value:GetValue(Get(ScriptParameter); 3)]

This procedure is easy to implement for small numbers of values and, provided that the values will
not contain carriage returns, gives satisfactory results. However, such a procedure is vulnerable to
error if you’re not careful about the order you provide the variables. The risk of error and intelligi-
bility of the parameter and code rapidly diminish if you have more than two or three values to pass
to your script.

19_429006-ch13.indd 52119_429006-ch13.indd 521 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

522

Beyond the BasicsPart III

To address these shortcomings — and especially to serve more demanding requirements — I recom-
mend an approach where each component value is passed together with its name. The resulting array
format is what is commonly termed name/value pairs. The most frequently encountered format for
name/value pairs is the FileMaker internal display of command parameters (in the script definition
panel of the Edit Script window, for example). The value name is supplied, followed by a colon, and
then the value followed by a semicolon. For example, the three parameters in my preceding example
could be represented as name/value pairs as follows:

ContactID: “CT00004”; FieldName: “AddressLine1”; NewValue: “17 Coventry Road”

A set of parameter values passed in this format has several advantages. It is extensible; you can
include additional values at will. Each value is clearly identifiable regardless of how many there
are. The order of the values is immaterial, because each value will be located according to its name.

The downside is that retrieving the values requires a more complex calculation. For example, to
retrieve the individual values from the preceding parameter string, you could use a parsing expres-
sion (such as those in Chapter 12), such as

Let([
Vn = “FieldName”;
Ln = Length(Vn);
Sp = Get(ScriptParameter);
p1 = Position(Sp; Vn & “: \””; 1; 1) + Ln + 2;
p2 = Position(Sp & “; “; “\”; “; p1; 1)];
Middle(Sp; p1; p2 - p1)
)

This expression returns AddressLine1, but if you change the value of the Vn calculation variable
to “ContactID”, it returns CT00004, and if you change Vn to “NewValue”, it returns 17
Coventry Road.

In this technique, you have the rudiments of an extensible system, but in the form described here,
the unwieldy calculation is a drawback. Either creating a sub-script to perform the task or defining
a custom function (using FileMaker Pro 10 Advanced) to encapsulate the required code obviates
needing to repeat an exacting expression to parse individual parameter values.

In fact, if you have access to FileMaker Pro 10 Advanced, I recommend taking this process a step
further using the capabilities of custom functions. You can design a self-contained custom function
to parse an unlimited number of name/value pairs and declare them as local variables in a single
call. With such a function in place, a parameter string, whether containing one or several dozen
name/value pairs, can be declared as local variables in a single opening script command.

Here’s one custom function definition example:

//Custom Function Syntax: DeclareVariables (ParameterString)
Case(
 not IsEmpty(ParameterString);
 Let(

19_429006-ch13.indd 52219_429006-ch13.indd 522 3/25/09 7:55:13 PM3/25/09 7:55:13 PM

523

Scripting in Depth 13

 [
 p1 = Position(ParameterString; “: “; 1; 1) + 2;
 q1 = Middle(ParameterString; p1; 1);
 s1 = (q1 = “\””);
 t2 = Choose(s1; “; “; “\”; “);
 q2 = Left(“\””; 1 - s1);
 p2 = Position(ParameterString & t2; t2; 1; 1);
 n1 = Left(ParameterString; p1 - 3);
 c1 = Middle(ParameterString; p1; p2 - p1 + s1);
 v1 = Evaluate(“Let($ “ & n1 & “ = “ & q2 & c1 & q2 & “; \”\”)”);
 r1 = Right(ParameterString; Length(ParameterString) - p2 - 1 - s1)
];
 DeclareVariables(Trim(r1))
)
)

NOTENOTE Custom functions must be defined in your file using FileMaker Pro Advanced, but
once installed, you can use and deploy them in FileMaker Pro.

CROSS-REFCROSS-REF For more information about the creation and use of custom functions, see Chapter 18.

The preceding custom function is structured so that the enclosing quotation marks on the values
in your name/value pairs are optional, being required only when semicolons are present in a par-
ticular value. With this custom function in place, you can convert this script parameter,

 date: 8/12/2005; address: 33 Drury Lane; city: Gemmaville; state: Louisiana; amount:
$343.00; process: recursive; title: FileMaker Pro 10 Bible; url: http://www.wiley.com/

which includes eight name/value pairs, to eight separate local variables (with names corresponding
to those supplied in the parameter string) by using the following single line of script code:

Set Variable [$x; Value: DeclareVariables (Get(ScriptParameter))]

NOTENOTE The Inventory example file for this chapter includes the DeclareVariables()
custom function and employs the function to declare name/value pairs in the sup-

plied parameter for the Show Transactions [type; filter] script.

Specifying and retrieving a script result
Script results are specific to the situation where you program one script to call another using the
Perform Script[] command. In such situations, the calling script (sometimes called the par-
ent script) may need to receive a confirmation or error message back from the sub-script, after the
sub-script concludes and the parent resumes.

When one script calls another, a parameter can be passed to the sub-script. A script result can be
viewed as the inverse functionality, allowing the sub-script to pass a value back to the calling
script. Like a script parameter, the script result value is available only to the specific script to

19_429006-ch13.indd 52319_429006-ch13.indd 523 3/25/09 7:55:14 PM3/25/09 7:55:14 PM

524

Beyond the BasicsPart III

which the sub-script passes it. To declare a script result, the sub-script must conclude with the
Exit Script[] command, with the result value declared as its parameter. For example, a sub-
script that creates a record in a related table can be structured as follows:

#Create child record:
Set Variable [$layout; Value:GetValue(Get(ScriptParameter); 1)]
Set Variable [$parentID; Value:GetValue(Get(ScriptParameter); 2)]
Freeze Window
Go to Layout [$layout]
Set Variable [$ErrorLog; Value:Get(LastError)]
If [GetAsBoolean($ErrorLog)]
 Exit Script [“ResultLog: “ & $ErrorLog]
End If
New Record/Request
Set Variable [$ErrorLog; Value:$ErrorLog & ¶ & Get(LastError)]
If [GetAsBoolean($ErrorLog)]
 Go to Layout [original layout]
 Exit Script [“ResultLog: “ & $ErrorLog]
Else
 Set Variable [$NewID; GetField(Get(LayoutTableName) & “::ID”)]
End If
Go to Object[Object Name: “ParentID”]
Set Variable [$ErrorLog; Value:$ErrorLog & ¶ & Get(LastError)]
If [not GetAsBoolean($ErrorLog)]
 Set Field [$parentID]
 Set Variable [$ResultLog; Value:$ErrorLog & ¶ & Get(LastError)]
End If
Go to Layout [original layout]
Exit Script [“ResultLog: “ & $ErrorLog & “; NewID: “ & $NewID]

This example sub-script has several important features. It does the following:

n Receives direction as to the layout of the child table and the ID of the intended parent
record

n Traps (cumulatively) for errors throughout, storing them in a local variable

n Declares a script result at each point of exit, including a complete log of error values
returned by the four error-sensitive commands in the sequence

n Returns (if successful) the ID of the newly created child record

The example provided here is structured so that it can be reused (subject to layout, field, and
object naming) to create related records in any table in a solution, returning a result in name/value
pair format to the calling script.

TIPTIP You can use whatever method you use for passing and parsing multiple parameters to
declare and retrieve multiple values through the FileMaker script result mechanism.

With a utility script in place in your solution and assuming that your solution has implemented the
DeclareVariables() custom function described in the previous section, a controlling script
can create a child record for the current record using a sequence along the lines of

19_429006-ch13.indd 52419_429006-ch13.indd 524 3/25/09 7:55:14 PM3/25/09 7:55:14 PM

525

Scripting in Depth 13

#Create child record in Invoices table:
Perform Script [“Create child record”; Parameter: “Invoices¶” & Products:ID]
Set Variable [$x; Value: DeclareVariables (Get(ScriptResult))]
If[GetAsBoolean($ResultLog)]
 Beep
 Set Field [SystemLog::Errors; $ResultLog]
 Show Custom Dialog [“An error occurred – child record not created!”]
 Exit Script
End If
Set Field [Products::gNewInvoice; $NewID]
#New child record successfully created...

NOTENOTE The preceding code is a fragment of a larger script. For brevity and clarity, I have
shown here only the segment of the parent script calling the sub-script and receiv-

ing/handling the result.

The foregoing process provides you with a framework for handling errors progressively throughout
a multi-script sequence, enabling two-way communication between your scripts.

Storing and accumulating data as you go
A significant feature in the Create child record sub-script’s error-trapping process is the use
of a local variable ($ErrorLog) to store a cumulative log of error codes returned by key steps in
the process. Because variables are passed directly to and from memory, they’re stored and retrieved
with little or no overhead (delay or processor cycles). This method is far more efficient than writ-
ing to or referencing fields in your solution’s database schema.

You can use variations of the logging technique exemplified in the previous example to perform a
range of tasks requiring the accumulation of data. For example, if you need an on-the-spot sum-
mary to show you the proportion of radio airtime devoted to local talent in the current days’
broadcast program, you could set up a script as follows:

#Local talent airtime:
Go to Layout [“Air Schedule” (Prog)]
Enter Find Mode []
Set Field [Program::AiredDate; Get(CurrentDate)]
Perform Find []
If [Get(LastError) = 0]
 Go to Record/Request/Page [First]
 Loop
 Set Variable [$all; Value:$all + Prog::Duration]
 Set Variable [$local; Value:$local + If(Prog::Local = 1; Prog::Duration)]
 Go to Record/Request/Page [Next; Exit after last]
 End Loop
 Show Custom Dialog [“Local talent: “ & Round($local / $all * 100; 1) & “%”]
Else
 Beep
 Show Custom Dialog [“Sorry - nothing has been scheduled for today yet!”]
End If
Go to Layout [original layout]

19_429006-ch13.indd 52519_429006-ch13.indd 525 3/25/09 7:55:14 PM3/25/09 7:55:14 PM

526

Beyond the BasicsPart III

This is another of many examples of scripted data accumulation using variables. Although this
example is by no means the only way (nor necessarily the best way) to calculate quick summary
data, it may be an ideal method in cases where

n You don’t want to (or can’t afford to) clutter schema with additional fields (such as sum-
mary fields) for the purposes of performing such a check.

n The summary or calculation you require isn’t readily supported by the FileMaker built-in
summary and aggregation operations.

n You need to spot-check a host of different things at different times (in which case your
script can be repurposed — for example, via script parameters — to perform a variety of
calculations at will).

n The information to be extracted is solely as input to a subsequent script operation.

If one or more of these conditions applies, scripted data aggregation should be among the options
you consider. There are many instances when the aggregation of information available during the
course of a script is both opportune and practical — with variables providing the ideal mechanism
for all such operations.

Dynamic and Indirect Controls in Scripts
You can configure many FileMaker scripting commands to explicitly target a specific layout, field,
or object in your solution. When you do, your scripts are clear, direct, and simple but not very
flexible.

For example, when you create a script with the Go to Layout[] command and you assign a spe-
cific layout as the command’s target, your script is easy to read and interpret, but it can be used
only for operations to be performed on that one layout.

Example — Go to Layout by name or number
In the case of the Go to Layout[] command — as with many other script and button com-
mands — FileMaker provides options for the destination object (in this case, layout) to be deter-
mined by calculation. This has two profound implications:

n The target layout will be determined as the command is evaluated, based on the result of
the calculation (and, therefore, on the inputs available at the time).

n The script or button can be configured to serve different purposes in different circum-
stances, making the code more flexible and dynamic and allowing it to be repurposed.

As shown in Figure 13.7, the Go to Layout[] command offers two By Calculation options. It
can be configured to select a target layout by either its name or its number. When choosing either
option, make sure that the calculation expression you supply will return a valid result in all cases.

19_429006-ch13.indd 52619_429006-ch13.indd 526 3/25/09 7:55:14 PM3/25/09 7:55:14 PM

527

Scripting in Depth 13

NOTENOTE In the context of the Go to Layout[] command, “by number” means according to
the numeric position of the layout in the layout order of the file (including any lay-

outs used as separators or not set to appear in the layouts menu).

CAUTION CAUTION If you choose to target a layout by name and the layout names are subsequently
edited, or to target a layout by number and the layouts are subsequently reordered,

the command may either fail or select the incorrect layout.

If you’re concerned about the possibility of changes in the future impacting the accuracy or appli-
cability of calculated results used to control commands dynamically, you can devise a more robust
method by using FileMaker design functions to determine an object’s name or number from its
internal ID.

CROSS-REFCROSS-REF A method for calculating a layout’s internal ID from its name (and vice versa) to
enable you to increase the robustness of references to objects in your code is pro-

vided in Chapter 12.

 FIGURE 13.7

Configuring the Go to Layout command to determine the target layout at runtime using a calculation.

Dynamic file paths using variables
In most cases, the option to determine a target object by calculation appears in the FileMaker script
and button command interface — at least when you know where to look, as in the case illustrated
in Figure 13.7. However, one of the less obvious examples is the ability to provide the filename
and/or file path for import and export of files (including the creation of PDF and Excel files using
the Save Records as PDF[] and Save Records as Excel[] commands).

19_429006-ch13.indd 52719_429006-ch13.indd 527 3/25/09 7:55:14 PM3/25/09 7:55:14 PM

528

Beyond the BasicsPart III

FileMaker accepts a variable as the specification (path and filename) of a file in the Specify File dialog
you use to set the target file for all import and output file operations. Figure 13.8 shows a variable
named $ReportPath being entered into the Specify Output File dialog in this chapter’s Inventory
example file’s Acquired Items Report script (in the Save Records as PDF[] command).

For a file operation to complete successfully when the file has been specified using a variable, the
variable must have a value resolving to a valid file path and filename for the current computer
when the command is executed. Therefore, a preceding step in your script must declare the vari-
able, giving it a value in the appropriate format (the accepted syntax for paths and files of various
types is indicated in the lower portion of the Specify File dialogs for each operation).

To assist in the creation of appropriate paths for the configuration of the current computer, you
have recourse to a number of useful functions, including

Get(DesktopPath)
Get(DocumentsPath)
Get(FilemakerPath)
Get(FilePath)
Get(PreferencesPath)
Get(TemporaryPath)

Moreover, the Get(SystemPlatform) function will enable you to ensure that your calculation
expression returns a path and filename in keeping with the requirements of the current computer’s
operating system.

 FIGURE 13.8

Supplying a predefined variable to provide the path and filename to create a file on the current workstation.

19_429006-ch13.indd 52819_429006-ch13.indd 528 3/25/09 7:55:15 PM3/25/09 7:55:15 PM

529

Scripting in Depth 13

Dynamically building Find criteria
Although many script and button commands provide for indirect or dynamic targeting, several are
lacking in this capability. For example, although you can configure the Perform Find[] com-
mand to apply specific search criteria, there is no provision for the criteria themselves to be deter-
mined by calculation. You can, nevertheless, achieve dynamic search capability in a reasonably
straightforward way.

If you followed Chapter 8 closely, you already encountered a simple example of a dynamically
scripted Find procedure in the Show Transactions [Type] script section. The script is
designed to find incomplete records in either of two tables and therefore places criteria into a dif-
ferent field in each case (though the criteria placed into the field is always “1”). The technique for
scripting a dynamic Find is, essentially, to build the find step-by-step using a series of discrete
script steps, rather than using the “Restore” option to pre-populate Find criteria within the
Perform Find[] step.

NOTENOTE Because performing a dynamic Find requires multiple commands in sequence, it
can’t be performed directly by a single button command — it requires a script.

(However, your button can call the script to achieve the desired effect.)

The essence of a dynamic Find is a script sequence in which you enter Find mode, specify criteria,
and then perform the Find — thus, at a minimum, three lines of script code are required. For
example, when you need a script to locate all agenda submissions entered within the past 28 days,
you can set it up as follows:

Enter Find Mode []
Set Field [Submissions::Date; “≥” & (Get(CurrentDate) - 28)]
Perform Find []

In this case, a single Find request is used (FileMaker creates a request automatically when entering
Find mode), with a single criterion entered into the Submissions::Date field. However, the
criterion is calculated with respect to the current day’s date, as a calculation using the Set
Field[] command.

By extension, you can use the same technique to build more complex Finds. For example, when
scripting a Find similar to the one described, to locate all “topic” submissions since the start of
the current month but excluding those marked as “deferred”, you can build a two-request
dynamic Find script as follows:

Enter Find Mode []
Set Variable [$now; Value:Get(CurrentDate)]
Set Field [Submissions::Date; “≥” & Date(Month($now); 1; Year($now))]
Set Field [Submissions::Type; “Topic”]
New Record/Request
Set Field [Submissions::Status; “Deferred”]
Omit Record
Perform Find []

19_429006-ch13.indd 52919_429006-ch13.indd 529 3/25/09 7:55:15 PM3/25/09 7:55:15 PM

530

Beyond the BasicsPart III

NOTENOTE When used in Find mode, the Omit Record command toggles the state of the Omit
checkbox option appearing in Find Mode’s Status Toolbar.

In this more complex example, two Find requests are created:

n The first with compound criteria in the Date and Type fields

n The second configured to omit records matching a criterion in the Status field

Because the parameter of the Enter Find Mode[] command is empty, the sequence is executed
without pausing. As the parameter of the Perform Find [] command is empty, the extant crite-
ria, such as that created by the preceding steps, are used for the Find.

CAUTION CAUTION For the sake of clarity and compactness, I have omitted additional error trapping
commands from the foregoing script code. This may be acceptable where a script

concludes with the Perform Find[] command, but in most cases, as discussed in the section
“Trapping for Errors,” earlier in the chapter, error trapping steps would be appropriate in addi-
tion to those shown here.

Editing field data on the fly (indirection)
A further area of frequently desired (and often required) dynamic functionality is the ability to
determine at runtime the field to be set (for example, by the Set Field[] command) or selected
(for example, by the Go to Field[] command). In either case, the functionality is only indi-
rectly achievable in FileMaker Pro 10.

One of the more elegant methods for having your script target a field without predetermining
which field (determining which field via runtime calculation) is employing the Go to Object[]
command to select a named field on the current layout. This technique requires that

n An instance of each of the fields to be targeted be present on the current layout when the
Go to Object[] command executes.

n Each field to be targeted is assigned an object name on the current layout.

n Your calculation for the Go to Object[] command returns the appropriate field’s
object name, rather than its logical (schema) name.

Thus, to reliably replicate the behavior of the Go to Field[] command with or without its
Select/Perform parameter enabled, but with the target field being determined by calculation, you
require (in addition to the earlier conditions set out) two lines of script code. To choose the field
and select its contents:

Go to Object [If(Submissions::Status = “Pending”; “Reason”; “Action”)]
Select All

To place the cursor at the end of the selected field’s current content:

Go to Object [If(Submissions::Status = “Pending”; “Reason”; “Action”)]
Set Selection [Start Position: Length(Get(ActiveFieldContents)) + 1]

19_429006-ch13.indd 53019_429006-ch13.indd 530 3/25/09 7:55:15 PM3/25/09 7:55:15 PM

531

Scripting in Depth 13

NOTENOTE These field selection methods are applicable to field types other than containers.
The Select All command does not prompt the commencement of multimedia pro-

gram content in a container field.

In cases where you need to dynamically target a field for the purposes of having your script update
its value, the Go to Object[] command can also be pressed into service for the first part of the
task. Rather than using a subsequent selection command, however, you can use a Set Field[]
command with no target field specified. (When the cursor is in a field and a Set Field[] com-
mand with no target is executed, the result of the Set Field[] calculation replaces the contents
of the current field.)

Thus, to set a field without specifying which field in advance, you can use a two-step sequence such as

Go to Object [If(Submissions::Status = “Pending”; “Reason”; “Action”)]
Set Field [“Prep for next meeting”]

You can apply a similar approach to achieve the effect of indirection using other editing and insert-
ing commands, such as Cut, Copy, Paste, Clear, Insert, and so on.

In addition, FileMaker Pro 10 includes an additional Set Field By Name[] command that
allows you to determine the field to be set using a calculation that supplies the fully qualified name
of the field (that is, the TO name and the field name separated by double colons). The use of this
new command enables you to select a field as the target of a set field operation dynamically based
on context or other variables that may not be known until runtime. For example, if your solution
has fields named tp correspond to the days of the week, you can place the value 9 into a field cor-
responding to current day as follows:

Set Field By Name [Get(LayoutTableName) & “::” & DayName(Get(CurrentDate)); 9]

Using Nonlinear Logic
Although the basic structure of FileMaker scripting processes is linear, several of the control
options let you construct script sequences that execute in a nonlinear way. These can result in
repeated sequences, alternate or parallel logical paths, and a variety of conditional code options.

Throughout the execution of all script processes, however convoluted, FileMaker nevertheless
remains single-threaded: Only one command is executed at any point in time, and the process
remains sequential in nature. (Each command completes its task before the next begins.)

Nested and sequential If/Else conditions
A mainstay of scripting control is provided by the logical controls If[], Else If[], Else, and
End If sequence of commands. You can use them to introduce dynamic elements to your code to
satisfy a wide range of requirements. They’re not as compact or dynamic as the indirection meth-
ods discussed in the previous section, but they’re nonetheless invaluable for their breadth of appli-
cation and their explicit control of any sequence of steps in your scripts.

19_429006-ch13.indd 53119_429006-ch13.indd 531 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

532

Beyond the BasicsPart III

In some cases, you can use a sequence of If[] and Else If[] conditions where indirection
capabilities are not provided by FileMaker. For example, to call a different sub-script according to
which TO the current layout is based on, you might define the following sequence:

If [Get(LayoutTableName) = “Contacts”]
 Perform Script [“Add Contact Address Record”; Parameter: Contacts::ContactID]
Else If [Get(LayoutTableName) = “Invoices”]
 Perform Script [“Create InvoiceLines Record”; Parameter: Invoices::InvoiceID]
Else If [Get(LayoutTableName) = “Orders”]
 Perform Script [“Create OrderLines Record”; Parameter: Orders::OrderID]
Else If [Get(LayoutTableName) = “Products”]
 Perform Script [“Create ProductPrice Record”; Parameter: Products::ProductID]
End If

Although this code is entirely explicit regarding what should happen and when, it is nonetheless
extensible. And although I include provision for only four conditions, much longer conditional
statements are possible.

When FileMaker evaluates a conditional sequence such as the one shown here, it works down
from the top evaluating the If[] and Else If[] expressions until it finds one that returns true
(a non-empty and non-zero value). It then performs the enclosed commands and jumps to the fol-
lowing End If command.

For logical purposes, therefore, the order of the conditions is significant. For example, if more than
one condition could evaluate as true, the one coming first will gain focus, and the subsequent
one(s) will be bypassed. However, if the conditions you supply are mutually exclusive, it’s prefera-
ble to order the conditions from the most probable (or frequently occurring) to the least probable,
because doing so reduces the number of evaluations performed (and therefore execution time) for
a majority of cases.

CROSS-REFCROSS-REF For further discussion of techniques for optimizing your script and calculation
code, see Chapter 19.

Looping constructs
FileMaker includes control commands you can use to create recursive script sequences. Direct sup-
port for this functionality is provided in the form of the Loop, Exit Loop If[], and End Loop
group of script steps (refer to Chapter 8).

In Chapter 9, I present a method of saving and restoring Finds using a pair of loops. However, I do
not discuss in detail the mechanism used to support this. The relevant steps from the first example
script I do include (the script appears in the Inventory example as “...Perform/Store Find”) are
as follows:

Go to Record/Request/Page [First]
Go to Next Field
Set Variable [$FirstField; Value:Get(ActiveFieldName)]

19_429006-ch13.indd 53219_429006-ch13.indd 532 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

533

Scripting in Depth 13

Loop
 Loop
 If [not IsEmpty(Get(ActiveFieldContents))]
 Set Variable [$Criteria; Value:If(not IsEmpty($Criteria);
 $Criteria & ¶) & Get(RecordNumber) & “»” &
 Get(RequestOmitState) & “»” & Get(ActiveFieldName) &
 “»” & Get(ActiveFieldContents)]
 End If
 Go to Next Field
 Exit Loop If [Get(ActiveFieldName) = $FirstField]
 End Loop
 Go to Record/Request/Page [Next; Exit after last]
End Loop

As you can see from the two adjacent Loop steps, the construction of this sequence sets up a loop
within a loop. The outer loop contains only two elements: the inner loop, plus the Go to
Record/Request/Page[Next; Exit after last] command. Therefore, the outer loop
serves to walk the current requests starting from the first and exiting after the last.

While the first (outer) loop is working its way through the current set of Find requests, the inner
loop executes multiple times on each record, working its way through all the fields in the current
layout and assembling details of the Find criteria (if any) in each field.

The number of times each loop executes depends on the circumstances when the script is exe-
cuted. In the case under discussion, when there are three Find requests, the outer loop will execute
three times — and when there are 12 fields on the current layout, the inner loop will execute 12
times on each pass of the outer loop for a total of 36 passes.

Specifying exit conditions
Whether you use an incrementing or decrementing counter, as I describe in Chapter 8, or an exit
condition such as those employed in the loops in the preceding example, the essentials of the
technique are the same — the loop iterates through the enclosed steps until the exit condition is
satisfied.

In some cases, the use of a loop with an enclosed pause (set for a specific time interval) can be
used to confirm completion of a task before proceeding. For example, when your script issues the
Set Web Viewer[] command to load a page from a remote site, you can use a loop and pause
technique to wait until the page has completely loaded before proceeding. One way of doing this is
to check the html source of the loading Web viewer to confirm that the closing body tag has been
received. For example:

Set Variable[$counter; Value: 0]
Loop
 Set Variable[$counter; Value: $counter + 1]
 Set Variable [$source; Value:GetLayoutObjectAttribute(“Viewer”; “content”]
 Exit Loop If [PatternCount($source; “</body>”) or $counter > 100]

19_429006-ch13.indd 53319_429006-ch13.indd 533 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

534

Beyond the BasicsPart III

 Pause/Resume Script [Duration (seconds): .1]
End Loop
If [not PatternCount($source; “</body>”)]
 Show Custom Dialog [“Web Connection time-out”]
 Exit Script []
End If

In this code example, note that I’ve included a counter in addition to the check for the presence of
the closing body tag so that in the event the network is unavailable, the script will not be indefi-
nitely locked within its loop.

NOTENOTE FileMaker provides support for pauses of durations less than a second, but the
accuracy of pause timing in FileMaker Pro 10 for very short pauses (less than one

tenth of a second) is low. However, you can specify pauses as short as 0.1 of a second, and
FileMaker will pause for a corresponding interval (approximately 100 milliseconds).

One occasion when your loop will not require an exit condition is when the loop’s purpose is to
force a pause (for example, holding the active window in frontmost position) until the user clicks a
button. In this case, the button the user clicks may be defined to halt or exit the current script —
as shown in Figure 13.9.

NOTENOTE The Current Script option is available only on buttons you attach to the Perform
Script[] command, though you can separately define a button to halt or exit the

current script (by attaching the separate Halt Script or Exit Script commands).

 FIGURE 13.9

Defining a button to halt or exit the current running script to terminate a paused looping sequence.

19_429006-ch13.indd 53419_429006-ch13.indd 534 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

535

Scripting in Depth 13

TIPTIP By default, when you define a button to execute the Perform Script[] com-
mand, the Current Script control is set to the Pause option. However, this choice is

rarely the most appropriate, so it is a good practice to consider the circumstances where a but-
ton will be used and select accordingly.

In most cases, looping conditions aside, it’s been my experience that the most appropriate
Current Script setting for a Perform Script[] button is either Exit or Resume, with Pause or
Halt rarely giving the most acceptable or desirable behavior.

Modular Script Code
When your scripts are long and complex, you may want to consider breaking them up into self-
contained smaller blocks of code that can be called in sequence to complete longer tasks. However,
I counsel against doing this for its own sake. A lengthy scripted procedure does not necessarily
become more manageable when its contents are split between several scripts, and, in fact, the
reverse can be true. Keeping track of a scripted sequence when it ducks and weaves between mul-
tiple scripts can be a considerable challenge.

So when should you divide a scripted process into multiple scripts? Here are some things to
consider:

n Is a section of your script code repeated at intervals during the process (in which case a
single sub-script might be called at each of those points)?

n Could part of the process of your script be shared with one or more other scripted
processes in your solution? (Again, if there is common code, separating it into a self-
contained module may have benefits.)

n Does part of your script require a different level of access than the rest (for example,
should one part run with the Run Script with Fill Access Privileges option enabled, while
the remainder does not)?

n Is it desirable or necessary that part of your scripted process reside in one file while
another part resides in another of your solution’s files?

Unless you answered a resounding “yes” to one or more of the preceding questions, you’re unlikely
to benefit from introducing component logic into your script. In fact, it’s likely that the added
complexity and overhead (more scripts to manage, more convolutions, and dependencies to keep
in view) will outweigh any advantages.

Using sub-scripts
When you design a script so that it can serve a particular kind of need in a number of contexts in
your solution, ideally it becomes a self-contained parcel of code available to you whenever you need
it when creating other scripts. In the section “Using Nonlinear Logic,” earlier in this chapter, I cited
the example of a script designed to create child records from various locations in your solution.

19_429006-ch13.indd 53519_429006-ch13.indd 535 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

536

Beyond the BasicsPart III

Another example would be a script designed to display a progress bar while other processes are
under way. The code to manage either of these processes might best be located in one place for your
whole solution — so that when you need to update it, you know exactly where to find it and a sin-
gle change will be reflected throughout the solution (for example, wherever the sub-script is used).

A further area that is frequently a good candidate for separation into a sub-script is error trapping.
Many steps in many scripts require similar checks and error-handling mechanisms. If you centralize
all your error handlers into one script designed to receive the error code as a parameter, you can then
provide error handling throughout all your other scripts by adding the following line of code:

Perform Script [“Error Handler”; Parameter: Get(LastError)]

You can add it after each script step where an error condition is possible. Such a script should, as its
opening line, exit if the parameter is equal to zero (no error) so that the parent script can continue.

An advantage of using a sub-script for error trapping is that it enables you to apply much more
exhaustive interpretation and response to various error types (and logging of errors) than would be
feasible if you are required to repeat the error-handling code in every script throughout your solu-
tion. When you’ve created an appropriate error-handling script, it becomes a simple matter to
reuse it wherever there is potential for error.

Script recursion
Intentionally or otherwise, the use of sub-scripts creates the possibility of circular logic and, there-
fore, infinite loops. This is one of many ways FileMaker gives you enough rope to hang yourself.
Whenever you create a call from one script to another script, it is wise to confirm that the script
you are calling does not itself call the current script. If it does — and you haven’t added an inter-
cept or exit condition — calling either script will bring your workstation to its knees.

While you should be mindful of the risks, the possibility of script recursion may be useful in some
situations. Provided that you enclose a script’s call to itself (or its call to another script that, in
turn, calls it) within an If[]/End If condition with an appropriate expression to terminate the
cycle when the desired aim is achieved, such a code model is viable.

In general, I recommend the use of Loop/End Loop structures in situations where recursive func-
tionality is required within your scripts. It is clear and readable, while providing support for a vari-
ety of code architectures. Moreover, loop structures avoid the relative inconvenience and added
overhead of repeated script calls that are a necessary part of recursively calling scripts.

Scripted Window Management
Among the 14 script commands appearing under the Windows group of commands in the list at
the left of the Edit Script window, you can use 7 commands to control the appearance of the con-
tent display in the current window. Seven — highlighted in Figure 13.10 — act on the window
itself.

19_429006-ch13.indd 53619_429006-ch13.indd 536 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

537

Scripting in Depth 13

 FIGURE 13.10

Seven of the available Windows script commands act on windows themselves rather than the current win-
dow’s contents.

Addressing windows by name (title)
I’d love to have been able to provide a less equivocal subheading here, but the fact is that the text
appearing across the top of windows is referred to as the window name in some places in
FileMaker Pro 10, while in others it’s called the window title. But rest assured that they’re both
referring to the same thing — for example, when you execute the command Set Window Title
[“xyz”] and then subsequently evaluate the Get(WindowName) command, it returns “xyz”.

Nowhere is this quirk more evident than in the “Set Window Title” Options dialog (shown in
Figure 13.11) where the dialog itself is labeled “Title” but the fields within the dialog prompt you
for “Window Name.”

 FIGURE 13.11

Filling in the Window Name fields in the “Set Window Title” Options dialog.

19_429006-ch13.indd 53719_429006-ch13.indd 537 3/25/09 7:55:16 PM3/25/09 7:55:16 PM

538

Beyond the BasicsPart III

When you first open a solution file, FileMaker sets the window name to the file’s name. When you
create a new window using the New Window[] script or button command, FileMaker allows you
the option of specifying the new window’s name. If you don’t provide a window name at this
point, however, FileMaker uses a default naming convention where the new window is assigned a
name based on the current window name (with a trailing hyphen and number appended — such
as “Inventory – 2”). If you create a window manually by choosing Window ➪ New Window,
FileMaker applies the same default naming procedure to determine the name (or should that be
title?) of the new window.

Whatever it’s called and however it got there, the label across the top of the window is useful for a
variety of purposes:

n It gives you a way to let your users know which window is which and what each window
is for.

n It lets you differentiate between windows in calculations throughout your solutions (for
example, by using the WindowNames() and Get(WindowName) functions to apply
window-specific highlighting or other attributes in your solution).

n It provides scripts with a mechanism to control the behavior of one window from a script
running elsewhere (even from a script in another file).

For all these reasons, I encourage you to supply unique and descriptive names to the windows in
your solutions and keep window naming in mind when managing windows through your scripts.
As part of this, you can issue custom (calculated) names to all new windows created by using the
New Window[] command, as shown in Figure 13.12.

When you name a window, its name remains in place until it is closed unless your scripts or but-
ton commands explicitly change it. Thus, care in window naming provides you with a way to be
explicit when subsequently selecting, moving, resizing, hiding, or closing a window.

NOTENOTE If you configure your solution to explicitly name windows, then the names will be
those you assign. Otherwise, FileMaker will assign window names that incorporate

the file name, which may include the name of the host where the file is located and/or a sequen-
tial number appended to differentiate similarly named windows.

Moving and resizing windows
When you script the creation of a window, the New Window Options dialog, shown in Figure
13.12, provides the option to specify the size (height and width in pixels) and location coordinates
(distance from top and left of the main monitor in pixels).

TIPTIP On Mac OS, the window position is measured (in pixel coordinates) with respect to
the top left corner of the screen display area immediately below the menu bar,

while on Windows, the coordinates are referenced to the top left of the display area of the
Multiple Document Interface (MDI) Application window that frames all database windows on
Windows.

19_429006-ch13.indd 53819_429006-ch13.indd 538 3/25/09 7:55:17 PM3/25/09 7:55:17 PM

539

Scripting in Depth 13

 FIGURE 13.12

Specifying a name by calculation when scripting the creation of a new window.

Whether or not you’ve chosen to make use of the options to set a window’s initial dimensions and
location when creating a new window by script, you can subsequently modify the window’s posi-
tion or proportions by using the Move/Resize Window[] command. Like the New Window
Options dialog, the Move/Resize Window Options dialog accepts values for height and width in
pixels, and for top and left in pixels from the upper left corner of the main monitor.

Determining window dimensions
Because the values for all four Move/Resize values can be determined by calculation, you can size
and position the window with respect to other windows on the screen. For example, if you’re set-
ting your window to a width of 340 pixels and your monitor size is 1024 × 768 pixels, the unused
horizontal space on either size of your window will be 768 − 340 = 684 pixels. Thus to position a
window with a width of 340 pixels in the center of a 1024 pixel monitor, the “Distance from left”
coordinate should be supplied as 342 (half of 648).

NOTENOTE When you’re calculating the available are for your solution’s windows, you should
take account of the allowance required for window “chrome” — the borders, scroll

bar, controls, and other adornments that are included on your database windows be default. The
sizes of these window components differ between operating system and operating system ver-
sions and are also affected by appearance settings, themes, and task bar preferences in Windows
and the location and size of the Dock on Mac OS.

In cases when your solution may be opened on a number of monitors of different sizes, you can set
your window placement calculations to determine the correct placement of your window by using
the appropriate Get() functions. For example, to center a 340-pixel window horizontally on
a monitor of any size, you can specify the distance from left coordinate as

19_429006-ch13.indd 53919_429006-ch13.indd 539 3/25/09 7:55:17 PM3/25/09 7:55:17 PM

540

Beyond the BasicsPart III

(Get(ScreenWidth) – 340) / 2

Similarly the vertical location (for a 400-pixel-high window) can be set to find the middle of the
monitor according to its height with

(Get(ScreenHeight) – 400) / 2

NOTENOTE When determining sizes and locations of windows on the Windows operating sys-
tem, remember that they will be contained within the Application window frame. It

is preferable to calculate your window coordinates with respect to the application window dimen-
sions rather than the screen size. You can do so by using the Get(WindowDesktopHeight) and
Get(WindowDesktopWidth) functions. On Mac OS, Get(WindowDesktopHeight) returns
the main monitor height minus the height of the menu bar.

Alternatively, if you prefer to center a new (say, 400 × 340) window with respect to an existing
window (for example, the foremost window), it is easiest to use the Get(WindowHeight) and
Get(WindowWidth) functions to pass the current window’s coordinates to the expressions spec-
ifying the new window’s location when creating the new window. As shown in Figure 13.12, you
can do so with the following expressions:

Distance from top: Get(WindowTop) + (Get(WindowHeight) - 400) / 2
Distance from left: Get(WindowLeft) + (Get(WindowWidth) - 340) / 2

Creating windows off-screen
Extending the ability to control the placement and size of windows, you can create windows off-
screen and therefore (potentially) invisible to the user. This documented feature of FileMaker Pro
10 is useful for cases where you require a scripted procedure to undertake actions in another win-
dow so as to leave the user’s environment undisturbed, while avoiding the visual discontinuity of a
new window appearing and disappearing onscreen during the process.

NOTENOTE FileMaker keeps track of found sets and relationship caching — along with other
environment and state characteristics such as current layout, active record, commit

state, and so on — separately for each window. Therefore, if your script changes some of these
attributes (especially the found sets, which may be onerous to reinstate), creating a separate
window to give your script its own separate contextual environment in which to operate (and
closing the window upon script completion) is advantageous.

Using this technique, you might, for example, activate a message in the user’s current window (or a
floating window positioned above it) saying “processing — please wait…” perhaps accompanied
by a progress indicator (especially if your script procedure may take more than a few seconds).
Bear in mind that the visual effects of this technique vary between platforms, and window place-
ment requires restored window states on the Windows operating system.

CROSS-REFCROSS-REF For a detailed discussion of various approaches to the implementation of progress
indicators, refer to Chapter 10.

19_429006-ch13.indd 54019_429006-ch13.indd 540 3/25/09 7:55:17 PM3/25/09 7:55:17 PM

541

Scripting in Depth 13

After user feedback is in place, your script can create a window out of view and undertake its pro-
cessing in a discreet contextual environment without impacting the user’s selections and environ-
ment. From its point of focus in the off-screen window, your script can update a global variable
value controlling the progress indicator onscreen, to provide up-to-date user feedback throughout
the process.

CAUTION CAUTION If the user’s computer is equipped with multiple monitors, a window created a short
distance off-screen may simply appear on a different monitor (this applies particularly

to Mac OS where the visibility of windows is not constrained by the limits of an Application
Window). I recommend using negative coordinates and/or coordinates above 10,000 pixels to
place your script’s window well out of the user’s visual range (values up to 32,766 in all directions
are supported on all platforms — higher values are supported in some cases, but I don’t recom-
mend their use for reasons of cross-platform compatibility).

Freezing and refreshing the screen
In some circumstances creating off-screen windows will not suit your requirements — for example,
if your approach is maximizing your solution’s windows on the Windows platform, creation of win-
dows of specified dimensions and placement causes FileMaker to revert to the restored window
state. Moreover, creation of off-screen windows on Windows OS causes the application window to
acquire scroll bars indicating the presence of objects outside the user’s field of view.

For these and other reasons, in certain circumstances, you may prefer to maintain the focus on the
current window while your script is in progress, yet don’t want to expose a screen display of the
script’s actions. In such cases, issuing the Freeze Window script command prior to script steps
that would otherwise change the display in the current window is an alternative. The Freeze
Window command frees your script to proceed without updating the screen.

A common misconception is that when your script freezes the window, it should subsequently
refresh the window using the Refresh Window[] command; however, this is not the case. The
Freeze Window command carries an implicit window refresh after the freeze is released (such as
when the script pauses or concludes). Therefore, adding a Refresh Window[] command is not
only superfluous but may cause screen flicker as the screen is refreshed twice in quick succession.

I recommend that you only use the Refresh Window[] command at the conclusion of a script
sequence if either

n You have not used the Freeze Window command throughout the course of the script.

n You need to explicitly flush cached join results or cached SQL data (both of which are
options of the Refresh Window[] command).

CAUTION CAUTION Overuse of the Freeze and Refresh commands may add to rather than ameliorate
screen flickering. I recommend that you use them sparingly and only when needed.

However, lengthy scripts — such as those looping through the found set — generally benefit
from including a Freeze command before commencing the loop.

19_429006-ch13.indd 54119_429006-ch13.indd 541 3/25/09 7:55:17 PM3/25/09 7:55:17 PM

542

Beyond the BasicsPart III

TIPTIP In addition to off-screen windows and scripted Freeze/Refresh sequences, a fur-
ther option for performing processes out of the user’s field of view is the use of a

utility file with a window that has been explicitly hidden using the Adjust Window [Hide] com-
mand. You can call a script in a utility file as a way of ensuring that the action is separated from
the interface being viewed by the user.

Scripting Data Import and Export
One of many strengths of FileMaker is its ability to import data from and export data to a wide
variety of formats. This ability makes it a good player in medium to large organizational environ-
ments where a number of tools and technologies are in use. These capabilities become consider-
ably more powerful when you’re able to control them within your solution’s scripts.

CROSS-REFCROSS-REF My description of the technique for specifying dynamic file paths using variables (in
the section “Dynamic file paths using variables,” earlier in this chapter) is pertinent

to the following examples. You can use a calculation to determine the filename and file path for
any of the file creation and import operations discussed here.

Exporting field contents
With very few exceptions, you can export anything that is stored in a FileMaker field to a file on
your computer, and the process can be scripted. The exceptions are limited to container images
not in a supported external graphical format (such as layout vector objects pasted directly into
container fields). All other data — including text, movies, sounds, images, and files — can be used
as the basis of creation of a file or files on the current computer or any volume (such as network
file server) accessible to it.

The Export Field Contents[] command requires only that you select a target field and spec-
ify an output file. For example, if your solution includes a text field called Description in a
Library TO, you can use the following two lines of script code:

Set Variable [$FilePath; Value “File:Description.txt”]
Export Field Contents [Library::Description; “$FilePath”]

Doing so results in the creation of a text file called Description.txt, containing the text in the
targeted field.

TIPTIP The suffix of the filename you specify for an output file must be one your comput-
er’s operating system recognizes as valid for the kind of data you are exporting. If

the suffix does not conform to system requirements the export may return an error. Or, if the
file is successfully created, it may be associated with an inappropriate application (and therefore
not recognized when a user attempts to open it).

19_429006-ch13.indd 54219_429006-ch13.indd 542 3/25/09 7:55:17 PM3/25/09 7:55:17 PM

543

Scripting in Depth 13

Exporting table data
When you choose to export structured data from your solution, by default FileMaker exports from
the table associated with the current layout and includes only the records in the current found set.
The same applies when your export is scripted — the export is conducted from the current context
at the time the Export Records[] command executes.

To script a successful export, you must therefore structure your script to first

n Select an appropriate layout (providing table context, including relationships to other
tables if you’re including data from related fields in the exported data set, including cal-
culations in your primary TO referencing related table data).

n Establish an appropriate found set for the records you want to export.

n (Optionally) Set a path and filename for the file to be created.

In addition to the preceding preparatory steps, you must configure the Export Records[] step
to include the selection of fields to be exported (and the order they’re to appear in the export file),
the output file path and the file format for the export (csv, tab separated text, XML, Excel, and so
on), as shown in Figure 13.13.

The rudiments of a script exporting the contents of all Meetings table records in your solution in
ASCII text in a CSV (comma separated values) format, into a file called “AllMeetings.csv” on
the desktop of the current computer, are as follows:

Go to Layout [“Meetings” (Meetings)]
Show All Records
Set Variable [$FilePath; Value “file:” & Get(DesktopPath) & “AllMeetings.csv”]
Export Records [No Dialog; “$FilePath”; ASCII(DOS)]
Go to Layout [original layout]

This script (with the addition of appropriate error handling) executes efficiently, creating a file
ready for transfer into another system or for a variety of other purposes.

TIPTIP If your objective is to move records from one table to another in your solution or to
move them to another FileMaker file, rather than exporting, you can perform a

direct import into the other table or file.

Selecting fields for export
When setting up an export, the settings you create in the Specify Field Order for Export dialog,
shown in Figure 13.14, determine the fields to be included in the export, as well as their order.

Using the Field Order dialog, you can choose the source table for each field from the pop-up menu
at the upper left and then select fields from the list at the left and use the buttons in the center to
move them to the Field Export Order or Group by list boxes at the right.

19_429006-ch13.indd 54319_429006-ch13.indd 543 3/25/09 7:55:18 PM3/25/09 7:55:18 PM

544

Beyond the BasicsPart III

 FIGURE 13.13

Specifying the file type in the Specify Output File dialog for the Export Records[] command.

 FIGURE 13.14

Specifying the fields and field order for export from the Meetings table.

NOTENOTE The checkbox option at the lower left of the Specify Field Order for Export dialog
refers to the data format (such as number, date, and time presentation formats)

rather than to character styles and formats applied to text.

19_429006-ch13.indd 54419_429006-ch13.indd 544 3/25/09 7:55:18 PM3/25/09 7:55:18 PM

545

Scripting in Depth 13

TIPTIP Most export file options are suited for plain text only, so you can’t include container
field data, and any embedded text styles (including colors, fonts, and font sizes) will

be lost. An exception is when you’re exporting to a FileMaker file — both container data and
embedded character styles are retained.

After you’ve added fields to the Field Export Order list, you can change their order by selecting
them and then using Ô+↑ or Ctrl+↑ and Ô+↓ or Ctrl+↓ to move them up and down, or by drag-
ging them with the handle icon to the left of each field, as shown in Figure 13.14.

Import options
When scripting a data import process into your solution, several steps of the process mirror the
export procedure described in the preceding section. In particular, specifying a source file from
which the data is to be imported and choosing an appropriate file type are achieved in the same
way using a variant of the Specify File dialog, as shown in Figure 13.15.

 FIGURE 13.15

Specifying the file path and type for import of data into your solution.

The choice of file type you make when specifying the file for import determines how FileMaker
interprets the data and parses the values in the file you select (for example, FileMaker breaks fields
using the appropriate delimiter for the chosen file format).

TIPTIP To configure the settings for an import, you must select a specific file as the source
of the import. If you intend to supply a dynamic file path using a variable, you

should first configure the import with a file path selected and then overwrite the file path with
the name of the variable that will supply the path for the import.

19_429006-ch13.indd 54519_429006-ch13.indd 545 3/25/09 7:55:18 PM3/25/09 7:55:18 PM

546

Beyond the BasicsPart III

Data matching for import
The configuration of options to match fields from the incoming data (or database) file to the field
structure of a table in your solution requires that you select a destination table in your solution and
then designate fields or values in the external file to align with some or all of the fields in the
selected table, as shown in Figure 13.16.

Individual fields in the Target Fields column at the right of the Import Field Mapping dialog can be
moved up and down to correspond to incoming data by selecting them and using the Ô+↑ or
Ctrl+↑ and Ô+↓ or Ctrl+↓ to move them up and down, or by dragging them with the handle icon
to the left of each field. Moreover, you can click the arrow in the center column adjacent to any
field to enable or disable import into a specific field.

Synchronizing and updating data
You can import data into only one table at a time. However, you can choose a variety of import,
matching, and synchronization options, enabling you to add new data, update existing data (to match
the corresponding records in the external file or table), or a mix of both. The controls for these
options are found at the lower left of the Import Field Mapping dialog, as shown in Figure 13.16.

 FIGURE 13.16

Aligning incoming data to fields in your solution by using the Import Field Mapping dialog.

19_429006-ch13.indd 54619_429006-ch13.indd 546 3/25/09 7:55:18 PM3/25/09 7:55:18 PM

547

Scripting in Depth 13

TIPTIP If you Shift+click or Ô+click or Ctrl+click to select multiple contiguous or discontig-
uous fields in the Import Field Mapping dialog, as shown in Figure 13.16, you can

enable or disable them all as a group by clicking the symbol in the center column.

Additionally, you can choose from the Arrange By pop-up menu (below the field list at the right),
one of six field presentation orders for the fields in your solution, as follows:

n Matching names

n Last order

n Creation order

n Field names

n Field types

n Custom import order

CAUTION CAUTION If new fields are created in the destination table (in your solution) after you’ve
defined a scripted import, they will be automatically added to the end of the import

order. If you do not want new fields included in subsequent imports (or you want them in a dif-
ferent place in the import map), you should revise all script import maps targeting the table after
adding fields.

Other import options
In addition to the import of raw data as described previously, FileMaker provides options to
import from a Bento data source, enabling you to access the content of address book, calendar, and
other related data from your computer, via the Bento desktop database. To import Bento data,
choose File ➪ Import Records ➪ Bento Data Source. This option requires that you have Bento 2 (or
later) installed on your computer.

Another import option allows you to import from an XML source. If the source data is formatted
using the FMPXMLRESULT encoding format, you can import it directly. Otherwise, you need an
appropriately formed XSLT style sheet to enable FileMaker to interpret and transform the XML
data. Many data sources are available for which style sheets already exist or can readily be adapted.

After you’ve specified an XML source and (if necessary) an XSLT document to interpret it,
FileMaker lets you configure an import field map to import the XML data as described in the previ-
ous section.

Additionally, FileMaker supports import from Open Database Connectivity (ODBC) data sources.
To take advantage of this option, you first need to install an appropriate ODBC driver and employ
it to define a Data Source Name (DSN).

CROSS-REFCROSS-REF For full details of the process of installing and configuring an ODBC driver and
defining a DSN, refer to Chapter 7.

19_429006-ch13.indd 54719_429006-ch13.indd 547 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

548

Beyond the BasicsPart III

When your driver and DSN are configured, you’re prompted to authenticate for the remote data
source and then passed to the SQL Query Builder for the remote data source, letting you select
fields from the ODBC data to be included in the import mapping process in FileMaker.

Loading and unloading container objects
Although container data aren’t supported in import and export formats, you can batch import text
or multimedia (picture or movie) files by using the Folder Import option. This option has a num-
ber of advantages, including the ability to simultaneously import (into different fields in your table)
the Text Content, File Name, and File Path (for text file folder imports) or the Image, File Name,
File Path, and Image Thumbnail (for image or movie imports).

Alternatively, you can readily script a process by using FileMaker’s scripting commands to Insert
Picture[], Insert QuickTime[], Insert File[], and/or Export Field Contents[]
to loop through a group of records inserting or exporting container field contents to or from a pre-
determined directory (using filenames calculated and passed to the relevant commands via the
attendant Specify File dialog, as noted earlier in this section). So, for example, to export student
photos from the Students table to a pix folder in the current solution directory on your computer,
using the StudentID as the filename, you could use a script structured in essentials along these lines:

Enter Browse Mode []
Freeze Window
Go to Layout [“Students” (Students)]
Show All Records
Go to Record/Request/Page [First]
Loop
 Set Variable [$ImagePath; Value “file:pix/” & Students::StudentID & “.jpg”]
 Export Field Contents [Students::StudentPhoto; “$ImagePath”]
 Go to Record/Request/Page [Next; Exit after last]
End Loop
Go to Layout [original layout]

By using a similarly structured script with the Go to Field[] and Insert Picture[] com-
mands in place of the Export Field Contents[] command, the reverse procedure can be
accomplished, and appropriately named files can be uploaded from the pix directory. The variant
of the script to achieve this is as follows:

Enter Browse Mode []
Freeze Window
Go to Layout [“Students” (Students)]
Show All Records
Go to Record/Request/Page [First]
Loop
 Set Variable [$ImagePath; Value “image:pix/” & Students::StudentID & “.jpg”]
 Go to Field [Students::StudentPhoto]
 Insert Picture [“$ImagePath”]
 Go to Record/Request/Page [Next; Exit after last]
End Loop
Go to Layout [original layout]

19_429006-ch13.indd 54819_429006-ch13.indd 548 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

549

Scripting in Depth 13

CAUTION CAUTION Both scripts described in this section require the addition of error handling as dis-
cussed in the section “Trapping for Errors,” earlier in this chapter, particularly to

deal with the situation where, in the second script, no image is available to match a given record
in the Students table.

Pivoting Data between Tables
While import and export provide a number of essential methods for moving your data around in a
number of circumstances, you will require more control over the process — for example, when
modifying or massaging data into the appropriate form and structure for the table it is to occupy.

When you’re working with data stored according to a different data model (such as FirstName
and LastName in the same field — something you’re most unlikely to have done in your own
solutions, having read Chapters 7 and 11 of this book!), you’ll require what is sometimes referred
to as an Extraction, Transformation, and Loading (ETL) process between your data and the desti-
nation data structure.

Using utility relationships
One of the most powerful methods of data transfer and transformation in FileMaker is via a
scripted update using a utility relationship. Such a relationship is based on a global field in the
table from which the data is to be sourced, and relates either to the primary key of the destination
table, or to an intermediary table you will use for final data vetting before export or before import-
ing to the destination table.

The relationship between the tables should be set to Allow Creation of Related Records, as described
in Chapter 11. By populating the global key field in your source table with each of the primary keys
for the remote table in turn, you are able to write to or create corresponding records using the data
in your primary source table and any tables related to it, within the structure of your solution.

Managing related data (walking
through related records)
Using your utility relationship to isolate individual records to be created or updated in the target
table, you can build a transformation script in your solution along the following lines:

Enter Browse Mode []
Freeze Window
Go to Layout [“SourceData” (Source)]
#Locate records to be loaded to external system via ETL
Perform Find [Restore]
Go to Record/Request/Page [First]
Loop
 #Load external system key to activate utility relationship
 Set Field [gETL_key; Source::LegacySystemID]

19_429006-ch13.indd 54919_429006-ch13.indd 549 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

550

Beyond the BasicsPart III

 Set Variable [$ETL; $ETL + 1]
 #perform required transformations for each external data field
 Set Field [External::Name; Source::FirstName & “ “ & Source::LastName]
 Set Field [External::Chk; Choose(Source::Status; “pending”; “complete”)]
 Set Field [External::Date; Day(Billed::Date) & “.” & Month(Billed::Date)]
 Set Field [External::NetCost; Billed::Amount – Source::Discount]
 #etc – to complete full set of required data transformations
 Go to Record/Request/Page [Next; Exit after last]
End Loop
Go to Layout [original layout]
Show Custom Dialog [“Extract/Transform/Load of “ & $ETL & “ records completed”]

This process outlined in its essential form pivots data through the utility relationship from the
Source TO to the External TO, drawing on data from the Source and Billing TOs (and
others as required) to modify and transform the data into the appropriate form and content for
upload to the external system.

TIPTIP An ETL process along the lines set out in the previous script can be used effectively
to pass data between external data sources and FileMaker data tables to facilitate

reporting on ESS data, archiving or warehousing of FileMaker data, or the interchange of data
between complementary systems.

Going over Some Practical Examples
Throughout this chapter, I’ve delved into a selection of the essentials of scripting, providing you
with guidance, tips, and examples designed to help you solve problems and elevate your solution’s
scripts to new levels of power and efficiency. To add to the wealth of examples included in this
chapter, here are two useful techniques to round out your repertoire.

Locating unique records
A common problem encountered in all database systems is identifying unique examples of an
entity or attribute when duplicates exist. For example, if your parking register has a field for the
car model of each client and you need to produce a list of car models (including each only once),
you can use the following script:

Enter Browse Mode
Show All Records
Sort Records [Restore; No dialog {by Clients::CarModel}]
Go to Record/Request/Page [First]
Freeze Window
View As [View as Form]
Loop
 Set Variable [$prevNo; Value: Get(RecordNumber) – 1)
 Set Variable [$prevValue; Value: GetNthRecord(Clients::CarModel; $prevNo)]
 If [$prevValue = Clients::CarModel]
 Omit Record

19_429006-ch13.indd 55019_429006-ch13.indd 550 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

551

Scripting in Depth 13

 Else
 Go to Record/Request/Page [Next; Exit after last]
 End If
End Loop
Unsort Records
View As [View as List]
Go to Record/Request/Page [First]

In this disarmingly simple procedure, your script sorts the records in the Clients table (by the
field where you want to isolate unique values) and then walks the records, comparing each with
the preceding record to selectively omit those already represented in the found set.

Building a multi-part PDF report
FileMaker Pro 10 includes the ability to combine several reports or report components into a sin-
gle, composite PDF document. For example, you can generate a polished presentation document
with a cover page, data pages, and a concluding summary page within a single document.

Generating a composite report of this kind first requires three layouts: one providing the summary
page, one formatted as a list layout providing the report document’s body, and one containing
header, footer, and sub-summary parts only to generate an overview of grouped data. With the
required report layouts in place, you can then set in place a script along the following lines:

Set Variable [$ReportPath; Value:”file:PurchasesReport.pdf”]
Go to Layout [“ReportCover” (InvoiceLines)]
Save Records as PDF [Restore; No Dialog; “$ReportPath”; Current record]
Go to Layout [“PurchaseReport” (InvoiceLines)]
Show All Records
Sort Records [Restore; No dialog]
Save Records as PDF [Restore; Append; No Dialog; “$ReportPath”; Records being

browsed]
Go to Layout [“BuyerSummary” (InvoiceLines)]
Sort Records [Restore; No dialog]
Save Records as PDF [Restore; Append; No Dialog; “$ReportPath”; Automatically

open; Records being browsed]
Go to Layout [original layout]

With this script in place, a multi-page PDF report will be created representing current data and
then opened on your computer.

NOTENOTE This script is implemented in the Inventory example file for this chapter and is
available among the download materials on the book’s Web site.

19_429006-ch13.indd 55119_429006-ch13.indd 551 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

19_429006-ch13.indd 55219_429006-ch13.indd 552 3/25/09 7:55:19 PM3/25/09 7:55:19 PM

Making your solutions operate efficiently and respond
to the needs of users is an excellent start, but it’s
important that your solutions also be robust, reliable,

and secure. A focus on preventative measures in the design,
configuration, and deployment of your solutions will be of great
benefit in ensuring that your solutions continue to deliver what
is required.

When you encounter situations where different users require
different levels of access to data and functionality in your solu-
tions, it’s time to make use of FileMaker security to set in place
granular controls on user access privileges.

In this part, you’ll find insider tips, explanations, and tech-
niques to help you understand how best to design and deploy
solutions that will survive real-world use and abuse. The chap-
ters included here include detailed coverage of user account
management, robust relational design techniques, error trap-
ping, backup strategies, and more, to equip you with the best
practices for developing dependable solutions.

Integrity and
Security

IN THIS PART
Chapter 14
In Control with FileMaker
Security

Chapter 15
Maintaining Referential Integrity

Chapter 16
Making FileMaker Systems
Fail-Safe

Chapter 17
Maintaining and Restoring Data

20_429006-pp04.indd 55320_429006-pp04.indd 553 3/25/09 7:56:17 PM3/25/09 7:56:17 PM

20_429006-pp04.indd 55420_429006-pp04.indd 554 3/25/09 7:56:18 PM3/25/09 7:56:18 PM

555

If data doesn’t matter to you, you’re unlikely to store it at all, much less
build a database solution to accommodate it — so the fact that you’ve
done so is as good an indication as any that the data matters. Because it

matters, it should be protected — from unauthorized access or sabotage or
simply from mishap or loss. Security takes a number of forms and helps pro-
tect your data in a variety of ways.

FileMaker provides a robust database environment with a multi-faceted secu-
rity architecture that you can configure to meet various needs — from a sim-
ple single-user database to a diverse multi-user system with dozens or even
hundreds of users. FileMaker conforms to industry standards in its security
framework implementation and supports a range of best practices for secure
handling of sensitive data.

Technology, however, is effective only when used skillfully and appropri-
ately, and an arsenal of security capabilities is of no use whatsoever if it
remains unused. Security should form part of your solution’s design from the
outset and should be built into the fabric of your code. Too often security is
added as an afterthought.

Concepts of Security
In the broadest sense, security represents a collection of safeguards against
potential risks, threats, and problems. An important first step toward creat-
ing an appropriate security strategy is planning, which involves assessing the
possible risks, understanding their impact, and considering the probability
of the various risks.

IN THIS CHAPTER
Exploring security concepts

Understanding privilege sets

Working with granular security

Dealing with user
authentication

Managing accounts via script

Creating a custom logout
option

Deciding how much security
you need

Recognizing the importance of
physical file security

Implementing secure
deployments with FileMaker
server

In Control with
FileMaker Security

21_429006-ch14.indd 55521_429006-ch14.indd 555 3/25/09 7:57:11 PM3/25/09 7:57:11 PM

556

Integrity and SecurityPart IV

There is no one way to address all aspects of security, so I encourage you to think and act broadly
and to implement a mix of strategies addressing your solution’s needs. Security can’t be considered
in isolation; it’s an essential and core part of every aspect of your solutions’ creation and use.

Balance and perspective
Among life’s copious ironies are a collection of sad stories about misplaced effort, including
backup files that can’t be opened, passwords on sticky notes along the tops of computer monitors,
and heavily secured buildings with open access Wi-Fi networks. It’s a long and sorry tale.

Keeping things in perspective is important when considering solution security. It’s too easy to
focus your attention on one area of concern while largely overlooking others. For example, a beau-
tifully implemented login system won’t protect your data from the hazards of disk failure or human
error — each presenting a real risk of potentially equal magnitude. You need different kinds of
security to address different risks.

Identifying threats
Taking time to identify the various risks, threats, and contingencies impacting your solutions
makes sense. These risks include the possibility of malicious acts, unauthorized access to your data
or your solution’s code, and careless modification or deletion of data, not to mention hardware fail-
ure or errors within your solution’s code.

I suggest a measured approach to security. Address the various hazards and potential issues by
responding to them in proportion to their relevance (the probability of each type of issue arising in
your particular situation) and make sure that the level of security you implement is in line with
your solution’s value.

Assessing value
Your solution has value in several ways, the most readily identifiable being the expenditure (of
both time and money) to develop, implement, and maintain it. In many cases, however, the value
of your solution is best measured by the amount of work it does for you, your business, or your
employer — and the costs that would be incurred or the amount of income foregone if your sys-
tem failed or were unavailable.

Against this background, even the simplest of solutions has a value sufficient to warrant some
thought, time, and resources devoted to identifying its vulnerabilities and setting strategies in place
to manage those vulnerabilities.

Protecting your investment
Before deciding on a security strategy for your solutions, take a moment to consider what’s at
stake. Security is a way of protecting your investment, and the level of your investment may be
greater than you first think. You invest in your database solutions in several ways:

21_429006-ch14.indd 55621_429006-ch14.indd 556 3/25/09 7:57:12 PM3/25/09 7:57:12 PM

557

In Control with FileMaker Security 14

n The solution is almost certainly an investment in time and ingenuity. It may well be
worth more than the software or computers it runs on.

n Your solutions, by nature, contain the essentials of many of your business rules, operating
procedures, and work preferences. (A solution is in fact a way of codifying your way of
working.) A solution may also incorporate your “mental map” of ways to solve a host of
problems.

n The accumulation of work collecting, processing, refining, and organizing information in
your solution has a value. Whether you enter information yourself, pay others to do so,
or acquire information in a variety of other ways, it nevertheless has a value.

n When information is sensitive or privileged, it must be protected — as required by law as
well as common sense. Whether the reasons are positive (competitive advantage) or nega-
tive (breach of privacy), they amount to a compelling need for controlling the flow of
information.

Each way your solution has value presents a range of different issues and security concerns.
Maintaining data confidentiality is of little use if the data itself has become subject to corruption or
is generously peppered with user errors. Conversely, protecting your solution from a malicious
attack won’t help if your scripts malfunction and delete the wrong records.

Although in some cases risks are low or security isn’t a paramount concern, nonetheless, you need
to consider the investment, both in the data and in the solution itself. Even for solutions operating
in a secure environment or including no private or sensitive data, the levels of risk are needlessly
high if security is left to chance.

Interface vulnerabilities
Your solution interface can challenge or threaten security in several ways. The simplest of these are
the impact of clutter and confusion. Confusion leads to errors, misplaced data, incomplete pro-
cesses, and the diminishing returns arising from user frustration and incomprehension.

Taking things at interface value
Care and attention to interface design can lend clarity and simplicity to your solutions, resulting in
great improvements in data integrity and worker productivity. Rather than bolting your interface
down, adding layers of code to prevent users from doing the wrong things, and using still more
layers to detect and correct errors after they’re made, with some changes to the interface, many
problems evaporate.

Along with your solution’s interface layer, you should also consider the interaction model. If your
solution has a natural flow to it and users find that it mirrors their work processes, they’ll be
engaged and energetic in maintaining the solution, because they understand and appreciate its
value. Conversely, when you introduce onerous login processes and complex or convoluted
requirements, the easy flow turns to a struggle, with users working in opposition to the system.

21_429006-ch14.indd 55721_429006-ch14.indd 557 3/25/09 7:57:12 PM3/25/09 7:57:12 PM

558

Integrity and SecurityPart IV

More than a semblance of security
An entirely different way your solution’s interface can get you into trouble is by providing the
appearance of security in place of real security. You may be tempted to consider fields not in view
as being inaccessible or to suppose that users will be constrained to follow the processes laid out in
your scripts.

Don’t allow your interface and script designs to lull you into a false sense of security. They are the
front door to your solution, and it’s certainly important that they guide the user and present only
the appropriate information in layouts and reports. Be aware, however, that many alternate ways
exist for a solution to be accessed by a resourceful or mischievous user — so the fact that a field
doesn’t appear on any layouts doesn’t mean that it’s secure. Similarly, having your scripts impose a
certain sequence of events doesn’t guarantee that users can’t contrive other passages through your
solution.

FileMaker supports links to external files, so you can structure solutions to include data from other
files. Unless you’ve given careful thought to security, a user can create a file with a reference to
your solution and use it to view and edit data in every corner of your solution, regardless of the
interface you’ve set in place.

CAUTION CAUTION Unless you have set safeguards in place — in the form of robust security measures
assigning appropriate privileges to each user — every field can be accessed and

edited by anyone with a mind to do so.

File-based security
To provide you with the tools to control access to key components of your solution (including lay-
outs, scripts, and value lists as well as field data), FileMaker provides a security architecture cen-
tered on assigned user privileges in each file. Therefore, if a user is accessing the contents of your
file from another file, the constraints and privileges in place will be those (if any) you have defined
in your file, not those they define in the external file being used to gain access.

The file-centered security model has numerous advantages — allowing you to offset a variety of secu-
rity concerns — but also presents some challenges, especially when your solution is comprised of
multiple files. In such cases, it’s incumbent on you to build appropriate security into each file, while
ensuring that the solution files can nevertheless interact and provide a seamless user experience.

CROSS-REFCROSS-REF The implications of file-based security for aspects of the design and use of your
solutions are explored in Chapters 11 and 13.

The Privilege Set
At the heart of the FileMaker security model is the concept of the privilege set, a named collection
of specifications for access levels and restrictions throughout the file where it’s defined.

21_429006-ch14.indd 55821_429006-ch14.indd 558 3/25/09 7:57:12 PM3/25/09 7:57:12 PM

559

In Control with FileMaker Security 14

By default, all FileMaker files contain the following three privilege sets:

n [Full Access]

n [Data Entry Only]

n [Read-Only Access]

NOTENOTE The enclosing square brackets around FileMaker’s default privilege set names
enable you to easily differentiate them from other privilege sets in your solution

files. When creating your own privilege sets, you can choose to enclose their names in square
brackets. However, I recommend against doing so, to preserve and underscore the distinction
between default privilege sets and those created specifically for the solution.

The default [Full Access] account provides the level of access required for solution development
and is an essential component of any file under development or maintenance.

By choosing File ➪ Manage Accounts & Privileges and navigating to the Privilege Sets panel, as
shown in Figure 14.1, you can view the current privilege sets in each solution file, as well as create
and configure new ones.

 FIGURE 14.1

Default privilege sets showing in the Manage Accounts & Privileges dialog.

Before your solution’s initial deployment and preferably early in its development, you should begin
building appropriate privilege structures to support and enhance your solution’s operations and to
define the scope and limits of use. In fact, establishing the security model will help you achieve
clarity about what the purpose and scope of the components of your solution are, and is therefore
an important component of the design process.

21_429006-ch14.indd 55921_429006-ch14.indd 559 3/25/09 7:57:12 PM3/25/09 7:57:12 PM

560

Integrity and SecurityPart IV

Concepts of role-based security
A privilege set comprises a comprehensive definition of field, layout, value list, and script access
permissions, as well as a number of broad functional capability permissions (such as printing and
exporting). Collectively, these permissions are assembled to meet the requirements of a particular
user or (better still) a group of users.

When you define a privilege set to meet the needs of a group of users, you tailor the permissions
according to the role or roles to be performed by the users. If a different group of users performs
different roles, you create another privilege set. Thus, a collection of privilege sets is modeled on
the various roles performed by users of the solution. Organizing privileges in this way provides a
framework of clarity that helps you determine appropriate access for each group and enables effi-
cient management of privileges. For example, a single change to the privileges assigned to a partic-
ular privilege set affects a change for all users assigned to that set.

Each user logs in with personal credentials (account name and password), but each account is
assigned to a privilege set that determines the access levels the account enjoys. By assigning multi-
ple accounts (requiring similar access privileges, according to the users’ roles) to each privilege set,
you simplify the setup and management of access for multiple users. The grouping of accounts
with similar requirements against appropriate privilege sets is the essential principle of role-based
security management.

Defining and constraining access
To create and configure privilege sets for your solution’s users, click the New button (lower left of
the Privilege Sets panel of the Manage Accounts & Privileges dialog) to open the Edit Privilege Set
dialog and then enter a name for the privilege set in the field at the top left. You can also enter an
optional description in the adjacent field as a reminder of the privilege set’s purpose. By default, a
new privilege set provides no access to any part of your solution, so you must add privileges before
the privilege set will allow users to view any data or perform any actions.

The Edit Privilege Set dialog is divided into three sections, as shown in Figure 14.2. The Data
Access and Design section lets you specify access controls for records and fields in the file’s data
structure (data stored in tables within the file, for example), as well as access levels to layouts,
value lists, and scripts.

NOTENOTE While unstored calculation fields don’t represent stored data as such, access to the
results they return can be controlled using access privileges in the same way as

other types of fields.

The Extended Privileges section lets you enable or disable each of a list of access modes or options.
By default, FileMaker includes seven extended privilege options associated with different modes of
access to your data. You can add to or modify the list. Each extended privilege optionally associates a

21_429006-ch14.indd 56021_429006-ch14.indd 560 3/25/09 7:57:12 PM3/25/09 7:57:12 PM

561

In Control with FileMaker Security 14

keyword with the privilege set. You can see the keywords listed in parentheses to the right of each
entry in the Extended Privileges list box at the lower left of the dialog, as shown in Figure 14.2.

 FIGURE 14.2

Configuring a privilege set in the Edit Privilege Set dialog.

NOTENOTE Extended privileges allow you to specify keywords that are associated with a privi-
lege set to allow you to set up extensible control of access and application behavior

according to your own requirements. When viewed or retrieved in the application (for example,
using the Get(ExtendedPrivileges) function), the names of the assigned extended privi-
leges for the current user’s privilege set are returned as words, without the brackets that appear
in the dialogs where they’re defined.

Finally, the Other Privileges section (on the right) gives you access to a series of general controls
over the current solution file’s behavior for users whose logins are associated with the privilege set.
Among the most significant of the privilege settings in the Other Privileges section are the controls
for ability to print or export data and the ability to override data validation warnings.

CAUTION CAUTION Be aware that disallowing printing or exporting of data will not stop determined
users from taking screen captures, copying and pasting data from your solution into

other applications on their workstation, or using other methods of access to circumvent your
file-based security measures. These controls determine only the range of functionality available
within the file where they are defined.

Schema privilege controls
At the center of the FileMaker security model is the ability to control users’ access to the elements
of schema — the fields and tables throughout your solution’s data structure — as part of Data

21_429006-ch14.indd 56121_429006-ch14.indd 561 3/25/09 7:57:13 PM3/25/09 7:57:13 PM

562

Integrity and SecurityPart IV

Access and Design privilege controls. In the Edit Privilege Set dialog’s Data Access and Design sec-
tion, the pop-up menus provide several categories of access, each offering several predetermined
access levels including

n All Modifiable

n All View Only

n All No Access

The first pop-up menu is labeled Records and differs from the others in that in place of the All
Modifiable option are two more explicitly defined options, as shown in Figure 14.3, supporting
editing capabilities either with or without the ability to delete records. As the wording in these
options indicates, the selection you make at this level applies equally to all tables within the file.

The generic access options presented in the Data Access and Design settings will be adequate for
your requirements in many cases. If you need more fine-grained control, however, you can choose
a Custom Privileges option to modify the scope of action permitted (per privilege set) in each area
of the file. These options appear below a separator at the bottom of each pop-up menu.

 FIGURE 14.3

Access options in the Data Access and Design privileges pop-up menus.

Granular Security
On each of the pop-up menus, the Custom Privileges options give you access to dialogs listing the
corresponding elements in the current file (records, value lists, scripts, and layouts), letting you
specify a range of access attributes separately against each component of the solution file.

21_429006-ch14.indd 56221_429006-ch14.indd 562 3/25/09 7:57:13 PM3/25/09 7:57:13 PM

563

In Control with FileMaker Security 14

The range of access controls operates at a number of levels from the broadest categories (for exam-
ple, granting or denying access to a whole table) down to the most finely granular (controlling
access for the individual record or field). In this section, I describe the processes for configuring
granular access appropriate for the needs of your solution.

Access to value lists and scripts
The Custom Privileges options open list dialogs that allow you to select items and choose the desired
access levels. For example, the Custom Script Privileges dialog, shown in Figure 14.4, offers radio
button settings for Modifiable, Executable Only, or No Access on a script-by-script basis.

As you can see near the top left of the dialog shown in Figure 14.4, a checkbox is provided to con-
trol the user’s ability to create new scripts. A similar control is provided in the Custom Layout
privileges dialog to regulate users’ ability to create new layouts. Furthermore, the Custom Script
Privileges layout includes a Notes column at the right to display indicators generated by FileMaker
that are relevant to the access status of the script. For example, scripts set to Run with Full Access
are annotated as such in the Notes column. The Custom Value List Privileges dialog is also similar
to the dialog shown in Figure 14.4, offering options for Modifiable, View Only, or No Access for
each value list in the current file.

 FIGURE 14.4

Specifying access levels for individual scripts.

The two dimensions of layout access
The Custom Layout Privileges dialog provides dual controls for each layout — one relating to the
layout itself (to allow or deny layout design changes or layout viewing, for example) and another to
control access to records when viewed using the layout.

21_429006-ch14.indd 56321_429006-ch14.indd 563 3/25/09 7:57:13 PM3/25/09 7:57:13 PM

564

Integrity and SecurityPart IV

Figure 14.5 shows that you can independently select the options provided by the dual controls
when configuring layout privileges.

 FIGURE 14.5

Setting access for both layouts and records via layouts in the Custom Layout Privileges dialog.

Privileges for table, record, and field access
The Custom Record Privileges dialog differs from the three custom privileges dialogs described in
the previous section. This dialog provides multiple access controls for records in each table and
governs View, Edit, Create, Delete, and Field Access permissions, as shown in Figure 14.6. The
pop-up menus for View, Edit, and Delete include an option labeled Limited. Selecting this option
opens a Specify Calculation dialog where you can define an expression that determines on a
record-by-record basis the level of access to individual records users assigned to the current privi-
lege set enjoy. For example, in the Inventory example file for this chapter, if you select the Orders
table, choose Limited from the Edit pop-up menu and then enter this expression:

Status ≠ 1

Users logging in against the privilege set so defined are prevented from editing records flagged as
complete in the Orders::Status field (that is, only incomplete records may be edited). In this
example, it would be appropriate to apply a similar control to the Delete option so that only
incomplete orders can be deleted.

Using the Field Access menu option (lower right of the Custom Record Privileges dialog), you gain
access to a further layer of granular control over users’ access to individual fields in the selected
table. As shown in Figure 14.7, you can independently designate each field in the table as No
Access, View Only, or Modifiable for the current privilege set.

21_429006-ch14.indd 56421_429006-ch14.indd 564 3/25/09 7:57:13 PM3/25/09 7:57:13 PM

565

In Control with FileMaker Security 14

 FIGURE 14.6

Specifying record level access permissions by table in the Custom Record Privileges dialog.

Using these controls as described, you can configure explicit and dynamic access privileges for
individual elements throughout the current file, ensuring access at all levels as appropriate to users
assigned to the selected privilege set.

Additionally, each Custom Privileges dialog includes an option to set the default access level appli-
cable to new elements added to the file. For example, in Figure 14.6, the last line specifies access
for [Any New Table]. Similarly, the Custom Privileges dialogs for Layouts, Value Lists, and Scripts
include a checkbox option at the top left allowing users to create new items — for example, at the
upper left of Figure 14.5 the Allow Creation of New Layouts option is shown.

 FIGURE 14.7

Specifying field-level access privileges for the selected table.

21_429006-ch14.indd 56521_429006-ch14.indd 565 3/25/09 7:57:13 PM3/25/09 7:57:13 PM

566

Integrity and SecurityPart IV

NOTENOTE At the bottom of each custom privileges list is a line that allows you to set default
access privileges for new (subsequently created) entities. For example, Figure 14.6

shows the entry for [Any New Table] at the bottom of the Custom Record Privileges list.

In the case of the Custom Layout Privileges dialog shown in Figure 14.5, there is an interplay
between the Allow Creation of New Layouts option and the default [Any New Layout] privilege
setting. When you grant users the privilege to create new layouts using the checkbox setting,
you can also determine the level of access they’ll have to those new layouts using the [Any New
Layout] privilege setting.

Using and managing extended privileges
FileMaker Pro and FileMaker Server use the seven default extended privileges keywords to control
a range of network and remote access capabilities. You can enable or disable each of these key-
words independently for each privilege set, giving you precise control over the means of interac-
tion with the solution available to each role-based group of users.

FileMaker provides a number of default extended privileges in each new file, including the fmapp
extended privilege to control access to the file when hosted (for example, using FileMaker Server).
The default extended privileges also provide various forms of web access, mobile access, and exter-
nal connectivity (ODBC/JDBC) access.

You can also create keywords of your own and associate each with one or more privilege sets, as a
means of establishing granular and customized access control over your solution’s elements (such
as calculations and scripts). For example, when you have a script — say, a reports script — that
should include monthly totals for some groups of users (but not others), you can create an
extended privilege keyword to manage this for monthly reports. To do so, follow these steps:

 1. Navigate to the Extended Privileges panel of the Manage Accounts and Privileges dialog.

 2. Click the New button at the lower left. The Edit Extended Privileges dialog appears.

 3. Enter a brief keyword (such as MthRep) and a description of the purpose of the privilege,
as shown in Figure 14.8.

 4. Select one or more privilege sets for access to the extended privilege you’ve created.

After an extended privilege, as outlined, is in place, you can code your calculations and scripts to
refer to it. In this example, you can set up a script to include the additional (month report sum-
mary) functionality, conditional on the current user’s login having the MthRep privilege assigned,
by adding script code, such as:

If [PatternCount(¶ & Get(ExtendedPrivileges) & ¶; “¶MthRep¶”)]
 Go to Layout [“Month Summary Report” (Orders)]
 Sort Records [Restore; No dialog]
End If

21_429006-ch14.indd 56621_429006-ch14.indd 566 3/25/09 7:57:14 PM3/25/09 7:57:14 PM

567

In Control with FileMaker Security 14

 FIGURE 14.8

Entering details for a new Extended Privilege in the Edit Extended Privilege dialog.

With this additional code in your report script, users whose login account is assigned the MthRep
extended privilege will see an alternate report based on the Month Summary layout, whereas other
users will not.

NOTENOTE You can assign the Manage Extended Privileges option to one or more privilege
sets, enabling some users (managers and team leaders, for example) to edit and

reassign extended privileges to existing privilege sets. Extended privileges, like all privilege set
characteristics, are available only to scripts and calculations in the file where you define them.
For a multiple file solution, you may need to define extended privileges in more than one file.

User Authentication
You can create privilege sets for groups of users according to their role within the solution and cre-
ate multiple accounts in each solution file. You can assign each account to an existing privilege set
in the file to facilitate assigning appropriate privileges without having to individually specify and
manage each user account’s permissions.

Each user of your solution should therefore be assigned an account, giving them personal creden-
tials (account name and password) to log in to your solution — and users should be made aware
of measures to keep their credentials private and secure.

NOTENOTE An essential principle underpinning security and solution access management is
that accounts and credentials are never shared. Each user has his own login account

name and a password he should be expected to keep secret. Moreover, each user should be
encouraged to avoid leaving his computer unattended (or handing control to another person)
while logged in with his credentials.

21_429006-ch14.indd 56721_429006-ch14.indd 567 3/25/09 7:57:14 PM3/25/09 7:57:14 PM

568

Integrity and SecurityPart IV

Creating user accounts
User accounts provide you with a basis to control the access of individual users to a solution file.
You should therefore add a separate account for every person who will access the solution (and to
each file within the solution). To add accounts in your solution files, follow these steps:

 1. Choose File ➪ Manage Accounts & Privileges. The Manage Accounts & Privileges dialog
appears with the Accounts panel selected as the default.

 2. In the Accounts panel of the Manage Accounts & Privileges dialog, click the New button
at the lower left. The Edit Account dialog appears, as shown in Figure 14.9.

 FIGURE 14.9

Creating a new account using the Edit Account dialog.

 3. Click OK to accept the settings and close the Edit Account dialog.

TIPTIP I recommend that you assign intelligible and recognizable account names so that
when data about the current user is returned (by the Get(AccountName) func-

tion, for example), the user’s identity will be evident. Straightforward naming conventions, such
as first name and last initial (JulietteB, GeoffreyR, and so on) or first initial and last name
(RFiennes, CBlanchett, for example), are compact, yet readily recognizable.

Internal and external authentication
By default, FileMaker accounts are set to authenticate with a password you supply (that is, a pass-
word stored internally in your FileMaker file), as shown in Figure 14.9. However, when you
choose the external authentication option from the pop-up menu near the top of the Edit Account
dialog (Figure 14.10), user credentials are retrieved from the domain server when the file is hosted
using FileMaker Server, within a network managed by an Open Directory (Mac OS) or Active
Directory (Windows) domain controller.

21_429006-ch14.indd 56821_429006-ch14.indd 568 3/25/09 7:57:14 PM3/25/09 7:57:14 PM

569

In Control with FileMaker Security 14

 FIGURE 14.10

Choosing external authentication for an account, in the Edit Account dialog.

When creating user accounts, rather than supplying an account name and password, when you
choose external authentication, you need supply only the name of a group corresponding to a
group assigned to users in the domain authentication server.

NOTENOTE The authenticating computer for an external authentication configuration may be
the same computer where FileMaker Server is installed — though in most cases, a

separate domain controller will already be performing this function.

When a user logs in at the domain level and then accesses a FileMaker file, FileMaker compares the
groups associated with the user’s network login with groups assigned to externally authenticated
accounts in the file. The file is opened with the first externally authenticated account with a name
matching one of the group names for the current user’s network login (working downwards from
the top of the accounts in FileMaker, when viewed in authentication order). A Windows-based
domain configuring external authentication as described here provides users with single sign-on
functionality.

On Mac OS, the user is still presented with the familiar login dialog to access the file (or server, if
so configured). However, a similar level of functionality is available via the use of the Mac
Keychain to manage credentials for the user, enabling the user to bypass the FileMaker authentica-
tion dialog and providing a convenience proximate to single sign-on.

TIPTIP You can change the authentication order of accounts in the Manage Accounts &
Privileges dialog by dragging the accounts up or down in the list on the Accounts

pane. You can display the authentication order by selecting Authentication Order in the View By
drop-down menu.

21_429006-ch14.indd 56921_429006-ch14.indd 569 3/25/09 7:57:14 PM3/25/09 7:57:14 PM

570

Integrity and SecurityPart IV

When you create accounts configured for external authentication, the FileMaker external server
account operates as a connection between existing network credentials and a defined privilege set
within your FileMaker files. All the work of verifying the user’s credentials takes place outside of
FileMaker. (This step happens at the designated authentication server, as configured in FileMaker
Server settings.)

One significant benefit of using external authentication is that the accounts and passwords are
managed centrally for multiple FileMaker files. So, for example, when users change their password,
you don’t need to provide a mechanism to apply the change separately to each FileMaker file —
the credentials for such accounts are not stored within your solution.

CAUTION CAUTION I advise against assigning any externally authenticated accounts to the [Full Access]
privilege set, as this presents a potential vulnerability if users can gain access to the

physical files.

Scripted Account Management
For the purpose of setting up the initial security configuration for the database files in your solution,
you must use the controls in the Manage Accounts & Passwords dialog’s panels, as I describe in the
previous sections — no alternative exists. After your solution’s security infrastructure is in place,
FileMaker lets you automate a number of the key maintenance and usage operations associated with
logging in and manipulating accounts. You can use scripts to manage these and other tasks.

Provision for automation of database security
As shown in Figure 14.11, ScriptMaker provides you with six essential commands for controlling
security in your files, including adding and deleting accounts, resetting or changing passwords,
and activating or deactivating accounts, as well as account login and re-login.

NOTENOTE Contrary to expectation, the Enable Account command is not used to enable an
account. Instead, its function is either to activate or deactivate a designated

account. (In fact the latter option seems directly contrary to the function suggested by its name.)
Despite this oddity, the function efficiently performs its activation and deactivation tasks.

FileMaker also provides three calculation functions you can use to determine the current security
status of the solution:

Get(AccountName)
Get(ExtendedPrivileges)
Get(PrivilegeSetName)

CROSS-REFCROSS-REF As noted in Chapter 13, the Get(PrivilegeSetName) returns [Full Access]
when evaluated during the course of a script set to Run with Full Access Privileges.

A method of determining the name of the user’s substantive privilege set in this situation is
detailed in Chapter 13.

21_429006-ch14.indd 57021_429006-ch14.indd 570 3/25/09 7:57:15 PM3/25/09 7:57:15 PM

571

In Control with FileMaker Security 14

 FIGURE 14.11

FileMaker’s suite of Account and Security Management Script commands.

Moreover, although you can’t directly change the privilege set to which an account is assigned, you
can delete an account and recreate it. And when you recreate an account, it can be assigned to any
privilege set in the file.

CAUTION CAUTION Avoid having your scripts deactivate or delete the account of the current login ses-
sion (lest the script and the current user be orphaned without access to the file).

Instead, if you need to modify the current user’s account, have your script log in to a different
account first, modify the user’s account, and then log back in to the modified account.

Working with multi-file solutions
If your solution contains more than one file, having a synchronized security configuration is help-
ful. In particular, you should ensure that the same accounts are present in each file (and with com-
parable privileges).

If you’re using external authentication, you should ensure that accounts exist in the same authenti-
cation order for all the same groups in all files in your solution, so when a user’s credentials are
accepted, their access is simultaneously granted to all required components of your solution.

If you’re using the FileMaker internal password authentication and if the account names and pass-
words in each file match, opening one solution file (where the user is prompted to login before the
file opens) will generally pass the user’s credentials to other files. However, if your solution pro-
vides an option for users to re-login during a file session, it will fall to your scripts to coordinate
synchronous re-logins in all the required files, to keep the security status in alignment across all
the solution files.

21_429006-ch14.indd 57121_429006-ch14.indd 571 3/25/09 7:57:15 PM3/25/09 7:57:15 PM

572

Integrity and SecurityPart IV

Similarly, if users are allowed to change passwords in your solution, in order to ensure the pass-
words remain in sync across multiple solution files, I recommend that you provide a scripted pass-
word change procedure. The procedure should prompt the user for old and new passwords,
authenticate them, and then apply the change automatically in each file. For this purpose, the ini-
tial script can collect the required password (or passwords) from the user and then transmit them
(for example, as script parameters) to scripts in the other solution file (or files) configured to apply
the same authentication update (login, password change, and so on) in those files.

Safe scripting implementations
A potential security risk arises when you have your script collect a password from the user and
then transmit it as data. The concern is that while the password is being held and transmitted as
data, it might be intercepted or otherwise revealed to an unauthorized party. Configuring your
scripts to avoid these types of risks is very important. To achieve this, I recommend that your con-
trolling script is implemented as follows:

 1. Turns off the Allow User Abort[] capability, presents the user with a layout devoid
of any buttons that could halt the script, and then hides and locks the Status Toolbar.

 2. Displays a custom dialog requesting the user’s password (and new password, in the case
of a password change procedure).

 3. Retrieves the password(s) supplied by the user immediately (storing them as variables)
and deletes them from the global fields used for the custom dialog, before proceeding.

NOTENOTE For all processes involving user password entry, you should configure the custom dia-
logs your scripts display to use the bullet character to conceal the actual password

entry. This option is available in the Input Fields panel of the Show Custom Dialog Options dialog.

When your scripts follow these steps, the period of time when the password is held as data is con-
strained to the time from when the user accepts the dialog until the global fields are cleared imme-
diately afterwards. The vulnerability is limited to the user’s computer, because global field values
are specific to the client workstation — and the client workstation is in use with its interface and
abort options locked during the millisecond or so while the password is held as data. This setup
minimizes any risk of a password being intercepted as data.

After your scripts retrieve passwords the user enters (clearing the global fields used for this pur-
pose), the passwords exist in memory but not in data. With unauthorized access to the workstation
at this juncture, a third party might contrive to pause the script and retrieve the contents of vari-
ables. However, because the process follows immediately from the user dismissing the dialog, such
an intervention is unlikely in practice. However, if you’re concerned about this potential threat,
then you might consider encoding or encrypting passwords when declaring them as variables and/
or transmitting them as parameters to other files.

TIPTIP You can use text-processing functions or custom functions (created using FileMaker
Pro Advanced) to modify the format of passwords for added security — provided

you create calculations in the scripts in the receiving files to reverse the process and extract the
original password text.

21_429006-ch14.indd 57221_429006-ch14.indd 572 3/25/09 7:57:15 PM3/25/09 7:57:15 PM

573

In Control with FileMaker Security 14

Creating a Custom Logout Option
The way the FileMaker security system works, you log into a file when first opening it and remain
logged in until you either close the file or use a script or button command to re-login (using the
Re-login[] command). As long as a file is open, a user (or at least, an account) is logged in. For
best security, however, it can be advantageous for users to be able to secure your solution while
they’re away from their desk, without the tedium of closing the solution files and reopening them
on their return.

In such cases, you can create a process analogous to a logout where your solution remains open
but is in a secured state — requiring that the user enter their account name and password to regain
operational access and resume working with the solution. Because responding to a password
prompt may be considerably quicker and less onerous than reopening the solution files from the
host, users appreciate this convenience and are likely to use it.

The locked-down database
A first step toward securing your solution’s files to provide the effect of a logged out state is to create
a layout with limited options, attached to a utility table. Typically, such a layout should include your
solution’s name, version, support or admin contact information, a button to exit the solution (close
all solution files), and a button to login (to run a login script requesting the user’s credentials).

The second step completes the securing of your solution, giving you a lockdown state. The three
additional features of a secured solution required for this step are as follows:

n The Status Toolbar is hidden and locked (using the Show/Hide Status Area[] com-
mand). This has the effect of also disabling the menu commands for Go to Layout and Go
to Record (and also the corresponding keyboard commands, including the mouse scroll
wheel) to restrict users’ navigation options.

n The menus are restricted so that the user cannot use them to perform any significant
actions or to navigate away from the current record or layout. This can be achieved using
the custom menus capability of FileMaker Pro Advanced (if available), or by using a
restricted Privilege Set as described in the following topic.

n The access privileges are constrained by logging in to the solution with an account
assigned to a special privilege set having minimal capabilities. (Essentially, only the ability
to run the login script or close the solution – along with read-only access to the logged-
out layout and any utility fields displayed there.)

CROSS-REFCROSS-REF For additional information about using FileMaker Pro Advanced to create and
deploy custom menus, turn to Chapter 18.

Structuring a solution for logging out
Strange though it may sound, the third step in securing your solution, as I discuss in the previous
section, involves logging in with a “logged out” account.

21_429006-ch14.indd 57321_429006-ch14.indd 573 3/25/09 7:57:15 PM3/25/09 7:57:15 PM

574

Integrity and SecurityPart IV

The procedure required to complete custom log-out functionality is for you to create a special
restricted lockdown privilege set where the user has no record creation, deletion, or editing capa-
bilities, where the only accessible layout is your login layout, and the only executable scripts are
the start-up script, your exit script (if any), and a login script attached to the corresponding button
on your “logged out” layout.

TIPTIP If your login script will use a custom dialog to have the user enter an account name and
password, you must provide fields in your solution to temporarily accommodate the

values entered into the dialog (global fields in a utility table will suffice). These fields must be accessi-
ble while the login script is running, either because they’re assigned as writable fields under the lock-
down privilege set or because you have set the login script to run with full access privileges.

As Figure 14.12 shows, your lockdown privilege set should constrain the user, including applying
the Minimum setting for the Available Menu Commands option.

 FIGURE 14.12

Setting up a lockdown privilege set with constrained access and minimum available menu commands.

With the lockdown privilege set, you can create a lockdown account assigned to this privilege set,
for use as the default account for your solution files and for occasions when users want to tempo-
rarily log out of the solution without closing it.

TIPTIP When your solution has multiple files, you should create a lockdown privilege set
and associated lockdown account in each file so that your logout script can call a

sub-script in each file, placing it into a secured state as part of a single-user action.

To complete the securing of your solution, I recommend that you specify your lockdown account
as the default account for each solution file, as shown in Figure 14.13.

Additionally, you should configure your solution’s start-up script (or scripts) to take the user to the
login layout and hide and lock the Status Toolbar, ensuring that the user must provide valid cre-
dentials before proceeding.

21_429006-ch14.indd 57421_429006-ch14.indd 574 3/25/09 7:57:15 PM3/25/09 7:57:15 PM

575

In Control with FileMaker Security 14

 FIGURE 14.13

Defining the lockdown account as the default account for when each solution file is opened.

As an added security measure, you can set your login scripts to automatically activate the requested
account prior to login and deactivate it again on logout. This step can reduce the solution’s vulner-
ability in the event the solution files fall into the wrong hands.

CROSS-REFCROSS-REF Security can be further strengthened by using the Developer Utilities in FileMaker
Pro Advanced to remove full access accounts from all production copies (or pub-

lished copies) of your solution files, as outlined in Chapter 18.

I’ve updated this chapter’s Inventory solution example file to include a basic security architec-
ture along the lines described here, including a dual-file custom logout system and a master
script to manage the login and logout procedures. Passwords for the two accounts in the file are
provided via a button labeled “get passwords” appearing at the lower right of the main panel on
the login screen.

ON the WEBON the WEB The Inventory example files may be downloaded from the book’s Web site, as
detailed in Appendix B.

Security logging
As a further aid to security, I recommend you include a script process that tracks user activity. The
tracking process should capture login and logout times and associated workstation and network
locations. To do so, you need to add a user sessions table to your solution, plus a few extra steps in
your login/logout script(s) to create and update a record for each user login session.

21_429006-ch14.indd 57521_429006-ch14.indd 575 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

576

Integrity and SecurityPart IV

A security log serves a number of purposes, including enabling users to see an up-to-date register
of who is logged in and from which workstations, at any time during their use of the system.
Moreover, a security log can provide important diagnostic information in the event of data anoma-
lies or malfunctions of any kind. (You can match record creation and modification times to the
details in the sessions table.)

In addition, a security log is a useful monitor of access and login attempts, providing you with an
overview of system activity and alerting you to potential flaws, vulnerabilities, or irregularities in
the solution’s security or related to its usage patterns.

How Much Security Is Enough?
Realistically, all security measures (in FileMaker or anywhere else) can be defeated, given unlimited
time and resources. However, potential thieves or saboteurs do not have infinite time or money to
devote to the task of getting around your security — so your job is to ensure that your solution’s
security exceeds any reasonable expectation of threat. Additionally, some security threats, such as
spyware (keystroke loggers, for example), are system-wide and are therefore beyond the purview of
an application or solution developer.

Ways to evaluate risk
When evaluating risk, begin by determining the incentives for a range of possible attacks on your
system. For example, perverse human actions may be motivated by greed or spite, but whatever
the motive, you can reasonably assess the value their perpetrators may place on success. If your
solution supports a business with an annual turnover of $10 million in a highly competitive mar-
ket, an unscrupulous competitor may be prepared to spend millions mounting corporate espionage
or sabotage. The value you and others may place on (or derive from) the solution or the data it
contains is the first and best indication of the extent of security warranted.

When considering possible threats, think about positive and negative value as well as indirect
value. For example, the privacy of client records may not be a salable commodity as such, but nev-
ertheless is highly valued by the clients to whom it belongs. A breach of client or customer privacy
may expose you to legal challenges, but its indirect implications may be still more serious. The
flow-on effects of a compromise of privacy may result in indirect consequences, such as a loss of
confidence in the business or the business practices your solution supports. Although you may not
regard client details as saleable, identity thieves and Internet marketers may take a different view.

In all these respects, the nature of your solution, the data it contains, and the investment it repre-
sents form the basis of your assessment of its value. In simple terms, your job is to ensure the cost
and inconvenience of any effort to circumvent your solution’s security exceeds any perceived gain.

21_429006-ch14.indd 57621_429006-ch14.indd 576 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

577

In Control with FileMaker Security 14

A balanced view of threats
When you deadbolt your front door, the adjacent open window becomes the most likely area of
vulnerability for your home’s security. When the window is also bolted and shuttered, the point of
least resistance moves elsewhere. To achieve reasonable levels of security, you must pay adequate
attention to all potential vulnerabilities, raising each potential vulnerability above the threshold of
incentive for those who might pose a threat.

When considering the range of potential risks, in addition to threats from deliberate attack, you
should also be mindful of the many ways your solution may be compromised by actions or events
that don’t involve any malicious intent. User error, hardware failure, or a variety of other mishaps
may present as great a risk as any other and should be kept in view when considering how to safe-
guard your solution.

Additionally, make sure that the ways you address potential risks don’t create new risks. For exam-
ple, if your password security implementation is cumbersome for users, they’ll be reluctant to use
it and may ultimately (actively or inadvertently) undermine it. A classic example of this is the orga-
nization so concerned about security that they implement multiple levels of password screening for
various different functions or procedures — with the direct consequence being that users who can-
not remember all their many passwords end up writing them on notes stuck up and down the
sides of their computer monitors. The net effect of this ill-conceived strategy is a diminution rather
than an enhancement of security.

A strategic model for response
After pondering the range of possible vulnerabilities for your solution and the data it accommodates,
considering the relative impact of potential mishaps of different kinds, and assessing the value of your
solution and its contents to various contenders, you have the model for strategic risk management.

Using your appraisal of the potential threats, I encourage you to map out priorities for solution
safeguard measures, paying heed to each identified risk in accordance not only with the perceived
likelihood of mishap, but also with the consequences (direct and indirect) should a mishap occur.
By doing so, you achieve a balanced strategy providing a reasoned response to a broad view of haz-
ards and susceptibilities. Error correction, audit systems, data backup, and login security can all
work together to address risks and provide recovery options when a problem is encountered.

The Importance of Physical File Security
In any situation in which third parties can gain direct physical access to copies of your solution
files, a number of avenues of attack are open, and your files are vulnerable. Would-be hackers can
attempt to use software other than FileMaker to try to read, interpret, or even change the content
of your files — or they may use other tools to try to break past your login security systems.

21_429006-ch14.indd 57721_429006-ch14.indd 577 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

578

Integrity and SecurityPart IV

Whenever external authentication is used, the importance of the physical security of your solu-
tion’s files is further increased. Someone obtaining copies of the database files may seek unauthor-
ized access by configuring a bogus domain (with groups named according to the group names in
the legitimate server environment). Bear in mind that backup copies of the solution represent as
much of a risk as the deployed copy and should therefore be safeguarded with similar measures.

Layers of protection
As I mention in the last section, you want to consider ways to maximize the physical security of
your solution. If the only (or primary) means of access to your solution will be through a network
(if your solution resides on a server), the location and accessibility of the server is an important
consideration. If possible, the server should be located in a secure environment (such as a locked
room) where unauthorized persons can’t access or remove it.

Similarly, restricting access to the network where your solution operates and to the workstations
commonly used to access your solution helps ensure your security’s integrity. Be aware that key-
stroke logging software (spyware) and other malware finding its way onto client computers may
compromise the security of your data, despite your best efforts in other areas.

NOTENOTE FileMaker files do not store user passwords internally. Instead, a hash (a complex
checksum) is computed and stored — in a form that can’t be used to reconstruct

the original password. This makes some forms of attack more difficult, but it does not stop third-
party tools from overwriting the relevant sections of the file with bogus password hashes to
break your file’s security, replacing the legitimate passwords with impostors. This is one of sev-
eral ways someone who has physical access to your files may wreak havoc, potentially compro-
mising the integrity and security of the files and their contents.

Alternative forms of protection
In cases where you can’t safeguard the physical security of your files — for example, when your
solution is to be distributed to end users to run on their own computers, rather than being
accessed from a server — I recommend that you use the FileMaker Pro Advanced capability to per-
manently remove [Full Access] accounts from all copies of your solution files distributed to others
or used in production.

The removal of [Full Access] accounts provides good protection against direct access to your solu-
tion’s code (file structure, calculations, scripts, and so on) within your database files. Additionally,
it provides some protection against various methods that might be used to gain indirect access to
the code. However, the removal of [Full Access] accounts may not prevent a skilled user from
using third-party tools to tamper with the remaining accounts or to directly read or modify your
solution’s files.

CROSS-REFCROSS-REF For additional details regarding the removal of [Full Access] accounts using
FileMaker Pro Advanced, see Chapter 18.

21_429006-ch14.indd 57821_429006-ch14.indd 578 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

579

In Control with FileMaker Security 14

A multi-faceted approach
Using a variety of methods to guard against potential hazards and threats is the best approach to take
for your solution’s security. If your solution’s start-up script and File Options configuration place the
files into a secured state and direct the user to use your login scripts to present credentials and gain
authorized access to your solution, it’s important to ensure that your scripts will be used — and that
other avenues to the use of your solution will not be viable.

One way to constrain users to operate within the limits of your scripts is to have the start-up script
and login script generate dynamic token values and place them in fields in your solution (such as
global fields created for the purpose). You can then configure other key scripts and calculations
throughout your solution to check for the presence of valid tokens before proceeding (or calculat-
ing). By doing this, you can effectively disable your solution unless the current user has logged in
using the scripts you have provided.

Another part of your approach — to guard against tampering with your solution’s security struc-
ture — is to build in a second lockdown account and then have your start-up script perform a re-
login (into the second lockdown account) by using a fixed password. If the password verification
data stored in the file have been tampered with, the scripted re-login will fail, and your start-up
script (detecting the failure of this procedure via the Get(LastError) function) can lock and
close the solution.

In addition to these approaches, consider using various third-party products including

n Data encryption systems (either native or plug-in based)

n External dongles, hardware keys, and locking devices

n Identification card readers and biometric scanner systems

n Online authorization and activation services

Using the range of available techniques and tools, your solution can be configured to provide effi-
cient and convenient, yet effective measures to guard against a broad range of potential problems
and hazards.

CROSS-REFCROSS-REF For additional information about plug-ins and third-party resources, see Chapter 20,
and for details of some sources of information and tools, see Appendix A.

Security in Deployment: FileMaker Server
In several respects, the deployment of your solutions through the use of FileMaker Server software
running on an appropriately configured and secured machine is advantageous from a security per-
spective (as well as in various other respects). One of the advantages, as noted in the “User
Authentication” section, earlier in this chapter, is the support for external authentication enabling
your FileMaker Server deployments to conform to domain or external credential checks, providing,
in effect, single sign-on capabilities for one or more solutions on a local network.

21_429006-ch14.indd 57921_429006-ch14.indd 579 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

580

Integrity and SecurityPart IV

FileMaker Server provides several additional options that are worth taking a few moments to con-
sider (and to configure).

Filtered display of files
FileMaker Server gives you an option to filter the display of files to users accessing the list of avail-
able databases (by using File ➪ Open Remote in the FileMaker Pro client application) based on a
user’s account name and password.

By enabling this option, you can prevent unauthorized individuals from seeing or presenting cre-
dentials to any database files other than those they are approved to access.

Secure Socket Layer encryption
FileMaker Server 10 provides an option to encrypt data in transit between the server and client
workstations using industry standard SSL (Secure Socket Layer) encryption.

You can activate network encryption simply by selecting it as an option in configuring your server
deployment (and then restarting the server). I have seen no performance penalty resulting from the
use of SSL encryption for data transfers with FileMaker Server — and I recommend its use as a fur-
ther means of protection for your hosted solutions.

Server checks and logs
As a standard part of its operation, FileMaker Server 10 provides automatic logging and optional
e-mail notifications for a variety of events and potential problems. This includes commencement
and conclusion of client sessions (remote connections, not user account logins), automated back-
ups, and consistency checks.

The availability of server event and error logs is an important additional step toward ensuring the
health and security of your solution, giving you insight into its use as well as alerting you to prob-
lems and issues arising as your solution is accessed. E-mail notifications provide a way to extend
your monitoring of the health of your database server installation.

In addition to its performance capabilities, the added safeguards and security of FileMaker Server
represent a significant benefit over peer-to-peer hosting options (for example, hosting files with
FileMaker Pro). Of course, the increased expense of a dedicated server and the FileMaker Pro
Server license is an element in your security cost-benefit analysis. However, only in a few cases do
the benefits of this deployment model not outweigh the costs.

NOTENOTE Bear in mind that when you consider costs and benefits, the costs of deploying an
appropriately configured server include those associated with providing for an ade-

quately experienced and trusted user or IT professional’s time to administer the server and software.
Logs and e-mail notifications are of little value if there is no one to read and respond to them.

21_429006-ch14.indd 58021_429006-ch14.indd 580 3/25/09 7:57:16 PM3/25/09 7:57:16 PM

581

R eferential integrity, an essential concept, lies at the very heart of rela-
tional database development. Ideally, the end users of your solutions
take referential integrity for granted — and you, as developer, place

it before many other considerations. I think it’s important enough to devote
an entire chapter to the topic because I know that without referential integ-
rity, all your beautifully built solutions will crumble and amount to nothing.

Pinpointing Common Causes of
Referential Integrity Problems
Referential integrity has many dimensions, the problem of orphaned records
foremost among them. Consider, for a moment, an invoicing system where
you have an invoice table and a line items table storing the items for each
invoice. However, an invoice has been deleted without the corresponding
line item records being deleted. Now, when you perform a search, you get a
different result when you search in the Invoices table than when you
search in the Line Items table. The difference arises because the deleted
invoice’s items remain in the Line Items table, so they appear there, but
no related record exists in the Invoices table, so they don’t appear when
you search there.

When you get different results searching in different places, you no longer
know what is correct, and you have a lot of work to do to determine the dis-
crepancy’s cause. This example is one of several common problems affecting
referential integrity. Three of the most common causes of referential integrity
problems are

IN THIS CHAPTER
Surveying threats to referential
integrity

Understanding the importance
of relational keys

Working with keys and data
types

Bringing data into line with
optimal relational design

Automating the removal of
redundant data

Considering data integrity in
wider contexts

Managing a solution’s data
dependencies

Maintaining Referential
Integrity

22_429006-ch15.indd 58122_429006-ch15.indd 581 3/25/09 7:58:18 PM3/25/09 7:58:18 PM

582

Integrity and SecurityPart IV

n Deleting records without deleting related or dependent records or values

n Modifying key field values without modifying the corresponding foreign key values in
related tables, so corresponding field values no longer match

n Non-unique (duplicate) primary key values

The potential impact on your solution
On rare occasions, these problems may go undetected, and the consequences may be minimal.
However, even a single instance of one of these problems means that your data is no longer in sync —
the data in one table no longer agrees and fully conforms with data elsewhere in your solution. Such
issues can rapidly erode confidence in a solution and may have profoundly negative consequences
when business decisions are based on compromised data.

If your data ever falls out of sync, you’ll understand why I say that prevention is better than cure.
Vetting and correcting anomalies in a large data set can be a thankless and enormously time-
consuming task.

Costs and benefits
You have a great deal to gain from using relational data structures in your solutions. Key information
is stored once and is instantly available elsewhere — wherever it is needed. An update in one part of the
system is propagated instantly throughout the solution. These significant benefits depend on taking the
time to understand and implement robust and reliable links throughout your solution, to support its
relational data architecture.

In Chapters 7 and 11, I address many of the concepts that underpin the design and implementation
of relational structures in FileMaker Pro. Although I comment on some relational integrity issues in
those chapters, I don’t spell out exactly why it matters or how best to avoid the potential pitfalls
when working with complex data interdependencies. Several strategies are essential to successful
management of complex related data sets, as outlined in the following sections.

Using Unique Keys
Should the keys for a relationship in your solution be edited, deleted, or duplicated, relationships
depending on them will break. Re-establishing relationship connections after such a mishap is, at
best, an unenviable task. A first checkpoint when assessing the relational integrity of your solution
is, therefore, the appropriateness of selected keys and methods of handling them.

Consider using ways to generate key values automatically (for example, using auto-enter serial num-
bers, calculations, or scripts) to ensure their integrity. On occasions when keys aren’t generated
automatically, you need to implement some safeguards to ensure the key values are appropriate.

22_429006-ch15.indd 58222_429006-ch15.indd 582 3/25/09 7:58:19 PM3/25/09 7:58:19 PM

583

Maintaining Referential Integrity 15

Key safeguards
The validation options in FileMaker let you require that a field has a value (“Not empty”) and that
it is unique, as shown in Figure 15.1. If your solution requires user entry of primary key values,
such as when records originate within another system, using both these validation checks can help
minimize errors.

In cases where users import data into your solution, validation rules will be applied during import
if the Validate Data In This Field: Always option is selected (rather than the Only During Data
Entry option). With the Always option selected, records in the import source data with field values
that do not satisfy the validation rules you specify will be skipped (that is, they will not be
imported), and this will be mentioned in the Import Summary dialog. In the case of a scripted
import procedure, if records were skipped due to validation errors, error code 729 will be returned
for the Import Records command.

CAUTION CAUTION Any situation where users directly enter or edit key values is risky, even if you have
existence and uniqueness validations in place, because any unique value will be

accepted and then used for relationship matching (and the creation of related records). Any
errors the user subsequently corrects will post a risk for relational joins involving the record in
question.

 FIGURE 15.1

Setting Unique, Not Empty validation for a PrimaryID field.

22_429006-ch15.indd 58322_429006-ch15.indd 583 3/25/09 7:58:19 PM3/25/09 7:58:19 PM

584

Integrity and SecurityPart IV

Few values originating outside your solution can be relied upon to be unique — or to exist for all
cases. Even purportedly unique values, such as a Social Security Number (SSN), have been known
to be duplicated on occasion — and you can’t assume that they will always be available. Input data
types that can be relied upon as suitable for use as a key value in all cases are the exception rather
than the rule.

Keys and meaning (existence,
persistence, uniqueness)
Relational keys should be unique, persistent, and non-empty, and these requirements are fre-
quently best met by assigning special values for the purpose. There is no absolute rule about this.
Classical relational theory proposes that key values be derived from data, if suitable. However, if
you do so, you introduce risks and should proceed carefully. In general, I counsel against using
keys based on or derived from data, as data is subject to data-entry errors, the correction of which
may compromise the persistence of key values. Instead, I recommend that your key values be gen-
erated automatically (via auto-entry options) and protected by selecting the Prohibit Modification
of Value During Data Entry option in the Auto-Enter tab of the Options for Field dialog.

One case where key values are frequently legitimately derived from data is within the context of an
association table (also known as a join table), where the primary key is commonly formed from the
conjoining of two or more foreign keys. This is an example of a situation where the data provides a
suitable basis for relational keys.

In situations where an ID value, such as an SSN, bank account number, or vehicle registration
number, is required to be entered, you can also generate a separate unique value to use as the
record’s primary key. When you do so, even if the entered value changes (or is entered inaccu-
rately and subsequently corrected), referential integrity is maintained.

NOTENOTE For most purposes, you don’t need to display key values to the user; in fact, doing
so may complicate matters needlessly. However, where you can’t rely on any of the

data values to be unique, a serial number or other unique value can be useful to users.

In a student database, for example, where several students are named Peter John Smith, a stu-
dent ID may be a convenient way for users to identify to which Peter Smith a given piece of
information refers.

Generating Keys
A majority of database solutions are designed to operate as single or separate instances — in other
words, only one copy of the solution is deployed at a time. Or, if there are multiples, data from
them will never be combined. In most cases, an efficient way to generate suitable key values is to
produce record serial numbers in each table. The auto-entry serial option is an ideal way to address
this need. Even so, it has several possible variations, described in the following sections.

22_429006-ch15.indd 58422_429006-ch15.indd 584 3/25/09 7:58:19 PM3/25/09 7:58:19 PM

585

Maintaining Referential Integrity 15

Serial numbers
The option to auto-enter serial numbers is the cleanest and simplest way to generate key values for
single-instance solutions. Although the concept and name suggest that values created via this
mechanism will be numeric, you can store the values in either text or number fields. If the values
are stored as text, they may include alphabetic prefixes. For example, as shown in Figure 15.2, you
can configure serial values to include leading zeros or other characters.

CROSS-REFCROSS-REF For a detailed discussion of the use and limitations of the available data types, refer
to Chapter 7.

FileMaker also provides you with the option to have serial values assigned either on creation of a
new record or when the record is first committed. You can use the radio buttons shown in Figure
15.2 to specify which option you want. In situations where consecutive serial numbers are desired,
using the On Commit option avoids serial number incrementation in a case where users change
their mind and revert the new record. In this situation, however, be aware that relationships or
other operations depending on the presence of the serial value will not be available until after the
record is committed.

To assist you in managing serial numbers, FileMaker provides the GetNextSerialValue()
and SerialIncrement() calculation functions and the Set Next Serial Value[] script
command. Thus, in a script designed to import records into your solution, you can sort the records
and reset the serial number for the table so that serial numbers assigned to subsequently created
records will not overlap those among the imported data. For example, you can structure the rele-
vant portion of such a script along the following lines:

Import Records [No dialog; “OldFile.fp7”; Add; Windows ANSI]
#Re-set next serial value:
Show All Records
Sort Records [Restore; No dialog]
Go to Record/Request/Page [Last]
Set Next Serial Value [Data::Serial#; SerialIncrement(Data::Serial#; 1)]
Unsort Records

NOTENOTE This script sequence’s correct operation requires that the Sort Records[] com-
mand be configured to sort the records in ascending order by the Data::Serial#

field and on the data type and content of the Data::Serial# field. Note, however, that the
correct operation of the script (including the correct sort sequence) depends on the
Data::Serial# field being defined as a number field (since in a text field 10 will sort before 9
and so on).

Additionally, FileMaker can reassign serial numbers to a field, at the same time resetting the auto-
entry options to follow sequentially from the last assigned number, using the Records ➪ Replace
Field Contents menu command or the corresponding script or button commands. As shown in
Figure 15.3, if the selected field is defined to auto-enter a serial number, the procedure can simul-
taneously update the serial number (the next value) in Entry Options.

22_429006-ch15.indd 58522_429006-ch15.indd 585 3/25/09 7:58:19 PM3/25/09 7:58:19 PM

586

Integrity and SecurityPart IV

 FIGURE 15.2

Defining an alphanumeric serial value with an alphabetic prefix.

CAUTION CAUTION Using the Replace Field Contents command to modify a key field’s contents will
compromise any relationships already depending on existing key field values. You

can’t revert or undo changes made using this command.

NOTENOTE You should avoid using a Replace Field Contents procedure while your solution is
hosted because locked records, if any, are skipped. In the case of serialization,

skipping locked records can lead to duplications, where the skipped records may hold the same
value as some of the values assigned elsewhere during the process.

If the Prohibit Modification of Value During Data Entry option is in force for the selected field, the
Replace Field Contents menu command isn’t available. However, scripts or buttons calling the cor-
responding command can still succeed. Therefore, you should consider the implications for rela-
tional integrity and the potential for error (especially if the solution is hosted) before using this
procedure on a primary key field.

Record IDs
In addition to auto-enter serial numbering, FileMaker automatically assigns an internal sequential
record ID to each record in every instance of a file. Record IDs are a numeric value starting from 1 in
each table. You can retrieve this internal value for the current record by using the Get(RecordID)
calculation function. Although the record ID value is useful in some circumstances, it isn’t
well suited as a key value’s sole basis because:

22_429006-ch15.indd 58622_429006-ch15.indd 586 3/25/09 7:58:20 PM3/25/09 7:58:20 PM

587

Maintaining Referential Integrity 15

n The record ID sequence is particular to a specific copy of the file. If records are imported
into another copy of the file, they will be assigned new record IDs in the receiving file.

n All record IDs are reset (and therefore commence again from 1) within a copy saved as a
clone of your file.

For these reasons, if you use record IDs as keys you can’t prevent the assignment of duplicate val-
ues in all situations. However, it has the advantage of not being vulnerable to being reset inappro-
priately (for example, via the Replace Field Contents command) or not being reset when it should,
such as when records are imported. It can, however, be used as a component of a key field value in
cases where records will be combined from multiple files into a single set (and where it is desirable
to avoid key field duplications in the combined record set).

Unique identification (UID) values
The concept of a universally unique ID value, commonly known as a UUID, is known and used in
a variety of computing contexts. However, FileMaker does not support it directly. This kind of
value is called for in distributed solutions where multiple sets of new records will be created sepa-
rately and later combined (and where it is essential to avoid duplication of ID values when the
record sets are merged or synchronized).

One way to meet this requirement is by allocating reserved serial ranges, where each instance of
the solution files assigns IDs within its own separate range. Whereas the allocation of reserved
ranges is feasible in limited cases, it requires careful management, and its success depends on accu-
rately configuring every instance for an appropriate range. As a result, the scope for error becomes
greater if more than a few instances of the solution are in operation.

 FIGURE 15.3

Generating a new serial number sequence and resetting the next serial value in auto-entry options via the
Replace Field Contents dialog.

22_429006-ch15.indd 58722_429006-ch15.indd 587 3/25/09 7:58:20 PM3/25/09 7:58:20 PM

588

Integrity and SecurityPart IV

In cases where you can’t reliably predict the number of copies of the database that will be in use,
or where managing the assignment of serial ranges is difficult, one solution is to assemble a unique
identifier. You do this by combining the identity of the current computer, the assigned ID of the
current record, and the timestamp of the second when the record is created. FileMaker provides
the means to assemble a UID in several ways:

n You can determine the identity of the computer by retrieving its unique network address —
the ID of the hardware Network Interface Card (NIC) installed in the computer — using
the Get(SystemNICAddress)function. Because a computer may be equipped with
more than one network interface device, you can obtain a sufficient identifying value by
retrieving the address of the first available device, using the calculation expression

GetValue(Get(SystemNICAddress); 1)

n You can access the sequential number of the current record within the current copy of
the file via the Get(RecordID) function.

n You can generate the current time (in the form of a number representing the seconds
elapsed since midnight on 1st January 0001) using the calculation expression

GetAsNumber(Get(CurrentHostTimestamp))

By concatenating the three values — NIC address, record ID, and timestamp — you can produce a
key value that will be unique regardless of the circumstances of its creation. The chief drawback of
this approach is that the resulting string will be lengthy. I recommend ameliorating this concern by
converting the values first to base 10 (the NIC address is supplied as a hexadecimal value) and
then to base 36 for compactness. Using this approach, a record created with the record ID
123,456,789 on a computer with an NIC address of 00:14:51:65:4d:6a and generated at 5:47:37
pm on October 21st 2007 is allocated the UID NI1PM Z3J50 JG9ZH 6HI2H.

The base conversions required to transmute the source data into the compact base36 format
require some mathematical manipulation of the original values that is best performed via a custom
function.

CROSS-REFCROSS-REF An example of a custom function you can use to create UIDs along these lines is
included among the materials referenced in Appendix B.

Exploring Keys and Data Type
Because serial numbers and record IDs may be numeric, defining ID fields as number fields is
tempting. However, you’ll frequently have occasion to use multi-key relationship capabilities (for
example, to filter a portal or to use the Go to Related Record[] command to isolate a group
of records in a found set). In a multi-key relationship, multiple values in a key field are simultane-
ously matched to values in the related table. If you have used number fields as the key fields in
either table, however, matching won’t work as desired because number fields aren’t designed to
hold multiple values. You must use text fields to take advantage of multi-keyed relations. For max-
imum flexibility, I recommend using text fields as keys.

22_429006-ch15.indd 58822_429006-ch15.indd 588 3/25/09 7:58:20 PM3/25/09 7:58:20 PM

589

Maintaining Referential Integrity 15

Using text fields as keys presents a different kind of problem. If you have conventional numeric
sequences stored as text, they will not be sorted appropriately — for example, 3 will be sorted after
12. You can address this problem in two ways:

n Pad the numbers with leading zeros so that they’re all the same length. They then will
sort correctly in a text field.

n Use a number field to generate the serial values (and for sorting) but use a text calculation
referencing the number field as the key field.

For maximum flexibility, I suggest that you consider using both these strategies simultaneously.
You then have both a numeric and text field you can use for relationships, for sorting, and for
other purposes, as appropriate.

An added benefit of using text values as relational keys is that you can prefix them with one or
more letters identifying their table of origin. For example, INV0001 is recognizable as an invoice
number and ORD0001 as an order number. Although this classification may be of little conse-
quence in the table of origin, when data containing a primary key and several foreign key values is
exported or imported, the prefixes greatly reduce the likelihood that the keys will be imported into
the wrong fields (or, if they are, the problem will be considerably easier to detect and correct).

Consider, for example, an import procedure where the import mapping dialog presents you with
the following:

Source Fields Target Fields

21 Jan 2008 → TransactionDate

1217 → ReceiptID

1921 → ClientID

921 → AccountID

3119 → InvoiceID

2174 → StaffID

3550 → Amount

In this example, importing a data set from a delimited file is error prone, because the source values
other than the transaction date are not differentiated. If, however, text key values are used with the
appropriate prefixes, you can more readily see that the correct import order in this case is as follows:

Source Fields Target Fields

21 Jan 2008 → TransactionDate

1217 → Amount

R00001921 → ReceiptID

CL00921 → ClientID

AC03119 → AccountID

ST02174 → StaffID

INV003550 → InvoiceID

22_429006-ch15.indd 58922_429006-ch15.indd 589 3/25/09 7:58:20 PM3/25/09 7:58:20 PM

590

Integrity and SecurityPart IV

Whereas the use of redundant (text and numeric) serials and padded keys adds slightly to the
amount of data your solution must store, the improved flexibility, reliability, and diagnostic trans-
parency offered usually outweighs the penalty.

NOTENOTE The ID fields throughout the inventory example file created in previous chapters
of this book provide an example of a structure incorporating a numeric serial and a

prefixed text ID value, along the lines I recommend.

Retrofitting Keys
When you encounter a situation where the key fields in use are unsuitable and their format is pre-
senting a threat to referential integrity, you may need to retroactively add key fields to existing
tables. For example, suppose that you have inherited a solution where the client table’s LastName
field has been used as a key field to associate invoices with clients, but it’s come to your attention
that two more families named Johnson have moved into the neighborhood and will soon be added
to the clients table along with the Johnson client you already have.

Rather than loading the new clients as Johnson2 and Johnson3 — a kludge at best — you can
correct the structure by adding appropriate key fields to the solution and reconstructing the rela-
tionship between Clients and Invoices tables to use them. To retrofit appropriate keys to the
solution in this example, proceed as follows:

 1. Take the database offline if it is hosted. You can’t make a change such as this one reliably
while other users are accessing the solution.

 2. Create a text field called ClientID in the Clients table. In field options, configure the
ClientID field to auto-enter a serial number.

 3. Place the Clients::ClientID field on a layout based on the Clients TO.

 4. In Browse mode, choose Records ➪ Show All Records.

 5. Place the cursor into the ClientID field and choose Records ➪ Replace Field Contents.
The Replace Field Contents dialog appears.

 6. Select the Replace with Serial Numbers option, enter CL0000001 in the Initial Value
field and 1 in the Increment By field, check the option to Update Serial Number in Entry
Options and then click the Replace button.

 7. Choose File ➪ Manage ➪ Database, navigate to the Clients table on the Fields tab, and
double-click the ClientID field. In the Auto-Enter tab of the Options for Field dialog,
select the Prohibit Modification of Value During Data Entry option and click OK to
accept the change.

 8. Select the Invoices table on the Fields tab of the Manage Database dialog and create a text
field called ClientID. Click OK to close the Manage Database dialog.

 9. Navigate to a layout based on the Invoices TO and add the Invoices::ClientID
field to the layout.

 10. In Browse mode, still on the Invoices layout, choose Records ➪ Show All Records.

22_429006-ch15.indd 59022_429006-ch15.indd 590 3/25/09 7:58:20 PM3/25/09 7:58:20 PM

591

Maintaining Referential Integrity 15

 11. Place the cursor in the Invoices::ClientID field and choose Records ➪ Replace
Field Contents. The Replace Field Contents dialog appears.

 12. Select the Replace with Calculated Result option; in the resulting Specify Calculation dia-
log, enter Clients::ClientID.

 13. Choose File ➪ Manage ➪ Database, navigate to the Relationships tab, and double-click the
box bisecting the relationship line connecting the Clients and Invoices TOs. The
Edit Relationship dialog appears.

 14. Select the ClientID field in the Clients TO’s field list, select the ClientID field in
the Invoices TO’s field list, and click the button labeled Change in the middle right of
the dialog.

 15. Click OK to dismiss the Edit Relationship dialog and again to dismiss the Manage
Database dialog.

 16. Choose File ➪ Manage ➪ Value Lists. If an existing value list of clients was used to select a
related client for each invoice, select it and click Edit; otherwise, click New.

 17. Configure the value list to use values from a field, choosing the Clients::ClientID
field as the first field. Select the Also Display Values from the Second Field option and
then choose the Clients::LastName field in the second field list. Click the OK but-
ton to save the value list and then dismiss the Manage Value List dialog.

 18. In Layout mode on the Invoices layout, configure the Invoices::ClientID field to
use the Clients value list (the one edited or created in Step 17) and position the field in
place of the ClientName field previously used as the key field.

After completing these steps, your solution is updated to use the new ClientID field as the basis
of the relationship between Clients and Invoices. After testing the solution to confirm that
the update has been successful (and assuming that no relationships, calculations, or scripts depend
on it), you can delete the Invoices::Client field and instead use a related field
(Clients::LastName) to display the name of the client on the invoice.

If other relationships depend on the Clients::LastName field, you should repeat the process
from Step 8 onward to update each of the related tables to include ClientID as a foreign key field.
Once the change is complete, the relationship architecture of the solution is significantly improved.

Deleting Redundant Records
The usefulness of your data is proportional to its accuracy. The harvest from a garden of weeds is
not sustaining. As well as taking the trouble to add the data you need, you must take the time to
excise erroneous, obsolete, irrelevant, or duplicated data. If you don’t, you can’t rely on the results
of any find, calculation, or report as encompassing only current or accurate content.

In a relational database, data is distributed among tables according to its type. Data about cars is in
the Vehicles table, and data about their owners is in the People table. To ensure that your database
does not become a repository for accumulations of redundant and obsolete information — not
merely a dead weight but a compromise of data integrity — you should configure your solution to
manage group deletion of related records, wherever appropriate.

22_429006-ch15.indd 59122_429006-ch15.indd 591 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

592

Integrity and SecurityPart IV

The use of cascading deletion
To assist you in maintaining referential integrity, FileMaker provides an option to automatically
delete related records when deleting a record in any table in your solution. You can enable this
option by accessing the Edit Relationship dialog for the join between the two Table Occurrences in
question and selecting the checkbox option labeled Delete Related Records in This Table When a
Record Is Deleted in the Other Table. This capability is commonly known as cascading deletion
because it can be configured for a series of relationships such that deletion of a record in one table
can result in follow-on deletion of records in a number of related tables.

Figure 15.4 shows the Edit Relationship dialog for the join between the Orders and
OrderLines TOs in the current chapter’s Inventory example. As you can see, the Delete
Related Records option is enabled on the OrderLines side of the relationship; if an Order is
deleted, the associated item records will automatically also be deleted.

The cascading deletion option imposes an essential referential integrity constraint ensuring that the
dependency between associated entities is preserved. Without it, the integrity of your data will be
compromised.

Configuring relationships for referential integrity
When setting up your data model, take care to enable cascading deletion only where an entity’s
existence is fully contingent on the associated “parent” entity. Moreover, consider the flow-on
effects of cascading deletion, lest their scope exceed your intent. To avoid unintentional conse-
quences of the use of integrity constraints, I recommend

n No more than one TO for each base table be configured with the Delete Related Records
option

n The TO targeted by the Delete Related Records option be named to match the underlying
table

n The Delete Related Records option be enabled only in the file where the corresponding
base table is defined

In addition (and especially should you have occasion to depart from any of these recommenda-
tions), you may want to consider making a separate record or annotation regarding the cascading
deletion configuration in each file. A text note on the Relationships tab of the Manage Database
dialog in the data file is often appropriate.

CAUTION CAUTION Although FileMaker permits you to activate the Delete Related Records option on
both sides of a relationship, it’s generally not appropriate to do so. In fact, activat-

ing this option, depending on the nature of the relationships and data, may set up a ricochet
effect as deletion calls pass back and forth between the two tables, with the result that deleting a
single record in one table may decimate the contents of both tables.

22_429006-ch15.indd 59222_429006-ch15.indd 592 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

593

Maintaining Referential Integrity 15

 FIGURE 15.4

Enabling cascading deletion for the Orders-to-OrderLines relationship.

Privilege requirements for cascade delete
Users must have sufficient privileges to delete all the dependent records in order to be able to
delete a record in the current table when referential integrity constraints (via cascading deletion)
are configured. For example, if the user is viewing a record from table A and a constraint has been
applied that requires that records in table B be deleted if a record is deleted in table A, the user will
be able to delete the current record in table A only if

n The Privilege Set assigned to the user’s login account permits deletion of records in both
table A and table B.

n No records in table B relate to the current record in table A (and the user’s privileges
allow deletion of records in table A).

In the event that there are records in table B and the user’s account doesn’t include privileges to
delete records in the related table, deletion of the current record in table A will fail, and FileMaker
will post an error dialog, as shown in Figure 15.5.

If the deletion command is issued via script with error capture enabled, no error dialog will
appear, but the deletion will nevertheless fail, and FileMaker will return error code 200 (defined as
Record Access Is Denied).

22_429006-ch15.indd 59322_429006-ch15.indd 593 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

594

Integrity and SecurityPart IV

 FIGURE 15.5

FileMaker posts an error if the user doesn’t have sufficient privileges for cascading deletion to occur, even
if the user’s privileges permit deletion of records in the current table.

TIPTIP If record deletion is undertaken by script and you enable the Run Script with Full
Access Privileges option, the deletion will succeed regardless of the privileges

assigned to the current user’s account, and all cascading deletions will succeed.

Controlled cascading deletes at runtime
Configuring your files to delete records automatically can save your users a lot of work and/or a lot
of headaches when configured appropriately. However, in some situations, cascading deletes may
result in problems. For example, if your solution requires that data in one of the tables be refreshed
from an external source, such as via selective deletion and re-import of updated records from a ref-
erence file, the presence of cascading deletes may interfere with the desired process, requiring that
related record sets also be refreshed/imported (because they’ll be deleted as a result of referential
integrity constraints, when the parent records are deleted).

You can respond to such a requirement so that cascading deletion does not prevent you from
delivering the required functionality in several ways:

n Avoid the necessity to delete and re-import parent records by restructuring the process
around synchronization or conditional update of the existing records. In some cases, you
can do so by using the Update Existing import option. In others, it may warrant import-
ing the reference data into a holding area, such as a utility table, and providing a scripted
reconciliation process.

n Script the process to delete the values from the primary key fields in the parent table (the
key field used for the relationship defined to delete related records) before deleting the par-
ent records. Alternatively, if this step introduces an unacceptable delay to the procedure, set
up the cascading delete to operate via a secondary (utility) relationship where the parent
key is an unstored calculation depending on a global field. For example, use a calculation
formula for the key field along the lines of:

If(ParentTable::gRI_Switch = 1; ParentTable::PrimaryID)

 Clearing the gRI_Switch global field can disable the relationships depending on the
unstored calculation throughout the table at a single stroke; you can re-enable them
by setting a 1 into the global field. With this mechanism in place, your scripts can turn cas-
cading delete functionality on and off by controlling the value in the gRI_Switch field.

22_429006-ch15.indd 59422_429006-ch15.indd 594 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

595

Maintaining Referential Integrity 15

n Build a separate file containing a reference to your solution data file(s) and build a graph
in the separate file containing your referential integrity constraints, such as all Delete
Related Records options. Then script your solution to open the file (as in open hidden)
when you require the constraints and close it when you want to switch off the constraints.

 I recommend this last technique for cases in which cascading deletion will not be part of
normal operation but is to be invoked for specific procedures.

By using these techniques (and other variations and permutations), you can control your solution’s
functionality, ensuring that cascading deletion serves its intended purpose, yet avoiding circum-
stances where it interferes with the required functionality.

Considering Other Integrity Issues
One essential of efficient data management is a solution designed to store each piece of information
only once — displaying it whenever and wherever it’s needed. The fact that you can update the
data once and expect the change to flow throughout your solution is an efficiency advantage.
However, the integrity advantages are greater still.

When you store the same information twice, you risk that one instance will be edited so that it no
longer agrees with others, and then you no longer know which instance is the correct one. Any
time you duplicate data, you’re compromising solution integrity as well as solution efficiency.

Lookups and when to use them
FileMaker supports auto-entry lookups where a field is set to automatically copy the contents of a
related field. The OrderLines::Price field in the Inventory example demonstrates the use
of this functionality, as shown in Figure 15.6.

When is it appropriate to use a lookup, and when is it preferable to reference the data in place in
its source table? The straightforward answer is that Data should be referenced in place if its mean-
ing is undifferentiated.

Auto-entry lookups and references
In the case of the price field discussed in the preceding example, the Inventory table’s cost field
represents the current purchase price of the item. When the item is ordered, the price against the
individual order line takes on a different meaning because it represents the price at the date of the
order. If a price change occurs in the future, the price in the Inventory::Cost field may change,
but the change won’t apply automatically to the history of previous orders. Only subsequent orders
will be affected. Moreover, a discount or bulk order price may be negotiated for a specific purchase,
but it will not be reflected in the list price for the item. Thus, the ongoing reference price is a differ-
ent piece of information from the specific price for any one instance of a purchase of the item, so it
makes sense to store each instance independently. They may, in fact, all be different.

22_429006-ch15.indd 59522_429006-ch15.indd 595 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

596

Integrity and SecurityPart IV

By contrast, you can’t expect other details about an item to change or differ from one transaction to
another. The name of an item and its description are immutable facts about the item. If you were
to set lookups to create copies of each of these item attributes for every order, referential integrity
and solution efficiency would be compromised by data duplication.

Data design issues
The principle of making data storage decisions according to differentiation of meaning is broadly
applicable to a range of design decisions you make when determining your solution’s data model.
In addition to lookups, it applies to auto-entry calculations, relationships, and even regular calcu-
lations. Unless an element has a distinct role and meaning, it’s redundant and should not be
included in your solution’s data model.

Throughout your solution, avoid duplicating data, structure, and code. This general maxim is part
of a larger framework considered part of the DRY (Don’t Repeat Yourself) programming principle.

CROSS-REFCROSS-REF Issues relating to the elimination of redundancy and the application of the DRY
principle are discussed in depth in Chapter 19.

 FIGURE 15.6

The use of a data lookup for the OrderLines::Price field.

22_429006-ch15.indd 59622_429006-ch15.indd 596 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

597

Maintaining Referential Integrity 15

Managing Dependencies
The handling of data about the design elements of your solution (fields, tables, scripts, layouts, and
so on) in FileMaker operates in a framework where, when you change an element’s name, the new
name is reflected in all references to the element throughout your solution. For example, if you
rename a field referenced in scripts and calculations, the next time you open the calculation to
review its definition or open the script in the Edit Script window, you see the updated name.

FileMaker uses internal IDs to track references to solution elements, looking up their current
names as required. The process is analogous to your use of relational data structures to store your
data only once (yet make it available throughout multiple contexts).

Literal text references
A notable exception to automatic handling and updating references to solution elements in
FileMaker arises when you incorporate references to elements as literal text within your calcula-
tions. For example, if you supply a layout name by calculation when defining a Go to Layout[]
script or button command, FileMaker does not change the literal text values (the text within the
quotes) if the names of your layouts are subsequently changed:

Go to Layout [If(User::Preference = “Tips”; “Instructions”; “Report Listing”)]

Where you’ve used literal references to layouts, files, fields, scripts, layout objects, or any other ele-
ments of your solution, you must keep track of them and update them manually if you change the
name of the object to which they refer.

Indirect object/element references
Given that FileMaker doesn’t automatically update literal text references to elements and objects
for you, you may prefer to minimize your use of them. However, including literal references in
your code is occasionally advantageous because doing so enables you to construct dynamic code
referring to different elements according to the current context. Thus, you have a trade-off between
richer and more flexible code and maintenance convenience.

Ironically, you can produce compact and reusable code by incorporating calculated references to
solution elements and objects. Literal references to objects by name, like those used in the Go to
Layout example shown in the preceding section, are easier to troubleshoot and maintain in most
other respects (in particular, because the technique allows you to greatly reduce repetition and
duplication in your code). You must strike a balance.

22_429006-ch15.indd 59722_429006-ch15.indd 597 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

598

Integrity and SecurityPart IV

Filename references
One area in which the use of literal references can compromise referential integrity is in the use of
the FileMaker Design functions, many of which require you to supply the name of the file contain-
ing the required information. For example, you can retrieve the contents of a value list using the
following function syntax:

ValueListItems (FileName; ValueListName)

You can supply both parameters required by the ValueListItems() function as text literals, so
the resulting expression may be incorporated into your solution along the lines of

ValueListItems (“Inventory.fp7”; “Suppliers”)

Declaring calculation arguments as text literals, as in this example, is high maintenance because if
the filename or value list name ever changes, you will have to manually edit the names in quota-
tion marks to restore the intended functionality. You can solve this problem in several ways. In
relation to the filename:

n When the reference is to the current file, you can structure your syntax to retrieve the
name of the file using the Get(FileName) function. This function continues to work
without any adjustment in the event the file is renamed.

n In a multi-file solution, including a reference table containing details such as the names of
the solution files may be advantageous. If all functions referring to a particular file refer-
ence its name in the relevant data field (rather than as a text literal), you only have to
update the file’s name in the reference table if it changes, rather than separately locating
and updating each function referring to it.

CROSS-REFCROSS-REF A method of making references to field, layout, value list, script, and Table
Occurrence names impervious to name changes (referring to them by their internal

ID rather than by their current name) is detailed in Chapter 12.

Structural anomalies
On occasions when you have included literal text references to an object or element (or where
others may have done so) and you need to change that object’s (or element’s) name, you’ll need a
reliable way of locating the literal references so that you can update them.

One option is to select all tables (in the Manage Database dialog’s Tables tab) and all scripts (in the
Manage Scripts window) and print them, sending the output not to a printer but to a PDF or text
file. Then you can search the file for the text string to locate all occurrences of text references to the
object or element you are renaming.

CROSS-REFCROSS-REF Third-party diagnostic tools, such as BaseElements from Goya or Inspector from
FM::Nexus, in conjunction with FileMaker Pro Advanced can also provide invalu-

able help when tracing dependencies. For additional details about the uses of FileMaker Pro
Advanced with these and other third-party diagnostic tools, refer to Chapters 18 and 19.

22_429006-ch15.indd 59822_429006-ch15.indd 598 3/25/09 7:58:21 PM3/25/09 7:58:21 PM

599

Database solutions serve many purposes, including supporting essen-
tial, even critical, processes. Whether the consequences of data
errors or problems are dire — or merely inconvenient — designing

your solutions to be as robust as possible is beneficial. In many cases, addi-
tional cost or effort to make your solution resistant to failure and improve
the ability to recover from a variety of errors is more than justified.

Fortunately, you can take many steps to safeguard your solution’s data,
improve user accountability, avert mishap, and recover from calamity. In this
chapter, I gather together a number of techniques and options you can use to
strengthen your solution’s defenses against a variety of potential hazards.

Expecting the Unexpected
Systems fail for any number of reasons — usually, they’re the reasons you
didn’t consider, because otherwise you’d have taken preventive measures.
The circumstances that cause your system most harm, therefore, will be the
problems you didn’t anticipate.

Although you can’t anticipate every possible error or mishap, you can be
confident that sooner or later something will crop up. Luckily, you can take
steps to ensure that when a difficulty arises, you have some options available
to minimize its impact and recover with a minimum of fuss.

Successful backup strategies
Foremost among survival strategies for any computer system — and especially
any database solution — is a backup regime. A reliable backup routine can get
you out of trouble almost regardless of the cause. Accidentally deleted records,

IN THIS CHAPTER
Being prepared for problems

Taking care of error trapping

Opening databases remotely

Working with temporary edit
interfaces

Screening errors with masks
and filters

Building audit trails and
script logs

Offering undo and roll-back
functionality

Considering logging
alternatives

Making FileMaker
Systems Fail-Safe

23_429006-ch16.indd 59923_429006-ch16.indd 599 3/25/09 7:59:15 PM3/25/09 7:59:15 PM

600

Integrity and SecurityPart IV

power failure, disk corruption, bugs in your code — you can alleviate all these things if you have pre-
vious copies of your database to which you can revert.

Several questions arise when you’re considering your approach to solution backup, and the way
you resolve them determines your backup strategy’s viability. The key questions are

n How often should you back up?

n How long should you retain each backup?

n How will you be sure that your backup copies are sound?

n How and where should your backups be stored?

n Which components of your solution should you back up?

Backup frequency
Backing up too infrequently reduces protection against mishap and leaves you exposed to the pos-
sibility of greater loss of data. In the event of a catastrophic system failure, you may lose all the data
entered or edited since the last backup. If you backed up less than an hour ago, you’re in a much
better position than if your last backup was a week or a month ago.

Frequent backups, however, consume time and resources. If your solution is large, they may begin
to impact the solution’s performance. Often, the ideal backup regimen is one that sets the frequency
of backups just below the level where their impact on performance would begin to affect productiv-
ity. The level that adversely affects productivity varies depending on the size of your system, the
deployment configuration, and the number of users. However, you should aim to avoid any signifi-
cant slowing or interruption or work due to backup cycles. (If sufficiently frequent backups present
a performance problem, consider upgrading server hardware.)

You also need to consider the relative costs of data loss. If the labor costs of repeating a day’s work
are significant, then you should consider running backups more frequently than once a day.
Determine how much time and data you (and your solution’s owners and users) can afford to lose.

An appropriate backup cycle
If you overwrite each backup with the next one, at any point you have only one backup copy. This
situation is risky for several reasons, including the possibility that an error or problem may not be
immediately detected. If several hundred records were erroneously deleted some time in the last
week, but you’re only keeping backups from the last day or hour, backups won’t enable you to
recover the lost data.

If storage capacity is limited, I recommend that you keep backups for two weeks. However, in any
situation in which the preservation of data is critical, consider archiving backups to cheap long-
term storage media, such as a DVD-ROM.

As part of your short-term backup strategy, I recommend setting up an external process. For exam-
ple, you might consider deploying a third-party backup application or operating system script
(AppleScript or VBScript or Shell script) to transfer the backup files to a remote volume (for exam-
ple, a network share or ftp directory) after the creation of each backup file set is completed.

23_429006-ch16.indd 60023_429006-ch16.indd 600 3/25/09 7:59:15 PM3/25/09 7:59:15 PM

601

Making FileMaker Systems Fail-Safe 16

The integrity of backups
All too frequently, it’s not until after a system failure — when they attempt to restore from a
backup — that people discover that all their backups are empty, corrupt, or otherwise useless.
Backup failure can occur for a variety of reasons, including simple hardware failures (such as write
errors) on the media where the backups are being stored.

To be certain, therefore, you need a procedure in place that confirms the integrity of the backup
files. If your solution is hosted using FileMaker Server 9 or 10, you can configure it to perform
both the scheduled backups and their verification automatically. Otherwise, you’ll need a manual
process to regularly verify that backup copies of your files are accessible and usable. In fact, even
where Server verification is enabled, periodic manual checks are good practice, helping to place
focus on the restore process, which is where backup strategies most frequently fail.

The location of backups
It may seem obvious, but if your backups are stored on the same disk drive (and on the same
workstation) that the solution itself resides on, failure of that drive will cause your backups to be
lost — along with the deployed copy of your solution.

Ideally, your backups should be stored not just on a different system, but at a different location. In
the event of a fire, flood, earthquake, or other physical calamity, multiple computers in the same
room, building or wider area may be affected simultaneously. Ideally, you should store frequent
copies of backups at a secure remote location, such as on an ftp server accessed over the Internet.

Back up the code, not just the data
Keep in mind that the investment in your solution’s structure, logic, and interface may be at least
as valuable as the data it contains. Thus, you should back up not only while your solution is
deployed, but also while it’s under development. Keep a pristine (never deployed, never improp-
erly closed) reference copy of your solution from each stage of its development. In the event your
file’s code or structure is compromised, the existence of a reference master will prove invaluable.

The hazards of copying open files
Some ways to create backup files are right — and some are wrong. One of the riskiest actions you
can take is to use external applications (third-party backup utilities or your computer’s operating
system) to make copies of your solution files while they’re in use.

CAUTION CAUTION Copying database files while they’re being accessed by users can result in corrup-
tion, not only of the copies but also of the original files. Avoid copying open data-

base files under any circumstance.

Copying database files while they’re open is a bad idea for two reasons:

n FileMaker and FileMaker Server read substantial amounts of an open file into cache,
maintaining the data there, writing parts of it back to disk only when necessary or during
idle time. Therefore, the valid structure and content of the file is an amalgam of what is

23_429006-ch16.indd 60123_429006-ch16.indd 601 3/25/09 7:59:15 PM3/25/09 7:59:15 PM

602

Integrity and SecurityPart IV

on disk and what is in memory — with neither, alone, representing a valid or complete
file. If you attempt to copy the file while it’s in this state, you are at best copying only the
disk component of the file, which will be neither current nor complete.

n FileMaker and FileMaker Server require exclusive access to a file they’re hosting so that
data can be read and written with maximum efficiency and integrity. External applica-
tions copying files frequently place successive locks on sectors of the disk while reading
data from them. If FileMaker needs to flush data from its cache while part of the current
file is locked by a third-party application, the consequences can include data loss and/or
file corruption.

Of similar concern are ancillary programs, such as indexing and anti-virus applications, which may
interfere with the connection between FileMaker Server and the files it is hosting. Any external
process that accesses database files while they’re being hosted presents a threat to file integrity.

TIPTIP Always use FileMaker or FileMaker Server to create a separate backup copy of open
files. Only use the operating system or third-party procedures to subsequently copy

the backup files, not the deployed files. This way you can securely transfer copies of the backup
files to remote storage locations.

Backing up local files
If you’re hosting a solution using FileMaker Pro or FileMaker Pro Advanced (rather than FileMaker
Server), you must create backups by using the File ➪ Save a Copy As command or by closing the
solution files and then using your computer’s operating system (or a third-party application) to
make copies.

You can, however, simplify the process of making solution backups in a stand-alone solution (or a
solution hosted using FileMaker Pro) by creating a script along the following lines:

If [Get(MultiUserState) < 2]
 #Set Backup reference time
 Set Variable [$time; Value: Year(Get(CurrentHostTimeStamp)) &

 Right(“00” & Month(Get(CurrentHostTimeStamp)); 2) &
 Right(“00” & Day(Get(CurrentHostTimeStamp)); 2) & “_” &
 Right(“00” & Hour(Get(CurrentHostTimeStamp)); 2) &
 Right(“00” & Minute(Get(CurrentHostTimeStamp)); 2)

 #Set Backup path
 Set Variable [$path; Value: “file:” & Get(FileName) & “_BU” & $time & “.fp7”]
 #Create backup of current file:
 Save a Copy as [“$path”; compacted;
Else
 Beep
 Show Custom Dialog [“Backups can only be run on the host computer”]
End If

Where your solution has multiple files, an efficient way to configure it is to create a backup script
in each file and then, from the main file (the interface file), add steps to the backup script to call
the backup scripts in each of the other files.

23_429006-ch16.indd 60223_429006-ch16.indd 602 3/25/09 7:59:15 PM3/25/09 7:59:15 PM

603

Making FileMaker Systems Fail-Safe 16

ON the WEBON the WEB Example backup scripts similar to the one provided here have been added to the
Inventory example files for Chapter 16 on this book’s Web page.

Such a script is useful only if you remember to run it on the host computer at regular intervals.
Relying on someone remembering to run backups at regular intervals may be adequate for a small
or single-user solution. For all other cases, I recommend the use of FileMaker Server, where auto-
matic backup scheduling is built in.

Backing up hosted files
If your solution files are hosted (multi-user), backup copies can be generated only on the computer
on which the files reside. The script shown under the previous topic includes a check to confirm
that the file is hosted on the current computer before it creates a backup copy. If your solution is
hosted using FileMaker Pro, you need to ensure that the backup procedure is completed at regular
intervals.

If you’re using FileMaker Server to host your solution, you can use the option (recommended) to
create automatic backup schedules. FileMaker Server 9 and 10 also provide the means to automati-
cally verify the integrity of each backup file after it’s created and to generate an e-mail notification
confirming task completion.

Regardless of the way your solution is hosted, a separate procedure to transfer the backup files to an
appropriate secure location is required. FileMaker Server includes the ability to schedule OS-level
scripts. If you create an appropriate script on the host computer to archive and/or transfer backups
to a secure location, you’ll be able to schedule it to run after each backup has been created.

CAUTION CAUTION When scheduling a file transfer procedure to copy backup files to a remote storage
location, ensure that the copy procedure does not commence before FileMaker

Server has had time to complete the creation of the backup files.

CROSS-REFCROSS-REF See the resources listed in Appendix A for sources of information about the cre-
ation of external scripts for archiving backup files.

A Comprehensive Approach
to Error Trapping
While anticipating problems and setting in place appropriate backup procedures is an essential
first step toward protecting your solution, prevention is undoubtedly better than a cure. Adopting
a broad-based approach to error handling when designing your solution’s code can help you avoid
a significant class of possible problems before damage occurs.

FileMaker, Inc. provides documentation listing more than 200 error codes FileMaker may return,
so trapping independently for all of them at every step would be an onerous task. Fortunately, you
don’t need to because many errors are particular to specific circumstances. For example, error 508
(Invalid value entered in Find mode) is specific to actions in which field contents are updated

23_429006-ch16.indd 60323_429006-ch16.indd 603 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

604

Integrity and SecurityPart IV

while the database is in Find mode — so unless both these conditions apply, you won’t see an
error 508. Similarly, error 100 (File is missing) is specific to an action involving a reference to an
external file (and that file is unavailable).

CROSS-REFCROSS-REF Full details of all FileMaker Pro error codes and their definitions appear in the
online help and are listed in resources referenced in Appendix A of this book.

Bearing in mind the context of a given script and script action, you can narrow the range of possi-
ble errors and associated error codes considerably and then test explicitly for those errors you
deem most likely to occur in context. When you do, I suggest that you ensure the final lines of
your error-handling code test for any other errors and handle them generically.

NOTENOTE Not all error codes indicate that the preceding command has failed (or failed inap-
propriately). For example, error 1 is defined as User cancelled action. This error can

occur only in a situation where the user has been presented with an option (for example, in an
application dialog) that includes a Cancel button and has clicked it. Because Cancel is a valid
option for the user in such a situation, your scripts should handle it, but it need not be consid-
ered an error.

Similarly, a Go to Related Record[] command with the Match All Records in Current =
Found Set option enabled will return error 101 (Record is missing) if the current record had no
related records, even though other records in the found set did and they have been successfully
displayed.

In such cases, the error code FileMaker returns provides information about the result of the pre-
vious action but need not be considered an indication of an error as such.

In all cases, when implementing error trapping, I recommend that you also maintain a log of errors
within your solution. Have your scripts create an entry in an error table indicating what error was
encountered, at what point in what script, on what record in which layout, which user was logged
in, and so on. Creating a log greatly aids system maintenance and problem diagnosis if errors
should occur.

Dealing with record locking
When your solution is hosted on a busy network, one of the most frequent errors your scripts may
encounter is 301 (Record is in use by another user). However, this error can be produced even if
your database is not hosted, when the record currently being edited is already being edited in
another window on the current user’s workstation. In this situation, FileMaker produces the error
dialog shown in Figure 16.1 (if error capture is not enabled).

With multiple users working simultaneously on a hosted solution, error 301 is apt to occur more
whenever users or scripts simultaneously attempt to open or edit the same record.

NOTENOTE You can view records while another user is editing them and place the cursor into a
field without seeing an error message. FileMaker returns an error only when an

attempt is made to change the contents of a field while the record is being edited by another user.

23_429006-ch16.indd 60423_429006-ch16.indd 604 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

605

Making FileMaker Systems Fail-Safe 16

 FIGURE 16.1

The error dialog associated with an attempt to edit a record already being modified (in a different window)
on the current user’s computer.

When someone else on the network causes the record lock, FileMaker displays an error dialog (if
error capture is off) that indicates the identity (workstation “user name” and login account name)
of the user currently modifying the record and provides an option to display a message to the user
encountering the error, as shown in Figure 16.2.

 FIGURE 16.2

The error dialog associated with an attempt to edit a record already being modified by another user on the
network.

Although the error dialogs FileMaker displays when encountering these two distinct error condi-
tions are different (see Figures 16.1 and 16.2), the error code returned in both cases is the same
(301), so you need to construct your error handling to deal appropriately with both issues.

I recommend that you build window management procedures into your scripts to handle situa-
tions where the user may have several windows open, closing those not required and ensuring that
the state of those remaining open do not impede subsequent scripted edits. If you build appropri-
ate context management (including window management) procedures into your scripts as a matter
of course, you can minimize or eliminate situations where error 301 results from the current
record being edited in another window.

Regarding occurrences of error 301 resulting from the activities of other users, your error handling
code should do the following:

 1. Pause and try again several times. If the other workstation edit is brief, such as when it
results from another user’s computer performing a scripted update, you can expect the
record to be released quickly, and your script can then continue.

23_429006-ch16.indd 60523_429006-ch16.indd 605 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

606

Integrity and SecurityPart IV

 2. Time out after several attempts and store the unique ID of the record where the error
occurred.

 3. If the script has significant processing to do on other records, consider structuring it so that
it returns to records skipped because of error 301 and tries again after concluding its work
on other records. Frequently, the locked records will have been released in the interim.

 4. Notwithstanding Step 3, if the record(s) remain locked through timeout and after the
conclusion of the script, have your script either report the error to the user (with the IDs
of records not updated) and/or log the errors (including the IDs of the records where
errors occurred and the details of the update that failed on those records) to an error log
for later attention.

 5. Consider having your script’s error-handling sequence automatically generate and send
an e-mail to the solution administrator with details of the error.

Although this mix of steps may vary according to the nature of the update your script is applying,
following such a process provides the best protection against data anomalies arising when records
in a set being updated are unavailable due to record locking in a hosted solution. The way of deal-
ing with record locking described here addresses one of the most common causes of data integrity
issues arising from inadequate code and error handling.

Techniques to avoid in multi-user or multi-window
environments
Several development techniques you can effectively employ in single-user solutions present risks or
have adverse consequences when used in a multi-user solution — either because they cause errors
or because error-handling procedures can’t adequately protect their use. Several techniques deserve
special mention here.

Replace Field Contents
Although the scripted update of a batch of records (such as via a script looping through the found
set and updating each record in turn) is vulnerable to record locking in a multi-user solution,
appropriate error handling, as described in the previous section, can mitigate the associated risks.
However, if your solution (or its users) use the Replace Field Contents [] script step in a
button, script, or menu command, error data regarding locked records (if any) will not be available
during or after the update. In other words, if records were locked, they’re skipped. While a generic
error code (201, defined as Field Cannot Be Modified) is returned, the identities of the locked
records remain unknown.

For this reason, you should avoid using the Replace Field Contents[] command in a multi-
user solution. Because it doesn’t lend itself to error handling, it poses an unacceptable risk when
used in a hosted database.

TIPTIP If you have access to a copy of FileMaker Pro Advanced, you may want to create a
custom menu set for your hosted files, with the Records ➪ Replace Field Contents

command disabled or removed.

23_429006-ch16.indd 60623_429006-ch16.indd 606 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

607

Making FileMaker Systems Fail-Safe 16

CROSS-REFCROSS-REF You can find additional detail about the creation of custom menus using FileMaker
Pro Advanced in Chapter 18.

Record marking and flagging techniques
Inexperienced developers sometimes build procedures depending on setting flag values on or
marking certain records so that they can be summarized, found again, or included in a process
being performed by the current user. If the number of records involved is moderate, these tech-
niques can provide an acceptable method in a single-user solution. However, as soon as the solu-
tion is made available to multiple simultaneous users, problems arise because the marks applied or
removed by one user’s workstation are overridden by another’s.

I’ve encountered solutions in which one user’s order items routinely ended up on another user’s
invoices or where records marked by one user for archiving are instead duplicated by another
user’s script. These errors, and others like them, arise from the use of flagging and marking tech-
niques that are inappropriate for multi-use deployments.

NOTENOTE The use of flags to indicate the status of a record with the purpose of enabling other
users to see the record’s status is multi-user friendly and falls outside the caution

mentioned here.

An example of the legitimate use of a flagging technique to manage custom record locking is dis-
cussed in the “Temporary Edit Interface Techniques” section, later in this chapter.

Uses of global fields
One further technique you should avoid when developing solutions that may at some point form
part of a hosted data system is the use of global fields to store persistent data.

When a solution is accessed in stand-alone mode, the contents of global fields are saved when the
solution files are closed and are therefore available again when the file is subsequently reopened. In
this situation, global field values persist between sessions. However, in a multi-user database,
changes made to global field values during each client session are seen only on the workstation
where they’re made (every user “sees” their own set of global field values) and are discarded at the
conclusion of the client session.

Once understood, global field behavior in a hosted solution is valuable and even essential. However,
procedures predicated on the behavior of global fields in stand-alone mode fail spectacularly — and
without returning any error codes — when hosted.

Opening Remote Files
The method you use to access database files has a bearing on their performance and their vulnera-
bility to corruption.

Database applications, especially for hosted databases, are I/O (input/output) intensive. A lot of
data is read and written to disk, sometimes in short periods of time, so FileMaker (or FileMaker
Server) performs a lot of two-way communication with the disk on which your database files are

23_429006-ch16.indd 60723_429006-ch16.indd 607 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

608

Integrity and SecurityPart IV

stored. The speed and reliability of the connection between the CPU where the host application is
running and the volume where the files are stored are therefore critical determining factors in the
response times and reliability of the application.

TIPTIP Always open and/or host database files from the computer where they’re stored.
Opening files from a remote (network) volume is both risky and suboptimal. I

acknowledge that technology advances rapidly and new storage protocols are emerging, includ-
ing new mass storage opportunities in high bandwidth networked environments. While each
case must be considered on its merits, I presently consider local hardware connected storage to
be the safest and (in most cases) best performing option.

For additional information about the reasons for this caution, refer to the sections “File sharing
risks” and “Network spaghetti,” later in this chapter.

Peer-to-peer hosting
You can use FileMaker Pro 10 to host a solution for up to ten concurrent users (nine client connec-
tions, plus the host itself), so you can start sharing files straight away over a local network, directly
from your desktop computer. To do so, you should follow these steps:

 1. Make sure that your computer is connected to a TCP/IP network and that other comput-
ers on the network have copies of FileMaker Pro 10 (or FileMaker Pro 10 Advanced)
installed.

 2. Open the solution you want to install (including all solution files, if your solution com-
prises more than one file) from a disk drive directly connected to the current computer
(either an internal hard drive or an external drive attached through high-speed USB,
FireWire, SCSI, or SATA connections).

 3. Choose File ➪ Sharing ➪ FileMaker Network. The FileMaker Network Settings dialog,
shown in Figure 16.3, appears.

 4. Select the Network Sharing On radio button in the upper section of the dialog.

 5. Select each of your solution’s database files in the Currently open files lists (lower left of
the dialog) and enable network access to the file in the panel at the lower right — either
for all users or users by privilege set.

 6. If the computer where the files are open has a firewall enabled, confirm that port 5003 is
open in the firewall settings, to permit traffic between the FileMaker host and client
workstations.

TIPTIP If your solution has a main file and one or more ancillary files, consider enabling
the checkbox labeled Don‘t Display in Open Remote File Dialog for the ancillary

file(s) so that remote users will be guided to open your main file first.

 7. Click OK to accept the settings and close the FileMaker Network Settings dialog.

23_429006-ch16.indd 60823_429006-ch16.indd 608 3/25/09 7:59:16 PM3/25/09 7:59:16 PM

609

Making FileMaker Systems Fail-Safe 16

 FIGURE 16.3

Enabling Network File Sharing from the FileMaker Pro client application.

After following the preceding preparatory steps, other workstations elsewhere on your network
running FileMaker Pro are now able to open the solution files remotely. To confirm that your solu-
tion is shared over the network, go to another computer on the network, launch FileMaker Pro,
and choose File ➪ Open Remote. The Open Remote File dialog appears, as shown in Figure 16.4.

 FIGURE 16.4

Select a file to open in the Open Remote File dialog.

23_429006-ch16.indd 60923_429006-ch16.indd 609 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

610

Integrity and SecurityPart IV

The list of available hosts in the Open Remote File dialog, when Local Hosts is selected in the View
pop-up menu at the top left, shows computers on the local network configured for FileMaker shar-
ing. When you select the workstation where your solution is hosted, the files enabled for network
sharing appear in the Available Files list at the right of the dialog. When you select your solution’s
main file and click OK, the solution opens remotely on the current workstation.

File sharing risks
FileMaker network sharing provides you with a built-in data sharing protocol available with mini-
mal setup, right within FileMaker Pro on your computer. There is an important distinction
between this capability and conventional file sharing, where users open a file directly from a disk
on another computer. The key difference is that with FileMaker Network sharing, multiple users
can open the solution simultaneously, whereas file sharing permits only one user at a time to have
write access to a file.

When you enable your solution for FileMaker Network Sharing, avoid having the same computer
available for conventional file sharing on the network for several reasons. Foremost among them is
that doing so provides two alternative ways users can open the solution — one via FileMaker
Network sharing and the other by opening the files directly with file sharing. Should users open
your files directly (as host) via file sharing rather than through FileMaker’s Open Remote dialog,
your files are placed at risk (for example, if a network drop-out occurs), and performance is
severely compromised.

Another significant risk presenting itself whenever database files are stored on a volume enabled
for file sharing is that multiple copies of the files will be available, and users may make their own
copies. If they do, users are highly likely to inadvertently open the “wrong” copy of the database
for a given work session. Then, when they next log in (to the correct copy of your solution), all the
work from their previous work session is absent. Even if users realize immediately what has
occurred and where all their work from the previous day is located, reconciling the data between
the two copies of your solution may present significant challenges (particularly if some users have
been updating one version while others were updating another).

You can avoid all these problems and potential pitfalls by ensuring that file sharing is never
enabled for volumes where copies of your database files are stored and, particularly, for the com-
puter (or computers) you’re using to host databases via FileMaker Network Sharing.

Network spaghetti
Risks of file corruption, data loss, and general confusion aside, additional issues arise when database
files are accessed via file sharing. Every element of data to be displayed, edited, or entered when a
database is opened via file sharing must be passed to and fro between the computer accessing or
hosting the databases and the network volume where they’re stored. Moreover, the computer’s
access to the storage media is impeded not only by network traffic and inherent network latency but
by other tasks being serviced simultaneously by the file share.

23_429006-ch16.indd 61023_429006-ch16.indd 610 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

611

Making FileMaker Systems Fail-Safe 16

When users connect remotely to a database file open on a computer, if that computer has in turn
opened the files via file sharing from elsewhere on the network, all remote calls for data must travel
to the host computer, then to the file sharing computer, then back to the host — and then on to
the client workstation. Data entered or edited must negotiate the same obstacle course in reverse.
By the time you have several client workstations connected, network traffic becomes convoluted,
and multiple bottlenecks can arise.

In a busy office or production environment, the last thing you need is an overburdened and slug-
gish network configuration — notwithstanding the risks to file integrity should the connection
between host and file server/file share ever be interrupted.

Opener files
One way of simplifying the remote connection procedure for users of your solution is to provide a
file to be stored on the user’s desktop as a gateway to your solution. Such files are commonly
termed opener files.

The basic principle of an opener file is a simple one. It opens the solution file(s) from a remote net-
work address (the computer configured as host) and then closes itself. In the process, it gives the
user an icon on the desktop that simultaneously launches FileMaker Pro and opens the remote
database, saving the user a number of intermediary steps. For users who access your database
infrequently — and who may be relatively unfamiliar with FileMaker Pro — an opener file pro-
vides a direct and easily remembered way to access your solution.

Within your opener file, you create a link to your solution as an external data source so that
the opener can find your solution on the network. Enter the syntax for the data source in the
following form:

fmnet:/hostIPAddress/FileName

If your solution may be hosted in one of several alternate locations, you can list them, each on a sepa-
rate line. (FileMaker opens the solution from the first location where it finds it, working down from
the top of the list.) You can set up the start-up script in your opener file along the following lines:

Set Error Capture [On]
Open File [“Inventory_Ch16”]
Set Variable [$result; Value: Get(LastError)]
#Create opener log entry
New Record/Request
Set Field [OpenerLog::CurrentIP; Get(SystemIPAddress)]
Set Field [OpenerLog::DateTime; Get(CurrentTimestamp)]
Set Field [OpenerLog::ConnectionStatus; $result]
If[Result ≠ 0]
 Show Custom Dialog [“The solution is not currently available”]
End If
Close File [CurrentFile]

23_429006-ch16.indd 61123_429006-ch16.indd 611 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

612

Integrity and SecurityPart IV

You can define a script such as this one to run automatically on file open (via the Open/Close tab
panel of the File Options dialog). When you configure it in this way, the opener file automatically
launches your solution remotely, logs the event, and then closes. If an error is encountered (if the
solution isn’t available on the network, for example), the opener file posts a dialog stating this
before closing.

NOTENOTE I have included several lines in the suggested opener script to log the result of its
use in a table within the opener file itself. This means that if a user is reporting

problems or as part of routine maintenance, you can verify the exact times and details of any
failed connections, including the specific error code FileMaker returned on each occasion.

Sending an e-mail link
New in FileMaker 10 is the ability to send an e-mail link to a hosted database. This capability is a
useful alternative to an opener file in cases where those accessing your solution may change fre-
quently or be spread far and wide. An e-mail link doesn’t require that any files be added to the
user’s desktop, and you can distribute the e-mail bearing the link to large numbers of users speed-
ily and efficiently.

To create an e-mail containing an embedded link (URL), users can click to access a hosted solution
and then choose File ➪ Send Link, as shown in Figure 16.5.

The Send Link command creates an unaddressed e-mail containing a URL for the current host and
solution file, in the form

fmp7://123.45.678.90/Inventory_Ch16.fp7

The IP address of the host computer on the network in this example is 123.45.678.90, and
Inventory_Ch16.fp7 is the name of the hosted file. The text of the automatically generated e-mail
also includes a summary of the conditions that are required when clicking the link.

In order to connect to the database using this link:

n The client must have FileMaker installed on their computer.

n The database file must be open on the host machine.

n Any firewalls between the client and server must allow FileMaker sharing.

n The client must have a valid account and password.

n The client and the host must be on the same local area network.

E-mail links may be sent from FileMaker 10 databases hosted either peer-to-peer or by using
FileMaker Server 9.

TIPTIP Users receiving an e-mail link may save the e-mail or add the link to bookmarks in
their Web browser. The link works whenever the solution file is open on the host

computer indicated in the URL.

23_429006-ch16.indd 61223_429006-ch16.indd 612 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

613

Making FileMaker Systems Fail-Safe 16

 FIGURE 16.5

You can send an e-mail link for the current (hosted) FileMaker database file to a prospective user.

Temporary Edit Interface Techniques
When you exit a field or record (click in an inactive area of the layout outside of FileMaker’s fields,
buttons, and so on), the record is automatically committed, validation rules are evaluated, and the
data (if validation succeeds) is written to the record. After a record is committed, the Records ➪ Revert
Record and Edit ➪ Undo commands are no longer available, and the changes become permanent.

In cases where the accuracy of data entry and editing is of paramount importance, you’re likely to
require greater control over what goes into the database and how it gets there. You can create a
holding area where data entry can occur and be subject to more rigorous checks or screening
before being stored in your solution’s main data tables.

The Data Viewer concept
You can create a separate Data Viewer interface so that users can edit in an offline area where you
control how and when the data is saved to the database. You can create a FileMaker Data Viewer
interface by following these steps:

23_429006-ch16.indd 61323_429006-ch16.indd 613 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

614

Integrity and SecurityPart IV

 1. Set user access privileges to View Only for the table(s) in question.

 2. Create global fields (for example, in a utility or temporary data table) corresponding to
each of the user-editable fields in your table.

 3. Make a copy of the main form layout for the data to be edited via a viewer screen and
re-point the fields on the copy to the temporary global fields created in Step 2.

 4. Create an Edit script that

 a. Opens the current record (if necessary looping until it is available).

 b. Checks a lock flag on the current record and, if it isn’t set, sets it (but if it is set, exits
the record and posts an error alert telling the user the record is locked).

 c. Writes the values from each field in the current record to the corresponding global
field (as per Step 2).

 d. Switches to the layout showing the global fields

 e. Locks down the interface (so that the user can’t navigate using menus or the Status
Toolbar).

 5. Attach the Edit script to a button on the original layout.

 6. Create a Save script that

 a. Checks all the values in the global fields and performs all required validations (alerting
the user and exiting whenever a problem is found).

 b. On successful completion of all checks, opens the current record (if necessary, looping
until it’s available).

 c. Writes the values from the global fields back to the current record.

 d. Clears the lock flag on the current record.

 7. Attach the Save script to a button on the copy of the layout with the global fields.

TIPTIP Because the user’s privilege set doesn’t have write access to the main data table,
both the Edit and Save scripts must be set to run with full access privileges.

With this configuration in place, you have a custom record editing procedure, one in which
changes to the record can’t be committed until the Save button is clicked — and then only in
accordance with requirements built into your Save script. No data can be entered or updated in the
live solution table until (and unless) all your validation requirements are met.

One advantage of this approach is that it enables you to perform multiple validation tests on each
field, returning a custom error message for each, indicating the exact nature of the problem
encountered and what to do to resolve it. (The FileMaker built-in validation system provides only a
single custom message regardless of the validation rule breached.)

23_429006-ch16.indd 61423_429006-ch16.indd 614 3/25/09 7:59:17 PM3/25/09 7:59:17 PM

615

Making FileMaker Systems Fail-Safe 16

The legitimate purpose of record locking
You may have encountered cases where a Data Viewer concept somewhat like the one described
under the preceding topic has been proposed (or even implemented) as a palliative for issues aris-
ing from record locking. Such an approach resembles the one described in the preceding section
but omits the custom record locking (the lock flag) procedure. I strongly caution against disabling
record locking without providing a viable alternative.

Record locking serves an essential purpose in a multi-user database. It prevents one user’s changes
from being overwritten by another’s and, perhaps more importantly, prevents data integrity from
being threatened by the merging together of data of different origins. For example, without a
record lock procedure, two users can select the same record for editing more or less simultane-
ously. If one user replaces a contact address while another user corrects the spelling of the suburb
of the existing address, there is a risk that when both users confirm their changes, the result will be
the new address but with the old suburb — an address that doesn’t exist and therefore corrupts
data. Each user independently did the right thing, but a flawed solution design crunched their data
together inappropriately.

To preserve data integrity, you should either use record locking (either FileMaker’s native record
locking, or a custom alternative as described in the preceding topic) or

n Ensure that all fields are overwritten with new data when the edited record is saved (so
that data from two separate user edits can never be blindly combined).

n Store the modification time when a record is opened for editing and check that it hasn’t
changed before writing changes back to the record.

n If the record has been modified since the user began editing, post an error dialog and
either discard the changes or require that the user review changes made by the other user
to decide which value to keep for each field (and subject the combined result to a further
round of validations).

With these additional measures, your edit interface provides a viable alternative method of dealing
with potential editing conflicts. Permitting multiple edits and then warning if a problem arises
resembles the “optimistic” locking model FileMaker itself uses when dealing with data in ESS
(External SQL Source) tables.

Creating double-blind entry systems
You can extend temporary edit interface techniques to provide support for double-blind data entry —
where each record or edit must be processed independently and identically by two operators before
being accepted into your solution’s data. Double-blind entry is a requirement in some data process-
ing environments and is considered desirable in others to safeguard against error and fraud.

23_429006-ch16.indd 61523_429006-ch16.indd 615 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

616

Integrity and SecurityPart IV

Implementing a double-blind entry system requires all the essentials of the Data Viewer outlined in
the preceding pages, with the addition of a holding table. Moreover, data to be entered requires a
unique ID number prior to entry (for example, from serialized stationery). The Save script then
performs an additional procedure as follows:

 1. After completing data validations on the entered/edited data (refer to Step 6 in the proce-
dure to create a Data Viewer earlier in this chapter), the script checks for the presence of
a corresponding record (by unique form ID) in the holding table. Then one of the follow-
ing happens:

n If no corresponding record is found in the holding table, the data is transferred to a
new record in the holding table.

n If one (or more) corresponding record is found in the holding table, the values in each
field of the entered or edited data are compared with the values in the holding record.

n If there is an exact match between the entered/edited data and any holding record, the
corresponding holding record (or records) is deleted, and the entered edited data is
saved to the main table.

n If the entered or edited data does not match any of the holding records, the data is
transferred to a new record in the holding table.

 2. Returns the user to the main viewing layout.

With this additional procedure in place, data can’t become part of the main system unless entered
identically by at least two operators. In such an implementation, it’s normal practice to record the
user IDs of both operators (those creating each of the matching entries) either with the updated
record or in a separate log table. When an entry or edit is transferred to the main table, some busi-
nesses require that records from the holding table be transferred to an archive rather than deleted.
Doing so provides a comprehensive audit trail of additions and modifications to the data. The pres-
ence of errors is greatly reduced, while user accountability is enhanced.

Because double-blind entry systems require a more complex solution design — and twice as much
staff time for data entry — their use is restricted to solutions where the accuracy of data (and
accountability of staff) is of critical importance. Nevertheless, the double-blind technique provides
an added option in the design of a fail-safe system.

CROSS-REFCROSS-REF Methods of creating audit trails without requiring double-blind entry or separate
edit interfaces are discussed in detail in the later sections of this chapter.

Field Masking, Filtering,
and Error Rejection
When your data is required in a standard format and you want to avoid variations or rogue charac-
ters accumulating amidst your data, validations are only one of the options — and not necessarily
the best option — for achieving your objective.

23_429006-ch16.indd 61623_429006-ch16.indd 616 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

617

Making FileMaker Systems Fail-Safe 16

An alternative approach is to intercept data at the point of entry and modify it to conform to your
requirements. In FileMaker Pro, you can intercept and modify data via the use of Auto-Entry cal-
culations that reference the current field (and with the Do Not Replace Existing Value of Field
option disabled). A field with Auto-Entry options configured by using this option automatically
replaces the contents of an entry into it with the result of the calculation expression.

TIPTIP Data modification at entry is generally best suited for use with text fields because
they’re designed to accept data in a variety of presentation styles and configurations.

Applying standard data formations
A frequent requirement when setting up database fields is to store telephone numbers according to
a common convention — for example, the 123-456-7890 format is common in some parts of the
world.

If you require all values entered into your Contacts::PhoneNo field converted onto a standard-
ized 3-3-4 format, you’ll require an auto-enter (replaces existing) calculation to remove characters
other than numerals and to insert hyphens at the appropriate places. The following is an example
of a calculation formula that achieves this:

Let(
Dgts = Filter(Contacts::PhoneNo; “0123456789”);
If(not IsEmpty(Dgts);
Left(Dgts ; 3) & “-” & Middle(Dgts; 4; 3) & “-” & Middle(Dgts; 7; 4)
)
)

When this calculation expression is entered as an auto-enter calculation definition and the Do Not
Replace option is disabled, entries such as the following are automatically converted:

(12) 345 678 90

1-2345-678 #9

123 456 7890

1234567890

Each of these input values is converted and stored as

123-456-7890

CAUTION CAUTION Before enabling strict filter formatting, consider the possibility that users may need to
enter international or out-of-state numbers according to a different convention. If so,

an override option (using a modifier or a global field checkbox, for example) may be appropriate.

The following is an example of a variation of the formula configured to provide an override
(accepting data in whatever fashion it is presented) if the Shift key is depressed while leaving the
field after entering or editing a value:

Let(
Dgts = Filter(Contacts::PhoneNo; “0123456789”);

23_429006-ch16.indd 61723_429006-ch16.indd 617 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

618

Integrity and SecurityPart IV

Case(
Abs(Get(ActiveModifierKeys) - 2) = 1; Contacts::PhoneNo;
not IsEmpty(Dgts); Left(Dgts ; 3) & “-” & Middle(Dgts; 4; 3) & “-” &

Middle(Dgts; 7; 4)
)
)

Dealing with trailing spaces and carriage returns
Using variations of the masking technique discussed in the preceding topic, you can configure a
field to reject trailing spaces or carriage returns automatically as the user leaves the field. For exam-
ple, to remove leading and trailing spaces from entered values in the Contacts::Address field,
select the Auto-Entry by calculation option, deselect the Do Not Replace checkbox, and enter the
formula

Trim(Contacts::Address)

Alternatively, to remove trailing carriage returns from values entered into the same field, specify
the auto-enter calculation expression as

Let([
Rchar = Right(Substitute(Contacts::Address; ¶; “”); 1);
Pchar = Position(Contacts::Address; Rchar; Length(Contacts::Address); -1)];
Left(Contacts::Address; Pchar)
)

NOTENOTE The previous formula removes carriage returns only if they occur at the end of the
text string entered into the field. Carriage returns included elsewhere in the

entered string are left in place.

Building on the previous two examples, if you want to simultaneously remove trailing carriage
returns and leading and trailing spaces, you can do so using a calculation expression such as the
following:

Let([
Rchar = Right(Substitute(Contacts::Address; [¶; “”]; [“ “; “”]); 1);
Pchar = Position(Contacts::Address; Rchar; Length(Contacts::Address); -1)];
Trim(Left(Contacts::Address; Pchar))
)

TIPTIP You can combine the logic of these expressions with other filtering requirements by
nesting additional code within the example expressions.

Rejecting out-of-scope characters
FileMaker’s Auto-Entry calculation technique, in combination with the Filter() function, lets
you cleanly eliminate inappropriate characters, defining the character set to be retained and stored
in a field.

23_429006-ch16.indd 61823_429006-ch16.indd 618 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

619

Making FileMaker Systems Fail-Safe 16

For example, to ensure that the Contacts::Address field contains only letters, numbers, and
spaces, you can use a formula such as the following:

Let(
Charset = “ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 0123456789”;
Filter(Contacts::Address; Charset)
)

With this expression applied as an Auto-Entry (replaces existing) calculation, all punctuation, car-
riage returns, and other extraneous characters are stripped from the text string entered by the user.

Handling styled source text
If users paste data into fields in your solution (after copying text from a word processor or Web
browser, for example), the text may include embedded character formatting — text colors, text
styles, fonts, or nonstandard font size attributes. These styles can wreak havoc on the data legibility
in your solution’s screens and printed output. You can strip these styles out at data-entry time
cleanly and simply with an auto-enter (replaces existing) calculation employing a formula such as

TextFormatRemove(Contacts::Address)

With this auto-enter calculation configured, users can paste styled text into the field, but as soon as
they leave the field, all styles and character format attributes are removed.

TIPTIP If desired, you can also use the techniques described in this section to conditionally
apply text styles and character formats to data at the point of entry.

Built-In Logging Capabilities
Your data’s safety depends on your solution being able to detect errors and, when errors are
detected, acting to correct them and prevent their recurrence. To achieve that goal, you need infor-
mation about the data and the sources of errors. FileMaker provides several ways to capture addi-
tional information that can be of assistance in tracing and troubleshooting errors.

Making use of auto-enter options
As a first line of defense, you should add a standard set of metadata fields to each table users will
edit directly.

In Chapter 5, I describe adding fields to capture creation account, creation workstation, creation
timestamp, modification account, modification workstation, and modification timestamp for every
record in each table. I recommend this practice to you as a standard procedure for data entry
tables. Although standard metadata fields provide a first port of call when checking the origins of
your data, you can explore a number of more useful options.

23_429006-ch16.indd 61923_429006-ch16.indd 619 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

620

Integrity and SecurityPart IV

Capturing and extending standard metadata
In addition to the basic set of metadata fields provided among FileMaker’s standard Auto-Entry
options, you can capture a number of additional pieces of information regarding the circumstances
of each record’s creation and modification, including

n The user’s IP Address and/or network hardware address — such as their computer’s MAC
address (Media Access Control, not an Apple computer)

n The version of FileMaker being used to make the change

n The operating system version and platform of the user’s workstation

n The layout the user is using the make the edit

n The name of the script (if any) running when the record is committed

n The name of the account the user uses to login to their computer (not the database)

You can capture each of these items (except the last) with a text field that is set to auto-enter based
on a reference to the record modification time field and then use one of FileMaker’s native Get()
functions. For example, an auto-enter text calculation field can capture the IP address (or addresses
if there is more than one network interface available) of the computer used to make the most
recent modification to the current record, with the following calculation expression:

If(_ModStamp; Get(SystemIPAddress))

To obtain the name of the user’s login account on the current computer, you can extract it from
the result returned by FileMaker’s Get(DesktopPath) function using the following calculation
expression:

Let([
Dp = Get(DesktopPath);
Ln = Length(Dp);
p1 = Position(Dp; “/”; Ln; -3) + 1;
p2 = Position(Dp; “/”; Ln; -2)];
Middle(Dp; p1; p2 - p1)
)

TIPTIP If you require extensive data about this information, rather than adding a large
number of fields to every table, I recommend that you create a session table and

have your login script add a record to it each time a user logs in or out. With all the required
information stored in the session table, you’ll be able to reference it as required based on the
user’s account name and the creation or modification timestamp value.

A significant limitation of the metadata capture process is that it contains information only about
the most recent modification. If the record has been modified multiple times, information about the
previous modifications is overwritten. However, you can readily build a variation that captures the
account names and dates/times of all changes or recent changes to each record. For example, if you
want to capture a rolling log of the date, time, and associated login account of the last six modifica-
tions of the current record, you can do so by defining an auto-enter text calculation (replaces exist-
ing) called _ModHistory, with the following calculation expression:

23_429006-ch16.indd 62023_429006-ch16.indd 620 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

621

Making FileMaker Systems Fail-Safe 16

LeftValues(
If(_ModStamp; GetAsText(Get(CurrentHostTimeStamp)) & “ - “ & Get(AccountName)) &
¶ & _ModHistory
; 6)

NOTENOTE As an example, I’ve added a _ModHistory field using this formula to this chapter’s
Inventory example’s Inventory table. I used FileMaker Pro Advanced to add a

tooltip displaying the recent modification history, as captured by the _ModHist field to the
Record Last Modified panel near the bottom of the Inventory layout.

CROSS-REFCROSS-REF For additional information about defining tooltips using FileMaker Pro Advanced,
see Chapter 18.

Script Logging
An important part of the reference information about the access, performance, and data history of
your solutions is the timing, context, and results of script execution. If things go awry, in either a
small or a significant way, your ability to determine what has been occurring and why depends on
the quality of information available — including information about what happens when each of
your scripts executes.

For any solution where performance, reliability, and data integrity are crucial, I recommend that
you consider incorporating a script logging procedure to capture details about script activity as
your solution is used.

Infrastructure for script logging
To keep track of script activity in your solution, create a ScriptLog table with a single table occur-
rence, no relationships, and one layout. (The layout may remain blank because only the script
accesses the table.) In your StartUp script, create a window called ScriptLog, either off-screen or
hidden.

In the ScriptLog table, create the fields as set out in Table 16.1

 TABLE 16.1

Name Type Options

ScriptLog# Number Auto-Entry serial number, Can’t Modify Auto

Script Text Auto-Entry Calc with formula Get(ScriptName)

Parameter Timestamp Auto-Entry Calc with formula Get(ScriptParameter)

Start Timestamp Auto-ENTRY Calc with formula Get(CurrentHostTimestamp)

Account Text Auto-entry Calc with formula Get(AccountName)

Workstation Text Auto-Entry Calc with formula Get(UserName)

(continued)

23_429006-ch16.indd 62123_429006-ch16.indd 621 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

622

Integrity and SecurityPart IV

 TABLE 16.1 (continued)

Name Type Options

Layout Text Auto-Entry Calc with formula $layout

Mode Number Auto-Entry Calc with formula $mode

RecordNo Number Auto-Entry Calc with formula $record

Window Text Auto-Entry Calc with formula $window

Conclude Timestamp

ResultArray Text

Tracking script execution
With the script log table in place, commence each significant script with a sequence along the lines
of the following:

#Capture Context and Log Script Start
Set Variable [$x; Value:Let([

$window = Get(WindowName);
$record = Get(RecordID);
$mode = Get(WindowMode);
$layout = Get(LayoutName)]; “”)]

Select Window [Name: “ScriptLog”; Current file]
If(Get(LastError)]
 New Window [Name: “ScriptLog”; Top: -5000; Left: -5000]
 Go to Layout [“ScriptLOG” (SCRIPTLOG)]
End If
New Record/Request
Select Window [Name: $window; Current file]

After each significant or error-vulnerable step, include the step:

Set Variable [$result; Value: $result & “|” & Get(LastError)]

At the conclusion of the script, include the following:

Select Window [Name: “ScriptLog”; Current file]
Set Field [ScriptLog::Conclude; Get(CurrentHostTimestamp)]
Set Field [ScriptLog::ResultArray; $result]
Select Window [Name: $window; Current file]

NOTENOTE When using the error logging method to build an array in the $result local vari-
able, the expression RightWords($result; 1) retrieves the error code of the

most recently logged script command (as the script progresses).

Script-specific context variables
As part of the opening lines of the script described in the preceding topic, the starting context of
the script (window, record ID, layout, and mode) are captured, and these values are subsequently
logged, along with several others.

23_429006-ch16.indd 62223_429006-ch16.indd 622 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

623

Making FileMaker Systems Fail-Safe 16

An added benefit of this procedure is that where appropriate, you’re able to use the same values at
the conclusion of the script to return the user to the context as it was when the script began.
Exceptions depend on the nature and purpose of the script.

Script diagnostics
With a script logging procedure in place, you’ll be able to export the accumulating history of solu-
tion use into a separate developer database in which you can analyze script usage patterns, identify
performance bottlenecks, and locate errors indicating where revisions of your solution’s code are
appropriate.

In some solutions, you may conclude that only a few of the scripts warrant logging; in complex
solutions, it may be appropriate to include logging on all scripts. When you include script logging
in your solution from the outset, you’ll discover its value immediately during the build and beta
testing phases of development.

Capturing User Edits in Detail
In the earlier section “Built-In Logging Capabilities,” I provide you with techniques for capturing
data about who has modified each record and when. To provide a true audit trail, however, you
need to know which fields were edited and what their values were before and after the change.

A number of methods enable you to build an audit trail capability into your solutions. If you’re
using a temporary edit interface technique, your Save script can store a record of the changes.
However, if your users edit data directly in layouts attached to the main solution tables, you need
to create a calculation field to automatically capture field changes.

NOTENOTE When your scripts change data in your solution, it’s a simple matter to have them
also record the change to a record of edits — so scripts can be self-logging.

However, capturing edits made by users presents a challenge of a different order. The following
techniques focus on methods of capturing a reliable history of user-initiated changes.

Trapping edits, field-by-field
If you want to capture a history of values in a single field, you can efficiently achieve that goal via a
slight extension to the Auto-Entry method I describe in the section “Capturing and extending stan-
dard metadata,” earlier in this chapter. For example, to add a field audit log to capture the history
of values in the Contacts::Organization field in the Inventory example database, pro-
ceed as follows:

 1. In the Inventory Data file, choose File ➪ Manage ➪ Database. The Manage Database
dialog appears.

 2. Navigate to the Fields tab panel and select the Contacts table from the pop-up menu at
the upper left of the dialog.

23_429006-ch16.indd 62323_429006-ch16.indd 623 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

624

Integrity and SecurityPart IV

 3. Create a text field called _DataLog.

 4. In Field Options for the _DataLog field, navigate to the Auto-Enter tab panel and select
the checkbox labeled Calculated value. The Specify Calculation dialog appears.

 5. Enter the following calculation formula:

Let([
p1 = Position(_DataLog; “-»”; 1; 1) + 3;
p2 = Position(_DataLog; ¶; 1; 1);
Prv = If(p1 < 4; “[---]”; Middle(_DataLog; p1; p2 - p1));
Crt = If(IsEmpty(Organization); “[null]”; Substitute(Organization;

¶; “‡”))];
Get(AccountName) & “ “ &
GetAsText(Get(CurrentHostTimeStamp)) & “ “ &
Prv & “ -» “ & Crt & ¶ & _DataLog
)

 6. Click OK to accept the Specify Calculation dialog.

 7. Disable the checkbox option labeled Do Not Replace Existing Value of Field (If Any).

 8. Select the checkbox option labeled Prohibit Modification of Value During Data Entry.

 9. Click OK to close the Options for Field dialog and again to close the Manage Database
dialog.

With this method in place, the _DataLog field accumulates a history of edits for the
Organizations field, as shown in Figure 16.6. The history includes the account name of the
person performing the edit, the data and time the edit occurred, the previous value (if any) of the
field, and the value it was changed to.

NOTENOTE I have made these modifications (shown in Figure 16.6) in the copy of the
Inventory example files for this chapter. You can view the field modification his-

tory for the current record by holding the mouse over the Organization field on the Contacts
screen to display its tooltip. (See Chapter 18 for additional information about tooltips.)

Incorporating ancillary data
You can use the method I describe in the previous section to log any text or number field. And
with minor adjustments, it can also log date, time, and timestamp values. However, if you’re using
this approach, you need an additional field in each table for every field you need to audit. Instead,
you can use a more complex formula to log user edits of multiple data-entry fields within a single
(log) text field.

The following example is a formula to capture edits from multiple fields (including any mix of text,
number, date, time, or timestamp fields, and including repeating fields) within a single text field.

Let([
Trg = Field1 & Field1[2] & Field2 & Field3 & Field4;
Lval = Length(AuditTrail);
Scpt = Get(ScriptName);

23_429006-ch16.indd 62423_429006-ch16.indd 624 3/25/09 7:59:18 PM3/25/09 7:59:18 PM

625

Making FileMaker Systems Fail-Safe 16

Rpt = Get(ActiveRepetitionNumber);
Rflg = If(Rpt > 1; “[“ & Rpt & “]”) ;
Fnm = Get(ActiveFieldName) & Rflg;
Pref = Position(AuditTrail; “ “ & Fnm & “ “; 1; 1);
Pst = Position(AuditTrail; “ -» “; Pref; 1) + 4;
Pnd = Position(AuditTrail & ¶; ¶; Pref; 1);
Pval = If(Pref; Middle(AuditTrail; Pst; Pnd - Pst); “[---]”);
Tval = Get(CurrentHostTimeStamp);
Fval = GetField(Fnm);
Sval = Substitute(Fval; ¶; “‡”);
Nval = If(Length(Fval); Sval; “[null]”)];
If(Length(Fnm) and Length(Scpt) = 0;
GetAsDate(Tval) & “ “ &
GetAsTime(Tval) & “ “ &
Get(AccountName) & “ “ &
Fnm & “ “ & Pval & “ -» “ &
Nval & Left(¶; Lval) & AuditTrail; AuditTrail)
)

In this formula, the fields listed on the second line (Field1 & Field1[2] & Field2 & Field3
& Field4) are the fields to be logged, and the name of the log field itself appearing throughout
the formula is AuditTrail.

 FIGURE 16.6

A tooltip in the Contacts layout of the Inventory example for this chapter shows the history of edits of
the Contacts::Organization field on the current record.

23_429006-ch16.indd 62523_429006-ch16.indd 625 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

626

Integrity and SecurityPart IV

Because this formula is unwieldy, I recommend that you use a custom function to incorporate its
logic. Doing so allows you to use it with a single function call and two parameters. A custom function
that provides logging capabilities along the lines of this example was the basis of the FileMaker
SuperLog demo (a free online download example file) published by NightWing Enterprises in 2006.

The calculation expression shown previously (and the SuperLog() custom function, on which it
is based) produces a composite (multi-field) audit trail for the current record, in the form shown in
Figure 16.7.

 FIGURE 16.7

The audit trail text for a record, as shown in the SuperLog example file.

CROSS-REFCROSS-REF You can find a link to the NightWing Enterprises SuperLog example file among the
resources included in Appendix A.

Implementing an audit trail mechanism throughout your solution by using a technique such as the
preceding one requires an AuditTrail field in each table, alongside other metadata fields. Field
modification data is then captured automatically as users work.

Logging record deletions
Although the processes described in the preceding sections provide mechanisms for tracking user
edits, the method is such that if a record is deleted, its recent log entries are deleted with it.

One way to address this shortcoming is to provide (and require the use of) a script for deletion of
records and to have the script first transfer details of the record being deleted (including all its
data) to a log table. This way, you can keep track of which records have been deleted by whom as
well as have the basis to restore lost information, if necessary.

Managing the Accumulation of Log Data
A potential disadvantage when you set up a field in each table to capture user edits is that in solu-
tions where data changes frequently, the history of edits and previous field values can accumulate,
adding significantly to the size of the file and thereby impacting performance. In fact, the volume

23_429006-ch16.indd 62623_429006-ch16.indd 626 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

627

Making FileMaker Systems Fail-Safe 16

of data associated with logging each record’s history is necessarily larger than the current data in
the solution. In addition, while audit data is stored in a single text block within each record, you
can’t readily search or sort it.

You can mitigate both these shortcomings by periodically archiving audit data to a separate table
and/or file for reference.

Archiving options
Audit log data is more useful when you store it in a separate data table, where a separate record
holds the details of each field edit in your main solution tables. When stored separately in this way,
you can search and analyze log data, as well as access and update it independently of the main data-
base. Separate data storage provides a more convenient format for audit log data when it is archived.
When you allocate a separate record per field edit, each column of data from the originating log
field array can be stored in a separate field in your log table. A script that loops through the lines of
each record’s audit log and parses each to the fields of a separate record in an audit utility table pro-
vides the first step toward consolidating audit data in a convenient indexed and searchable format.

CROSS-REFCROSS-REF For details of techniques for looping through data and parsing elements from data
arrays, refer to Chapters 12 and 13.

With your audit data stored in its own table, you can search for all changes made by a specific user
or containing a particular value. Your ability to pinpoint errors and to discern patterns in the evo-
lution of your solution’s data is increased exponentially.

Generating secondary output
Depending on the volume of data edits taking place in your solution, you may consider running a
maintenance script that transfers log data to an audit table nightly (after close of business), weekly
(over the weekend), or on some other convenient cycle. If you need to review up-to-date audit
summaries, you may want more frequent consolidations.

Your secondary repository of audit data is generally most useful if it spans a recent period (for
example, ranging from a quarter to a year), rather than being an accumulation of edits for all time.
In most cases, periodically transferring aged transaction logs to external storage (either an archive
database or delimited text files) is appropriate. Once exported, you can delete these data from sec-
ondary storage.

Implementing Roll-Back Capabilities
A key benefit of implementing logging procedures — both for user edits and for record deletions —
is the opportunity it affords to detect errors and reverse them. At its simplest, it means going back
through the logs to locate an entry made in error and manually re-entering (or copying and pasting)
the original value back into the relevant field and record.

23_429006-ch16.indd 62723_429006-ch16.indd 627 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

628

Integrity and SecurityPart IV

A much more useful and powerful feature is the automated roll-back of log entries. In effect, this
feature provides multiple undo capabilities at the record level.

Chronological roll-back
By using a record-based text field log as described in the preceding pages, you can create a rela-
tively straightforward script to reverse the most recent edit on the current record. By running such
a script multiple times, you can step a record back through its previous states in reverse chrono-
logical order.

As an example, the following script applies record-specific roll-back, one edit at a time, based on a
log field in the format shown in Figure 16.7.

Set Variable [$LogEntry; Value:LeftValues(Data::AuditTrail; 1)]
Set Variable [$field; Value:Let([

p1 = Position($LogEntry; “ “; 1; 3) + 1;
p2 = Position($LogEntry; “ “; 1; 4) – p1;
f1 = Middle($LogEntry; p1; p2);
Ln = Position(f1 & “[“; “[“; 1; 1) – 1];
Left(f1; Ln)
)]

Set Variable [$repetition; Value:Let([
p1 = Position($LogEntry; “ “; 1; 3) + 1;
p2 = Position($LogEntry; “ “; 1; 4) – p1;
f1 = Middle($LogEntry; p1; p2)];
If(PatternCount(f1; “[“) = 0; 1; RightWords(f1; 1))
)]

Set Variable [$value; Value:Let([
p1 = Position($LogEntry; “ “; 1; 4) + 1;
p2 = Position($LogEntry; “ “; 1; 5) – p1];
Middle($LogEntry; p1; p2)
)]

If [$value = “[—-]”]
 Beep
Else
 Go to Object [Object Name: $field; Repetition: $repetition]
 Set Field [If($value ≠ “[null]”; $value)]
 Set Field [Data::AuditTrail; RightValues(Data::AuditTrail;

ValueCount(Data::AuditTrail) – 1)]
 Commit Records/Requests [Skip data entry validation; No dialog]
End If

NOTENOTE The preceding script requires that the fields being logged have object names match-
ing their field names assigned on the current layout so that the Go to Object[]

command can locate each field by its name.

Although the previous script implements a roll-back procedure that is chronological with respect
to a specific record in isolation, it allows you to roll back one record without affecting others
edited during the same time period. A possible shortcoming of this roll-back procedure is that

23_429006-ch16.indd 62823_429006-ch16.indd 628 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

629

Making FileMaker Systems Fail-Safe 16

because it deals with a single record in isolation, associated changes to child records (if any) aren’t
automatically rolled back as part of the same action, potentially leaving related data sets in an erro-
neous state unless comparable roll-back procedures are performed in each related record.

Alternative undo and roll-back capabilities
By using the principle that provides the basis for the chronological roll-back discussed in the previ-
ous section, you can implement a roll-back option for audit log records in a consolidated log table.

Because you can search and sort records in a consolidated log table in various ways, selective roll-
back is possible. You can adjust the scope of selective roll-back to include all references to a partic-
ular event, all edits made by a particular user, all edits made to a particular field — or any other
criterion you choose to apply to the edit history.

To implement selective roll-back capabilities, first create a script that reverses a single edit by fol-
lowing these steps:

 1. Have your script transfer the name of the edited field, the before-edit value, the location,
and the ID of the edited record into variables.

 2. Your script should then navigate to the appropriate record and place the before-edit value
into the edited field.

 3. Your script should return to the log table and update the status of the current log record
to indicate it has been reverted.

With this script in place, selective rollback of a group of edits can be achieved by performing a find
in the log table to locate the edits that are to be reverted and then calling a master script that loops
through the found set applying the revert script to each.

CAUTION CAUTION If you roll back edits to a particular field and record out of chronological sequence
(for example, reinstating a value other than the second-last value of the field), the

remaining log records may not have continuity.

I recommend that if you’re rolling back log table entries, rather than deleting the entries you
have reversed, you mark them as rolled back. Using a log status field to indicate which log
records have been reverted has the added advantage that you can provide a counterpart proce-
dure to roll forward.

Using logs to roll forward
If you’ve implemented comprehensive audit logging capabilities in your solution, a further option
providing additional fail-safe security is a generic roll-forward script. Again, such a script operates
on the same principle as the roll-back example provided in this chapter.

Rolling forward enables you to do the following:

n Reverse a roll-back. If you have rolled back too far or where you wanted to roll the data-
base back to the state it was in on a previous date to run a report or summary of the data
as at that date, then roll the database forward to the present.

23_429006-ch16.indd 62923_429006-ch16.indd 629 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

630

Integrity and SecurityPart IV

n In the event of file corruption, providing your consolidated logs are intact, roll-forward
enables you to apply the logged edits to a backup copy of the database, bringing the
backup forward to the state the solution was in at the most recent consolidation.

If you provide a mechanism for the reversal of roll-back, I recommend inclusion of a status check
to ensure that each log entry to be rolled forward has previously been rolled back. (Log entries not
marked as rolled back should be skipped.) This requirement should be waived when applying a
roll-forward through consolidated edit logs to a backup copy of your solution.

Alternative Logging Approaches
Although I’ve explored several facets of audit logging in the closing pages of this chapter, a variety
of other approaches are possible. With a little research, you can find examples of other methods
suited to a number of different requirements.

In particular, logging methods depending on third-party tools can provide additional flexibility
and improved protection against unforeseen events. You must weight these potential benefits
against the additional costs and deployment considerations for such products.

CROSS-REFCROSS-REF Additional information about extending FileMaker capabilities with third-party tools
is provided in Chapter 19.

Logs as Data
The accumulation of audit logs and journals as additional data in your solution has advantages for
searching, sorting, summarizing, and reporting based on log data. However, it also presents a risk.
If your solution encounters a problem that can be rectified by referring to the logs, the logs may
possibly be affected by the same event.

If, for example, your server crashes, you might be able to rebuild the current state of the data if
your logs are intact. For this reason, I suggest recording your log data on a server in a different
location and outputting your logs to a different format. (For example, a text file format on a remote
file server.) According to the needs of your solution, you must balance convenience and flexibility
of data logs against the additional safeguards of remote or external log formats.

Scripted and triggered logging
When your audit trail of user edits is captured within the record by using the FileMaker calculation
engine, compiling consolidated logs is necessarily a two-step process, with log data being stored first
in the calculation used to capture it and subsequently transferred to a separate table or file.

Using the Script Event Triggers capabilities of FileMaker Pro 10, you’re able to set up layout script
triggers to perform an action every time a record is committed on a layout. You may choose to
harness this capability to trigger the transfer of logged data to a consolidated log table. Be aware,

23_429006-ch16.indd 63023_429006-ch16.indd 630 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

631

Making FileMaker Systems Fail-Safe 16

however, that this approach is inherently fragile because the available triggers are all associated
with the interface rather than with the schema — so logging will only occur if a data change is
committed on a layout where the appropriate trigger has been defined. In fact, it would be rela-
tively easy for a user to circumvent logging if it were based on native event triggers. For this rea-
son, script triggers as implemented natively in FileMaker Pro 10 are more ideally suited to roles as
interface tools and navigation aids than for audit, data validation, enforcement of business rules, or
other mission critical purposes within your solutions.

By using a fully scripted approach to audit logging, you can avoid the necessity for a two-step
approach, instead writing details of each change directly to a consolidated log table. This approach
requires either of the following:

n The use of a scripted edit interface where changes are always committed and written to
the main data tables via a script. In this situation, you can include log maintenance pro-
cedures within the Save scripts when you use this approach to editing your solution data.

n The use of a third-party tool to trigger a script or external event when an edit occurs (or
when the record is committed). You can use a variety of products, such as plug-ins, in
conjunction with FileMaker Pro 10 to support script-driven or event-driven logging func-
tionality. Because script trigger calls provided via plug-ins can be embedded within the
schema, processes that depend on them will occur whenever the schema is affected.
Third-party triggering methods therefore continue to be better suited to logging and
related requirements requiring robust and fail-safe implementation.

23_429006-ch16.indd 63123_429006-ch16.indd 631 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

23_429006-ch16.indd 63223_429006-ch16.indd 632 3/25/09 7:59:19 PM3/25/09 7:59:19 PM

633

When handled appropriately, FileMaker Pro solutions give years of
faithful and trouble-free service — and, in fact, they’ve been
known to survive a variety of forms of abuse. Nevertheless, prob-

lems can and do arise, and you need to know what to do — and what not to
do — when responding to them.

As is frequently the case in many areas of computing, fiction and misinforma-
tion abound. In this chapter, I set out the facts for you so that you’re able to
address any potential problems with confidence and dependable strategies.

For more techniques to increase your solutions’ fault tolerance and robust-
ness, see the previous chapter. Here, I provide you with techniques to man-
age your solution’s data.

Some Notes on File Recovery
The Recover command (File ➪ Recover) is arguably one of the most univer-
sally misunderstood features in FileMaker Pro. Despite many theories about
what it does and how and when you should use it, much of the original con-
fusion persists.

The uncertainty surrounding the Recover command stems in part from the
fact that its name is misleading. Recover simultaneously suggests regaining
full health and regaining something lost or misappropriated. Neither sense
aptly conveys what the Recover command in FileMaker Pro actually does: a
task that may be better characterized as a “partial salvage” in a brutal jaws-of-
life kind of fashion.

IN THIS CHAPTER
Understanding file recovery

Working with data export and
import

Cleansing your data

Setting up data synchronization

Managing stored files and
embedded images

Transforming text and text
formats

Maintaining and
Restoring Data

24_429006-ch17.indd 63324_429006-ch17.indd 633 3/25/09 8:00:22 PM3/25/09 8:00:22 PM

634

Integrity and SecurityPart IV

Debunking common myths and misconceptions
The first and most egregious misconception you’ll encounter regarding the Recover procedure is
that running a full recovery on your files is a reasonable measure as a maintenance health check,
and it’s okay or even advisable to do it routinely — whether your files have exhibited problems or
not. If you’re the kind of person to clean your new Porsche with a belt sander, then go right ahead —
but otherwise, please think again.

As an alternative to running a recover procedure, FileMaker 10 provides a Check Consistency
option that you can access from the Select Damaged File window. This procedure is nondestruc-
tive, so you can perform it on healthy files without risk. To run a consistency check, choose
File ➪ Recover. In the Select Damaged File dialog that appears, locate the file you want to check
and click the Check Consistency button at the lower right of the dialog. FileMaker performs a basic
analysis of the structure of the selected file and then posts a dialog, as shown in Figure 17.1, indi-
cating whether any anomalies were found in the block structure of the file.

 FIGURE 17.1

The result of the Check Consistency procedure shown in a summary dialog.

Although the Check Consistency procedure does not alter the file (and can therefore be run at
will), it doesn’t exhaustively analyze the file, so the Check Consistency process may not detect all
problems.

A second widely circulated fallacy is that a database file, if it survives the Recovery procedure, is
whole, intact, clean, and safe to use or develop further. You may be able to drive your car — after a
fashion — following a nasty crash and an encounter with hydraulic salvage machinery. The stereo
may even work. However, the safety of such an undertaking is in serious doubt. FileMaker Pro 10
provides some additional control over the procedures performed during a Recover cycle, as well as

24_429006-ch17.indd 63424_429006-ch17.indd 634 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

635

Maintaining and Restoring Data 17

additional detail about what has transpired after recovery is complete, to provide a basis for mak-
ing a judgment about the extent of the changes that occurred during recovery. However, it’s
important to bear in mind that the procedure is essentially a salvage operation.

A further myth, arising all too frequently, is that the Recover procedure not being a reliable repair
utility — a dependable machine for restoring files to pristine condition — is itself a myth and that
no one has ever experienced severe problems with recovered files. This myth seems to be a curious
extension of “It will never happen to me” thinking.

The Recover process
Before deciding when and how to use file recovery in FileMaker Pro, you should know that this
feature’s mandate is to do whatever it takes to get a file in a state such that its data can be extracted.
While the precise steps included in the recovery procedure may vary depending on the selections
made in the Advanced Records Options dialog (see Figure 17-2), consider, for a moment, the
broad basis of the process Recover follows:

 1. The Recover command produces a copy of your original file.

 2. As the copy of the original file is created, each piece of the original file is examined by
using an algorithm designed to swiftly identify possible corruption.

 3. When a component of the original file’s code or structure is identified (accurately or oth-
erwise) as potentially problematic, a pessimistic approach is taken, and the element con-
taining the suspect code is omitted from the recovered version of the file. Recovery,
therefore, is an aggressive process placing priority on getting your data out of a severely
compromised file — and it will sacrifice code, interface, or the essential logic of your
solution in service of this aim.

 4. On completion of the Recovery operation, a dialog appears with a report providing edited
highlights of its journey of recovery, as shown in Figure 17.3.

While a default set of Recover steps applies, a significant innovation in FileMaker 10 is the abil-
ity to configure a number of options that determine the steps Recover will apply, as shown in
Figure 17.2. Using the options in the Advanced Recover Options dialog, you can choose to
apply recovery procedures only to specific areas of the file and to choose the method used to
deal with inconsistencies in the block structure as well. The generate new file options allow you
to configure the Recover process to perform the equivalent of a Save a Copy or Save a Copy
Compacted commands as the basis of creating the recovered file, rather than rebuilding the file
as part of the recovery process.

In cases where you experience problems associated with a specific area of functionality in your file,
such as indexing, you can use the advanced recovery options in FileMaker 10 to target Recover
procedures on the problem area, leaving other parts of the file unmodified. To achieve a minimal
procedure, you should choose the Copy Blocks As-Is option in the Advanced Recover Options dia-
log and then enable only the checkbox (or checkboxes) associated with areas of the file where
you’ve been experiencing problems.

24_429006-ch17.indd 63524_429006-ch17.indd 635 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

636

Integrity and SecurityPart IV

Although recovery passes through 16 multi-part stages, working through file structure, data
blocks, layouts, tables, indexes, relationships, scripts, dependencies, and more, the confirmation
dialog, as shown in Figure 17.3, mentions only five of these steps and provides only brief summary
details about what occurred. In other words, the confirmation dialog doesn’t mention a great deal
of what occurs (including most of the checks resulting in file components being included or
skipped) during recovery. The dialog’s focus is primarily on your data (Records, fields, field defini-
tions, and indexes).

 FIGURE 17.2

The default selection of options in the Advanced Recover Options dialog.

 FIGURE 17.3

The overview dialog appearing on completion of a Recovery cycle.

Although the result summary as shown in Figure 17.3 may state that The New Database Is Safe to
Use, that message doesn’t signify that the file is complete or intact, but rather that the Recover tests
seem to indicate that the file is restored to a stable point. (In other words, you can expect to open
the file without causing an application or system crash on your computer.)

24_429006-ch17.indd 63624_429006-ch17.indd 636 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

637

Maintaining and Restoring Data 17

Conversely, should the Recovery confirmation dialog indicate that the resulting file is not safe to use,
that message doesn’t necessarily indicate that the file won’t open or that the contents of the file will
not appear normal. Rather, it signifies that the Recover procedure produced a file in a state that may
still render the file unstable. Thus, while a file that is Safe to Use is not necessarily complete or fully
functional, a file that is described as Not Safe to Use may appear to be complete and operable.

Based on considerable experience, both good and bad, with this feature (including previous and
current versions of FileMaker), I can confirm that the Recover process:

n Typically (but not invariably) omits items preventing a file from opening

n May omit items (scripts, layout objects, and so on) not among the elements mentioned in
the concluding dialog summary

n May remove logical components of a file (layout, layout element, script step, and so on)
suspected to be corrupt, even though they were causing no apparent problems

n May skip damaged or corrupt content, leaving it in the recovered file if the presence of
that content doesn’t prevent the file from opening

Damaged files usually open after recovery and may even appear to operate normally. However,
don’t assume (regardless of what the confirmation dialog stated or omitted to state) that your
recovered file is complete and contains all the code and logic of the original — nor that it will
work as intended in all respects.

WARNING WARNING In rare cases, recovered files have been known to contain duplicates of some
records or to reinstate deleted records. My observation has been that the Recover

procedure uses as its guiding principle “When in doubt, exclude it” regarding file structure and
code content, while using “When in doubt, include it” with respect to your data.

Occasionally, damaged files may continue to exhibit problems after recovery. Furthermore, I have
seen cases where otherwise normal and fully operational files are missing essential components and
therefore malfunction after recovery.

Salvaging data
File recovery provides you with a fallback option if you encounter difficulties resulting from a sys-
tem crash, hardware failure, and so on. However, the process is imperfect and is not exhaustive
(see preceding section), so don’t assume that your file is complete or will function as you intended
after recovery.

Rather than take the risk of running the Recover process, the preferable options, in priority order, are

 1. Revert to a recent backup of your file — one predating any problems leading to your file
becoming inaccessible — and then re-enter data or otherwise modify the backup to bring
it up to date. If you’ve been making frequent backups, this path may be the least onerous
or inconvenient to take, particularly if you’ve employed transaction logging as described
in Chapter 16.

24_429006-ch17.indd 63724_429006-ch17.indd 637 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

638

Integrity and SecurityPart IV

 2. Locate a clean and uncompromised (never crashed or improperly closed) copy of your
solution file(s), make a clone, and then import data from a recovered copy of your solu-
tion into the clean clone(s).

NOTENOTE Because the data in a recovered file may not exactly match the data in the original
file (damaged records may have been omitted, deleted records reinstated, or dupli-

cates included), if you opt for making a clone, you should expect to comprehensively check the
resulting data set’s completeness and accuracy. Unless your most recent backup is well out of
date, the combined effort to recover, re-import, and verify your data will likely be greater than
the work of re-entering information to bring a backup up to date.

Consider deploying a recovered file only if neither of the preceding options is available. (For exam-
ple, your file has crashed, and you have no suitable backups or clean clones of the current file
structure.) Before doing so, be prepared to undertake a thorough check of both the data and the
code (including all layouts, layout objects, scripts and script steps, and calculation definitions) to
confirm the solution is in a deployable state. If your solution is of any size and complexity, an ade-
quate check of the deployment-worthiness of a recovered file is likely to be more onerous than
preferred options 1 and 2 combined.

Understanding file corruption
You can define file corruption in several ways, with the broadest definition perhaps being “anything
that is not as you intended.” FileMaker, however, can’t know what you intended and must there-
fore use a considerably less ambitious definition. For this purpose, FileMaker looks for block integ-
rity throughout a file by applying the rules of well-formed data, seeking to restore lost pointers
when file architecture contiguity is compromised.

FileMaker manages its own (internal) file structure, independent of the block structure of the stor-
age device and, in doing so, depends on internal pointers to establish the status and order of each
segment. When the integrity of the pointers is compromised or FileMaker is unable to resolve and
interpret the contents of one or more segments of your file, FileMaker determines the file to be cor-
rupt and posts an alert dialog, such as the one shown in Figure 17.4.

 FIGURE 17.4

The warning FileMaker provides when file integrity problems have arisen.

24_429006-ch17.indd 63824_429006-ch17.indd 638 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

639

Maintaining and Restoring Data 17

The most common problems affecting FileMaker files arise from improper closure, and FileMaker
is able to correct these anomalies in most instances, with nothing more onerous than a consistency
check when the file is next opened. More serious problems can result if data was partially written
to disk at the time of a crash, power outage, or hardware failure — in which case one or more seg-
ments of your file’s data may be incomplete and/or damaged. File corruption may result from a
variety of other causes, such as power spikes, faulty device drivers, operating system errors, mali-
cious software, or plain-old bugs, process conflicts with background utilities, and user errors, such
as copying a file at the Operating System level while it’s still open in FileMaker or FileMaker
Server. Fortunately, file damage from these various causes is relatively rare.

The kind of damage your files may sustain when impacted by one of the events I mention may
vary, from a single overwritten bit to whole sections of the file missing. For the most part, damage
is random and therefore unpredictable. Occasionally, damaged data resembles valid data, and
occasionally it is valid data (written into the wrong place), whereas on other occasions damaged
bits are simply unintelligible. Faced with almost infinite possibilities in the forms corruption may
take, the Recover procedure in FileMaker balances efficiency and efficacy by checking for the most
commonly encountered and problematic issues.

Exporting and Importing Data
An important consideration when deploying any database is your ability to get data into and out of
it in bulk, in formats appropriate for a variety of requirements. FileMaker Pro helps you out by
supporting a broad range of data formats for both import and export.

In addition to general utility and exchange of data with other applications (for example, drawing in
data from legacy systems, sharing data with others, and using information from your solution for
word processing or publishing tasks), data exchange enables you to take advantage of the summa-
rizing, reporting, or data analysis capabilities of other desktop applications or to share data with
external accounts or financial management suites.

Several of the further purposes of data export and import include archiving data from your system,
moving data between versions of your solution or processing, filtering, or validating your data
externally as part of maintenance and/or restoration procedures in the event of solution integrity
problems.

CROSS-REFCROSS-REF Refer also to details about importing and exporting procedures and automating
data transfers provided in Chapters 3 and 13.

File format considerations
One of the essential issues when you’re considering moving data between formats is supported
functionality. While your data remains in FileMaker, you benefit from a variety of automatic calcu-
lation, summary, and data presentation options. Because other applications don’t support many of

24_429006-ch17.indd 63924_429006-ch17.indd 639 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

640

Integrity and SecurityPart IV

these options, you may face compromises when preparing to export to an alternative format. As a
result, you may want to perform calculation, filtering, sorting, or summarizing in FileMaker prior
to export.

When transferring data, it’s usually preferable to deal with each table separately. However, where
data relationships are central to your solution but can’t be replicated in the destination application,
you can accumulate data from multiple tables into a single (flat) file export. Figure 17.5 shows a
simple example where the cFullName field from the Suppliers Table Occurrence is included
in an export of data from the Orders table.

Along with relational and data presentation limitations in many of the available export file formats,
most formats don’t support inclusion of container data, such as files, images, sounds, or movies.
Unless you choose FileMaker Pro as the export file format, FileMaker posts an alert dialog and pre-
vents you from adding container fields to the field export order, as shown in Figure 17.6.

Even though you can’t include container data in most data exports, you can output container
fields’ contents into a folder, from which you can later import them (if desired).

 FIGURE 17.5

Inclusion of related fields in the Field Export order.

 FIGURE 17.6

FileMaker displays an error alert if you choose a container field for export.

24_429006-ch17.indd 64024_429006-ch17.indd 640 3/25/09 8:00:23 PM3/25/09 8:00:23 PM

641

Maintaining and Restoring Data 17

Exporting to and importing from a folder
In most cases, you can export container field contents individually (one field and one record at a
time) by choosing Edit ➪ Export Field Contents command. In situations where you need to export
a batch of container field contents — for example, from a found set of records or a whole table —
you should create a script to automate the process, including assigning an appropriate (and
unique) filename to each exported file.

NOTENOTE In one particular case, you can’t export container contents directly to a file using
the Export Field Contents command: when container data has been pasted from the

clipboard and is not in a supported file format.

In this case, you can copy and paste the contents into a graphics application where you are able
to select a suitable file format to save it, or, if you prefer, you can use a third-party plug-in in
conjunction with FileMaker to automate the process.

Chapter 13 describes methods for scripting export or selective import of container field data,
including details of scripts for accomplishing each of these tasks and also briefly covers the ability
to import an entire folder of files. To commence this process, choose File ➪ Import ➪ Folder. You
select the options for folder import, including text files, pictures, or movie files, from the Folder of
Files Import Options dialog shown in Figure 17.7.

 FIGURE 17.7

Selection options for a folder import.

After you select an appropriate folder (one that contains files of the selected type), you’re then
prompted to select up to four values for import. As shown in Figure 17.8, you can simultaneously
import the file (into a container field), the filename and file path (into a text field), and a thumb-
nail image (also into a container). When importing text files, only the first three of these options
are available.

24_429006-ch17.indd 64124_429006-ch17.indd 641 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

642

Integrity and SecurityPart IV

When your data includes both text and files, you may require separate processes to bring both
types of data into FileMaker from other data formats. However, you can script both processes, if
desired, even managing them sequentially within a single script.

 FIGURE 17.8

Setting the import field map to upload a folder of picture files into FileMaker.

Delimiters and EOL markers
Most data formats represent each record as a separate line or paragraph of text, containing one or
multiple field values. The field values within each line are separated by a character or sequence of
characters, referred to as delimiters. For example, a tab delimited file has tab characters separating
field values within each record and carriage returns marking each end-of-line (EOL), which sepa-
rates each record from the next.

So what happens when carriage returns or tab characters appear in a field in your FileMaker data?
FileMaker solves this dilemma for you:

n Carriage returns within fields are converted to vertical tab characters (ASCII character
number 11) in the exported data. This conversion takes place automatically when you
use the Export Records command in FileMaker.

n Tab characters within fields are converted to standard spaces (ASCII character number
32) when you choose the tab-delimited text export format. When you choose other for-
mats where tabs are not treated as delimiters, such as in comma-separated values (CSV),
the tab characters are preserved in your export output.

24_429006-ch17.indd 64224_429006-ch17.indd 642 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

643

Maintaining and Restoring Data 17

You should consider your data content when choosing your export formats. In other words, if your data
includes tab characters, the tab-separated export format is less suitable than others because your tab
characters are translated to spaces during the import. Fortunately, FileMaker Pro 10 provides eight dif-
ferent export file formats, letting you find a suitable way of preserving your data in most cases.

CROSS-REFCROSS-REF Import and export options and procedures are addressed in detail in Chapters 3
and 13.

Data Cleansing Operations
Exporting and importing data is a relatively straightforward task if the data is clean and well
formed, and you’re either transferring data between two systems using identical data structures or
have control over both the applications (so that you can make changes to facilitate data transfer).

In situations where the data has integrity issues or isn’t compatible with the required format or
structure, you face an additional challenge: You have to transform the data as part of the data
transfer procedure.

Extract, transform, and load
The process of modifying data to correct formation and structural issues or mismatches is called an
Extract, Transform, and Load (ETL) cycle and is especially important when migrating data between
different kinds of systems. For example, when you need to load data into a data-warehousing or
external-reporting tool, you invariably require a modified organizational format and possibly
require individual values in a data format specific to the destination system. Similarly, migrating
data between a legacy database system and a new solution environment necessitates converting
data to the structure and format required by the new system.

You may also require an ETL cycle if your data has been subject to abuse or system malfunction
and must be retrieved from a damaged solution file (such as a recovered file). After extraction from
a damaged file, you should perform checks and cleansing procedures on the data prior to loading
it into a clean reference copy (clone) of your solution.

Depending on the nature of transformation and/or data cleansing required, you may want to build
a rapid FileMaker transformation tool. To do so, first drag the extracted file onto the FileMaker
application icon to create a temporary database file containing the migratory data. Within the tem-
porary file, you can then build scripts and calculations to correct issues with the data, combine
groups of data together, separate concatenated values, remove unwanted characters, and eliminate
unneeded duplicates. Your FileMaker calculation and scripting skills will get a thorough workout!

Data format considerations
Data organization, data presentation, and data domain are three aspects of data formation you
should consider separately during the transformation process — each requiring a different set of
skills and strategies to successfully update your data.

24_429006-ch17.indd 64324_429006-ch17.indd 643 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

644

Integrity and SecurityPart IV

Data organization
First and foremost, your data must be aligned with the receiving application’s data model. This
alignment includes an appropriate delineation of data elements to conform to the entity/table defi-
nitions and the data model used in your data’s new home. Moreover, within grouped records, you
may require a different distribution of attributes. For example, when migrating data from a legacy
database, you may find the extracted data has a single field for address, whereas the destination
data model may require street address, city, state, and postal code each in a separate field. The leg-
acy system’s address data must be parsed during the transformation stage — using appropriate cal-
culation techniques — to separate the original single address value into the required four (or more)
values to match the requirements of the receiving system.

Other aspects of the data organization challenge may include

n Eliminating redundant or duplicated data

n Allocating appropriate unique key values

n Establishing metadata or summary data if required

n Setting a suitable sort order for the records in each data subset

As part of the data organization procedure, you should also prepare a basic inventory of available
data so that you can confirm the transfer’s success. This inventory may be as simple as the number
of data subsets (tables), the number of fields in each subset, and the record count of each subset. If
the data will include null values, a count of nulls per subset (including null rows, null columns,
and individual null values per table) is also a useful check.

Data presentation
The foremost data presentation issue relates to the receiving system’s data type requirements. If
your data currently includes alphabetic characters in attribute data required to be numeric, you
need to either eliminate or substitute values to meet the presentation requirements. Similarly, you
should pay attention to the strings used to express date and/or time values. For example, if your
legacy system has produced date columns in dd/mm/yy presentation format and the destination
solution is configured to receive mm/dd/yyyy dates, your transformation stage must modify all the
dates to conform to the latter requirement. You can make such a change in a FileMaker transfor-
mation tool by running a Replace Field Contents [] on the data as text, using a formula
such as

Let([
txt = Substitute(TransformationTool::LegacyDate_ddmmyy; “/”; “ “);
mm = MiddleWords(txt; 2; 1);
dd = LeftWords(txt; 1);
yy = RightWords(txt; 1);
yyyy = (19 + (GetAsNumber(yy) <= 50)) & yy];
mm & “/” & dd & “/” & yyyy
)

24_429006-ch17.indd 64424_429006-ch17.indd 644 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

645

Maintaining and Restoring Data 17

CAUTION CAUTION This calculation deals with conversion of the two-digit years to four-digit years by
placing all years less than 50 (00 through 50) into the 21st century and dates with

year values above 50 into the 20th century. This conversion is likely to be appropriate for transac-
tion dates or budget projection dates, but may be inappropriate for dates of birth or other histor-
ical data (which may include dates prior to 1951, but will not include dates in the future).

An alternative form of the date text transformation calculation suitable for dates including only
past values (such as date-of-birth data) is

Let([
txt = Substitute(TransformationTool::LegacyDate_ddmmyy; “/”; “ “);
mm = MiddleWords(txt; 2; 1);
dd = LeftWords(txt; 1);
yy = RightWords(txt; 1);
yyyy = (19 + ((2000 + yy) <= Year(Get(CurrentDate)))) & yy];
mm & “/” & dd & “/” & yyyy
)

By varying your approach according to the needs of each data element, you can automate the
transformation of large sets of data to efficiently address each data presentation issue.

A further dimension of data presentation relates to the data format itself — the delimiter and end-
of-line characters determined by the export and import formats. In cases where you need to pre-
pare data for upload into a system not supporting any of the standard export formats provided by
FileMaker, you may need to use text calculation operations to generate data using different delimit-
ers, such as pipe characters or square brackets. Again, you can accomplish this task with relative
ease by using text calculations in a temporary transformation tool.

Data domain
Data transformation considerations also encompass confirming that your data falls within accept-
able ranges, both with respect to the characters occurring within the data, and the range of values
occurring across all instances of fields, cells, or attributes within each data set or subset. This trans-
formation involves addressing several specific requirements:

n Establishing that the range of values in each field is within the range of values supported
for the field in the destination solution — for example, within the permissible numeric or
date range, or for text, within the character limit (if any) of the destination field

n Ensuring that the data is appropriately current — in other words, if the data includes
records due for archiving due to a long period of inactivity, they should be segregated
during transformation

n Eliminating redundant or inappropriate characters from data, including leading or trail-
ing spaces or carriage returns, superfluous punctuation, or characters outside the
required or approved character set (such as low or high ASCII characters not forming
part of the language of the data)

24_429006-ch17.indd 64524_429006-ch17.indd 645 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

646

Integrity and SecurityPart IV

TIPTIP Although you can perform a variety of transformation operations within FileMaker,
if you have extensive requirements, consider using a special-purpose external data

cleansing application.

The transformation stages do have some overlap, and some data problems may relate to more than
one stage. For example, extraneous characters included in a date or number field are a data presen-
tation problem, because the affected field values do not conform to data type requirements of the
destination system. However, these cases should also be regarded as data domain problems, as the
characters are also out of range and redundant.

You ensure that key data integrity, structure, and content issues are not overlooked by considering
and addressing each of the transformation stages.

Filtering capabilities in FileMaker
FileMaker is very forgiving regarding what is stored in the fields of your database. Field validation
and data type constraints aside, you can store any string of characters from the vast compendium
of the Unicode character set. However, in practice, you’ll likely require a considerably narrower
scope, and in many solutions, you can define the permissible character set to include no more than
a few hundred characters.

The presence of out-of-range characters may present several problems for your solution. Most funda-
mentally, it compromises your data’s meaning and may lead to calculations producing unexpected
results. In particular, low-range characters (generally referred to as control characters — those in the
range from 0 to 31) are frequently invisible, and their presence leads to confusion at the very least.
For example, take a calculation including the following expression:

If(Deliveries::DestinationState = “Utah”; Amount * TaxRate; Amount)

Your users will be concerned if they can see “Utah” in the DestinationState field, but the
state tax has not been included. However, the presence of an invisible control character (an ASCII
#011, a.k.a. DC1) on one end of the value in the field prevents it from matching the literal com-
parison value in the calculation expression.

The concept of invisible characters seems contradictory. Although you may not be familiar with all
the control characters supported in the ASCII and Unicode character sets, you have probably
encountered programs, such as word processors, that include the ability to show invisible characters.
Invisible characters include tabs, carriage returns, line feeds, and numerous other characters serv-
ing as instructions or placemarkers. While tabs and carriage returns are standard fare, most control
characters have no place in your solution’s data, yet the fact that they’re invisible can make them
difficult to detect and remove.

TIPTIP Rarely are invisible characters entered from the keyboard, but users may paste
them in inadvertently, having copied text from another application or (more com-

monly) from a Web site. You can also import out-of-range characters into your solution if data
has not undergone appropriate cleansing transformations prior to import.

24_429006-ch17.indd 64624_429006-ch17.indd 646 3/25/09 8:00:24 PM3/25/09 8:00:24 PM

647

Maintaining and Restoring Data 17

Provided you can determine an “approved” character set for use in your solution, the most straight-
forward way to reject undesired characters is via the use of the Filter() function. For example,
to constrain a field to contain only characters suitable for numeric values (integers and decimal
fractions), you can use a calculation with the expression

Filter(YourTable::YourField; “0123456789,.”)

TIPTIP If the values you’re filtering may include negative numbers or numbers in scientific
notation, you should include both the characters e and – within your filter string.

NOTENOTE This filter only removes invalid characters from the field and does nothing to vali-
date that the resulting string is a valid numeric representation. For example, it

doesn’t verify that only one decimal point is present or that the comma separators are appropri-
ately placed.

If you apply such a formula as an Auto-Entry calculation (replaces existing), the field automatically
rejects out-of-range characters. Similarly, to constrain a text field to include only alphanumeric
characters, spaces, and hyphens, you can use the calculation formula

Filter(YourTable::YourTextField;
“0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz -”)

When you use calculation expressions such as the preceding ones as an argument within the
Replace Field Contents [] command, you can efficiently constrain the character set across
significant numbers of records. The use of filters (along with selective substitution in cases where
the permitted character set is too large to be readily defined or included in a Filter calculation)
forms an essential part of data cleansing and transformation processes.

NOTENOTE Alphanumeric value filtering using the 64 characters shown in the preceding exam-
ple is suitable only for limited cases. In many circumstances, you’ll want to include

a considerably larger range of characters (including punctuation, accented characters, glyphs,
and so on).

Synchronizing Data Sets
As part of the process of managing data in your solutions, you may have call to synchronize dispa-
rate data sets in separate copies of the same solution (or in comparable solutions). For example,
when your main database resides on the server at your office, and you go on offline field visits, tak-
ing a copy on your laptop (modifying records and adding new records as you go), a problem of
synchronization of the two record sets (the server database and the laptop database) arises. On
your return, you need to load the added and edited work from your laptop into the main solution
file, but without deleting new records added by your colleagues while you were gone.

An important feature of the import and export functionality in FileMaker is that it acts on the
found set of records in the frontmost window showing a layout based on the Table Occurrence
from which you’re importing. To import only the new records you added while on your field trip:

24_429006-ch17.indd 64724_429006-ch17.indd 647 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

648

Integrity and SecurityPart IV

 1. Copy the file from your laptop onto a client machine logged in to the main copy of your
solution.

 2. Open the field copy and perform a Find to locate the records you added while on your
trip. One way to locate the added records is to perform your search on the record cre-
ation timestamp field in your table.

 3. With the found set of new records still showing in the window of the field copy, switch
to the main solution.

 4. Perform an import in the main copy of the solution, importing records from the field
copy.

 5. Only the new records (those in the current found set in the field copy of the file) are
added to the main solution.

CAUTION CAUTION When consolidating records from different copies of a solution file, take care to
ensure that you’re not introducing duplicate primary key values (for example, serial

numbers).

To avoid duplication of key values, consider allocating separate ranges of serial numbers to each
copy of the file or try generating unique IDs using a combination of timestamp, NIC address,
and recordID values.

CROSS-REFCROSS-REF Chapter 15 covers methods of generating robust unique IDs (UIDs).

If your work while traveling offline with your laptop also involved editing some of the pre-existing
records originating in the main solution, you’ll need to use a different process to upload modified
records as well as new additions. Import matching allows you to merge records from the original
and secondary copies of the file into a single data set.

NOTENOTE When merging data sets as described here, the incoming data is given preference,
overwriting corresponding data (if any) in the receiving file. If you require a more

finely tuned synchronization process (such as one that retains the most recently modified ver-
sion of each record), you need to build an intermediary transformation process to compare the
data in both sets and selectively update either or both files.

Import matching
To match records while importing, select the file for import via the normal import process (choose
File ➪ Import Records ➪ File) and proceed to the Import Field Mapping dialog. As well as ensuring
that the fields shown in the current table at the upper right align appropriately with the data in the
column at the upper left area, select the Update Matching Records in Found Set option in the panel
at the lower left, as shown in Figure 17.9.

NOTENOTE Assuming that the source and destination are both FileMaker files and the source
and destination table structures are the same, you should select the Matching

Names option from the Arrange By pop-up list in the Import Field Mapping dialog.

24_429006-ch17.indd 64824_429006-ch17.indd 648 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

649

Maintaining and Restoring Data 17

For synchronization during import, FileMaker provides you with two options, as represented by
the Update Existing Records in Found Set and Update Matching Records in Found Set options
appearing in the lower left area of the dialog, as shown in Figure 17.9.

When you choose the Update Existing Records in Found Set option, the selected fields in records
in the found set are overwritten with values from corresponding (according to sort order) records
in the source table. Alternatively, when you select the Update Matching Records in Found Set
option, you can identify one or more match fields to synchronize existing records in the current
table with corresponding records in the source. With this option selected, you choose the match
(“=”) symbol adjacent to the relevant fields in the import order list, as shown beside the ItemID
field (the selected field) in Figure 17.9.

CAUTION CAUTION When determining match fields for an Update Matching Records in Found Set
import, take care to ensure that the field (or combination of fields) you choose will

be unique. If more than one match is found, the subsequent matches will overwrite data
imported from previous matches, resulting in the last match in the source file determining the
final value for a record in the current file.

 FIGURE 17.9

Setting the import field map to update modified records.

When performing an update import process, you can select the checkbox option to add remaining
data as new records. Note, however, that if you’re updating the values in a subset of fields in the
current table (as determined by your configuration of the import field map), only the selected val-
ues (and match values, if any) are imported into the resulting new records.

24_429006-ch17.indd 64924_429006-ch17.indd 649 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

650

Integrity and SecurityPart IV

NOTENOTE If you require additional fields uploaded for the records added in an Update
import, you should isolate the new records in a reduced found set after the import

completes and then run a second import using the Update Matching Records in Found Set
option to populate the remaining fields in the new records.

Importing selectively
To import selectively, one option is to open both the source and target files and perform a find in
either or both files and then run an Update Records in Found Set import. Providing the file contain-
ing the source table is open and is showing the required found set in its frontmost window, only the
found records are included in the import. (Otherwise, all records in the source table are imported.)

In cases where data synchronization requires the application of more complex criteria than you can
address by performing a find in either or both files prior to import, such as when you need to com-
pare the values in corresponding records in both data sets to determine whether to import values
from a given record, you’ll require a custom synchronization process. Custom synchronization
requires one of the following:

n One file is defined as an external data source for the other so that a relationship between
the source and target tables can be established (and a script can then loop through
records comparing them and selectively transferring values in either direction).

n A utility table is created in one of the files as a temporary holding place for data from
the source file. Selected records can then be imported into the utility table, and a post-
processing script can perform the required comparisons and selective transfers prior to
deleting the records from the utility table.

n An external control file is created with the source and target files defined as external data
sources and containing the logic for comparison and selective transfer of data between
one or more tables in the two original files.

The use of a control process, as described in the first and last options, is powerful and flexible, giv-
ing you the option to

n Selectively transfer data in both directions, achieving two-way synchronization of data
between tables in two files

n Efficiently synchronize data between systems with different data structures, where some
data transformation and/or cleansing is required as part of the procedure

n Selectively transfer records from tables in other supported database environments, such
as external SQL data sources

The utility table method described in the second option introduces additional processing time,
because external data must first be imported and then separately reconciled. However, the absence of
calculations, Auto-Entry actions, or validations (and minimization of the use of indexes) in the utility
table enables the initial import to proceed efficiently. Moreover, this method’s added flexibility lets
you build synchronization procedures for data extracted or exported from a wide variety of sources,
including unsupported mobile databases, spreadsheets, online sources, and third-party data systems.

24_429006-ch17.indd 65024_429006-ch17.indd 650 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

651

Maintaining and Restoring Data 17

Handling Embedded Images and
Stored Files
The container fields in FileMaker Pro can store a wide variety of files containing text, images, or
other media content. A significant number of files of this kind, however, will add to the bulk of
your solution file(s), impacting performance, making backups and other procedures slower, and
complicating some data transfer procedures. (Keep in mind that container fields can’t be exported
directly, as noted in the “Exporting and Importing Data” section, earlier in this chapter.)

One option to consider if your solution is carrying a significant quantity of container data is to
place container fields into tables in separate files, defining those files as external data sources and
creating 1:1 relationships from your existing tables to the tables housing container data. This
approach enables you to back up your data more efficiently by setting a different backup schedule
for the file(s) containing large quantities of container content.

Another option FileMaker provides is external storage of container objects, where you instruct
FileMaker to store only a reference to the file (for example, the path to the file’s location on your
computer or an accessible volume such as a file server). For example, when inserting a picture into
a container field in Browse Mode by choosing Insert ➪ Picture, the resulting dialog, shown at the
lower left of the dialog in Figure 17.10, includes a checkbox option to Store Only a Reference to
the File. This option is also available when using script or button commands to insert a file into a
container.

Storing a reference to a file, rather than storing the file itself, has both advantages and disadvan-
tages. Among the advantages:

n You can access or update the files independently of FileMaker.

n The references don’t cause your database files to bloat with their extra content.

n You can back up the files separately from your database backups.

Among the disadvantages:

n The path to the files must be the same from all client workstations if the files are to be
accessible by multiple users when your solution is hosted.

n Your solution may break (or its content may no longer make sense or be complete) if the
files are moved, renamed, or deleted.

You are, however, able to choose the most convenient method of storage depending on your prior-
ities and the deployment considerations for your solution. Among other things, the ability to
choose the storage mode can lead to

n Some containers being stored in the database and others stored only as a reference

n Changes of circumstance wherein you need container contents stored via the alternate
method

24_429006-ch17.indd 65124_429006-ch17.indd 651 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

652

Integrity and SecurityPart IV

 FIGURE 17.10

The Insert Picture dialog, showing the Store Only a Reference to the file setting.

Fortunately, the decisions you make aren’t final; the means are available to convert container fields
(individually, or as a batch) between the two modes of storage.

Assigning and retrieving paths
When a file has been stored (embedded) in a container field using the Insert menu commands (or
an equivalent script or button command), you can ascertain the file’s name by passing the con-
tainer field’s name to the GetAsText() function. Similarly, if a file is stored as a reference in a
container field, you can retrieve the path to the file (along with other information about the file, if
available) by the same method.

When you script the insertion of a file into a container field, you can use a variable to supply the
path, as described in Chapter 13. Additionally, when you set a valid path to a file (as text) into a
container field, FileMaker stores the reference and displays the file (or its icon) in the container.

By exploiting the capabilities of the GetAsText() function and the Set Variable[] com-
mand, you can build scripts to control the storage state of container fields.

Scripted field updates
A script along the following lines toggles the storage state of a container field used to store image
files between embedded images and store-as-reference images:

If [IsEmpty(Products::Image)]
 Beep
Else If [PatternCount(GetAsText(Products::Image); “image:”)]
 #Container is stored as path. Embed image:

24_429006-ch17.indd 65224_429006-ch17.indd 652 3/25/09 8:00:25 PM3/25/09 8:00:25 PM

653

Maintaining and Restoring Data 17

 Set Variable [$Path; Value:Let([
 pf = GetAsText(Products::Image);
 p1 = Position(pf; “image:”; 1; 1);
 p2 = Position(pf & ¶; ¶; p1; 1) — p1];
 Middle(pf; p1; p2)
)]
 Go to Field [Products::ProductImage]
 Insert Picture [“$Path”]
Else
 #Image is embedded: Store as path
 Set Variable [$Path; Value:”file:images/” & GetAsText(Products::Image)]
 Export Field Contents [Products::Image; “$Path”]
 Set Field [Products::Image; “image” & Right($Path; Length($Path) — 4)]
End If

TIPTIP You can readily adapt the scripting techniques used in the preceding script to pro-
duce a script that loops through the found set — or all records in the current table —

converting the contents of a container field between embedded and stored-as-reference storage
modes.

Text-Handling Considerations
In this chapter, I provide you with strategies and techniques for dealing with a broad range of data
migration, transformation, and synchronization challenges. However, another issue deserves spe-
cial mention. When presenting data in a range of export formats, FileMaker uses the standard con-
vention of including a carriage-return character (ASCII character 13) as the delimiter between
successive records in the exported data. Consequently, carriage returns appearing within fields in
your data are substituted with alternate characters (ASCII character 11) in the exported data. This
substitution presents a challenge when situations arise requiring that exported data include the
original carriage-return characters.

Export field contents
One way to solve the problem of ensuring carriage returns will be preserved in text output from your
database is to gather content for export, such as data from multiple records, into a single text field,
including carriage returns as required. You can then output the text field’s complete contents — with
carriage returns in place — using the Export Field Contents[] script command.

You can employ this technique to script a custom export process to build a text report document
containing lines of text and carriage returns in configurations outside the normal constraints of the
FileMaker export formats. For example, if you’re required to export the contents of a series of
Description fields in a Products table as continuous text, including any carriage returns residing
within the text in the field, you do so by creating a global text field (for example,
Products::gExportText) and a script along the following lines:

24_429006-ch17.indd 65324_429006-ch17.indd 653 3/25/09 8:00:26 PM3/25/09 8:00:26 PM

654

Integrity and SecurityPart IV

Set Error Capture [On]
Perform Find [Restore]
If [Get(LastError) ≠ 0]
 Beep
 Exit Script []
End If
Go to Record/Request/Page [First]
Set Field [Products::gExportText; “”]
Loop
 Set Field [Products::gExportText; Products::gExportText & If(not

IsEmpty(Products::Description); ¶ & Products::Description)]
 Go to Record/Request/Page [Next; Exit after last]
End Loop
If [not IsEmpty(Products::gExportText)]
 Set Variable [$path; Value:”Products_” & Year(Get(CurrentDate)) & Right(“0” &

Month(Get(CurrentDate)); 2) & Right(“0” & Day(Get(CurrentDate)); 2)
& “.txt”]

 Export Field Contents [Products::gExportText; “$path”; Automatically open]
 Set Field [Products::gExportText; “”]
End If

After running this script, you have a text file containing the description field entries with their car-
riage returns preserved, providing there are records meeting the criteria you specified for the
Perform Find [Restore] command, and the Products::Description has text in it on
one or more of the found records.

Designing a custom export process
The process of passing data first into a global text field and exporting from there provides you
with, in effect, a customized export where you gain increased control over the resulting file’s form
and content. By extension, you can use this process to build export files employing custom delim-
iters and to perform a variety of other procedures on the data — substitutions, character filtering,
and so on — before exporting to the external file.

If you need still greater control over the export process, I recommend that you create a transforma-
tion utility within your solution. To create this utility, create a Transformations table where your
scripts can create records (for example, via a relationship from the source table for the export, set
to Allow Creation of Related Records). In this way, you can create Transformations table records
for export in whatever form is required, applying calculations to the content to combine or sepa-
rate data, or to address data presentation or domain requirements.

Once the transformation process is complete, your script can either export the transformed data
directly from the Transformations table or perform further processing by compiling output content
in a global field as described in the “Export field contents” section, earlier in this chapter. By com-
bining these techniques, you can attain a high degree of control over the resulting data export, gen-
erating data in whatever form circumstances may require.

24_429006-ch17.indd 65424_429006-ch17.indd 654 3/25/09 8:00:26 PM3/25/09 8:00:26 PM

As a mature application development environment,
FileMaker provides open ended scope for the creation of
commercial and professional solutions to serve the

needs of a wide variety of industry, business, and organizational
requirements. To provide the necessary flexibility, FileMaker
provides open ended capabilities for integration with third-party
applications and utilities, as well as a number of built-in options
for extending and refining the operation of your solutions.

In this fifth part of the book, I give you a tour of the additional
capabilities that FileMaker Pro 10 Advanced provides, with its
custom menus, custom functions, design reporting, runtime
applications. and more. I also offer insight into the art of design-
ing your solutions for elegance and streamlined simplicity, and I
survey available options for extending your solutions’ reach with
external scripting, third-party plug-ins, and available Web-
deployment options. In addition, this part includes pointers to
some of the available third-party tools that will assist you to diag-
nose problems and maintain the health of your solutions.

Raising the Bar

IN THIS PART
Chapter 18
FileMaker Pro Advanced Features

Chapter 19
Efficient Code, Efficient
Solutions

Chapter 20
Extending FileMaker’s
Capabilities

25_429006-pp05.indd 65525_429006-pp05.indd 655 3/25/09 8:01:15 PM3/25/09 8:01:15 PM

25_429006-pp05.indd 65625_429006-pp05.indd 656 3/25/09 8:01:16 PM3/25/09 8:01:16 PM

657

If you’re reading this chapter, I figure the fact that you’re here means
you’re serious, right? When the going gets tough, FileMaker developers’
reach for FileMaker Pro Advanced, an extended version that does every-

thing FileMaker Pro can do, with a host of powerful additions.

FileMaker Pro Advanced makes things easier, giving you professional tools to
debug and document your code. By itself, this benefit may be reason enough
to pawn your second computer and buy a copy, but FileMaker Pro Advanced
offers you several other powerful features.

In this chapter, I walk you through what I consider the key features of this
leading-edge FileMaker Pro version, giving you insights into where your
development can take you when you become an Advanced developer.

Script Debugger
Scripts run at blinding speed, doing their thing. When they work, it’s a bit
magical, but when your scripts don’t do what you expect them to do, figur-
ing out the cause can be quite a challenge. To help, FileMaker Advanced
provides a Script Debugger that lets you step through your script one line at
a time, watching what happens, and checking for errors.

Choosing Tools ➪ Script Debugger prior to running a script activates the
Script Debugger. While the Script Debugger is active, its window “floats”
over your solution’s windows. When you run a script, the text of the script
appears in the Debugger window, as shown in Figure 18.1.

IN THIS CHAPTER
Employing the Script Debugger

Making use of the Data Viewer

Documenting solutions with
the Database Design Report

Building and controlling
custom menus

Working with custom functions

Understanding custom
functions and recursion

Distributing solutions as
runtime applications

FileMaker Pro Advanced
Features

26_429006-ch18.indd 65726_429006-ch18.indd 657 3/25/09 8:02:18 PM3/25/09 8:02:18 PM

658

Raising the BarPart V

 FIGURE 18.1

Viewing the Show Transaction script (from the Inventory example file) in the Script Debugger.

Watching code in action
Along the top of the Script Debugger window are ten buttons and immediately below them the defini-
tion of the current script appears, with the current step highlighted. Below the script pane, the Last
Error code is displayed. Most of the time when using the Debugger, you’ll be stepping through a script
using one of the two buttons nearest the left along the top of the Script Debugger window (Step Over
and Step Into), while checking the effect on your solution and noting the error code at each step.

Even if your script isn’t malfunctioning, stepping through it with the Script Debugger activated
enables you to better understand how FileMaker scripting works and how to improve your script’s
code and make it more fault tolerant.

When your script calls other scripts (via the Perform Script [] command), the Script
Debugger displays the stack of active scripts in the pane at the bottom, allowing you to select and
review any script in the stack.

TIPTIP You can double-click any script listed in the Active Scripts pane to open it for edit-
ing in a corresponding Edit Script window.

Debugging restricted privilege scripts
An important feature of the FileMaker Pro 10 Advanced Script Debugger and Data Viewer is the
ability to separately authenticate the Debugger so that you can view and debug a script while
logged in with a privilege set that doesn’t have edit access to the script.

26_429006-ch18.indd 65826_429006-ch18.indd 658 3/25/09 8:02:19 PM3/25/09 8:02:19 PM

659

FileMaker Pro Advanced Features 18

To authenticate the Data Viewer for debugging while in restricted privilege access accounts, click
the button with the padlock symbol at the upper right of the Current tab. In the authentication
dialog that appears, enter a [Full Access] account and password. When you do, the access account
and privileges for your current database session are unchanged, but the Data Viewer and Script
Debugger nevertheless admit you “behind the scenes” to see what is going on.

After authenticating with [Full Access] credentials, the padlock icon shows in its unlocked state,
and the Script Debugger and the Current tab of the Data Viewer both provide an unfettered view
of the workings of your solution. Clicking the padlock icon again, however, concludes the authen-
tication session, requiring you to re-authenticate to view scripts and data values in the Debugger
and the Data Viewer’s current tab.

NOTENOTE Authentication applies to the Data Viewer (see next topic) as well as the Script
Debugger. If you authenticate in one, the authentication provides coverage of the

other as well, and if you de-authenticate in one, the de-authentication also applies to both.

Getting used to the Debugger controls
The buttons along the top of the Script Debugger (see Figure 18.2) take a little getting used to, mainly
because they’re adorned by rather obscure icons and aren’t labeled. They do, however, have tooltips you
can view by holding the mouse over them for a few seconds so that you aren’t totally in the dark.

The buttons along the top of the Script Debugger window operate as follows:

n Step Over: Advances through the current script one line at a time, without stepping into
(debugging) any sub-scripts.

n Step Into: Advances through the current script sequence line-by-line, stepping into and
debugging any sub-scripts encountered as it goes.

n Step Out: Ceases debugging the current script or sub-script, allowing it to run normally
until its conclusion. (If you’re debugging a sub-script, you’ll be returned to the parent
script at the line after the Perform Script[] command calling the sub-script.)
However, if the current script includes breakpoints, the Step Out button causes it to run
until the next breakpoint is reached.

n Set Next Step: Allows you to designate a selected step as the next step to execute. Using
this control lets you modify the execution sequence while debugging, either skipping
over steps or repeating steps.

n Run/Pause: Sets the script running until the next break point (if any) or until its conclusion.

n Halt Script: Cancels all active scripts, regardless of state at the current step, and exits the
Script Debugger.

n Set/Clear Breakpoint: Adds or removes a marker (appearing as a red tag at the left) on
the currently selected script step. When a breakpoint has been set, you can use the Run/
Pause button to run the script through to the next breakpoint. (It will pause automati-
cally when it reaches the tagged step.) You can also add or modify breakpoints in the Edit
Script window by clicking in the gray band to the left of the script pane or at the left of
the Script Debugger window in FileMaker Pro Advanced.

26_429006-ch18.indd 65926_429006-ch18.indd 659 3/25/09 8:02:19 PM3/25/09 8:02:19 PM

660

Raising the BarPart V

 FIGURE 18.2

The main controls of the Script Debugger.

Step over

Step Into

Step Out

Set Next Step

Run/Pause

Halt Script
Authenticate/
Deauthenticate

Set/Clear Breakpoint

Edit Script

Open/Close Data Viewer

n Edit Script: Opens the current script for editing or viewing in its Edit Script window.
The current step of the script will be automatically pre-selected in the script when it
opens for editing. When you are logged in with a restricted access account and have
authenticated with [Full Access] privileges, the Edit Script button allows you to use the
higher privilege status to directly access a running script in its Edit Script window and
make changes to it.

n Open/Close Data Viewer: Displays or hides the Data Viewer window, allowing you to
see the values of fields, variables, or calculations as the script progresses.

NOTENOTE Closing the Script Debugger does not halt execution of the active scripts. Instead, it
sets them in motion for the remainder of their run without the Debugger.

In addition, below the main script pane, the Script Debugger in FileMaker Pro 10 Advanced
includes a checkbox option for Pause on Error. With this option enabled, running the script, either
by clicking the Run/Pause button or closing the Script Debugger, results in the script pausing when
an error code other than zero is encountered. If the Script Debugger has been closed, it reopens
when an error is encountered. When the Script Debugger reopens following an error, it does so
with the step following the one that produced the error selected as the current step (even if the
next step is in a different script from the one that produced the error — which can occur if the
error occurred on the final step of a sub-script). However, if an error occurs on the final step of a
script sequence, the Script Debugger will not reopen.

26_429006-ch18.indd 66026_429006-ch18.indd 660 3/25/09 8:02:20 PM3/25/09 8:02:20 PM

661

FileMaker Pro Advanced Features 18

Data Viewer
The FileMaker Pro 10 Advanced Data Viewer lets you see your calculation results without having
to add them to your solution or place them on a layout. You can test ideas — and get the calcula-
tion syntax right — by trying them out in the Data Viewer before adding them to your scripts or
field definitions. Moreover, you can keep an eye on the values of variables and an assortment of
application or system parameters, by adding calculations using selected Get() functions to the
Data Viewer.

You can access the Data Viewer — whether a script is running or not — by choosing Tools ➪ Data
Viewer. As with the Script Debugger, the Data Viewer window permanently floats above other win-
dows (with the exception the Script Debugger window), as shown in Figure 18.3.

 FIGURE 18.3

Viewing the Data Viewer window floating over a solution window.

You can close and reopen the Data Viewer window at any time (except when viewing a modal dia-
log), and it will retain the calculations or values you manually added to it.

Current and Watch panels
The Data Viewer in FileMaker Pro 10 Advanced includes two tab panels, one automatically dis-
playing variables in use and values referenced in the active script and the other enabling you to
create calculations and monitor their results regardless of the current script context.

26_429006-ch18.indd 66126_429006-ch18.indd 661 3/25/09 8:02:20 PM3/25/09 8:02:20 PM

662

Raising the BarPart V

You can switch between the Current and Watch panels whenever the Data Viewer is open, provid-
ing you with access to two complementary modes of operation.

The Current panel
Values tracked on the Data Viewer’s Current panel update automatically to include current global
variables (if no script is running) and current local and global variables (if a script is active).
Moreover, when a script is in progress, fields referenced by the script are automatically added to
the Current panel. As a script commences its run in the Script Debugger, the Data Viewer’s Current
panel performs a “pre-flight load” of all fields (including fields referred to by calculations) refer-
enced by the script.

The Current panel is always available when you’re logged in with an account that’s assigned [Full
Access] privileges. At other times, you’re required to authenticate within the Data Viewer, as shown
in Figure 18.4, to access the Current panel’s display.

 FIGURE 18.4

The Current panel requires authentication when you’re logged in with a restricted access account.

Authenticating with a [Full Access] account in the Data Viewer applies only to the Data Viewer and
the Script Debugger in the current file; it has no effect on the login account for the rest of the file.
If you have multiple files open with accounts assigned to restricted access privilege sets, you’ll need
to authenticate the Data Viewer separately in each file in order to see script values in the Current
panel in all the open files.

When you hold the mouse pointer over a selected line in the Current panel, a tooltip appears
showing the result in its entirety. This tooltip is useful when the result is too long to appear fully in
the limited space of the Value column — and especially if the value has multiple lines, as shown in
Figure 18.5.

26_429006-ch18.indd 66226_429006-ch18.indd 662 3/25/09 8:02:20 PM3/25/09 8:02:20 PM

663

FileMaker Pro Advanced Features 18

In addition, you can view a line’s values — and in the case of variables, directly edit them — by
double-clicking the line in the Current panel. FileMaker displays the value in its entirety in a scrol-
lable list in the Current Value dialog, as shown in Figure 18.6.

The Current Value dialog is resizable, so you can use it to display long values without truncation.
Moreover, you can select values in the Current Value dialog and copy them to the clipboard.
However, you can use the other enabled Edit menu commands (Paste Cut and Clear) only to per-
form actions on variable values.

Where referenced fields have repetitions, the repetitions containing a value are loaded into the
Data Viewer’s Current panel. Repetitions (for either fields or variables) are shown in the Data
Viewer using array notation, such as YourField[3] for the third repetition of YourField.

 FIGURE 18.5

The Current panel hover technique reveals long or multi-line viewer values.

 FIGURE 18.6

Viewing or editing a variable value in the Current Value dialog.

26_429006-ch18.indd 66326_429006-ch18.indd 663 3/25/09 8:02:20 PM3/25/09 8:02:20 PM

664

Raising the BarPart V

NOTENOTE You can copy fields or variables appearing in the Data Viewer’s Current panel to the
Watch panel by selecting them and clicking the Add to Watch button at the lower

left of the Current panel.

The Watch panel
The Data Viewer’s Watch panel lets you specify calculation expressions and tracks their evaluation
in the Value column, as shown in Figure 18.7.

The controls at the lower right of the Watch panel of the Data Viewer are as follows:

n Add Expression: Brings up an Edit Expression dialog (a variant of the Specify
Calculation dialog) where you can enter a field, variable, or calculation formula to be
monitored in the Watch panel.

n Duplicate Expression: Creates a copy of the selected expression (or expressions) in the
list area of the Watch panel.

n Edit Expression: Opens the Edit Expression dialog for the currently selected expression
in the Watch panel, allowing you to view a long calculation expression or copy or revise
it. Double-clicking an expression is an alternative way to open the Edit Expression dialog.

n Remove Expression: Deletes the currently selected line (or lines) from the Watch panel.

 FIGURE 18.7

The controls of the Data Viewer’s Watch panel.

Refresh all calculated results

Delete selected
expression

Edit selected expression

Duplicate selected expression

Add calculation expression

26_429006-ch18.indd 66426_429006-ch18.indd 664 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

665

FileMaker Pro Advanced Features 18

The values you enter into the Watch panel are retained until you delete them. They’re not specific
to the current file or files set, but apply to all files opened in the current copy of FileMaker Pro
Advanced. However, expressions in the Watch panel are evaluated in the current context — so if
they refer to fields in your solution, they only produce valid/meaningful results while those fields
remain accessible.

TIPTIP You can sort either of the columns of the Data Viewer (in the Current panel as well
as the Watch panel) by clicking the corresponding column heading.

Using the Viewer with the Debugger
You can use the Data Viewer as a stand-alone feature by choosing it from the Tools ➪ Data Viewer.
However, the Data Viewer is an invaluable adjunct to the Script Debugger, enhancing your ability
to observe the results of scripts as you advance through them one step at a time. You can invoke or
dismiss the Data Viewer from within the Script Debugger window by clicking the Open/Close Data
Viewer button (bearing the “X=” symbol) in the upper right corner of the Script Debugger window.

In particular, the Current panel automatically monitors the values of all the current variables and
all fields referenced by the current script. Each value is updated with every line of the script as you
step through it in the Debugger window.

NOTENOTE Global variables are listed in the Current panel while you’re debugging a script,
whether or not the current script references them.

The Data Viewer sand box
While the Data Viewer is a powerful adjunct to the Script Debugger, it has a variety of other uses
in its own right. It is a very useful environment for building calculation expressions for use in your
solution — either in scripts or field definitions — because it allows you to test the expression and
view its result as you’re writing it. In this way, the Data Viewer enables you to debug your calcula-
tion code in a safe sand-pit environment, copying the final expression and pasting it into your
solution when you’re satisfied with the result.

The Data Viewer’s Edit Expression dialog, shown in Figure 18.8, includes a Result box below the
Expression box, where the current expression’s result appears when you click the Evaluate Now
button.

NOTENOTE When you enter references to your solution’s field and table occurrence structures
into the Data Viewer via the Edit Expression dialog, FileMaker evaluates the refer-

ences from the context of the current record and layout showing in the frontmost window of the
active file.

26_429006-ch18.indd 66526_429006-ch18.indd 665 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

666

Raising the BarPart V

 FIGURE 18.8

The Edit Expression dialog accessible from the Watch panel of the Data Viewer.

The Data Viewer and variables
The Data Viewer is a convenient way to view the values assigned to variables in your solution,
enabling you to keep track of their changing values as you test your scripts and calculations.
Additionally, you can use the Data Viewer to modify a variable’s value, either by editing it directly
in the Current panel or by including it in a Let() expression in the Edit Expression dialog.

Bear in mind that anyone with a copy of FileMaker Pro Advanced can access the Data Viewer’s
Watch panel, even without a [Full Access] login, and can therefore modify the values assigned to
variables in your solution. Keep in mind the following caveats regarding variables:

n Global variables are unsuitable for holding or handling sensitive or confidential informa-
tion, including passwords, because a user who guesses the name of the variable can
access its value using the Data Viewer (if they open your solution using a copy of
FileMaker Pro Advanced).

n Variables aren’t suitable for the storage of essential values your solution (and particularly
your solution’s security) depends upon because they can be edited directly by users who
have access to the Data Viewer.

Concerns about the security of variable values with respect to the Data Viewer apply primarily to
global variables because local variables are extant only while the script where they were declared is

26_429006-ch18.indd 66626_429006-ch18.indd 666 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

667

FileMaker Pro Advanced Features 18

active (during which time a user without the ability to authenticate with a [Full Access] account is
not able to use the Data Viewer). An exception to the normal expiration rules exists with respect to
local variables associated with script zero.

CROSS-REFCROSS-REF For a detailed discussion of variables, including variables associated with script
zero, refer to Chapter 9.

Database Design Report
Documenting your work is an important part of the professional development process. You can do
some limited documentation in FileMaker Pro by printing scripts, tables, and layouts. However,
FileMaker Pro Advanced substantially extends your ability to document the finer details of your
solutions by including the Database Design Report (DDR).

To create a Database Design Report, follow these steps:

 1. Open the file or file set you want to document.

 2. Choose Tools ➪ Database Design Report. The Database Design Report dialog appears, as
shown in Figure 18.9, enabling you to specify the files, tables, and kinds of detail to be
included in the report, as well as the report’s output format.

 FIGURE 18.9

Selecting report options in the Database Design Report dialog.

26_429006-ch18.indd 66726_429006-ch18.indd 667 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

668

Raising the BarPart V

 3. Select your desired options in the Database Design Report dialog.

 4. Click the Create button and then choose a location to save the report files.

 5. Click the Save button to accept the settings and commence creation of your Database
Design Report.

NOTENOTE If your solution is large and/or you choose to include most or all of the report detail
options, be aware the report may take some time to compile. A coffee break may be

in order while FileMaker prepares your report.

DDR capabilities
A full DDR captures, in detail, almost every aspect of your solution’s design, from scripts and script
steps to tables, relationships, and calculation code. Data concerning all these elements and more
are compiled into a structured and searchable document that defines and captures the current state
of your solution files.

You can open the DDR in a Web browser — or any other HTML or XML compatible application —
to peruse, search, or manipulate its contents or to extract details for inclusion in other documents,
archives, and so on. You can also use information in the DDR as a reference for further development
or to build or repair parts of your solutions. For example, you can copy and paste the syntax of com-
plex calculations, custom functions, and other code available in your DDRs into new field and func-
tion definitions in your solutions.

TIPTIP Running a new DDR at intervals during your development work is one way of keep-
ing track of your work, enabling you to refer to the details of earlier versions of your

data structure and code.

Mining the DDR for information
At the most basic level, the DDR provides an index of organized data about your solution’s struc-
ture and code, enabling you to browse and locate information in broad categories and giving you a
useful overview of each file’s contents. However, you can also call the DDR into service to solve
problems.

The DDR provides a direct resource for locating specific references to elements in your solutions.
For example, if you need to locate all the places where a particular field is referenced, you can gen-
erate a complete DDR and then search it for the name of the field in question. Similarly, to locate
unresolved references such as missing fields (for example, a field has been referenced but subse-
quently deleted), you can search the HTML version of the DDR for the text string “Missing Field.”

By performing HTML searches or by opening the DDR files in a text editor or other tool, you can
perform various kinds of basic analysis of your solution content. If you want access to additional
capabilities, use the optional XML output option and consider investing in one of the available
tools for detailed analysis of your DDR’s contents.

26_429006-ch18.indd 66826_429006-ch18.indd 668 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

669

FileMaker Pro Advanced Features 18

Tools and techniques for interpreting DDR data
When you create DDR output in XML format, FileMaker generates a series of files containing the
complete contents of the DDR, in a form you can readily convert into a variety of other formats (or
upload into a database) for analysis.

You can create your own tools, such as a custom-built FileMaker database, to import DDR’s XML
version for analysis or to develop reports of your own using the data contained in one or more of
your solution’s DDRs. You can find more details about the XML Output Grammar used in the
Database Design Report at the FileMaker, Inc., Web site to assist you in working with the XML
content.

Additionally, a number of developers have created and published tools ready-made to perform a
variety of analyses of DDR data. The best of these provide instant access to a wealth of information
that can save you time and help you to produce better solutions.

CROSS-REFCROSS-REF For additional details regarding the use of third-party tools, including tools for anal-
ysis of Database Design Report output, refer to Chapter 20.

Creating Custom Menus
The FileMaker Pro menu system provides users with access to all the basic application features and
functions, but it does so in a generic way without reference to the particular needs, habits, prefer-
ences, or vocabulary of your users.

You can improve your solutions’ usability by modifying the menus to remove commands not
required by your users, to rename commands so that their meaning is specific to your solution (for
example, “New Contact” instead of “New Record”), and/or to change the way commands operate,
according to the needs of your users.

Defining menus
The Custom Menu functionality in FileMaker enables you to define menu sets and then choose
which menu set will be the default for each layout in your file, as well as change the current menu
set using the Install Menu Set [] script or button command.

NOTENOTE The standard menus in FileMaker are always available as one of the options for you
to assign to a layout or invoke via the Install Menu Set [] command.

To create a menu set for use in your solution, choose File ➪ Manage ➪ Custom Menus. The Manage
Custom Menus dialog appears, as shown in Figure 18.10.

Creating a custom menu set requires you to configure elements at three levels:

26_429006-ch18.indd 66926_429006-ch18.indd 669 3/25/09 8:02:21 PM3/25/09 8:02:21 PM

670

Raising the BarPart V

n Setting the attributes — name and action to be performed — for the commands on each
menu

n Naming and configuring each individual menu (groups of commands)

n Gathering a number of menus into a named set

To perform the first two tasks, select a menu in the Manage Custom Menus dialog’s Custom Menus
panel and click the Edit button at the bottom of the panel, causing the Edit Custom Menu dialog
to appear.

 FIGURE 18.10

Selecting a menu for editing in the Custom Menus tab of the Manage Custom Menus dialog.

TIPTIP When defining menus and menu items, you can supply a calculation expression
that will determine the name of the menu item. When you do so, however, the cal-

culation will be evaluated when the menu is installed, and the menu and menu item names will
then remain static until the menu set changes and the same or another menu set is installed. A
change of menu set can occur when navigating to a new layout that has a different menu set
assigned, or when a script of button calls the Install Menu Set[] command.

When building a custom menu, you can choose to modify an existing menu, make a copy of a
menu and modify the copy, or start from scratch and build a whole new menu. These options cor-
respond to the Create, Edit, and Duplicate buttons along the bottom of the Custom Menus panel
shown in Figure 18.10.

You can’t copy default menus (those with names enclosed in square brackets). However, copies of
most menus are ready for editing or duplication when a file is first created. Because the menu cop-
ies originate at the point when you create a file, the menu configuration they reflect matches the

26_429006-ch18.indd 67026_429006-ch18.indd 670 3/25/09 8:02:22 PM3/25/09 8:02:22 PM

671

FileMaker Pro Advanced Features 18

configuration of the version of FileMaker used to create the file (so menu commands added in later
versions aren’t included). For example, the Edit Copy custom menu available by default in a file
created with a previous version of FileMaker includes a single Edit ➪ Undo command, whereas
the Edit Copy custom menu in a file created with FileMaker Pro 10 includes Edit ➪ Undo and
Edit ➪ Redo.

CROSS-REFCROSS-REF For a detailed discussion of the process for determining which version of FileMaker
is opening your solution so that you can prevent earlier versions from accessing the

solution (or warn them about restricted functionality) refer to Chapter 12.

TIPTIP When you create a menu, you can use it in multiple menu sets throughout your solu-
tions — each menu set is made up of a collection of menus defined in the file —

including FileMaker’s default menus.

Editing individual menus
The Edit Custom Menu dialog, shown in Figure 18.11, allows you to specify overall settings for the
menu in the upper part of the dialog. These settings include the name of the menu, both as it
appears in the Custom Menus dialogs and its display title (the name users will see when accessing it
in your solution). You can also specify the platform(s) and mode(s) where the menu is to appear.

NOTENOTE FileMaker’s standard menu sets always appear in Layout mode.

 FIGURE 18.11

Assigning a script to a menu command in the Edit Custom Menu dialog.

26_429006-ch18.indd 67126_429006-ch18.indd 671 3/25/09 8:02:22 PM3/25/09 8:02:22 PM

672

Raising the BarPart V

In the lower part of the Edit Custom Menu dialog, you edit the commands on the menu, configur-
ing each to perform a default or custom (Script or Script Step) action, as well as setting the com-
mand’s name, the platform(s) it’s to be available on, and an associated keyboard shortcut. You can
make each setting in the Menu Item Properties panel in the Edit Custom Menu dialog, after select-
ing the item in the Menu Items list.

Benefits of the Script Step action
Assigning custom menu commands to the Script Step action rather than the Script action does
have some benefit, even when your goal is to have the command you’re configuring run a script.
Using the Script Step option, you can select the Perform Script[] command to launch a
script, with the advantage that you can then also configure the controls to manage any running
scripts (selecting whether running scripts should Halt, Exit, Resume, or Pause when the script you
attach to the command is triggered).

When configuring menus using the Edit Custom Menu dialog, you can add or remove items, sub-
menus, and separators using the buttons immediately above and below the Menu Items list.

TIPTIP When adding a menu item, you can base it on an existing FileMaker menu com-
mand or create it with No Command Assigned. The significance of the decision

whether or not to repurpose an existing FileMaker command is that the command’s availability is
determined by the availability context of the command on which it is based.

For example, commands such as Duplicate Record and Delete Record aren’t available (and
therefore appear dimmed) when no records are in the current found set. If you want to create a
command that is dimmed and unavailable when there are no records in the found set, you could
choose to base it on one of these commands. (Its availability will be determined accordingly,
even though you assign it a different name and a different action.)

Benefits of window widgets
An important aspect of custom menu operation is that when you modify the actions associated
with a standard menu command, window buttons and widgets performing the same task also
acquire the new behavior. For example, if you reassign the Close Window command to run a
script, clicking the Close button in the title bar of a database window also runs the assigned script.

When configuring the custom find log in the Inventory example in Chapter 9, I used custom
menus to reassign the Perform Find command to run the Perform/Store Find script instead —
so when users perform a Find (whether by using the menu command, clicking the Find button in
the Status Toolbar, or by pressing the Enter key), the script runs and the Find is logged.

In any situation where a command is associated with a window widget, you can employ custom
menus to change the behavior of the widget by modifying the attributes of the associated com-
mand. The same is true regarding contextual menus and toolbar actions — like window widgets,
their behavior is changed when the corresponding menu action is reassigned using custom menus.

26_429006-ch18.indd 67226_429006-ch18.indd 672 3/25/09 8:02:22 PM3/25/09 8:02:22 PM

673

FileMaker Pro Advanced Features 18

Adding menus to sets
Once you’ve created required menus and configured them with the menu commands you need,
the next step is to assemble them into sets. You do so by navigating to the Menu Sets panel of the
Manage Custom Menus dialog and using either the Edit (to modify an existing set) or Create (to
assemble a new set) button to access the Edit Menu Set dialog, as shown in Figure 18.12.

In addition to adding or removing menus from the selected menu set, you can use the Edit Menu Set
dialog to determine the order menus will appear (from left to right in the menu bar). To do so, drag
the menus up and down by their handle icon in the Edit Menu Set dialog’s Menus in <…> list.

 FIGURE 18.12

Assigning a menu to a Menu Set via the Edit Menu Set dialog.

Assigning menu sets throughout your file
Once you’ve created one or more custom menu sets, you have several options available to you to
specify when and where your users will have access to your custom menus.

Setting the default menu set for a file
The simplest option for deploying your custom menu set is to assign it as the default menu set for
the file where it is defined. You can do so via the pop-up menu setting on the bottom of the
Manage Custom Menus dialog (see Figure 18.10). When you define a menu set, it appears in the
pop-up list and can be selected as the file default.

26_429006-ch18.indd 67326_429006-ch18.indd 673 3/25/09 8:02:22 PM3/25/09 8:02:22 PM

674

Raising the BarPart V

Determining a menu set for each layout
You can also associate a default menu set with each layout in your file. To assign a default menu
for a layout, proceed as follows:

 1. Navigate to the layout in question.

 2. Enter Layout mode

 3. Choose Layouts ➪ Layout Setup. The Layout Setup dialog appears, as shown in Figure 18.13.

 4. Choose the desired menu set for the layout from the Menu Set pop-up menu near the
bottom of the Layout Setup dialog’s General panel.

 5. Click OK to save the selection and dismiss the Layout Setup dialog.

FileMaker uses the term [File Default] to refer to a menu set assigned to the file via the pop-
up menu setting at the bottom of the Manage Custom Menus dialog. The menu set specified as the
file default applies everywhere in the file, except where you’ve chosen an alternative menu for a
particular layout, or where your scripts have used the Install Menu Set[] command to
change the current menu set.

 FIGURE 18.13

Setting the default menu set for the current layout via the General tab of the Layout
Setup dialog.

Conversely, the term [Standard FileMaker Menus] refers to the menu set that FileMaker uses
when no custom menus have been created or selected. When a file is first created (and before
you’ve made any custom menu configuration changes), [Standard FileMaker Menus] is set
as the [File Default] menu set.

26_429006-ch18.indd 67426_429006-ch18.indd 674 3/25/09 8:02:23 PM3/25/09 8:02:23 PM

675

FileMaker Pro Advanced Features 18

TIPTIP To quickly see which menu sets have been assigned as the defaults for each layout,
choose File ➪ Manage ➪ Layouts....

The resulting dialog lists all the layouts in the file, showing in the right column the default menu
set assigned to each layout.

Double-clicking a layout line in the Manage Layouts dialog invokes the Layout Setup dialog for
that layout, allowing you to edit the layout’s properties, including its assigned menu set.

Controlling menu sets via script
Once you have set the default menu sets for the current file and/or for each layout in the file, you
have established a basic operational environment for your users. You also have the option to fur-
ther customize the user experience by providing access to alternative menus via script and button
actions using the Install Menu Set [] command to vary the menus available on the current
layout.

NOTENOTE A menu set invoked by a button or script normally remains in place only until the
user switches to a different layout (when the default menu set for the new layout

takes priority). If the user returns to the previous layout, the original menu set is reinstated until
changed again by a script or button.

An exception is when you select the option on the Install Menu Set [] command to Use
As File Default, in which case the selected menu set remains in place for all layouts configured to
use the [File Default] menu set until the conclusion of the current file session. However,
since this setting doesn’t alter the default menu set in the Manage Custom Menus dialog, the file
reverts to the pre-existing default menu set after it’s closed and re-opened.

Custom Functions
FileMaker Pro 10 provides you with a total of 243 calculation functions. However, you can extend that
number in FileMaker Pro Advanced by defining your own functions using combinations of the original
249 functions as building blocks to assemble powerful new calculation functions of your own.

Custom functions are a great idea and should be part of your standard development toolkit for
three compelling reasons:

n You can use custom functions to simplify the language of calculations, making your solu-
tion’s code more readable and giving you shortcuts to commonly used code snippets.

n By encapsulating frequently repeated code (especially long or complex blocks of code)
within a custom function, you can maintain the code in one place. When you change the
custom function definition, calculations employing it throughout your solution automati-
cally use the new function definition the next time they’re evaluated.

n You can structure custom functions to produce recursion (repetition of a task until a condition
is met), enabling them to tackle complex tasks beyond the scope of ordinary calculations.

26_429006-ch18.indd 67526_429006-ch18.indd 675 3/25/09 8:02:23 PM3/25/09 8:02:23 PM

676

Raising the BarPart V

CROSS-REFCROSS-REF See Chapter 12 for a more complete discussion of the three advantages of custom
functions.

Defining custom functions
Custom functions are available only in the file where they’re defined. If you want to have access to
a particular custom function in multiple files, you will have to define it separately in each file.

Once defined, however, custom functions appear in the list of available functions in calculation
dialogs throughout the field definitions, scripts, button commands, and everywhere else calcula-
tion formulae are accepted. Although custom functions can only be defined with FileMaker Pro
Advanced, once defined you can use them in calculations created using FileMaker Pro.

To create a custom function:

 1. Choose File ➪ Manage ➪ Custom Functions. The Manage Custom Functions dialog
appears, as shown in Figure 18.14.

 FIGURE 18.14

Creating or editing a custom function via the Manage Custom Functions dialog.

 2. Click the New button. The Edit Custom Function dialog appears.

 3. In the Function Name field, enter the custom function’s name, as shown in Figure 18.15.

 4. (Optional) After naming your custom function, add parameters in the Function
Parameters field. Parameters enable you to pass values to your function when you refer-
ence it in calculations throughout your solution. Parameters are used as placeholders in
the definition of your custom function, but are substituted with the values passed by your
calculations when the custom function is evaluated.

26_429006-ch18.indd 67626_429006-ch18.indd 676 3/25/09 8:02:23 PM3/25/09 8:02:23 PM

677

FileMaker Pro Advanced Features 18

 FIGURE 18.15

Specifying a Custom Function definition in the Edit Custom Function dialog.

 5. Specify a calculation expression in the main text box occupying the lower area of the Edit
Custom Function dialog. The function definition is created according to the same calcula-
tion syntax as used elsewhere in FileMaker, except that you can also refer to the parame-
ters defined for the function, and to custom functions defined in the current file
(including the current custom function).

 6. Use the radio button options at the bottom of the Edit Custom Function dialog to deter-
mine whether the custom function you’re creating will be available in calculations speci-
fied by users whose login account is not assigned to the Full Access privilege set. If you
choose to limit the function’s use to Full Access accounts as described here, calculations
referencing the function will still work for all users, but will not be able to be defined or
modified by users with restricted privileges. For example, if you’ve granted some users
the ability to create or modify their own scripts, they won’t be able to build calculations
in their scripts using your custom function unless you’ve selected the All Accounts avail-
ability option for the function.

 7. Click OK.

NOTENOTE Custom functions operate and are available for use by users (including users access-
ing the solution using FileMaker Pro) providing the users have sufficient privileges.

That is, if a function is defined to be available only to users with full access privileges, it will be
unavailable to users with restricted accounts, whether they log in with FileMaker Pro or
FileMaker Pro Advanced.

26_429006-ch18.indd 67726_429006-ch18.indd 677 3/25/09 8:02:23 PM3/25/09 8:02:23 PM

678

Raising the BarPart V

Custom functions as an aid to syntax readability
Custom functions offer an opportunity to simplify calculation syntax in your solutions. A simple
but elegant example is provided by the custom function definition shown in Figure 18.15:

Abs(Get(SystemPlatform)) = 1

This somewhat arcane syntax is specified as the definition of a custom function named
PlatformIsMacOS, making it possible to use more easily scannable code in your solution. For
example, with the preceding function installed in your file, a script requiring a different window
width for each platform (to account for the difference in window borders between Macintosh and
Windows) may use the expression

If(PlatformIsMacOS; 865; 878)

instead of

If(Abs(Get(SystemPlatform)) = 1; 865; 878)

You can simplify many other commonly used expressions in your solutions — from tests for modi-
fier keys to paths to shared directories to error results — making the resulting calculation code
shorter and easier to read.

Maximizing efficiency and ease of use
When you place long or complex calculation expressions into a custom function, you can use a
single custom function name in your calculations in place of a much more convoluted expression.
For an expression used only once in your solution, there may be little value in replacing it with a
custom function because the complexity of the code is simply moved from the calculation defini-
tion to the custom function definition. However, if your solution references the expression in mul-
tiple places, defining its logic as a custom function provides a number of benefits.

The first and most obvious benefit of placing a complex calculation into a custom function is that it
makes coding easier throughout the various occurrences of the logic in your solution. An added
benefit is that if you need to update the logic of the calculation, a single update (to the custom
function definition) propagates throughout your solution.

CAUTION CAUTION Previously calculated (and stored) values do not automatically update if the defini-
tion of a custom function used to calculate them changes. To apply a changed defi-

nition to stored values, you must separately prompt their recalculation — such as by updating
the value of a referenced field.

For example, if your solution requires that a progressive (tiered) tax rate be applied in three salary
bands to calculate net income, you can achieve the required result using a formula such as

26_429006-ch18.indd 67826_429006-ch18.indd 678 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

679

FileMaker Pro Advanced Features 18

Let([Cap1 = 7500; Cap2 = 45000; Rate1 = 0; Rate2 = .33; Rate3 = .5];
Income::Gross -
(Min(Income::Gross; Cap1) * Rate1) -
If(Income::Gross > Cap1;
(Min(Income::Gross; Cap2) - Cap1) * Rate2) -
If(Income::Gross > Cap2;
(Income::Gross - Cap2) * Rate3)
)

An alternative technique, however, is to define the logic of the preceding calculation as a custom
function where the rates and salary cap values are passed in as parameters, as shown in Figure 18.16.

With the NetIncome() custom function installed in your file, the previous calculation can be
performed throughout your solution (in scripts and other calculations) with the new simplified
syntax

NetIncome(Income::Gross; 7500; 45000; 0; .33; .5)

Moreover, should the rules for the application of progressive tax rates change in the future, a modi-
fication of the definition of the NetIncome() custom function implements the revised logic
going forward.

 FIGURE 18.16

Defining a NetIncome custom function to apply a three-tiered tax structure.

26_429006-ch18.indd 67926_429006-ch18.indd 679 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

680

Raising the BarPart V

Custom Functions and Recursion
Custom functions can do several tasks that regular FileMaker calculations cannot, because custom
functions are capable of recursion. Recursion is when a process explicitly and repetitively invokes
itself until its work is accomplished. Recursion is analogous to a looping construction, excepting
that a loop is explicitly iterative, whereas recursion achieves an equivalent logical outcome implic-
itly. Examples of recursion and iteration exist elsewhere in FileMaker Pro, such as when you define
a script to loop until an exit condition is satisfied. Looping constructs (as well as requiring a script
to implement them) tend to be longer and less efficient in operation, though they may sometimes
be easier to read and interpret.

Elsewhere in FileMaker Pro, calculation expressions are evaluated only once; however you can
define custom functions to call themselves, creating a looping effect. To successfully implement
recursion in a custom function, you need to observe two simple rules:

n The function must call itself within its own syntax (supplying the appropriate parameter
values).

n The function syntax must include an escape condition so that it will stop calling itself
when the intended goal has been achieved.

Following these two basic rules, you can set up custom functions to perform a wide variety of
tasks — including many not otherwise readily (or efficiently) accomplished within calculations.

Things that only custom functions can do
Using the power of recursion, your calculation can perform operations in an extensible way,
repeating a process until the required result is reached (according to the exit condition you build
into its syntax).

Consider a very simple example, where you need to generate a series of numbers — say, for houses
in a street, starting at one number and ending at another, where some streets may have many thou-
sands of houses and the start and end numbers can be almost anything. This task is quite difficult,
if not impossible, to do reliably for all cases using a conventional calculation, but achieved quite
simply with the following function, which uses the power of recursion:

 // SYNTAX: NumRange (From ; To)
If(From < To;
From & “, “ & NumRange(From + 1; To);
From
)

When you define a custom function in this way and then employ it in a calculation expression,
supplying the From parameter as, say, 52972 and the To parameter as, say, 53007:

NumRange (52972 ; 53007)

26_429006-ch18.indd 68026_429006-ch18.indd 680 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

681

FileMaker Pro Advanced Features 18

FileMaker returns the result:

 52972, 52973, 52974, 52975, 52976, 52977, 52978, 52979, 52980, 52981, 52982,
52983, 52984, 52985, 52986, 52987, 52988, 52989, 52990, 52991, 52992, 52993,
52994, 52995, 52996, 52997, 52998, 52999, 53000, 53001, 53002, 53003, 53004,
53005, 53006, 53007

Using this same function, you can generate number ranges starting anywhere and running for hun-
dreds or even thousands of numbers, if need be. While this example is simple, you can perform
much more complex tasks using the same essential principle, thanks to the power and flexibility
recursion offers. In this case, the If() function test provides an escape condition, while the work
of the function is performed on the second line of the If() expression:

From & “, “ & NumRange(From + 1; To);

Here, on its first call, the function returns the From value, appends a comma and space, and then
calls itself again with the From value incremented for the next iteration — so the expression con-
tinues to call itself until the If() test fails (that is, until From is no longer less than To), at
which point the accumulated sequence of From values is returned, spanning all the way from the
original From value to the To value.

The stack and the limits of recursion
To execute a procedure such as the one described in the previous section, FileMaker must hold the
result of each call to the NumRange() function in memory until the process completes, and it can
return the combined result of all the iterations. To do so, FileMaker uses an internal memory stack,
where it stacks up each result in turn, in memory, until the task is complete, and then it retrieves
each value in turn from the memory stack.

A potential risk when using a memory stack is that the process will continue until available memory
is exhausted, resulting in an out-of-memory error that causes a problem for the application. To avoid
this risk, FileMaker places an arbitrary limit on the depth of the stack at 10,000. If the process hasn’t
completed by the time the memory stack is 10,000 values deep, the process is aborted, and an error
value (“?”) is returned. This limit protects FileMaker from the possibility of an out-of-memory condi-
tion, but imposes an upper limit on recursive processes that make use of the memory stack.

In cases where 10,000 iterations is insufficient, you need a different approach. If you plan to use
recursion, the conventional “stack-based” approach won’t do, and you need to use an alternative
calculation syntax known as tail-end recursion, or simply tail recursion.

Tail recursion in practice
A custom function using tail recursion is designed to complete all its work at each call so that
nothing need be held in memory while subsequent calls are evaluated. To do so, the function must
be structured to pass its result to the next call (via the defined parameters or via a variable) rather
than holding it on the stack.

26_429006-ch18.indd 68126_429006-ch18.indd 681 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

682

Raising the BarPart V

For example, you can restructure the NumRange() function from the preceding discussion to no
longer require use of the memory stack by changing its definition to

 // SYNTAX: NumRange (From ; To)
Let(
pN = GetAsNumber(RightWords(From; 1));
If(pN < To; NumRange(From & “, “ & (pN + 1); To); From)
)

Here, rather than each successive value being held in memory until the complete sequence has
been compiled, the string of numbers is built within the From parameter and passed whole from
each iteration to the next. Because nothing is left to be held in memory, the stack depth limit is not
relevant, and this version of the function can return number ranges spanning more than 10,000
integers.

Tail recursion syntax enables functions to continue until FileMaker’s limit of 50,000 total function
calls for a single calculation operation is reached, so the revised (tail recursive) version of the
NumRange() function can produce ranges containing up to 49,999 numbers before it, too, will fail.

NOTENOTE The 50,000 upper limit for sequential calls within a single calculation evaluation pre-
vents you from locking your solution in an infinite loop, such as when you code

your function with an invalid escape argument. Moreover, even with a powerful CPU, your com-
puter will take a while to crunch through 50,000 nontrivial computations, so the limit is a good
compromise between functionality and usability.

Some useful examples
The example I provide in the preceding discussion is designed to help you comprehend the funda-
mentals of recursion, but in itself is of limited use. However, many other uses of recursive func-
tions can become central and even essential components of your solution functionality, taking over
where the built-in capabilities of the FileMaker calculation engine leave off.

While I’d love to provide many more examples (and I have enough of them to fill a book), the con-
straints of space are such that I limit ourselves to the ones described in the following sections.

Creating an acronym from a supplied phrase
Producing an acronym by calculation is straightforward if you know in advance the maximum
number of words occurring in the supplied text. You need not be concerned about that, however,
if you use a recursion, as in this example:

 // SYNTAX: Acronym (Phrase)
Case(
WordCount(Phrase) > 1;
Upper(Left(Phrase; 1)) &
Acronym(RightWords(Phrase; WordCount(Phrase) - 1));
Upper(Left(Phrase; 1))
)

26_429006-ch18.indd 68226_429006-ch18.indd 682 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

683

FileMaker Pro Advanced Features 18

This function accepts an input parameter such as “Your mileage may vary” and returns the acro-
nym YMMV. It uses conventional (iterative) recursion. It is useful for generating initials from
names, company acronyms from company names, and so on. Because it can also create very long
acronyms, you can use it for generating an “imprint” of a longer block of text for quick identifica-
tion. For example, using it, I’ve created the following imprint of this paragraph:

TFAAIPSAYMMVARTAYIUCIRIIUFGIFNCAFCNESICACVLAICBUFGAIOALBOTFQIFEUIWCTFIOTP

Extracting a character set from a supplied block of text
To establish the character domain of a text value (or a series of values), you need to be able to pro-
duce a list of all the characters used in the text — in other words, a character set. The following
recursive function makes the task easy:

 // SYNTAX: CharacterSet (text)
Case(
Length (text);
Let([
K1 = Left(Text; 1);
Kn = Substitute(text; K1; “”)];
K1 & If(Length(Kn); CharacterSet(Kn))
)
)

The CharacterSet() function returns one of each character occurring in the text string you
supply as input. Using it, you can develop appropriate collections of characters occurring in sam-
ple text, for use in filtering applications (where you need to constrain the character set to eliminate
rogue or garbage content).

Removing an unspecified number of leading carriage returns
Removing undesired characters from a text string is another task that’s straightforward if you know
how many characters to remove. If you use a recursive function, with an appropriately formed
escape clause, the problem is solved, as in the following example:

 // SYNTAX: TrimLeadingReturns (text)
If(
Left(text; 1) = ¶;
TrimLeadingReturns(Right(text; Length(text) - 1));
text
)

The task of eliminating leading carriage returns is humble, yet practical and useful. I have selected
this function as my third example because it provides another delightfully simple example of tail
recursion — completing its task without invoking the memory stack.

CROSS-REFCROSS-REF For links to resources containing a broad selection of documentation and examples
of custom functions, refer to Appendix A.

26_429006-ch18.indd 68326_429006-ch18.indd 683 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

684

Raising the BarPart V

Creating Runtime Applications
Complementing its wealth of customization options and developer tools, FileMaker Pro Advanced
offers you the ability to generate royalty-free, stand-alone, runtime applications from your solutions.
This ability means you can distribute stand-alone copies of your database solutions to users who
don’t own FileMaker Pro, and they’ll be able to install them and use them as discrete applications.

Before generating a runtime application from your solution, it pays to give some thought to making
your solution interface self-contained, adding appropriate branding and building in help and sup-
port information and contact details.

NOTENOTE Apart from being good practice and basic professionalism, providing an “About”
layout that includes your name and contact details for technical support is one con-

dition of FileMaker, Inc.,’s license agreement, permitting you to create and distribute runtime
copies of your solution. Refer to the FileMaker Pro Advanced product documentation for full
details.

Generating a stand-alone solution
To create a self-contained application from your completed solution, open FileMaker Pro
Advanced (leaving your solution files closed) and proceed as follows:

 1. Choose Tools ➪ Developer Utilities. The Developer Utilities dialog appears.

 2. Click the Add button and select all the database files required by your solution. These
files will be added to the Solution Files list in the Developer Utilities dialog.

 3. Ensure that the red arrow indicator at the left of the file list is pointing to your solution’s
primary file.

 4. Choose a project folder by clicking the corresponding Specify button and making a
selection.

 5. Click the Specify button for Solution Options in the lower part of the Developer Utilities
dialog. The Specify Solution Options dialog appears, as shown in Figure 18.17.

 6. Select from the five available options in the Specify Solution Options dialog (you can
select more than one) and, with the Create Runtime Solution application(s) option high-
lighted, enter an application name and unique extension. (Note: Runtime applications
can’t use the fp7 extension.)

 7. If desired, select a closing splash screen image and enter the preferred closing splash
delay.

 8. Enter a bindkey of your own choosing or make note of the bindkey value generated by
FileMaker. You may need this value in the future.

 9. Click OK to accept the Solution Options and dismiss the Solution Options dialog.

 10. In the Developer Utilities dialog, click Create.

26_429006-ch18.indd 68426_429006-ch18.indd 684 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

685

FileMaker Pro Advanced Features 18

 FIGURE 18.17

Specifying runtime solution options using Developer Utilities.

NOTENOTE You can select the five options available in Developer Utilities in any combination —
so you can use the procedure to permanently remove admin access accounts or

enable kiosk mode, without choosing the option to create a runtime application.

Kiosk mode enables you to configure your files to run in a blacked-out screen with no menu bars
or desktop visible or accessible. This mode is useful for computers that are available to the public
for information purposes or for front-desk applications to log visitors and print name tags.
However, the kiosk mode is less useful for general desktop productivity applications.

TIPTIP When you apply kiosk mode to your solution files using Developer Utilities, your
solution opens into kiosk mode whenever it’s opened with a restricted access

account, either in FileMaker Pro or with a runtime application engine.

Binding for each platform
As part of the process of creating a runtime application, a simplified version of FileMaker Pro
(without database design capabilities) is created and specifically bound to your solution files (so
that it can only operate with the bound files). Because this version is an application in its own
right, it is specific to the platform you create it on.

If you want a runtime to operate on Windows, you have to bind your files to the Windows runtime on
the Windows operating system. If you require a runtime for the Mac OS PowerPC platform, you need to
bind on PowerPC. A separate runtime is required to run natively on an Intel Macintosh computer.

26_429006-ch18.indd 68526_429006-ch18.indd 685 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

686

Raising the BarPart V

When you need to produce multiple versions of your solution, to work on different operating sys-
tems, you need to bind the same files, using the same bindkey value, on each destination platform.
The executable file from each bind procedure is required to run the solution on that platform.

Hosting runtime files
Runtime applications are strictly single user. However, if you need to provide multi-user access to
a runtime solution, you can configure FileMaker Server to open and host your runtime database
files.

When runtime solution files are hosted by FileMaker Server, users will require full licensed copies
of FileMaker Pro (or FileMaker Pro Advanced) to log in and use the solution. It can’t be accessed
over a network using the runtime application engine.

26_429006-ch18.indd 68626_429006-ch18.indd 686 3/25/09 8:02:24 PM3/25/09 8:02:24 PM

687

FileMaker’s reputation as a user-friendly database is legend — and, for
the most part, well deserved. Users with no background in program-
ming (but with self-motivation, good logical thinking, and some

design sense) can make great progress from a standing start with FileMaker.

In fact, FileMaker draws you in with what it can do, leading the new user to
try more complex and even daring feats only a short time after becoming
familiar with the application. But FileMaker has a great deal more to it than
you can see from the outset. FileMaker is a program with deep roots and
hidden power, and it takes time and dedication to fully tap its potential.

A proportion of enthusiastic beginners, having had a ball making their first
attempts at building a database, get serious and start looking for robust, fault
tolerant, and efficient ways to code their solutions. They are the ones who
make the transition to achieve professionalism as FileMaker developers
(whatever their job title). If you fall into this group, this chapter is especially
for you.

Designing for Scale:
Size Considerations
One of the greatest problems you face — whether working with FileMaker
or any other database application — is designing solutions that continue to
work well as they grow. Some designs succeed when modeled using only a
small number of records and survive beta testing (also with moderate-sized
record sets), but then founder in deployment, when encumbered with the
accumulation of serious quantities of business data.

IN THIS CHAPTER
Designing your solutions for
scalability

Finding ways to avoid
redundancy

Seeking the most efficient ways
to produce the desired
outcomes

Building solutions around
transactional principles

Keeping file sizes within limits

Working with images and
media

Efficient Code, Efficient
Solutions

27_429006-ch19.indd 68727_429006-ch19.indd 687 3/25/09 8:03:23 PM3/25/09 8:03:23 PM

688

Raising the BarPart V

When a solution develops problems operating under load, many developers are tempted to blame
the tool, but frequently such problems are a reflection of the design. What works well in small
single-user databases does not necessarily translate well to situations calling for tens or hundreds of
thousands of records in multi-user networked systems.

The elephant in the cherry tree
Well, it’s an old joke — and if you don’t know it, you’re not missing much — that an elephant
can’t really hide in a cherry tree by painting his toenails red. However, elephants notwithstanding,
while you can accommodate surprisingly large data sets in your FileMaker Pro solutions by paying
heed to good design and avoiding bottlenecks and performance impediments, the qualities needed
for scalability are fundamental, not cosmetic.

In itself, FileMaker is one of the most scalable development environments available, working with
ease and elegance in the smallest of desktop solutions, yet capable of producing server-based solu-
tions delivering large and complex functionality to hundreds of users simultaneously. Across this
range, however, are a variety of approaches you can use to produce viable solutions in high-volume,
high-output deployments.

CAUTION CAUTION Solutions need room to grow over time. Bear in mind that FileMaker Server supports
up to a maximum of 250 client connections, so if a new solution’s requirements

already approach this number, it will have little scope for expansion.

Enterprise-wide solutions delivering data to thousands of users may still have a place for
FileMaker as part of a larger mix of strategies, but not as a whole solution.

Predicting what will scale well
Scale takes three main forms:

n Number of users

n Functional or logical complexity

n Volume of data

Each form of scale brings its own issues and may be considered in isolation, though it is the com-
bination of scale in multiple dimensions that presents the greatest challenge.

Some techniques are strictly single user — they break or cause problems when a solution is hosted.
Notably, the use of global fields to store data across multiple sessions is a strictly single-user-only
technique. Procedures depending on flag fields and record marking, or involving the use of the
Replace Field Contents [] command, are also problematic in multi-user solutions. Finally,
a lack of adequate error handling for record locking (and for a range of other conditions) becomes
a serious impediment to functionality and data integrity when your solution is hosted.

When requirements are relatively simple, a variety of techniques can achieve the desired ends
without unduly impacting performance. For example, a heavy dependence on unstored calcula-
tions to provide the solution interface, gather data across multiple tables, or pass data through an

27_429006-ch19.indd 68827_429006-ch19.indd 688 3/25/09 8:03:23 PM3/25/09 8:03:23 PM

689

Efficient Code, Efficient Solutions 19

ungainly data structure is scarcely problematic while requirements remain relatively simple.
However, such techniques become unsustainable, and their impact on performance increases
exponentially as additional requirements are introduced and complexity increases.

In solutions with modest volumes of data (up to about a thousand records in each table),
FileMaker is very forgiving:

n Finds performed on unindexed fields scarcely cause users to blink.

n Summary data calculated live in real time does not introduce unacceptable delays.

n Scripts looping through found sets do not take hours to complete.

Techniques depending upon real-time data summarization become problematic, though, when the
volume of data is expected to become large. Similarly, many actions involving updating indexes
and using unstored calculations (especially those aggregating data) and multi-predicate relation-
ships encounter performance issues.

Conversely, solutions that are clean, simple, and concisely coded, with almost all values stored,
indexing optimized, and with an efficient and unencumbered data model, scale well and can sup-
port tables with hundreds of thousands or even millions of records in FileMaker.

Eliminating Redundancy
A first step toward the optimization of your solutions is avoidance or elimination of redundancy.
The DRY (Don’t Repeat Yourself) development principle should be at the forefront of your think-
ing. While eliminating redundancy makes sense from the point of view of speed and efficiency of
development, its impacts are greatest in the fluency and responsiveness of the resulting solutions.

By consolidating similar elements and functions and repurposing solution components to serve
multiple purposes, you can reduce bloated and ungainly solutions to a fraction of their size, with
comparable performance benefits. You can recast awkward and suboptimal scripts that take hours
to complete simple processes so that they complete in minutes or seconds.

Combining the techniques I suggest in this section and the following section throughout your
solutions, you achieve a considerable reduction in file sizes and corresponding improvements in
solution performance. Your solutions will be lean and powerful.

Avoiding duplication of elements
Whenever two processes are similar in essentials, consider using a single script to serve both
requirements (with a script parameter determining context-appropriate behavior, and internal
branching to deal with variations). Before you begin, reflect on whether you really need 45 report
scripts, or whether a single report controller script, with some additional lines and internal branch-
ing — plus a handful of small supporting sub-scripts for various special cases — will serve the
same requirements. If so, when reporting requirements change, what would otherwise have been a
week’s work updating each report and its associated script may be a task that you can complete in

27_429006-ch19.indd 68927_429006-ch19.indd 689 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

690

Raising the BarPart V

a couple of hours. In such a case, the reduction in size and complexity of your file has benefits that
flow right through your solution, making your design tight, efficient, and powerful. Now, consider
applying the same essential approach to layouts. I have seen files with several hundred layouts
that, after some rethinking and repurposing, could achieve the same functionality with only a few
dozen layouts — again, reducing complexity and overhead in every direction.

Your Relationships Graph is another area where duplication and redundancy produces a sub-
optimal result. A solution design requiring more than the minimum number of table occurrences
to achieve the desired functionality incurs performance penalties and complicates development
and maintenance, because FileMaker must manage join results and concomitant cache updates
across the Graph.

As in many aspects of development, you need to make a judgment call when deciding the optimal
path to take. In some cases, a graph that includes redundant elements may support work practices
that are more comfortable — and in a solution of moderate size, the trade-off in performance may
be small enough to be considered acceptable. There is no single “correct” answer, and you must
weigh the competing imperatives and decide what works best for each case.

Using portable and reusable code
While scripts are a key area where the reusability of code gives you many opportunities to increase
efficiency and do more with less, relationship specifications and your calculation code’s design
provide scope for streamlining and introducing reusability.

Appropriate use of sub-scripts
When you have a number of scripts where similar sequences of steps occur, even though those
scripts may be substantially different in intent, consider placing those sequences into a sub-script
and calling it from each of the main scripts. For example, error handling procedures for various
conditions are apt to be repeated throughout many scripts. While I don’t necessarily recommend
having only a single, all-encompassing error handler script in your solutions, it certainly does
make sense to consolidate the trapping and handling of certain errors or groups of errors. A single
script to deal with record locking errors and another to deal with Perform Find [] errors (and
so on) is a reasonable compromise between efficiency and manageability.

While sub-scripts enable you to consolidate code into a procedural model, reducing fragmentation
and redundancy in your solution, the inappropriate use of sub-scripts can have the opposite effect.
I recommend that you avoid breaking logically unified processes into multiple scripts without a
compelling reason to do so.

A good general rule is that unless a sub-script is called from multiple parent scripts in your solution,
you should include its content in the body of the main script instead of making it a sub-script. I’ve
been called in to troubleshoot lengthy processes where the logic is distributed across a dozen or
more scripts, to no benefit. In fact, splitting a process into sub-scripts may introduce redundancy
because each script must separately instantiate and manage its own (local) parameters, variables,
and so on. Exceptions to this rule are when

27_429006-ch19.indd 69027_429006-ch19.indd 690 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

691

Efficient Code, Efficient Solutions 19

n One or more parts of an action are required to be performed with [Full Access] privileges,
while the remainder of the process should be constrained by the privileges of the current
user’s account. In this situation, placing the part (or parts) of process requiring the Run
Script with Full Access Privileges option enabled in a separate script makes good sense.

n Components of a process need to be performed in different files of a multi-file solution.
This approach may be required so that a script can act on variables (all variables are
scoped within the file where they are defined), logins, or access privileges (also specific to
the file where they’re defined).

You should limit your use of sub-scripts to occasions where they’re necessary or where doing so
significantly increases the efficiency of your code. In other cases, sub-scripts add needless clutter
and complexity.

Appropriate use of custom functions
One benefit of using custom functions in your solutions is the ability to avoid repetition of com-
plex logic in your calculation code. By placing the essentials of calculation logic common to multi-
ple scripts, schema calculations, or various other solution pieces (tooltips, button parameters,
conditional formatting expressions, and so on) where calculations are used into a custom function,
you can greatly simplify and streamline your solution’s code.

As with script code, I counsel against separating calculation into custom functions unless you have
a clear rationale for doing so. However, the benefits of using custom functions are several:

n A custom function’s calculation logic is reusable and can be more efficiently managed in
one place than if it were repeated throughout your solution’s structures.

n Custom functions using recursion give access to functionality not available with calcula-
tion code elsewhere in FileMaker.

n Using custom functions enables you to make functionality available to end users without
revealing proprietary or sensitive logic contained within the function definition.

Remember that custom functions are specific to the file where they’re defined, so managing a large
number of custom functions across all the files in a multi-file solution can itself become burden-
some. Nevertheless, many situations arise where the benefits of custom functions more than com-
pensate for the time required to create and manage them.

CROSS-REFCROSS-REF For detailed information about the design and use of custom functions, refer to
Chapters 12 and 18.

Designing for Flexibility and Adaptability
FileMaker, as a development environment, is notable for its flexibility, lending itself to innumera-
ble ingenious and sometimes unexpected problem resolutions. One consequence of this flexibility
is that you can approach almost any problem in several ways. If you can see only one path forward,
chances are you aren’t looking hard enough.

27_429006-ch19.indd 69127_429006-ch19.indd 691 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

692

Raising the BarPart V

As a developer, your task is to choose the most effective method to address each requirement and
provide each function point. However, some choices will lock you in, constraining subsequent
design choices, while others leave your options relatively unencumbered. In most cases, choosing
the paths offering greatest versatility is the wisest choice, even if doing so requires additional work.

In the preceding section, I suggest techniques for creating flexible and adaptable script and calcula-
tion code. However, other areas of your solution designs, including schema and interface, also ben-
efit significantly from adopting design practices aimed at maximizing reusability and portability.

Layouts and adaptable design
You can design layouts for flexibility and reusability using a variety of available techniques, several
of which have been covered in preceding chapters.

Defining screen elements as nonprinting objects and positioning print-ready content behind them
supports combining print and screen versions of some layouts. Moreover, the ability to include
multiple Sub-summary parts, invoking only those needed for a given report, according to the
selected sort order lets you generate a variety of alternate reports from a single layout in your solu-
tion. Chapter 10 discusses examples of these techniques.

In addition, the FileMaker tab control layout object is well suited to circumstances where some
screen or report elements should remain constant while others vary. Because you can control tabs
either manually or via script, they also provide rich possibilities for condensing alternate interface
and print content into single reusable layouts.

Combining tab control techniques with sliding objects, conditional formatting, and calculated inter-
face elements, your interfaces can be dynamic and varied, while remaining compact and versatile.

Concepts of reusability applied
to the Relationships Graph
Another area where it pays you to minimize redundancy is FileMaker’s Relationships Graph,
because FileMaker must manage and update its cache of join results for every dependency affected
by actions ranging from editing a key field (or a value upon which a key field depends) to creating
or deleting a record. Any such change requires FileMaker to revisit all cached join results where
dependencies may require that current cache contents be discarded. Consequently, when your
Graph contains a large number of redundant connections, your solution is unnecessarily encum-
bered and its responsiveness degraded.

Relationship joins, where key fields on both sides of the join are indexed, are operable in both direc-
tions. I recommend that you avoid creating two or more essentially similar relationships where a
single relationship may be repurposed (used in both directions) to provide the same functionality.

Utility relationships — such as those where a global field is used to establish temporary joins to
related tables — should be designed to be reusable for various purposes where possible. To facili-
tate this goal, consider using a prefixed composite key (in other words, a calculation field combin-
ing multiple key values) in the targeted table so that you can reassign the global key used to filter
the utility relationship by adding or alternating its prefix value.

27_429006-ch19.indd 69227_429006-ch19.indd 692 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

693

Efficient Code, Efficient Solutions 19

Traveling the Shortest Distance
Between Two Points
A direct relationship exists between the ways you choose to structure your calculation code and
the time it takes to execute. Lengthy and convoluted calculations tie up your workstation for many
CPU cycles, unraveling their twisted logic. Calculations addressing related record sets require the
retrieval of data from the host and carry a cost in network time, as well as processor cycles, on
both server and client.

The unpleasant truth is that a single severely sub-optimal calculation can bring your solution to its
knees, slowing users to a crawl and needlessly using vast computing resources. While this case is rare,
a more common but equally problematic scenario is the solution where a number of calculations are
sub-optimal and, while the effect of each is marginal, the combination is enough to severely impact
performance. In either case, a few well-placed adjustments can yield significant and immediate gains.

Optimal calculation syntax
The DRY principle, as it applies to calculations, mandates that you should structure expressions to
calculate each value or logical unit of a computation only once. (For more on the DRY principal,
see the section “Eliminating Redundancy,” earlier in this chapter.)

Consider the seemingly inoffensive little calculation in the Customer table of an invoicing solution:

If(Sum(Invoices::BalancePayable) < 5; 0; Sum(Invoices::BalancePayable))

As a single line of code, it may hardly seem worthy of close attention. However, whenever the bal-
ance of amounts payable on related invoices equals or exceeds $5, the calculation must determine
the balance twice over — first to evaluate the If() test and again to deliver the result. When you
consider that the number of related invoices involved in the computation may be large and, if the
Invoices::BalancePayable is itself also an unstored calculation retrieving and reconciling
related LineItems and Payments values for each Invoice record, several thousand values may
be computed producing the result. The preceding line of code, requiring as it does that the task of
summing balance payable amounts be done twice, carries a potentially heavy performance burden.

You can recast the calculation as follows:

Let(Bal = Sum(Invoices::BalancePayable); If(Bal < 5; 0; Bal))

The work required to evaluate the expression will be halved in many cases, because the values in
the Invoices::BalancePayable field are summed only once for each record in the found set.
If screen draws of list layouts including the original calculation were sluggish, this one small
change increases its speed (up to doubling it, depending on the number of balances of $5 or more
in the rows being listed).

NOTENOTE The If(), Case(), and Choose() functions use short-circuit evaluation, so only
those arguments required to be evaluated to return a valid result are processed.

Consequently, in the original version of the preceding example, the second Sum() function is
not evaluated when the result of the first is less than 5.

27_429006-ch19.indd 69327_429006-ch19.indd 693 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

694

Raising the BarPart V

In the preceding example, the Let() function is used to avoid repetition of calculation syntax,
while preserving the logical form of the original expression. The relatively minor adjustment has a
marked effect on performance. Now consider a more profoundly sub-optimal calculation:

Case(
Sum(Invoices::BalancePayable) > 0 and Sum(Invoices::BalancePayable) < 50;
Sum(Invoices::BalancePayable) - Sum(Invoices::BalancePayable) * .05;
Sum(Invoices::BalancePayable) ≥ 50 and Sum(Invoices::BalancePayable) < 100;
Sum(Invoices::BalancePayable) - Sum(Invoices::BalancePayable) * .1;
Sum(Invoices::BalancePayable) ≥ 100 and Sum(Invoices::BalancePayable) < 150;
Sum(Invoices::BalancePayable) - Sum(Invoices::BalancePayable) * .15;
Sum(Invoices::BalancePayable) ≥ 150 and Sum(Invoices::BalancePayable) < 200;
Sum(Invoices::BalancePayable) - Sum(Invoices::BalancePayable) * .2)
Sum(Invoices::BalancePayable) ≥ 200;
Sum(Invoices::BalancePayable) - Sum(Invoices::BalancePayable) * .25)
)

This calculation is so poorly formed that you could be forgiven for thinking I made it up to illus-
trate a point. Not so; I copied both the examples in this section directly from a real (albeit poorly
designed) solution. As you can see, the latter example requires evaluation of the Sum(Invoices::
BalancePayable) expression a minimum of 4 times and up to a maximum of 11 times,
depending on the cumulative amount owing for a given customer record.

In this instance, I recast the expression as

Let([
Bal = Sum(Invoices::BalancePayable);
Rate = .95 - Min(4; Int(Bal / 50)) * .05];
Bal * Rate
)

Here, I eliminate redundancy, I no longer repeat the sum expression, and, after a single expression
is used to calculate the discount rate, I apply it with the compact closing argument (Bal * Rate).
The changes are twofold: The use of Let() function’s variables to avoid needless repetition, plus
the reworking of the logic of the calculation to achieve a more straightforward formula. Not sur-
prisingly, with this change, the client reported approximately 900 percent performance gains in
the processes (screen draws and reports) where the calculation was used, after this one change was
implemented.

Throughout your calculation code, considering alternative ways to structure each expression and
also choosing syntax requiring fewer steps (and therefore fewer CPU cycles and/or disk or network
calls) during evaluation confer many benefits. While optimizing a single calculation formula may
yield tangible benefits — as in the preceding example — the cumulative effect of optimizations
throughout your solutions will be considerably greater.

27_429006-ch19.indd 69427_429006-ch19.indd 694 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

695

Efficient Code, Efficient Solutions 19

Alternative syntax examples
The examples discussed in the preceding section are calculations designed to act on related data
sets. However, when you choose calculation syntax with care, your solution benefits in a number
of ways. More compact and efficient calculations are frequently easier to read and understand (and
therefore easier to maintain) and also provide improved performance.

When looking for opportunities to optimize calculation syntax, established methods such as elimi-
nating repetition and eliminating redundant steps are a first step. However, a more radical rethink-
ing of your approach will frequently take you further. For example, consider a situation where data
imported into an Income table includes a delimited array of monthly balance amounts for the
year, in the form:

 1171|554|2034|943|1623|878|1340|2552|2154|3515|2091|3027|

Extracting the August income balance amount (the eighth value in the array) may lead you to first
consider parsing the string using the pipe delimiter characters to break out the eighth value with
an expression such as

Middle(
Income::MonthBalances;
Position(Income::MonthBalances; “|”; 1; 7) + 1;
Position(Income::MonthBalances; “|”; 1; 8) —
Position(Income::MonthBalances; “|”; 1; 7) — 1
)

A quick glance over this formula shows it is sub-optimal because the expression
Position(Income::MonthBalances; “|”; 1; 7) occurs twice. A conventional approach to
optimization, therefore, produces a slight improvement, as follows:

Let([
p1 = Position(Income::MonthBalances; “|”; 1; 7) + 1;
p2 = Position(Income::MonthBalances; “|”; 1; 8];
Middle(Income::MonthBalances; p1; p2 — p1)
)

While the revised form of the calculation is a little more compact, a little quicker to evaluate, and
perhaps a little more readable, the change is scarcely revolutionary. However, because I can be
confident that the income amounts will all be numeric values, with some lateral thinking, I can
adopt a quite different approach, arriving at the expression:

GetValue(Substitute(Income::MonthBalances; “|”; ¶); 8)

Each formulae in the preceding example produces the same result (2552), given the input string
indicated. However, the last does so using considerably fewer steps.

NOTENOTE The method depending on the GetValue() function works reliably in cases where
the values in the delimited string being parsed will never include carriage returns,

as in the case with an array of numeric values.

27_429006-ch19.indd 69527_429006-ch19.indd 695 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

696

Raising the BarPart V

Elsewhere in the same solution, you may need to convert a text value representing the month into
its corresponding numeric value (for example, a month number). I’ve seen various solutions set up
to accomplish this conversion using expressions like the following:

Let(
MonthName = Left(Income::IncomeMonthName; 3);
Case(

MonthName = “Jan”; 1;
MonthName = “Feb”; 2;
MonthName = “Mar”; 3;
MonthName = “Apr”; 4;
MonthName = “May”; 5;
MonthName = “Jun”; 6;
MonthName = “Jul”; 7;
MonthName = “Aug”; 8;
MonthName = “Sep”; 9;
MonthName = “Oct”; 10;
MonthName = “Nov”; 11;
MonthName = “Dec”; 12
)
)

Consider, however, the fact that you can return the same result using a strikingly different — and
rather more compact approach — by employing FileMaker’s Position() function:

Position(“xxJanFebMarAprMayJunJulAugSepOctNovDec”;
Left(Income::IncomeMonthName; 3); 1; 1) / 3

These examples are selected somewhat arbitrarily to illustrate that you can bring a variety of tech-
niques to bear to solve a given problem — and rarely is there only one viable approach. My pur-
pose here is to present you with the concepts so that you can apply them yourself to myriad
calculation requirements, rather than to limit you to the specific approaches of the examples I am
able to include here. Nevertheless, in the following sections, I include several additional examples
to illustrate the ways alternate coding approaches may be beneficial.

Working with modifier keys
A frequent calculation challenge — often associated with scripted procedures where different func-
tionality is made available depending on whether the user holds down a keyboard modifier (such
as Shift, Control, Option/Alt) while running the script — is to determine by calculation whether a
particular modifier key is depressed.

When you hold down a modifier key, the FileMaker Get(ActiveModifierKeys) function
returns a number representing the combination of modifier keys currently engaged. An issue arising
when testing for a specific modifier, such as Shift, is the possibility that the Caps Lock key will be
engaged, adding 2 to the value the function returns. So rather than testing for the Shift Key alone

Get(ActiveModifierKeys) = 1

27_429006-ch19.indd 69627_429006-ch19.indd 696 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

697

Efficient Code, Efficient Solutions 19

it’s desirable to test for the Shift key both with and without the Caps Lock engaged, as in

Get(ActiveModifierKeys) = 1 or GetActivceModifierKeys) = 3

You can create an equivalent expression, however, evaluating as true when the
Get(ActiveModifierKeys) function returns either 3 or 1, using the Abs() function:

Abs(Get(ActiveModifierKeys) — 2) = 1

To detect the presence of the Control key (on either Mac OS or Windows) regardless of the state of
the Caps Lock, you can use

Abs(Get(ActiveModifierKeys) — 5) = 1

In these examples, the expressions evaluate as true only if the Shift key or Control key (respectively)
is the only modifier key (aside from Caps Lock) engaged. However, if you need to determine
whether the Shift key is pressed regardless of the state of any of the remaining modifier keys, rather
than using longhand and the pedestrian approach of testing against all 16 possible combinations
(across both Mac and Windows), consider using

Mod(Get(ActiveModifierKeys); 2)

To test whether the Control key is pressed regardless of the state of any of the other modifier keys,
consider using either of the two following expressions:

Mod(Get(ActiveModifierKeys); 8) > 3

or

Mod(Div(Get(ActiveModifierKeys); 4); 2)

These more succinct methods arise from taking a step back and looking at the values returned by the
Get(ActiveModifierKeys) function. Each of the five possible modifier keys (Shift, Caps Lock,
Control, Option/Alt, Ô) toggles a separate bit of a five-bit binary value. By isolating the relevant
bit — by combined use of Mod() and Int() — you can efficiently read the state of a single key.

Working with Boolean values
The implementation of Boolean logic in FileMaker operates on the principle that nonzero numeric
values are true, and zero and empty values are false. A basic understanding of this principle leads
novice users to construct Boolean tests, such as the argument for the If[] step in a script, resem-
bling the following:

If(IsEmpty(Receipts::AmountPaid) or Receipts::AmountPaid = 0; 0; 1)

Conversely, to toggle the state of a Boolean checkbox field, the novice may use

If(IsEmpty(Receipts::ReceiptStatus) or Receipts::ReceiptStatus = 0; 1; 0)

27_429006-ch19.indd 69727_429006-ch19.indd 697 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

698

Raising the BarPart V

While these methods achieve their intent, they don’t represent the shortest distance between
points. In the case of the first example, the If() function is redundant, because the required
Boolean result (0 or 1) is returned by the expression

Receipts::AmountPaid = 0 or IsEmpty(Receipts::AmountPaid)

However, a still more elegant (yet equally robust) way to meet the requirement is by using
FileMaker’s purpose-built (but remarkably under-utilized) function:

GetAsBoolean(Receipts::AmountPaid)

Similarly, the expression frequently used to set a Boolean checkbox to its alternate state is unneces-
sarily verbose and may instead be replaced by

not GetAsBoolean(Receipts::ReceiptStatus)

Or, depending on your mood,

Abs(Receipts::ReceiptStatus — 1)

Either of these alternatives is both more compact and more efficient in execution than the earlier
method using the If() function. The first may be regarded as slightly more robust, as it still
works even if the value in the Receipts::ReceiptStatus field is out of bounds (that is, nei-
ther empty, 0. nor 1), but both methods are viable alternatives.

Avoiding dependency “spaghetti”
When you define a calculation field with an expression referencing a field of the same table in your
solution, you’re creating a dependency; when the referenced field is updated, FileMaker automati-
cally re-evaluates the calculation. FileMaker manages these dependencies internally, so you don’t
have to set or manage them. However, it pays to be aware of them when designing your solutions’
code architecture.

One consequence of dependencies is a predetermined sequence of calculation “events” when you
update a value. For example, take the following steps:

 1. Create a number field.

 2. Create a calculation field adding 1 to the value in the number field.

 3. Create an equi-join relationship using the calculation field (as defined in Step 2) as the
match field.

 4. Create a text field defined as an auto-enter lookup to copy a value from the related table
via the relationship established at Step 3.

 5. Create a calculation field performing a substitution on the looked-up value in the text
field defined at Step 4.

 6. Apply a conditional formatting formula to the field defined at Step 5, changing its color if
it matches the value of another field in the current record.

27_429006-ch19.indd 69827_429006-ch19.indd 698 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

699

Efficient Code, Efficient Solutions 19

Each field created in Steps 2, 4, and 5 depends on the resolution of the preceding steps, so you’ve set
up an implicit chain of dependencies for FileMaker to manage. When you change the value in the
number field created in Step 1, FileMaker must work its way down the dependency tree triggering
consequent actions at every level. When updating the calculated key field (Step 2), FileMaker must
dump the cached join results for the relationship at Step 3, re-establishing it (replacing the cached
values), and then perform the lookup for the field created at Step 4. Only after the fresh looked-up
value is written to the text field at Step 4 can FileMaker begin to re-evaluate the calculation field
defined at Step 5 — and only when the calculation has returned a result can FileMaker commence
resolving the conditional formatting expression. Figure 19.1 illustrates this process.

 FIGURE 19.1

The sequence of events required to resolve a chain of dependencies.

User updates number field
Calculated

match field is
re-evaluated

Lookup value
is retrieved from

related table

Conditional formatting
is applied based on

calculated text value

Text calculation
is performed on

look-up value

Cached join results
are flushed and new
relationship match

resolved

Screen updates with changes

What’s significant about this dependency scenario is that it’s entirely sequential. Each step com-
mences after the preceding step has completed. No amount of parallel processing efficiency will
improve the speed of execution of such a process; its inefficiency is inherent.

NOTENOTE Sequential dependencies are most problematic when they involve unstored calcula-
tions (as they are re-evaluated each time they’re displayed or referenced, using up

large numbers of processor cycles as users work and hampering the responsiveness of your
solution) and especially where unstored calculations are included in list views (requiring compu-
tation of the whole dependency chain multiple times over to draw a single screen).

27_429006-ch19.indd 69927_429006-ch19.indd 699 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

700

Raising the BarPart V

It’s likely when you define a series of dependent actions in the preceding steps that editing the
value in the number field imposes a slight but perceptible pause before the conditional formatting
at Step 6 is displayed. On a high-performance workstation running on a fast network, the delay
may be minimal. You should, however, be aware of the performance implications when creating
long chains of dependency. I’ve seen solutions where sluggish calculations followed dependency
chains from table to table all over the solution and back (and therefore using unstored calculations
at each step), sometimes 15 or more steps deep. Small wonder that the users experienced long
pauses and mounting frustration!

You can do three things to avoid creating “logical spaghetti” throughout your solutions:

n Keep dependencies in view. Be aware of the implications of each dependency as you cre-
ate it. If necessary, plot your dependency tree as part of your code design, updating it as
you work.

n Aim to keep sequential dependencies at four levels or less in all cases, with most depen-
dencies being either direct or dependent on only one other dependency. With most mod-
ern computer hardware, FileMaker can resolve two calculations concurrently more
quickly than it can process two calculations in succession.

n When a sequential dependency chain arises, look for opportunities to break it or branch
it to achieve the desired result with fewer tiers (successive stages) of dependency.

In the case of the preceding example, to reduce the length of the chain of sequential dependencies,
consider two steps:

n Create a stored calculation field in the related table defined to subtract 1 from the value
being used as the key for the equi-join and then use it as the match field for a relationship
(Step 3) matching direct to the number field (Step 1). By doing so, you eliminate the
need for the calculation field (Step 2), reducing the chain of dependencies from five
to four.

n Create a stored calculation field in the related table defined to apply the required substi-
tution (as at Step 5) to the text value looked up in Step 4 and then re-point the lookup to
the field holding the calculated value. By doing so, you eliminate the dependent calcula-
tion in Step 5 from the dependency chain, further reducing the length of sequential
dependencies.

With these changes in place, when you change the value in the original number field, FileMaker
has to perform only the re-lookup and then apply conditional formatting to the result. Yet the out-
come is functionally the same.

In this scenario, each calculation is still performed. However, the calculations in Steps 2 and 5 are
performed separately when the values they reference in the related table are updated. When reeval-
uation of the calculations occurs, because they’re directly dependent on fields in the related table,
they introduce no perceptible delay. Yet the lengthy chain of dependencies has been significantly
reduced.

27_429006-ch19.indd 70027_429006-ch19.indd 700 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

701

Efficient Code, Efficient Solutions 19

Whether the specific techniques discussed in this example are appropriate for a given situation
depends on what else you have in place in your solution. A variety of other strategies are possible.
What matters is that you’re aware of the dependency overhead as you work, taking opportunities
to structure your solution design to minimize daisy-chain logic.

Applying simplicity principles
The process of simplifying your code isn’t as simple as it seems. That may be a great one-line jest,
but it’s nonetheless true.

A single line of code capable of replacing (and performing the same function as) half a page of code
is obviously more powerful. In addition, the resulting solution is cleaner, simpler, easier to main-
tain and easier to use. Once you’ve taken the trouble to comprehend how and why the single line
of code works, the solution containing it becomes easier to read and understand than the solution
containing more verbose code. I doubt that the argument that longer code is preferable because it’s
“more explicit” or “easier to understand” is ever more than a rationalization.

One way you can view the concept of simplicity is in terms of elements. The elements are power-
ful. When you reduce your solution to its elemental properties, you remove extraneous and ver-
bose material and invest a great deal in the remaining essentials. Mature computer applications
such as FileMaker are inherently complex, permitting myriad paths toward any goal you identify.
Your challenge is to find or create simplicity and harmony among the burgeoning complexity. If
you succeed, your code and the solutions it supports will be powerful and elegant — as well as
robust and scalable.

The following general principles govern the achievement of simplicity in solution development:

n Simplicity doesn’t simply happen. In fact, if you have anything more than a shopping
list to design, simplicity is frequently harder to achieve than complexity. Moreover, arriv-
ing at a set of simple principles requires a more profound understanding of both the solu-
tion requirements and the development environment.

 When you sketch out the design for a relational model, a challenging calculation, or a
crucial screen design, you’re probably approaching it from the wrong direction if it seems
impressively complex. Take that complexity as a sign and look for an alternative way to
conceptualize the problem.

n The ideal solution is usually the simplest. When you can achieve more with less,
everybody wins. That’s true whether you’re talking about increased data accuracy with
fewer error alerts, better system performance with more compact code, or more flexibility
with less confusion.

 If your solution has 20 tables and you can build a fully functioning solution requiring
only 50 table occurrences on the Relationships Graph, your achievement is superior —
and evidence and experience indicate that it will perform better (all other things being
equal) than a comparable solution where there are 100 table occurrences on the Graph.

27_429006-ch19.indd 70127_429006-ch19.indd 701 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

702

Raising the BarPart V

n The deepest organizational model frequently is the simplest in operation. Collapsing
too many things together (when their fit is poor) leads to conflict and confusion, whether
they’re ideas, operational procedures, or entities and attributes in your relational model.

 By working from first principles and breaking the components down into their essential
units, you establish clean lines of separation and workable models of the real world.

n Simple for the user matters more than simple for the developer. Avoid the temptation to
rationalize with “If simple is good, then my job should be easy” — it just isn’t so. Develop-
ment is in part a process of creating order out of chaos, offering smooth and streamlined
paths in place of clutter and obstacles. The greater your thought and comprehension, the
more likely it is that your users will find the result simple to use and easy to like.

n There is always room for improvement. Perfection is unattainable, but improvement is
not. However powerful and elegant a piece of code may be, remain open to the possibility
of other ways and other ideas. Continually revisit design principles, removing the unnec-
essary, refining, condensing, and simplifying.

 Excellence arises from a continuous process of questioning and a sustained commitment
to improvement.

A number of the principles in this list (along with others, perhaps) may aid you in a variety of pur-
suits, beyond the bounds of FileMaker development. However, if you’re able to keep these five
principles in mind throughout the development of your solutions, I’m confident you (and your
solution’s users) will see direct benefits as a result.

Transaction Modeling
Many database systems, especially those supporting large data sets and enterprise-wide network
demands (perhaps serving up data to thousands of users concurrently), provide no equivalent for
FileMaker’s calculation and summary field types. All data, whether input data or derived data, is
calculated on the spot (for example, using a stored procedure), verified, and then stored.

FileMaker’s calculation and summary field capabilities are a convenience I would not have you
forego, but they carry a price. As the size and complexity of your solutions grows, reliance on cal-
culations and summaries becomes less desirable. In large and heavily loaded systems, data integrity
and solution responsiveness is best served by adopting a transaction-based approach to use-case
definition — that is, design and define the user experience and the solution’s response to user
inputs in terms of transactions.

Live versus batch data
When your solution uses calculation and summary fields throughout, every action a user takes has
flow-on consequences. Change the value of the quantity field in an invoice, and the change
instantly propagates to the calculated totals and summaries showing on the user’s screen. The auto-
matic and immediate update of dependent values is the essence of live data interaction — as illus-
trated in Figure 19.2 — and many of the processes in FileMaker are built around this principle.

27_429006-ch19.indd 70227_429006-ch19.indd 702 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

703

Efficient Code, Efficient Solutions 19

 FIGURE 19.2

A dynamic interaction model where each user action produces a result.

Action Result Action Result Action Result

An alternative way to conceptualize a data management process is to separate input actions from
consequential actions. In such a process, you enter all the required information and then press a
key or click a button, and all the resulting computations (along with validations and integrity
checks) are performed. If the process is complete and all validation requirements are satisfied, the
data is written to the database (committed) as a single transaction, as shown in Figure 19.3.

 FIGURE 19.3

A transactional interaction model — the final user action precipitates a result (reflecting all the preceding
actions).

Action Action Action Action Action Result

Posting edits and propagating edits to related records
When you implement a transaction-based interaction model, a complete set of changes is commit-
ted as a whole, in a single action. At the time of that action, all interdependencies are resolved, val-
idation checks performed, derived values are generated and stored, and data summaries are
updated in a single closing procedure.

In FileMaker, the closing procedure for a transaction is best managed by a script, where the script
commits the record and all related records updated as part of the transaction at the close of its pro-
cess. Because a script manages the user’s interaction with the stored data, you can use the script to
generate and store derived (calculated) values and update summaries at the point where each
change is committed.

With this type of interaction model in place, summary values are computed and stored at the con-
clusion of each transaction rather than being recalculated across vast record sets in real time (con-
suming CPU resources constantly as the user navigates the database and works with the data).
Each time the user commits a record, such as by clicking a custom Save Changes button on each
layout, a short delay occurs while FileMaker adjusts the summary data. However, summary re-
computation, even at this point, is not required. The script can simply increment or decrement
each stored summary value to reflect the current transaction’s contribution. Because all calculations
and summaries are stored, navigation, screen refresh, and reporting are instantaneous regardless of
the size of your solution.

27_429006-ch19.indd 70327_429006-ch19.indd 703 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

704

Raising the BarPart V

Offline updates and processing
Another dimension of transactional systems is the potential for periodic data refresh using separate
system processes not dependent on direct interaction between each client workstation and the host.

Overnight generation of updated summary data and reports is one implementation model for peri-
odic processing. If you choose this approach, you schedule an extensive operation to occur during
off-peak hours (overnight, for example) to generate queued reports, re-compute and store updated
summary data (stock levels and so on), and perform various other batch processing tasks.

The strategic use of periodic updates (performed elsewhere — not on the client workstation) can
relieve performance bottlenecks for a variety of non-time-critical requirements, freeing live compu-
tation or transactional updates to deal exclusively with immediate data requirements. For example,
in a transaction process where the user records a customer payment and issues a receipt, the calcu-
lations generating the balance of account for the receipt and updating the customer balance record
are required immediately, so you include them as part of the transaction work cycle. However,
updates to the company profit and loss statements and general ledger aren’t required instantly and
can occur in an overnight batch run gathering all receipts and payments in the preceding 24-hour
period. In this way, you free user transactions of much of the burden of consequential processing,
enabling the system to be deft and responsive for end users, yet all the required data is available
according to appropriate timelines.

Robots and batch automation
When you want to implement batch processing in a multi-user solution, several options are avail-
able. One of the most powerful and versatile options is deployment of a workstation dedicated to
batch processing. Such a workstation is commonly termed a robot, as it self-regulates and performs
a variety of preprogrammed tasks as an unattended client on the network.

A database robot has its own user account and remains logged in to the host database, as shown in
Figure 19.4. Because its tasks are scheduled to occur without user intervention, you need to
choose a late model or well-specified machine — if it meets the requirements to run FileMaker Pro
10 and is robust enough to run 24/7, it will suffice. Its job is to work quietly in the background,
relieving the client workstations of non-urgent process work and ensuring lengthy and process-
intensive tasks are routinely completed.

You don’t need to limit robot deployments to overnight processing of lengthy batch jobs. You can
use them as fax or database print managers, monitoring queues as users commit jobs for process-
ing, generating the required documents throughout the daily work cycle, and then resuming rou-
tine batch processing outside scheduled work hours.

Host/server script execution
FileMaker Server permits you to schedule database scripts to run on the server at predetermined
times. This approach provides you with a viable alternative to employing a robot workstation for
some kinds of process work.

27_429006-ch19.indd 70427_429006-ch19.indd 704 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

705

Efficient Code, Efficient Solutions 19

 FIGURE 19.4

Overview of a server-based system incorporating a robot-processing station.

Client
Workstation

Robot
Workstation

Client
Workstation

Client
Workstation

Database
Server

When you define a script to be executed on FileMaker Server, you’re constrained to use Server-
compatible script step subset. You can view the available commands by choosing Server from the
pop-up menu labeled Show Compatibility in the lower left of the Edit Script window. Incompatible
Script steps appear dimmed in the list of script commands at the left of the Edit Script window, as
shown in Figure 19.5.

Despite the limited selection of commands available for use in scripts you want to schedule to run
on FileMaker Server, you can address various operations using this mechanism. In general, I rec-
ommend that you schedule scripts to run during low-use times on FileMaker Server to minimize
server load.

CAUTION CAUTION Scripts scheduled to run on FileMaker Server fail if they include unsupported script
steps (in other words, commands not indicated as Server compatible). A script con-

taining incompatible steps either halts when the first such step is encountered (leaving the pro-
cess incomplete and possibly leaving the solution of the data in an inappropriate state) or, if the
Allow User Abort[] setting is off, continues, while skipping the incompatible step or steps.

27_429006-ch19.indd 70527_429006-ch19.indd 705 3/25/09 8:03:24 PM3/25/09 8:03:24 PM

706

Raising the BarPart V

 FIGURE 19.5

Viewing the Server-compatible script command subset available for use in scripts executed on FileMaker
Server 10.

Managing File Size
A factor affecting both the manageability of your solution and its performance under load is the
size of your database files. Large files are less efficient for several reasons.

One issue with very large files is that data segments are necessarily stored further apart on disk
media, so more head movement is required to return nonsequential data sets, such as the results of
a Find or records for display in a portal. FileMaker manages data caching to minimize performance
impacts from this cause, but the performance you observe in a 200K file will outstrip your experi-
ence with a file approaching 5GB.

When files sizes become very large, a more profound impact arises because the backup process for
the file takes considerably longer, which introduces periodic delays if your backups are frequent
(and I recommend that they are)!

NOTENOTE The storage of text and numeric data — especially where a majority of fields are not
indexed — is very efficient and is not generally the primary cause of large file sizes.

Images and files stored as data are the most frequent cause of large file sizes.

Dealing with data in chunks
One way to mitigate the performance impact arising from large database files is to separate your
data between two or more files. As part of this strategy, you can set separate backup schedules for
each file. Because the files are smaller, performance impact when their backups occur will be less
noticeable. Moreover, you don’t need to back up less used files, such as reference data that rarely
changes, as frequently.

27_429006-ch19.indd 70627_429006-ch19.indd 706 3/25/09 8:03:25 PM3/25/09 8:03:25 PM

707

Efficient Code, Efficient Solutions 19

Modularization strategies
If you need to address issues arising from file size, making modularization of your solution neces-
sary, consider the following three approaches:

n Create separate database files to store container data — images, files, and multimedia
content — using 1:1 relationships between records storing container data and the corre-
sponding data records in your existing solution files.

n Build files to store any large reference data sets and/or low-use data tables, because you
don’t need to back them up as frequently as other files. This strategy is of greatest use where
you have very large reference sets of historical or geographic data that rarely changes.

n Define functional centers based on the operational requirements of different groups of users
of your solution, separating the main data sets for each functional center into a different file.
For example, accounts payable may be in a separate file from product inventory.

One or more of these strategies may enable you to adapt your solution’s deployment strategy to
improve performance and minimize storage and backup issues.

Considering segmentation
An alternative approach to the management of large data sets is segmentation, where you subdivide
data into ranges or subcategories, storing alternate blocks of data in separate “edition” files. For
example, if your solution stores the content of newspaper articles spanning a century or so, you
can consider segmenting data by decade, giving you ten files of manageable size, rather than one
vast and unmanageable file.

Supporting segmentation requires an index file containing enough information, including key-
words and titles, to let users search and summarize data across multiple segments. However, view-
ing a record’s content in its entirety requires the user to navigate to the appropriate segment file.
You can automate the navigation process, making the user’s task a relatively straightforward one.

CAUTION CAUTION Data segmentation is most useful for historical data sets where most segments are
not expected to change or grow significantly.

Data archiving
At some point in any solution’s life, the question of archival storage of old or low-use data arises. If
you’re concerned about the impact of file size on your solution’s performance, archiving aged data
may present a viable option.

The simplest method of archiving is to create a copy of your solution structure and import records
older than a given date into the copy. However, I recommend that you make significant changes to
the interface and scripts to ensure the following:

n Users can’t mistake an archive file for the current file. You don’t want users mistak-
enly entering new data into the wrong file or searching in vain for current data in a file of
ancient records.

27_429006-ch19.indd 70727_429006-ch19.indd 707 3/25/09 8:03:25 PM3/25/09 8:03:25 PM

708

Raising the BarPart V

n Scripts, buttons, and screens associated with new record creation and other pro-
cesses relevant only to current data are removed or disabled. As part of this change,
you should consider modifying all privilege sets assigned to user accounts to read-only in
the archive file.

With an archive file established, build a scripted process in your solution to automate the process
of locating candidate records for archiving and their transfer to the archive solution file.

CROSS-REFCROSS-REF For details of the processes of transferring data sets between files or alternate sys-
tems, refer to Chapter 17.

NOTENOTE When your solution includes an archive, all future changes of data structure should
be replicated in the archive to a sufficient extent that the archive is always able to

accommodate data from the current solution structure without transformation.

Images and Media in Databases
A significant cause of overly large database files is the storage of images and media content files,
such as PDF or QuickTime, as part of your solution data. Be aware, however, of the range of
options available to you for handling these content types.

If file size is the primary cause of performance issues, and that in turn is due to the storage of files
and/or media content, one option you should consider is storing files separately, such as on a file
server, and referencing them in your solution.

CROSS-REFCROSS-REF For techniques and procedures for handling images and stored files, refer to the
details in the closing pages of Chapter 17.

By defining a media file as an external FileMaker data source for your solution, and selecting the
Allow Creation of Related Records in This Table via This Relationship option, the location of the
container content in a different file will not be evident to users.

When considering options for efficiently storing and handling container data, you should consider
the capabilities of Web viewers as a means to present image and media content stored remotely.

To incorporate Web storage and viewer access and display of media data as a primary content
strategy in your solution, you need to employ external scripting and/or third-party tools to aid in
the transfer of files to and from online server locations. Even so, the merits of online content man-
agement, including the options for integrating database operations with Web support, make this
option worthy of further consideration.

CROSS-REFCROSS-REF For additional details about external tools and products to assist in management of
content via remote servers, see Chapter 20.

27_429006-ch19.indd 70827_429006-ch19.indd 708 3/25/09 8:03:25 PM3/25/09 8:03:25 PM

709

There is a great deal to know about FileMaker — so much that doing
justice to its native capabilities, without providing coverage of the
many related environments, technologies, products, and deployment

options, in a book of this size is no small challenge. In this chapter, however,
I provide you with a brief survey of products, tools, and techniques available
to extend the reach of your solutions.

Many of the technologies I refer to here are the subject of a rich variety of
books and other resources in their own right. I encourage you to consider
the range of technologies available and choose appropriate resources for fur-
ther exploration.

Because FileMaker’s capabilities are extensive and provide support for wide-
ranging functional requirements, you can create many solutions with
FileMaker Pro without recourse to external tools or applications. When you
reach the limits of the program’s native capabilities, however, many options
enable you to employ other technologies and push past those limits.

External Scripting Calls
Among FileMaker’s 137 (Mac) or 138 (Windows) scripting commands are
two commands allowing you access to the repertoire of external capabilities
made available via your computer’s operating system and the scripting lan-
guages installed by default on your computer:

Perform AppleScript []

and

Send Event []

IN THIS CHAPTER
Making use of external
scripting calls

Rendering Web source code in
FileMaker

Using Web viewer widgets

Getting acquainted with
FileMaker plug-ins

Exploring Web deployment
options

Reviewing available third-party
tools

Extending FileMaker’s
Capabilities

28_429006-ch20.indd 70928_429006-ch20.indd 709 3/25/09 8:04:24 PM3/25/09 8:04:24 PM

710

Raising the BarPart V

These commands enable you to configure your FileMaker scripts to execute AppleScript code on
Mac OS and VBScript code on Windows. These scripting languages, in turn, let your solution exe-
cute command-line (OS Shell) calls and control other applications running on the current worksta-
tion. Moreover, the Send Event [] command can pass messages (open application/document,
print document) to other applications on Windows.

NOTENOTE Send Event [] also passes messages (called AppleEvents) on the Mac. However,
the syntax of the messages differs between the platforms, and events that succeed

on one platform may fail on the other. I strongly recommend that you ensure that you are on the
correct platform for the event your solution is going to send. The Get(CurrentPlatform)
function is extremely useful in this determination.

Despite the wealth of possibilities you can access via these commands, be aware of the following issues:

n Whereas FileMaker solutions are cross-platform, AppleScript, VBScript, and command-
line syntax are specific to each platform. While the capabilities of these technologies over-
lap, they work differently.

n When part of your script process occurs outside FileMaker scripting via calls to external script
languages, conventional FileMaker error handling is not available. Therefore, your solution
cannot as readily determine if the external script process has completed or succeeded.

n Some variations exist in script capabilities and syntax between operating system versions,
so what works in your test environment may not work (or may produce different results)
on an end user’s computer. Moreover, dependencies on the end user’s computer configu-
ration may make some scripts vulnerable.

For these reasons, I recommend that you use FileMaker’s native script capabilities as much as pos-
sible, invoking alternative script capabilities only for requirements falling outside the scope of
FileMaker’s scripting vocabulary.

Using Send Event and VBScript
On Microsoft Windows, you can execute either VBScript or command-line instructions from
within your FileMaker scripts. Several methods are available for accessing external scripting capa-
bilities. (I provide examples in the next two sections.) The process is relatively straightforward, giv-
ing you access to an immense vocabulary of instructions on the current workstation.

Using VBScript with FileMaker Pro
The Microsoft Visual Basic Scripting engine (VBScript) installs by default on current versions of the
Windows Operating System (including the versions FileMaker Pro 10 requires to operate), making it
a freely available resource for you to tap when your FileMaker solutions are deployed on Windows.

If you have a VBScript file already created and saved on your computer, you can run it using the
Send Event [] script command. If desired, you can store a ready-made file containing VBScript

28_429006-ch20.indd 71028_429006-ch20.indd 710 3/25/09 8:04:25 PM3/25/09 8:04:25 PM

711

Extending FileMaker’s Capabilities 20

code in a container field in your solution so that your script can export it and then run it as
needed. For maximum flexibility, you can use FileMaker’s calculation and scripting capabilities to
create and run VBScript code dynamically.

In FileMaker 10, you can create a file containing a VBScript definition on a local disk drive and
then have the Windows Script Engine run the file. You can efficiently accomplish this task by hav-
ing your FileMaker script write the VBScript instructions into a global text field, then export them
to a *.vbs file and open the file. The process requires a script sequence such as

Set Variable [$vbs; Value:”file:” & Get(TemporaryPath) & “FMPmessage.vbs”]
Set Field [Utility::gVBS; “MsgBox \”You’ve run VBScript from FileMaker Pro.\””]
Export Field Contents [Utility::gVBS; “$vbs”; Automatically open]

To create the VBScript file and open it in a single step, select the Automatically Open File check-
box option in the Specify Output File dialog for the Export Field Contents [] command, as
shown in Figure 20.1.

 FIGURE 20.1

Setting the Exported .vbs file to open automatically.

The example script shown here uses a single line of code containing the VBScript MsgBox com-
mand to invoke a dialog onscreen, as shown in Figure 20.2.

While the one-line VBScript that produces the dialog in Figure 20.2 is a useful, albeit basic, dem-
onstration of the technique, you can use VBScript’s extensive capabilities to automate a great vari-
ety of processes.

28_429006-ch20.indd 71128_429006-ch20.indd 711 3/25/09 8:04:25 PM3/25/09 8:04:25 PM

712

Raising the BarPart V

 FIGURE 20.2

A VBScript dialog invoked from a FileMaker Pro script.

CROSS-REFCROSS-REF You can find links to resources containing thousands of ready-to-use VBScript
examples in Appendix A.

Calling Windows Command-Line scripts
You can also issue instructions to the Windows Command Line Interpreter using the FileMaker
Send Event [] script command. For example, Figure 20.3 shows the Options dialog for the
Send Event [] script command configured with appropriate syntax to create a folder at an
explicit path.

 FIGURE 20.3

Using Send Event[] to call a command script creating a folder on the current workstation.

The example shown in Figure 20.3 provides a fixed text command-line instruction to create a new
folder called DataFiles on the desktop of a user named NightWing on drive C:\ of the current
workstation. The syntax of the code used in this example is formed as follows:

 1. The instruction opens with cmd to invoke the Windows command-line interpreter (the
cmd.exe application on the current computer).

 2. The /c suffix is a command-line switch instructing the interpreter to exit after comple-
tion of the instruction.

28_429006-ch20.indd 71228_429006-ch20.indd 712 3/25/09 8:04:26 PM3/25/09 8:04:26 PM

713

Extending FileMaker’s Capabilities 20

 3. The program call, md, is the command-line instruction for “make directory.”

 4. The closing argument “C:\Documents and Settings\NightWing\Desktop\
DataFiles” provides the path (including the folder name) of the folder to create. The
enclosing quotes are required only if the path contains spaces (as in this case).

NOTENOTE When you use Send Event [], a scripted pause may be required before any sub-
sequent step that depends on the outcome. In this case, for example, if your

script’s next action is to place a file in the newly created folder, a short pause of 1 to 2 seconds is
required to give the command-line interpreter time to create the folder and exit.

While this example illustrates the technique, in practice, you’ll frequently find it more useful to
determine paths dynamically. You can achieve the dynamic determination of paths using the
option to employ a calculation specifying the Send Event [] command. For example, to build
the path for creation of a folder named DataFiles, you can specify a calculation using as its basis the
value returned by the built-in Get(DesktopPath) function, with an expression along the fol-
lowing lines:

Let([
UserDesk = Substitute(Get(DesktopPath); “/”; “\\”);
MD_path = Right(UserDesk; Length(UserDesk) - 1)];
“Cmd /c md \”” & MD_path & “DataFiles\””
)

When you use a calculation to determine command-line syntax dynamically, as shown here, the
procedure is more robust because it accurately reflects the extant environment on the user’s
computer.

CROSS-REFCROSS-REF The command-line instruction used in the preceding examples (md) is one of a large
number of available Windows commands. For additional information about avail-

able commands and their uses, refer to the resources listed in Appendix A.

The Windows Send DDE Execute [] script step (DDE stands for Dynamic Data Exchange) pro-
vides added Windows-specific capabilities. In particular, it allows you to send service requests to
other applications (such as a request to Internet Explorer to open a particular URL). The services
available depend upon the application with which you’re trying to communicate, so you need to
examine that application’s documentation for what it supports and the request syntax. While
FileMaker Pro can send DDE requests, it isn’t configured to respond to any DDE requests.

Perform AppleScript
On the Macintosh Operating System, your FileMaker scripts can make use of the built-in
AppleScript scripting language, providing extensive control over the operating system and
many applications. Moreover, through AppleScript, you can gain access to Shell Scripts (UNIX
command-line instructions).

Executing AppleScript code from within your FileMaker scripts is as simple as configuring the
Perform AppleScript [] command with an appropriate AppleScript instruction. For example,

28_429006-ch20.indd 71328_429006-ch20.indd 713 3/25/09 8:04:26 PM3/25/09 8:04:26 PM

714

Raising the BarPart V

to have AppleScript display a dialog similar to the one in the preceding section’s example, you can
configure the Perform AppleScript options to run a line of Native AppleScript, as shown in Figure
20.4. When the script containing the Perform AppleScript instruction shown in Figure 20.4 exe-
cutes, Mac OS presents a dialog displaying the specified message text, shown in Figure 20.5.

Needless to say, the one-line AppleScript shown here does not do justice to AppleScript’s expan-
sive capabilities. However, it serves to illustrate the basic technique for integrating external script
calls into your FileMaker scripts.

 FIGURE 20.4

Running a line of Native AppleScript code with the Perform AppleScript command.

 FIGURE 20.5

An AppleScript dialog invoked from a FileMaker Pro script.

CROSS-REFCROSS-REF You can find links to resources containing detailed AppleScript syntax and a broad
collection of useful examples in Appendix A.

In addition to its native powers, AppleScript gives you access to the operating system’s command-
line capabilities.

For example, rather than using AppleScript instructions to create a folder (which is certainly possi-
ble), you can use it to execute a Shell script. The example in Figure 20.6 shows an AppleScript call
configured to run an OS script, hard-coded to create a new folder called DataFiles on the desktop
of a user named nightwing on a volume named Macintosh HD on the current workstation.

28_429006-ch20.indd 71428_429006-ch20.indd 714 3/25/09 8:04:26 PM3/25/09 8:04:26 PM

715

Extending FileMaker’s Capabilities 20

 FIGURE 20.6

Using AppleScript to call a Shell command creating a folder on the current workstation.

In practice, dynamically determining paths is frequently far more useful. You can, for example, use
the shell syntax “~/Desktop/DataFiles” to determine the path to the DataFiles directory on
the current user’s desktop. Alternatively, you can employ the Calculated AppleScript option to
specify the command syntax. For example, you can specify a calculation to build the required shell
script instruction with an expression such as

“do shell script \”mkdir ‘/Volumes” & Get(DesktopPath) & “DataFiles’ \””

Because you can create both AppleScript and OS Shell commands via calculation and execute them
using the Perform AppleScript[] command, you have a great deal of scope and flexibility.

CROSS-REFCROSS-REF For information and examples of Shell commands and their associated arguments,
refer to the resources listed in Appendix A.

Cross-platform solutions and external script calls
While the external script options differ between MacOS and Windows, the command-line and
script engine capabilities have significant overlap, so you can accomplish many external scripting
tasks on both platforms with the appropriate syntax.

To make best use of external script calls in your solutions, consider including a platform test and exe-
cute the external scripts according to the result. For example, to create a folder named DataFiles at
the root directory of the boot drive, regardless of platform, you can use the following script code:

If [Abs(Get(CurrentPlatform)) = 1
 # Current Platform is MacOS–execute AppleScript/Shell Script:
 Perform AppleScript [“do shell script “mkdir ‘DataFiles’ “”]
Else
 # Current Platform is Windows — call Command-Line instruction:
 Send Event [“aevt”; “odoc”; “cmd /c md C:\DataFiles”]
End If

28_429006-ch20.indd 71528_429006-ch20.indd 715 3/25/09 8:04:27 PM3/25/09 8:04:27 PM

716

Raising the BarPart V

With strategic branching according to platform, your solution’s scripts can respond appropriately
wherever the files are opened. Using this technique, you can successfully incorporate a significant
number of external script actions into your cross-platform solutions.

TIPTIP Because the Perform AppleScript [] command is not available on Windows,
the third line of the preceding script must be tested with the file open on MacOS.

Although the Send Event [] step is available on both platforms, I recommend that you create
and test the external script calls for each platform on the appropriate operating system.

On Mac OS, the Send Event[] command provides you with the capability of directly sending
AppleEvents to other applications (or even to your currently running copy of FileMaker Pro).
When you install FileMaker Pro 10 (or FileMaker Pro 10 Advanced) on a Mac, a FileMaker Pro
database of AppleEvents is installed in the English Extras folder within the FileMaker folder within
Applications.

On Windows, you can use the Send Event[] command to pass open or print events to desig-
nated applications, pass single lines of script, or invoke the command-line interpreter. A FileMaker
database of script commands and code operable on Windows is available as a free download from
the ConnectingData Web site (www.connectingdata.com).

Third-party helpers and macros
Beyond FileMaker scripting, you can use a variety of external tools to automate common proce-
dures, including repetitive FileMaker tasks.

Depending on the platform, you can use AppleScript or VBScript to initiate processes, opening files
and setting scripts in motion (script calls require the use of ActiveX on Windows) and controlling
your solution’s interface.

Other third-party automation and scheduling tools are also worthy candidates for the automation
of both developer and end-user processes involving your solution (or your solution’s interaction
with other applications). For example, QuicKeys (available for both Mac OS and Windows) is a
versatile macro environment providing user-configurable automation options for most sequences
of keyboard and mouse input.

Other useful tools for enhancing productivity include TextExpander (Mac OS), As-U-Type
(Windows), and AIM Keys (Windows) — each offering aids to the efficiency and accuracy of a
wide variety of data-entry and computer management tasks — within and beyond your database
solutions.

Rendering HTML and JavaScript
FileMaker’s Open URL [] script step and the Web viewer layout object give you direct access to
content from a wide variety of sources, including Web services and output from a variety of appli-
cations capable of generating hypertext or Web-compliant content.

28_429006-ch20.indd 71628_429006-ch20.indd 716 3/25/09 8:04:27 PM3/25/09 8:04:27 PM

717

Extending FileMaker’s Capabilities 20

With the advent of FileMaker 10 and its increased support for Data URLs, FileMaker itself is now
one of the applications you can use to generate Web viewer content. You can render calculations
and stored data directly in FileMaker Web viewers using the following syntax:

“data:text/html,” & YourTO::YourHTMLcontent

In this example, the trailing field reference (or a calculation expression in its place) produces
HTML and/or browser-compatible content (Flash, Javascript, and so on).

Harnessing HTTP
When you produce Web content using any third-party tool, such as Dreamweaver, Netbeans IDE,
or Eclipse, you can substitute placeholder flags for content or page rendering values (colors, sizes,
coordinates). When you store the resulting content in FileMaker in a text field, your calculations
can substitute values from the current record’s fields (and its related data) for the embedded place-
holder values.

This process’s output is a dynamic rendering of your solution content. You can pass the result
directly to a Web viewer for screen viewing or printing (or output to pdf, e-mail, and so on) or
save the result to an external file, such as on a Web server for public access.

Using variations on the techniques described here, your solutions can incorporate the full depth
of interface, data display, and dynamic visualization available using current Web and browser
technologies.

Bringing services to your solution
With a Web viewer pointed to any URL on the Internet, your solution can retrieve the page source
using the following simple FileMaker calculation expression:

GetLayoutObjectAttribute (“ViewerObjectName” ; “content”)

To reliably retrieve the source code from a designated Internet address, you must account for load
times, pausing until the full content of the destination page has been recovered. You can do so
with a scripted loop procedure.

CROSS-REFCROSS-REF For a detailed description of script technique for scraping data from Web pages,
refer to Chapter 10.

Using Web viewers in your solution lets you choose to render the content for screen or print out-
put or to store the content as data in your solution. By combining the techniques discussed here
with those described in previous sections, you can recover the source from a remote Internet
address and then use it as a template or wrapper, interleaving or embedding data from your solu-
tion and rendering or printing the result.

Alternatively, these techniques allow you to draw source content from multiple sites, combining
them and presenting them in a format of your choosing.

28_429006-ch20.indd 71728_429006-ch20.indd 717 3/25/09 8:04:27 PM3/25/09 8:04:27 PM

718

Raising the BarPart V

CAUTION CAUTION Always ensure that your use of content not originating within your solution is in
accordance with the terms of use and copyright provisions of its owners, authors,

and publishers.

Handling hypertext
Moving content between conventional data storage, such as text and number fields, and hypertext
presents some challenges regarding formatting. By using FileMaker’s native GetAsCSS() func-
tion, you can convert embedded text character formatting, including styles, sizes, fonts, and colors,
to a tagged form appropriate for display in a Web viewer or browser environment.

For example, to display formatted text content from your database in a Web viewer, configure the
Web viewer (in Layout mode, via the Web Viewer Setup dialog) to enclose the data URL content
within the GetAsCSS() function, as shown in Figure 20.7.

 FIGURE 20.7

Configuring a Web viewer to render embedded character formatting from content originating in data fields.

Using this technique, any character formatting applied to the text in the TextField field will be rep-
licated in the CSS-tagged content the Web viewer renders. You can see the rendering of styled field
text in a Web viewer in the Browse mode image of the same layout reproduced in Figure 20.8.

 FIGURE 20.8

Web viewer in Browse mode, displaying data formatting.

NOTENOTE A Web viewer renders unformatted text (that is, text without embedded character
formatting) according to the default Web style — not necessarily matching the field

box’s display formatting. The application of default formatting applies separately to each aspect
of formatting (font, size, style, and color).

28_429006-ch20.indd 71828_429006-ch20.indd 718 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

719

Extending FileMaker’s Capabilities 20

Web Viewer Widgets
Web viewers bring additional functionality to FileMaker. There is a world of innovation on the
Web, much of it leaking into FileMaker layouts through Web viewers large and small.

With the gathering momentum of Web 2.0, dynamic and interactive content forms are appearing
and evolving at an alarming rate — so I’m resigned to anything I write here being old news almost
before the words hit the page. You can assume that what I say here applies equally to a variety of
technologies — including some not yet revealed.

Charting with Flash
Data visualization tools are far more abundant with every passing year. Many of these tools crop-
ping up in recent years are compact Shockwave Flash (.swf) files capable of receiving and render-
ing arrays of user data. The variety and quantity of this class of tools is steadily increasing, and a
number of the tools are available free (and others are licensed for modest shareware fees).

The significance of this burgeoning technology for FileMaker lies in the opportunities you have to
incorporate Flash charting into your solution. You can perform this feat by

 1. Storing the required Flash resource file in a container field.

 2. Exporting the file to a known path on the user’s workstation (for example, to the temp
directory).

 3. Setting a calculation to append arrays of solution data to the path to the Flash resource file.

 4. Loading the resulting string into a Web viewer on your solution’s layout.

Moreover, while this process requires a script to render your data in graphical form on your layout,
by placing the required resources during your solution’s start-up script and setting the path calcu-
lation as the default path for your Web viewer, you can make the process fully dynamic. Your solu-
tion’s data will be charted “live” as users navigate records and edit field contents.

Applets and servlets
The process outlined in the preceding section isn’t limited to data visualization. In addition to graphi-
cal and rendering widgets, a generation of calculation, communication, and analysis utilities is emerg-
ing in the form of miniature Web-capable, self-contained code snippets. Some of these emerging
tools — commonly called servlets — are designed to operate in a fixed environment on a remote
server, yet are accessible to anyone with a Web connection. Others are entirely portable, compatible
with the models of use I’ve described for charting utilities, and are referred to as applets.

FileMaker is positioned to make full use of emerging technologies of this kind — and their con-
tinuing availability appears assured. Whatever the future of computing may hold, component tech-
nologies are set to be a significant part of it.

28_429006-ch20.indd 71928_429006-ch20.indd 719 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

720

Raising the BarPart V

FileMaker Plug-Ins
No survey of FileMaker’s options for extensibility would be complete without mention of the plug-
in API (Application-Program Interface) and the extraordinary variety of plug-in utilities (some so
sophisticated they might be better thought of as ancillary applications) developers have made avail-
able as FileMaker plug-ins.

Although the plug-in interface was first envisaged (with the introduction of FileMaker 4) as an
adjunct to the calculation engine — a way for developers to provide support for obscure computa-
tion functions — it rapidly became the base of wide-ranging innovation, with plug-ins emerging to
serve such diverse purposes as script scheduling, systems integration, e-mail handling, and image
manipulation.

As with almost every technology available for extending the program’s scope, I could fill a book in
its own right with detailed coverage of FileMaker plug-ins, their capabilities, and their use. I can’t
hope to do justice to even a fraction of the available tools here. However, I can provide you with an
overview of the main techniques used to control plug-ins and some guidelines for their use.

Installing and enabling plug-ins
To install and fully enable a plug-in on your client workstation installations of FileMaker Pro or
FileMaker Pro Advanced, follow these steps:

 1. Obtain the correct version of the plug-in for your computer’s operating system and place
it in the Extensions folder inside the folder containing your copy of FileMaker Pro 10
(or FileMaker Pro 10 Advanced). Plug-ins on Mac OS have the file extension .fmpl-
ugin, whereas Windows plug-ins use the .fmx extension.

 2. Launch FileMaker Pro 10 (if it’s already running, quit and relaunch it to load the new
plug-in) and choose FileMaker Pro ➪ Preferences (MacOS) or Edit ➪ Preferences
(Windows). The Preferences dialog appears.

 3. Navigate to the Plug-Ins tab, confirm the new plug-in appears in the list, and (if it’s not
already selected) select the checkbox next to its name, as shown in Figure 20.9.

 In your solution, configure the start-up script to call the plug-in’s version function con-
firming its availability (and verifying the required version of the plug-in — or later — is
installed). If the required plug-in version isn’t available, try the following:

n If your solution is hosted and you’re using AutoUpdate to retrieve required plug-ins
from the Server, have your script call the FMSAUC_FindPlugIn() external function
to search for the plug-in on the server and, if found, subsequently call the FMSAUC_
UpdatePlugIn() external function to retrieve and install the plug-in.

n If the plug-in isn’t available and your solution’s functionality depends on it, post a dia-
log alerting the user to the problem and close your solution.

28_429006-ch20.indd 72028_429006-ch20.indd 720 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

721

Extending FileMaker’s Capabilities 20

NOTENOTE Commercial and shareware plug-ins must be licensed and generally require that a
valid license code be supplied by your solution before first use of the plug-in in

each application session.

Passing a required license code to a plug-in is usually achieved by calling an external “register”
function provided by the plug-in. Consult the documentation supplied by your plug-in vendor for
details of the appropriate syntax for plug-in registration.

 FIGURE 20.9

Enabling a plug-in via the Preferences Plug-ins tab.

FileMaker Pro installs by default with a plug-in named AutoUpdate enabled. AutoUpdate enables
you to configure your solutions to retrieve current versions of required plug-ins when they’re
stored in the designated plug-ins folder on the current FileMaker Server host computer.

To take advantage of plug-in auto-update capabilities, you must configure the following in accor-
dance with the operational requirements of the AutoUpdate process:

n FileMaker Server

n FileMaker Pro

n Your solution’s start-up script

When each of these components are configured appropriately, the required plug-in versions are
checked and, if necessary, are downloaded from FileMaker Server and enabled on the user’s work-
station, as your solution starts up.

28_429006-ch20.indd 72128_429006-ch20.indd 721 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

722

Raising the BarPart V

A notable change in the operation of the auto-update feature with FileMaker 10 is that plug-ins are
automatically downloaded to new locations on the user’s workstation. The target locations,
depending on the user’s operating system and platform, are

n On Mac OS X:

 Mac OS X: Macintosh HD/Users/User Name/Library/Application Support

n On Windows XP:

 C:\Document Settings\User Name\Local Settings\ApplicationData\
FileMaker\Extensions

n On Windows Vista;

 C:\Users\User Name\AppData\Local\FileMaker\Extensions

The same plug-in folder locations are accessed by both FileMaker Pro 10 and FileMaker Pro 10
Advanced.

TIPTIP The user can choose to place plug-ins in the local folders manually if desired, rather
than placing them into the FileMaker Pro application folder. This method may be

preferable in cases when the user doesn’t have privileges allowing them to modify the
Applications folder (on Mac OS) or Program Files folder (Windows).

NOTENOTE For additional information about the configuration requirements for automatic
update of solution plug-ins, refer to the document named FileMaker Server 10 —

Guide to Updating Plug-ins provided with the FileMaker Server 10 manuals and documentation.
(It’s also available from the Downloads section of the FileMaker, Inc., Web site.)

Using external functions
Invoking plug-in capabilities requires you to call an external calculation function provided by the
plug-in, supplying appropriate arguments to control the behavior of the plug-in, and pass it
required data or parameters. The purpose of each external function — and its required syntax — is
specific to the individual plug-in and should be detailed in documentation available from the plug-
in vendor.

TIPTIP Simply including an external function in a calculation is not sufficient. FileMaker’s
calculation engine must evaluate the function. For example, if you have the

MediaManager plug-in installed and you call the external function Media_RecordSoundStop
in the following calculation expression:

If(DayOfWeek(Get(CurrentDate)) = 5; Media_RecordSoundStop)

the sound recording function of the MediaManager plug-in will be stopped on Fridays.

You can take advantage of this behavior by using calculation code to determine how and when
external functions are evaluated.

28_429006-ch20.indd 72228_429006-ch20.indd 722 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

723

Extending FileMaker’s Capabilities 20

Most plug-ins are designed to be called via calculations occurring in your solution’s scripts (by
including external functions in the formula for a Set Field [] or Set Variable [] command,
for instance). However, you can include plug-in functions wherever calculations are supported so
that you can add plug-in calls in schema calculations, access privileges calculations, conditional for-
matting expressions — wherever is appropriate for the plug-in functionality you require.

NOTENOTE Ideal techniques for including external function calls in your solutions may vary
according to a given plug-in’s nature and functionality. Most plug-in vendors pro-

vide example databases showing a range of recommended techniques for calling the external
functions provided by their plug-in. Such examples are indicative of the range of viable and sup-
ported triggering methods for the plug-in.

Script triggering
One of the most ubiquitous plug-in capabilities is script triggering, which offers you the ability to
trigger a script from a calculation in your solution. Script triggering capabilities can substantially
extend and enhance your solution’s capabilities. However, it can also lead to problems if not
implemented expertly. For example:

n If your solution triggers a script from a schema calculation, and the script modifies the
current record resulting in re-evaluation of the same calculation, your solution may
become trapped in an infinite loop. The risk is no greater than pertains to the use of the
FileMaker Loop/End Loop script commands (where failure to include a valid exit con-
dition also results in an infinite loop) or the Perform Script [] command (where an
inattentive developer can set a script to call itself). Nevertheless, you should be aware of
the need to plan your implementation of script triggering with care.

n Calculations are evaluated when leaving a field or record, and you can use them to trigger
a script (by inclusion of an external function call within the calculation expression).
However, when you intend to have the script act upon the current record and the user
exits the field by navigating to a different record, by the time your script commences, the
current record is not the one where the trigger calculation was evaluated. Therefore, you
must allow for this possibility and design your scripts accordingly, avoiding unintended
outcomes from such uses of script triggering.

You can address both these issues by designing an appropriate framework for your script triggering
plug-in calls, mindful of the potential issues, as I discuss in the next two sections.

Robust triggering implementations
To ensure that your script triggers aren’t activated by the actions of the script they call, becoming
loop-locked, enclose schema (and schema-dependent) trigger calls within a condition preventing
the evaluation of the external function if the script is already running. For example, to use the pop-
ular zippScript plug-in to call a script named “Check” in the current file (without the optional
parameter or control settings), you can use the external function syntax:

zippScript_PerformScript(Get(FileName); “Check”)

28_429006-ch20.indd 72328_429006-ch20.indd 723 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

724

Raising the BarPart V

However, to ensure that the external function will not be evaluated if the Check script is already
active, enclose the function in a conditional expression, as follows:

If(Get(ScriptName) ≠ “Check”; zippScript_PerformScript(Get(FileName); “Check”))

If the Check script calls other scripts that may in turn modify the field (or fields) used to trigger
the external function call, you may need to guard against indirect recursion as well. To do so,
extend the If() test in the preceding expression to forestall the trigger action while any of the
implicated scripts are active.

By controlling the evaluation context of script triggering function calls as outlined in the preceding
example, you can manage the external calls, determining the context when triggering occurs (also
including other criteria if desired). This approach is appropriate in cases where the called script
may have consequences leading to re-evaluation of the external function activating the trigger,
including schema calculations, privilege (Record Level Access) expressions, and layout calcula-
tions, such as Web viewer and conditional formatting expressions.

In cases where a triggered script is required to act on the record where the external function is
evaluated, such as for data-entry validation, data updates, and other record-specific script pro-
cesses, you need to capture the context where triggering originates. You can do so by using the
external function call to pass a parameter to the called script, including the ID of the calling record
in the parameter. In the following example, the zippScript function passes the primary ID of the
current customer record to the Check script:

zippScript_PerformScript(Get(FileName); “Check”; CustomerID)

You should then structure your check script so that when run, it first confirms that the calling
record is current and, if not, accesses it — for example, you can use one of the following methods:

n Structure your script to

n Capture the current context (mode, layout, record, and window)

n Freeze the screen, navigate to a utility layout, and enter Browse mode

n Enter the script parameter value into a global field you’ve configured to establish a
relationship to the relevant customer record

 The script can then proceed to perform its check procedure while accessing the appropri-
ate record via the utility relationship, subsequently returning the user to the script’s com-
mencing context.

n Have your script create a new temporary database window out of the user’s field of view
(for example, off-screen), navigate to the customers layout and perform a Find to locate
the relevant customer record, perform the required check, and then close the temporary
window.

In either case, your script ensures that its actions are applied to the appropriate record, yet faith-
fully reinstates the context (active window, layout, found set, and current record) invoked by the

28_429006-ch20.indd 72428_429006-ch20.indd 724 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

725

Extending FileMaker’s Capabilities 20

user on leaving the field at the point the external function call triggers the Check script. With this
implementation, the user can leave the current record by changing layouts, navigating to a differ-
ent record, entering a different mode, or closing the current window, without compromising the
script’s ability to perform its intended function.

One further condition you should account for to ensure that your script triggering implementation
is robust is the case where a user leaves the current record by closing the file or exiting the applica-
tion. Because it’s likely that your script trigger will not succeed in such a case, if it’s essential that
the script runs when data is edited, I recommend that you set the script trigger in an auto-enter
calculation set to return a session ID value (for example, user login account and workstation ID)
when triggered and have your script clear the value when it runs.

With this configuration, your file’s closing script should check for the presence of the current ses-
sion ID in the current table and, if found, call the check script before completing its run.

When you set in place a thoughtfully designed (and thoroughly tested) implementation along the
lines set out in this example, you can be confident that your scripts will always run when triggered,
will never lock your solution in a loop, and will always act on the appropriate record.

Available script triggering plug-ins
A number of excellent script triggering plug-ins are available, and many provide triggering in addi-
tion to a variety of other features. Worthy offerings include MenuMagic from New Millennium
Communications (http://newmillennium.com), ScriptMaster from 360Works
(www.360works.com), and Troi Activator from Troi Automatisering (http://troi.com).
Each of these plug-ins provides additional functionality (and, in the case of MenuMagic, an exten-
sive suite of security and menu customization options).

NOTENOTE An FMExample plug-in supplied on the FileMaker Pro Advanced installation CD
includes script-triggering capabilities. However, I advise against its use for most

script-triggering purposes because it does not include the ability to pass a parameter to the
called script. Consequently, the FMExample plug-in is unsuitable as a trigger for any script where
context is relevant to the actions the script performs.

Dialog capabilities
The FileMaker Show Custom Dialog [] script step offers a core set of capabilities enabling you
to perform two or three of the tasks commonly handled using dialogs in modern computer sys-
tems. Several leading third-party vendors — perhaps the best known being 24U Simple Dialog
from 24U Software (www.24usoftware.com) and Troi Dialog Plug-in from Troi Automatisering
(www.troi.com) — offer plug-ins with dialog capabilities.

Dialog plug-in capabilities include adding custom icons or graphics to your dialogs and altering
the dialog’s size or placement, including pop-up lists, checkbox options, radio buttons, fields of
various sizes, and dynamically labeled buttons. Figure 20.10 shows an example of a dialog pro-
duced by calling an external function.

28_429006-ch20.indd 72528_429006-ch20.indd 725 3/25/09 8:04:28 PM3/25/09 8:04:28 PM

726

Raising the BarPart V

 FIGURE 20.10

A customized text display dialog produced using the Troi Dialog Plug-in.

The customized dialog example shown in Figure 20.10 was created by calling three of Troi Dialog’s
external functions in succession, to specify the custom icon, the dialog title, and the parameters for
the dialog to be displayed respectively. The syntax for the relevant script code is as follows:

Set Variable [$x; Value: Dial_IconControl(“-SetCustomIcon”; I::gDialogIcon)]
Set Variable [$x; Value: Dial_SetDialogTitle(“” ; “FileMaker Bible Example -

Record Metadata”)]
Set Variable [$x; Value: Dial_BigInputDialog(“-Width=600 -Height=280

-CustomIcon -DefaultButton1 -StopOnESC” ; “Tracking
encryption details for the current Registration
record:” ; “Done” ; “” ; “” ; “” ; Registrations::cRec
ordMetadata)]

NOTENOTE Many other dialog formats and options are available. Full details of the syntax
options for each external function — with examples of their use — are available

from the vendors’ sites.

While the example provided here gives you an indication of what is involved — and what results
you can expect — from using a dialog plug-in, I have barely scratched the surface in an effort to
point you in the right direction. I recommend that you download trial copies of plug-ins to deter-
mine the most appropriate options for your solution.

File and media handling
One of several other areas of plug-in functionality worth highlighting is the broad range of file and
media capabilities brought to FileMaker by a number of premier third-party providers — plug-ins
such as CNS Image from CNS (www.cnsplug-ins.com), File Manipulator from Productive
Computing (www.productivecomputing.com), MediaManager from New Millennium (www.
newmillennium.com), and Troi File from Troi Automatisering (www.troi.com).

28_429006-ch20.indd 72628_429006-ch20.indd 726 3/25/09 8:04:29 PM3/25/09 8:04:29 PM

727

Extending FileMaker’s Capabilities 20

These plug-ins and others like them simplify the process of managing external content and extend
your reach beyond what can readily be achieved with the combination of FileMaker Pro’s native
file management capabilities, and those available to you via the use of external scripting, as out-
lined in the “External Scripting Calls” section earlier in this chapter.

Also noteworthy with respect to content management tools is the SuperContainer plug-in from
360Works (www.360works.com), designed to provide coordinated access to remote server storage
of files and media content using a Java servlet in conjunction with a Web viewer in your solution.

E-mail, HTTP, and FTP
An ever-expanding selection of plug-ins providing support for online connectivity continues to
emerge from established and new third-party vendors. Long-standing contenders such as mail.it
(http://dacons.net), SMTPit, POP3it, FTPit (http://cnsplug-ins.com), and Troi URL
Plug-in (http://troi.com) have been joined by the 360Works Email Plugin
(http://360works.com) and the TCPdirect and SendMail offerings from Fusion (http://
fusionplugins.com).

Recently, however, vendors are providing connectivity tools that combine broad-based and mixed
capabilities in a single powerful plug-in. One of the difficulties these products face is their breadth
and the potential to overlook them when targeting specific (and more traditional) niches. The
release in recent years of Smart Pill from Scodigo (www.scodigo.com), the MBS FileMaker
Plugin from Monkeybread Software (www.monkeybreadsoftware.de), and Fusion Reactor
from Digital Fusion Ltd. (www.fusionplugins.com) — each exciting and ground-breaking
in their own right — are equally hard to categorize in light of their versatility and breadth of
applicability.

Charting and other functionality
Another area of plug-in functionality with an established user base is charting and data visualiza-
tion. Here the plug-in contenders include xmCHART from X2max Software (www.x2max.com),
24U SimpleChart Plugin from 24U Software (www.24usoftware.com), and the Charts Plugin
from 360Works (www.360works.com). The breadth and depth of functionality varies between
vendors, but continues to provide many users a viable alternative to more recent Web viewer–
based charting options.

Also notable for the variety of options available are interapplication communication and data trans-
formation plug-ins. Some of the many available options provide data conduits between FileMaker
and established accounts, CRM, e-mail, address book, and organizer applications.

NOTENOTE If you’re interested in writing your own plug-ins, you can find an example plug-in
project on the installation disk for FileMaker Pro Advanced. Moreover a plug-in

development template and tutorial is available from 24U (www.24Usoftware.com).

28_429006-ch20.indd 72728_429006-ch20.indd 727 3/25/09 8:04:29 PM3/25/09 8:04:29 PM

728

Raising the BarPart V

Suffice it to say, innovative plug-in developers around the globe cover an extraordinarily large
number of bases, extending the uses of the API in every direction conceivable. A great deal more is
on offer than I have been able to touch on here. If you have a problem, the chances are somebody
has already solved it with FileMaker plug-in.

CROSS-REFCROSS-REF For additional details regarding the broad range of third-party plug-ins, refer to the
online resources listed in Appendix A.

Web Deployment Options
In addition to its power and versatility as a desktop and client-server database system, FileMaker
provides options for Web deployment, enabling you to use your FileMaker data as the basis of
Web site content. If your data includes schedules, catalogs, collections, facts, or figures, the
chances are someone would like to look it up on the Web.

If you don’t require users to enter data into your database (and if your data changes only infre-
quently), one option is to export your data as an HTML table (one of FileMaker’s built-in data
export formats) and incorporate it into an appropriate HTML framework by adding HTML frames,
headers, and/or style sheets. But if your data requires two-way interaction or needs more than peri-
odic updates, a live Web connection direct to your solution is preferable.

Instant Web publishing
If the fmiwp extended privilege is enabled for one or more privilege sets in your solution, you can
make your database available to up to five concurrent Web users in a matter of minutes by choos-
ing File ➪ Sharing ➪ Instant Web Publishing and configuring the open databases for access, as
shown in Figure 20.11.

Once Instant Web Publishing (IWP) is enabled, users will be able to open your solution using a
supported web browser, by entering the IP address of your computer (preceded by http://) in
their browser’s address bar. Your solution’s layouts are rendered in the user’s browser and naviga-
tion, data entry, and limited scripts (those containing only Web-compatible script commands) are
available.

Because of the nature of web browsers — an inherently stateless user experience — FileMaker lay-
outs are not as dynamic and responsive in IWP. The user experience is less suited to the FileMaker
interface model than the FileMaker client application, and some layout objects exhibit different
behavior when accessed via a web browser. Nevertheless, IWP is a remarkable technology and
serves a range of purposes well.

NOTENOTE To access your solutions via Instant Web Publishing, the user’s browser is required
to provide full support for Cascading Style Sheets (CSS). That limits users to

Internet Explorer 6.x (or later) or Firefox 1.x (or later) on Windows and Safari 1.2.x, Safari 2.0.x,
Safari 3.x or Firefox 1.x (or later) on Mac OS.

28_429006-ch20.indd 72828_429006-ch20.indd 728 3/25/09 8:04:29 PM3/25/09 8:04:29 PM

729

Extending FileMaker’s Capabilities 20

 FIGURE 20.11

Configuring your database for web browser access via the Instant Web Publishing dialog.

If you can work within the IWP format’s functional constraints, but require more than five simulta-
neous users, you should consider hosting your solution on FileMaker Server Advanced to make
your solution available to up to 100 simultaneous Instant Web Publishing users.

TIPTIP When using IWP, you can use the Web folder in your FileMaker Pro folder to store
external files, such as images and referenced container files, to share via Instant

Web Publishing. You can also include a customized entry page of HTML using the filename
iwp_home.html, plus other pages of static HTML if required.

Custom Web publishing
If you require more than 100 simultaneous Web-based users, support for a larger selection of Web
browsers, or greater flexibility and control over the Web-browsing experience than is achievable
within the constraints of Instant Web Publishing, FileMaker Server provides support for other
forms of Web access to your solutions.

Custom Web Publishing enables you to build an alternative Web-specific interface to your solu-
tion, reading and writing directly to your solution’s data structure in real time. Support is available
for Web-publishing strategies based on XML/XSLT or PHP.

Working with XML and XSLT
When your solution is hosted using FileMaker Server, you can make data access (for both read and
write) available via XML (Extensible Markup Language) and XSLT (Extensible Stylesheet Language

28_429006-ch20.indd 72928_429006-ch20.indd 729 3/25/09 8:04:29 PM3/25/09 8:04:29 PM

730

Raising the BarPart V

Transformation). By using XSLT, you can extract and transform your data into appropriate presen-
tation formats for a variety of applications, such as Web forms, news feeds, or special-purpose
downloads from your Web site.

Similarly, using XML with XSLT can also dynamically generate the source and content for your
Web pages, including data from FileMaker and, if desired, from other sources as well. To generate
Web content using XML, you require an appropriate XSLT style sheet as the intermediary between
FileMaker Server and its Web-publishing engine.

The FileMaker PHP API
If you host your solution using FileMaker Server, you can make use of its built-in PHP support,
making content from your solution available directly to external Web sites, receiving input from
Web users. The support for PHP’s open source standards for the Web enables you to rapidly
assemble Web-based applications to access your FileMaker data via live, real-time connections
with FileMaker Server.

With your installation of FileMaker Server, you receive a standard install of the PHP engine, the
FileMaker API for PHP and sample code, and documentation. Once the server is operational, you
have everything you need to begin publishing your FileMaker data via PHP.

NOTENOTE To prepare your solution for use with the PHP API, first activate the fmphp
extended privilege for privilege sets in your solution files, as shown in Figure 20.12.

 FIGURE 20.12

Activating the fmphp extended privilege in your solution files.

FileMaker’s PHP Site Assistant
FileMaker Pro 10 includes a PHP Site Assistant to walk you through the processes required to
produce PHP-based Web pages, replicating a range of common Web design elements and for-
mats such as data collection forms, list searching, and database record editing. You can take the

28_429006-ch20.indd 73028_429006-ch20.indd 730 3/25/09 8:04:29 PM3/25/09 8:04:29 PM

731

Extending FileMaker’s Capabilities 20

resulting pages and place them directly on your Web server or open them in the Web-design
environment of your choice (such as Dreamweaver, RapidWeaver, or GoLive) to edit and further
refine the HTML.

By using the PHP Site Assistant, along with FileMaker’s PHP API, you achieve an efficient method
of creating direct links between your FileMaker solution and a new Web application forming the
basis of your Web site. If you’re an experienced PHP developer, you can bypass the Site Assistant
and work directly with the FileMaker API for PHP. By doing so, you gain direct access to the broad
range of capabilities PHP provides in conjunction with the functionality of your existing FileMaker
solution.

CROSS-REFCROSS-REF Refer to the documentation provided with your installation of FileMaker Server for
additional detail and instructions about the use of the PHP Site Assistant and the

FileMaker PHP API.

Finding Third-Party Tools
The catalog of third-party tools you can find a use for in your FileMaker development is well
beyond the scope of the advice I can offer here. It’s an ongoing adventure for us, as it will be for
you. However, several FileMaker-specific third-party tools are so useful or particularly suited to
use with FileMaker that they deserve a mention here.

Developer tools
When you’re confronted with a challenging development task involving extensive manual updating
of complex FileMaker solution files, you’ll be relieved to know that powerful third-party automa-
tion tools can reduce the labor and increase the accuracy of your work. FMRobot from New
Millennium (www.newmillennium.com) re-creates field definitions, custom functions, value
lists, and privilege sets in a new FileMaker Pro 10 file, based on the structure and content of a
source file, which can be in any version from FileMaker 6 onward.

Also from New Millennium is Security Administrator, which enables you to manage passwords and
privileges centrally across a multi-file FileMaker solution. This tool lets you automate multi-file
account management in FileMaker 10.

As an alternative or adjunct technology for generating PHP Web pages and developing and cus-
tomizing Web applications that integrate closely with FileMaker data, FMStudio and FXForge from
FMWebschool (www.fxforge.net) cover a lot of ground and help you leverage multiple tech-
nologies to meet complex Web requirements.

For pure convenience and peace of mind when your solution is running on FileMaker Server,
AdminAnywhere from 360Works (www.360works.com) lets you access Server administration
features, monitor backups, and manage users remotely from a variety of devices via a browser
interface you can run on a handheld device, such as iPhone or Palm Treo.

28_429006-ch20.indd 73128_429006-ch20.indd 731 3/25/09 8:04:30 PM3/25/09 8:04:30 PM

732

Raising the BarPart V

Analysis and documentation
Beyond the capabilities of the DDR generated by FileMaker Pro Advanced, several third-party tools
give you direct access to an abundance of detailed information about your solution files.

Foremost among the new breed of FileMaker analysis tools is FMDiff from Huslik Verlag GmbH
(www.fmdiff.com), a deceptively simple tool capable of directly examining alternate versions of
your FileMaker Pro files and detecting the differences between them. FMDiff also has a range of
other useful capabilities, such as detecting and reporting possible structural anomalies and reveal-
ing embedded metadata, such as the version of FileMaker used to create your solution files, the
versions used to open the file, and the number of times (if any) the file has been recovered.

Operating on different principles, yet no less impressive, is BaseElements from Goya (www.goya.
com.au). When you generate a DDR from your solution, BaseElements can import, organize, and
analyze the content, enabling you to rapidly detect errors, locate references to specific database
objects, and identify unreferenced objects at all levels in your solution. Built in FileMaker,
BaseElements massively extends the scope and value of the DDR, giving you the ability to compre-
hensively analyze and document your solution and to compare different versions of your solution.

At the time of writing, other well-known and useful tools include MetaDataMagic from New
Millennium (www.newmillennium.com) and Inspector from FMNexus (www.fmnexus.com).
MetaDataMagic presently supports files in the .fp5 format and is an invaluable tool for use prior
to and during the conversion of solutions from the .fp5 format. Inspector supports the .fp7 for-
mat and is a versatile and impressive analysis tool. Both tools remain invaluable for analysis of files
created in previous versions, and I look forward to their support for FileMaker Pro 10 in the
future.

Shared information
Undoubtedly the most powerful tool of all is the information shared generously among members
of the international developer community. Developers at all levels of expertise from countries on
all continents willingly solve problems and exchange knowledge and expertise. Rather than jeal-
ously guard trade secrets and nurse competitive advantage, FileMaker developers have a long his-
tory of collegiality, where problems are shared and solutions debated in open forums.

I encourage you to build your skills and share them with others that you in turn may benefit from
the collective expertise of FileMaker developers across the globe.

CROSS-REFCROSS-REF A variety of resources, including Web links to community-sponsored forums and
online archives of FileMaker-related information, are available in Appendix A.

28_429006-ch20.indd 73228_429006-ch20.indd 732 3/25/09 8:04:30 PM3/25/09 8:04:30 PM

Despite the size of this volume and the scope of its cov-
erage of FileMaker techniques and functionality, there
is a great deal more to learn and to discover. I have

given you examples and pointers that should make the journey
easier and more enjoyable, but it doesn’t end here. To continue
to develop your skills as a FileMaker developer, you’ll need
access to a variety of supplementary resources.

This part contains an overview of additional sources, references,
and resources that you’ll find useful for further exploration and
details about the book’s companion Web site, which contains
links to download the example solution discussed throughout
Chapters 5 through 16.

Appendixes

IN THIS PART
Appendix A
Expanding Your Knowledge with
Additional Resources

Appendix B
About the Web Site

Index

29_429006-pp06.indd 73329_429006-pp06.indd 733 3/25/09 8:05:10 PM3/25/09 8:05:10 PM

29_429006-pp06.indd 73429_429006-pp06.indd 734 3/25/09 8:05:11 PM3/25/09 8:05:11 PM

735

This book and the documentation accompanying your FileMaker Pro
10 software provide a solid foundation for using FileMaker Pro 10
and leveraging its power. However, a worldwide community of

FileMaker users and developers exists, and many of them share useful infor-
mation, tips, and examples of both general and specific nature.

In this appendix, I describe and enumerate many of these other useful
FileMaker information sources. These sources include consulting and devel-
opment services, FileMaker technical support, online and published periodi-
cals, and references to online discussion groups and mailing lists. You can
find links to this appendix’s references on the book’s companion Web site
for those sources with an Internet presence (see Appendix B).

From the Horse’s Mouth
The FileMaker, Inc., Web site (www.filemaker.com) is your contact
point for online product support. But, more than just providing a technical
and customer support contact point, the site is a repository of information,
including links to tutorials, sample files, a directory of consultants, and a
compendium of various FileMaker add-ons, plug-ins, and developer tools
(some freeware, some shareware, and some commercial).

In addition to these general categories, the FileMaker Web site includes
viewable Webinars (recorded Web seminars); access to a broad online
Knowledge Base of product issues; solutions and answers to specific ques-
tions; PDF copies of the various product manuals; and links to purchasing
books (including this one) and magazines devoted to FileMaker. You can
find a treasure trove of these and a wealth of other downloadable resources
at www.filemaker.com/support/downloads/index.html.

IN THIS APPENDIX
Finding accurate and current
information

Locating professional support
and services

Sourcing examples and
technique demos

Discussing FileMaker online

Using FileMaker printed and
periodical resources

Expanding Your Knowledge
with Additional Resources

30_429006-bapp01.indd 73530_429006-bapp01.indd 735 3/25/09 8:05:56 PM3/25/09 8:05:56 PM

736

AppendixesPart VI

NOTENOTE While FileMaker’s Web site provides online support access, talking to a person is
sometimes beneficial. The Product Technical Support number of 800-325-2747 or

408-727-8227 (if outside North America) fills that bill. Be aware that, unless you purchase an
extended support option (FileMaker calls it Priority Support), this phone support is limited to
one call related to installing the software and one call related to usage problems. Priority
Support offers single-case, five-case, and annual options.

Beyond the resources available from the FileMaker, Inc., Web site, resources and mailing lists are
available via the membership-based programs (TechNet and the FileMaker Business Alliance)
offered to developers and businesses working with FileMaker. Through these resources, users and
developers around the globe stay abreast of news, changes, updates, and new releases of the soft-
ware, and exchange notes with each other and the Developer Relations contacts at FileMaker, Inc.
Other resources, such as white papers and technical briefs, are available exclusively to members of
FileMaker developer organizations.

NOTENOTE Membership in TechNet and the FileMaker Business Alliance includes significant
benefits in addition to providing access to a communication network dedicated to

improving the state of the FileMaker development art. Ancillary software, access to prerelease
versions, and even copies of FileMaker applications are included, based upon the membership
chosen. See the FileMaker Web site for further details.

As an annual event, the FileMaker Developers Conference provides four days of intense informa-
tion, resources, and exchange between attendees from many parts of the globe. At the time of pub-
lication, the next such event is scheduled to take place in San Francisco in August 2009 and will
attract speakers and delegates from all major continents. In addition, regional conferences and
special-purpose events (colloquia, briefings, meetings, and the like) are conducted in other cities
with either sponsorship or involvement of FileMaker, Inc.

Professional Consulting and
Development Services
A global network of professional FileMaker developers exists, many of whom provide and support
complex applications for clients in a vast range of industries and in many countries of the world.
FileMaker provides a certification program through a network of external test centers worldwide as
a step toward the assurance of the knowledge and skill of professionals working in the field. Because
FileMaker has been in use since 1985, professionals with extensive experience are available.

For those located in Canada and the United States, FileMaker, Inc., publishes a FileMaker Resource
Guide listing individuals and companies providing FileMaker-based solutions and consultancy ser-
vices. The current edition is available online from the FileMaker Web site at www.filemaker.
com/downloads/pdf/resource_guide.pdf.

30_429006-bapp01.indd 73630_429006-bapp01.indd 736 3/25/09 8:05:56 PM3/25/09 8:05:56 PM

737

Expanding Your Knowledge with Additional Resources A

Regrettably, the community is heavily shortchanged by the Resource Guide’s predominant focus on
businesses located in the Americas, as it excludes much of the worldwide network of developers and
numerous other world-class FileMaker resource providers. With the ready availability of the Internet,
you need not be limited to one region or country when looking for the best support or solutions.

To access information about developers the world over, visit the FileMaker, Inc., regional Web
sites listing consultants and developers in many other countries. These sites are available separately
and managed by their respective regional offices of FileMaker, Inc. For example, FileMaker in
France is represented at www.filemaker.fr, FileMaker in the Asia Pacific region is represented
at www.filemaker.com.au, in the United Kingdom FileMaker’s Web site is www.file
maker.co.uk in Japan FileMaker’s Web address is www.filemaker.co.jp and so on. You
can find a full list of international Web locations at www.filemaker.com/company/intl/
index.html.

You can find alternative sources of information about professionals working with FileMaker on
public resource Web sites, such as FMPug.com and FMPro.org, FileMaker forums, or via the ubiq-
uitous Internet search engines. For example, a search for “FileMaker Pro developers” on Google.
com presently produces more than 1.2 million hits.

NOTENOTE Due to the dynamic nature of the Internet and technology companies, I don’t
include a comprehensive list of URLs because they frequently become out of date.

Instead, I encourage you to use the directories and resources outlined in this section to locate
the help you need. In the following sections, I do, however, provide URLs for a few sites of par-
ticular interest.

Online Design and Development
Tips and Tricks
While I provide you with a broad base of design principles and techniques, as well as more than a
modicum of examples and tips for developing your solutions, a book this small (yes, I said “small”)
can’t begin to cover the breadth and depth of specific approaches you can employ, problems and
solutions you may encounter, nor all the specific challenges you will face.

Fortunately, in addition to the professional FileMaker consultants referenced in this appendix and
the publications listed in the upcoming section “Books and Periodicals,” other resources also pro-
vide high-quality examples, tips and tricks, and developer techniques. Foremost among these are
the collections of example files freely available from Database Pros in California (www.database
pros.com); NightWing Enterprises in Australia (www.nightwing.com.au/FileMaker); and
from commercial providers, such as ISO FileMaker Magazine (www.filemakermagazine.com)
and FMWebschool (www.fmwebschool.com). Specialist FileMaker Custom Function resources
are available from Cleveland Consulting (www.clevelandconsulting.com) and BrianDunning.
com (www.briandunning.com). Information, tips, and techniques are also plentifully available
among innumerable blogs including those from The FileMaker Collective (www.fmcollective.

30_429006-bapp01.indd 73730_429006-bapp01.indd 737 3/25/09 8:05:56 PM3/25/09 8:05:56 PM

738

AppendixesPart VI

com), Six Fried Rice in Arizona (www.sixfriedrice.com); Tokerud’s FileMaker Fever
(http://tokerud.typepad.com/FileMaker), and FileMaker Addict (http://file
makeraddict.blogspot.com). Also, topics of interest are regularly placed under the micro-
scope (or at any rate, in front of the microphone) on the periodic Adatasol FileMaker Podcasts
(http://podcast.adatasol.com).

An international network of FileMaker Pro user groups operates and is coordinated from the
FMPug.com Web site (www.fmpug.com). FMPug provides a vast collection of other useful
resources, including a desktop compendium of code and other resources called “The Everything
Reference for FileMaker Developers”; online directories of trainers, developers, and consultants
from the world over; a database of feature and enhancement requests; and reviews of books and
third-party products for FileMaker Pro users and developers.

In addition, innumerable professional development companies offer tips and examples of their
work, sometimes giving generally applicable insights or approaches to problems encountered in a
variety of contexts. Many of these resources are available free of charge, for the trouble of seeking
them out!

TIPTIP A search for “FileMaker demos” produces more than a million hits each on both
Yahoo! and Google’s search engines.

Online Forums and Mailing Lists
The Internet is teeming with mailing lists and online forums, many of which are free, publicly
accessible, and full of rich and varied content about many facets of FileMaker Pro programming
and use. A selection of the more targeted FileMaker-specific mailing lists and forums are provided
at www.filemaker.com/support/mailinglists.html and www.filemaker.com/
support/forums.html. If you have Usenet access, a newsgroup, comp.databases.file
maker, is an active discussion group covering FileMaker topics.

TIPTIP You can also use the Google Groups (http://groups.google.com) interface to
access Usenet groups.

Foremost among online forums for all things FileMaker is FMForums.com, boasting more than
40,000 members and approaching a decade online. The largest single online community of
FileMaker users and developers, FMForums attracts a diverse group of participants representing all
levels from the merest of beginners to the most accomplished professionals.

Also worthy of mention is the RealTech list operated for members of FMPug and dealing with a
broad range of technical issues and challenges relating to FileMaker and FileMaker-related prod-
ucts and solutions. In addition, a number of the user groups listed on the FMPug site sponsor their
own mailing lists, wiki Web sites, or online resource pages.

30_429006-bapp01.indd 73830_429006-bapp01.indd 738 3/25/09 8:05:56 PM3/25/09 8:05:56 PM

739

Expanding Your Knowledge with Additional Resources A

Books and Periodicals
Numerous books are available about FileMaker Pro and related technologies, some repeating mate-
rial available among the resources mentioned in the preceding sections, or offering little that is not
amply covered in this book. I would, however, like to recommend several volumes that provide
explorations or detail on matters that go beyond the scope of this book:

n The Everything Reference for FileMaker Developers by Andy Gaunt and Stephen Dolenski
(FMPug.com)

n FileMaker 9 Developer Reference by Bob Bowers, Steve Lane, and Scott Love (Que
Publishing)

n FileMaker Security: The Book by Steven H. Blackwell (New Millennium)

n Web Publishing with PHP and FileMaker 9 by Jonathan Stark (Sams Publishing)

Each of these publications offers a wealth of additional information that will prove useful to the
professional developer and serious amateur alike. I recommend these titles for the accuracy, qual-
ity, and depth of information they provide.

Additionally, while you can occasionally find articles about FileMaker Pro usage in general com-
puter print magazines, such as Macworld or PCWorld, the following publications contain more con-
centrated coverage:

n FileMaker Pro Advisor is dedicated to FileMaker and related subjects. ADVISOR MEDIA,
Inc.; PO Box 429002; San Diego, CA 92142. Web site: http://my.advisor.com/
pub/filemakerAdvisor.

n Databased Advisor covers database issues and includes FileMaker among the database
management systems covered (although Access, xBase, and other platforms consume the
bulk of the ink). ADVISOR MEDIA, Inc.; PO Box 429002; San Diego, CA 92142. Web
site: http://my.advisor.com/pub/DataBasedAdvisor.

n MacTech Magazine covers popular Macintosh technologies from the perspective of the
“serious” user (and FileMaker is one of the many technologies covered). MacTech
Magazine; PO Box 5200; Westlake Village, CA 91359-5200; 877-622-8324 805-494-
9797 outside US/Canada); http://www.mactech.com.

30_429006-bapp01.indd 73930_429006-bapp01.indd 739 3/25/09 8:05:57 PM3/25/09 8:05:57 PM

30_429006-bapp01.indd 74030_429006-bapp01.indd 740 3/25/09 8:05:57 PM3/25/09 8:05:57 PM

741

This appendix describes what you can find on this book’s companion Web
site at www.wiley.com/go/filemaker10bible. While you can use any
relatively current Web browser and operating system to peruse the site’s
pages, using much of the available content will impose additional require-
ments. For example, using the sample files will necessitate running FileMaker
Pro 10 or FileMaker Pro 10 Advanced, with their consequent Mac OS and
Windows requirements.

TIPTIP You can download a free 30-day trial copy of FileMaker Pro 10
from www.filemakertrial.com.

In addition to the preceding requirements, you need an Internet connection
and appropriate computer hardware to access the Web site and run the
required operating systems and other software.

What’s on the Web Site
The following list provides an overview of what the book’s Web site contains:

n Author-created materials: I include copies of all the referenced
example files used in this book, in the corresponding chapter link
in the Author section. In particular, I have made each iteration of
the Inventory example solution available so that you can look at
it in various stages of evolution, comparing it to experiments you
may have created while working through the book’s examples.
Additionally, I offer a few referenced special examples. I also
include a glossary

n Application and documentation links: Exhaustive coverage of
FileMaker’s capabilities would require a book far larger than this
one, and the ancillary information grows daily. Consequently, I

IN THIS APPENDIX
Locating resources
accompanying the book

Taking steps to solve any
problems that arise

About the Web Site

31_429006-bapp02.indd 74131_429006-bapp02.indd 741 3/25/09 8:06:37 PM3/25/09 8:06:37 PM

742

AppendixesPart VI

avoid including reference data that is readily available elsewhere. For example, compre-
hensive lists of calculation functions and script commands for FileMaker Pro 10 are avail-
able as PDF downloads from the FileMaker Web site. Rather than include this extensive
material as part of the text of this book, I use the space otherwise and encourage you to
download the companion documents from the links I provide on the companion Web site.

 In this section of the Web site, I include links to the trial version of FileMaker Pro 10
provided as a free download by FileMaker, Inc., as well as links to a variety of documents
FileMaker, Inc., makes available that I believe to be particularly useful as an adjunct to
the information I have collected in this volume.

 I also provide links to useful utilities, including plug-ins, from a variety of third-party
vendors such as 360Works, New Millenium, 24U Software, Troi Automatisering, Digital
Fusion, and others, and utilities from companies such as FM::Nexus, FXForge FMDiff,
and Goya. Finally, I include links to groups and periodicals devoted to the FileMaker
development community, including FMPug user group resource, FileMaker TechNet,
FileMaker Forums, the ISO FileMaker Magazine, FileMaker Advisor, and significant pro-
viders of demo and example files such as Database Pros and my own company,
NightWing Enterprises.

Troubleshooting
If you have difficulty accessing the Web site or downloading any of the provided materials (not
including items downloaded from other sites to which I provide links), please contact the Wiley
Technical Product Support Center at 800-762-2974 (outside the United States, call 1-317-572-
3993) or online at www.wiley.com/techsupport.

Additionally, if you have trouble installing or using software from any of the linked sites:

n Check to ensure that you have the requisite system software version, disk space, and
memory required for that software.

n Ensure that the files or applications have been extracted from archives (.dmg or .zip and
so on) in which they are provided for download.

n Disable any virus-protection software during the installation. Many viruses mimic the
actions necessary for an installer to function, and the virus-protection software is prone to
confuse the two. (Remember to re-enable your virus-protection software after completing
the installation.)

n Quit other programs you have running. In addition to freeing up memory for the installa-
tion to proceed, the absence of other running programs removes any conflict as to files
the installer may need to access, update, or replace.

Should you experience ongoing problems after following each of these steps, contact the site from
which you obtained the software to seek advice or assistance. Note that some sites may require a
purchase or fee to provide you with personal support.

31_429006-bapp02.indd 74231_429006-bapp02.indd 742 3/25/09 8:06:38 PM3/25/09 8:06:38 PM

743

Numerics and Symbols
#comment script, 505
$ character, 340
$$trace variable, 384, 443
$$var variable, 474
$ReportPath variable, 528
$result local variable, 622
$YourVariable[8] array notation, 477
& (ampersands), 240
*.vbs file, 711
... (Range operator), 143
\ (backslash character), 235
| (pipe character), 396
< (less-than) symbol, 415
</body> tag, 393
= (equi-join) operator, 414
= symbol, 411, 413
> (greater-than) symbol, 415
× (Cartesian product operator), 415
≤ (less-or-equal) symbol, 415
≤ relationship symbol, 307
≠ (not-equal join operator), 414
≥ (greater-or-equal) symbol, 415
≥ relationship symbol, 307
360Works AdminAnywhere, 731
360Works Charts Plugin, 727
360Works Email Plugin, 727

A
about information, 398
Abs() function, 697
abstraction

Evaluate(), 482–483
GetField(), 480–481
GetFieldName(), 481–482

access privileges. See also granular security
defining and constraining access, 560–561
full, running script with, 511–512
overview, 510–511, 558–559

privilege-based errors, 511
role-based security, 560
schema privilege controls, 561–562
setting default, 150–152
substantive, determining, 512

Account Management Script command, 571
accounts, user

creating, 568
internal and external authentication, 568–570
overview, 148–150, 567
scripted management of, 570–572
setting default, 150–152

accounts commands, 262
Accounts tab, Manage Accounts & Privileges dialog, 149
Acquired Items Report script, 272, 528
Active Directory, 568
active object, 500
active script, 459
ActiveRecord variable, 390
Actual SQL Server driver, 249–252
adaptable design, 692
adaptable screens, 362–363
Adatasol FileMaker Podcasts, 738
Add Expression control, Watch panel, Data Viewer, 664
Add Fields to Portal dialog, 192–193, 309
Add Newly Defined Fields to Current Layout checkbox,

Layout tab, Preferences dialog, 156
Add Relationship dialog, 244
addressing windows by name, 537–538
Adjust Window [Hide] command, 542
Adjust Window [Resize to Fit] command, 379
AdminAnywhere, 731
Advanced Records Options dialog, 635
Advanced Recover Options dialog, 97–98, 635–636
aggregate functions, 473–474, 476
aggregating calculations, 132–135
aggregation, scripted data, 526
AIM Keys, 716
alert dialogs, 151, 214, 220–221
alias icon, 37

32_429006-bindex.indd 74332_429006-bindex.indd 743 3/25/09 8:07:20 PM3/25/09 8:07:20 PM

744

IndexA

alignment of graphic objects, 183–184
Allow Creation of New Layouts option, Custom Layout

Privileges dialog, 565–566
Allow Creation of Related Records in This Table via This

Relationship option, 421–423, 708
Allow User Abort[] command, 280, 508, 514, 572, 705
Allow User to Override during Data Entry checkbox,

Validation tab, Options for Field dialog, 219
alphabetic prefix, 585–586
alphanumeric serial value, 586
Also Reduce the Size of the Enclosing Part option, 369
alternate language indexes, 344–345
Always Lock Layout Tools setting, Layout tab, Preferences

dialog, 56
Always radio button, Validation tab, Options for

Field dialog, 219
AmountPaid field, 457
ampersands (&), 240
analysis tools, 732
anchor-buoy graph, 423–425
anchoring objects

centering, 382
complex layout resizing, 379–381
enclosing, 382
moving according to window size, 378–379
overview, 377
that grow and shrink, 379

ancillary data, incorporating in user edits, 624–626
ancillary notes, 430–431
AND Find, 318
and operator, 455
AND predicate operator, 415
annotations, Relationship Graph, 427–428
anticipating users, 146–147
anti-join, 390, 414–415
[Any New Layout] privilege setting, 566
API (Application/Program Interface) plug-in, 30–31
appending PDF pages, 204
AppleEvents, 710
AppleScript, 713–715
applets, 719
application links, 741–742
Application menu, 355
application verification, 514
Application/Program Interface (API) plug-in, 30–31
archiving

backup files, 603
data, 707–708

arguments, 229, 265, 268
arithmetic operators, 453–455
Arrange By pop-up menu, 547
array notation, 477
arrays

collapsing, 421
defined, 16
expanding, 421
overview, 420
relationship-based techniques for managing

data, 421–423
repeating fields, 420

arrow keys, 161, 186
assistance programs, 32
association table, 409
As-U-Type, 716
audit log, 627, 630
AuditTrail field, 626
authentication, user

creating user account, 568
internal and external, 568–570
overview, 567

Authentication panel, Edit Data Source dialog, 92–94
author-created material, 741
auto-enter calculations

data modification at entry, 617
Do Not Replace option, 488
handling styled source text, 619
order of operations, 456
overview, 486
storage, 488
trailing spaces and carriage returns, 618
user over-ride capability, 486–488

Auto-Enter tab, Options for Field dialog, 118–124, 216–218,
584, 590

Auto-Entry
anticipating user, 146
ESS tables, 255
lookups, 595–596
Manage Database dialog, 216–218
serial, 584–586

Automatically Create Indexes as Needed option, 341–343
Automatically Open File checkbox option, 711
automation

of database security, 570–571
process, 12

auto-save behavior, 38
AutoUpdate utility, 56, 721–722

32_429006-bindex.indd 74432_429006-bindex.indd 744 3/25/09 8:07:20 PM3/25/09 8:07:20 PM

745

Index C

Available Items button, 315–316
Available Menu Commands option, 574
Average of summary function, 226

B
Back button functionality, 384–385
backslash character (\), 235
backups

appropriate cycle, 600
automating, 286–287
code, 601
copying open files, 601–602
frequency of, 600
hosted files, 603
importance of, 40
integrity of, 601
local files, 602–603
location, 601
overview, 599–600

BaseElements, 732
batch automation, 704
batch data, 702–703
Batch field, 325
batch processing, 286, 704
Bento personal database solution, 22, 94–95, 547
black boxes, 448
Body, layout, 170, 308
body tag, 393
Boolean operations, 456–457, 697–698
break fields, 68, 366
bright colors, 386
Browse mode

controlling one window from another, 317
data formatting, 718
defined, 43
filtering portals, 306–313
overview, 14
pick lists, creating, 306–313
shortcut navigation, 313–316
Sub-summaries, 68–70
using multiple windows and views, 306

business layer, 432–433
button click-shade highlighting, 354
Button Setup dialog, 196–197, 311, 314, 329–330, 469
Button Setup option, Format menu, 195
Button tool, Status Toolbar, 195–196

buttons
calling scripts via, 298
commands, 198–199
defining, 196–198
launching script via, 280
for moving between layouts, 190
multi-state, 361–362
as objects, 199
overview, 47, 195
for paper configurations, 203
scope, 198–199
for static and dynamic actions, 154
tooltips, 176

BuyerID field, 312
Buyers TO, 307
By Calculation option, 526

C
cache setting, Memory tab, Preferences dialog, 56
cache update, 690
cached data, 38–39
caching join results

advantages of, 347
gaining control of cache, 349
solving problems with, 348

Calculated AppleScript option, 715
Calculated Value checkbox, Auto-Enter tab, Field Options

dialog, 218
calculation fields

versus auto-enter calculations, 486–488
creating, 229–232
defined, 16, 215
global, 489
letter generators, 373
overview, 222–227
unstored, 483

calculation functions
Char(code), 90
Code(text), 89
Count(), 237
Date(), 237
Get(DocumentsPathListing), 91
GetFieldName(field), 90
Get(LastError), 505
Get(TriggerKeystroke), 88–89
Get(TriggerModifierKeys), 89
Length(), 237–238

32_429006-bindex.indd 74532_429006-bindex.indd 745 3/25/09 8:07:20 PM3/25/09 8:07:20 PM

746

IndexC

calculation functions (continued)
List(), 236
overview, 447–448
Round(), 237
schema references, 450–452
structured syntax and nesting, 452–453
syntax, 449–450

calculation variables, 339–340, 458–459
calculations

abstraction, 480–483
aggregating, 132–135
auto-enter, 486–488
Boolean operations, 456–457
calculation fields, creating, 229–232
capabilities of FileMaker, 31
compound calculation expressions, 448–453
custom functions, 494–496, 691
documenting code, 496–498
environment and metadata, 492–494
formulas, defining, 233–234
global, 489–492
lists, 476–480
literal text, entering, 234–235
order of operations, 454–456
overview, 228–229, 447–448
referencing fields, 235–236
setting up, 124–126
simple, 238–241
standard data formations, applying, 617
summary data, 473–475
syntax, 449–450
text formatting operations, 467–470
text parsing, 462–463, 466–467
text processing, 460–466
time, 470–473
unstored, 483–485

calendar year calculations, 240
calling scripts

buttons, 298
Custom Menus, 298
external script calls

AppleScript, 713–715
cross-platform solutions, 715–716
macros, 716
overview, 301, 403, 709–710
Send Event [] command, 710–713
third-party helpers, 716
VBScript, 710–713

file open and file close scripts, 299
hotkeys, 297–298
layout event Script Triggers, 299–300
object event Script Triggers, 300–301
from other scripts, 298–299
overview, 279
Scripts menu, 297
on timer script triggers, 299

camel case, 115, 428
Cancel dialog button, 355
capital letters, 115
Caps Lock key, 696–697
carriage returns

dealing with, 618
delimited lists, 476
delimiters, 642
text-handling, 653

Cartesian joins, 415, 419
Cartesian product, 390
Cartesian product operator (×), 415
cascading calculation operations, 346
cascading deletion, 592–595
cascading name changes, 208
Cascading Style Sheets (CSS), 728
Case statement, 233–234
case-sensitivity, 234
cDynamicKey unstored calculation field, 418
Ceiling() function, 240, 464
centering objects, 382
certification program, 32
cFilter_key =LastName join attribute, 307
cFilter_key field, 308
cFullName field, 309, 640
Change Password[] script command, 506
character-level formatting, 334
CharacterSet() function, 683
Char(code) function, 90
charting plug-ins, 727–728
Charts Plugin, 727
Check Consistency option, 634
Choose() function, 693
chronological roll-back, 628–629
circular references, 244–245, 451–452
cleansing, data

ETL cycle, 643
filtering capabilities, 646–647
format considerations, 643–646
overview, 643

32_429006-bindex.indd 74632_429006-bindex.indd 746 3/25/09 8:07:20 PM3/25/09 8:07:20 PM

747

Index C

Clear All button, Set Tab Order dialog, 186
Cleveland Consulting, 737
click-shading effect, 354
click-sort columns, 327–331
ClientDetails field, 463
ClientID field, 590–591
Clients table, 551, 590
Clients::ClientID field, 590–591
Clients::LastName field, 591
Close Window command, 309
closing files, 38
closing scripts, 515
cMasterKey text calc, 418
cmd command, 712
CNS Image, 726
Codd, Edgar F., 7, 405–406
code backups, 601. See also efficient code
code objects, 391–392
Code(text) function, 89
collapsing arrays, 421
color

depth and dimensionality, 386
differences in screen rendering, 354
effect on user, 175
formatting for printing, 166
in printed reports, 202
of text, 162–163
TOs, 131

color palette
Layout tab, Preferences dialog, 56
Relationships tab, Manage Database dialog, 131

ColumnSort script, 328, 330
command-line interpreter, 712
commands. See also specific commands by name

button, 198–199
control, 262, 273
Custom Menus, 298
editing, 262
fields, 262
files, 262
found sets, 262
interface dependent, 273
keyboard shortcut, 297–298
navigation, 262
records, 262
script

assigning attributes to, 276–278
branching according to state, 518–519

changing order of, 274–276
groups, 262–265
overview, 273–274
window management, 536–537

spelling, 263
Status Toolbar, 68
windows, 262

comma-separated values (CSV), 543, 642
comment braces, 211
Comment function, 291
comment operators, 453
commenting, script, 290–291
Comments field, 409
commission on earnings above threshold, 238
committing records, 49–50, 107
community-sponsored forum, 732
comparative operators, 414–415, 453–455, 457
compatibility filters, 103
compound calculation expressions

functions, 450–452
logic, 449–450
nesting, 452–453
overview, 448–449
schema references, 450–452
structured syntax, 452–453

compound Find criteria, 318
compound interest, 239
compound keys, 418
concatenation operator, 467
conditional execution, 281
conditional expressions, 126
conditional formatting, 179–181, 360–362
Conditional Formatting dialog, 180, 330, 360–361
Conditional Formatting for Selected Objects dialog, 330
conditional statements, 281–282
conditional tooltips, 176–177
configuration dialogs, 179
consistency check, 96
constants, 229, 450
constellations, 424
contact databases, 8
contact details, 146
Contact Details layout, 500, 504
ContactFilter table occurrence, 307–308
ContactFilter::ContactType field, 307
ContactFilter::LastName field, 307
ContactID value, 312, 521
Contacts table, 146, 308, 313–314, 501, 625

32_429006-bindex.indd 74732_429006-bindex.indd 747 3/25/09 8:07:20 PM3/25/09 8:07:20 PM

748

IndexC

Contacts::Address field, 618, 619
Contacts::FirstName field, 511
Contacts::Organization field, 625
Contacts::PhoneNo field, 617
container fields, 17, 215
container objects, 548–549
Content field, 392
context

layout, 152
managing, 153
relationships, 55
scripting, 266–267

Context pop-up, Specify Calculation dialog, 230
control characters, 646
control commands, 262, 273
controller palettes, 317
conversion, file, 40–41
Copy All Records/Requests[] command, 320
Copy Blocks As-Is option, 635
copy/clear/paste method, 275
copying

commands, 274
open files, 601–602
and pasting, 126, 288–289

correspondence, 11
Count() function, 237
Count of summary function, 226
Create child record sub-script, 525
Create Database tab, Quick Start screen, 36, 101–102
Create Runtime Solution application(s) option, 684
Creation checkbox, Auto-Enter tab, Options for Field

dialog, 127, 217
Criteria_array field, 321
cross-platform development, 28–29
“crows foot” terminator, 411
cSearch field, 417–418
cSort1_asc text calculation, 325
cSort1_dsc text calculation, 325
cSort2_asc text calculation, 326
cSort2_dsc text calculation, 326
cSortBy field, 475, 480
CSS (Cascading Style Sheets), 728
CSV (comma-separated values), 543, 642
cTrace field, 443–444
cUnstored field, 411
Current panel, Data Viewer, 661–664
current quarter calculations, 240
Current Script menu, 311–312, 330

Current Script option, 534
Current tab, Data Viewer, 659
Current Value dialog, 663
custom delimiter, 654
custom dialogs

attributes, 377
as data-entry device, 376–377
overview, 355, 375–376

custom functions, 494–496, 523, 572, 676–677
Custom Layout Privileges dialog, 563–564, 566
Custom Menus, 278, 298, 669–671
Custom Privileges dialog, 565
Custom Privileges options, 562
Custom Record Privileges dialog, 564–565
Custom Script Privileges dialog, 563
custom synchronization, 650
Custom Value List Privileges dialog, 563
Custom Web Publishing

FileMaker PHP API, 730
FileMaker PHP Site Assistant, 730–731
overview, 729
XML and XSLT, 729–730

Customer table, 412, 504
Customize dialog, 66–67

D
damaged files, 39
Data Access and Design section, Edit Privilege Set

dialog, 149, 560–562
data architecture. See data structure
data archiving, 707–708
data arrays, 16
Data checkbox, Auto-Enter tab, Field Options dialog, 217
data cleansing operations

ETL cycle, 643
filtering capabilities, 646–647
format considerations, 643–646
overview, 643

data domain, 645–646
data entry. See entering data
data files, 435
data maintenance. See maintaining data
data modeling

alternative relationship techniques, 416–420
arrays, 420–423
deployment considerations, 445
documenting database structure, 427–431

32_429006-bindex.indd 74832_429006-bindex.indd 748 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

749

Index D

external SQL sources, 439–441
file architecture versus data structure, 434–439
implementing separation in existing solution, 442–445
layers, 431–434
overview, 405
relational theory, 405–410
relationship operators, 413–416
Relationships Graph symbols, 410–412
Relationships Graph techniques, 423–427

data modularization, 349
data organization, 644
data presentation, 644–645
data redundancy, 7
data relationships, 408
data separation

approaches to, 438
costs and benefits, 439
external SQL sources, 439–442
implementing in existing solution, 442–445

data sets, synchronizing
import matching, 648–650
importing selectively, 650
overview, 647–648

Data Source Name (DSN), 247–252, 547
Data Sources menu, 442
data structure

interface files, 436–438
modular approach, 435
multi-file solutions, 434–435
overview, 9, 434
separation of data, 438–439

data types, 214–216
data updates, 286
Data Viewer

Current panel, 661–664
debugging restricted privilege scripts, 658–659
sand box, 665–666
temporary edit interfaces, 613–614
using with Script Debugger, 665
variables, 666–667
Watch panel, 661, 664–665

Database Design Report (DDR)
capabilities, 668
interpreting data, 669
mining for information, 668
overview, 208, 667–668

Database Design Report dialog, 667
Database Management Systems, 22

Database Pros, 737
database robots, 704
database solutions

data, 8–9
FileMaker Pro 10, 13–19
interface, 9–11
overview, 8
process management, 12

Databased Advisor, 739
DatabaseNames function, 449–450, 493
databases

calculations, 124–126, 132–135
digital age, 5–6
documenting structure, 427–431
duplicating data, 143–148
Field Options dialog, 118–124
fields, adding, 114–118
file security, 148–152
forms, 4–6
lists, 4–6
metadata, capturing, 127–128
overview, 3–4, 112–114
paper-based, 4–5
planning, 6
preparing for, 111–112
relational, 6–8
relationships, creating, 129–132
security, automation of, 570–571
tables, 4–6, 114–118
usability, 152–154
viewing data, 135–143

[Data Entry Only] privilege set, 559
DataFiles folder, 712–713
_DataLog field, 624
data-on-demand usage model, 426
Data::Serial# field, 585
Date() function, 237, 448–449
date fields, 215
date formats, 336
DateOfBirth field, 450
dates

juggling days, months, and years, 472–473
managing, 470

DATETIME values, 94
DDE (Dynamic Data Exchange), 713
DDR (Database Design Report)

capabilities, 668
interpreting data, 669

32_429006-bindex.indd 74932_429006-bindex.indd 749 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

750

IndexD

DDR (Database Design Report) (continued)
mining for information, 668
overview, 208, 667–668

Debugger window, 657
decimal currency, 164–165
DeclareVariables() custom function, 523–524
declaring variables, 340
default error dialog, 508
default menus, 670
default script error dialog, 507
Default Script option, 105–106
Delete Related Records option, 592, 595
deleting

data, 141
fields, 213–214
redundant records, 591–595
tables, 206–208

delimiters, 642–643
delineation of element groups, 386
dependencies

cascading calculation operations, 346
filename references, 598
indirect object/element references, 597
limits of, 346–347
literal text references, 597
overview, 49
simplicity, 698–701
structural anomalies, 598
table of, 224
tiers of, 347

deployment, 445
depth, computer interface, 385–387
Description field, 468, 542
Description.txt text file, 542
design. See also interface design

adaptable, 692
custom export process, 654
layout, 18, 25–26
online development and, 737–738
screen, for users, 174–175

design functions, 493–494
desktop products, 26–27
DestinationState field, 646
developer certification program, 32
Developer Utilities dialog, 684
DeveloperNotes table, 430
Development Conventions paper, 428

dialog command, 502
dialogs. See also specific dialogs by name

custom, 375–377
plug-ins, 725–726
user, 286

digital forms, 9–10
dimensionality, interface

color, 386
delineation of element groups, 386
embossing effect, 385
engraving effect, 385
spatial cues, 385–386
translucency, 386–387
transparency, 386–387

disappearing objects
concealed and remotely operated Tab Control, 358–360
conditional formatting, 360
overview, 356
portal invisibility, 356–358

Display Custom Message if Validation Fails option, Validation
tab, Options for Field dialog, 220

display titles, 671
displaying related data

within layout context, 191
overview, 191
portals, setting up, 191–195

Distance from Left attribute, 374
Distance from Top attribute, 374
Do Not Apply Visual Spell-Checking option, 187–188
Do Not Evaluate When All Referenced Fields Are Empty

checkbox, 457
Do Not Print option, 167, 169
Do Not Print the Selected Objects checkbox, 363
Do Not Replace checkbox, 488, 618
Do Not Replace Existing Value of Field (If Any) setting, 488
Do Not Replace Existing Value of Field option, 486, 617, 624
Do Not Replace option, 488, 617
documentation, 290–291, 398–399
documentation links, 741–742
documenting

code
commenting, 497–498
formatting, 497
overview, 496–497

database structure
ancillary notes, 430–431
field commenting, 429–430

32_429006-bindex.indd 75032_429006-bindex.indd 750 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

751

Index E

graph annotations, 427–428
naming conventions, 428–429
overview, 427

documents path, 91
Don’t Evaluate checkbox, Specify Calculation dialog, 231
Don’t Repeat Yourself (DRY) programming

principle, 596, 689, 693
double-blind entry systems, 615–616
drag-to-layout tools, 158–160
drill-downs, windows as, 374–375
DRY (Don’t Repeat Yourself) programming

principle, 596, 689, 693
DSN (Data Source Name), 247–252, 547
Duplicate Expression control, 664
duplicates

button, 197
file, 40
script name, 289

duplicating
data, 143–148
multiple commands, 288
records, 49

dyadic operator, 415–416
dynamic actions, using buttons for, 154
dynamic arrays, 421
Dynamic Data Exchange (DDE), 713
dynamic execution, 519
dynamic interface technique, 356
dynamic objects, 178–179
dynamic rendering, 717
dynamic screen elements

conditional formatting, 360–361
disappearing/reappearing objects

concealed and remotely operated Tab
Control, 358–360

conditional formatting, 360
overview, 356
portal invisibility, 356–358

multi-state buttons and objects, 361–362
dynamic sorting technique, 327–330
dynamic value lists, 421

E
Edit Account dialog, 149, 568
Edit Copy custom menu, 671
Edit Custom Function dialog, 676–677
Edit Custom Menu dialog, 670–672

Edit Data Source dialog, 92–94, 253–254, 436, 440
Edit Expression control, 664
Edit Expression dialog, 664–666
Edit Extended Privileges dialog, 566
Edit Folder dialog, 292
Edit menu command, 663
Edit Menu Set dialog, 673
Edit Privilege Set dialog, 149, 560–562
Edit Relationship dialog, 130–131, 307–308, 332, 413,

415–416, 421, 591–592
Edit Saved Finds dialog, 74–75
Edit Script button, Script Debugger window, 660
Edit Script windows

changing order of commands in, 274
controlling selection window, 310
overview, 270–272
script commands groups, 262–265
Script Step Options panel, 276
Show Compatibility pull-down menu, 103–104
simultaneous editing in, 287

Edit Value List dialog, 138
editing

data, 49–50, 141
information via scripts, 286
menus

overview, 671–672
Script Step action, 672
window widgets, 672

related data, 54
scripts, 287–289

editing commands, 262
efficient code

adaptability, 691–692
file size, 706–708
flexibility, 691–692
images and media in databases, 708
redundancy, eliminating, 689–691
simplicity

applying, 701–702
dependencies, 698–701
examples, 695–698
optimal calculation syntax, 693–694
overview, 22–23

size considerations, 687–689
transaction modeling

batch automation, 704
host/server script execution, 704–706
live versus batch data, 702–703

32_429006-bindex.indd 75132_429006-bindex.indd 751 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

752

IndexE

efficient code (continued)
offline updates and processing, 704
posting and propagating edits, 703
robots, 704

Else command, 281–282
Else If command, 282, 325, 532
e-mail

containing embedded link, 612
disappearing/reappearing objects, 356
plug-ins, 727
sending by SMTP, 99–100
sending links, 612–613

embedded images
assigning and retrieving paths, 652
overview, 651–652
scripted field updates, 652–653

embedded links, 612
embedded paragraph attributes, 335
embedded placeholder tags, 373
embossed effect, 181, 183, 385
Employees table, 419
empty key field value, 414
empty variable, 339
Enable Account command, 570
enclosing objects, 382
encryption, 580
End If command, 281–282, 532
End Loop command, 282–283, 532
end-of-line (EOL) markers, 642–643
engraved effect, 162–163, 182, 385
Enrollments table, 419
Enter Find Mode[] command, 530
Enter key, 186
entering data

committing records, 49–50
creating records, 48, 136–141
duplicating records, 49
field definitions, 49
literal text, 234–235
overview, 48

entities, 407
Entity Relationship Diagram (ERD), 25, 242
Entries::Points field, 482
environment calculations, 492–494
EOL (end-of-line) markers, 642–643
equi-join (=) operator, 414
equi-joins, 130, 259, 413–415
ERD (Entity Relationship Diagram), 25, 242

ergonomics, 174–175
error capture, 508
error codes, 505–506, 603–604
error handling, 506–509, 536, 605–606
error trapping

error codes, 505–506
error handling, 506–509
global fields, 607
overview, 504–505, 603–604
record locking, 604–606
record marking and flagging techniques, 607
replacing field contents, 606–607
sub-scripts, 536

error-check criteria, 19
escape characters, 235
escape conditions, 283
ESS (External SQL Data Sources)

adding supplemental fields, 256–257
DATETIME values, 94
integrating SQL tables, 252–256
modifying fields, 213
ODBC drivers, configuring, 247–252
overview, 26
separation, 439–441
SQL database support, 92
value lists based on, 92
Windows Authentication, 92–94

ETL (Extract, Transform, and Load) cycle, 643
Evaluate() function, 234, 475, 482–483
Evaluate This Calculation From The Context Of menu, 451
evaluation, short-circuited, 234
event-driven logging, 631
Everything Reference for FileMaker Developers, The, 739
ExamDate field, 475
Excel files

exporting as, 53–54
versus printed output, 204

Execute SQL command, 440
execution, script. See scripts
Existing Value option, 219
exit conditions, 283, 533–535
Exit Loop If [] command, 282–283, 377, 532
Exit Script[] command, 79, 505, 524
exiting FileMaker Pro 10, 36–37
exploded keys, 417
Export Field Contents[] command, 542, 548, 641,

653–654, 711
Export Records to File dialog, 52

32_429006-bindex.indd 75232_429006-bindex.indd 752 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

753

Index F

Export Records[] command, 543–544
exporting data

capabilities, 29–30
container objects, 548–549
delimiters, 642–643
end-of-line markers, 642–643
enhancements to, 102–104
as Excel files, 53–54
field contents, 542
file formats, 639–640
from folders, 641–642
overview, 50–52
as PDF files, 53–54
selecting fields for export, 543–545
table data, 543

Expression text box, Specify Calculation dialog, 231
expressions, 229, 448, 451
extended privileges, 566–567
Extended Privileges panel, Manage Accounts and Privileges

dialog, 566
Extended Privileges section, Edit Privilege Set dialog,

560–561
extensibility

analysis and documentation tools, 732
developer tools, 731
external scripting calls, 709–716
HTML, 716–718
JavaScript, 716–718
overview, 30–31
plug-ins, 720–728
shared information, 732
Web deployment options, 728–731
Web viewer widgets, 719

Extensible Markup Language (XML), 29, 669, 729–730
Extensible Stylesheet Language Transformation (XSLT),

729–730
Extensions folder, 720
external authentication, 569–571, 579
external backup strategy, 600
External Data Sources, 17, 436, 442
external files, 437
external function calls, 723–724
External functions, 452
external resources, 515
external scripting calls

AppleScript, 713–715
cross-platform solutions, 715–716
macros, 716

overview, 301, 403, 709–710
Send Event [] command, 710–713
third-party helpers, 716
VBScript, 710–713

external server account, 570
External SQL Data Sources (ESS)

adding supplemental fields, 256–257
DATETIME values, 94
integrating SQL tables, 252–256
modifying fields, 213
ODBC drivers, configuring, 247–252
overview, 26
separation, 439–441
SQL database support, 92
value lists based on, 92
Windows Authentication, 92–94

External table occurrence, 550
Extract, Transform, and Load (ETL) cycle, 643

F
fail-safe systems. See also logging

backups, 599–603
capturing user edits, 623–626
intercepting data, 616–619
modifying data, 616–619
opening remote files, 607–613
roll-back capabilities, 627–630
temporary edit interface techniques, 613–616
trapping errors, 603–607

favorite files, 36
Field Access menu option, 564
field audit log, 623–624
Field Behavior dialog, 162, 164, 185–188
field boxes, 179, 353
Field Control Setup dialog, 314
Field Export Order list, 545, 640
Field Options dialog. See Options for Field dialog
Field Order dialog, 543
Field tool, Status Toolbar, 178
Field/Control Setup dialog, 136, 138–139, 192–193, 312
FieldName value, 521
fields. See also calculation fields; global fields

access to, 564–566
activating, 48
adding, 114–118, 213–214
applying formats to, 162–166
Auto-Entry options, 216–218
automatically entered information, 12

32_429006-bindex.indd 75332_429006-bindex.indd 753 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

754

IndexF

fields (continued)
commenting, 429–430
controls, 178
copying and pasting, 126
creating, 38
data types, 214–216
deleting, 213–214
dependencies, 49
editing, 48
formats, 25
in imported tables, 211–212
indexing, 221–222
names, 115
other terms for, 13
overview, 4, 47, 212
referencing, 235–236
renaming, 213–214
resizing, 161
Summary, 222–227
supplemental, 256–257
for tracking, 127
validation, 49, 218–221
values in, 16–17

fields commands, 262
Fields list, Specify Calculation dialog, 230
Fields tab, Manage Database dialog

adding fields, 113–117
adding fields to tables, 213–214
data tracking, 127–128
filtering portals, 307
retrofitting keys, 590
trapping edits, 623–624

FieldType() function, 493
file architecture

approaches to separation of data, 438
costs and benefits of separation, 439
interface files, 436–438
modular approach, 435
multi-file solutions, 434–435

file close scripts, 299
File dialog, 37
file handling plug-ins, 726–727
File Manipulator, 726
File menu, 41, 100
file open scripts, 299
File Options dialog, 59–62, 85, 151, 513, 579, 612
file recovery

file corruption, 638–639
improvements to, 96–98

myths, 634–635
overview, 633
Recover process, 635–637
salvaging data, 637–638

file size
data archiving, 707–708
modularization strategies, 707
overview, 706
segmentation, 707

File Transfer Protocol (FTP) plug-ins, 727
file-based script triggers, 85
[File Default] menu, 674–675
FileMaker 9 Developer Reference, 739
FileMaker Addict, 738
FileMaker Collective, 737
FileMaker Custom Function resources, 737
FileMaker Developers Conference, 736
FileMaker Fever, 738
FileMaker Network Settings dialog, 608
FileMaker Network Sharing dialog, 610
FileMaker PHP API, 730
FileMaker PHP Site Assistant, 730–731
FileMaker Pro 10

advantages of, 18–19
compared to other database development tools, 22–26
examples, 32–33
exiting, 36–37
features of, 28–31
interface, 17–18
navigating, 41–48
optimizing, 55–62
overview, 21–22, 35–36
process and information integration, 18
product family, 26–28
starting, 37
terminology, 13–17
Web site, 735–736, 741–742

FileMaker Pro 10 Advanced, 87, 107
FileMaker Pro Advisor, 739
FileMaker Resource Guide, 736
FileMaker Security: The Book, 739
FileMaker Server, 22, 603, 729
FileMaker Server Advanced, 22
FileMaker Server 10, 27
FileMaker Server 10 Advanced, 27
filename extensions, 37, 40
filename iwp_home.html file, 729
filename references, 598

32_429006-bindex.indd 75432_429006-bindex.indd 754 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

755

Index F

files. See also file architecture; file recovery; file size
accounts, 148–152
closing, 38
conversion, 40–41
corruption of, 638–639
creating, 37–38
filtered display of, 580
formats, 40–41, 63
handling safely, 38–40
links between two, creating, 436
managing via scripts, 286–287
passwords, 150–152
physical security, 577–579
printing via scripts, 286–287
privilege sets, 148–152
saving, 38
sharing, 107, 608–611

files commands, 262
filing systems, 4–5
Fill Color checkbox, 330
fill effects, 162–163
Filter() function, 618, 647
Filter field, Select Buyer window, 313
filtering

data cleansing operations, 646–647
layout format, 335–336
portals, 306–313
scripts by folder, 293–294

Find icon drop-down menu, Status Toolbar, 73–74
Find mode

constraining and extending found set, 319
dynamically building criteria, 529–530
AND Find, 318
finding data already entered, 141–142
OR Find, 318
overview, 14–15, 43
saving Finds and found sets, 319–323
saving requests, 72–75
special find symbols, 142–143
Status Toolbar controls in, 45–46

Finds table, 320
FirstName data field, 318, 401, 500–501, 503
fixed margins, 166
_fk (foreign key), 413, 428, 589
flag field, 400
flagging technique, 607
Flash, 719
flat-file databases, 6–7

flexibility, 25, 27–28, 691–692
floating window, 306
FMDiff analysis tool, 732
FMForums, 738
fmphp extended privilege, 730
.fmplugin file extension, 720
FMPug, 738
FMPXMLRESULT encoding format, 547
FMRobot, 731
FMSAUC UpdatePlugIn() external function, 720
FMSAUC_FindPlugIn() external function, 720
FMStudio, 731
FMWebschool, 737
.fmx extension, 720
Folder of Files Import Options dialog, 641
folders

filtering scripts by, 293–294
importing/exporting data to and from, 641–642
script, creating, 291–293
submenus, 279

fonts
initial layout, 157–158
printing, 202–203
selecting for Mac and Windows users, 352–353
size of, 99

Fonts tab, Preferences dialog, 58–59, 157
Footer, layout, 170, 173, 308
foreign key (_fk), 413, 428, 589
form letters, 11
Form View, 168, 329, 378
Format button, creating, 469–470
Format menu, 99, 335
Format Painter, 147
formats. See also formatting

applying to field and text objects, 162–166
for automatically generated log files, 106
converting from earlier, 40–41
data cleansing operations, 643–646
default graphic object, 183
image, 178

formatting
character-level, 334
code, 497
conditional, 179–181, 360–362
controlling programmatically, 336–337
embedded, 334
instructions, 335
layout format filters, 335–336

32_429006-bindex.indd 75532_429006-bindex.indd 755 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

756

IndexF

formatting (continued)
overview, 333
paragraph-level, 335
precedence of number, date, and time formats, 336
style buttons, creating, 337–338
text, 467–470
three-tiered approach, 334

Formatting Bar, Status Toolbar, 68, 160
forms, 4–6, 9–10, 168–170
Formula box, Specify Calculation dialog, 231
Formula Is field, 330
formulas

defining, 233–234
overview, 229, 448

found sets
constraining, 319
defined, 14, 46
extending, 319
saving, 319–323

found sets commands, 262
.fp3 file format, 40
.fp5 file format, 40
.fp7 file format, 37, 40–41, 434, 445
Fraction of Total summary function, 227
free-form text name, 428
Freeze Window script command, 541
Freeze/Refresh sequence, 542
freezing screen, 541–542
From parameter, 680–681
FTP (File Transfer Protocol) plug-ins, 727
[Full Access] privilege set

authenticating, 662
as default, 152
overview, 559
running script with, 511–512

Function list, Specify Calculation dialog, 231
Function Parameters field, 676
Function View pop-up, Specify Calculation dialog, 231
functions

as aid to syntax readability, 678
defined, 229, 448
defining, 676–677
efficiency and ease of use, 678–679
eliminating redundancy, 691
optional parameters, 233
overview, 675–679
recursion, 680–683
structured syntax and nesting, 452–453

Fusion Reactor, 727
FXForge, 731

G
General Fields panel, “Show Custom Dialog” Options

dialog, 377
General tab

Layout Setup dialog, 674
Preferences dialog, 56–57

Get() functions. See also specific functions by name
capturing metadata, 620
creating style buttons, 337
Data Viewer, 661
environment data, 437
overview, 452, 492–493
recording navigation text, 241
unstored calculations, 484
window dimensions, 539–540

Get(AccountName) function, 511
Get(ActiveModifierKeys) function, 696–697
Get(ActiveSelectionSize) function, 469
Get(ActiveSelectionStart) function, 437, 469
Get(ApplicationVersion) function, 492
GetAsBoolean() function, 457
GetAsCSS() function, 469, 718
GetAsNumber() function, 471
GetAsText() function, 652
Get(CurrentDate) function, 448
Get(CurrentPlatform) function, 710
Get(DesktopPath) function, 620, 713
Get(DocumentsPathListing) function, 91
Get(ExtendedPrivileges) function, 561
GetField() function, 234, 326, 480–482
GetFieldName() function, 77, 90, 481–482
Get(FileName) function, 598
Get(LastError) function, 108, 505, 579
GetLayoutName() custom function, 495, 497
GetNextSerialValue() calculation function, 585
GetNthRecord() function, 320, 451, 476
Get(PrivilegeSetName) function, 511–512, 570
Get(RecordID) function, 586, 588
GetRepetition() function, 477
Get(ScriptName) function, 517
Get(ScriptParameter) function, 512
Get(ScriptResult) function, 512
GetSummary() function, 475, 480
Get(SystemLanguage) function, 403, 493
Get(SystemNICAddress) function, 587

32_429006-bindex.indd 75632_429006-bindex.indd 756 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

757

Index G

Get(SystemPlatform) function, 493, 528
Get(SystemVersion) function, 493
Get(TemporaryPath) function, 104
Get(TriggerKeystroke) function, 88–89
Get(TriggerModifierKeys) function, 89
GetValue() function, 91, 420, 478, 521, 695
Get(WindowDesktopHeight) function, 540
Get(WindowDesktopWidth) function, 540
Get(WindowHeight) function, 540
Get(WindowName) function, 537–538
Get(WindowWidth) function, 540
gFilter field, 310–311
gFilter_txt field, 308–309
gGlobal field, 411
gKeySelection global text field, 418
gLanguageID field, 400
global calculations

creating field, 307
freedom and efficiency of, 491–492
managing, 490–491
overview, 489
shadowing movements, 490

global container field, 391
global fields

behavior of, 349–350
capturing state by user, 399
characteristics of, 489
dynamic sort techniques, 324
one-way relationships, 419
trapping errors, 607
uses for, 350
using, 350
when to avoid, 350
working with, 227–228

global key, 692
global number field, 325, 396
global storage, 489
global text field, 307, 324–325, 376, 504
global values, restoring, 515
global variables, 337, 339, 458–459, 665
gNewValue global field, 478
Go Back script, 443–444
Go to Field[] command, 511, 530, 548
Go to Layout[] command, 197–198, 526–527, 597
Go to Next Field command, 309
Go to Next Object Using section, Field Behavior

dialog, 185–186

Go to Object[] command, 199, 267–268, 501,
530–531, 628

Go to Record/Request/Page[Next; Exit after

last] command, 533
Go to Related Record[] command (GTRR)

error codes, 506, 604
overview, 383
relationship-based techniques, 421
shortcut navigation, 313–316
uses of, 266
windows as pop-ups and drill-downs, 374–375

Go To Target Field checkbox, 469
Google Group, 738
Goya BaseElements, 732
granular security

extended privileges, 566–567
field access, 564–566
layout access, 563–564
overview, 562–563
record access, 564–566
script access, 563
table access, 564–566
value list access, 563

graphic objects
alignment, 183–184
building, 181–182
default formats and attributes, 183
importing from other applications, 184–185
stacking, 183–184

graphical attributes of objects, 179
graphical displays, 396–397
graphical element, 387
graphical interface, 17–18
Graphics panel, File Options dialog, 61–62
graphs. See Relationships Graph
greater-or-equal (≥) symbol, 415
greater-than (>) symbol, 415
GreatGizmos Web site, 461
gRI_Switch global field, 594
grouping options, Specify Field Order For Export dialog, 52
grouping scripts, 293
gSearch field, 417
gSearchTerm field, 468
gSortField field, 326–327
gSortField1 global text field, 325–326
gSortField2 global text field, 325–326
gSortField3 global text field, 325–326

32_429006-bindex.indd 75732_429006-bindex.indd 757 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

758

IndexG

gSortOrder field, 326–327
gSortOrder1 global number field, 325–326
gSortOrder2 global number field, 325–326
gSortOrder3 global number field, 325–326
gSWFresource global container field, 391
GTRR (Go to Related Record[] command)

error codes, 506, 604
overview, 383
relationship-based techniques, 421
shortcut navigation, 313–316
uses of, 266
windows as pop-ups and drill-downs, 374–375

gType_key field, 308

H
Halt Script button, Script Debugger window, 659
Halt Script command, 265, 280, 505
handle icon, script, 292
hash, 578
Header, layout, 170, 172–173, 308
horizontal portal, 391
horizontal resizing, 378
horizontal zone, 379
hosted files, backing up, 603
hotkeys, calling scripts via, 297–298
Hungarian notation, 124
Hypertext Transfer Protocol (HTTP), 717, 727
hyphens, 289, 294

I
ID fields, 119–120
If command

Boolean values, 697–698
commission on earning above threshold, 238
custom functions, 681
optimal calculation syntax, 693
optional parameters, 450
robust triggering implementations, 724
sequential, 532
use of, 281–282

If[]/End If sequence, 509, 536
If/Else conditions, 531–532
I::gLanguageID field, 401–402
I::LanguageFlag field, 401
I::LanguageID field, 401
image formats, 178

image source hyperlink, 394
images

in databases, 708
embedded, 651–653

Import Field Mapping dialog, 51–52, 209–210,
546–547, 648

import matching, 648–650
Import Options dialog, 210
Import Records command, 583
Import Summary dialog, 211, 583
importing

Bento integration, 94–96
container objects, 548–549
data matching for, 546–548
delimiters, 642–643
end-of-line markers, 642–643
enhancements to, 102–104
file formats, 639–640
to folders, 641–642
graphic objects from other applications, 184–185
options for, 545
overview, 29–30, 50–51, 589
selectively, 650
synchronizing data sets, 647–648
tables, 209–212

In Browse mode, 311
In Find mode, 311
In Range fields, Validation tab, Options for Field dialog, 220
Include In Menu checkbox, Manage Scripts window, 297
Income table, 695
indexing

alternate language indexes, 344–345
equi-joins and non-equal joins, 414
myths, 342–343
numeric, 343–344
optimizing configurations, 345–346
options for, 221–222
overview, 341
rules, 343
text, 341–342
Unicode, 344–345

Indexing and Sorting Language setting, 345
indirect object/element references, 597
indirection, 530–531
inherent object properties, 179
Initial Value field, 590
initials, calculating, 239
inline duplication method, 275

32_429006-bindex.indd 75832_429006-bindex.indd 758 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

759

Index I

input, database, 6
input field, 350, 503
Input Fields panel, Show Custom Dialog Options dialog,

376–377, 572
input/output (I/O) database, 607
Insert Calculated Result[] button command,

469
Insert File[] command, 548
Insert Picture dialog, 651–652
Insert Picture[] command, 548
Insert QuickTime[] command, 548
inserting

objects into tab order, 98
pictures, 185, 651–652

Install Menu Set[] command, 669–670, 674–675
Install OnTimer Script[] command, 84, 299
installing plug-ins, 720–722
Instant Web Publishing (IWP), 728–729
Insufficient privileges error, 511
Int() function, 697
integrity of backups, 601. See also referential integrity
interaction model, 557, 703
intercapping, 428
interface, FileMaker, 17–18
interface dependent commands, 273
interface design

custom dialogs
attributes, 377
as data-entry device, 376–377
overview, 375–376

dimensionality
color, 386
delineation of element groups, 386
embossing effect, 385
engraving effect, 385
spatial cues, 385–386
translucency, 386–387
transparency, 386–387

dynamic screen elements
conditional formatting, 360–361
disappearing/reappearing objects, 356–360
multi-state buttons and objects, 361–362

interface elements
about and version info, 398
main menus, 398
online help, 398–399
splash screens, 397–398

for Mac and Windows users
fonts, selecting, 352–353
platform-specific window behavior, 354–355
screen rendering differences, 353–354

multiple windows and views
placement, 373–374
as pop-ups and drill-downs, 374–375
simulating modal window behavior, 375
size, 373–374

overview, 351
portals

dynamically sorted, 390
innovative implementations, 391
lists, 389
as navigation device, 389–390

for print
letter generator, 372–373
Merge fields, 371–372
nonprinting objects, 368–369
reducing parts, 369–371
sliding objects, 369–371

progress bars
graphical displays, 396–397
overview, 394
script progress monitors, 395–396

resizable layout objects
centering within viewable area, 382
complex layout resizing, 379–381
objects that grow and shrink, 379
objects that move according to window size, 378–379
overview, 377
resizing behavior of enclosing objects, 382

shortcut navigation
Back button functionality, 384–385
Go to Related Record [] command, 383
multiple paths, 383
overview, 382–383

Sub-summary parts
adaptable screens, 362–363
multiple break fields, 366
page breaks, 366–367
pagination, 366–367
stacking up multiple, 363–365

Tab Controls
navigation via keyboard, 388
organizers, 387
scripting tab operations, 389
space savers, 387

32_429006-bindex.indd 75932_429006-bindex.indd 759 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

760

IndexI

interface design (continued)
user preferences

capturing state by user, 399–400
multi-lingual solution interface, 400–403
user-centric development philosophy, 399

Web viewers
advanced functionality, 391–392
rendering internally calculated content, 392–393
scraping data from Web pages, 393–394

interface files, 432, 435–438, 443
interface vulnerabilities, 557–558
InterfaceLanguages value list, 401
internal IDs, 211–212, 235, 288
Internet Protocol version 6 (IPv6) support, 106
Inventory file, 307, 316, 356–357, 360
Inventory List layout, 315
Inventory::Cost field, 595
invisible characters, 646
InvoiceID field, 428
InvoiceItems TO, 329
InvoiceLines TO, 328–331, 362, 418
Invoices table, 312, 508, 581, 590
Invoices::BalancePayable field, 693
Invoices::Client field, 591
Invoices::ClientID field, 590–591
I/O (input/output) database, 607
IPv6 (Internet Protocol version 6) support, 106
ISO FileMaker Magazine, 737
ItemID field, 649
Item::Price value, 460
Item::Qty value, 460
ItemSupplier TO, 144–146, 314
IWP (Instant Web Publishing), 728–729

J
join results, caching

advantages of, 347
gaining control of cache, 349
solving problems with, 348

join tables, 373, 409, 419
joins

Cartesian, 415, 419
equi-joins, 130, 259, 413–415
naturally occurring, 419–420
non-equal, 390, 414–415
overview, 17
relationship, 692

self, 422–423
theta, 414–415, 455, 457

jump navigation, 313–316

K
key fields, 17, 413
keyboard control of layouts, 185–186
keyboard shortcut commands, 297–298
keyboards, tab navigation via, 388
keys

exploring, 588–590
generating

overview, 584
record IDs, 586–587
serial numbers, 585–586
unique identification values, 587–588

retrofitting, 590–591
unique

meaning of, 584
overview, 582
safeguards, 583–584

keystroke logging software, 578
kiosk mode, 685

L
LanguageID field, 400
LanguagePreference field, 402
LanguageResources table, 400–401
LanguageResources::LanguageID field, 401
LanguageResources::LanguageName field, 401
languages, 28
LastName field, 309, 318, 590
LateReturnsList field, 478
launching FileMaker Pro, 36
layers

business, 432–433
integrated environment, 433
issues with, 433–434
overview, 431
separation model, 432

Layout Bar, 66, 160
layout context, 152
layout event script triggers, 299–300
Layout mode. See also layout objects

buttons
defining, 196–198
as objects, 199

32_429006-bindex.indd 76032_429006-bindex.indd 760 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

761

Index L

overview, 195
scope and button commands, 198–199

displaying related data, 191–195
drag-to-layout tools, 158–160
enhancements to

defining tooltips, 99
font sizes, 99
inserting objects into tab order, 98

graphic objects
alignment, 183–184
building, 181–182
default formats and attributes, 183
importing from other applications, 184–185
stacking, 183–184

initial layouts
applying formats, 162–166
forms, 168–170
lists, 168–170
organizing presentation of information, 160–161
overview, 155–158
parts of, 170–171
setting up for printing, 166–168

interface, 159
menu controls, 160
multilingual interfaces, 400–402
output, versus Excel, 204
overview, 43
palette controls, 160
preparing layout for use as selection window, 308–309
printed output

composite PDFs, 204
fonts, 202–203
overview, 202
page setup, 203
page sizes, 203
versus PDF, 204

select/act tools, 158
tab panels

creating, 188–189
limitations of, 190
navigating between, 189–190

tooltips
conditional, 176–177
icons, 99
keeping track of, 177
overview, 175–176

visual structure
ergonomics, 174–175
giving information meaning, 175

overview, 171
visual fatigue, avoiding, 174–175
visual pointers and aids, 172–174
white space, 174

Web viewers
complementary data concepts, 202
controlling, 201
setting up, 200–201

layout objects
format filters, 335–336
interacting with

assigning names, 186–187
keyboard control, 185–186
tab order, setting, 186
visual spell-checking, 187–188

object names, 500
overview, 500
resizable

centering, 382
complex layout resizing, 379–381
enclosing, 382
moving according to window size, 378–379
overview, 377
that grow and shrink, 379

script triggers, 516
triggers, 78–81
types of

conditional format attributes, 179–181
dynamic objects, 178–179
inherent object properties, 179
overview, 177–178
static objects, 178–179

layout script triggers, 81–84
Layout Setup dialog

accessing, 98
click-sort columns, 329
determining menu set for layout, 674–675
General tab, 136–137
jump navigation, 314
Printing tab, 166–167
Script Triggers tab, 82–83, 299–300
scripting, 500
Views tab, 169–170

Layout tab, Preferences dialog, 56–57, 156
LayoutName field, 321
layouts. See also Layout mode; layout objects

access to, 563–564
design, 18, 25–26
elements in, 47–48

32_429006-bindex.indd 76132_429006-bindex.indd 761 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

762

IndexL

layouts (continued)
format filters, 335–336
menu of viewable, 44
multiple uses of, 136
overview, 13–14
related records in, 49
script triggers, 516
tab order, 388
viewing related records, 54

Leading Grand Summary layout part, 171
leading Sub-summary part, 363
Learn More icon, Quick Start screen, 36, 100–101
Left() function, 337, 462–463, 467, 477
LeftValues() function, 477
LeftWords() function, 465–466
Length() function, 237–238, 452
less-or-equal (≤) symbol, 415
less-than (<) symbol, 415
Let() function, 458–459, 465, 480, 520, 666, 694
letter generator, creating, 372–373
Library field, 478
Library table occurrence, 542
Library::Roster field, 479
line breaking, 59
line height, 367
Line Items table, 581
Line Pattern tool, Status Toolbar, 172
LineItems value, 693
List() function, 236, 476, 482
List View, 168, 378
lists

managing, 477–478
overview, 4–6, 168–170
separators, 289–290
Substitute() function, 461
values

adding, 478–479
extracting one from, 478
inserting, 478–479
removing, 479–480
retrieving as, 476–477

literal text
entering, 234–235
references, 597

literal values, 229, 450
live data, 702–703
local files

backing up, 602–603
overview, 36

local networks, 608–609
local variable, 339–340, 458–459, 519, 525
lock flag, 615
lockdown account, 574–575, 579
lockdown privilege set, 574
locking, record, 280
locking down interface, 501–502
log data, 627
log files, format changes for automatically generated, 106
logging

alternative approaches, 630–631
built-in capabilities

auto-enter options, 619
capturing and extending standard metadata, 620–621

managing accumulation of data, 626–627
record deletions, 626
script

infrastructure for, 621–622
tracking script execution, 622–623

using logs to roll forward, 629–630
logic calculation, 453–454
logic function, 468
logic interface, 433
logic layer, 432
logical operator, 453, 454
login procedure, 514
login script, 574
logo image, 181–182
logout option

locked-down database, 573
security logging, 575–576
structuring solution for, 573–575

Looked-Up Value checkbox, Auto-Enter tab, Field Options
dialog, 218

lookups, 133, 135, 146, 595–596
Loop command, 282–283, 532
Loop/End Loop script command, 536, 723
looping script, 282–283, 395
loop-locked window, 375
loops, 532–535, 680

M
macros, 716
Macs

Customize dialog, 66–67
documents path in, 91
ESS, 92
fonts, 203

32_429006-bindex.indd 76232_429006-bindex.indd 762 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

763

Index M

interface design for users of
fonts, selecting, 352–353
platform-specific window behavior, 354–355
screen rendering differences, 353–354

IPv6 format, 106
ODBC drivers, 248
setting up DSN, 249–252

MacTech Magazine, 739
main menus, 398
Main table, 411
maintaining data

data cleansing operations
ETL cycle, 643
filtering capabilities, 646–647
formats, 643–646

embedded images
assigning and retrieving paths, 652
overview, 651–652
scripted field updates, 652–653

file recovery
file corruption, 638–639
myths, 634–635
overview, 633
Recover process, 635–637
salvaging data, 637–638

importing/exporting data
delimiters, 642–643
end-of-line markers, 642–643
file formats, 639–640
from folders, 641–642

stored files
assigning and retrieving paths, 652
overview, 651–652
scripted field updates, 652–653

synchronizing data sets
import matching, 648–650
importing selectively, 650
overview, 647–648

text
designing custom export process, 654
Export Field Contents[]

command, 653–654
malware, 578
Manage Accounts & Passwords dialog, 570
Manage Accounts & Privileges dialog, 149–150, 559,

566, 568–569
Manage Custom Functions dialog, 676
Manage Custom Menus dialog, 669–670, 673–675

Manage Data Sources dialog, 436
Manage Database dialog

calculations
Calculation fields, creating, 229–232
defining formulas, 233–234
entering literal text, 234–235
functions, 236–238
overview, 228–229
referencing fields, 235–236
simple, 238–241

creating files, 38–39
establishing data sources, 442
External SQL Data Sources

adding supplemental fields, 256–257
integrating SQL tables, 252–256
ODBC drivers, configuring, 247–252

field commenting, 429–431
fields

adding, 213–214
Auto-Entry options, 216–218
Calculation, 222–227
data types, 214–216
deleting, 213–214
global, 227–228
indexing, 221–222
overview, 212
renaming, 213–214
Summary, 222–227
validation, 218–221

Fields tab, 113–117, 127–128, 132–133
filtering portals, 307–308
interface files, 436
overview, 205–206
relationships

functioning of, 258
locations, 259
overview, 257–258
relational model, 259–260
solving problems using, 258–259

Relationships Graph
avoiding circular references, 244–245
misconceptions, 241–242
named and unnamed data sources, 245–246
references to other files, 246–247
tables versus table occurrences, 243

Relationships tab, 129, 131, 255, 592
retrofitting keys, 590

32_429006-bindex.indd 76332_429006-bindex.indd 763 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

764

IndexM

Manage Database dialog (continued)
tables

adding, 206–208
concepts, 206
deleting, 206–208
importing, 209–212
moving between files, 208–209
renaming, 206–208

Tables tab, 116, 118
trapping edits, 623

Manage Extended Privileges option, 567
Manage External Data Sources dialog, 246, 436
Manage Layouts dialog, 98, 675
Manage Scripts window

controlling selection window, 310
enhancements to, 105–106
filtering scripts by folders, 293–294
folders in, 291–293
Include In Menu checkbox, 297
list separators, 289
overview, 262–263, 268–271
script searches, 294
Scripts menu, 278

Manage Value Lists dialog, 138
maps, process, 86
margin settings, 166
master script, 629
Match All Records in Current = Found Set option, 604
match fields, 17, 413
Max() function, 456, 474–475, 482–483
Maximum Number of Characters field, Validation tab,

Options for Field dialog, 220
Maximum summary function, 226
MBS FileMaker Plugin, 727
md command, 713
MDI (Multiple Document Interface) Application

window, 538
media, in databases, 708
media handling plug-ins, 726–727
Media_RecordSoundStop function, 722
MediaManager, 726
Member of a Value List menu, Validation tab, Options for

Field dialog, 220
Memberships table, 419
Memory tab, Preferences dialog, 56, 58
memory variable, 338–339, 458
menu controls, 160
Menu Item Properties panel, Edit Custom Menu dialog, 672

Menu Set pop-up menu, Layout Setup dialog, 674
menu sets

controlling via script, 675
determining for each layout, 674–675
setting default, 673

Menu Sets panel, Manage Custom Menus dialog, 673
MenuMagic, 725
menus

defining, 669–671
editing individual

overview, 671–672
Script Step action, 672
window widgets, 672

layout, 44
menu sets

controlling via script, 675
determining for each layout, 674–675
setting default, 673

Merge fields, 371–372
MergeLetterText field, 373
metadata

calculations, 492–494
capturing, 127–128

MetaDataMagic, 732
MethodOfContact field, 356
Mf variable, 483
Microsoft Visual Basic Scripting engine, 710
Microsoft Windows

command line interpreter, 712
Customize dialog, 66–67
documents paths in, 91
external scripting calls, 710
fonts in, 203
interface design for users of

fonts, selecting, 352–353
platform-specific window behavior, 354–355
screen rendering differences, 353–354

and IPv6 format, 106
ODBC drivers, 248

Microsoft Word, 11
Middle() function, 337, 462–465, 477, 479
MiddleValues() function, 477–478
MiddleWords() function, 465–466
migration, 41, 439
Min() function, 456, 474–475
Mini Mode menu, 42
Minimal Indexing indicator, 344
Minimum summary function, 226

32_429006-bindex.indd 76432_429006-bindex.indd 764 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

765

Index N

mixed-operator, multi-predicate join, 416
mnemonics, 239
Mod() function, 697
modal windows, 375
modeling

data
alternative relationship techniques, 416–420
arrays, 420–423
deployment considerations, 445
documenting database structure, 427–431
external SQL sources, 439–441
file architecture versus data structure, 434–439
implementing separation in existing solution,

442–445
layers, 431–434
overview, 405
relational theory, 405–410
relationship operators, 413–416
Relationships Graph symbols, 410–412
Relationships Graph techniques, 423–427

transaction
batch automation, 704
host/server script execution, 704–706
live versus batch data, 702–703
offline updates and processing, 704
posting and propagating edits, 703
robots, 704

modes, 43
_ModHist field, 621
_ModHistory field, 620–621
Modification checkbox, Auto-Enter tab, Field Options dialog,

217
modifier keys, 696–697
Modify Table View dialog, 69–70
modular approach, file architecture, 435
modular script code

script recursion, 536
using sub-scripts, 535–536

modular-centric approach, Relationship Graph, 424–425
modularization, 349, 445, 707
Month() function, 448
Month Summary layout, 567
Move/Resize Window[] command, 374, 539
Move/Resize[] script, 374
multi-criteria relationship, 415
multi-file solutions, 434–435, 571–572
multi-key fields, 17, 258, 417–419
multi-key relationships, 588

multilingual functionality, 28
multi-lingual solution interface, 400–403
multiple break fields, 366
Multiple Document Interface (MDI) Application window,

538
multiple-file structure, 434
multi-predicate relationships, 259, 415–416
multi-state buttons and objects, 361–362
multi-user capability, 28
music collection database, 8

N
named data sources, 245–246
names

calculation field, 232
field, 235
layout object, 186–187
methodology for, pasted script, 288
script, 289, 297
table, 208
window, 538

name/value pair array format, 522
Name/Value pair syntax, 421
naming conventions, 428–429
Native AppleScript, 714
native function, 449
naturally occurring joins, 419–420
navigating. See also shortcut navigation

FileMaker Pro 10
modes, 43
overview, 41–42
screen elements, 47–48
searching, 45–46
viewing data, 43–45

between tab panels, 189–190
via keyboard, 388

navigation commands, 262
navigation controls, 285–286
navigation icon, 17, 44
navigational pathways, 383
negative parameter value, 449
nested If/Else conditions, 531–532
nesting calculation functions, 452–453
NetIncome() custom function, 679
network encryption, 580
Network Interface Card (NIC), 588
network latency, 610
networkable capability, 28

32_429006-bindex.indd 76532_429006-bindex.indd 765 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

766

IndexN

New Layout Wizard, 107
New Millennium Communications, 725
New Record icon, 48
New Record/Request step, 265
New Window Options dialog, 314, 316, 538, 539
New Window[] command, 373–374, 538
NewValue value, 521
NIC (Network Interface Card), 588
NightWing Enterprises, 737
non-equal joins, 390, 414–415
nonlinear logic

looping constructs, 532–533
nested and sequential If/Else conditions, 531–532
specifying exit conditions, 533–535

nonprinting objects, 368–369
Not Empty checkbox, Validation tab, Options for Field

dialog, 219–220
not operator, 455
not-equal join operator (≠), 414
Notes field, 409
Now Showing:<big> tag, 394
number fields, 214
Number Format for selected objects dialog, 162, 164–165
number format, precedence of, 336
numeric indexing, 343–344
NumRange() function, 681–682

O
Object Effects palette, 181, 183
object event script triggers, 300–301
Object Info palette, 179, 197–199, 358, 378, 389
Object Name field, 312, 500
Object Selection tool, Status Toolbar, 158, 178
objects. See also layout objects

anchored, 380
defined, 17

occurrence parameter, 464
ODBC (Open Database Connectivity), 247–252, 440–441,

547
ODBC Administrator utility window, 249, 252
ODBC Data Source Administrator control panel, 248
offline updates, 704
Omit checkbox option, 530
Omit option, 318
Omit Record command, 530
omitting record sets, 45–46
On Commit option, 585

one-to-one relationships, 423
one-way relationships, 418–419
OnFileClose script triggers, 85
OnFileOpen script triggers, 85
OnLayoutKeystroke trigger, 82–84, 516
OnLayoutLoad trigger, 82–83, 358, 516
online content, uploading or updating, 515
online help, 398–399
online support, 735–736
Only During Data Entry option, 583
Only during Data Entry radio button, Validation tab, Options

for Field dialog, 219
OnModeEnter trigger, 82, 516
OnModeExit trigger, 82, 516
OnObjectEnter trigger, 78, 83, 516
OnObjectExit trigger, 78, 516
OnObjectKeystroke trigger, 78, 83–84, 516
OnObjectModify trigger, 78, 220, 358, 516
OnObjectSave trigger, 78, 516
OnRecordCommit trigger, 82–83, 516
OnRecordLoad trigger, 82–83, 516
OnRecordRevert trigger, 82, 516
OnTimer script triggers, 84–85
Open Database Connectivity (ODBC), 247–252,

440–441, 547
open database files, copying, 601–602
Open Database icon, Quick Start screen, 36
Open Directory domain controller, 568
Open Menu Item commands, 263
Open Remote File Dialog, 608–610
Open URL [] script, 716
Open/Close Data Viewer button, Script Debugger

window, 660, 665
Open/Close panel, File Options dialog, 59–60, 85, 151, 513
open-ended three-tier sorting system, 325–326
opener files, 611–612
opening remote files, 607–613
operands, 448
operations, default order of, 454–455
Operator buttons, Specify Calculation dialog, 230
Operator list, Specify Calculation dialog, 230
operators

and, 455
AND predicate, 415
arithmetic, 453–455
in calculations, 451
comment, 453
comparative, 414–415, 453–455, 457

32_429006-bindex.indd 76632_429006-bindex.indd 766 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

767

Index P

concatenation, 467
defined, 229
dyadic, 415–416
logical, 453–454
not, 455
precedence, 233
Range, 143
relationship

Cartesian joins, 415
comparative operators, 414–415
equi-joins, 414
multi-predicate relationships, 415–416
non-equal joins, 414
overview, 413–414

Reserved Name, 453–454
text, 453, 455
wildcard, 143

optimization, FileMaker Pro 10
File Options dialog, 59–62
overview, 55
Preferences dialog, 56–59

Optional Script Parameter box, Specify Script Options
dialog, 312, 330

Options dialog, 712
Options for Field dialog

Auto-Enter tab, 216–218
Auto-Entry, 118–124
Creation checkbox, 127
indexing, 342, 344
language indexing options, 29
Prohibit Modification of Value during Data Entry

checkbox,, 127
retrofitting keys, 590
Storage tab, 221–222, 227–228
trapping edits, 624
user over-ride capability, 487–488
validation, 118–124
Validation tab, 122–123, 218–219

Options for Summary Field dialog, 225
OR Finds, 318
OR logic, 417
order of operations, 454–456
OrderItems layout, 364, 367
OrderLines layout, 330, 362, 364, 366
OrderLines table, 327–328
OrderLines table occurrence, 422
OrderLines::Price field, 595
Orders table, 640

Orders::Status field, 564
OrdLineID label, 329
Organizations field, 624
Other Privileges section, Edit Privilege Set dialog, 561
out-of-scope characters, rejecting, 618–619
output. See also printed output

database, 6
Layout mode, 204

Oval tool, 181

P
page breaks, 366–367
page layout, 392
Page Margins option, View menu, 167
page setup, 203
page sizes, 203
pagination, 366–367
Palette (256 Colors) radio button, Layout tab, Preferences

dialog, 156
palette controls, 160
paper-based databases, 4–5
paragraph attribute, 333
Paragraph dialog, 367
paragraph-level formatting, 335
parameters

assigning, 276
branching according to state, 518–519
custom function, 676
defined, 448
getting data into script, 517–518
logic, 449–450
optional, 233
overview, 229, 265
passing multiple, 521–523
retrieving multiple, 521–523
for size and location, 374

parent script, 517
parsing, 462
Part tool, Status Toolbar, 171
parts, layout, 47
passive filter, 335
passwords

account, 149–152
encoding or encrypting, 572

Paste [No style] script, 335
Paste command, 320
Paste Text Only option, 333

32_429006-bindex.indd 76732_429006-bindex.indd 767 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

768

IndexP

pasting, 126, 288–289
PatternCount() function, 91, 463–465, 477
paused scripts, 280
Pause/Resume Script [] command, 283–284
pausing for user input, 283–284
Payments value, 693
PDF (Portable Document Format) files

composite, 204
exporting as, 53–54
versus printed output, 204

peer-to-peer hosting, 608–610
People table, 408
Perform AppleScript [] command, 713–716
Perform Auto-Enter Options While Importing option, 487
Perform Find [] command, 319, 321, 507,

529–530, 672, 690
Perform Find [Restore] command, 654
Perform Script [] command

click-sort columns, 330
Current Script option, 534–535
external scripts, 512
getting data into script, 517
instantiating variables, 340
overview, 195, 298
reducing user access to scripts, 280
Script Step action, 672
selection windows, 311–312

permissions, 560
PHP Site Assistant, 731
physical file security

alternative forms of protection, 578
layers of protection, 578
multi-faceted approach, 579
overview, 577–578

Pi function, 449–450
pick lists, 306–313
pilcrow, 234–235
pipe character (|), 396
pipe delimiter character, 695
pivoting data between tables

managing related data, 549–550
using utility relationships, 549

pixel, 379
_pk (primary key), 413, 428, 589
placeholder, 372
PlatformIsMacOS custom function, 678
platform-specific window behavior, 354–355

plug-ins
Application/Program Interface, 30–31
AutoUpdate, 721
charting, 727–728
dialog capabilities, 725–726
e-mail, 727
enabling, 720–722
extensibility, 30–31
external functions, 722–723
file handling, 726–727
FTP, 727
HTTP, 727
installing, 720–722
interface for, 28
media handling, 726–727
script triggering, 77, 723–725

Plug-Ins tab, Preferences dialog, 56, 58, 720–721
PNG (Portable Network Graphics), 386
pop-up windows, 286, 307, 374–375
Portable Document Format (PDF) files

composite, 204
exporting as, 53–54
versus printed output, 204

Portable Network Graphics (PNG), 386
Portal Setup dialog, 191–192, 309, 332
Portal tool, 191, 309
portals

behavior of enclosed objects, 382
dynamically sorted, 390
filtering, 306–313
innovative implementations, 391
interaction with, 178
invisibility, 356–358
lists, 389
as navigation device, 389–390
overview, 16, 47
setting up, 191–195
in Tab Control, 190
viewing related data, 54
visibility technique, 360

PortalTO stored calculation field, 485
Position() function, 91, 463–465, 467, 696
post-event triggers, 78, 82
potential vulnerability, 577
precedence, calculation operations, 233
pre-event triggers, 78, 82, 84
Preferences dialog, 56–59, 156–157, 720–721

32_429006-bindex.indd 76832_429006-bindex.indd 768 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

769

Index R

prefix character, 235
presentation formats, 168–170
Preview mode, 43, 53, 167–168, 362, 365, 369, 475
previewing data, 52–53
primary key (_pk), 413, 428, 589
PrimaryID field, 583
Print Options dialog, 272
Print[] command, 104–105
printed output

composite PDFs, 204
versus Excel, 204
fonts, 202–203
overview, 202
page setup, 203
page sizes, 203
versus PDF, 204

printers, target, 104–105
printing

data, 52–53
files via scripts, 286–287
interface design for

letter generator, 372–373
Merge fields, 371–372
nonprinting objects, 368–369
reducing parts, 369–371
sliding objects, 369–371

reports, 295
setting up layouts for, 166–168

Printing tab, Layout Setup dialog, 166–167
Priority Support, 736
privilege set

defining and constraining access, 560–561
overview, 148–150, 558–559
role-based security, 560
schema privilege controls, 561–562
setting default, 150–152

Privilege Sets tab, Manage Accounts & Privileges dialog, 149,
559

privilege-based errors, 511
privileges, extended, 566–567
procedural layer, 432–433
procedures, 501–502
process automation, 12
process layer, 432
process maps, 86
Product Technical Support, 736
Products::Description field, 654

progress bars
graphical displays, 396–397
overview, 394
script progress monitors, 395–396

Prohibit Modification of Value During Data Entry option,
Auto-Enter tab, Options for Field dialog, 127,
487, 584, 586, 590

Q
queries, 14–15
Quick Start screen, 36, 100–102, 112–113
QuicKeys, 716
quote character, 234–235

R
RAD (rapid application development), 205
radio buttons, 306, 585
Random function, 449–450
Range operator (...), 143
rapid application development (RAD), 205
RDMS (Relational Database Management Systems), 405–406
[Read-Only Access] privilege set, 559
RealTech, 738
real-time data summarization, 689
reappearing objects

concealed and remotely operated Tab Control, 358–360
conditional formatting, 360
overview, 356
portal invisibility, 356–358

Receipts::ReceiptStatus field, 698
Recent Finds menu, 73
RecordID stored calculation field, 485
recording navigation text, 240–241
records

access to, 564–566
committing, 49–50, 107
creating, 48
deleting redundant

cascading deletion, 592–595
configuring relationships for referential integrity,

592–593
overview, 591

duplicating, 49
flagging, 607
locking, 280, 604–606, 615
maintaining sort order, 70–72

32_429006-bindex.indd 76932_429006-bindex.indd 769 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

770

IndexR

records (continued)
marking, 607
moving between, 44, 153
overview, 4, 13
record IDs, 586–587
related, 16
sorting

click-sort columns, creating, 327–331
dynamic sort techniques, 324–327
multiple sort keys, 324
overview, 323
related data, 332–333

records commands, 262
Records menu, 73–75
Recover command

file corruption, 638–639
overview, 96–98, 633–635
recovery process, 635–637
salvaging data, 637–638

Recover.log file, 98
rectangle tool, Status Toolbar, 172–173
recursion

defined, 496, 675
examples, 682–683
limits of, 681
overview, 680–681
tail, 681–682

reducing parts, 369–371
redundancy

avoiding duplication of elements, 689–690
data, 7
data design issues, 596
portable and reusable code, 690–691

redundant records, deleting, 591–595
referencing fields, 235–236
referential integrity

auto-entry lookups, 595–596
data design issues, 596
deleting redundant records

cascading deletion, 592–595
configuring relationships for referential

integrity, 592–593
overview, 591

dependencies
filename references, 598
indirect object/element references, 597
literal text references, 597
structural anomalies, 598

keys
exploring, 588–590
generating, 584–588
retrofitting, 590–591
unique, 582–584

lookups, 595
pinpointing causes of problems, 581–582

Refresh command, 348
Refresh Portal script, 311
Refresh Window[] command, 348, 541
refreshing screen, 541–542
registration, 35
Regular User privileges, 152
related data

displaying, 191–195
pivoting data between tables, 549–550
sorting, 332–333

related records, 16, 49
Related table, 411
RelatedKey field, 418
relational data

modeling principle, 408
structure, 582

Relational Database Management Systems (RDMS), 405–406
relational databases

connections between corresponding information, 7–8
data redundancy, 7
flat-file, 7
overview, 6

relational filtering, 488
relational key, 589
relational matching, 488
relational theory. See also data modeling

guiding principles, 408–410
modeling real world, 406–408
overview, 405–406
set theory, 406

relations, 13
relationship joins, 692
relationship operators

Cartesian joins, 415
comparative operators, 414–415
equi-joins, 414
multi-predicate relationships, 415–416
non-equal joins, 414
overview, 413–414

relationships
alternative techniques, 416–420
configuring for referential integrity, 592–593

32_429006-bindex.indd 77032_429006-bindex.indd 770 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

771

Index R

context, 55
creating, 129–132
editing related data, 54
functioning of, 258
locations, 259
overview, 257–258
relational model, 259–260
simplicity, 55
solving problems using, 258–259
viewing related data, 54
visual cues to, 144

Relationships Graph
circular references, avoiding, 244–245
constellations, 424
data sources, named and unnamed, 245–246
duplication in, 690
establishing relationships, 129–132
misconceptions about, 241–242
modular centers, 424
overview, 206, 423–424
references to other files, creating, 246–247
reusability concepts, 692
satellite-based graph solution, 424–426
segmentation on functional lines, 426–427
shadow tables, 255–256
symbols, 410–412
Table Occurrences, 23–25, 191, 243
tables, 243

Relationships tab, Manage Database dialog, 129, 131,
255, 307, 592

Re-login[] command, 573
Relookup Field Contents option, 107
remote files

defined, 36
file sharing risks, 610–611
opener files, 611–612
overview, 607–608
peer-to-peer hosting, 608–610
sending e-mail links, 612–613

Remove Expression control, Watch panel, Data Viewer, 664
renaming

fields, 213–214
tables, 206–208

reordering scripts, 293
repeating fields, 16, 420
repetition, controlling script execution using, 282–283
Repetitions text box, Specify Calculation dialog, 231
repetitive tasks, 399
Replace() function, 240, 455, 461–462, 479

Replace Field Contents [] command, 585–587,
606, 644, 647, 688

Replace Field Contents dialog, 587, 590
Replace Field Contents option, 107
Replace with Serial Numbers option, 590
reporting, 427
reports

composite PDFs, 204
versus Excel, 204
fonts, 202–203
page setup, 203
page sizes, 203
versus PDF, 204
printed, 202
printing, 295

Require section, Validation tab, Options for Field dialog, 219
Reserved Name operators, 453–454
reserved words, 235
resizable layout objects

centering, 382
complex layout resizing, 379–381
enclosing, 382
moving according to window size, 378–379
overview, 377
that grow and shrink, 379

resizing windows, 538–540
re-sorting, 71–72
resources

books, 739
mailing lists, 738
online design and development, 737–738
online forums, 738
overview, 32–33
periodicals, 739
professional consulting and development

services, 736–737
Web site, 735–736

restoring data. See maintaining data
restricted-access accounts, 152
Result Type pop-up, Specify Calculation dialog, 231
results

defined, 229
retrieving, 523–525
specifying, 523–525

retrofitting keys, 590–591
Return key, 186
Return/Enter characters, 123
Revert Record option, 48, 50, 134
Revert Script option, 287

32_429006-bindex.indd 77132_429006-bindex.indd 771 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

772

IndexR

RGB() function, 336, 469
Right() function, 337, 462–463, 467, 477
RightValues() function, 477
RightWords() function, 465–466
robots, 704–705
role-based security, 560
roll-back

alternative undo, 629
chronological, 628–629
overview, 627–628
using logs to roll forward, 629–630

roll-forward, 629–630
Roster field, 478
Round() function, 237
Rounded Rectangle tool, 183
rule of multiples, 367
Run Script with Full Access Privileges option, 437, 510, 512,

517, 535, 594, 691
Run/Pause button, Script Debugger window, 659
runtime applications

binding, 685–686
hosting runtime files, 686
overview, 27
stand-alone solution, 684–685

runtime files, hosting, 686

S
safeguards, key, 583–584
SASE (Server Activated Script Execution), 103–104
satellite-based graph solution, 424–426
Save a Copy as [] command, 286–287, 602
Save a Copy command, 635
Save a Copy Compacted command, 635
Save Changes button, 703
Save dialog, 137
Save Layout Changes Automatically (Do Not Ask) checkbox,

Layout tab, Preferences dialog, 156
Save Records as Excel[] command, 527
Save Records as PDF[] command, 527
Saved Finds sub-menu, Records menu, 73–75
Save/Send Records As commands, 53–54
saving

files, 38
Find requests, 72–75
found sets, 319–323
records, 50
target printer, 104–105

scalability, 27–28

schema privilege controls, 561–562
schema references, 450–452
scope

button, 198–199
variable, 459

Score field, 474
screen elements

conditional formatting, 360–361
disappearing/reappearing objects, 356–360
multi-state buttons and objects, 361–362
overview, 47–48

screens
adaptable, 362–363
font, 353
illusion of depth, 385–386
layering, 354
lists of values for fields, 12
rendering differences for Mac and Windows, 353–354
separating for printing information, 202

script commands
assigning attributes to, 276–278
branching according to state, 518–519
changing order of, 274–276
groups, 262–265
overview, 273–274
window management, 536–537

Script Debugger
controls, 659–660
debugging restricted privilege scripts, 658–659
empty comment lines, 291
enhancements to, 107
issues with triggers, 87–88
overview, 657–658
using Data Viewer with, 665

Script Definition panel, Edit Script window, 276–277
Script Editor windows, 268–271, 510–511
script error codes, 108
script logging

infrastructure for, 621–622
overview, 630–631
tracking script execution, 622–623

Script Name field, 310
script parameters, 512, 517–518, 523
script progress monitors, 395–396
script recursion, 536
script results, 523–524
script stacks, 279–280
Script Step action, 672
Script Step Options panel, Edit Script window, 265, 276

32_429006-bindex.indd 77232_429006-bindex.indd 772 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

773

Index S

script steps, 262–263
script triggering

file-based, 85
layout object triggers, 78–81
layout script triggers, 81–84
logging, 630–631
overview, 77–78, 516–517
pitfalls of, 85–88
plug-ins, 723–725
Tab Controls, 358–359
timed interval, 84–85

Script Triggers tab, Layout Setup dialog, 82–83,
299–300, 516

script variables, 458–459
Script[] command, 510
scripted data aggregation, 526
scripted queries, 440
scripting

access privileges
full access, 511–512
overview, 510–511
privilege-based errors, 511
substantive, 512

account management
automation of database security, 570–571
multi-file solutions, 571–572
safe scripting implementations, 572

addressing objects by name, 267–268
automation

housekeeping practices, 514–515
overview, 512–513
running on file close, 515
running on file open, 513
script triggers, 516–517

blocks of automation, 264–266
context, 266–267
dynamic and indirect controls

building Find criteria, 529–530
example, 526–527
file paths using variables, 527–528
indirection, 530–531

examples
building multi-part PDF reports, 551
locating unique records, 550–551

exporting data
container objects, 548–549
field contents, 542
selecting fields for export, 543–545
table data, 543

importing data
container objects, 548–549
data matching for, 546–548
options for, 545

interface object control via
addressing objects by name, 500–501
locking down interface, 501–502
managing user interaction, 502–504
overview, 499–500

modular script code
script recursion, 536
using sub-scripts, 535–536

nonlinear logic
looping constructs, 532–533
nested and sequential If/Else conditions, 531–532
specifying exit conditions, 533–535

overview, 261–264
parameters

branching according to state, 518–519
getting data into script, 517–518
passing and retrieving multiple, 521–523

performing actions in sequence, 267
pivoting data between tables

managing related data, 549–550
using utility relationships, 549

results, specifying and retrieving, 523–525
tab operations, 389
trapping errors

error codes, 505–506
error handling, 506–509
overview, 504–505

variables
declaring, 519–521
storing and accumulating data, 525–526

windows
addressing by name, 537–538
creating off-screen, 540–541
freezing and refreshing screen, 541–542
moving, 538–540
overview, 536
resizing, 538–540

ScriptLog table, 621–622
scripts. See also calling scripts; script commands; scripting

access to, 563
controlling execution

overview, 280
pausing for user input, 283–284
using conditional statements, 281–282
using repetition, 282–283

32_429006-bindex.indd 77332_429006-bindex.indd 773 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

774

IndexS

scripts (continued)
creating, 310
duplicate names, 289
editing

copying and pasting, 288–289
overview, 287
selecting and duplicating multiple commands, 288

error handling, 506
examples

acting on user input, 296
performing finds, 295
printing reports, 295

organizing
filtering scripts by folder, 293–294
grouping scripts, 293
list separators, creating, 289–290
reordering scripts, 293
script commenting, 290–291
script folders, creating, 291–293
searching for scripts by name, 294

overview, 17
Script Editor windows, 268–271
Scripts menu

managing, 278–279
paused scripts, 280
script stacks, 280
single-threaded script engine, 279–280

self-logging, 623
setting up, 271–273
uses for

editing information via, 286
managing files, 286–287
navigation controls, 285–286
overview, 284
printing files, 286–287
view controls, 285–286

Scripts menu
calling scripts via, 297
list separators, 290
managing, 278–279
paused scripts, 280
Reports submenu, 292–293
script stacks, 280
single-threaded script engine, 279–280

script-threading, 459
scroll bar, 389
searches

constraining and extending found sets, 319
databases, 143

AND Finds, 318
OR Finds, 318
overview, 45–46, 317
saving Finds and found sets, 319–323
for scripts by name, 294

Secure Socket Layer (SSL) encryption, 580
security

accounts, 148–152
amount of

balanced view of threats, 577
strategic model for response, 577
ways to evaluate risk, 576

concepts of
interface vulnerabilities, 557–558
overview, 555–556
perspective, 556
protecting investment, 556–557

deployment
filtered display of files, 580
overview, 579–580
Secure Socket Layer encryption, 580
server checks and logs, 580

file-based, 432
granular

extended privileges, 566–567
field access, 564–566
layout access, 563–564
overview, 562–563
record access, 564–566
script access, 563
table access, 564–566
value list access, 563

logout option
locked-down database, 573
security logging, 575–576
structuring solution for, 573–575

management of, 438
passwords, 150–152
physical file

alternative forms of protection, 578
layers of protection, 578
multi-faceted approach, 579
overview, 577–578

privilege sets
defining and constraining access, 560–561
overview, 148–152, 558–559
role-based security, 560
schema privilege controls, 561–562

risks, 577

32_429006-bindex.indd 77432_429006-bindex.indd 774 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

775

Index S

scripted account management
automation of database security, 570–571
multi-file solutions, 571–572
safe scripting implementations, 572

start-up scripts, 514
user authentication

internal and external, 568–570
overview, 567
user accounts, creating, 568

Security Administrator, 731
security logs, 576
Security Management Script command, 571
segmentation, 427, 707
Select Buyer pop-up window, 313
Select Contact [Type] script, 310–312
Select Damaged File dialog, 96–97, 634
Select Entire Contents checkbox, 469
Select Item window, 375
Select Window[] command, 374
select/act tools, 158
Self function, 337, 449–450
self joins, 422–423
self-contained applications, 684
self-join portal, 390
self-join relationship, 485
self-logging script, 623
Send DDE Execute [] script, 713
Send Event [] command, 710–713, 716
Send Link command, 612
Send Mail option, File menu, 100
Send Mail[] script command, 100
sending e-mail links, 612–613
SendMail, 727
separation, data

approaches to, 438
costs and benefits, 439
external SQL sources, 439–442
implementing in existing solution, 442–445

separation model, 432
separators, 294, 465–466
sequential dependency, 700
sequential If/Else conditions, 531–532
Serial Number checkbox, Auto-Enter tab, Field Options

dialog, 217
serial numbers, 119–120, 585–586
Serial# field, 411
SerialIncrement() calculation function, 585
Server Activated Script Execution (SASE), 103–104
server products, 27

Server-compatible script command, 706
servlets, 719
Set Error Capture [] command, 508–509
Set Error Capture [On] command, 508
Set Field [] command, 76, 267, 277, 309, 337–338,

394, 487, 531, 723
Set Field by Name [] command, 76–77, 90,

482, 531
Set Next Serial Value[] script command, 585
Set Next Step button, Script Debugger window, 659
Set Script Triggers dialog, 79–80, 300–301, 310–311
Set Selection[] script command, 469
Set Sliding/Printing dialog, 167, 169, 368, 370
Set Tab Order dialog, 186–187, 388
Set Theory, 406
Set Tooltip dialog, 99, 176
Set Variable[] command, 339–340, 459, 520,

652, 723
Set Web Viewer[] command, 201, 533
Set Window Title [“xyz”] command, 537
Set/Clear Breakpoint button, Script Debugger window, 659
sFirstExam summary field, 475
shadow tables, 255–256
Shell Scripts, 713–715
Shift key, 288
Shockwave Flash, 719
short-circuit evaluation, 234, 693
shortcut icon, 37
shortcut keys, 297–298
shortcut navigation

Back button functionality, 384–385
Go to Related Record [] command, 383
multiple paths, 383
overview, 313–316, 382–383

shortcuts, Specify Calculation dialog, 232
Show All icon, 46
Show All Records command, 362
Show Compatibility menu, Edit Script

window, 103–104, 705
Show Custom Dialog Options dialog, 376, 572
Show Custom Dialog[] script command, 502–503,

725
Show in New Window checkbox, 314
Show Individual Words checkbox, 342–343
Show Omitted Only option, Records menu, 141
Show Transactions [Type] script, 529
Show/Hide Status Area[] command, 573
ShuffleString(text) syntax, 496

32_429006-bindex.indd 77532_429006-bindex.indd 775 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

776

IndexS

simplicity
applying, 701–702
dependencies, 698–701
examples, 695–698
optimal calculation syntax, 693–694
overview, 22–23

single character quote mark, 371
Single Sign-on (Windows Authentication), 92–94
single-file architecture, 442
single-threaded script engine, 279–280
Six Fried Rice, 738
sLastExam summary field, 475
sliding objects, 369–371
SMALLDATETIME fields, 94
Smart Pill, 727
smart quotes, 59
SMTP server, e-mailing via, 99–100
solutions

overview, 13
simplicity in development of, 701
steps to add accounts, 568
using script triggers to enforce rules in, 87

something variable, 340
Sort dialog, 324
sort order, 222
Sort Portal Records checkbox, Portal Setup dialog, 332
Sort Records dialog, 142, 271–272, 430
Sort Records[] command, 325–326, 585
sorting data, 141–143
sorting records

click-sort columns, creating, 327–331
dynamic sort techniques, 324–327
multiple sort keys, 324
overview, 323
related data, 332–333

Source table occurrence, 550
spatial cues, 385–386
Specify buttons, 263
Specify Buyer button, 313
Specify Calculation dialog

accessing, 277–278
aggregating calcs, 132–134
custom functions, 494
field names in, 120–121
formula box, 448
global calculations, 489
making content explicit, 451–452
mouse-driven shortcuts, 232
overview, 23–24, 222–224

parts of, 229–231
privileges for table, record, and field access, 564
setting up calculations in, 124–126
structured syntax and nesting, 452–453
trapping edits, 624

Specify Field dialog
accessing, 276–277
ItemSupplier TO, 144–146
Merge fields, 371
in portal creation process, 194
sourcing fields in, 191–192

Specify Field Order For Export dialog, 52–53, 543–544
Specify Fields for Value List dialog, 138, 140
Specify File dialog, 245–247, 528, 545, 548
Specify Find Requests dialog, 319
Specify Options for the Saved Find dialog, 74–75
Specify Output File dialog, 544, 711
Specify Script dialog, 311
Specify Script Options dialog, 330, 518
Specify Solution Options dialog, 684
Specify Table dialog, 252–254, 436
spell-checking, 59, 187–188
spelling commands, 263
Spelling panel, File Options dialog, 59–60
spider graph, 423
spiral formation, Relationships Graph, 244–245
splash screens, 397–398
spreadsheets, 6, 51
spyware, 578
SQL Query Builder, 548
SQL tables, integrating, 252–256
squid graph, 423
SSL (Secure Socket Layer) encryption, 580
stacking Find requests, 318
Standard Deviation Of summary function, 227
[Standard FileMaker Menus] menu set, 674
start parameter, 465
Starter Solutions, 107, 112
starting FileMaker Pro 10, 37
start-up scripts, 512–515, 621, 719
state

branching according to, 518–519
capturing by user, 399–400

static actions, 154
static array, 421
static data, 434
static objects, 178–179, 500
stationery formats, 203
Status Area, 64–68

32_429006-bindex.indd 77632_429006-bindex.indd 776 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

777

Index S

status bar, 355
Status Bar, Status Toolbar, 66
Status Toolbar

Button tool, 195–196
controls, 42–46
Field tool, 178
Find icon drop-down menu, 73, 74f
Find mode, 306, 317, 502
icons, 160
Line Pattern tool, 172
Object Selection tool, 158, 178
overview, 42, 64–68
Part tool, 171
Portal tool, 191
rectangle tool, 172–173
Text tool, 173
tools, 158

Step Into button, Script Debugger window, 659
Step Out button, Script Debugger window, 659
Step Over button, Script Debugger, 107, 659
steps, 262–263
storage

auto-enter calculations, 488
data, 627
protocols, 608

Storage Options button, Specify Calculation dialog, 231
Storage Options dialog, 350, 489
Storage tab, Options for Field dialog, 221–222, 227–228
Store Only a Reference to the File option, 651
stored calculation field, 485, 700
stored files

assigning and retrieving paths, 652
overview, 651–652
scripted field updates, 652–653

Stored Find technique, 323
stored-as-reference storage mode, 653
StoredFinds layout, 321–322
Strict Data Type menu, Validation tab, Options for Field

dialog, 219
structure

data
interface files, 436–438
modular approach, 435
multi-file solutions, 434–435
overview, 9, 434
separation of data, 438–439

database, 9, 23
documenting database

ancillary notes, 430–431
field commenting, 429–430

graph annotations, 427–428
naming conventions, 428–429
overview, 427

multiple-file, 434
relational data, 582
visual

ergonomics, 174–175
giving information meaning, 175
overview, 171
visual fatigue, avoiding, 174–175
visual pointers and aids, 172–174
white space, 174

style buttons, creating, 337–338
styled source text, 619
submenus, Script menu, 279, 292–293
Submissions::Date field, 529
sub-scripts

defined, 279
eliminating redundancy, 690–691
script results, 524
use of, 535–536

sub-second pause durations, 284
subsets, data, 7, 9
Substitute() function, 240, 461–462, 479
Sub-summary parts

adaptable screens, 362–363
multiple break fields, 366
overview, 68–70, 171
page breaks, 366–367
pagination, 366–367
stacking up multiple, 363–365
zones, 380

Sum() function, 473, 693
Sum(Invoices::BalancePayable) expression, 694
summaries, data, 52
summary data

aggregate functions, 473–474
Max(), 474–475
Min(), 474–475
referencing summary fields, 475

summary fields, 16, 216, 222–227, 473, 475, 702
SuperContainer, 727
SuperLog() custom function, 626
Supplier Details field, 356–357
SupplierID field, 356, 360–361
Suppliers Table Occurrence, 640
support programs, 32
.swf file format, 719
synchronized security configuration, 571

32_429006-bindex.indd 77732_429006-bindex.indd 777 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

778

IndexS

synchronizing
data, 546–547
data sets

import matching, 648–650
importing selectively, 650
overview, 647–648

syntax, 229, 449
System DSN tab

ODBC Administrator utility window, 249
ODBC Data Source Administrator control panel, 248

system failure, 601
System Preferences color palette, 354
System::gProgressPercent field, 396

T
Tab Control Setup dialog, 188–189, 359
Tab Controls

adaptable design, 692
concealed and remotely operated, 358–360
defined, 47
as dynamic objects, 179
hierarchical principle, 387
navigation via keyboard, 388
organizers, 387
resizing behavior of enclosing objects, 382
scripting tab operations, 389
space savers, 387
uses of, 188–190

Tab key, 265
tab order, setting, 186
tab panels

creating, 188–189
limitations of, 190
navigating between, 189–190
scripting tab operations, 389

Tab Width pop-up menu, 359
tab-delimited format, 106
Table Occurrence Groups (TOGs), 152–153
Table Occurrences (TOs)

displaying related data with, 191
GetFieldName() function, 481
interface files, 436–437
modifying in Manage Database dialog, 206–207
names in edited tables, 208
overview, 23, 410–412
as pointer, 412
relationships, 422
re-pointing, 442–443

Specify Calculation dialog menu, 224
table names, 122
versus tables, 242–243
using in Relationships Graph, 129–131

table of dependencies, 224
Table pop-up, Specify Calculation dialog, 230
Table View, 69–70, 168, 329, 378
tables

access to, 564–566
adding, 114–118, 206–208
concepts, 206
deleting, 206–208
files, moving between, 208–209
importing, 209–212
moving between, 154
overview, 4–6
pivoting data between

managing related data, 549–550
using utility relationships, 549

relationships, creating between, 129–132
renaming, 206–208
SQL, integrating, 252–256
versus table occurrences, 243

Tables tab, Manage Database dialog, 116, 118, 206–209,
307, 443, 598

tail recursion, 681–682
Target Fields column, Import Field Mapping dialog, 546
TCPdirect, 727
TechNet, 736
Temp directory, 391
templates

Create Database, 36
updated, 107
using techniques as, 717

temporary edit interface techniques
Data Viewer concept, 613–614
double-blind entry systems, 615–616
record locking, 615

temporary files, 104
terminal line, 411
testing, graph, 444
text

color of, 162–163
font sizes, 99
formatting operations

applying, 467–468
creating Format button, 469–470
removing, 468
selective, 468–469

32_429006-bindex.indd 77832_429006-bindex.indd 778 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

779

Index T

handling
designing custom export process, 654
Export Field Contents[] command,

653–654
parsing, 462–463, 466–467
processing functions

Left(), 462–463
LeftWords(), 465–466
Middle(), 462–463
MiddleWords(), 465–466
overview, 460–461
PatternCount(), 463–465
Position(), 463–465
Replace(), 461–462
Right(), 462–463
RightWords(), 465–466
Substitute(), 461
Trim(), 462
WordCount(), 465–466

underlining, 469–470
Text Color checkbox, 330, 360
text fields, 16, 214, 222, 463
text indexing

versus numeric, 343–344
value indexes, 342
word indexes, 341–342

text objects, 162–166, 353
text operators, 453, 455
Text panel, File Options dialog, 59–61
text placeholder, 372
Text Ruler, 335
text string, 455–456, 466–467
Text tool, Status Toolbar, 173
text value, 589, 683
TextColor() function, 336, 467, 469
TextColorRemove() function, 468
textdecoration:underline; tag, 469
TextExpander, 716
TextField field, 718
TextFont() function, 467
TextFontRemove() function, 468
text-processing function, 572
TextSize() function, 467
TextSizeRemove() function, 468
TextStyleAdd() function, 337, 467
TextStyleRemove() function, 468–469
themes, updated, 107
theta joins, 414–415, 455, 457
ThingsToDo::Reminder field, 464–465

third-party analysis and documentation tools, 732
third-party automation, 716
third-party backup utilities, 601
third-party developer tools, 731
third-party diagnostic tool, 598
third-party plug-ins, 403, 514
third-party scheduling, 716
third-party shared information tools, 732
360Works AdminAnywhere, 731
360Works Charts Plugin, 727
360Works Email Plugin, 727
time calculations

juggling days, months, and years, 472–473
managing, 470
number of seconds, 471
plotting time, 470–471

time fields, 215
time format, precedence of, 336
timed interval script triggers, 84–85
timed pauses, 283–284
timer script triggers, 77, 299
timestamps, 106, 128, 215, 471
Title Footer layout part, 171
Title Header layout part, 171
TOGs (Table Occurrence Groups), 152–153
tooltips

conditional, 176–177
defining, 99
keeping track of, 177
overview, 175–176

TOs (Table Occurrences)
displaying related data with, 191
GetFieldName() function, 481
interface files, 436–437
modifying in Manage Database dialog, 206–207
names in edited tables, 208
overview, 23, 410–412
as pointer, 412
relationships, 422
re-pointing, 442–443
Specify Calculation dialog menu, 224
table names, 122
versus tables, 242–243
using in Relationships Graph, 129–131

Total of summary function, 226
TotalPayable value, 457
trailing carriage return, 477
Trailing Grand Summary layout part, 171
trailing returns, 123

32_429006-bindex.indd 77932_429006-bindex.indd 779 3/25/09 8:07:21 PM3/25/09 8:07:21 PM

780

IndexT

trailing spaces, 618
trailing Sub-summary part, 363
transaction modeling

batch automation, 704
host/server script execution, 704–706
live versus batch data, 702–703
offline updates and processing, 704
posting and propagating edits, 703
robots, 704

Transactions table, 412
transformation tools, FileMaker, 643
Transformations table, 654
translucency, 386–387
transparency, 347, 386–387
trapping errors

error codes, 505–506
error handling, 506–509
global fields, 607
overview, 504–505, 603–604
record locking, 604–606
record marking and flagging, 607
replacing field contents, 606–607
sub-scripts, 536

trial copy, 741
triggered logging, 630–631. See also script triggering
Trim() function, 462, 466
TrimAll() function, 462
Troi Activator, 725
Troi Automatisering, 725
Troi dialog plug-in, 725–726
Troi File, 726
Troi URL Plug-in, 727
tuples, 13
Type pop-up menu, Fields tab, Manage Database dialog, 214

U
UID (unique identification) values, 587–588
Undo/Redo command, 266
Unicode, 89–90, 344–345, 414, 646
unique identification (UID) values, 587–588
Unique Value option, Validation tab, Options for Field

dialog, 219
unnamed data sources, 245–246
unstored calculation field, 419, 483–484
unstored calculations

advantages and disadvantages of, 484–485
hidden secrets of, 485
reasons for, 483–484

Update Existing import option, 594
Update Existing Records in Found Set option, 649
Update Matching Records in Found Set option, 648–649
Update Records in Found Set import, 650
updating data, 286, 546–547
Upper() function, 453
usability, database

buttons, using, 154
context, managing, 153
overview, 152–153
records, moving between, 153
tables, moving between, 154
views, using and changing, 154

usage logging, 514
Use Fixed Page Margins checkbox, Printing tab, Layout Setup

dialog, 166
Use Global Storage option, 489
Usenet group, 738
user accounts

creating, 568
internal and external authentication, 568–570
overview, 567
scripted management of, 570–572
setting default, 150–152

user names, 56
user over-ride capability, 486–488
user requirements audit, 441
users. See also user accounts

acting on input, 296
anticipating, 145–147
capturing edits

field-by-field, 623–624
incorporating ancillary data, 624–626
logging record deletions, 626

complications with triggers, 86
dialogs for, 286
interaction, managing, 502–504
pausing for input, 283–284
pop-up window, 286
preferences of

capturing state by user, 399–400
multi-lingual solution interface, 400–403
setting, 514
user-centric development philosophy, 399

screen design for, 174–175
tooltip preferences, 177

utility relationships
pivoting data between tables using, 549
Relationships Graph, 692

32_429006-bindex.indd 78032_429006-bindex.indd 780 3/25/09 8:07:22 PM3/25/09 8:07:22 PM

781

Index W

Utility table, 307–311, 327, 478
Utility::cFilter_key field, 307
Utility::gFilter_txt field, 309
Utility::gNewValue field, 479
Utility::gSortField field, 481
Utility::gType_key field, 307

V
Validate Data In This Field: Always option, 583
Validate Data in This Field section, Validation tab, Options

for Field dialog, 219
Validated by Calculation checkbox, Validation tab, Options

for Field dialog, 220
validation, 49, 118–124, 218–221, 583, 614
Validation tab, Options for Field dialog, 122–123, 218–219
Value from Last Visited Record checkbox, Auto-Enter tab,

Field Options dialog, 217
value indexes, 342
value lists

access to, 563
based on external SQL data, 92
dynamic sort techniques, 324

ValueCount() function, 477
ValueListItems() function, 476, 598
variables

benefiting from, 460
calculation, 458–459
Data Viewer, 666–667
declaring, 340, 515, 519–521
defined, 229
destroying, 340
dynamic file paths using, 527–528
instantiating, 340
interface files, 437
keeping track of, 340–341
kinds of, 339
memory usage, 339
overview, 338
scope, 459
storing and accumulating data, 525–526

VBScript, 710–713
Verdana font, 157, 203, 353
version information, 398
vertical resizing, 378, 381
vertical zone, 379
View By menu, Tables tab, Manage Database dialog, 208
view controls, scripting, 285–286
View Index dialog, 342–343

View menu, 43, 65
ViewerData table, 392
viewing data

editing, 141
entering data, 136–141
Find operators, 142–143
finding, 141–143
layouts, 136
overview, 43–45, 135
Range operator (...), 143
records, creating, 136–141
related, 54

views
changing, 154
multiple

placement, 373–374
as pop-ups and drill-downs, 374–375
simulating modal window behavior, 375
size, 373–374
use of, 306

Views tab, Layout Setup dialog, 169–170
visual fatigue, 174–175
visual pointers and aids, 172–174
visual spell-checking, 187–188
visual structure

ergonomics, 174–175
giving information meaning, 175
overview, 171
visual fatigue, avoiding, 174–175
visual pointers and aids, 172–174
white space, 174

Vn calculation variable, 522

W
Watch panel, Data Viewer, 661, 664–665
Web Address field, Web Viewer Setup dialog, 200
Web deployment

Custom Web Publishing
FileMaker PHP API, 730
FileMaker PHP Site Assistant, 730–731
working with XML and XSLT, 729–730

Instant Web Publishing, 728–729
Web Publishing with PHP and FileMaker 9, 739
Web scraping, 393
Web site

contents of, 741–742
overview, 735–736
troubleshooting, 742

32_429006-bindex.indd 78132_429006-bindex.indd 781 3/25/09 8:07:22 PM3/25/09 8:07:22 PM

782

IndexW

Web Viewer Setup dialog, 200, 718
Web viewers

advanced functionality, 391–392
complementary data concepts, 202
controlling, 201
defined, 17, 179
overview, 48, 158
rendering internally calculated content, 392–393
scraping data from Web pages, 393–394
setting up, 200–201

web-compatible script, 81
Webinars, 735
When Sorted By field, 363
white space, 174
widgets, 391
wildcard operators, 143
Wiley Technical Product Support Center, 742
Window menu, 306
window widgets, 672
WindowNames() function, 449–450, 538
windows

addressing by name, 537–538
controlling one from another, 317
creating off-screen, 540–541
freezing screen, 541–542
management, 514, 605
moving, 538–540
multiple

placement, 373–374
as pop-ups and drill-downs, 374–375
simulating modal window behavior, 375
size, 373–374
use of, 306

overview, 41–42, 536
placement, 514
refreshing screen, 541–542
resizing, 538–540

Windows Authentication (Single Sign-on), 92–94
windows commands, 262
Windows operating system

command line interpreter, 712
Customize dialog, 66–67

documents paths in, 91
external scripting calls, 710
fonts in, 203
interface design for users of

fonts, selecting, 352–353
platform-specific window behavior, 354–355
screen rendering differences, 353–354

and IPv6 format, 106
ODBC drivers, 248

word indexes, 341–343
Word program, 11
word separators, 465–466
WordCount() function, 465–466
wrappers, 717

X
xmCHART, 727
XML (Extensible Markup Language), 29, 669, 729–730
XSLT (Extensible Stylesheet Language Transformation),

729–730
xValues function, 477
xWords function, 466
xyz logo, 181–182

Y
Year() function, 448
YourField[7] array notation, 477
YourNumber field, 456
YourTable::YourTextString field, 468

Z
zero error, 505
zero parameter value, 449
zippScript function, 724
zones, resizing, 379–380
zoom controls, 42

32_429006-bindex.indd 78232_429006-bindex.indd 782 3/25/09 8:07:22 PM3/25/09 8:07:22 PM

Go from basics to
full-scale development

Write your own
FileMaker applications

Work on PCs or Macs,
in workgroups or solo

Cologon

The book you need to succeed!

If you want to learn FileMaker Pro,
you need this book

Before you start a FileMaker Pro project, make sure you
have this detailed how-to from renowned FileMaker
expert Ray Cologon. He draws upon years of experience
to provide pages of solutions, techniques, and instruction
you won’t find anywhere else. Discover what’s new
in FileMaker Pro 10, learn efficient coding, and create
industrial-strength databases with automation, scripting,
security, and more. From the fundamentals to full-scale
development, this is the FileMaker book you need to
succeed.

Shelving Category:
COMPUTERS/Database

Reader Level:
Beginning to Advanced

$39.99 USA
$47.99 Canada

Spine: 1.63"

Ray Cologon
is a FileMaker Pro consultant, a
member of the FileMaker Business
Alliance (FBA), and a widely known
and respected FileMaker Pro
developer and solutions provider.
Ray is the founder of NightWing
Enterprises, based in Melbourne,
Australia. He has been a speaker at
FileMaker Developer Conferences
in Phoenix, Orlando, and San
Francisco over the past four years
and is the recipient of an Award
for Leadership and Technical
Excellence in FileMaker Pro from
FileMaker, Inc.

Ray Cologon

Companion Web Site
• Example FileMaker Pro 10 application
• Demos, tips, and additional resources

F
ileM

ak
er

® P
ro

 10

FileMaker®
Pro 10

• Design dynamic layouts for screen and print

• Learn data modeling and examine data arrays

• Work with tables and SQL data sources, and migrate legacy data

• Manage lists, calculate summary data, and document your code

• Master scripting and the FileMaker Scripting Environment

• Apply security and maintain the integrity of your data

• Create custom functions and use standards-based approaches

• Employ third-party tools and plug-ins to extend FileMaker Pro’s reach

	FileMaker Pro 10 Bible
	About the Author
	Credits
	Contents
	Introduction
	About This Book
	About This Book’s Target Audience
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I The Fundamentals
	Chapter 1 Databases: The What, Why, and How
	The Many Faces of Databases: Lists, Tables and Forms
	The Concept of a Relational Database
	The Anatomy of a Database Solution
	How FileMaker Fits In

	Chapter 2 Putting FileMaker Pro in Perspective
	What Makes FileMaker Pro Different from Other Database Development Tools?
	The FileMaker Product Family
	FileMaker’s Hidden Talents
	Resources and Exemplars

	Chapter 3 Getting Acquainted with FileMaker
	Getting FileMaker Working for You
	Finding Your Way Around
	Entering and Editing Data
	The Ins and Outs
	Getting to Know the Relatives
	Optimizing the Application

	Chapter 4 What’s New in FileMaker 10
	Embracing Change
	Status Area Redesign
	Live Reports/Sub-summaries
	Maintain Record Sort Order
	Saved Find Requests
	Set Field by Name
	Script Events Triggers
	New Calculation Functions
	External SQL Data Sources (ESS) Enhancements
	Bento Integration
	File Recovery Improvements
	Layout Mode Enhancements
	Send Mail by SMTP
	Quick Start Screen Enhancements
	Import/Export Enhancements
	Save Target Printer
	The Manage Scripts Interface
	Other Useful Enhancements

	Part II Introduction to Database Design
	Chapter 5 Creating a Database
	Before Getting Started
	Creating a New Database File
	Viewing and Interacting with Data
	Avoiding the Need for Data Duplication
	Getting Started with File Security
	Thinking about Usability

	Chapter 6 The Interface: Layout Mode
	Initial Layouts
	The Importance of Visual Structure
	Defining Tooltips
	Different Kinds of Layout Objects
	FileMaker as a Graphical Environment
	Interacting with Layout Objects
	The Tab Control and Its Uses
	Displaying Related Data
	The Magic of Buttons
	The Web Viewer: Inviting in the World
	Reports and Data Output

	Chapter 7 The Structure: The Manage Database Dialog
	Working with Tables
	Specifying Fields
	Basic Calculations
	The Relationships Graph
	Working with External SQL Data Sources
	The Concept of Data Relationships

	Chapter 8 The Processes: FileMaker Scripting
	Scripting: What It Is and What It Offers You
	Defining and Editing Scripts
	Using the Scripts Menu
	Controlling Script Execution
	Some Notable Script Uses
	Ease of Editing in FileMaker Scripting
	Organizing Scripts
	Some Examples to Start With
	Calling Your Scripts

	Part III Beyond the Basics
	Chapter 9 The FileMaker Power User
	Making Browse Mode Work for You
	Performing Complex Search Operations
	Sorting Records
	Understanding Formatting
	Some Notes on Variables
	Understanding Indexing
	The Table of Dependencies
	Caching Join Results
	Understanding Global Fields

	Chapter 10 Building Advanced Interfaces
	Developing for Mac and Windows Users
	Using Dynamic Screen Elements
	Working with Sub-Summary Parts and Part Controls
	Designing for Print
	Using Multiple Windows and Views
	Employing Custom Dialogs as an Interface Tool
	Looking at Anchors and Resizable Layout Objects
	Implementing Shortcut Navigation
	Building Depth and Dimensionality
	Working with Tab Controls
	Recognizing the Flexibility of Portals
	Using Advanced Web Viewer Techniques
	Progress Bars and Native Charting Techniques
	Using Interface Elements
	Handling User Preferences

	Chapter 11 Data Modeling in FileMaker
	Background in Relational Theory
	FileMaker Relationships Graph Symbols
	Relationship Operators
	Alternative Relationship Techniques
	Working with Data Arrays
	Graph Techniques — Spiders, Squids, and Anchor-Buoy
	Documenting the Database Structure
	The Concept of Layers
	File Architecture versus Data Structure
	Separation and External SQL Sources
	Implementing Separation in an Existing Solution
	Deployment Considerations

	Chapter 12 Calculation Wizardry
	Compound Calculation Expressions
	Order of Operations
	Boolean Operations
	Variables — Calculation, Script, and Global
	Text Processing and Parsing Functions
	Text Formatting Operations
	Dates, Times, and Timestamps
	Summary Data
	Lists and Arrays
	Layers of Abstraction
	Unstored Calculations
	Calculation Fields versus Auto-Enter Calculations
	Global Calculations
	Environment and Metadata
	Calculations Using Custom Functions
	Documenting Your Code

	Chapter 13 Scripting in Depth
	Scripting the Control of Objects and Interface
	Trapping for Errors
	Scripts and Access Privileges
	Automating the Automation
	Harnessing the Power of Parameters, Results, and Variables
	Dynamic and Indirect Controls in Scripts
	Using Nonlinear Logic
	Modular Script Code
	Scripted Window Management
	Scripting Data Import and Export
	Pivoting Data between Tables
	Going over Some Practical Examples

	Part IV Integrity and Security
	Chapter 14 In Control with FileMaker Security
	Concepts of Security
	The Privilege Set
	Granular Security
	User Authentication
	Scripted Account Management
	Creating a Custom Logout Option
	How Much Security Is Enough?
	The Importance of Physical File Security
	Security in Deployment: FileMaker Server

	Chapter 15 Maintaining Referential Integrity
	Pinpointing Common Causes of Referential Integrity Problems
	Using Unique Keys
	Generating Keys
	Exploring Keys and Data Type
	Retrofitting Keys
	Deleting Redundant Records
	Considering Other Integrity Issues
	Managing Dependencies

	Chapter 16 Making FileMaker Systems Fail-Safe
	Expecting the Unexpected
	A Comprehensive Approach to Error Trapping
	Opening Remote Files
	Temporary Edit Interface Techniques
	Field Masking, Filtering, and Error Rejection
	Built-In Logging Capabilities
	Script Logging
	Capturing User Edits in Detail
	Managing the Accumulation of Log Data
	Implementing Roll-Back Capabilities
	Alternative Logging Approaches

	Chapter 17 Maintaining and Restoring Data
	Some Notes on File Recovery
	Exporting and Importing Data
	Data Cleansing Operations
	Synchronizing Data Sets
	Handling Embedded Images and Stored Files
	Text-Handling Considerations

	Part V Raising the Bar
	Chapter 18 FileMaker Pro Advanced Features
	Script Debugger
	Data Viewer
	Database Design Report
	Creating Custom Menus
	Custom Functions
	Custom Functions and Recursion
	Creating Runtime Applications

	Chapter 19 Efficient Code, Efficient Solutions
	Designing for Scale: Size Considerations
	Eliminating Redundancy
	Designing for Flexibility and Adaptability
	Traveling the Shortest Distance Between Two Points
	Transaction Modeling
	Managing File Size
	Images and Media in Databases

	Chapter 20 Extending FileMaker’s Capabilities
	External Scripting Calls
	Rendering HTML and JavaScript
	Web Viewer Widgets
	FileMaker Plug-Ins
	Web Deployment Options
	Finding Third-Party Tools

	Part VI Appendixes
	Appendix A Expanding Your Knowledge with Additional Resources
	From the Horse’s Mouth
	Professional Consulting and Development Services
	Online Design and Development Tips and Tricks
	Online Forums and Mailing Lists
	Books and Periodicals

	Appendix B About the Web Site
	What’s on the Web Site
	Troubleshooting

	Index

