

Flask Blueprints

Dive into the world of the Flask microframework to
develop an array of web applications

Joël Perras

BIRMINGHAM - MUMBAI

Flask Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1251115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-478-3

www.packtpub.com

www.packtpub.com

Credits

Author
Joël Perras

Reviewers
Shalabh Aggarwal

Christoph Heer

Andreas Porevopoulos

Commissioning Editor
Julian Ursell

Acquisition Editor
Meeta Rajani

Content Development Editor
Shweta Pant

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Joël Perras has been professionally involved in technology and computing
for over 12 years. He got his start in the world of programming by attempting
to teach himself Java at the tender age of 13 and got his first job at a small web
development firm a few years later writing Java Server Pages. The first site he
built is still running.

While studying physics and mathematics at McGill University in Montréal,
he helped set up a Tier II analysis centre for the Worldwide LHC Computing
Grid, which cemented his interest in distributed systems architecture and high
performance computing.

Currently, his days are spent building infrastructure and Python applications with
the incredible people at Fictive Kin, writing open source code, and trying to lift
heavy weights over his head on a regular basis.

I'd like to thank Sara for her infinite patience throughout the
process of writing this lengthy technical manual and my coworkers
at Fictive Kin for dealing with my particularly bad sense of humor
on a daily basis.

About the Reviewers

Shalabh Aggarwal has several years of experience in developing business systems
and web applications for small-to-medium scale industries. He started his career
working on Python, and although he works on multiple technologies, he remains
a Python developer at heart. He is passionate about open source technologies and
writes highly readable and quality code.

Shalabh is also active in voluntary training for engineering students on
nonconventional and open source topics. When not working with full-time
assignments, he acts as a consultant for start-ups on leveraging different
technologies. He is pursuing his master's degree in business from IIT Delhi.

I would like to thank my family, my mother, and my sister for
putting up with me during my long writing and research sessions. I
would also like to thank my friends and colleagues who encouraged
me and kept the momentum going. I would like to thank Armin
Ronacher for developing this wonderful web framework.

Christoph Heer is a passionate Python developer based in Germany. He likes to
develop web applications and also tools and systems for infrastructure optimization,
management, and monitoring. He is proud to be a part of the great Python
community and wishes to have more time for open source contribution.

Andreas Porevopoulos has loved computers and programming since he was in
high school and over the years he has developed many apps in different languages
and systems, but Python was always his favorite. He has been working as a Full
Stack Python developer for the last 7 years and has completed lots of projects in
Django and Flask. He believes that these two frameworks are among the best for web
app development.

The agile practices that he uses for all his developing/deploying needs are Git,
Ansible, Vagrant, and Docker.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Starting on the Right Foot – Using Virtualenv	 1

Setuptools and pip	 2
Avoiding dependency hell, the Python way	 5
Working with virtualenv	 6

Creating a new virtual environment	 6
Activating and deactivating virtual environments	 7
Adding packages to an existing environment	 7
Uninstalling packages from an existing environment	 8

Simplifying common operations – using the virtualenvwrapper tool	 8
Summary	 10

Chapter 2: Small to Big – Growing the Flask Application Structure	 11
Your first Flask application structure	 11
From module to package	 13
From package to blueprint	 17

Our first blueprint	 18
Summary	 20

Chapter 3: Snap – the Code Snippet Sharing Application	 21
Getting started	 22

Flask-SQLAlchemy	 22
Configuring Flask-SQLAlchemy	 23
SQLAlchemy basics	 24
Snap data models	 29

Flask-Login and Flask-Bcrypt for authentication	 31
Flask-WTF – form validation and rendering	 32

Hashing user passwords	 37
Configure an application SECRET_KEY	 39
Hook up the blueprint	 40

Let's run this thing	 40

Table of Contents

[ii]

The data model for snaps	 41
Better defaults with content-sensitive default functions	 44

Snap view handlers	 44
Summary	 50

Chapter 4: Socializer – the Testable Timeline	 51
Starting off	 51
Application factories	 52

The application context	 53
Instantiating an app object	 55

Unit and functional testing	 55
Social features – friends and followers	 58
Functional and integration testing	 66
Publish/subscribe events with Blinker	 70

Signals from Flask and extensions	 71
Creating custom signals	 72

Graceful handling of exceptions	 75
Functional testing	 81
Your newsfeed	 85
Summary	 88

Chapter 5: Shutterbug, the Photo Stream API	 91
Starting off	 91
The application factory	 92
Interlude – Werkzeug	 93
Simple APIs with Flask-RESTful	 94

Improved password handling with hybrid attributes	 98
API authentication	 100

Authentication protocols	 101
Getting users	 104

Creating new users	 106
API testing	 108

Interlude – Werkzeug middlewares	 112
Back to Shutterbug – uploading photos	 114
Testing the photo uploads	 117

Fetching the user's photos	 119
Summary	 120

Chapter 6: Hublot – Flask CLI Tools	 121
Starting off	 122

The manage.py file	 126
The built-in default commands	 128

The Flask-Script commands across Blueprints	 129
Submanagers	 130
The required and optional arguments	 131

Table of Contents

[iii]

Flask extensions – the basics	 134
When should an extension be used?	 135
Our extension – GitHubber	 135

Summary	 140
Chapter 7: Dinnerly – Recipe Sharing	 141

First OAuth	 141
Why use OAuth?	 142
Terminology	 143
So what's wrong with OAuth 1.0?	 146
Three-legged authorization	 146

Setting up the application	 147
Declaring our models	 149
Handling OAuth in our views	 153
Creating recipes	 159
Posting recipes to Twitter and Facebook	 161

SQLAlchemy events	 161
Finding common friends	 164

Interlude – database migrations	 166
Alembic	 167

Summary	 171
Index	 173

[v]

Preface
The setting is familiar enough: you're a web developer who has worked with a
few programming languages, frameworks and environments, and decided to learn
enough Python to make a few toy web applications. Maybe you've already used
some Python web frameworks to build an application or two, and want to explore a
few of the alternative options that you keep hearing about.

This is usually how people come to know about Flask.

As a microframework, Flask is built to help you and then get out of your way.
Taking a very different approach from most other general-purpose web frameworks,
Flask consists of a very small core that handles the processing and normalization
of HTTP and the WSGI specification (via Werkzeug) and provides an exceptionally
good templating language (via Jinja2). The beauty of Flask lies in its intrinsic
extensibility: as it was designed from the start to do very little, it was also designed
to be extended very easily. A pleasant consequence of this is that you are not
beholden to a particular database abstraction layer, authentication protocol, or
caching mechanism.

Learning a new framework is not simply about learning the basic functions and
objects that are provided to you: it's often as important to learn how the framework
can be adapted to help you build the specific requirements of your application.

This book will demonstrate how to develop a series of web application projects with
the Python web microframework, and leverage extensions and external Python
libraries/APIs to extend the development of a variety of larger and more complex
web applications.

Preface

[vi]

What this book covers
Chapter 1, Starting on the Right Foot – Using Virtualenv, kicks off our dive into Python
web application development with the basics of using and managing virtual
environments to isolate the application dependencies. We will look at the setup tools,
pip, libraries, and utilities that are used to install and distribute reusable packages of
Python code, and virtualenv, a tool to create isolated environments for the Python-
based software requirements of a project. We will also discuss what these tools
are not able to do, and look at the virtualenvwrapper abstraction to augment the
functionality that virtualenv provides.

Chapter 2, Small to Big – Growing the Flask Application Structure, explores the various
baseline layouts and configurations that you might consider for a Flask application.
The pros and cons of each approach are outlined as we progress from the simplest one-
file application structure to the more complex, multipackage Blueprint architecture.

Chapter 3, Snap – the Code Snippet Sharing Application, builds our first simple
Flask application centered around learning the basics of one of the most popular
relational database abstractions, SQLAlchemy, and several of the most popular Flask
extensions: Flask-Login to handle authenticated user login sessions, Flask-Bcrypt
to ensure that account passwords are stored in a secure manner, and Flask-WTF to
create and process form-based input data.

Chapter 4, Socializer – the Testable Timeline, builds a very simple data model for a
social web application where the main focus is on unit and functional testing using
pytest, the Python testing framework and tools. We will also explore the use of
the application factory pattern, which allows us to instantiate separate versions of
our application for the purposes of simplifying testing. Additionally, the use and
creation of often-omitted (and forgotten) signals, provided by the Blinker library, are
described in detail.

Chapter 5, Shutterbug, the Photo Stream API, builds a skeleton of an application
around a JSON-based API, which is a requirement for any modern web application
these days. One of the many API-based Flask extensions, Flask-RESTful, is used to
prototype the API, where we also delve into simple authentication mechanisms for
stateless systems and even write a few tests along the way. A short detour is made
into the world of Werkzeug, the WSGI toolkit that Flask is built upon, to build a
custom WSGI middleware that allows the seamless handling of URI-based version
numbers for our nascent API.

Preface

[vii]

Chapter 6, Hublot – Flask CLI Tools, covers a topic that is often omitted from most web
application framework discussions: command-line tools. The use of Flask-Script is
explained, and several CLI-based tools are created to interact with the data models
of our application. Additionally, we will build our very own custom Flask extension
that wraps an existing Python library to fetch the repository and issue information
from the GitHub API.

Chapter 7, Dinnerly – Recipe Sharing, introduces the somewhat intimidating concept
of the OAuth authorization flow that many large web applications, such as Twitter,
Facebook, and GitHub, implement in order to allow third-party applications to
act on behalf of the account owners without compromising basic account security
credentials. A barebones data model is constructed for a recipe-sharing application
that allows the so-called social sign in and the ability to cross-post the data from our
application to the feeds or streams of the services that a user has connected. Finally,
we will introduce the concept of database migrations using Alembic, which allow
you to synchronize your SQLAlchemy model metadata with the schemas of the
underlying relational database tables in a reliable manner.

What you need for this book
To work through most of the examples in this book, all you need is your favorite text
editor or IDE, access to the Internet (to install the various Flask extensions, not to
mention Flask itself), a relational database (one of SQLite, MySQL, or PostgreSQL),
a browser, and some familiarity with the command line. Care has been taken to
indicate when additional packages or libraries are required to complete the examples
in each chapter.

Who this book is for
This book was created for the new Python developers who wish to dive into the
world of web application development, or for the seasoned Python web application
professional who is interested in learning about Flask and the extension-based
ecosystem behind it. To get the most out of each chapter, you should have a solid
understanding of the Python programming language, a basic knowledge of relational
database systems, and fluency with the command line.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[viii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This will create a blank app1 environment and activate it. You should see an (app1)
tag in your shell prompt."

A block of code is set as follows:

[default]
 <div>{{ form.password.label }}: {{ form.password }}</div>
 {% if form.password.errors %}
 <ul class="errors">{% for error in form.password.errors %}{{
error }}{% endfor %}
 {% endif %}

 <div><input type="submit" value="Sign up!"></div>
</form>

{% endblock %}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 from application.users.views import users
 app.register_blueprint(users, url_prefix='/users')

 from application.posts.views import posts
 app.register_blueprint(posts, url_prefix='/posts')

 # …

Any command-line input or output is written as follows:

$ source ~/envs/testing/bin/activate

(testing)$ pip uninstall numpy

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Then it
asserts that the Sign up! button text appears in the returned HTML".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[x]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Starting on the Right
Foot – Using Virtualenv

One of the great difficulties in modern software development is that of dependency
management. Generally, a dependency of a software project consists of a library or
component that is required for the project to function correctly. In the case of a Flask
application (and more generally, that of a Python application), most dependencies
are comprised of specially organized and annotated source files. Once created,
these packages of source files may then be included in other projects and so forth.
For some, this chain of dependencies can become an unmanageable mess, where
the slightest alteration to any of the libraries in the chain can cause a cascade of
incompatibilities that would bring further development to a screeching halt. In
the Python world, as you may know already, the fundamental unit of a reusable
set of source files is that of a Python module (a file that contains definitions and
statements). Once you've created a module on your local filesystem and ensured
that it is in your system's PYTHONPATH, including it in a newly created project
is as simple as specifying the import, which is as follows:

import the_custom_module

Where the_custom_module.py is a file that exists somewhere in $PYTHONPATH of
the system executing the program.

The $PYTHONPATH can include paths to the compressed
archives (.zip folders) in addition to the normal file paths.

Starting on the Right Foot – Using Virtualenv

[2]

This is not where the story ends, of course. While modules littering your local
filesystem might be convenient at first, what happens when you want to share some
of the code that you've written for others? Usually, this would entail emailing/
Dropboxing the files in question, however, this is obviously a very cumbersome
and error-prone solution. Thankfully, this is a problem that has been considered
and some progress has been made in alleviating the common issues. The most
significant of these advances is the subject of this chapter, and how the following
techniques for creating reusable, isolated packages of code can be leveraged to ease
the development of a Flask application:

•	 Python packaging with pip and setuptools
•	 Encapsulation of virtual environments with virtualenv

The solution presented by the various Python packaging paradigms/libraries is far
from perfect; one sure way to start an argument with a passionate Python developer
is to proclaim that the packaging problem has been solved! We still have a long way to
go for that but headway is being made in incremental steps with improvements to
setuptools and various other libraries used in building, maintaining, and distributing
a reusable Python code.

In this chapter, when we refer to a package, what we will actually be talking about
would be succinctly described as a distribution—a bundle of software to be installed
from a remote source—and not a collection of modules in a folder structure that
utilizes the__init__.py convention in order to delineate the folders containing the
modules that we want to be importable.

Setuptools and pip
When a developer wants to make their code more widely available, one of the first
steps will be to create a setuptools-compatible package.

Most of the distributions of a modern Python version will come with setuptools
already installed. If it is not present on your system of choice, then obtaining it is
relatively simple, with additional instructions available on the official documentation:

wget https://bootstrap.pypa.io/ez_setup.py -O - | python

After setuptools is installed, the basic requirement to create a compatible package is
the creation of a setup.py file at the root of your project. The primary content of this
file should be the invocation of a setup() function with a few mandatory (and many
optional) arguments, as follows:

from setuptools import setup

Chapter 1

[3]

setup(
 name="My Great Project",
 version="0.0.1",
 author="Jane Doe",
 author_email="jane@example.com",
 description= "A brief summary of the project.",
 license="BSD",
 keywords="example tutorial flask",
 url="http://example.com/my-great-project",
 packages=['foobar','tests'],
 long_description="A much longer project description.",
 classifiers=[
 "Development Status :: 3 - Alpha",
 "Topic :: Utilities",
 "License :: OSI Approved :: BSD License",
],
)

Downloading the example code
You can download the example code files from your
account at http://www.packtpub.com for all
the Packt Publishing books you have purchased. If
you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Once the package has been created, most developers will choose to upload
their newly minted package to PyPI—the official source of nearly all Python
packages—using the built-in tools that are provided by setuptools itself. While the
use of this particular public PyPI repository is not a requirement (it's even possible
to set up your own personal package index), most Python developers will expect to
find their packages here.

This brings us to one more essential piece of the puzzle—the pip Python package
installer. If you have Python 2.7.9 or greater installed, then pip will already be
present. Some distributions might have it preinstalled for you or it might be present
in a system-level package. For a Debian-like distribution of Linux, it may be installed
via the following command:

apt-get install python-pip

http://www.packtpub.com
http://www.packtpub.com/support

Starting on the Right Foot – Using Virtualenv

[4]

Similarly, other Linux-based distributions will have their own recommended
package managers. If you'd rather obtain the source and install it manually, it is a
simple matter of fetching a file and running it using the Python interpreter:

$ curl -o get-pip.py https://bootstrap.pypa.io/get-pip.py

$ python get-pip.py

Pip is a tool for installing Python packages (and is itself a Python package). While it
is not the only player in the game, pip is by far the most widely used.

The predecessor to pip is easy_install, which has largely
been replaced in the Python community by the former. The
easy_install module suffered some relatively major
problems, such as allowing partially completed installations,
the inability to uninstall a package without requiring the user
to manually delete the related .egg files, and console output
that contained the useful success and error messages that
allowed the developer to determine the best course of action in
case something went wrong.

One can invoke pip in the command line to install, say, a scientific computing
package on the local filesystem:

$ pip install numpy

The preceding command will query the default PyPI index for a package named
numpy and download the latest version to a special place in your system, usually /
usr/local/lib/pythonX.Y/site-packages (X and Y are the major/minor versions
of the Python version that pip points to). This operation may require root privileges
and would thus require sudo or similar actions to allow it to be completed.

One of the many benefits of virtual environments, which we will explore shortly,
is that they generally avoid the privilege escalation requirement that can plague
system-level changes to installed packages.

Once this operation is completed successfully, you now have the ability to import
the numpy package into new modules and use any and all of the functionalities that
it exposes:

import numpy

x = numpy.array([1, 2, 3])

sum = numpy.sum(x)

print sum # prints 6

Chapter 1

[5]

Once we have this package (or any other, for that matter) installed, there's nothing
stopping us from fetching additional packages in the usual way. Moreover, we can
install multiple packages at the same time by providing their names as additional
arguments to the install command:

$ pip install scipy pandas # etc.

Avoiding dependency hell, the Python way
New developers might be tempted to install every interesting package that they
come across. In doing so, they might realize that this quickly degrades into a
Kafkaesque situation where previously installed packages may cease to function and
newly installed packages may behave unpredictably, if they manage to get installed
successfully at all. The problem with the preceding approach, as some of you may
have guessed, is that of conflicting package dependencies. Say for example, we have
package A installed; it depends on version 1 of package Q and version 1 of package
R. Package B depends on version 2 of package R (where versions 1 and 2 are not API-
compatible). Pip will happily install package B for you, which will upgrade package
R to version 2. This will, at best, make package A completely unusable or, at worst,
make it behave in undocumented and unpredictable ways.

The Python ecosystem has come up with a solution to the basic issues that arise from
what is colloquially referred to as dependency hell. While far from perfect, it allows
developers to sidestep many of the simplest package version dependency conflicts
that can arise in web application development.

The virtualenv tool, of which a similar implementation is now a default module in
Python 3.3 and named venv, is essential to ensure that you minimize your chances
of ending up in dependency hell. The following quote is from the introduction in the
official documentation for virtualenv:

It creates an environment that has its own installation directories, that doesn't
share libraries with other virtualenv environments (and optionally doesn't access
the globally installed libraries either).

Starting on the Right Foot – Using Virtualenv

[6]

More concisely, virtualenv allows you to create isolated environments for each one
of your Python applications (or any Python code).

The virtualenv tool does not, however, help you to
manage the dependencies of the Python C-based extensions.
For example, if you install the lxml package from pip,
it will require that you have the correct libxml2 and
libxslt system libraries and headers (which it will link
against). The virtualenv tool will not help you isolate
these system-level libraries.

Working with virtualenv
First, we need to make sure that we have the virtualenv tool installed in our local
system. This is a simple matter of fetching it from the PyPI repository:

$ pip install virtualenv

For obvious reasons, this package should be installed outside
any virtual environments that may already exist.

Creating a new virtual environment
Creating a new virtual environment is straightforward. The following command will
create a new folder at the specified path that will contain the necessary structure and
scripts, including a full copy of your default Python binary:

$ virtualenv <path/to/env/directory>

If we want to create an environment that lives at ~/envs/testing, we will first
ensure that the parent directory exists and then invoke the following command:

$ mkdir -p ~/envs

$ virtualenv ~/envs/testing

In Python 3.3+, a mostly API-compatible version of the virtualenv tool was added
to the default language packages. The name of the module is venv, however, the
name of the script that allows you to create a virtual environment is pyvenv and can
be invoked in a similar way as the previously discussed virtualenv tool, as follows:

$ mkdir -p ~/envs

$ pyvenv ~/envs/testing

Chapter 1

[7]

Activating and deactivating virtual
environments
Creating a virtual environment does not automatically activate it. Once the
environment is created, we need to activate it so that any modifications to the
Python environment (for example, installing packages) will occur in the isolated
environment instead of our system global one. By default, the activation of a virtual
environment will alter the prompt string ($PS1) of the currently active user so that it
displays the name of the sourced virtual environment:

$ source ~/envs/testing/bin/activate

(testing) $ # Command prompt modified to display current virtualenv

The command is the same for Python 3.3+:

$ source ~/envs/testing/bin/activate

(testing) $ # Command prompt modified to display current virtualenv

When you run the above command, the following series of steps occurs:

1.	 Deactivates any already activated environment.
2.	 Prepends your $PATH variable with the location of the virtualenv bin/

directory, for example, ~/envs/testing/bin:$PATH.
3.	 Unsets $PYTHONHOME if it exists.
4.	 Modifies your interactive shell prompt so that it includes the name of the

currently active virtualenv.

As a result of the $PATH environment variable manipulations, the Python and pip
binaries (and whatever other binaries that were installed via pip), which have
been invoked via the shell where the environment was activated, will be the ones
contained in ~/envs/testing/bin.

Adding packages to an existing environment
We can easily add packages to a virtual environment by simply activating it and then
invoking pip in the following way:

$ source ~/envs/testing/bin/activate

(testing)$ pip install numpy

This will install the numpy package to the testing environment, and only the testing
environment. Your global system packages will be unaffected, as well as any other
existing environments.

Starting on the Right Foot – Using Virtualenv

[8]

Uninstalling packages from an existing
environment
Uninstalling a pip package is straightforward as well:

$ source ~/envs/testing/bin/activate

(testing)$ pip uninstall numpy

This will remove the numpy package from the testing environment only.

Here is one relatively major place where the Python package management falls
short: uninstalling a package does not uninstall its dependencies. For example, if you
install package A and it installs dependent packages B and C, uninstalling package A
at a later time will not uninstall B and C.

Simplifying common operations – using
the virtualenvwrapper tool
A tool that I use frequently is virtualenvwrapper, which is a very small set of smart
defaults and command aliases that makes working with virtual environments more
intuitive. Let's install this to our global system now:

$ pip install virtualenvwrapper

This will also install the virtualenv package as well in
case it is not already present.

Next, you'll want to add the following lines to the end of your shell startup file. This
is most likely ~/.bashrc, but in case you've changed your default shell to something
else such as zsh, then it could be different (for example, ~/.zshrc):

export WORKON_HOME=$HOME/.virtualenvs

source /usr/local/bin/virtualenvwrapper.sh

The first line in the preceding code block indicates that new virtual environments
that are created with virtualenvwrapper should be stored in $HOME/.virtualenvs.
You can modify this as you see fit, but I generally leave this as a good default. I find
that keeping all my virtual environments in the same hidden folder in my home
directory reduces the amount of clutter in individual projects and makes it a bit more
difficult to mistakenly add a whole virtual environment to version control.

Chapter 1

[9]

Adding an entire virtual environment to version control
might seem like a good idea, but things are never as
simple as they seem. The moment someone running
a slightly (or completely) different operating system
decides to download your project, which includes a
full virtualenv folder that may contain packages
with C modules that were compiled against your own
architecture, they're going to have a hard time getting
things to work.
Instead, a common pattern that is supported by pip and
used by many developers is to freeze the current state of
the installed packages in a virtual environment and save
this to a requirements.txt file:
(testing) $ pip freeze > requirements.txt

This file may then be added to a version control system
(VCS). As the intent of the file is to declare which
dependencies are required for the application, and not
provide them or indicate how they should be constructed,
users of your project are then free to obtain the required
packages in any way they so choose. Generally, they will
install them via pip, which can handle a requirements file
just fine:
(testing) $ pip install –r requirements.txt

The second line adds a few convenient aliases to your current shell environment in
order to create, activate, switch, and remove environments:

•	 mkvirtualenv test: This will create an environment named test and
activate it automatically.

•	 mktmpenv test: This will create a temporary environment named test and
activate it automatically. This environment will be destroyed once you
invoke the deactivate script.

•	 workon app: This will switch you to the app environment (already created).
•	 workon (alias lsvirtualenv): When you don't specify an environment,

this will print all the existing environments that are available.
•	 deactivate: This will disable the currently active environment, if any.
•	 rmvirtualenv app: This will completely remove the app environment.

Starting on the Right Foot – Using Virtualenv

[10]

We'll use the following command to create an environment to install our application
packages:

$ mkvirtualenv app1

This will create a blank app1 environment and activate it. You should see an (app1)
tag in your shell prompt.

If you are using a shell other than Bash or ZSH, this environment
tag may or may not appear. The way in which this works is
that the script that is used to activate the virtual environment
also modifies your current prompt string (the PS1 environment
variable) so that it indicates the currently active virtualenv. As
a result, there is a chance that this may not work if you're using a
very special or non-standard shell configuration.

Summary
In this chapter, we looked at one of the most fundamental problems that any non-
trivial Python application faces: library dependency management. Thankfully, the
Python ecosystem has developed the widely adopted virtualenv tool for solving
the most common subset of dependency problems that developers may encounter.

Additionally, we looked at a tool, virtualenvwrapper, that abstracted away some
of the most common operations that one would perform with virtualenv. While we
listed some of the functionalities that this package provided, the list of things that
virtualenvwrapper can do is much more extensive. We only presented the very
basics here, but more in-depth learning about what this tool can do is indispensable
if you work with Python virtual environments all day long.

[11]

Small to Big – Growing the
Flask Application Structure

Flask is a wonderful framework for people who want to write a very quick single-
file application in order to prototype an API or to build a drop-dead simple website.
What isn't immediately obvious, however, is just how flexible and adept Flask is at
growing in larger, more modular application structures that are a necessity once the
single-module layout becomes more burdensome than convenient. The major points
that we will cover in this chapter are as follows:

•	 How to convert a module-based Flask application to a package-based layout
•	 How to implement Flask blueprints on top of a package-based application

structure
•	 How to ensure that our resulting application can be run with the built-in

Werkzeug development server

Your first Flask application structure
The canonical Flask introductory application that is found on the official website is a
paragon of simplicity, and is something you've most likely come across beforehand:

app.py

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

Small to Big – Growing the Flask Application Structure

[12]

 return "Hello World!"

if __name__ == "__main__":

app.run()

The preceding application can be run by first installing the Flask package from pip
(all in a virtual environment, of course) and then executing the script itself under the
Python interpreter:

$ pip install Flask

$ python app.py

This will start the Werkzeug development web server, which was installed when
Flask was obtained via pip, and serve the application on http://localhost:5000
by default.

The typical way in which people start a new Flask application is to add various
endpoints to the incredibly simple module that we showed in the preceding section:

from flask import Flask, request

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

@app.route("/contact")

def contact():

 return "You can contact me at 555-5555, or "

 " email me at test@example.com"

@app.route('/login', methods=['GET', 'POST'])

def login():

 if request.method == 'POST':

 # Logic for handling login

 pass

 else:

Chapter 2

[13]

 # Display login form

 pass

if __name__ == "__main__":

 app.run()

While straightforward, the drawbacks of this approach become apparent once the
complexity of the application increases:

•	 The number of function definitions in the module increases almost linearly
with the number of URLs that we want to route to. Though this is not an
intrinsic drawback, developers should prefer to split functionality into
smaller packages that are easier to understand.

•	 The templates and static files that are required by the routes accumulate
in the same sub-folder location, thus making their organization more
complex and error-prone.

•	 Certain operations (for example, logging) become simpler when they are
configured on a per-package basis instead of in one monolithic module.

From module to package
The simplest structural change that can be applied to a module-based Flask
application is to transform it into a typical Python package, with special
accommodation for the static and templates folders.

application

└──application

 ├──__init__.py

 ├──static

 │ ├──app.js

 │ └──styles.css

 └──templates

 ├──index.html

 └──layout.html

Small to Big – Growing the Flask Application Structure

[14]

Here, we created a top-level application package, moved the app.py module along
with the static and template folders inside it, and renamed it __init__.py.

The __init__.py file is required for a folder to be
considered a valid Python package.

One detail that should be handled at this point is the code that is used to run the
development server. If you recall, the single-module application contained the
following conditional statement:

if __name__ == "__main__":

 app.run()

This allows us to execute the module file with the Python interpreter directly,
as follows:

$ python app.py

* Running on http://localhost:5000/

For a variety of reasons, this is no longer a viable option. However, we still wish to
run the development server in a straightforward fashion. For this, we will create a
run.py file as a sibling to the inner application package folder:

├──application

│ ├──__init__.py

│ ├──static

│ │ ├──app.js

│ │ └──styles.css

│ └──templates

│ ├──index.html

│ └──layout.html

└──run.py

In the run.py file, we will add the following snippet:

from application import app

app.run()

Chapter 2

[15]

This allows us to invoke the following command via the CLI so as to run the
development server in the usual way:

$ python run.py

Generally, it's considered as bad practice to include code that
modifies a state (for example, the creation of the Flask app
object) in a __init__.py package. We do this now only for
illustrative purposes.

The run method of our Flask application object can accept a few optional arguments.
The following are the most useful ones:

•	 host: The host IP to bind to. Defaults to any port, which is denoted by 0.0.0.0.
•	 port: The port the application will bind to. Defaults to 5000.
•	 debug: If set to True, the Werkzeug development server will reload when

it detects a code change and additionally provide an interactive debugger
embedded in an HTML page when an unhandled exception occurs.

With the new application structure that we've outlined in the preceding section, it's
relatively simple to see how functionality such as route handler definitions, can be
split from __init__.py into something like a views.py module. Similarly, our data
models can be factored into a models.py module, as follows:

application

├──application

│ ├──__init__.py

│ ├──models.py

│ ├──static

│ │ ├──app.js

│ │ └──styles.css

│ ├──templates

│ │ ├──index.html

│ │ └──layout.html

│ └──views.py

└──run.py

Small to Big – Growing the Flask Application Structure

[16]

We simply need to import these modules in __init__.py in order to ensure that
they are loaded when we run the application:

from flask import Flask

app = Flask(__name__)

import application.models

import application.views

Note that we need to import the views after we instantiate the
application object, otherwise a circular import will be created.
Once we start developing applications with blueprints, we
will generally try to avoid circular imports by ensuring that
one blueprint does not import from another.

Similarly, we must import the Flask application object to the views.py module so
that we can use the @app.route decorator to define our route handlers:

from application import app

@app.route("/")

def hello():

 return "Hello World!"

@app.route("/contact")

def contact():

 return "You can contact me at 555-5555, or "

 " email me at test@example.com"

@app.route('/login', methods=['GET', 'POST'])

def login():

 if request.method == 'POST':

 # Logic for handling login

 pass

 else:

 # Display login form

 pass

Chapter 2

[17]

As expected, the application can still be run using the built-in Werkzeug application
server from the command-line interface (CLI) as before; the only thiwng that has
changed is the organization of our files. The advantage that we gained (at the cost
of additional files and the possibility of circular imports rearing their ugly heads) is
that of functional separation and organization: our view handlers may be grouped
together in single or multiple modules based on their domain of interest, and our
data layer and utility functions may exist elsewhere in the application structure.

From package to blueprint
The package-based application structure that we just explored may be suitable
for a large number of applications. However, Flask offers us a level of abstraction
née Blueprints, which formalizes and enforces a separation of concerns at the level
of views.

Do not confuse the concept of a blueprint in Flask, which is an
abstraction to factor an application into more discrete components,
with that of the Packt book series by the same name!

A Flask application that has become too unwieldy can be factored into a set of
discrete blueprints—each with their own mapping of URIs and view functions, static
resources (for example, JavaScript and CSS files), Jinja templates, and even Flask
extensions. In many respects, blueprints are very similar to the Flask applications
themselves. However, a blueprint is not an independent Flask application and
cannot be run independently as an application itself, as described in the official
Flask documentation:

A blueprint in Flask is not a pluggable app because it is not actually an
application—it's a set of operations which can be registered on an application, even
multiple times.—Official Flask documentation, http://flask.pocoo.org/
docs/0.10/blueprints/

As a result, all the blueprints in an application will share the same main application
object and configuration, and they must be registered with the main Flask object
before the URI dispatching can occur.

http://flask.pocoo.org/docs/0.10/blueprints/
http://flask.pocoo.org/docs/0.10/blueprints/

Small to Big – Growing the Flask Application Structure

[18]

Our first blueprint
The previous package-based application layout can be extended to include a
blueprint-based architecture by first adding a new package that will contain our
blueprint, which we will simply call users:

├──application

│ ├──__init__.py

│ └──users

│ ├──__init__.py

│ └──views.py

└──run.py

The contents of the users package consists of the requisite __init__.py and
one other module, views.py. Our (simple, for now) view functions for the users
blueprint will be placed in the views.py module:

from flask import Blueprint

users = Blueprint('users', __name__)

@users.route('/me')

def me():

 return "This is my page.", 200

We could have placed this code in the users/__init__.
py file instead of separating it out into its own views.py
module; but in doing so, we would be placing a side effect-
generating code (that is, the instantiation of the users Blueprint
object) in package initialization, which is generally frowned
upon. The minor additional complexity of separating it out
into a different module will save you from headaches later on.

In this new module, we imported the Blueprint class from Flask and used it
to instantiate a users blueprint object. The Blueprint class has two required
arguments, name and import_name, which we provide as users and the __name__
global magic attribute available to all Python modules and scripts. The former may be
any unique identifier among all the registered blueprints that we desire and the latter
should be the name of the module where the blueprint object is instantiated.

Chapter 2

[19]

Once we have this in place, we must amend our application initialization
in application/__init__.py in order to bind the blueprint to the Flask
application object:

from flask import Flask

from application.users.views import users

app = Flask(__name__)

app.register_blueprint(users, url_prefix='/users')

On registering the Blueprint object with the application instance, there are several
optional arguments that can be specified. One of these arguments is url_prefix,
which will automatically prefix all the routes defined in the blueprint in question
with the given string. This makes it quite simple to encapsulate all the views and
routes that are meant to process the requests for any endpoints that begin with the
/users/* URI segment, and is a pattern we will use frequently throughout this book.

Once completed, we can run our application using the built-in Werkzeug application
server in the usual way via our run.py script:

$ python run.py

Opening up our browser of choice and navigating to http://localhost:5000/
users/me yields the following rendered result:

Small to Big – Growing the Flask Application Structure

[20]

Summary
In this chapter, we started out with the most common, simple Flask application
architecture and explored a few of the ways in which we can extend it in order to
allow for a more modular approach. We first went from a module-based layout to a
package-based one and then graduated to the use of Flask blueprints, which paved
the way for the basic application structure that we will use in the following chapters.

In the next chapter, we will use the knowledge that we gained here to create our
first functional Flask application by utilizing the blueprint pattern and several
well-known Flask extensions.

[21]

Snap – the Code Snippet
Sharing Application

In this chapter, we will build our first fully functional, database-backed application.
This application, codenamed Snap, will allow users to create an account with a
username and password. Users will be allowed to login, logout, add and list the
so-called semiprivate snaps of text that can be shared with others.

For this chapter, you should be familiar with at least one of the following relational
database systems: PostgreSQL, MySQL, or SQLite. Additionally, some knowledge
of the SQLAlchemy Python library, which acts as an abstraction layer and object-
relational mapper for these (and several other) databases, will be an asset. If you
are not well versed in the usage of SQLAlchemy, fear not. We will have a gentle
introduction to the library that will bring new developers up to speed and serve
as a refresher for the more experienced.

From this point on, in the book, the SQLite database will be our relational database
of choice. The other database systems that we listed are all client/server-based with
a multitude of configuration options that may need adjustment depending on the
system they are installed in, while SQLite's default mode of operation is self-contained,
serverless, and zero-configuration.

We suggest that you use SQLite to work with this project and the projects in the
following chapters, but any major relational database supported by SQLAlchemy
will do.

Snap – the Code Snippet Sharing Application

[22]

Getting started
To make sure we start things correctly, let's create a folder where this project
will exist and a virtual environment to encapsulate any dependencies that we
will require:

$ mkdir -p ~/src/snap && cd ~/src/snap

$ mkvirtualenv snap -i flask

This will create a folder called snap at the given path and take us to this newly
created folder. It will then create the snap virtual environment and install Flask in
this environment.

Remember that the mkvirtualenv tool will create the
virtual environment, which will be the default set of locations
to install the packages from pip, but the mkvirtualenv
command does not create the project folder for you. This is
why we will run a command to create the project folder first
and then create the virtual environment. Virtual environments,
by virtue of the $PATH manipulation that is performed after
the environments are activated, are completely independent of
the location of your project files in the file system.

We will then create our basic blueprint-based project layout with an empty users
blueprint. The contents of all the files are nearly the same as we described at the end
of the previous chapter, and the layout should resemble the following:

application

├── __init__.py

├── run.py

└── users

 ├── __init__.py

 ├── models.py

 └── views.py

Flask-SQLAlchemy
Once the above files and folders have been created, we need to install the next
important set of dependencies: SQLAlchemy, and the Flask extension that makes
interacting with this library a bit more Flask-like, Flask-SQLAlchemy:

$ pip install flask-sqlalchemy

Chapter 3

[23]

This will install the Flask extension to SQLAlchemy along with the base distribution
of the latter and several other necessary dependencies in case they are not
already present.

Now, if we were using a relational database system other than SQLite, this is the
point where we would create the database entity in, say, PostgreSQL, along with the
proper users and permissions so that our application can create tables and modify
the contents of these tables. SQLite, however, does not require any of that. Instead,
it assumes that any user that has access to the filesystem location of the database
should also have permission to modify the contents of this database.

Later on in this chapter, we will see how the SQLite database file can be created
automatically via SQLAlchemy. For the sake of completeness, however, here is how
one would create an empty database in the current folder of your filesystem:

$ sqlite3 snap.db # hit control-D to escape out of the interactive SQL
console if necessary.

As mentioned previously, we will be using SQLite as the database
for our example applications and the directions given will assume
that SQLite is being used; the exact name of the binary may differ
on your system. You can substitute the equivalent commands
to create and administer the database of your choice if anything
other than SQLite is being used.

Now, we can begin the basic configuration of the Flask-SQLAlchemy extension.

Configuring Flask-SQLAlchemy
First, we must register the Flask-SQLAlchemy extension with the application
object in the application/__init__.py file:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///../snap.db'

db = SQLAlchemy(app)

Snap – the Code Snippet Sharing Application

[24]

The value of app.config['SQLALCHEMY_DATABASE_URI'] is the escaped relative
path to the snap.db SQLite database that we created previously. Once this simple
configuration is in place, we will be able to create the SQLite database automatically via
the db.create_all() method, which can be invoked in an interactive Python shell:

$ python

>>>from application import db

>>>db.create_all()

This is an idempotent operation, which means that nothing would change even if
the database already exists. If the local database file did not exist, however, it would
be created. This also applies to adding new data models: running db.create_all()
will add their definitions to the database, ensuring that the relevant tables have been
created and are accessible. It does not, however, take into account the modification
of an existing model/table definition that already exists in the database. For this, you
will need to use the relevant tools (for example, the sqlite CLI, or a migration tool
such as Alembic, which we discuss in a later chapter) to modify the corresponding
table definitions to match those that have been updated in your models.

SQLAlchemy basics
SQLAlchemy is, first and foremost, a toolkit to interact with the relational
databases in Python.

While it provides an incredible number of features—including the SQL connection
handling and pooling for various database engines, ability to handle custom
datatypes, and a comprehensive SQL expression API—the one feature that most
developers are familiar with is the Object Relational Mapper. This mapper allows a
developer to connect a Python object definition to a SQL table in the database of their
choice, thus enabling them with the flexibility to control the domain models in their
own application and requiring only minimal coupling to the database product and
the engine-specific SQLisms that each of them exposes.

While debating the usefulness (or the lack thereof) of an object relational mapper is
outside the scope of this chapter, for those who are unfamiliar with SQLAlchemy we
will provide a list of benefits that using this tool brings to the table, as follows:

•	 Your domain models are written to interface with one of the
most well-respected, tested, and deployed Python packages ever
created—SQLAlchemy.

•	 Onboarding new developers to a project becomes an order of magnitude
easier due to the extensive documentation, tutorials, books, and articles that
have been written about using SQLAlchemy.

Chapter 3

[25]

•	 The validation of queries is accomplished using the SQLAlchemy expression
language at module import time instead of executing each query string
against the database to determine if there is a syntax error present. The
expression language is in Python and can thus be validated with your usual
set of tools and IDE.

•	 Thanks to the implementation of design patterns such as the Unit of Work,
the Identity Map, and various lazy loading features, the developer can
often be saved from performing more database/network roundtrips than
necessary. Considering that the majority of a request/response cycle in a
typical web application can easily be attributed to network latency of one
type or another, minimizing the number of database queries in a typical
response is a net performance win on many fronts.

•	 While many successful, performant applications can be built entirely on
the ORM, SQLAlchemy does not force it upon you. If, for some reason, it
is preferable to write raw SQL query strings or to use the SQLAlchemy
expression language directly, then you can do that and still benefit from the
connection pooling and the Python DBAPI abstraction functionality that is
the core of SQLAlchemy itself.

Now that we've given you several reasons why you should be using this database
query and domain data abstraction layer, let's look at how we would go about
defining a basic data model.

Declarative mapping and Flask-SQLAlchemy
SQLAlchemy implements a design pattern known as a data mapper. Fundamentally,
the job of this data mapper is to bridge the definition and manipulation of a data
model in code (in our case, Python class definitions) and the representation of this
data model in a database. The mapper should know how code-related actions (for
example, object construction, attribute modifications, and so on) relate to the SQL-
specific statements in a database of our choice, ensuring that actions performed on
our mapped Python objects are properly synchronized with the database table(s)
they are linked to.

There are two ways in which we can integrate SQLAlchemy into our application:
through the use of the declarative mapping that provides a consistent integration of
tables, Python objects and the data mapper that glues them together, or by manually
specifying these relations ourselves. Additionally, it is also possible to use the so-
called SQLAlchemy "core", which eschews the data domain-centric approach for
one based on the SQL expression language constructs that are included within
SQLAlchemy.

For the purposes of this (and future) chapters, we will be utilizing the declarative
approach.

Snap – the Code Snippet Sharing Application

[26]

To use the declarative mapping functionality, we need to ensure that any model
classes that we define will inherit from the declarative base Model class that
Flask-SQLAlchemy makes available to us (once we have initialized the extension):

from application import db

class User(db.Model):

 # model attributes

 pass

This Model class is, essentially, an instance of a sqlalchemy.ext.declarative.
declarative_base class (with some additional defaults and useful functionalities),
which provides the object with a metaclass that will handle the appropriate mapping
constructs.

Once we have our model class definition in place, we will define the details about the
related SQL table that will be mapped via the class-level attributes utilizing Column
object instances. The first argument to a Column invocation is the type constraint
that we want to impose on the attribute (which corresponds to a specific schema
data type supported by the database), along with any optional arguments that the
type supports, such as the size of the field. Additional arguments can be provided to
indicate the constraints on the resulting table field definition:

class User(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 email = db.Column(db.String(255), unique=True)

 username = db.Column(db.String(40), unique=True)

As indicated previously, simply defining the attributes will
not automatically translate into new tables and columns in our
database. For this, we will need to call db.create_all() to
initialize the table and column definitions.

We can easily create an instance of this model and assign some values to the
attributes that we declared in our class definition:

$ (snap) python

>>>from application.users.models import User

>>>new_user = User(email="me@example.com", username="me")

Chapter 3

[27]

>>>new_user.email

'me@example.com'

>>>new_user.username

'me'

You may have noticed that our user model does not define a
__init__ method, yet we are able to pass the email and
username arguments to the object constructor when instantiating
the above example. This is a feature of the SQLAlchemy declarative
base class, which automatically assigns the named arguments at
object construction time to their object attribute counterparts. As a
result, defining a concrete constructor method for your data models
is generally not necessary.

The instantiation of a model object does not imply that it has been persisted to the
database. For that, we need to inform the SQLAlchemy session that we wish to add
a new object to be tracked and have it committed to the database:

>>>from application import db

>>>db.session.add(new_user)

>>>db.session.commit()

Once the object has been committed, the id attribute will obtain the value of the
primary key that the underlying database engine has assigned to it:

>>>print(new_user.id)

1

If we want to modify the value of an attribute, for example, change the e-mail
address of a particular user, we simply need to assign the new value and then
commit the change:

>>>new_user.email = 'new@example.com'

>>>db.session.add(new_user)

>>>db.session.commit()

>>>print(new_user.email)

u'new@example.com'

Snap – the Code Snippet Sharing Application

[28]

At this point, you may have noticed that there has not been a single line of SQL written
for any of the previous operations and might be getting a bit concerned that the
information embedded in the objects that you've created is not being persisted to the
database. A cursory inspection of the database should put your mind at ease:

$ sqlite3 snap.db

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> .tables

user

sqlite> .schema user

CREATE TABLE user (

 id INTEGER NOT NULL,

 email VARCHAR(255),

 username VARCHAR(40),

 PRIMARY KEY (id),

 UNIQUE (email),

 UNIQUE (username)

);

sqlite> select * from user;

1|new@example.com|me

Remember that the exact name of the SQLite binary may differ on
your operating system of choice. Additionally, if you chose a database
engine other than SQLite to follow along with these examples, the
relevant commands and results may be wildly different.

And there we have it: SQLAlchemy has successfully managed the relevant SQL INSERT
and UPDATE statements behind the scenes, letting us work with native Python objects
and signaling the session when we are ready to persist the data to the database.

We are not limited to defining class attributes, of course. In many instances it may
prove useful to declare instance methods on our models so that we can perform
more complex data manipulations. For example, imagine that we need to obtain the
primary key ID of a given user and determine whether or not it is an even or odd
integer. The method declaration would be just as you expect it to be:

class User(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 email = db.Column(db.String(255), unique=True)

Chapter 3

[29]

 username = db.Column(db.String(40), unique=True)

def is_odd_id(self):

 return (self.id % 2 != 0)

The instance method call can be performed as usual with the caveat that before the
object is committed to the session, the primary key value will be none:

$ (snap) python

Python 2.7.10 (default, Jul 13 2015, 23:27:37)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>fromapplication.users.models import User

>>>test = User(email='method@example.com', username='method_test')

>>>from application import db

>>>db.session.add(test)

>>>db.session.commit()

>>> test.id

2

>>>test.is_odd_id()

False

Of course, the preceding implementation is trivial and somewhat meaningless in
the context of most web applications. However, the ability to define model instance
methods in order to encode business logic is quite convenient and we will see some
of this with the Flask-Login extension later on in this chapter.

Snap data models
Now that we've explored the basics of the SQLAlchemy declarative base and the
Flask-SQLAlchemy extension using a somewhat simplified model, our next step is
to flesh out a user data model that is the cornerstone of almost any web application.
We'll create this model in the users blueprint in a new users/models.py module,
and utilize the knowledge that we've gained regarding SQLAlchemy models to add
the fields for a user password and a created_on field to store when the record was
created. Additionally, we'll define a few instance methods:

import datetime

from application import db

class User(db.Model):

Snap – the Code Snippet Sharing Application

[30]

 # The primary key for each user record.

 id = db.Column(db.Integer, primary_key=True)

 # The unique email for each user record.

 email = db.Column(db.String(255), unique=True)

 # The unique username for each record.

 username = db.Column(db.String(40), unique=True)

 # The hashed password for the user

 password = db.Column(db.String(60))

The date/time that the user account was created on.

 created_on = db.Column(db.DateTime,

 default=datetime.datetime.utcnow)

 def __repr__(self):

 return '<User {!r}>'.format(self.username)

 def is_authenticated(self):

 """All our registered users are authenticated."""

 return True

 def is_active(self):

 """All our users are active."""

 return True

 def is_anonymous(self):

 """We don)::f):lf):"""users are authenticated."""

 return False

 def get_id(self):

 """Get the user ID as a Unicode string."""

 return unicode(self.id)

Chapter 3

[31]

The is_authenticated, is_active, is_anonymous, and get_id methods may seem
arbitrary at the moment but are required for the next step, which will be installing
and setting up the Flask-Login extension in order to help us manage our user
authentication system.

Flask-Login and Flask-Bcrypt for
authentication
As we've done several times already with other libraries, we will install the
extensions in our current project's virtual environment:

$ (snap) pip install flask-login flask-bcrypt

The first is a Flask-specific library to normalize much of the standard user login
process that nearly every web application requires, and the latter will allow us
to ensure that the user passwords we store in our database are hashed using an
industry standard algorithm.

Once installed, we need to instantiate and configure the extension in the usual
manner. For this, we will add to the application/__init__.py module:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.login import LoginManager

from flask.ext.bcrypt import Bcrypt

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///../snap.db'

db = SQLAlchemy(app)

login_manager = LoginManager()

login_manager.init_app(app)

flask_bcrypt = Bcrypt(app)

from application.users import models as user_models

from application.users.views import users

Snap – the Code Snippet Sharing Application

[32]

In order to function correctly, the Flask-Login extension must also know how to
load a user from your database given only the ID of this user. We must decorate
a function that will accomplish this, and we'll insert it at the very end of the
application/__init__.py module for the sake of simplicity:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.login LoginManager

from flask.ext.bcrypt import Bcrypt

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///../snap.db'

db = SQLAlchemy(app)

login_manager = LoginManager()

login_manager.init_app(app)

flask_bcrypt = Bcrypt(app)

from application.users import models as user_models

from application.users.views import users

@login_manager.user_loader

def load_user(user_id):

 return application.user_models.query.get(int(user_id))

Now that we've set up the model and required methods/function so that Flask-
Login can operate correctly, our next step will be to allow users to log in as they
would on almost any web application using a form.

Flask-WTF – form validation and rendering
The Flask-WTF (https://flask-wtf.readthedocs.org/en/latest/) extension
wraps the WTForms library, an incredibly flexible tool for managing and validating
forms, and makes it readily available for use in Flask applications. Let's install this
now and then we'll define our first form to handle user logins:

$ pip install flask-wtf

https://flask-wtf.readthedocs.org/en/latest/

Chapter 3

[33]

Next, we will define our first form in our users/views.py module:

from flask import Blueprint

from flask.ext.wtf import Form

from wtforms import StringField, PasswordField

from wtforms.validators import DataRequired, Length

users = Blueprint('users', __name__, template_folder='templates')

classLoginForm(Form):

 """

 Represents the basic Login form elements & validators.

 """

 username = StringField('username', validators=[DataRequired()])

 password = PasswordField('password', validators=[DataRequired(),

 Length(min=6)])

Here we defined LoginForm, a subclass of Form, with the class attributes of username
and password. The values of these attributes are StringField and PasswordField,
each with their own set of validators to indicate that the form data of both fields
is required to be non-empty and the password field itself should be at least six
characters long in order to be considered valid.

Our LoginForm class will be utilized in two different ways, as follows:

•	 It will render the required form fields in our login.html template
•	 It will validate the POST'ed form data that we will require to complete a

successful login from a user

To accomplish the first, we will need to define our HTML layout in application/
templates/layout.html, using the Jinja2 templating language. Note the use of the
current_user object proxy that is made available in all Jinja templates via the Flask-
Login extension which allows us to determine whether the person who is browsing
is already authenticated, and if so, then this person should be presented with a
slightly different page content:

<!doctype html>
<html>
 <head>

Snap – the Code Snippet Sharing Application

[34]

 <title>Snaps</title>
 </head>

 <body>
 <h1>Snaps</h1>

 {% for message in get_flashed_messages() %}
 <div class="flash">{{ message }}</div>
 {% endfor %}

 {% if not current_user.is_authenticated() %}
 login
 {% else %}
 logout
 {% endif %}

 <div class="content">
 {% block content %}{% endblock %}
 </div>
 </body>
</html>

Now that we have our extremely basic layout, we need to create our login.html
page at application/users/templates/users/login.html:

The somewhat convoluted path of application/users/
templates/users/index.html is required when using
Blueprints due to the manner in which the default template loader
searches the registered template paths; it allows for some relatively
simple overriding of blueprint templates in your main application
template folder at the cost of some additional file tree complexity.

{% extends "layout.html" %}

{% block content %}

<form action="{{ url_for('users.login')}}" method="post">
 {{ form.hidden_tag() }}
 {{ form.id }}
 <div>{{ form.username.label }}: {{ form.username }}</div>
 {% if form.username.errors %}
 <ul class="errors">{% for error in form.username.errors %}{{
error }}{% endfor %}
 {% endif %}

Chapter 3

[35]

 <div>{{ form.password.label }}: {{ form.password }}</div>
 {% if form.password.errors %}
 <ul class="errors">{% for error in form.password.errors %}{{
error }}{% endfor %}
 {% endif %}

 <div><input type="submit" value="Login"></div>
</form>

{% endblock %}

The preceding code will extend the basic application-level layout.html that we
defined previously and insert the hidden form fields (required for the built-in CSRF
protection that Flask-WTF offers), form labels, form inputs, and submit button. We
will also display the inline errors returned to us by WTForms in the event that our
submitted data does not pass our form validators for the fields in question.

Cross-Site Request Forgery (CSRF) is a type of attack that occurs when a
malicious website, email, blog, instant message, or program causes a user's web
browser to perform an unwanted action on a trusted site in which the user is
currently authenticated. OWASP definition of CSRF

The most common way of preventing a cross-site request forgery is to
include a token with each HTML form that is sent to the user, which
can then be validated against a matching token in the session of the
authenticated user. If the token does not validate, then the form data is
rejected, as there is a chance that the currently authenticated user did
not willingly submit the form data in question.

Now that we have created the login.html template, we can next hook up a route
view handler in application/users/views.py to process the login and form logic:

from flask import (Blueprint, flash, render_template, url_for, redirect,
g)

from flask.ext.login import login_user, logout_user, current_user

from flask.ext.wtf import Form

from wtforms import StringField, PasswordField

from wtforms.validators import DataRequired, Length

from models import User

Snap – the Code Snippet Sharing Application

[36]

from application import flask_bcrypt

users = Blueprint('users', __name__, template_folder='templates')

class LoginForm(Form):

 """

 Represents the basic Login form elements & validators.

 """

 username = StringField('username',

validators=[DataRequired()])

password = PasswordField('password',

validators=[DataRequired(),Length(min=6)])

@users.route('/login', methods=['GET', 'POST'])

def login():

 """

Basic user login functionality.

 If the user is already logged in , we

redirect the user to the default snaps index page.

 If the user is not already logged in and we have

form data that was submitted via POST request, we

call the validate_on_submit() method of the Flask-WTF

 Form object to ensure that the POST data matches what

we are expecting. If the data validates, we login the

user given the form data that was provided and then

redirect them to the default snaps index page.

 Note: Some of this may be simplified by moving the actual User

loading and password checking into a custom Flask-WTF validator

for the LoginForm, but we avoid that for the moment, here.

 """

current_user.is_authenticated():

Chapter 3

[37]

 return redirect(url_for('snaps.listing))

 form = LoginForm()

 if form.validate_on_submit():

 user = User.query.filter_by(

 username=form.username.data).first()

 if not user:

 flash("No such user exists.")

 returnrender_template('users/login.html', form=form)

 if(not flask_bcrypt.check_password_hash(user.password,

 form.password.data)):

 flash("Invalid password.")

 returnrender_template('users/login.html', form=form)

 login_user(user, remember=True)

 flash("Success! You're logged in.")

 returnredirect(url_for("snaps.listing"))

 return render_template('users/login.html', form=form)

@users.route('/logout', methods=['GET'])

def logout():

 logout_user()

 return redirect(url_for(('snaps.listing'))

Hashing user passwords
We will update our user model in order to ensure that the passwords are encrypted
by Flask-Bcrypt when the password field is updated. In order to accomplish this,
we will use a feature of SQLAlchemy that is similar in spirit and functionality to the
Python @property decorator (and the associated property.setter method), named
hybrid attributes.

Snap – the Code Snippet Sharing Application

[38]

Hybrid attributes are so named because they can provide
distinctly different behaviors when invoked at the class level
or instance level. The SQLAlchemy documentation is a great
place to learn about the various roles that they can fulfill in
your domain modeling.

We will simply rename the password class-level attribute with _password so that our
hybrid attribute methods do not conflict. Subsequently, we add the hybrid attribute
methods which encapsulate the password hashing logic on attribute assignment:

In addition to the hybrid property approach, our requirements
for password hashing on assignment could also be satisfied
using a SQLAlchemy TypeDecorator, which allows us to
augment the existing types (for example, a String column type)
with additional behaviors.

import datetime

from application import db, flask_bcrypt

from sqlalchemy.ext.hybrid import hybrid_property

class User(db.Model):

 # …

 # The hashed password for the user

 _password = db.Column('password', db.String(60))

 # …

 @hybrid_property

 def password(self):

 """The bcrypt'ed password of the given user."""

return self._password

 @password.setter

 def password(self, password):

 """Bcrypt the password on assignment."""

Chapter 3

[39]

 self._password = flask_bcrypt.generate_password_hash(

 password)

 # …

In order to generate a user for testing purposes (and to verify that our password
was hashed on instance construction/attribute assignment), let's load the Python
console and create a user instance ourselves using the model that we defined and the
SQLAlchemy database connection that we created:

Remember to initialize the database with db.create_all()
if you haven't already.

>>>from application.users.models import User

>>>user = User(username='test', password='mypassword', email='test@
example.com')

>>>user.password

'$2a$12$O6oHgytOVz1hrUyoknlgqeG7TiVS7M.ogRPv4YJgAJyVeUIV8ad2i'

>>>from application import db

>>>db.session.add(user)

>>>db.session.commit()

Configure an application SECRET_KEY
The last little bit that we need is to define an application-wide SECRET_KEY that will
be used by Flask-WTF to sign a token to be used for the prevention of CSRF attacks.
We will add this key to the application configuration in application/__init__.py:

from flask import Flask

fromflask.ext.sqlalchemy import SQLAlchemy

fromflask.ext.login import LoginManager

fromflask.ext.bcrypt import Bcrypt

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///../snap.db'

app.config['SECRET_KEY'] = "-80:,bPrVzTXp*zXZ0[9T/ZT=1ej08"

…

Snap – the Code Snippet Sharing Application

[40]

Of course, you'll want to use your own unique secret key; the
easiest way to accomplish this would be to use your system kernel's
random number device via /dev/urandom, available for
most Linux distributions. In python, you can use the os.urandom
method to get a random string with n bytes of entropy.

Hook up the blueprint
Before we can run the application, we need to register our newly created users
blueprint with the Flask application object. This necessitates a slight modification to
application/__init__.py:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.login import LoginManager

from flask.ext.bcrypt import Bcrypt

app = Flask(__name__)

…

from application.users.views import users

app.register_blueprint(users, url_prefix='/users')

…

Let's run this thing
Now that we've put all the little pieces together, let's run the application and make
things happen. We will use a similar run.py file that we used in the previous
chapter, which has been adapted to work with our application factory:

from application import create_app

app = create_app(config='settings')

app.run(debug=True)

This file is placed as a sibling to the application folder and then invoked in the
usual way:

$ python run.py

Chapter 3

[41]

Visit http://localhost:5000/users/login and you should be presented with the
username and password input fields that we created. If you attempt to input invalid
fields (for example, a username that does not exist), the page will render with the
relevant error message. If you attempt to log in with the user credentials that we
created at the interactive prompt earlier, then you should be greeted with the text:
Success! You logged in.

The data model for snaps
Now that we've created our bare bones user models, view functions, and hooked up
our authentication system, let's create the model required to store our Snaps in a new
blueprint, under application/snaps/models.py.

Don't forget to create application/snaps/__init__.py,
otherwise the folder will not be recognized as a package!

This model will be very similar to our User model but will contain additional
information regarding the relationships between a user and their snaps. In
SQLAlchemy, we will describe the relations between records in tables via the use of
ForeignKey objects and the relationship methods:

import datetime

import hashlib

from application import db

class Snap(db.Model):

 # The primary key for each snap record.

 id = db.Column(db.Integer, primary_key=True)

 # The name of the file; does not need to be unique.

 name = db.Column(db.String(128))

 # The extension of the file; used for proper syntax

 # highlighting

 extension = db.Column(db.String(12))

 # The actual content of the snap

Snap – the Code Snippet Sharing Application

[42]

 content = db.Column(db.Text())

 # The unique, un-guessable ID of the file

 hash_key = db.Column(db.String(40), unique=True)

 # The date/time that the snap was created on.

 created_on = db.Column(db.DateTime,

 default=datetime.datetime.utcnow,index=True)

 # The user this snap belongs to

 user_id = db.Column(db.Integer, db.ForeignKey('user.id'))

 user = db.relationship('User', backref=db.backref(

 'snaps', lazy='dynamic'))

 def __init__(self, user_id, name, content, extension):

 """

 Initialize the snap object with the required attributes.

 """

 self.user_id = user_id

 self.name = name

 self.content = content

 self.extension = extension

self.created_on = datetime.datetime.utcnow()

 # This could be made more secure by combining the

 # application SECRET_KEYin the hash as a salt.

 self.hash_key = hashlib.sha1(self.content + str(self.created_
on)).hexdigest()

 def __repr__(self):

 return '<Snap {!r}>'.format(self.id)

Chapter 3

[43]

Most of this model should be relatively familiar; it is not that much different from the
one we constructed previously for our User schema. For our snaps, we will require
a few mandatory attributes, as follows:

•	 user_id: This is the ID of the user who has created the snap. As our current
implementation will require a user to be authenticated in order to create a
snap, all the resulting snaps will be tied to the user who posted them. This
will also make it trivial to extend the system at a later time so as to include
the user profiles, personal snap statistics, and ability to delete a snap.

•	 created_on: This is set in the constructor to be the current UTC timestamp
and will be used to sort the snaps in descending order to display them in
a list on our landing page.

•	 hash_key: This attribute is also set in the constructor and is the cryptographic
hash of the contents of the snap concatenated with the timestamp it was
created on. This gives us a unique, secure ID that is not easily guessable that
we can use in order to refer to the snap at a later time.

Even though the conditions that we described for the
preceding hash_key do not guarantee that the value
is unique, The uniqueness of the snap hash key is also
enforced at the database level via a unique index constraint.

•	 content: This is the content of the snap itself—the meat and potatoes of
the model.

•	 extension: This is the file extension of the snap, so that we can include
simple syntax highlighting if we so desire.

•	 name: This is the name of the snap, which is not required to be unique.
•	 user: This is a special attribute to declare that every snap instance is related

to a user instance and will allow us to access the data of the user who has
created a snap. The backref option also specifies that the reverse should
be possible: that is, accessing all the snaps created by a user via the snaps
attribute on a user instance.

Snap – the Code Snippet Sharing Application

[44]

Better defaults with content-sensitive default
functions
One improvement that can be made to the preceding model is the removal of the
explicit __init__ method. The only reason that it was defined initially was to ensure
that the hash_key field could be constructed from the value of the content field.
While in most instances the explicit object constructor that was defined would be
good enough, SQLAlchemy provides us with the functionality that will allow us to
set the default value of one field based on the contents of another. This is known as
a Context–Sensitive Default Function and can be declared as such at the top of the
application/snaps/models.py module:

defcontent_hash(context):

 # This could be made more secure by combining the

 # application SECRET_KEY in the hash as a salt.

 content = context.current_parameters['content']

 created_on = context.current_parameters['created_on']

 return hashlib.sha1(content + str(created_on)).hexdigest()

Once this method exists, we can define the default argument of the hash_key column
to be our content_hash content-sensitive default:

The unique, un-guessable ID of the file

hash_key = db.Column(db.String(40), unique=True,

 default=content_hash)

Snap view handlers
Continuing on, we will now create the views and templates that are required
to list and add snaps. To this end, we will instantiate a Blueprint object in our
application/snaps/views.py and declare our route handlers:

from flask import Blueprint

from flask.ext.login import login_required

from .models import Snap

snaps = Blueprint('snaps', __name__, template_folder='templates')

@snaps.route('/', methods=['GET'])

Chapter 3

[45]

def listing():

"""List all snaps; most recent first."""

@snaps.route('/add', methods=['GET', 'POST'])

@login_required

def add():

 """Add a new snap."""

Note that we have wrapped our add() route handler with a @login_required
decorator, which will prevent unauthenticated users from accessing this endpoint for
all defined HTTP verbs (GET and POST, in this case) and return a 401.

Instead of having the server return an HTTP 401 Unauthorized,
Flask-Login can be configured to redirect the unauthenticated
user to the login page by setting the login_manager.login_
view attribute to the url_for compatible location of the login
page itself, which in our case would be users.login.

Now, let's create the WTForm object to represent a snap and place it in the
application/snaps/views.py module:

from flask.ext.wtf import Form

from wtforms import StringField

from wtforms.widgets import TextArea

from wtforms.validators import DataRequired

class SnapForm(Form):

 """Form for creating new snaps."""

 name = StringField('name', validators=[DataRequired()])

 extension = StringField('extension',

 validators=[DataRequired()])

 content = StringField('content', widget=TextArea(),

 validators=[DataRequired()])

Snap – the Code Snippet Sharing Application

[46]

While it is somewhat a matter of personal preference, the forms
created with WTForms (or any other similar abstraction) could
be placed alongside the models instead of the views. Or, to go
a step further, if you have many different forms with complex
data relationships, it may also be advisable to put all the
declared forms in their own module in your application.

Our snaps require a name, an extension, and the content of the snap itself, and we've
encapsulated these basic requirements in the preceding Form declaration. Let's
implement our add() route handler:

from flask import Blueprint, render_template, url_for, redirect, current_
app, flash

from flask.ext.login import login_required, current_user

from sqlalchemy import exc

from .models import Snap

from application import db

…

@snaps.route('/add', methods=['GET', 'POST'])

@login_required

def add():

 """Add a new snap."""

 form = SnapForm()

 if form.validate_on_submit():

 user_id = current_user.id

 snap = Snap(user_id=user_id, name=form.name.data,

 content=form.content.data,

 extension=form.extension.data)

 db.session.add(snap)

try:

Chapter 3

[47]

 db.session.commit()

 except exc.SQLAlchemyError:

 current_app.exception("Could not save new snap!")

 flash("Something went wrong while posting your snap!")

 else:

 return render_template('snaps/add.html', form=form)

 return redirect(url_for('snaps.listing'))

Briefly, we will validate the submitted POST data in order to ensure that it satisfies
the validators that we specified in the SnapForm class declaration and then proceed
to instantiate a Snap object with the supplied form data and ID of the currently
authenticated user. Once built, we will add this object to the current SQLAlchemy
session and then attempt to commit it to the database. If a SQLAlchemy exception
occurs (all SQLAlchemy exceptions inherit from salalchemy.exc.SQLALchemyError),
we will log an exception to the default application log handler and set a flash message
so that the user is alerted that something unexpected has occurred.

For the sake of completeness, we will include the extremely simple application/
snaps/templates/snaps/add.html Jinja template here:

{% extends "layout.html" %}

{% block content %}
<form action="{{ url_for('snaps.add')}}" method="post">

 {{ form.hidden_tag() }}
 {{ form.id }}

 <div class="row">
 <div>{{ form.name.label() }}: {{ form.name }}</div>
 {% if form.name.errors %}
 <ul class="errors">{% for error in form.name.errors %}{{ error
}}{% endfor %}
 {% endif %}

 <div>{{ form.extension.label() }}: {{ form.extension }}</div>
 {% if form.extension.errors %}
 <ul class="errors">{% for error in form.extension.errors %}{{
error }}{% endfor %}
 {% endif %}

Snap – the Code Snippet Sharing Application

[48]

 </div>

 <div class="row">
 <div>{{ form.content.label() }}: {{ form.content }}</div>
 {% if form.content.errors %}
 <ul class="errors">{% for error in form.content.errors %}{{
error }}{% endfor %}
 {% endif %}
 </div>

 <div><input type="submit" value="Snap"></div>
</form>

{% endblock %}

Once we've completed the add() handler and associated template, now it's time to
move on to the listing() handler, which will incidentally be the landing page for
our application. The listing page will, somewhat unimaginatively, show a listing of
the 20 most recent snaps which have been posted, in reverse chronological order:

@snaps.route('/', methods=['GET'])

def listing():

 """List all snaps; most recent first."""

 snaps = Snap.query.order_by(

 Snap.created_on.desc()).limit(20).all()

 return render_template('snaps/index.html', snaps=snaps)

The application/snaps/templates/snaps/add.html Jinja template renders the
snaps that we've queried from the database:

{% extends "layout.html" %}

{% block content %}
<div class="new-snap">
 <p>New Snap</p>
</div>

{% for snap in snaps %}
<div class="snap">
 {{snap.user.username}}, published on
{{snap.created_on}}
 <pre><code>{{snap.content}}</code></pre>
</div>

Chapter 3

[49]

{% endfor %}

{% endblock %}

Next, we must ensure that the snaps blueprint that we've created is loaded
in the application and prefixed to the root/URI path by adding it to the
application/__init__.py module:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.login import LoginManager

from flask.ext.bcrypt import Bcrypt

…

from application.users import models as user_models

from application.users.views import users

from application.snaps.views import snaps

app.register_blueprint(users, url_prefix='/users')

app.register_blueprint(snaps, url_prefix='')

@login_manager.user_loader

de fload_user(user_id):

 return user_models.User.query.get(int(user_id))

In order to test our new functionality, we'll need to add the newly created snap
model to our database. We can accomplish this by executing the db.create_all()
function that we described earlier in the chapter. As we tend to run this command
quite a lot, let's put it in a script sibling to our main application package folder and
name the file database.py:

from application import db

db.create_all()

Once in place, we can simply execute the script with the Python interpreter in order
to create the new snap model in our database:

$ python database.py

Snap – the Code Snippet Sharing Application

[50]

Now that our database should be up to date with our model definitions, let's ensure
that the application runs as expected:

$ python run.py

Assuming that there were no errors, you should be able to visit the URL that
is displayed and log in with the credentials of one of the users that we created
earlier in the chapter. You can, of course, create a new user via the interactive
Python interpreter and then use these credentials so as to test the authentication
functionality of the application:

$ python

>>>from application import db

>>>from application.users.models import User

>>>user = User(name='test', email='test@example.com', password='foobar')

>>>db.session.add(user)

>>>db.session.commit(user)

Summary
After having gone through this chapter and building the Snap application, we have
seen several facets of how Flask may be augmented with the use of extensions, such
as Flask-WTF (for web form creation and validation), Flask-SQLAlchemy (for simple
integration with the SQLAlchemy database abstraction library), Flask-Bcrypt (for
password hashing), and Flask-Login (to abstract much of the standard implementation
requirements for a simple user login system). While Flask itself is relatively spartan,
the ecology of extensions that are available make it such that building a fully fledged
user-authenticated application may be done quickly and relatively painlessly.

We explored the aforementioned extensions and their usefulness, including Flask-
WTF and Flask-SQLAlchemy, and architected a simple blueprint-based application
that integrated all of the above components. While the Snap application itself is quite
simple and leaves much to be implemented, it lends itself very easily to updates and
additional features.

In the next chapter, we will build an application with a more complex data model
and include some social features that are common among today's web apps.
Moreover, it will be built and set up for unit and functional testing, something that
no trivial application should go without.

[51]

Socializer – the
Testable Timeline

In this chapter we will build our next application with the codename: Socializer. This
application will provide you with a very typical timeline feed, whose variations grace
many well-known modern web applications.

This application will allow authenticated users to follow others, and be followed by
other users, and display content posted from the followed users in a time-ordered
fashion. Along with building the basic features required of a timeline-based application,
we will implement additional behaviors using the excellent Blinker library for
in-process publish/subscribe signals that will allow us to decouple the application
into more compassable, reusable parts.

Additionally, Socializer will be built with unit and functional testing in mind,
allowing us to vigorously test the various models and views to ensure that it
functions according to our expectations.

Starting off
As we did in the previous chapter, let's create a completely new directory for this
application, in addition to creating a virtual environment and installing a few basic
packages that we will be using:

$ mkdir -p ~/src/socializer && cd ~/src/socializer

$ mkvirtualenv socializer

$ pip install flask flask-sqlalchemy flask-bcrypt flask-login flask-wtf
blinker pytest-flask

Socializer – the Testable Timeline

[52]

Our application layout will, for the moment, be very similar to the one that we used
in the previous chapter:

├── application

│ ├── __init__.py

│ └── users

│ ├── __init__.py

│ ├── models.py

│ └── views.py

└── run.py

└── database.py

Application factories
One of the major benefits of unit and functional testing is the ability to ensure, under
a variety of different conditions and configurations, that your application behaves
in a known and predictable manner. To this end, it will be a great advantage to have
the ability to construct all the Flask application objects in our test suite. We can then
easily provide different configurations to each of these objects and ensure that they
exhibit the behavior that we expect.

Thankfully, this is entirely achievable using the application factory pattern,
which is well supported by Flask. Let's add a create_app method to our
application/__init__.py module:

from flask import Flask

def create_app(config=None):

 app = Flask(__name__)

 if config is not None:

 app.config.from_object(config)

 return app

What this method does is relatively simple: given an optional config argument,
construct a Flask application object, optionally apply this custom configuration,
and finally return the newly created Flask application object to the caller.

Chapter 4

[53]

Previously, we would simply instantiate a Flask object in the module itself, which
meant that on import of this package or module the application object would be
immediately available. However, this also meant that there was no simple way of
doing the following:

•	 Delaying the construction of the application object to some time after the
module was imported to the local namespace. This may seem frivolous at
first but is incredibly useful and powerful for large applications that can
benefit from this type of lazy instantiation. As we mentioned previously,
side-effect generating package imports should be avoided as much
as possible.

•	 Substituting different application configuration values, such as those that
may be needed while running tests. We might like to avoid, for example,
sending out e-mail notifications to real world users while running our
test suite.

•	 Running multiple Flask applications in the same process. While we do
not explicitly address the concept in this book, this can be useful in a
variety of situations, such as having separate application instances that
serve different versions of a public API or separate application objects that
serve different content types (JSON, XML, and so on). More information
on this topic can be gleaned from the Application dispatching section in the
official Flask online documentation http://flask.pocoo.org/docs/0.10/
patterns/appdispatch/.

With the application factory, we now have more flexibility in when and how our
main application object is constructed. The downside (or upside, if you're intent on
running several applications in the same process!), of course, is that we no longer
have access to a quasi-global app object that we can import to our modules in order
to do things such as register route handlers or access the app object's logger.

The application context
One of the principal design goals of Flask is to ensure that you can run multiple
applications in the same Python process. How, then, should an application be certain
that the app object being imported to a module is the correct one and not the object
for one of the other applications running in the same process?

Socializer – the Testable Timeline

[54]

In other frameworks that support the single-process/multi-app paradigm, this is
sometimes accomplished by enforcing explicit dependency injection: a code that
requires an app object to be present should explicitly require that the app object
be passed to the function or method that needs it. From an architectural design
perspective this sounds great, but this can quickly become cumbersome if third-party
libraries or extensions do not follow the same design principles. At best, you will end
up needing to write a lot of boilerplate wrapper functions, and at worst you will end
up resorting to monkey-patching modules and classes in a never-ending downward
spiral of brittleness and unnecessary complexity that will ultimately cause you more
trouble than you originally bargained for.

There is, of course, nothing inherently wrong with explicit
dependency injection boilerplate wrapper functions. Flask has
simply chosen a different approach, which it has been criticized for
in the past, but has shown to be both flexible, testable, and resilient.

Flask, for better or worse, has been built around an alternative method that is based
on proxy objects. These proxy objects are, in essence, container objects that are
shared among all the threads and know how to dispatch to the real objects that are
bound to a particular thread behind the scenes.

A common misconception is that in a threaded application, each
request will be assigned its own new thread under the WSGI
specification: this is simply not the case. New requests may
reuse existing but currently unused threads, and this old thread
may have locally scoped variables still lurking around that may
interfere with your new request handling.

One of these proxy objects, current_app, is created and bound to the current request
This means that instead of importing an already-constructed Flask application object
(or worse, creating additional application objects in the same request), we replace it
with the following:

from flask import current_app as app

The aliasing of the imported current_app object is, of
course, completely optional. It is sometimes preferable to
leave it named current_app so as to remind yourself that it
is not the real application object, but a proxy to it.

Chapter 4

[55]

Using this proxy object, we can sidestep the issue of not having an instantiated Flask
application object available to us at import time when we implement the application
factory pattern.

Instantiating an app object
Of course, at some point, we need to actually create an application object so that the
proxies have something to, well, proxy to. Generally, we want to create the object
once and then we want to make sure that the run method is invoked in order to
launch the Werkzeug development server.

To this end, we can modify the run.py script that we had in the previous chapter to
instantiate the app object from our factory and invoke the run method on the newly
created instance, as follows:

from application import create_app

app = create_app()

app.run(debug=True)

Now, we should be able to run this extremely barebones application as we have
previously done:

$ python run.py

It is also possible to invoke the Python interpreter such that a
module, package, or script is imported to the environment for
you and executed immediately. This is accomplished with the –m
flag and our preceding invocation of run.py can be modified to
the more concise version, as follows:
$ python –m run

Unit and functional testing
One of the primary benefits of implementing an application factory to hand out the
Flask application instances is that we have the abilities to test the application more
effectively. We can construct different application instances for different test cases
and can be sure that they are as isolated from each other as possible (or as much as
Flask/Werkzeug will allow).

Socializer – the Testable Timeline

[56]

The mainstay of the testing libraries in the Python ecosystem is unittest, which
is included in the standard library and includes much of the functionalities that
are expected of an xUnit framework. While a complete exposition on unittest is
largely out of the scope of this book, a typical class-based test case will follow this
basic skeleton, assuming that we are still using the factory pattern to separate our
application configuration from instantiation:

from myapp import create_app

import unittest

class AppTestCase(unittest.TestCase):

 def setUp(self):

 app = create_app() # Could also pass custom settings.

 app.config['TESTING'] = True

 self.app = app

 # Whatever DB initialization is required

 def tearDown(self):

 # If anything needs to be cleaned up after a test.

 Pass

 def test_app_configuration(self):

 self.assertTrue(self.app.config['TESTING'])

 # Other relevant assertions

if __name__ == '__main__':

 unittest.main()

The following are the advantages of using the unittest test format/style:

•	 It does not require external dependencies; unittest is part of the Python
standard library.

•	 Getting started is relatively easy. Most xUnit testing frameworks follow
similar naming conventions to declare the test classes and test methods,
and include several helpers for typical assertions such as assertTrue or
assertEqual, among several others.

Chapter 4

[57]

It is, however, not the only player in town; we will be using pytest and the
associated Flask extension that wraps the convenient functionality, pytest-flask.

In addition to being a slightly more modern and concise testing framework, the other
major advantage that pytest provides over many other testing tools is the ability
to define fixtures for the tests, which are described quite succinctly from their own
documentation, as follows:

•	 Fixtures have explicit names and are activated by declaring their use from
test functions, modules, classes, or whole projects

•	 Fixtures are implemented in a modular manner as each fixture name triggers
a fixture function that itself can use other fixtures

•	 Fixture management scales from a simple unit to complex functional
testing, allowing you to parameterize fixtures and tests according to the
configuration and component options or to reuse fixtures across class,
module, or whole test session scopes

In the context of testing a Flask application, this means that we can define objects
(such as our application object) in a fixture and then have this object automatically
injected into a test function via the use of an argument that has the same name as the
defined fixture function.

If that last paragraph was a bit too much to handle, then a simple example should
be enough to clear things up. Let's create the following conftest.py file, which will
contain any test suite-wide fixtures and helpers that our other tests might use:

import pytest

from application import create_app

@pytest.fixture

def app():

 app = create_app()

 return app

We will create our first test module in tests/test_application.py, as follows:

Note that the tests_* prefix to the test file names is important—it
allows pytest to automatically discover which files contain test
functions and assertions that need to be run. If a filename in your
tests/folder does not have the aforementioned prefix, then the
test runner will abstain from loading it and treating it as a file that
contains functions with test assertions.

Socializer – the Testable Timeline

[58]

import flask

def test_app(app):

 assert isinstance(app, flask.Flask)

Note that the app argument in the test_app function
signature matches the name of the app fixture function that
is defined in conftest.py, and the value that is passed to
test_app is the return value of the app fixture function.

We will run the test suite using the py.test executable that was installed to our
virtual environment (when we added the pytest-flask and pytest libraries) in
the directory that contains conftest.py and our tests/folder, and the output will
indicate that our test module was discovered and run:

$ py.test

=============== test session starts ================

platform darwin -- Python 2.7.8 -- py-1.4.26 -- pytest-2.7.0

rootdir: /path/to/socializer, inifile:

plugins: flask

collected 1 items

tests/test_application.py .

============= 1 passed in 0.02 seconds =============

And that's it! We've written and run our very first, albeit uninteresting, test for our
application. Don't fret if you don't quite understand what's going on just yet; quite a bit
of concrete testing is coming up in this chapter and many more examples will follow.

Social features – friends and followers
Many modern web applications allow users to friend or follow other users and be
friended or followed themselves. While this concept may be simple to explain
in words, there are numerous implementations and variations, all of which are
optimized for their particular use-cases.

In this situation, where we want to implement a newsfeed-like service that displays
information from a selected pool of users in an aggregated timeline that is unique
for each authenticated user, the following are the three categories of approaches that
may be used:

Chapter 4

[59]

•	 Fan-out on Write: Each newsfeed for a user is stored in a separate logical
container with the intention of making reads exceedingly simple, fast, and
straightforward, at the expense of denormalization and lower write throughput.
The logical container may be a database table for each user (although this is
highly inefficient for a large amount of users), columns in a column-oriented
database such as Cassandra, or more specialized storage solutions such as Redis
lists that may have elements added to them in an atomic fashion.

•	 Fan-out on Read: When newsfeeds require additional customization or
processing to determine things such as visibility or relevance, a fan-out on
read approach is usually best. This allows more fine-grained control over
which items will end up in the feed and in which order (assuming that
something more elaborate than chronological is required) at the cost of
increased computational time to load the user-specific feed. Such a costly
approach may be mitigated by keeping the recent items in RAM (which is
the basic approach behind the Facebook™ newsfeed and the reason why
Facebook also has the largest deployment of Memcache in the world), but
this introduces several layers of complexity and indirection.

•	 Naïve Normalization: This is the least scalable of the approaches, but the
simplest to implement. For many small-scale applications, this is the best
place to start: a post's table that contains all the items created by users (with
a foreign key constraint to the user who created that particular item) and a
follower's table that tracks which users are following whom. Various
caching solutions may be used to speed up parts of the request at the cost
of additional complexity and may be introduced when they are necessary.

For the purposes of our Socializer application, the third approach, the so-called naïve
normalization, will be the one we implement. The other approaches are valid, and
you may choose to go down either path depending on your goals, but for the sake of
simplicity and exposition we shall choose the one that requires the least amount
of work.

With this in mind, let's begin by implementing the basic SQLAlchemy models and
relationships that are required. First, let's use our newly minted application factory
to initialize and configure the Flask-SQLAlchemy extension along with Flask-Bcrypt
to hash our user passwords, using the same hybrid property approach that we
explored in the previous chapter. Our application/__init__.py is as follows:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.bcrypt import Bcrypt

Initialize the db extension, but without configuring

Socializer – the Testable Timeline

[60]

it with an application instance.

db = SQLAlchemy()

The same for the Bcrypt extension

flask_bcrypt = Bcrypt()

def create_app(config=None):

 app = Flask(__name__)

 if config is not None:

 app.config.from_object(config)

 # Initialize any extensions and bind blueprints to the

 # application instance here.

 db.init_app(app)

 flask_bcrypt.init_app(app)

 return app

Due to the use of the application factory, we separated the instantiation of the
extensions (db and flask_bcrypt) from their configurations. The former happens
at the time of import and the latter needs to occur when the Flask application object
is constructed. Luckily, most modern Flask extensions allow this exact separation to
occur, as we have demonstrated in the preceding snippet.

Now, we will create our user's package by creating application/users/__init__.
py, then we will create application/users/models.py with our standard bits
for the Flask-Login extension (which we will use later) as we did in the previous
chapter. In addition, we will add an explicit SQLAlchemy mapping for our follower's
table and the following associated relationship on the User model:

import datetime

from application import db, flask_bcrypt

from sqlalchemy.ext.hybrid import hybrid_property

__all__ = ['followers', 'User']

We use the explicit SQLAlchemy mappers for declaring the

followers table, since it does not require any of the features

Chapter 4

[61]

that the declarative base model brings to the table.

#

The `follower_id` is the entry that represents a user who

follows a `user_id`.

followers = db.Table(

 'followers',

 db.Column('follower_id', db.Integer, db.ForeignKey('user.id'),

 primary_key=True),

 db.Column('user_id', db.Integer, db.ForeignKey('user.id'),

 primary_key=True))

class User(db.Model):

 # The primary key for each user record.

 id = db.Column(db.Integer, primary_key=True)

 # The unique email for each user record.

 email = db.Column(db.String(255), unique=True)

 # The unique username for each record.

 username = db.Column(db.String(40), unique=True)

 # The hashed password for the user

 _password = db.Column('password', db.String(60))

 # The date/time that the user account was created on.

 created_on = db.Column(db.DateTime,

 default=datetime.datetime.utcnow)

 followed = db.relationship('User',

 secondary=followers,

 primaryjoin=(id==followers.c.follower_id),

 secondaryjoin=(id==followers.c.user_id),

 backref=db.backref('followers', lazy='dynamic'),

 lazy='dynamic')

 @hybrid_property

 def password(self):

 """The bcrypt'ed password of the given user."""

Socializer – the Testable Timeline

[62]

 return self._password

 @password.setter

 def password(self, password):

 """Bcrypt the password on assignment."""

 self._password = flask_bcrypt.generate_password_hash(

 password)

 def __repr__(self):

 return '<User %r>' % self.username

 def is_authenticated(self):

 """All our registered users are authenticated."""

 return True

 def is_active(self):

 """All our users are active."""

 return True

 def is_anonymous(self):

 """We don't have anonymous users; always False"""

 return False

 def get_id(self):

 """Get the user ID."""

 return unicode(self.id)

The followed attribute of the User model is a SQLAlchemy relationship that maps
the user's table to itself via the intermediate follower's table. The intermediate table
is necessary due to the implicit many-to-many relationship that a social connection
requires. Take a close look at the followed attribute, as shown in the following code:

 followed = db.relationship('User',

 secondary=followers,

 primaryjoin=(id==followers.c.follower_id),

 secondaryjoin=(id==followers.c.user_id),

 backref=db.backref('followers', lazy='dynamic'),

 lazy='dynamic')

Chapter 4

[63]

We can see that the declaration is somewhat complex in comparison to the regular
column definitions that we used in this chapter and in previous ones. However, each
argument to the relationship function has a very definite purpose, as shown in the
following list:

•	 User: This is the string-based name of the target relationship class. This can
also be the mapped class itself, but then you might end up in a quagmire of
circular import problems.

•	 primaryjoin: The value of this argument will be evaluated and then
used as the join condition for the primary table (user) to the association
table (follower).

•	 secondaryjoin: The value of this argument, similar to the primaryjoin,
is evaluated and then used in the join condition of the association table
(follower) to the child table (user). As our primary and child tables are one
and the same (users follow other users), this condition is almost identical to
the one produced in the primaryjoin argument, differing only in the key
that is mapped in the association table.

•	 backref: This is the name of the property that will be inserted on an instance
that will handle the reverse direction of the relationship. This means that
once we have a user instance, we can access user.followers to get the list
of people that are following the given user instance, as opposed to the user.
followed attribute in which we explicitly define the list of users that the
current user is following.

•	 lazy: This is the most often misused attribute for any relationship-based
property. There are various values available, ranging from select,
immediate, joined, subquery, noload, and dynamic. These determine how
or when the related data is loaded. For our application, we've chosen to
use the value of dynamic, which, instead of returning an iterable collection,
returns a Query object that can then be further refined and acted on. For
example, we can do something such as user.followed.filter(User.
username == 'example'). While this is not very useful in this particular
instance, it provides a huge amount of flexibility, sometimes at the cost of
generating less efficient SQL queries.

The various attributes that we will set are to ensure that the generated queries use
the correct columns to create the self-referential many-to-many join and the query to
obtain the list of followers is only executed when we need it. More information about
these particular patterns can be found in the official SQLAlchemy documentation:
http://docs.sqlalchemy.org/en/latest/.

http://docs.sqlalchemy.org/en/latest/

Socializer – the Testable Timeline

[64]

Now, we will add a few methods to our User model that will facilitate the following/
unfollowing of other users. Thanks to some under-the-hood cleverness from
SQLAlchemy, adding and removing followers for a user can be expressed as if you
were acting on a native Python list, as follows:

def unfollow(self, user):

 """

 Unfollow the given user.

 Return `False` if the user was not already following the user.

 Otherwise, remove the user from the followed list and return

 the current object so that it may then be committed to the

 session.

 """

 if not self.is_following(user):

 return False

 self.followed.remove(user)

 return self

def follow(self, user):

 """

 Follow the given user.

 Return `False` if the user was already following the user.

 """

 if self.is_following(user):

 return False

 self.followed.append(user)

 return self

def is_following(self, user):

 """

 Returns boolean `True` if the current user is following the

 given `user`, and `False` otherwise.

 """

 followed = self.followed.filter(followers.c.user_id == user.id)

 return followed.count() > 0

Chapter 4

[65]

In reality, you are not acting on a native Python list, but
rather a data structure that SQLAlchemy knows how to track
the removals and additions from and then synchronize these
to the database via the Unit of Work pattern.

Next, we will create the Post model and we'll do so in the blueprint module of
application/posts/models.py. As usual, don't forget to create the application/
posts/__init__.py file in order to declare the folder as a valid Python package,
otherwise some very confusing import errors will occur when you attempt to run
the application.

For now, this particular model will be a paragon of simplicity. Here's the current
implementation of the User model for this project:

from application import db

import datetime

__all__ = ['Post']

class Post(db.Model):

 # The unique primary key for each post created.

 id = db.Column(db.Integer, primary_key=True)

 # The free-form text-based content of each post.

 content = db.Column(db.Text())

 # The date/time that the post was created on.

 created_on = db.Column(db.DateTime(),

 default=datetime.datetime.utcnow, index=True)

 # The user ID that created this post.

 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))

 def __repr__(self):

 return '<Post %r>' % self.body

Socializer – the Testable Timeline

[66]

Once we have our Post model defined, we can now add a method to the User
model that will allow us to fetch the newsfeed for the user that is linked by the
current instance. We name that method newsfeed, and it's implementation is
as follows:

def newsfeed(self):

 """

 Return all posts from users followed by the current user,

 in descending chronological order.

 """

 join_condition = followers.c.user_id == Post.user_id

 filter_condition = followers.c.follower_id == self.id

 ordering = Post.created_on.desc()

 return Post.query.join(followers,

 (join_condition)).filter(

 filter_condition).order_by(ordering)

Note that we must import the Post model to the
application/users/models.py module in order to
implement the preceding method as described. While this
particular scenario will function without issue, one must
always be wary of the potential circular import problems
that may be somewhat difficult to diagnose.

Functional and integration testing
In most of the treatments of unit, functional, and integration testing, it is often
recommended that you write the tests before the corresponding code itself is written.
While this is generally considered to be a good practice for a variety of reasons
(primarily allowing you to ensure that the code being written solves the problem that
has been defined), for the sake of simplicity, we have waited until now to touch on
this subject.

First, let's create a new test_settings.py file that is sibling to our existing
settings.py. This new file will contain the application configuration constants that
we want to use while running our test suite. Most importantly, it will contain the
URI to a database that is not our application database, as follows:

Chapter 4

[67]

SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/test_app.db'

DEBUG = True

TESTING = True

The preceding SQLALCHEMY_DATABASE_URI string
points to /tmp/test_app.db as the location for the test
database. You may of course choose a different path than
the system-wide tmp directory.

We will also make a few additions to the conftest.py file in order to add additional
fixtures for initializing a test database and ensuring that we have a SQLAlchemy
database session object available for any test functions that may require it:

import pytest

import os

from application import create_app, db as database

DB_LOCATION = '/tmp/test_app.db'

@pytest.fixture(scope='session')

def app():

 app = create_app(config='test_settings')

 return app

@pytest.fixture(scope='session')

def db(app, request):

 """Session-wide test database."""

 if os.path.exists(DB_LOCATION):

 os.unlink(DB_LOCATION)

 database.app = app

 database.create_all()

 def teardown():

 database.drop_all()

 os.unlink(DB_LOCATION)

Socializer – the Testable Timeline

[68]

 request.addfinalizer(teardown)

 return database

@pytest.fixture(scope='function')

def session(db, request):

 session = db.create_scoped_session()

 db.session = session

 def teardown():

 session.remove()

 request.addfinalizer(teardown)

 return session

The session fixture can be augmented with explicit
transactions, ensuring that a transaction is begun and then
committed in the teardown. The (simple) implementation of
this is left as an exercise to the reader.

The scope argument indicates the lifetime of the given fixture object once it has been
created. In the preceding example, we indicated function for the session fixture,
which means that a new fixture object will be created for each test function that is
invoked as an argument. If we used module as our scope value, we would have a
new fixture created for each module that the fixture is included in: a single fixture
would be used for all the tests in our module. This should not be confused with the
session scope value, which indicates that a single fixture object is to be created for
the entire duration of our test suite run. The session scope can be useful in situations
where, for example, creating a database connection is an extremely expensive
operation. If we only had to create the database connection once, the total runtime of
our test suite might be significantly reduced.

For additional information on the scope argument for the py.test fixture decorator
and the use of the built-in request object to add the teardown finalizer callback
functions, the online documentation is a fantastic starting point: https://pytest.
org/latest/contents.html.

We can write a simple test to create a new user from our declarative User model in
tests/test_user_model.py:

https://pytest.org/latest/contents.html
https://pytest.org/latest/contents.html

Chapter 4

[69]

from application.users import models

def test_create_user_instance(session):

 """Create and save a user instance."""

 email = 'test@example.com'

 username = 'test_user'

 password = 'foobarbaz'

 user = models.User(email, username, password)

 session.add(user)

 session.commit()

 # We clear out the database after every run of the test suite

 # but the order of tests may affect which ID is assigned.

 # Let's not depend on magic numbers if we can avoid it.

 assert user.id is not None

 assert user.followed.count() == 0

 assert user.newsfeed().count() == 0

After running the test suite with py.test, we should see our newly created test file
appear in the listed output and our tests should run without error. We will assert
that our newly created user should have an ID (assigned by the database) and should
not be following any other users. Consequently, the newsfeed for the user that we
created should also have no elements.

Let's add some more tests for the nontrivial parts of our user data model, which will
ensure that our follow/following relationships work as expected:

def test_user_relationships(session):

 """User following relationships."""

 user_1 = models.User(

 email='test1@example.com', username='test1',

 password='foobarbaz')

 user_2 = models.User(

 email='test2@example.com', username='test2',

Socializer – the Testable Timeline

[70]

 password='bingbarboo')

 session.add(user_1)

 session.add(user_2)

 session.commit()

 assert user_1.followed.count() == 0

 assert user_2.followed.count() == 0

 user_1.follow(user_2)

 assert user_1.is_following(user_2) is True

 assert user_2.is_following(user_1) is False

 assert user_1.followed.count() == 1

 user_1.unfollow(user_2)

 assert user_1.is_following(user_2) is False

 assert user_1.followed.count() == 0

Publish/subscribe events with Blinker
One of the many difficulties in the lifecycle of any nontrivial application is ensuring
that the right level of modularity is present in the codebase.

There exist various methodologies to create interfaces, objects, and services and
implementing design patterns that help us manage the ever-increasing complexity
that is inevitably created for a real-world application. One methodology that is often
left unexplored for web applications is the in-process publish-subscribe design
pattern.

Generally, publish-subscribe, or more colloquially known as pub/sub, is
a messaging pattern where two classes of participants exist: publishers and
subscribers. Publishers send messages and subscribers subscribe to a subset of
the messages that are produced via the topic (a named channel) or via the content
of the message itself.

Chapter 4

[71]

In large distributed systems, pub/sub is usually mediated by a message bus
or broker that communicates with all the various publishers and subscribers
and ensures that the published messages are routed to the subscribers that are
interested in them.

For our purpose, however, we can use something a little simpler: an in-process
pub/sub system using the wonderfully simple Blinker package, which is supported
by Flask if it is installed.

Signals from Flask and extensions
When the Blinker package is present, Flask allows you to subscribe to various
signals (topics) that are published. In addition, Flask extensions may implement their
own custom signals. You can subscribe to any number of signals in your application,
but the order in which the signal subscribers will receive the messages is undefined.

A few of the more interesting signals that Flask publishes are described in the
following list:

•	 request_started: This is sent immediately after the request context was
created but before any request processing occurs

•	 request_finished: This is sent after the response has been constructed but
immediately before it is sent back to the client

The Flask-SQLAlchemy extension publishes the following two signals itself:

•	 models_committed: This is sent after any modified model instances are
committed to the database

•	 before_models_committed: This is sent just before the model instances are
committed to the database

Flask-Login publishes half a dozen signals, many of which can be utilized for
modularizing the authentication concerns. A few useful ones are listed here:

•	 user_logged_in: This is sent when a user logs in
•	 user_logged_out: This is sent when a user logs out
•	 user_unauthorized: This is sent when an unauthenticated user attempts to

access a resource that requires authentication

Socializer – the Testable Timeline

[72]

Creating custom signals
In addition to subscribing to the signal topics that are published by Flask and various
Flask extensions, it's also possible (and sometimes very useful!) to create your own
custom signals that may then be consumed in your own application. While this may
seem like a roundabout approach where a simple function or method call would
suffice, the ability to separate out orthogonal concerns from the various parts of
your application is an attractive proposal.

For example, say you have a User model that has an update_password method,
which allows the password for the given user instance to be changed to a new given
value. When the password is changed, we would like to send an e-mail to the user,
informing them that this action has occurred.

Now, the straightforward implementation of this would be to simply have the mail
sent in the update_password method itself, which is inherently not a bad idea.
Imagine, however, that we have yet another dozen instances where incurred actions
require that an e-mail be sent out to the user: when they are followed by a new
user, when they are unfollowed by a user, when they reach a certain threshold of
followers, and the list goes on.

The problem then becomes apparent: we have mixed logic and functionality to send
an e-mail to a user in various parts of our application, which makes it increasingly
difficult to reason about, debug, and refactor.

While several methods to manage this complexity exist, the explicit separation
of concerns that is possible becomes readily apparent when a publish/subscribe
pattern is implemented. With custom signals in our Flask application, we can
create a follower-added signal where an event is published after the action takes
place and any number of subscribers can listen for that particular event. Moreover,
we can organize our application in such a way that the signal subscribers for similar
events (for example, sending out an e-mail notification) reside in the same location in
the codebase.

Let's create a signal that will publish an event whenever a user follows another user.
First, we will need to create our Namespace signal container object so that we can
then declare our signal topics. Let's do this in application/__init__.py module:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.bcrypt import Bcrypt

from blinker import Namespace

Initialize the db extension, but without configuring

it with an application instance.

Chapter 4

[73]

db = SQLAlchemy()

flask_bcrypt = Bcrypt()

socializer_signals = Namespace()

user_followed = socializer_signals.signal('user-followed')

…

Once this is in place, emitting the user-followed event in our User.follow()
method is simple, as follows:

def follow(self, user):

 """

 Follow the given user.

 Return `False` if the user was already following the user.

 """

 if self.is_following(user):

 return False

 self.followed.append(user)

 # Publish the signal event using the current model (self) as sender.

 user_followed.send(self)

 return self

Remember to add the `from the application import
user_followed` import line at the top of the
application/users/models.py module.

Once we have an event that is published, a subscriber may be connected. Let's
implement the signal handlers in application/signal_handlers.py:

__all__ = ['user_followed_email']

import logging

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger(__name__)

Socializer – the Testable Timeline

[74]

def user_followed_email(user, **kwargs):

 logger.debug(

 "Send an email to {user}".format(user=user.username))

from application import user_followed

def connect_handlers():

 user_followed.connect(user_followed_email)

Finally, we will need to ensure that our signal handlers are registered by importing
the functions to the application/__init__.py module:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.bcrypt import Bcrypt

from blinker import Namespace

Initialize the db extension, but without configuring

it with an application instance.

db = SQLAlchemy()

flask_bcrypt = Bcrypt()

socializer_signals = Namespace()

user_followed = socializer_signals.signal('user-followed')

from signal_handlers import connect_handlers

connect_handlers()

…

…

After this is added, every time a user follows another user, we will have a debug
message printed to the configured log output. Implementing the functionality to
actually send an e-mail to a user is left as an exercise for the reader; a good starting
point would be to use the Flask-Mail extension.

Chapter 4

[75]

Graceful handling of exceptions
No matter how hard we try, sometimes the code that we use and write will raise
an exception.

Usually, these exceptions are thrown in, well, exceptional circumstances, but that does
not detract from the fact that we should understand which parts of our application
may raise an exception and whether or not we want to handle the exception at the
point of invocation or simply let it bubble up the call stack to another frame.

For our current application, there are several types of exceptions that we would like
to handle in a graceful manner rather than let it crash the entire Python process and
bring everything to an ugly, screeching halt.

In the previous chapter, we glossed over some of the necessary exception handling
that needs to exist in most Flask and SQLAlchemy-based applications (or nearly any
other database abstraction, for that matter), but the importance of handling these
exceptions when they do arise cannot be understated. With this in mind, let's create
some of the views, forms, and templates that will let us sign up as new users to our
application and see a few examples of where and how to handle exceptions when
they do arise.

First, let's create our basic user view handlers in application/users/views.py:

from flask import Blueprint, render_template, url_for, redirect, flash, g

from flask.ext.login import login_user, logout_user

from flask.ext.wtf import Form

from wtforms import StringField, PasswordField

from wtforms.validators import DataRequired, Length

from models import User

from application import db, flask_bcrypt

users = Blueprint('users', __name__, template_folder='templates')

class Login	 Form(Form):

 """

Represents the basic Login form elements & validators.

 """

username = StringField('username',

Socializer – the Testable Timeline

[76]

 validators=[DataRequired()])

password = PasswordField('password',

 validators=[DataRequired(),Length(min=6)])

class CreateUserForm(Form):

 """

 Encapsulate the necessary information required for creating a
new user.

 """

 username = StringField('username', validators=[DataRequired(),
 Length(min=3, max=40)])

 email = StringField('email', validators=[DataRequired(),
 Length(max=255)])

 password = PasswordField('password', validators=[DataRequired(),

 Length(min=8)])

 @users.route('/signup', methods=['GET', 'POST'])

 def signup():

 """

Basic user creation functionality.

 """

form = CreateUserForm()

if form.validate_on_submit():

 user = User(
 username=form.username.data,

 email=form.email.data,

 password=form.password.data)

 # add the user to the database

 db.session.add(user)

 db.session.commit()

 # Once we have persisted the user to the database successfully,

Chapter 4

[77]

 # authenticate that user for the current session

login_user(user, remember=True)

return redirect(url_for('users.index'))

return render_template('users/signup.html', form=form)

@users.route('/', methods=['GET'])

def index():

return "User index page!", 200

@users.route('/login', methods=['GET', 'POST'])

def login():

 """

Basic user login functionality.

 """

if hasattr(g, 'user') and g.user.is_authenticated():

return redirect(url_for('users.index'))

form = LoginForm()

if form.validate_on_submit():

 # We use one() here instead of first()

 user = User.query.filter_by(username=form.username.data).one()

 if not user or not flask_bcrypt.check_password_hash(user.password,
 form.password.data):

 flash("No such user exists.")

 return render_template('users/login.html', form=form)

 login_user(user, remember=True)

 return redirect(url_for('users.index'))

 return render_template('users/login.html', form=form)

@users.route('/logout', methods=['GET'])

Socializer – the Testable Timeline

[78]

def logout():

logout_user()

return redirect(url_for('users.login'))

You'll notice that much of the login and logout functionality is similar to what we
created in the previous chapter using the Flask-Login extension. So, we'll simply include
these functionalities and defined routes without comment (in addition to the related
Jinja templates) and focus on the new signup route that encapsulates the logic necessary
to create a new user. This view utilizes the new application/users/templates/
users/signup.html view, which simply includes the relevant form controls that allow
a user to input their desired username, email address, and password:

{% extends "layout.html" %}

{% block content %}

<form action="{{ url_for('users.signup')}}" method="post">
 {{ form.hidden_tag() }}
 {{ form.id }}
 <div>{{ form.username.label }}: {{ form.username }}</div>
 {% if form.username.errors %}
 <ul class="errors">{% for error in form.username.errors %}{{
error }}{% endfor %}
 {% endif %}

 <div>{{ form.email.label }}: {{ form.email }}</div>
 {% if form.email.errors %}
 <ul class="errors">{% for error in form.email.errors %}{{ error
}}{% endfor %}
 {% endif %}

 <div>{{ form.password.label }}: {{ form.password }}</div>
 {% if form.password.errors %}
 <ul class="errors">{% for error in form.password.errors %}{{
error }}{% endfor %}
 {% endif %}

 <div><input type="submit" value="Sign up!"></div>
</form>

{% endblock %}

Chapter 4

[79]

Once we have the preceding template in place, we will update our application
factory to bind the user views to the application object. We will also initialize the
Flask-Login extension as we did in the previous chapter:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from flask.ext.bcrypt import Bcrypt

from blinker import Namespace

from flask.ext.login import LoginManager

Initialize the db extension, but without configuring

it with an application instance.

db = SQLAlchemy()

flask_bcrypt = Bcrypt()

login_manager = LoginManager()

socializer_signals = Namespace()

user_followed = socializer_signals.signal('user-followed')

from signal_handlers import *

def create_app(config=None):

app = Flask(__name__)

if config is not None:

 app.config.from_object(config)

 # Initialize any extensions and bind blueprints to the

 # application instance here.

 db.init_app(app)

 flask_bcrypt.init_app(app)

 login_manager.init_app(app)

 from application.users.views import users

 app.register_blueprint(users, url_prefix='/users')

 from application.users import models as user_models

 @login_manager.user_loader

Socializer – the Testable Timeline

[80]

 de fload_user(user_id):

 return user_models.User.query.get(int(user_id))

 return app

Don't forget to add a SECRET_KEY configuration value to our application/
settings.py module:

SQLALCHEMY_DATABASE_URI = 'sqlite:///socializer.db'

SECRET_KEY = 'BpRvzXZ800[-t:=z1eZtx9t/,P*'

Now, we should be able to run the application and visit http://localhost:5000/
users/signup, where we will be presented with a series of form inputs to create a
new user account. On the successful creation of a new user, we will be automatically
authenticated using the login_user() method of the Flask-Login extension.

What we have not accounted for, however, are the situations where the creation of a
user fails due to a mismatch with what our SQLAlchemy model and database expect.
This may happen for a variety of reasons:

•	 An existing user has already claimed the submitted value for e-mail or
username, both of which have been marked as unique in our user model

•	 A field requires additional validation criteria specified by the database,
which are not met

•	 The database is unavailable (for example, due to network partition)

In order to ensure that these events are handled in the most graceful manner
possible, we must encapsulate the portions of the code that may raise the relevant
exceptions that signal one of these conditions. Thus, in our application/users/
views.py module in the signup route, we will modify the portion of the code where
we will persist the user to the database:

place with other imports…

from sqlalchemy import exc

…

try:

 db.session.add(user)

 db.session.commit()

 except exc.IntegrityError as e:

 # A unique column constraint was violated

Chapter 4

[81]

 current_app.exception("User unique constraint violated.")

 return render_template('users/signup.html', form=form)

 except exc.SQLAlchemyError:

 current_app.exception("Could not save new user!")

 flash("Something went wrong while creating this user!")

 return render_template('users/signup.html', form=form)

Additionally, we will wrap User.query.filter_by(username=form.username.
data).one() in the login route in the same module with a try/except block, to
ensure that we handle the case where the username submitted in the login form does
not exist at all in the database:

try:
 # We use one() here instead of first()
 user = User.query.filter_by(
 username=form.username.data).one()s
except NoResultFound:
 flash("User {username} does not exist.".format(
 username=form.username.data))
 return render_template('users/login.html', form=form)

…

Functional testing
Now that we created a few routes and templates to handle user signup and login,
let's utilize some of the py.test knowledge that we gained earlier in the chapter in
order to write some post facto integration tests to ensure that our views are behaving
as we expect. First, let's create a new test module in application/tests/test_
user_views.py and write our first test that uses the client fixture so as to simulate a
request to the application via the built-in Werkzeug test client. This will ensure that
a proper request context has been constructed so that the context bound objects
(for example, url_for, g) are available, as follows:

def test_get_user_signup_page(client):

 """Ensure signup page is available."""

 response = client.get('/users/signup')

 assert response.status_code == 200

 assert 'Sign up!' in response.data

Socializer – the Testable Timeline

[82]

The preceding test first makes a request to the /users/signup route and then
asserts that the HTTP response code for this route is 200 (the default value for any
successful return render_template() function). Then it asserts that the Sign up!
button text appears in the returned HTML, which is a relatively safe guarantee that
the page in question was rendered without any major errors.

Next, let's add a test for a successful user signup, as follows:

from flask import session, get_flashed_messages

from application.users.models import User

from application import flask_bcrypt

def test_signup_new_user(client):

 """Successfully sign up a new user."""

 data = {'username': 'test_username', 'email': 'test@example.com',

 'password': 'my test password'}

 response = client.post('/users/signup', data=data)

 # On successful creation we redirect.

 assert response.status_code == 302

 # Assert that a session was created due to successful login

 assert '_id' in session

 # Ensure that we have no stored flash messages indicating an error

 # occurred.

 assert get_flashed_messages() == []

 user = User.query.filter_by(username=data['username']).one()

 assert user.email == data['email']

 assert user.password

 assert flask_bcrypt.check_password_hash(

 user.password, data['password'])

Chapter 4

[83]

If we were to run the test suite immediately, it would fail. This is due to a somewhat
subtle effect introduced by Flask-WTF, which expects a CSRF token to be provided for
any submitted form data. The following are the two ways in which we can fix this:

•	 We can manually generate a CSRF token in the simulated POST data
dictionary; the WTForms library provides the functionality to implement this

•	 We can set the WTF_CSRF_ENABLED configuration Boolean in the test_
settings.py module to False, so that all the form validations that occur in
the test suite will not require a CSRF token in order to be considered valid

The advantage of the first option is that the data sent across the request/response
cycle will closely mirror what would happen in a production scenario, with the
downside being that we are then responsible for generating (or programmatically
abstracting) the required CSRF tokens for every single form that we want to test. The
second option allows us to simply stop caring about the CSRF tokens completely
while we are in the test suite, which is a downside as well. For the purpose of this
chapter, we will use the method outlined in the second option.

In the preceding tests, we will first create a dictionary of our simulated form data that
we would like to POST to our signup endpoint and then pass this data to the client.
post('/users/signup') method. After the successful signup of a new user, we
should expect to be redirected to a different page (we could also check the existence
and value of the Location header in the response), in addition to the creation of a
session ID by Flask-Login that will handle our user sessions. Moreover, a successful
signup attempt for our current application means that we should have no flash
messages that are stored for display and that a new user record with the provided
data should be available and populated with the data that was supplied in the POST.

While most developers are very keen on testing the success path of a request, it's
equally, if not more, important to test the most common failure paths. To this end,
let's add the following few tests for the most typical failure scenarios, the first of
which would be the use of an invalid username:

import pytest

import sqlalchemy

def test_signup_invalid_user(client):

 """Try to sign up with invalid data."""

 data = {'username': 'x', 'email': 'short@example.com',

 'password': 'a great password'}

Socializer – the Testable Timeline

[84]

 response = client.post('/users/signup', data=data)

 # With a form error, we still return a 200 to the client since

 # browsers are not always the best at handling proper 4xx response
codes.

 assert response.status_code == 200

 assert 'must be between 3 and 40 characters long.' in
response.data

Remember, we defined our form validation rules for
user signup in the application.users.views.
CreateUserForm class; usernames are required to be
between 3 and 40 characters long.

def test_signup_invalid_user_missing_fields(client):

 """Try to sign up with missing email."""

 data = {'username': 'no_email', 'password': 'a great password'}

 response = client.post('/users/signup', data=data)

 assert response.status_code == 200

 assert 'This field is required' in response.data

 with pytest.raises(sqlalchemy.orm.exc.NoResultFound):

 User.query.filter_by(username=data['username']).one()

 data = {'username': 'no_password', 'email': 'test@example.com'}

 response = client.post('/users/signup', data=data)

 assert response.status_code == 200

 assert 'This field is required' in response.data

 with pytest.raises(sqlalchemy.orm.exc.NoResultFound):

 User.query.filter_by(username=data['username']).one()

In the preceding test, we used an often overlooked convenience
function of py.test (and other testing libraries), which is
the raises(exc) context manager. This allows us to wrap a
function call where we expect an exception to be raised and will
itself cause a failure in the test suite if the expected exception
type (or derived type) is not raised.

Chapter 4

[85]

Your newsfeed
While we have built up most of the supporting architecture to provide the
functionality for our Socializer application, we are still missing one of the more
fundamental pieces of the puzzle: being able to view the posts of the people you
follow in a chronological order.

To make the display of information about the owner of a post a bit simpler, let's add
a relationship definition to our Post model:

class Post(db.Model):

 # …

 user = db.relationship('User',

 backref=db.backref('posts', lazy='dynamic'))

This will allow us to use post.user to access any of the user information that is
associated with a given post, which is going to be quite useful in any view that
displays a single post or a list of posts.

Let's add a route for this in application/users/views.py:

@users.route('/feed', methods=['GET'])

@login_required

def feed():

 """

 List all posts for the authenticated user; most recent first.

 """

 posts = current_user.newsfeed()

 return render_template('users/feed.html', posts=posts)

Note that the preceding snippet uses the current_user proxy (which you should
import to the module) that is provided by the Flask-Login extension. As the
Flask-Login extension stores the user object of the authenticated user in the proxy,
we can call methods and attributes on it just as we would on a normal user object.

As the previous feed endpoint is up and running, we'll need the supporting template
in application/users/templates/users/feed.html so that we can actually
render a response:

{% extends "layout.html" %}

{% block content %}
<div class="new-post">

Socializer – the Testable Timeline

[86]

 <p>New Post</p>
</div>

{% for post in posts %}
<div class="post">
 {{post.user.username}}, published on
 {{post.created_on}}
 <pre><code>{{post.content}}</code></pre>
</div>
{% endfor %}

{% endblock %}

The last bit that we need is the view handler to add a new post. As we haven't
created the application/posts/views.py module, let's do that. We'll need a
Flask-WTForm class to handle/validate the new posts and a route handler to send
and process the required fields, all hooked up to a new blueprint:

from flask import Blueprint, render_template, url_for, redirect,
flash, current_app

from flask.ext.login import login_required, current_user

from flask.ext.wtf import Form

from wtforms import StringField

from wtforms.widgets import TextArea

from wtforms.validators import DataRequired

from sqlalchemy import exc

from models import Post

from application import db

posts = Blueprint('posts', __name__, template_folder='templates')

class CreatePostForm(Form):

 """Form for creating new posts."""

 content = StringField('content', widget=TextArea(),

 validators=[DataRequired()])

Chapter 4

[87]

@posts.route('/add', methods=['GET', 'POST'])

@login_required

def add():

 """Add a new post."""

 form = CreatePostForm()

 if form.validate_on_submit():

 user_id = current_user.id

 post = Post(user_id=user_id, content=form.content.data)

 db.session.add(post)

 try:

 db.session.commit()

 except exc.SQLAlchemyError:

 current_app.exception("Could not save new post!")

 flash("Something went wrong while creating your post!")

 else:

 return render_template('posts/add.html', form=form)

 return redirect(url_for('users.feed'))

The corresponding application/posts/templates/posts/add.html file is, as
expected, relatively simple and reminiscent of the view template used in the previous
chapter. Here it is:

{% extends "layout.html" %}

{% block content %}
<form action="{{ url_for('posts.add')}}" method="post">

 {{ form.hidden_tag() }}
 {{ form.id }}

 <div class="row">
 <div>{{ form.content.label }}: {{ form.content }}</div>
 {% if form.content.errors %}
 <ul class="errors">{% for error in form.content.errors
 %}{{ error }}{% endfor %}
 {% endif %}
 </div>

Socializer – the Testable Timeline

[88]

 <div><input type="submit" value="Post"></div>
</form>

{% endblock %}

Finally, we will need to make the application aware of this newly created posts
blueprint by binding it to our application object in our application factory, in
application/__init__.py:

def create_app(config=None):
 app = Flask(__name__)

 # …
 from application.users.views import users
 app.register_blueprint(users, url_prefix='/users')

 from application.posts.views import posts
 app.register_blueprint(posts, url_prefix='/posts')

 # …

Once the preceding code is in place, we can generate a few test users and posts for
these users by creating user accounts via the web interface at the /users/signup
endpoint and then creating posts for the users at /posts/add. Otherwise, we could
create a small CLI script to do this for us, which we will learn how to implement in
the next chapter. We could also write a few test cases to ensure that the newsfeed
works as expected. Actually, we could do all three!

Summary
We started this chapter by first introducing the concept of an application factory and
described some of the benefits and trade-offs of this approach. Next, we used our
newly created application factory to set up our first test suite using py.test, which
required some modification as to how our application object was created in order to
ensure that we obtained a suitable instance that was configured to test scenarios.

Then, we dove headfirst into implementing the basic data models behind a typical
web application that contained social features with the ability to follow other users
and be followed ourselves. We briefly touched on several main implementation
patterns for so-called newsfeed applications and used the simplest version for our
own data models.

Chapter 4

[89]

This then led us to discuss and explore the concept of the publish/subscribe design
pattern, of which an in-process implementation can be found in the Blinker package
that Flask and various Flask extensions integrate. Using this new knowledge, we
created our own publishers and subscribers, allowing us to address some common
cross-cutting concerns that exist in many modern web applications.

For our next project, we will switch gears from creating the HTML-based forms
and views that we have used for the past few chapters and focus on another
very important part of modern web applications: providing a useful JSON API to
interact with.

[91]

Shutterbug, the Photo
Stream API

In this chapter, we will build a (primarily) JSON-based API that allows us to view
a reverse chronologically ordered list of photos that have been added—this has
become quite popular in recent years due to Instagram and similar photo sharing
applications. For the sake of simplicity, we will forgo the usual social aspect that
many of these applications are typically built around; however, you are encouraged
to combine the knowledge of the previous chapters with the information in this
chapter to build such an application.

Shutterbug, the minimal API-only application that we are about to embark on, will
allow a user to upload a photograph of their choosing via an authenticated, JSON-
based API.

Additionally, we will use one of the lesser-known features of Flask (Werkzeug, really)
to create a custom middleware that will allow us to intercept inbound requests and
modify the global application environment for very simple API versioning.

Starting off
Once more, as we did in the previous chapters, let's create a completely new
directory and virtual environment for this application:

$ mkdir -p ~/src/shutterbug && cd ~/src/shutterbug

$ mkvirtualenv shutterbug

$ pip install flask flask-sqlalchemy pytest-flask flask-bcrypt

Shutterbug, the Photo Stream API

[92]

Create the following application layout to start:

├── application/

│ ├── __init__.py

│ └── resources

│ ├── __init__.py

│ └── photos.py

├── conftest.py

├── database.py

├── run.py

├── settings.py

└── tests/

The application layout presented here is different from the typical
Blueprint-based structure that we used in previous chapters; we
will use the suggested layout for typical Flask-RESTful applications,
which also suits the simplicity of the Shutterbug application.

The application factory
We will use the application factory pattern again in this chapter; let's add our
skeleton create_app method to the application/__init__.py module and include
our Flask-SQLAlchemy database initialization as well:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.bcrypt import Bcrypt

Initialize the db extension, but without configuring
it with an application instance.
db = SQLAlchemy()
flask_bcrypt = Bcrypt()

def create_app(config=None):
 app = Flask(__name__)

 if config is not None:

Chapter 5

[93]

 app.config.from_object(config)

 db.init_app(app)
 flask_bcrypt.init_app(app)

 return app

Let's include our barebones run.py:

from application import create_app

app = create_app()
app.run()

This should give us the ability to run the application using the built-in Werkzeug
application server via the following code:

$ python run.py

Interlude – Werkzeug
We've spoken about Werkzeug a few times during the course of this book but we
haven't really explained what it is, why we use it, or why it's useful. To understand
Werkzeug, we first need to know why it exists. For this, we will need to understand
the origins of the Python Web Server Gateway Interface specification, most
commonly abbreviated as WSGI.

Today, choosing a Python web application framework is a relatively simple matter
of preference: most developers choose a framework based on a previous experience,
necessity (for example, one that is designed for an asynchronous request processing
such as Tornado), or some other quantifiable or unquantifiable criteria.

Several years ago, however, the choice of an application framework affected the web
server that you could use. As all Python web application frameworks at the time
implemented their own HTTP request processing in a slightly different manner, they
were often only compatible with a subset of web servers. Developers, tired of this
somewhat inconvenient status quo, put forth a proposal to unify the interaction of
web servers with Python applications through a common specification, WSGI.

The WSGI specification, once established, was adopted by all the major frameworks.
Additionally, several so-called utility tools were created; they had the sole purpose
of bridging the official WSGI specification, which can be somewhat unfriendly to
work with for new developers, with a more robust intermediate API that aided the
development of modern web applications. Moreover, these utility libraries could then be
used as the foundation for more feature-complete and robust application frameworks.

Shutterbug, the Photo Stream API

[94]

As you may have guessed by now, Werkzeug is one of these WSGI utility libraries.
When combined with Jinja, the templating language, and some convenient defaults
for configuration, routing, and other basic web application necessities, we have Flask.

Flask is what we primarily deal with in this book, but a fairly large part of the hard
work abstracted away from you is contained in Werkzeug. While it largely goes
unnoticed, it is possible to interact with it directly in order to intercept and modify
portions of a request before Flask has the chance to process it. We'll explore some of
these possibilities later on in the chapter when we implement a custom Werkzeug
middleware for optionally versioning JSON API requests.

Simple APIs with Flask-RESTful
One of the great joys of using Flask is the seemingly infinite extensibility and
composability that it offers. As it's a rather thin layer that sits atop Werkzeug and
Jinja, it does not impose much on the developer in terms of constraints.

Due to this flexibility, we have extensions such as Flask-RESTful at our disposal,
which make creating JSON-based APIs a joy. First, let's install the package:

$ pip install flask-restful

Next, let's initialize the extension in our application factory in the usual fashion:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.bcrypt import Bcrypt
from flask.ext.restful import Api

………
api = Api()

def create_app(config=None):
 app = Flask(__name__)

 if config is not None:
 app.config.from_object(config)

 db.init_app(app)
 flask_bcrypt.init_app(app)

 api.init_app(app)

 return app

Chapter 5

[95]

The primary building block of the Flask-RESTful extension is the concept of a resource.
A resource is, for all intents and purposes, a Flask method view with some very
useful defaults set for content-type negotiation. If you haven't encountered the concept
of a MethodView in Flask until now, don't fret! They're quite straightforward and
provide you with a relatively simple interface to separate the RESTful resources by
allowing you to define methods on a class that maps directly to the basic HTTP verbs:
GET, PUT, POST, PATCH, and DELETE. The Flask-RESTful resource, in turn, extends the
MethodView class and thus allows for the same style of verb-based route handling.

More concretely, it means that the Flask-RESTful API nouns can be written in the
following way. We will first add our photo resource view handlers to application/
resources/photos.py:

class SinglePhoto(Resource):

 def get(self, photo_id):
 """Handling of GET requests."""
 pass

 def delete(self, photo_id):
 """Handling of DELETE requests."""
 pass

class ListPhoto(Resource):

 def get(self):
 """Handling of GET requests."""
 pass

 def post(self):
 """Handling of POST requests."""
 pass

In the preceding two Resource subclasses, we defined a
subset of the HTTP verbs that are possible to handle; we are
not required to define handlers for all the possible verbs.
If, for example, our application were to receive a PATCH
request to one of the preceding resources, Flask would
return an HTTP/1.1 405 Method Not Allowed.

Shutterbug, the Photo Stream API

[96]

Then, we will import these view handlers to our application factory in
application/__init__.py in order to bind these two classes to our
Flask-RESTful API object:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restful import Api
from flask.ext.bcrypt import Bcrypt

Initialize the db extension, but without configuring
it with an application instance.
db = SQLAlchemy()
api = Api()
flask_bcrypt = Bcrypt()

def create_app(config=None):
 app = Flask(__name__)

 if config is not None:
 app.config.from_object(config)

 db.init_app(app)
 flask_bcrypt.init_app(app)

 from .resources.photos import SinglePhoto, ListPhoto
 api.add_resource(ListPhoto, '/photos')
 api.add_resource(SinglePhoto, '/photos/<int:photo_id>')

 api.init_app(app)

 return app

Note that we have bound the resources to the API object
before we call api.init_app(app). If we initialize before
we bind the resources, the routes will not exist on the Flask
application object.

We can confirm that the routes we defined are mapped to the application object by
starting an interactive Python session and checking the url_map attribute of our
Flask application.

Chapter 5

[97]

Start the session from the parent of the application folder so
that the PYTHONPATH is set correctly:

In [1]: from application import create_app

In [2]: app = create_app()

In [3]: app.url_map

Out[3]:

Map([<Rule '/photos' (HEAD, POST, OPTIONS, GET) -> listphoto>,

 <Rule '/photos/<photo_id>' (HEAD, DELETE, OPTIONS, GET) -> singlephoto>,

 <Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>])

The preceding output lists a Werkzeug Map object, which contains three Rule objects,
each of which lists a URI, the HTTP verbs that are valid against this URI, and a
normalized identifier (as view handlers can be functions as well as MethodView
subclasses in addition to a few other options) that indicates which view handler will
be invoked.

Flask will automatically handle the HEAD and OPTIONS
verbs for all the defined endpoints and also add a default /
static/<filename> route for the static file handling. This
default static route can be disabled, if necessary, by setting the
static_folder argument to the Flask object initialization in
our application factory to None:
 app = Flask(__name__, static_folder=None)

Let's do the same thing for our skeleton user view resource handlers, which we will
declare in application/resources/users.py:

from flask.ext.restful import Resource

class SingleUser(Resource):

 def get(self, user_id):
 """Handling of GET requests."""
 pass

class CreateUser(Resource):

 def post(self):
 """Handling of POST requests."""
 pass

Shutterbug, the Photo Stream API

[98]

Note that we could have put the post method handler on the
SingleUser resource definition but instead, we split it out to
its own resource. This is not strictly necessary but will make
things a bit easier to follow for our application and only cost us
a few extra lines of code.

Similar to what we did with our photo views, we'll add them to our Flask-RESTful
API object in our application factory:

def create_app(config=None):

 # …

 from .resources.photos import SinglePhoto, ListPhoto
 from .resources.users import SingleUser, CreateUser

 api.add_resource(ListPhoto, '/photos')
 api.add_resource(SinglePhoto, '/photos/<int:photo_id>')
 api.add_resource(SingleUser, '/users/<int:user_id>')
 api.add_resource(CreateUser, '/users')

 api.init_app(app)
 return app

Improved password handling with hybrid
attributes
Our User model will be quite similar to the one that we used in the previous chapter
and will use a class attribute getter/setter for the password attribute. This will
ensure a consistent application of the Bcrypt key derivation function to the raw user
password regardless of whether we set the value at the time of object creation or
manually set the attribute of an already created object.

This consists of using the hybrid_property descriptor from SQLAlchemy, which
allows us to define properties that act differently when accessed at the class-level
(for example, User.password, where we want the SQL expression for the password
field of the user model to be returned) versus instance-level (for example, User().
password, where we want the actual encrypted password string of a user object to be
returned instead of the SQL expression).

We will define the password class attribute as _password, which will ensure that we
avoid any nasty attribute/method name collisions, so that we can define the hybrid
getter and setter methods correctly.

Chapter 5

[99]

As our application will be relatively simple in terms of data modeling, we can use
a single module for our models in application/models.py:

from application import db, flask_bcrypt
from sqlalchemy.ext.hybrid import hybrid_property

import datetime

class User(db.Model):
 """SQLAlchemy User model."""

 # The primary key for each user record.
 id = db.Column(db.Integer, primary_key=True)

 # The unique email for each user record.
 email = db.Column(db.String(255), unique=True, nullable=False)

 # The unique username for each record.
 username = db.Column(db.String(40), unique=True, nullable=False)

 # The bcrypt'ed user password
 _password = db.Column('password', db.String(60), nullable=False)

 # The date/time that the user account was created on.
 created_on = db.Column(db.DateTime,
 default=datetime.datetime.utcnow)

 def __repr__(self):
 return '<User %r>' % self.username

 @hybrid_property
 def password(self):
 """The bcrypt'ed password of the given user."""

 return self._password

 @password.setter
 def password(self, password):
 """Bcrypt the password on assignment."""

 self._password = flask_bcrypt.generate_password_hash(password)

Shutterbug, the Photo Stream API

[100]

In the same module, we can then declare our Photo model, which will be charged
with maintaining all the metadata related to an image but not the image itself:

class Photo(db.Model):
 """SQLAlchemy Photo model."""

 # The unique primary key for each photo created.
 id = db.Column(db.Integer, primary_key=True)

 # The free-form text-based comment of each photo.
 comment = db.Column(db.Text())

 # Path to photo on local disk
 path = db.Column(db.String(255), nullable=False)

 # The date/time that the photo was created on.
 created_on = db.Column(db.DateTime(),
 default=datetime.datetime.utcnow, index=True)

 # The user ID that created this photo.
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))

 # The attribute reference for accessing photos posted by this
user.
 user = db.relationship('User', backref=db.backref('photos',
 lazy='dynamic'))

 def __repr__(self):
 return '<Photo %r>' % self.comment

API authentication
For most applications and APIs, the concepts of authentication and authorization are
central to nontrivial operations:

•	 Authentication: This asserts the veracity of the credentials provided and
also ensures that they belong to a known entity; in simple terms, this means
ensuring that the username and password provided to an application belong
to a valid user. Once verified, the application assumes that the requests
performed with these credentials are being performed on behalf of the
given user.

Chapter 5

[101]

•	 Authorization: These are the permissible actions of an authenticated
(or unauthenticated) entity in the bounds of the application. In most
situations, authorization presupposes that a pre-existing authentication
step was performed. An entity may be authenticated but not authorized to
access certain resources: if you enter your card and PIN in an ATM (thus
authenticating yourself), you can view your own accounts, but attempting
to view the accounts of another person will (hopefully!) result in a refusal as
you are not authorized to access that information.

For Shutterbug, we are only concerned with authentication. If we were to add
various features that included, say, the ability to create private groups of users that
have access to a shared pool of photos, then systematized authorization would be
required to determine which users can access which subsets of resources.

Authentication protocols
Many developers will already be familiar with several authentication protocols:
the usual identifier/password combination that is standard across most web
applications in existence and OAuth for many modern APIs (for example, Twitter,
Facebook, GitHub, and others). For our own application, we will use the incredibly
simple HTTP Basic authentication protocol.

While HTTP Basic is not the most flexible nor secure (it provides no encryption
whatsoever, actually), it is reasonable to implement this protocol for simple
applications, demos, and prototype APIs. In the early days of Twitter, it was actually
the only method by which you could authenticate with their API! Moreover,
when transmitting data over HTTPS, which we should do in any production-level
environment, we are assured that the plaintext request that includes our user identifier
and password is encrypted from any malicious third parties that may be listening in.

The implementation of the HTTP Basic authentication is not overly complex, but it's
most definitely something that we can offload to an extension. Let's go ahead and
install Flask-HTTPAuth to our environment, which consists of creating an instance of
the extension:

$ pip install flask-httpauth

And set up the extension in our application/__init__.py:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restful import Api
from flask.ext.bcrypt import Bcrypt
from flask.ext.httpauth import HTTPBasicAuth

Shutterbug, the Photo Stream API

[102]

…

api = Api()
flask_bcrypt = Bcrypt()
auth = HTTPBasicAuth()

def create_app(config=None):
 # …

 import authentication

 api.add_resource(ListPhoto, '/photos')
 api.add_resource(SinglePhoto, '/photos/<int:photo_id>')

 # …

Flask-HTTPAuth includes various decorators to declare handlers/callbacks in order
to perform parts of the authentication process. We'll implement the one that gives
us the most control over how the authentication is performed and put this in a new
module in application/authentication.py. In addition to the verification of the
credentials, we will attach the SQLAlchemy user object to the Flask context local g on
successful authentication so that we can utilize this data in other parts of the request
processing and response generation:

import sqlalchemy
from . import auth, flask_bcrypt
from .models import User
from flask import g

@auth.verify_password
def verify_password(username, password):
 """Verify a username/hashed password tuple."""

 try:
 user = User.query.filter_by(username=username).one()
 except sqlalchemy.orm.exc.NoResultFound:
 # We found no username that matched
 return False

 # Perform password hash comparison in time-constant manner.
 verified = flask_bcrypt.check_password_hash(user.password,
 password)

Chapter 5

[103]

 if verified is True:
 g.current_user = user

 return verified

The auth.verify_password decorator allows us to specify a function that accepts
a username and password, both of which are extracted out of the Authorization
header that is sent with the request. We will then use this information to query our
database for a user with the same username, and upon successfully finding one, we
will ensure that the provided password hashes to the same value that we stored for
this user. If the password does not match or the username does not exist, we will
return False and Flask-HTTPAuth will return a 401 Unauthorized header to the
requesting client.

Now, to actually use the HTTP Basic authentication, we need to add the auth.
login_required decorator to the view handlers that will require authentication.
We know that all user operations (except creating a new user) will require an
authenticated request, so let's implement this:

from flask.ext.restful import Resource
from application import auth

class SingleUser(Resource):

 method_decorators = [auth.login_required]

 def get(self, user_id):
 """Handling of GET requests."""
 pass

 # …

Due to the fact that the self argument for a method of a Resource
object refers to the Resource instance and not the method, we
cannot use regular view decorators on the individual methods of
the view. Rather, we must use the method_decorators class
attribute, which will apply the declared functions (in order!) to the
view method that has been invoked to handle the request.

Shutterbug, the Photo Stream API

[104]

Getting users
Now that we've figured out the authentication portion of the application, let's
implement the API endpoints to create a new user and fetch the existing user data.
We can flesh out the get() method of the SingleUser resource class as follows:

from flask.ext.restful import abort

…

def get(self, user_id):
 """Handling of GET requests."""

 if g.current_user.id != user_id:
 # A user may only access their own user data.
 abort(403, message="You have insufficient permissions"
 " to access this resource.")

 # We could simply use the `current_user`,
 # but the SQLAlchemy identity map makes this a virtual
 # no-op and alos allows for future expansion
 # when users may access information of other users
 try:
 user = User.query.filter(User.id == user_id).one()
 except sqlalchemy.orm.exc.NoResultFound:
 abort(404, message="No such user exists!")

 data = dict(
 id=user.id,
 username=user.username,
 email=user.email,
 created_on=user.created_on)

 return data, 200

There are quite a few new things happening in the preceding method, so let's
deconstruct it. First, we will check that the user_id specified in the request
(for example, GET /users/1) is the same as the currently authenticated user:

if g.current_user.id != user_id:
 # A user may only access their own user data.
 abort(403, message="You have insufficient permissions"
 " to access this resource.")

Chapter 5

[105]

While this may seem redundant at the moment, it plays a dual role in allowing
simpler future modifications to the authorization scheme in addition to adhering to a
somewhat more RESTful approach. Here, a resource is uniquely specified by its URI,
which is constructed in part by the unique primary key identifier of a user object.

After the authorization check, we will pull the relevant user out of the database by
querying it via the user_id parameter passed as a named URI parameter:

try:
 user = User.query.filter(User.id == user_id).one()
except sqlalchemy.orm.exc.NoResultFound:
 abort(404, message="No such user exists!")

If no such user is found, then we will abort the current request with an HTTP 404
Not Found and specify a message in order to make the reason for the non-20x
response more clear.

Finally, we will construct a dictionary of the user data that we want to return as a
response. We clearly don't want to return the hashed password or other sensitive
information, so we will explicitly specify which fields we want to be serialized in
the response:

data = dict(id=user.id, username=user.username, email=user.email,
 created_on=user.created_on)

 return data, 200

Thanks to Flask-RESTful, we do not need to explicitly convert our dictionary to a
JSON string: The response representation is application/json by default. There's
one small catch, however: the JSON encoder that Flask-RESTful uses as a default
does not know how to convert Python datetime objects to their RFC822 string
representations. This can be fixed by specifying the application/json MIME type
representation handler and ensuring that we use the flask.json encoder instead of
the default json module from the Python standard library.

We can add the following to our application/__init__.py module:

from flask import Flask, json, make_response
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restful import Api
from flask.ext.bcrypt import Bcrypt
from flask.ext.httpauth import HTTPBasicAuth

…

db = SQLAlchemy()

Shutterbug, the Photo Stream API

[106]

…

@api.representation('application/json')
def output_json(data, code, headers=None):
 resp = make_response(json.dumps(data), code)
 resp.headers.extend(headers or {})
 return resp

Creating new users
The analog to fetch the existing users from the API is, of course, to create new users.
While typical web applications do this with a signup process that has you fill out
various form fields, creating a new user via our API requires that the information
be submitted to the server via a POST request, validated, and then a new user is
inserted in the database. The implementation of these steps should be put in the
post() method of our CreateUser resource:

class CreateUser(Resource):

 def post(self):
 """Create a new user."""

 data = request.json
 user = User(**data)

 db.session.add(user)

 try:
 db.session.commit()
 except sqlalchemy.exc.IntegrityError:
 abort(409, message="User already exists!")

 data = dict(id=user.id, username=user.username,
 email=user.email, created_on=user.created_on)

 return data, 201, {'Location': url_for(
 'singleuser', user_id=user.id, _external=True)}

The request.json file is populated with the POST data
if, and only if, the content-type of the request is set to
application/json.

Chapter 5

[107]

There's nothing too surprising in the preceding method implementation: we fetched
the POST data from request.json, created a User object (Very insecurely! You can
see a bit later on in this chapter for a better alternative.) from it, attempted to add
it to the database and catch the exception raised if a user of the same username or
e-mail address already exists, and then serialized an HTTP 201 Created response
with a Location header that includes the URI of the newly created user.

Input validation
While Flask includes a relatively simple way of accessing the POST'ed data via
the flask.request proxy object, it does not contain any functionality to validate
that the data is formatted as we expect it to be. This is okay! Flask attempts to be
as agnostic as possible with regards to the data storage and manipulation, leaving
this to the developer. Luckily for us, Flask-RESTful includes the reqparse module
that can be used for the data validation and its usage is very similar in spirit to the
popular argparse library used for CLI argument parsing.

We will set up our new user data parser/validator in our application/resources/
users.py module and declare our fields and their types and whether they are
required in the POST data to be considered as valid requests or not:

from flask.ext.restful import Resource, abort, reqparse, url_for

…

new_user_parser = reqparse.RequestParser()
new_user_parser.add_argument('username', type=str, required=True)
new_user_parser.add_argument('email', type=str, required=True)
new_user_parser.add_argument('password', type=str, required=True)

Now that we have the new_user_parser setup in our module, we can modify the
CreateUser.post() method to utilize this instead:

def post(self):
 """Handling of POST requests."""

 data = new_user_parser.parse_args(strict=True)
 user = User(**data)

 db.session.add(user)

 # …

Shutterbug, the Photo Stream API

[108]

The new_user_parser.parse_args(strict=True) invocation will attempt to
match the declared types and requirements for the fields that we defined via
add_argument earlier and will internally abort() with an HTTP 400 error in case
any fields do not pass validation or there are additional fields in the request that we
have not explicitly accounted for. (Thanks to the strict=True option.)

The use of reqparse to validate the POST'ed data can be more cumbersome than
the direct assignment that we had previously, but is more secure by an order of
magnitude. With the direct assignment technique a malicious user might send
arbitrary data in the hope of overriding fields that they should not have access to. For
example, our database could contain the internal only subscription_exipires_on
datetime field and a nefarious user could then submit a POST request containing a
value for this field set to the far future. Definitely something that we'd like to avoid!

API testing
Let's apply some of the knowledge that we gained in the previous chapters with
regards to functional and integration testing with pytest.

Our first step (after the requisite pip install pytest-flask, of course) is to add
a conftest.py file as we did in the previous chapters, which is sibling to our
application/ folder:

import pytest
import os
from application import create_app, db as database

DB_LOCATION = '/tmp/test_shutterbug.db'

@pytest.fixture(scope='session')
def app():
 app = create_app(config='test_settings')
 return app

@pytest.fixture(scope='function')
def db(app, request):
 """Session-wide test database."""
 if os.path.exists(DB_LOCATION):
 os.unlink(DB_LOCATION)

 database.app = app
 database.create_all()

Chapter 5

[109]

 def teardown():
 database.drop_all()
 os.unlink(DB_LOCATION)

 request.addfinalizer(teardown)
 return database

@pytest.fixture(scope='function')
def session(db, request):

 session = db.create_scoped_session()
 db.session = session

 def teardown():
 session.remove()

 request.addfinalizer(teardown)
 return session

The preceding conftest.py file contains the basic test fixtures that we will need in
order to write our API tests properly; there should be no surprises here. We will then
add our test_settings.py file, which is sibling to the newly created conftest.py,
and populate it with the application configuration values that we want for our test runs:

SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/test_shutterbug.db'

SECRET_KEY = b"\x98\x9e\xbaP'D\x03\xf5\x91u5G\x1f"

DEBUG = True

UPLOAD_FOLDER = '/tmp/'

TESTING = True

Once this is in place, we can begin writing our test functions and assertions in
tests/test_users.py. Our first test will ensure that we can create a new user
via the API and the URI of the newly created resource is returned to us in the
Location header:

from application.models import User
from flask import json
import base64

def test_create_new_user(db, session, client):
 """Attempt to create a basic user."""

Shutterbug, the Photo Stream API

[110]

 data = {'username': 'you', 'email': 'you@example.com',
 'password': 'foobar'}

 response = client.post('/users', data=data)
 assert response.status_code == 201
 assert 'Location' in response.headers

 user = User.query.filter(User.username == data['username']).one()

 assert '/users/{}'.format(user.id) in response.headers['Location']

Once we've established that a user can be created, the next logical step is to
test that an error is returned if a client attempts to create a user with invalid
or missing parameters:

def test_create_invalid_user(db, session, client):
 """Try to create a user with invalid/missing information."""

 data = {'email': 'you@example.com'}
 response = client.post('/users', data=data)

 assert response.status_code == 400
 assert 'message' in response.json
 assert 'username' in response.json['message']

As a sanity check for our HTTP Basic authentication implementation, let's also add a
test to fetch a single user record, which requires the request to be authenticated:

def test_get_single_user_authenticated(db, session, client):
 """Attempt to fetch a user."""

 data = {'username': 'authed', 'email': 'authed@example.com',
 'password': 'foobar'}
 user = User(**data)
 session.add(user)
 session.commit()

 creds = base64.b64encode(
 b'{0}:{1}'.format(
 user.username, data['password'])).decode('utf-8')

 response = client.get('/users/{}'.format(user.id),
 headers={'Authorization': 'Basic ' + creds})

 assert response.status_code == 200
 assert json.loads(response.get_data())['id'] == user.id

Chapter 5

[111]

The associated test for an unauthenticated request for a single user record is
as follows:

def test_get_single_user_unauthenticated(db, session, client):
 data = {'username': 'authed', 'email': 'authed@example.com',
 'password': 'foobar'}
 user = User(**data)
 session.add(user)
 session.commit()

 response = client.get('/users/{}'.format(user.id))
 assert response.status_code == 401

We can also test that our very simple authorization implementation functions
as expected (Recall that we only allow authenticated users to view their own
information and not that of any other users in the system.) with a test that creates
two users and attempts to access each other's data via authenticated requests:

def test_get_single_user_unauthorized(db, session, client):

 alice_data = {'username': 'alice', 'email': 'alice@example.com',
 'password': 'foobar'}
 bob_data = {'username': 'bob', 'email': 'bob@example.com',
 'password': 'foobar'}
 alice = User(**alice_data)
 bob = User(**bob_data)

 session.add(alice)
 session.add(bob)

 session.commit()

 alice_creds = base64.b64encode(b'{0}:{1}'.format(
 alice.username, alice_data['password'])).decode('utf-8')

 bob_creds = base64.b64encode(b'{0}:{1}'.format(
 bob.username, bob_data['password'])).decode('utf-8')

 response = client.get('/users/{}'.format(alice.id),
 headers={'Authorization': 'Basic ' + bob_creds})

 assert response.status_code == 403

 response = client.get('/users/{}'.format(bob.id),
 headers={'Authorization': 'Basic ' + alice_creds})

 assert response.status_code == 403

Shutterbug, the Photo Stream API

[112]

Interlude – Werkzeug middlewares
For certain tasks, we sometimes need the ability to modify the inbound request data
and/or environment before the request is routed to a handler function or method. In
many situations, the easiest way to achieve this would be to register a function with
the before_request decorator; this is often used to set request-global values on
the g object or create a database connection.

While this should suffice for a large portion of the most common use cases,
sometimes it's more convenient to drop down below the Flask application object
(when the request proxy object is constructed) but above the HTTP server. For this,
we have the concept of middlewares. Additionally, a properly written middleware
will be portable across other compatible WSGI implementations; there's nothing
stopping you (barring any application-specific oddities) from using a middleware
originally written for a Django application in our current Flask application.

Middlewares are relatively simple things: they are essentially any callable (classes,
instances, functions, or methods that can be invoked in a manner similar to a
function) that return the proper response format so that the other middlewares in the
chain can be invoked correctly.

One example of a middleware that is useful for our current API-based application
is one that allows us to extract an optional version number from the request URIs
and store this information in the environment so that it can be used at various points
during the request processing. For example, a request to /v0.1a/users/2 will
be routed to the handler for /users/2 and v0.1a will be accessible via request.
environ['API_VERSION'] in the Flask application itself.

In a new module in application/middlewares.py, we can implement it as follows:

import re

version_pattern = re.compile(r"/v(?P<version>[0-9a-z\-\+\.]+)",
re.IGNORECASE)

class VersionedAPIMiddleware(object):
 """

 The line wrapping here is a bit off, but it's not critical.

 """

 def __init__(self, app):
 self.app = app

Chapter 5

[113]

 def __call__(self, environ, start_response):
 path = environ.get('PATH_INFO', '')

 match = version_pattern.match(path)

 if match:
 environ['API_VERSION'] = match.group(1)
 environ['PATH_INFO'] = re.sub(version_pattern, '', path,
 count=1)
 else:
 environ['API_VERSION'] = None

 return self.app(environ, start_response)

We will bind this middleware to the application object in our factory:

…

from .middlewares import VersionedAPIMiddleware

…
def create_app(config=None):
 app = Flask(__name__, static_folder=None)
 app.wsgi_app = VersionedAPIMiddleware(app.wsgi_app)

 # …

 api.init_app(app)
 return app

When adding multiple WSGI middlewares, their order can
sometimes matter. Be sure to keep this in mind when adding
middlewares that can modify the WSGI environment.

Shutterbug, the Photo Stream API

[114]

Once bound, the middleware is inserted into the request processing before Flask
receives the request even though we clearly instantiated a Flask application object.
Accessing the API_VERSION value in your application is a simple matter of querying
the key bound to the request environment:

from flask import request
…
…
if request.environ['API_VERSION'] > 2:
 # Handle this differently
else:
 # Handle it normally

The parsing of the API version numbers could also be extended to examining the
HTTP headers (custom or otherwise) in addition to the URL-based version extraction
that we have provided here; a case could be made for the convenience of either.

Back to Shutterbug – uploading photos
Now that we have a minimal but functional API to create and fetch users, we need
a similar one to upload photos. First, we will use the same resource pattern that we
used previously in addition to defining a RequestParser instance to validate the
user submitted data regarding the photos:

from flask.ext.restful import Resource, reqparse
from flask import current_app, request, g, url_for
from application import auth, db, models
import uuid
import os
import werkzeug

new_photo_parser = reqparse.RequestParser()
new_photo_parser.add_argument('comment', type=str,
 required=False)
new_photo_parser.add_argument('photo',
 type=werkzeug.datastructures.FileStorage,
 required=True, location='files')

class UploadPhoto(Resource):

 method_decorators = [auth.login_required]

 def post(self):
 """Adds a new photo via form-encoded POST data."""

Chapter 5

[115]

 data = new_photo_parser.parse_args(strict=True)

 # Save our file to the filesystem first
 f = request.files['photo']

 extension = os.path.splitext(f.filename)[1]
 name = werkzeug.utils.secure_filename(
 str(uuid.uuid4()) + extension)
 path = os.path.join(
 current_app.config['UPLOAD_FOLDER'], name)

 f.save(path)

 data['user_id'] = g.current_user.id
 data['path'] = path

 # Get rid of the binary data that was sent; we've already
 # saved this to disk.
 del data['photo']

 # Add a new Photo entry to the database once we have
 # successfully saved the file to the filesystem above.
 photo = models.Photo(**data)
 db.session.add(photo)
 db.session.commit()

 data = dict(id=photo.id,
 path=photo.path, comment=photo.comment,
 created_on=photo.created_on)

 return data, 201, {'Location': url_for('singlephoto',
 photo_id=photo.id, _external=True)}

Note that in the preceding UploadPhoto resource, we are accessing request.files
to extract the binary data that was POST'ed to the endpoint. We then parsed
out the extension, generated a unique random string to act as the filename, and
finally saved the file to a known UPLOAD_FOLDER that we configured in our
application configuration.

Shutterbug, the Photo Stream API

[116]

Note that we used the werkzeug.utils.secure_filename
function to sanitize the extension of the uploaded image in order to
ensure that it is not vulnerable to path traversal or other filesystem-
based exploits that are common when dealing with user uploaded
binary data.
There are many other verifications and sanitization steps
(for example, ensuring that the MIME type of the file matches the
extension and binary data that was actually uploaded, limiting the
size/dimensions of the image) that should be performed when
accepting untrusted data that will be persisted to a filesystem, but
we omit them for the sake of brevity. Data validation techniques
and best practices could fill an entire book in themselves.

The local filesystem path that we end up persisting the image to is then added to
our photo SQLAlchemy record along with the optional comment that may have
accompanied the photo upload. The whole lot is then added to the session and
committed to the database before returning a 201 response with the location of the
newly created asset in the headers. There are some simple error conditions that we
avoid handling in this so that we can focus on the core concepts presented and their
implementation is left as an exercise for the reader.

Before taking any of the new photo upload functionalities out for a spin, make sure
to bind the resource to the API object in our application factory:

def create_app(config=None):
 # …

 from .resources.photos import (SinglePhoto, ListPhoto,
 UploadPhoto)
 # …

 api.add_resource(ListPhoto, '/photos')
 api.add_resource(UploadPhoto, '/photos')
 api.add_resource(SinglePhoto, '/photos/<int:photo_id>')
 api.add_resource(SingleUser, '/users/<int:user_id>')
 api.add_resource(CreateUser, '/users')

 # …

File uploads in distributed systems
We have greatly simplified the treatment of file uploads in modern web applications.
Of course, simplicity often has several downsides.

Chapter 5

[117]

The most glaring of these is that in the preceding implementation, we are restricted
to a single application server. If multiple application servers existed, ensuring that
the uploaded files remain synchronized across these multiple servers then becomes a
major operational concern. While there are many solutions to this particular problem
(for example, distributed filesystem protocols such as NFS, uploading the assets to
remote storage such as Amazon's Simple Storage Service (S3), and so on), they all
require additional thought and consideration to evaluate their pros and cons and
significant changes to your application's structure.

Testing the photo uploads
As we're on somewhat of a testing roll, let's keep this ball rolling by writing some
simple tests in order to validate the behavior of our UploadPhoto resource in
tests/test_photos.py. First, let's try to upload some binary data with an
unauthenticated request:

import io
import base64
from application.models import User, Photo

def test_unauthenticated_form_upload_of_simulated_file(session,
client):
 """Ensure that we can't upload a file via un-authed form POST."""

 data = dict(
 file=(io.BytesIO(b'A test file.'), 'test.png'))

 response = client.post('/photos', data=data)
 assert response.status_code == 401

Then, let's check the obvious success path with a properly authenticated request:

def test_authenticated_form_upload_of_simulated_file(session, client):
 """Upload photo via POST data with authenticated user."""

 password = 'foobar'
 user = User(username='you', email='you@example.com',
 password=password)

 session.add(user)

 data = dict(
 photo=(io.BytesIO(b'A test file.'), 'test.png'))

Shutterbug, the Photo Stream API

[118]

 creds = base64.b64encode(
 b'{0}:{1}'.format(user.username, password)).decode('utf-8')

 response = client.post('/photos', data=data,
 headers={'Authorization': 'Basic ' + creds})

 assert response.status_code == 201
 assert 'Location' in response.headers

 photos = Photo.query.all()
 assert len(photos) == 1

 assert ('/photos/{}'.format(photos[0].id) in
 response.headers['Location'])

Finally, let's ensure that when we submit the (optional) comment, it is persisted to
the database:

def test_upload_photo_with_comment(session, client):
 """Adds a photo with a comment."""

 password = 'foobar'
 user = User(username='you', email='you@example.com',
 password=password)

 session.add(user)

 data = dict(
 photo=(io.BytesIO(b'A photo with a comment.'),
 'new_photo.png'),
 comment='What an inspiring photo!')

 creds = base64.b64encode(
 b'{0}:{1}'.format(
 user.username, password)).decode('utf-8')

 response = client.post('/photos', data=data,
 headers={'Authorization': 'Basic ' + creds})

 assert response.status_code == 201
 assert 'Location' in response.headers

 photos = Photo.query.all()
 assert len(photos) == 1

 photo = photos[0]
 assert photo.comment == data['comment']

Chapter 5

[119]

Fetching the user's photos
Other than the ability to upload photos, the meat of the Shutterbug application
lies in the ability to fetch a list, in a reverse chronological order, of photos that
were uploaded by the authenticated user. For this, we will flesh out the ListPhoto
resource in application/resources/photos.py. As we want the ability to paginate
this list of returned photos, we will also create a new instance of RequestParser
to handle the common page/limit query arguments. Additionally, we will use the
marshalling feature of Flask-RESTful to serialize the returned Photo objects that are
returned from SQLAlchemy so that they can then be converted to JSON and sent
over the wire to the requesting client.

Marshalling is something that web applications (and most
other kinds of applications!) do all the time even if you might
have never heard of the word. Simply, you take the data in
some form of an in-memory representation, such as a Python
dictionary or list, and convert it to a format that is more
suitable for transmission. In the case of our application, this
transformation is to JSON and the transmission occurs over
HTTP to the client that made the request.

from flask.ext.restful import Resource, reqparse, fields, marshal
photos_parser = reqparse.RequestParser()
photos_parser.add_argument('page', type=int, required=False,
 default=1, location='args')
photos_parser.add_argument('limit', type=int, required=False,
 default=10, location='args')

photo_fields = {
 'path': fields.String,
 'comment': fields.String,
 'created_on': fields.DateTime(dt_format='rfc822'),
}

class ListPhoto(Resource):

 method_decorators = [auth.login_required]

 def get(self):
 """Get reverse chronological list of photos for the
 currently authenticated user."""

Shutterbug, the Photo Stream API

[120]

 data = photos_parser.parse_args(strict=True)
 offset = (data['page'] - 1) * data['limit']
 photos = g.current_user.photos.order_by(
 models.Photo.created_on.desc()).limit(
 data['limit']).offset(offset)

 return marshal(list(photos), photo_fields), 200

Note that in the preceding ListPhoto.get() handler, we calculated an offset value
based on the page and limit that are provided by the request parameters. The page
and limit are independent of the size of our dataset and easy to understand for
clients that are consuming the API. SQLAlchemy (and most database APIs, for that
matter), only understand offset and limit. The conversion formula is a well-known
one and is applicable to any sorted dataset.

Summary
This chapter began somewhat differently than the previous ones. Our objective
was to create a JSON-based API instead of a typical web application that produced
HTML and consumed submitted HTML form data.

We first took a bit of a sidestep to explain the existence and usefulness of Werkzeug
and then created a basic API with a Flask extension called Flask-RESTful. Next, we
made sure that our API could be protected by requiring authentication and explained
the subtle but fundamental difference between authentication and authorization.

We then looked at how we could implement validation rules for our API in order
to ensure that clients could create valid resources (for example, new users, upload
photos, and so on). We implemented several functional and integration-level unit
tests using the py.test framework.

We finished off the chapter by implementing the most important feature, photo
uploads. We ensured that this feature functioned as expected with a few more test
cases and then implemented the reverse chronological view of the photos necessary
for a consumer of the API to display the uploaded images to the user. Along the
way, we discussed the concept of Werkzeug middlewares, a powerful but often
overlooked way of introspecting and (possibly) modifying a request before Flask has
had a chance to process it.

In the next chapter, we will explore the usage and creation of command line tools
that will allow us to interface and manage our web applications via CLI.

[121]

Hublot – Flask CLI Tools
Often when administering a web application, there are tasks that we like to
accomplish without having to create an entire administrative web interface; even
though this may be accomplished relatively easily with tools such as Flask-Admin.
Many developers first turn to a shell scripting language. Bash is near universal on
most modern Linux operating systems, favored by system administrators, and is
powerful enough to script any administrative task that may be required.

While the venerable Bash script is most definitely always an option, it would be nice
to write a Python-based script that could utilize some of the application-specific
data handling that we have crafted for our web application. In doing so, we can
avoid duplicating a fair amount of energy and effort that was put in the painstaking
process of creating, testing, and deploying the data models and domain logic that is
the core of any web application. This is where Flask-Script comes in.

At the time of writing this, Flask has not yet shipped the 1.0
release, which includes an integrated CLI script handling via
the Click library developed by the author of Flask. As the
API of the Flask/Click integration may change significantly
between now and the release of Flask 1.0, we've chosen to
implement the CLI tools discussed in this chapter via the
Flask-Script package, which has been the de facto solution for
Flask for quite some time now. The creation of administrative
tasks via the Click API can, however, be considered for any
new Flask application—the fundamental principles are similar
enough even though the implementations differ greatly.

Hublot – Flask CLI Tools

[122]

In addition to the infrequent tasks that we may require of a shell script, such as
exporting computed data, sending e-mails to a subset of users, and so on, there
are certain tasks from our previous applications that may be ported over to the
Flask-Script CLI commands:

•	 Creating/deleting our current database schema, thus replacing our
database.py from previous projects

•	 Running our Werkzeug development server, replacing run.py from
previous projects

Additionally, as Flask-Script is the current de facto solution to write reusable CLI
scripts for Flask applications, many other extensions publish CLI commands that can
be integrated in your existing application.

In this chapter, we will be creating an application that stores the data pulled from the
Github API in a local database.

Git is a distributed version control system (DVCS) that has
become incredibly popular in the last few years and with good
reason. It has quickly become the go-to version control system
for an incredible amount of open source projects written in a
variety of languages.
GitHub, the most well-known hosting platform for Git
repositories of open and close source code, is also endowed
with a wonderfully complete API that allows for a
programmatic access to the data and metadata (comments, pull
requests, issues, and so on) that is available, depending on the
authenticated credentials provided.

To fetch this data, we will create a simple Flask extension to encapsulate the REST-
based API queries in order to fetch the relevant data, and we will then use this
extension to create a CLI tool (via Flask-Script) that can be manually run or hooked
up to a event-based or time-based scheduler, such as cron.

Before we get into any of this, however, let's set up a very simple application
skeleton so that we can begin the Flask-Script integration.

Starting off
We once again reach for our basic Blueprint-based application structure and create a
whole new virtual environment and directory for this new venture:
$ mkdir -p ~/src/hublot && cd ~/src/hublot

$ mkvirtualenv hublot

$ pip install flask flask-sqlalchemy flask-script

Chapter 6

[123]

The application layout that we'll start off with is very similar to what we used in
previous Blueprint-based projects, with the main difference being the manage.py
script, which will be the main entry point for our Flask-Script CLI commands. Also
note the lack of run.py and a database.py, which we alluded to previously and will
explain in more detail shortly:

├── application

│ ├── __init__.py

│ └── repositories

│ ├── __init__.py

│ └── models.py

└── manage.py

In keeping with our previous work, we continue to use the Application Factory
pattern to allow the instantiation of our application to happen at runtime instead of
at module import time, as we shall do with the Flask-SQLAlchemy extension that we
have become quite familiar with.

Our application/__init__.py file contains the following, which you should
recognize quite well:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

Initialize the db extension, but without configuring
it with an application instance.
db = SQLAlchemy()

def create_app(config=None):
 app = Flask(__name__)

 if config is not None:
 app.config.from_object(config)

 # Initialize extensions
 db.init_app(app)

 return app

Hublot – Flask CLI Tools

[124]

Our application/settings.py file contains the very basics that we require for a
Flask-SQLAlchemy application:

SQLALCHEMY_DATABASE_URI = 'sqlite:///../hublot.db'

We will be using SQLite as our database of choice for this
particular project; adjust the URI accordingly in case you
decide to use a different database.

For the sake of expediency, we'll introduce simplified Repository and Issue
models that will contain the data we want to collect. These models will exist in
application/repositories/models.py:

from application import db
from sqlalchemy.schema import UniqueConstraint
import datetime

class Repository(db.Model):
 """Holds the meta-information about a particular
 Github repository."""

 # The unique primary key for the local repository record.
 id = db.Column(db.Integer, primary_key=True)

 # The name of the repository.
 name = db.Column(db.String(length=255), nullable=False)

 # The github org/user that owns the repository.
 owner = db.Column(db.String(length=255), nullable=False)

 # The description (if any) of the repository.
 description = db.Column(db.Text())

 # The date/time that the record was created on.
 created_on = db.Column(db.DateTime(),
 default=datetime.datetime.utcnow, index=True)

 # The SQLAlchemy relation for the issues contained within this
 # repository.
 issues = db.relationship('Issue')

 __table_args__ = (UniqueConstraint('name', 'owner'),)

 def __repr__(self):
 return u'<Repository {}>'.format(self.name)

Chapter 6

[125]

A Repository model instance will contain metadata that pertains to a given Git
repository hosted on GitHub with a one-to-many relationship to the Issue model,
which we will define next. The fields that we have declared in this Repository
class should be self-explanatory for the most part, the one exception being
__table__args__ dunder.

A dunder is a Python-specific neologism that is used to refer
to any variable or method that begins with two underscores: a
double underscore or dunder, for short. There are several built-in
dunder methods (for example, __init__) and attributes (for
example, __name__), and any attributes / methods / functions
that you declare and prefix with two underscores will fall under
this category as well.

This class attribute allows us the ability to specify a table-specific configuration to the
underlying SQLAlchemy table that is created. In our case, we will use it to specify
a UniqueConstraint key on a compound value, the combination of the name and
owner, which would otherwise not be possible via the typical attribute-based field
definitions.

Additionally, we defined an issues attribute whose value is a relationship to the
Issue model; this is the classic one-to-many relationship, and accessing the issues
attribute of a repository instance will yield the list of issues that are attached to the
repository in question.

Note that the specified relationship does not include any
arguments pertaining to the nature of the query or loading
behavior of the related data. We are using the default
behavior for this application, which is not a good idea for the
repositories that contain a significant amount of issues—a
dynamic lazyload approach as was used in a previous chapter
may be a better choice in such a situation.

The Issue model, which we alluded to in the Repository model that we defined,
is designed to contain the GitHub issue metadata associated with a Git repository
hosted here. As issues only make sense in the context of a repository, we ensure that
the repository_id foreign key exists for all the issues:

class Issue(db.Model):
 """Holds the meta information regarding an issue that
 belongs to a repository."""

 # The autoincremented ID of the issue.

Hublot – Flask CLI Tools

[126]

 id = db.Column(db.String(length=40), primary_key=True)
 # The repository ID that this issue belongs to.

 #
 # This relationship will produce a `repository` field
 # that will link back to the parent repository.
 repository_id = db.Column(db.Integer(),
 db.ForeignKey('repository.id'))

 # The title of the issue
 title = db.Column(db.String(length=255), nullable=False)

 # The issue number
 number = db.Column(db.Integer(), nullable=False)

 state = db.Column(db.Enum('open', 'closed'), nullable=False)

 def __repr__(self):
 """Representation of this issue by number."""
 return '<Issue {}>'.format(self.number)

Each instance of an Issue model will encapsulate a very limited set of information
regarding a GitHub issue that was created, including the issue number, state of the
issue (closed or open), and title that was given to the issue.

At this point in previous chapters, we would have created a database.py script
to initialize the construction of our SQLAlchemy models in our database. In this
chapter, however, we will use Flask-Script to write a small CLI command that will
do the same thing but provide us with a more consistent framework to write these
little administrative tools and avoid the dozens of independent script files that end
up plaguing any nontrivial application over time.

The manage.py file
By convention, the main entry point for Flask-Script is a Python file named manage.
py that we place sibling to the application/ package as we described in our project
layout in the beginning of this chapter. While Flask-Script contains quite a few
options—configurations and customizability—we'll use the simplest of the available
invocations to encapsulate the functionality of the database.py Python script that
we used in previous chapters in order to handle the initialization of our database.

Chapter 6

[127]

We instantiate a Manager instance, which will handle the registration of our
various commands. The Manager constructor takes a Flask application instance
as an argument, but it can also (thankfully!) accept a function or class that
implements the callable interface that returns an application instance:

from flask.ext.script import Manager
from application import create_app, db

Create the `manager` object with a
callable that returns a Flask application object.
manager = Manager(app=create_app)

Now that we have a manager instance, we use the command method of this instance
to decorate functions that we would like to turn into CLI commands:

@manager.command

def init_db():

 """Initialize SQLAlchemy database models."""

 db.create_all()

Note that, by default, the function name that we wrap with
the command method will be the identifier used in the CLI
invocation.

To get the whole thing running, we call the run method of the manager instance
when we invoke the manage.py file directly:

if __name__ == '__main__':
 manager.run()

At this point, we can execute our CLI command via the Python interpreter:

$ python manage.py init_db

Assuming everything worked as expected, we should see no results (or errors, for
that matter) and our database should be initialized with the tables, columns, and
indexes that we specified in our model definitions.

Let's create a diametrically opposite command that will allow us to destroy our local
database; this can sometimes be handy when making a lot of changes to our data
model during development:

@manager.command

def drop_db():

Hublot – Flask CLI Tools

[128]

 if prompt_bool(

 "Are you sure you want to lose all your data"):

 db.drop_all()

We invoke this newly created drop_db command in exactly the same manner as we
invoked the previously defined init_db command:

$ python manage.py drop_db

The built-in default commands
In addition to giving us the ability to quickly define our own CLI commands, Flask-
Script includes a few defaults so that we don't have write them ourselves:

usage: manage.py [-?] {shell,drop_db,init_db,runserver} ...

positional arguments:

 {shell,drop_db,init_db,runserver}

 shell Runs a Python shell inside Flask application

 context.

 drop_db

 init_db Initialize SQLAlchemy database models.

 runserver Runs the Flask development server i.e.

 app.run()

optional arguments:

 -?, --help show this help message and exit

Flask-Script automatically generates a help text for the
registered commands based on docstrings of the relevant
functions. Additionally, running the manage.py script
without a specified command or with the help option will
display the full list of the top-level commands available.

If, for whatever reason, we'd like to customize the defaults, it's relatively easy to
accomplish. For example, we need the development server to run on port 6000
instead of the 5000 default:

from flask.ext.script import Manager, prompt_bool, Server
…

if __name__ == '__main__':

Chapter 6

[129]

 manager.add_command('runserver', Server(port=6000))
 manager.run()

Here, we've used the alternative method of defining a CLI command using the
manager.add_command method, which takes a name and subclass of flask.ext.
script.command as the second argument.

Similarly, we can override the default shell command so that our interactive Python
shell contains a reference to our configured Flask-SQLAlchemy database object in
addition to the Flask app object:

def _context():
 """Adds additional objects to our default shell context."""
 return dict(db=db, repositories=repositories)

if __name__ == '__main__':
 manager.add_command('runserver', Server(port=6000))
 manager.add_command('shell', Shell(make_context=_context))
 manager.run()

We can verify that our db object has been included by executing the manage.py script
to invoke the interactive shell:

$ python manage.py shell

>>> type(db)

<class 'flask_sqlalchemy.SQLAlchemy'>

>>>

Verify that the default Flask application server runs on the port that we specified:

$ python manage.py runserver

 * Running on http://127.0.0.1:6000/ (Press CTRL+C to quit)

Flask-Script provides several configuration options for the default runserver and
shell commands, including the ability to disable them completely if you want. You
can consult the online documentation for additional details.

The Flask-Script commands across
Blueprints
The ability to create ad hoc CLI commands in our application-level manage.py is
both a blessing and curse: A blessing because it requires very little boilerplate to get
up and running and a curse because it can very easily spiral into an unmanageable
mess of code.

Hublot – Flask CLI Tools

[130]

To stave off this somewhat inevitable end state for any nontrivial application, we
will use the underutilized feature of submanagers in Flask-Script in order to create
a set of CLI commands that will live inside a blueprint but will be accessible via the
standard manage.py invocation. This should allow us to keep the domain logic for
our command-line interfaces in the same location(s) as the domain logic for our web-
based components.

Submanagers
Our first Flask-Script submanager will contain the logic to parse a GitHub project URL
to the component pieces that we require to create a valid Repository model record:

$ python manage.py repositories add "https://github.com/mitsuhiko/flask"\

 --description="Main Flask repository"

The general idea is that we'd like to be able to create a new Repository object with
the name, owner, and description parsed from the positional and named arguments
provided to the "add" function of the "repositories" submanager.

Let's get started by creating the module that will contain our repository CLI
commands in application/repositories/cli.py with an empty add function for
the moment:

from flask.ext.script import Manager

repository_manager = Manager(
 usage="Repository-based CLI actions.")

@repository_manager.command
def add():
 """Adds a repository to our database."""
 pass

Note that our repository_manager instance was created without an application
instance or a callable that will return an application instance. Instead of providing
the application object here, we will register our newly created submanager instance
with our main application manager:

from flask.ext.script import Manager, prompt_bool, Server, Shell
from application import create_app, db, repositories
from application.repositories.cli import repository_manager

Create the `manager` object with a
callable that returns a Flask application object.

Chapter 6

[131]

manager = Manager(app=create_app)

…
…

if __name__ == '__main__':
 manager.add_command('runserver', Server(port=6000))
 manager.add_command('shell', Shell(make_context=_context))
 manager.add_command('repositories', repository_manager)
 manager.run()

This will let us invoke the repositories manager and show us the available
subcommands:

$ python manage.py repositories --help

usage: Repository-based CLI actions.

Repository-based CLI actions.

positional arguments:

 {add}

 add Adds a repository to our database.

optional arguments:

 -?, --help show this help message and exit

While this will produce no results (due to the function body being a simple pass
statement), we can invoke our add subcommand:

$ python manage.py repositories add

The required and optional arguments
Any command registered with a Flask-Script manager may have zero or many
required arguments in addition to any number of optional arguments with
arbitrary defaults.

Our add command requires one mandatory argument, the URL of the repository
to be added to our database, and one optional argument, a description of this
repository. The command decorator takes care of a large number of the most basic
cases, turning named function arguments to their CLI argument equivalents and
function arguments with default values to optional CLI arguments.

Hublot – Flask CLI Tools

[132]

This means that we can specify the following function declaration to match what we
wrote down previously:

@repository_manager.command
def add(url, description=None):
 """Adds a repository to our database."""

 print url, description

This allows us to capture the arguments provided to our CLI manager and have
them readily available in our function body:

$ python manage.py repositories add "https://github.com/mitsuhiko/flask"
--description="A repository to add!"

https://github.com/mitsuhiko/flask A repository to add!

As we've managed to properly encode the desired interface for the CLI tool, let's add
some parsing to extract out the relevant bits and pieces that we want from the URL:

@repository_manager.command
def add(url, description=None):
 """Adds a repository to our database."""

 parsed = urlparse(url)

 # Ensure that our repository is hosted on github
 if parsed.netloc != 'github.com':
 print "Not from Github! Aborting."
 return 1

 try:
 _, owner, repo_name = parsed.path.split('/')
 except ValueError:
 print "Invalid Github project URL format!"
 return 1

We follow the *nix convention of returning a non-zero
value between 1 and 127 (the convention is to return 2 for
syntax errors and 1 for any other kind of error) when a script
encounters an error condition. As we expect our script to
successfully add a repository object to our database, any
situation where this does not occur could be considered an
error condition and should thus return a non-zero value.

Chapter 6

[133]

Now that we capture and process the CLI arguments correctly, let's use this data to
create our Repository objects and persist them to our database:

from flask.ext.script import Manager
from urlparse import urlparse
from application.repositories.models import Repository
from application import db
import sqlalchemy

…

@repository_manager.command
def add(url, description=None):
 """Adds a repository to our database."""

 parsed = urlparse(url)

 # Ensure that our repository is hosted on github
 if parsed.netloc != 'github.com':
 print "Not from Github! Aborting."
 return 1

 try:
 _, owner, repo_name = parsed.path.split('/')
 except ValueError:
 print "Invalid Github project URL format!"
 return 1

 repository = Repository(name=repo_name, owner=owner)
 db.session.add(repository)

 try:
 db.session.commit()
 except sqlalchemy.exc.IntegrityError:
 print "That repository already exists!"
 return 1

 print "Created new Repository with ID: %d" % repository.id
 return 0

Note that we have taken care of the situation where a
duplicate repository (that is, with the same name and from
the same owner) is added to the database. Without capturing
IntegrityError, the CLI command would fail and spit
out a stack trace indicating the unhandled exception.

Hublot – Flask CLI Tools

[134]

Running our newly implemented CLI command now yields the following:

$ python manage.py repositories add "https://github.com/mitsuhiko/flask"
--description="A repository to add!"

Created new Repository with ID: 1

The successful creation of our Repository object may be verified in our database.
For SQLite, the following would suffice:

$ sqlite3 hublot.db

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> select * from repository;

1|flask|mitsuhiko|A repository to add!|2015-07-22 04:00:36.080829

Flask extensions – the basics
We spent a great deal of time installing, configuring, and using various Flask
extensions (Flask-Login, Flask-WTF, Flask-Bcrypt, and others). They provide us with
a consistent interface to configure third-party libraries and tools and often integrate
some Flask-specific niceties that make application development just a bit more
enjoyable. One thing that we have not touched upon, however, is how to build your
own Flask extension.

We will only be looking at the framework necessary to create a
valid Flask extension to be used locally in a project. If you desire
to package your custom extension and publish it on PyPi or
GitHub, you will need to implement the proper setup.py and
setuptools machinery to make this possible. You can follow the
setuptools documentation for further details.

Chapter 6

[135]

When should an extension be used?
A Flask extension usually falls under one of the following two categories:

•	 Encapsulating the functionality provided by a third-party library, ensuring
that this third-party library will function correctly when multiple Flask
applications exist in the same process, and possibly adding some convenient
functions/objects that make the integration with Flask more concrete; for
example, Flask-SQLAlchemy

•	 The codification of patterns and behaviors that do not require a third-party
library but ensure a set of consistent functionalities for an application; for
example, Flask-Login

The majority of the Flask extensions that you will encounter in the wild or develop
yourself will fall under the first category. The second category is a bit of an outlier
and often arises from common patterns observed in multiple applications that are
then abstracted and refined to the point where they can be put in an extension.

Our extension – GitHubber
The extension that we will build in this chapter will encapsulate a small portion of
the Github API that will allow us to fetch the list of issues for a given repository that
we previously tracked.

The Github API allows for more functionalities than what we
need it for and the documentation is excellent. Additionally,
there exist several third-party Python libraries that encapsulate
much of the Github API, of which we will be using one.

To simplify the interaction with GitHub's v3 API, we're going to install the github3.
py Python package to our local virtual environment:

$ pip install github3.py

As we're developing the extension in our Hublot application, we're not going to
introduce the additional complexity of a separate project for the custom Flask
extension. If you intend, however, to release and/or distribute an extension, you'll
want to ensure that it is structured in such a way that it can be made available via the
Python Package Index and installable via setuptools (or distutils, if you'd rather only
use packaging tools that are included in the standard library).

Hublot – Flask CLI Tools

[136]

Let's create an extensions.py module sibling to application/repositories/
package and introduce the basic structure that any Flask extension should contain:

class Githubber(object):
 """
 A Flask extension that wraps necessary configuration
 and functionality for interacting with the Github API
 via the `github3.py` 3rd party library.
 """

 def __init__(self, app=None):
 """
 Initialize the extension.

 Any default configurations that do not require
 the application instance should be put here.
 """

 if app:
 self.init_app(app)

 def init_app(self, app):
 """
 Initialize the extension with any application-level
 Configuration requirements.
 """
 self.app = app

For most extensions, this is all that is required. Note that the basic extension is a
plain old Python object (colloquially referred to as a POPO) definition, augmented
with an init_app instance method. This method is not strictly necessary. If you
don't plan on having the extension use the Flask application object (for example, to
load configuration values) or if you have no intention of using the application factory
pattern, then init_app is superfluous and can be omitted.

We flesh out the extension by adding a few configuration-level checks to ensure that
we have GITHUB_USERNAME and GITHUB_PASSWORD for API-authenticated API access.
Additionally, we store the current extension object instance in app.extensions,
which makes the dynamic usage/loading of the extension more straightforward
(among other things):

 def init_app(self, app):
 """
 Initialize the extension with any application-level
 Configuration requirements.

 Also store the initialized extension and application state

Chapter 6

[137]

 to the `app.extensions`
 """

 if not hasattr(app, 'extensions'):
 app.extensions = {}

 if app.config.get('GITHUB_USERNAME') is None:
 raise ValueError(
 "Cannot use Githubber extension without "
 "specifying the GITHUB_USERNAME.")

 if app.config.get('GITHUB_PASSWORD') is None:
 raise ValueError(
 "Cannot use Githubber extension without "
 "specifying the GITHUB_PASSWORD.")

 # Store the state of the currently configured extension in
 # `app.extensions`.
 app.extensions['githubber'] = self
 self.app = app

Making authenticated requests to the Github API requires
some form of authentication. GitHub supports several of these
methods but the simplest is specifying the username and
password for the account. Generally, this is not something that
you want to ask your users to give you: it's better to use the
OAuth authorization flow for these situations in order to avoid
storing user passwords in cleartext. However, for our rather
simple application and custom extension, we'll forgo the extended
OAuth implementation (we'll look at OAuth more extensively in
a later chapter) and use the username and password combination.

On its own, the extension that we created doesn't do very much. Let's fix this by
adding a property-decorated method that instantiates the github3.py Github API
client library:

from github3 import login

class Githubber(object):
 # …
 def __init__(self, app=None):

 self._client = None
 # …

Hublot – Flask CLI Tools

[138]

 @property
 def client(self):
 if self._client:
 return self._client

 gh_client = login(self.app.config['GITHUB_USERNAME'],
 password=self.app.config['GITHUB_PASSWORD'])

 self._client = gh_client
 return self._client

In the preceding client method, we've implemented the caching property pattern,
which will ensure that we only ever instantiate a single github3.py client per
created application instance. Additionally, the extension will load the Github API
client lazily on the first access, which is generally a good idea. This lets us use the
client property of the extension to interface directly with the github3.py Python
library once the application object has been initialized.

Now that we have the basic setup for our custom Flask extension, let's
initialize it and configure the extension itself in our application factory in
application/__init__.py:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from application.extensions import Githubber

…
hubber = Githubber()

def create_app(config=None):
 app = Flask(__name__)
 # …

 # Initialize any extensions and bind blueprints to the
 # application instance here.
 db.init_app(app)
 hubber.init_app(app)

 return app

Note the hubber = Githubber() initialization and assignment that happens outside
of the factory itself, but the actual init_app(app) method call and implied extension
configuration that occurs in the factory after we've initialized a Flask application
object. You've probably noticed this split pattern (and we've discussed it several
times in previous chapters as well), but now you've seen the reasoning behind it via
the development of your own extension.

Chapter 6

[139]

With this in mind, we add an additional function to our application/
repositories/cli.py module for some additional CLI tooling power:

from flask.ext.script import Manager
from urlparse import urlparse
from application.repositories.models import Repository, Issue
from application import db, hubber
import sqlalchemy

…

@repository_manager.command
def fetch_issues(repository_id):
 """Fetch all commits for the given Repository."""

 try:
 repo = Repository.query.get(repository_id)
 except sqlalchemy.orm.exc.NoResultFound:
 print "No such repository ID!"
 return 1

 r = hubber.client.repository(repo.owner, repo.name)
 issues = []

 for issue in r.iter_issues():
 i = Issue(repository_id=repo.id, title=issue.title,
 number=issue.number, state=issue.state)

 issues.append(i)

 db.session.add_all(issues)

 print "Added {} issues!".format(len(issues))

After fetching the repository object from the database (based on the ID value
specified via the CLI argument), we invoke the client.repository() method of
our Githubber extension, which we imported as hubber, the name it was assigned
during the instantiation in the factory preamble. As a part of our extension takes care
of initializing it with the credentials required to make authenticated requests, we
don't need to handle this in the CLI tool that invokes it.

Once we've obtained a reference to the remote GitHub repository, we iterate over the
registered issues via the iter_issues() method provided by github3.py and then
create the Issue instances that we persist to the SQLAlchemy session.

Hublot – Flask CLI Tools

[140]

A welcome improvement to the current Issue model would be
the introduction of a compound index on repository_id and
the number with a unique constraint to ensure that imported
issues are not duplicated in case we run the preceding command
more than once on the same repository.
Handling of the raised exception on the insertion of a duplicate
would then need to happen in the preceding CLI command as
well. The implementation is left as a (relatively simple) exercise
for the reader.

These types of CLI tools are very useful to script actions and behaviors that could
be considered too costly to occur in-band of a current user request of a typical web
application. The last thing that you want is for a user of your application to wait
seconds, if not minutes, for some action to complete that you have almost no control
over. Instead, it's better to have these events occur out of band. Popular methods of
accomplishing this include cron jobs and job/task queues such as those implemented
by Celery (which may be event-driven instead of scheduled to run at fixed time
intervals such as cron jobs), to name a few.

Summary
After reading through this chapter, you should be more familiar with the inner
workings of Flask extensions and command line-based interfaces to the application
via Flask-Script.

We began by creating a simple application for the data corresponding to the
repositories and issues hosted on GitHub and then installed and configured our
manage.py script to act as our bridge for the Flask-Script default CLI runserver and
shell commands. We added the drop_db and init_db global commands to replace
the database.py script that we used in previous chapters. Once this was in place, we
turned our attention to creating the script submanagers in Blueprints that we could
control via the main manage.py interface script.

Finally, we implemented our own Flask extension that wrapped some basic
configuration and resource instantiation of the github3.py Github API client. Once
this was finished, we went back to our previously created submanager script and
added the required functionality to fetch the list of issues stored on GitHub for a
given repository ID.

In the next chapter, we will take a deeper dive into third-party APIs, where we
will build an application that uses the OAuth authorization protocol in order to
implement user account creation and login via Twitter and Facebook.

[141]

Dinnerly – Recipe Sharing
In this chapter, we will explore modern methods of the so-called social login, where
we allow a user to authenticate with our application using derived credentials from
another web application. Currently, the most widespread third-party applications
that support this mechanism are, somewhat unsurprisingly, Twitter and Facebook.

While there exist several other widespread web applications that support this type
of integration (for example, LinkedIn, Dropbox, Foursquare, Google, and GitHub to
name a few), the majority of your potential users will be in possession of at least one
account on either Twitter or Facebook, the two major social networks of this time.

To do this, we will be adding, configuring, and deploying the Flask-OAuthlib
extension. This extension abstracts out some of the usual difficulties and roadblocks
that are often experienced when dealing with an OAuth-based authorization flow
(which we will explain shortly) and includes functionalities to quickly set up the
defaults required to negotiate the provider / consumer / resource owner token
exchange. As a bonus, the extension will provide us with the ability to interact with
the authenticated APIs of these remote services on behalf of the user.

First OAuth
Let's get this out of the way: OAuth can be somewhat difficult to grasp. Adding to this
fire is the fact that the OAuth framework/protocol has gone through a major revision
in the last few years. Version 2 was published in 2012, but due to a variety of factors,
there are some web applications that continue to implement the OAuth v1 protocol.

OAuth 2.0 is not backwards compatible with OAuth 1.0.
Moreover, OAuth 2.0 is less of a formal protocol specification and
more of an authorization framework specification. Most OAuth
2.0 implementations across modern web applications are not
interoperable.

Dinnerly – Recipe Sharing

[142]

For the sake of simplicity, we'll view a high-level overview of the general terms,
vocabulary, and functionalities of the OAuth 2.0 authorization framework. Version 2
is the simpler of the two specifications and with good reason: one of the design goals
of the latter was to make client implementations simpler and less prone to error.
Much of the terminology is similar, if not identical, across the two versions.

While the intricacies of the OAuth authorization exchanges will mostly be abstracted
away from us thanks to the Flask-OAuthlib extension and underlying Python
packages that handle the real grunt work, a cursory level of knowledge regarding the
OAuth authorization framework (specifically the most common authorization grant
flows) for web applications and the typical implementations will be beneficial.

Why use OAuth?
One of the great sins of proper online personal security is the reuse of access
credentials across different services. This opens you up to a variety of security-
related issues if the credentials you use for one application are compromised. You
now have the possibility of being compromised on all the applications where this
same set of credentials are used and the only way to fix this post facto would be to go
and change your credentials everywhere.

Even worse than reusing the credentials across the different services is having a user
willingly turn over their credentials for a third-party service, say Twitter, to some
other service, say Foursquare, so that the latter can make requests to Twitter on
behalf of the user (for example, posting check-ins to their Twitter timeline). While not
immediately obvious, one of the problems with this approach is that the credentials
must be stored in plain text.

This situation is not ideal for a variety of reasons, and some of these reasons are not
things that you, as an application developer, can control.

OAuth, in both version 1 and version 2 of the framework, attempt to solve the
problem of cross-application shared credentials by creating an open standard for
API access delegation. The principle goal of OAuth's original design was to ensure
that a user of application A could delegate access to application B on their behalf and
also ensure that application B was never in possession of the credentials that could
compromise the user account on application A.

Chapter 7

[143]

While an application in possession of delegated credentials can
abuse these credentials to perform some unsavory actions, the
root credentials have never been shared and thus the owner of
the account can simply invalidate the delegated credentials that
have been abused. If the root account credentials had simply
been given to the third-party application, then this latter could
have taken complete control of the account by changing all of the
primary authentication information (username, e-mail, password,
and so on), which would effectively hijack the account.

Terminology
Most of the confusion about OAuth usage and implementation stems from a
misunderstanding of the essential vocabulary and terminology that is used to
describe the basic authorization flow. Even worse, there are several popular web
applications that have implemented OAuth (in some form or another) and decided
to use their own vocabulary for portions of the protocol/framework instead of those
that have been decided upon in the official RFC.

An RFC, or a Request For Comments, is a memorandum-style
publication of a document or set of documents from the Internet
Engineering Task Force (IETF), which is the principal body that
governs the open standards on which most of the Internet is
built upon. RFCs are usually denoted by a numeric code, which
uniquely identifies them in the IETF. For example, the OAuth 2.0
authorization framework RFC is number 6749 and can be found
in its entirety on the IETF website.

To help alleviate some of this confusion, here's a simplified description of what most
of the essential components of an OAuth implementation mean in plain English:

•	 Consumer: This is the application that is making the request on behalf of
the user. In our particular case, the Dinnerly application is considered the
consumer. Confusingly enough, the official OAuth specification refers to the
client instead of the consumer. Even more confusingly, some applications use
the consumer *and* client terms. Usually, a consumer is represented by a key
and secret that must be kept in your application configuration, and they must
be well-guarded. If a malicious entity were to gain access to your consumer
key and secret, they could then pretend to be your application when making
authorized requests with the third-party provider.

Dinnerly – Recipe Sharing

[144]

•	 Provider: This is the third-party service that the consumer is attempting
to access on behalf of a user. In our case, Twitter and Facebook are the
providers that we will be using for our application signing in. Other
examples of providers could be GitHub, LinkedIn, Google, and any other
service that offers a grant-based OAuth authorization flow.

•	 Resource owner: This is the entity that is capable of consenting to the
delegated resource access. In most cases, the resource owner is an end user of
both the applications (for example, Twitter and Dinnerly) in question.

•	 Access token(s): This is a credential that the client uses to make requests to
the provider on behalf of a user in order to access the protected resources.
The token can be linked with a particular permission scope, which limits
what resources it can access. Additionally, the access token may expire after a
certain amount of time determined by the provider; at which point the use of
a refresh token is required to obtain a new, valid access token.

•	 Authorization server: This is the server (usually represented by a URI
endpoint) that is responsible for issuing access tokens to the consumer
application after the resource owner has consented to delegating their access.

•	 Flow type: The OAuth 2.0 framework provides outlines of several different
flows for authorization. Some are best suited for command-line applications
where no web browser is present, others are better suited for native mobile
applications, and some have also been created to connect devices that
have very limited access capabilities (for example, if you want to delegate
your Twitter account privileges to your Internet-enabled toaster). The
authorization flow that we are most interested in, unsurprisingly, is the one
designed for basic web browser-based access.

Chapter 7

[145]

With the preceding list of vocabulary, you should now be able to comprehend the
official abstract protocol flow that is listed in the official OAuth 2.0 RFC:

 +--------+ +---------------+

 | |--(A)- Authorization Request ->| Resource |

 | | | Owner |

 | |<-(B)-- Authorization Grant ---| |

 | | +---------------+

 | |

 | | +---------------+

 | |--(C)-- Authorization Grant -->| Authorization |

 | Client | | Server |

 | |<-(D)----- Access Token -------| |

 | | +---------------+

 | |

 | | +---------------+

 | |--(E)----- Access Token ------>| Resource |

 | | | Server |

 | |<-(F)--- Protected Resource ---| |

 +--------+ +---------------+

The following description of the steps listed in the flow diagram has been taken from
RFC 6749 and made a bit more relevant for our purposes:

1.	 The client (or consumer) requests the resource owner to grant an
authorization. This is usually where the user is redirected to a login screen
on the remote provider, say Twitter, where it is explained that the client
application wishes to access the protected resources that you control. On
agreeing to this, we enter the next step.

2.	 The client receives an authorization grant from the resource owner (user),
which is a temporary credential representing the resource owner's authorization
for the particular type of authorization flow that the provider has implemented.
This is typically an authorization code grant flow for most web applications.

3.	 Once the client has received the grant credentials, it sends them to the
authorization server to request an authentication token on behalf of the
resource owner.

4.	 The authorization server validates the grant credentials and authenticates the
client making the request. Upon fulfilling these two requirements, the server
returns a valid authentication token to the client that can then be used to
make authenticated requests to the provider on behalf of the user.

Dinnerly – Recipe Sharing

[146]

So what's wrong with OAuth 1.0?
In theory: not much. In practice: it's somewhat difficult and extremely error prone to
be implemented correctly for the consumer.

The primary difficulties in implementing and using an OAuth 1.0 provider revolve
around consumer applications not performing the required cryptographic request
signing properly. The arguments and parameters had to be collected from the query
string in addition to the request body and various OAuth parameters (for example,
oauth_nonce, oauth_signature_method, oauth_timestamp, and so on) and then
URL-encoded (meaning that non-URL safe values are specially encoded to ensure
they are transmitted correctly). Once the key/value pairs have been encoded, they
must then be sorted lexicographically by key (remember, the encoded key and
not the raw key value) and then concatenated to a single string using typical URL
parameter separators. Additionally, the HTTP verb that is to be used to submit the
request (for example, GET or POST) must be prepended to the string that we just
created and then followed by the URL that the request will be sent to. Finally, the
signing key is to be constructed from the consumer secret key and an OAuth token
secret and then passed to an implementation of the HMAC-SHA1 hashing algorithm
along with the payload that we constructed earlier.

Assuming that you got all this correct (and it's incredibly easy to make a simple
mistake such as sorting your keys alphabetically instead of lexicographically), only
then would the request be considered valid. Moreover, in the event of a miscalculated
signature, there's no simple way to determine where the mistake was made.

One of the reasons that this rather complex process is required for OAuth 1.0 is that
a design goal of this protocol was that it should function across insecure protocols
such as HTTP, but still ensure that the request has not been modified by a malicious
party along the way.

OAuth 2.0, while not universally accepted as a worthy successor to OAuth
1.0, has greatly simplified the implementation by simply requiring that all the
communication occur over HTTPS.

Three-legged authorization
In the so-called three-legged authorization flow for the OAuth framework, an
application (consumer) makes requests on behalf of a user (resource owner) in
order to access the resources present on a remote service (provider).

Chapter 7

[147]

There also exists a two-legged authorization flow, which is
primarily used for application-to-application access where a
resource owner is not required to consent to delegated access
to the protected resources. Twitter, for example, implements
both two-legged and three-legged authorization flows, but
the former does not have the same access scope as the latter
in terms of resource access and imposed API rate limits.

This is what Flask-Social will allow us to implement for Twitter and Facebook, the
two providers that we have chosen, where our application will act as the consumer.
The end result will be that our Dinnerly application will be in possession of access
tokens for both the providers that will allow us to make authenticated API requests
on behalf of our users (the resource owners), which is necessary to implement any
sort of cross-social network posting functionality.

Setting up the application
Once again, let's set up a barebones folder for our project along with the associated
virtual environment in order to isolate our application dependencies:

$ mkdir –p ~/src/dinnerly

$ mkvirtualenv dinnerly

$ cd ~/src/dinnerly

Once created, let's install the basic packages that we will require including Flask
itself along with the Flask-OAuthlib extension, our trusty friend Flask-SQLAlchemy,
and Flask-Login, which we used in a previous chapter:

$ pip install flask flask-oauthlib flask-sqlalchemy flask-login flask-wtf

We'll utilize our trusty Blueprint-based application structure that has served us so
well in the past chapters to ensure a solid foundation. For now, we'll have a single
users Blueprint where the OAuth handling will be taken care of:

-run.py

-application

 ├── __init__.py

 └── users

 ├── __init__.py

 ├── models.py

 └── views.py

Dinnerly – Recipe Sharing

[148]

Once the very basic folder and file structure has been established, let's use an
application factory to create our main application object. For now, all we're going
to do is instantiate a very simple application with a Flask-SQLAlchemy database
connection in application/__init__.py:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy

Deferred initialization of the db extension
db = SQLAlchemy()

def create_app(config=None):
 app = Flask(__name__, static_folder=None)

 if config is not None:
 app.config.from_object(config)

 db.init_app(app)
 return app

To ensure that we can actually run the application and create the database, let's
use the simple run.py and database.py scripts that we will place sibling to the
application folder. The contents of run.py are similar to what we used in the
previous chapters:

from application import create_app

app = create_app(config='settings')
app.run(debug=True)

Later on in this chapter, we will explore alternative methods
of running the Dinnerly application, most of which are more
well-suited to production deployments. The Werkzeug
development server that is invoked on app.run() is highly
unsuitable for anything other than local development.

Our database.py is, quite similarly, simple and to the point:

from application import db, create_app
app = create_app(config='settings')
db.app = app

db.create_all()

Chapter 7

[149]

This will allow us to create the relevant schema in our database based on our model
definitions, which have not yet been declared; running the script right now will
essentially be a no op. This is okay! We have much to do before this becomes useful.

Declaring our models
As is the case with most applications, we begin by declaring our data models and
any relationships that they require. We will, of course, require a User model, which
will be the centerpiece of the OAuth authorization and token exchange.

As you may recall from our brief overview of the OAuth terminology and the basic
three-legged authorization grant flow, the access tokens are what allow a client (our
Dinnerly application) to query resources on a remote service provider (for example,
Twitter or Facebook). As we need these tokens to make requests to the listed service
providers, we're going to want to store them somewhere so that we can use them
without having the user reauthenticate for every action; this would be quite tedious.

Our User model will be quite similar to the User models that we have used
previously (although we removed a few attributes to simplify things a bit), and
we'll place it in the obvious location of application/users/models.py:

import datetime
from application import db

class User(db.Model):

 # The primary key for each user record.
 id = db.Column(db.Integer, primary_key=True)

 # The username for a user. Might not be
 username = db.Column(db.String(40))

 # The date/time that the user account was created on.
 created_on = db.Column(db.DateTime,
 default=datetime.datetime.utcnow)

 def __repr__(self):
 return '<User {!r}>'.format(self.username)

Note that we have not included anything regarding a password.
As the intent of this application is to require either Facebook
or Twitter to create an account and log in, we've eschewed the
typical username/password credentials combination in favor of
delegating authentication to one of these third-party services.

Dinnerly – Recipe Sharing

[150]

To help with our user session management, we're going to reuse the Flask-Login
extension that we explored in a previous chapter. In case you've forgotten, one of the
basic requirements of the extension is to have four methods declared on whatever
model you are using to represent an authenticated user: is_authenticated,
is_active, is_anonymous, and get_id. Let's append the most basic versions of
these methods to our already declared User model:

class User(db.Model):

 # …

 def is_authenticated(self):
 """All our registered users are authenticated."""
 return True

 def is_active(self):
 """All our users are active."""
 return True

 def is_anonymous(self):
 """All users are not in an anonymous state."""
 return False

 def get_id(self):
 """Get the user ID as a Unicode string."""
 return unicode(self.id)

Now, you may have noticed that there are no declared attributes on the User model
for our Twitter or Facebook access tokens. Adding these attributes are an option, of
course, but we're going to use a slightly different approach that requires more up-
front complexity and will allow more providers to be added without polluting our
User model more than necessary.

Our approach will center on the idea of creating multiple one-to-one data
relationships between a user and the various provider types that will be represented
by their own models. Let's add our first provider model in application/users/
models.py to the store:

class TwitterConnection(db.Model):

 # The primary key for each connection record.
 id = db.Column(db.Integer, primary_key=True)

 # Our relationship to the User that this
 # connection belongs to.

Chapter 7

[151]

 user_id = db.Column(db.Integer(),
 db.ForeignKey('user.id'), nullable=False, unique=True)

 # The twitter screen name of the connected account.
 screen_name = db.Column(db.String(), nullable=False)

 # The Twitter ID of the connected account
 twitter_user_id = db.Column(db.Integer(), nullable=False)

 # The OAuth token
 oauth_token = db.Column(db.String(), nullable=False)

 # The OAuth token secret
 oauth_token_secret = db.Column(db.String(), nullable=False)

The preceding model declares a foreign key relationship to the User model via the
user_id attribute, and the additional fields (other than the primary key) store the
requisite OAuth token and secret to make authenticated requests to the Twitter
API on behalf of the user. Additionally, we store the Twitter screen_name and
twitter_user_id to give us the option of using this value as username for the related
user. Keeping the Twitter user ID around helps us match users on Twitter with local
Dinnerly users (as screen_name can be changed but the IDs are immutable).

Once the TwitterConnection model is defined, let's add the relationship to the User
model so that we can access the associated credentials via the twitter attribute:

Class User(db.Model):
 # …

 twitter = db.relationship("TwitterConnection", uselist=False,
 backref="user")

This establishes a very simple one-to-one relationship between User and
TwitterConnection. The uselist=False argument ensures that the configured
attribute will refer to a scalar value instead of a list, which would be the default for a
one-to-many relationship.

Accordingly, once we've obtained a user object instance, we can access the associated
TwitterConnection model data via user.twitter. If no credentials have been
attached, then this will return None; if there are attached credentials, we can access
the subattributes just as you expect: user.twitter.oauth_token, user.twitter.
screen_name, and others.

Dinnerly – Recipe Sharing

[152]

Let's do the same for the equivalent FacebookConnection model, which has similar
attributes. The difference from the TwitterConnection model is that Facebook
OAuth only requires a single token (instead of a combination token and secret), and
we can choose to store the Facebook-specific ID and name (whereas in the other
model, we stored the Twitter screen_name):

class FacebookConnection(db.Model):

 # The primary key for each connection record.
 id = db.Column(db.Integer, primary_key=True)

 # Our relationship to the User that this
 # connection belongs to.
 user_id = db.Column(db.Integer(),
 db.ForeignKey('user.id'), nullable=False)

 # The numeric Facebook ID of the user that this
 # connection belongs to.
 facebook_id = db.Column(db.Integer(), nullable=False)

 # The OAuth token
 access_token = db.Column(db.String(), nullable=False)

 # The name of the user on Facebook that this
 # connection belongs to.
 name = db.Column(db.String())

Once we've established this model, we'll want to introduce the relationship to our
User model as we did for the TwitterConnection model previously:

class User(db.Model):

 # …

 facebook = db.relationship("FacebookConnection",
 uselist=False, backref="user")

The functionality and usage of the preceding facebook attribute of a user instance is
identical to that of the twitter attribute that we defined previously.

Chapter 7

[153]

Handling OAuth in our views
With our basic user and OAuth connection models established, let's start
constructing the required Flask-OAuthlib objects to handle the authorization grant
flows. The first step is to initialize the extension in the usual way for our application
factory. While we're at it, let's also initialize the Flask-Login extension, which we will
use to manage authenticated sessions for our logged-in users:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask_oauthlib.client import OAuth
 from flask.ext.login import LoginManager

Deferred initialization of our extensions
db = SQLAlchemy()
oauth = OAuth()
login_manager = LoginManager()

def create_app(config=None):
 app = Flask(__name__, static_folder=None)

 if config is not None:
 app.config.from_object(config)

 db.init_app(app)
 oauth.init_app(app)
 login_manager.init_app(app)

 return app

Now that we have an oauth object available to us, we can instantiate separate
OAuth remote application clients for each service provider. Let's place these in our
application/users/views.py module:

from flask.ext.login import login_user, current_user
from application import oauth

twitter = oauth.remote_app(
 'twitter',
 consumer_key='<consumer key>',
 consumer_secret='<consumer secret>',
 base_url='https://api.twitter.com/1.1/',
 request_token_url='https://api.twitter.com/oauth/request_token',

Dinnerly – Recipe Sharing

[154]

 access_token_url='https://api.twitter.com/oauth/access_token',
 authorize_url='https://api.twitter.com/oauth/authenticate')

facebook = oauth.remote_app(
 'facebook',
 consumer_key='<facebook app id>',
 consumer_secret='<facebook app secret>',
 request_token_params={'scope': 'email,publish_actions'},
 base_url='https://graph.facebook.com',
 request_token_url=None,
 access_token_url='/oauth/access_token',
 access_token_method='GET',
 authorize_url='https://www.facebook.com/dialog/oauth')

Now, there seems to be quite a lot going on during the instantiation of these OAuth
objects, but most of it is simply telling the generic OAuth connection library where
the service provider URI endpoints exist for various portions of the three-legged
OAuth authorization grant flow. There are, however, a few argument values that
you'll need to fill in yourself: the consumer keys (for Twitter) and the application
keys (for Facebook). To obtain these, you must register a new OAuth client
application on the respective services, and you can do so here:

•	 Twitter: https://apps.twitter.com/app/new, and then navigate to the Keys
and Access Tokens tab to obtain the consumer key and consumer secret.

•	 Facebook: https://developers.facebook.com/apps/ and agree to the
terms of service and register your account for application development. Once
there, select the website type of application to add and follow the instructions
to generate the required application ID and application secret.

In the case of Facebook, we requested the ability to publish to the wall of the user in
question via the publish_actions value of the scope key in the request_token_
params argument of the remote_app method of the OAuth object that we've created.
This is enough for our purposes, but if you want to interact with the Facebook
API more than simply pushing status updates, you'll need to request the correct
set of permissions. The Facebook documentation has additional information and
guidelines on how third-party application developers should use the permission
scope values to perform different actions.

Once you've obtained the requisite keys and secrets, insert them where we left
placeholders in the preceding oauth remote application client configurations.

https://apps.twitter.com/app/new
https://developers.facebook.com/apps/

Chapter 7

[155]

Now, we need to have our application handle the various portions of the
authorization flow that require users to request a grant token from the service
provider. We also need our application to handle the callback routes that the service
provider will redirect to with the various OAuth tokens and secrets once the process
is completed so that we can persist these values to our database.

Let's whip up a users Blueprint to namespace the various routes in application/
users/views.py, and while we're at it, import a few utilities from Flask and Flask-
Login to help our integration:

from flask import Blueprint, redirect, url_for, request
from flask.ext.login import login_user, current_user

from application.users.models import (
 User, TwitterConnection, FacebookConnection)
from application import oauth, db, login_manager
import sqlalchemy

users = Blueprint('users', __name__, template_folder='templates')

As per the requirements of Flask-Login, we need to define a user_loader function
that will fetch a user from our database by the ID:

@login_manager.user_loader
def load_user(user_id):
 return User.query.get(int(user_id))

In a very similar fashion, Flask-OAuthlib requires us to define a method (per service,
of course) that will act as a token getter; while Flask-Login needs user_loader to
fetch users from our database by the ID. The OAuthlib needs to have a function that
fetches the OAuth token(s) of the currently logged-in user. If no user is currently
logged in, then the method should return None, indicating that we should probably
start an authorization grant flow to obtain the required tokens:

@twitter.tokengetter
def get_twitter_token():
 """Fetch Twitter token from currently logged
 in user."""
 if (current_user.is_authenticated() and
 current_user.twitter):
 return (current_user.twitter.oauth_token,
 current_user.twitter.oauth_token_secret)
 return None

@facebook.tokengetter
def get_facebook_token():

Dinnerly – Recipe Sharing

[156]

 """Fetch Facebook token from currently logged
 in user."""
 if (current_user.is_authenticated() and
 current_user.facebook):
 return (current_user.facebook.oauth_token,)
 return None

Note that we used the current_user proxy object that
Flask-Login provides us with in order to access the object
of the currently authenticated user, and then we call the
is_authenticated method that we defined in our User
model earlier in the chapter.

Following this, we need to define the routes and handlers to kick off the three-legged
authorization grant. Our first users Blueprint route will handle attempted logins
using Twitter as the third-party provider:

@users.route('/login/twitter')
def login_twitter():
 """Kick-off the Twitter authorization flow if
 not currently authenticated."""

 if current_user.is_authenticated():
 return redirect(url_for('recipes.index'))
 return twitter.authorize(
 callback=url_for('.twitter_authorized',
 _external=True))

The preceding route first determines if the current user is already authenticated and
redirects them to the main recipes.index route handler if they are.

We've set up some redirects for the recipes.index route, which
we have yet to define. If you intend on testing out this part of the
application before we set these up, you'll have to either add a stub
page to that Blueprint route or change it to something else.

If the user is not already authenticated, we initiate the authorization grant via the
twitter.authorize method invocation. This will initiate the OAuth flow, and upon
successful completion of the grant (assuming that the user consents to allow our
application to access to their third-party protected resources), Twitter will invoke a
GET request to the callback URL that we provided as the first argument. This request
will contain the OAuth tokens and any additional information that they have deemed
useful (such as screen_name) in the query arguments, and it's then up to us to handle
the request as we would any other and extract out the information that we require.

Chapter 7

[157]

To this end, we define a twitter_authorized route handler whose sole purpose is
to extract out OAuth tokens and secrets so that we can persist them in our database
and then use the login_user function from Flask-Login to create an authenticated
user session for our Dinnerly application:

@users.route('/login/twitter-authorized')
def twitter_authorized():
 resp = twitter.authorized_response()

 try:
 user = db.session.query(User).join(
 TwitterConnection).filter(
 TwitterConnection.oauth_token ==
 resp['oauth_token']).one()
 except sqlalchemy.orm.exc.NoResultFound:
 credential = TwitterConnection(
 twitter_user_id=int(resp['user_id']),
 screen_name=resp['screen_name'],
 oauth_token=resp['oauth_token'],
 oauth_token_secret=resp['oauth_token_secret'])

 user = User(username=resp['screen_name'])
 user.twitter = credential

 db.session.add(user)
 db.session.commit()
 db.session.refresh(user)

 login_user(user)
 return redirect(url_for('recipes.index'))

In the preceding route handler, we first attempt to extract the OAuth data from the
grant flow, which is made available to us in twitter.authorized_response().

If the user decided to decline the authorization grant request, then
twitter.authorized_response() will return None. Handling
this error scenario is left as an exercise for the reader.
Hint: A Flash message and redirect to a page describing what
happened are probably a good start!

Dinnerly – Recipe Sharing

[158]

Once the OAuth tokens have been extracted from the OAuth data response of the
grant flow, we check the database to see if a user with this token already exists. If
this is the case, then the user has already created an account on Dinnerly and simply
wishes to reauthenticate. (Perhaps as they are using a different browser, thus they do
not have the previously generated session cookie available.)

If no user in our system has the OAuth token assigned to them, then we create a
new User record with the data that we've just received. Once this is persisted to the
SQLAlchemy session, we log them in using the login_user function from Flask-Login.

While we focused on the route handlers and Twitter OAuth authorization grant flow
here, the process for Facebook is very similar. Our users Blueprint gets two more
routes attached, which will handle the logins that want to use Facebook as the third-
party service provider:

@users.route('/login/facebook')
def login_facebook():
 """Kick-off the Facebook authorization flow if
 not currently authenticated."""

 if current_user.is_authenticated():
 return redirect(url_for('recipes.index'))
 return facebook.authorize(
 callback=url_for('.facebook_authorized',
 _external=True))

We then define the facebook_authorized handler, which will receive the
OAuth token parameters via the query arguments, in a very similar manner
to the twitter_authorized route handler:

@users.route('/login/facebook-authorized')
def facebook_authorized():
 """Handle the authorization grant & save the token."""

 resp = facebook.authorized_response()
 me = facebook.get('/me')

 try:
 user = db.session.query(User).join(
 FacebookConnection).filter(
 TwitterConnection.oauth_token ==
 resp['access_token']).one()
 except sqlalchemy.orm.exc.NoResultFound:
 credential = FacebookConnection(
 name=me.data['name'],

Chapter 7

[159]

 facebook_id=me.data['id'],
 access_token=resp['access_token'])

 user = User(username=resp['screen_name'])
 user.twitter = credential

 db.session.add(user)
 db.session.commit()
 db.session.refresh(user)

 login_user(user)
 return redirect(url_for('recipes.index'))

One nontrivial difference between this handler and the one that we previously
defined for Twitter is the invocation of the facebook.get('/me') method. Once
we've performed the authorization grant exchange, the facebook OAuth object is
able to make authenticated requests to the Facebook API on behalf of the user. We
will use this newfound ability to query for some basic details regarding the user
who delegated the authorization credentials, such as the Facebook ID and name of
the user in question. Once obtained, we store this information along with the OAuth
credentials for the newly created user.

Creating recipes
Now that we've allowed users to create authenticated accounts on Dinnerly with
Twitter or Facebook, we need to create something worth sharing on these social
networks! We'll keep things very simple with a Recipe model, which we'll create in
the application/recipes/models.py module:

import datetime
from application import db

class Recipe(db.Model):

 # The unique primary key for each recipe created.
 id = db.Column(db.Integer, primary_key=True)

 # The title of the recipe.
 title = db.Column(db.String())

 # The ingredients for the recipe.
 # For the sake of simplicity, we'll assume ingredients
 # are in a comma-separated string.

Dinnerly – Recipe Sharing

[160]

 ingredients = db.Column(db.Text())

 # The instructions for each recipe.
 instructions = db.Column(db.Text())

 # The date/time that the post was created on.
 created_on = db.Column(db.DateTime(),
 default=datetime.datetime.utcnow,
 index=True)

 # The user ID that created this recipe.
 user_id = db.Column(db.Integer(), db.ForeignKey('user.id'))

 # User-Recipe is a one-to-many relationship.
 user = db.relationship('User',
 backref=db.backref('recipes'))

There's nothing incredibly special about the Recipe model that we've just defined; it
has a title, ingredients, and instructions. Each recipe is owned by a single user, and
we've created the requisite relationship-based field and our ForeignKey entry in the
model so that our data is properly linked together in the usual relational database
way. There are a few fields to store the typical things that you'd expect in any
recipe: title, ingredients, and instructions. As the point of Dinnerly is to share
snippets of recipes on various social networks, we should add a method that will
help generate a short summary of a recipe and limit it to fewer than 140 characters
(to appease the Twitter API):

def summarize(self, character_count=136):
 """
 Generate a summary for posting to social media.
 """

 if len(self.title) <= character_count:
 return self.title

 short = self.title[:character_count].rsplit(' ', 1)[0]
 return short + '...'

The preceding summarize method will return the title of Recipe if the title contains
fewer than 140 characters. If it contains more than 140 characters, we will split the
string into a list using a space as the delimiter, use rsplit (which starts at the end of
the string instead of the beginning as str.split does), and then append the ellipsis.

Chapter 7

[161]

The summarize method that we just defined will only reliably
work for ASCII text. There exist Unicode characters that may
resemble a space as represented in the ASCII character set, but
our method will not split on these correctly as it's expecting a
different character.

Posting recipes to Twitter and Facebook
Upon posting a new recipe, we'd like to automatically post the summary to the
services that have been connected for the user in question. There are, of course, many
ways to go about this:

•	 In our yet-to-be defined recipe view handlers, we could call the respective
OAuth connection object methods after the successful creation/committing
of a Recipe object instance

•	 The user could be required to visit a particular URI (or submit a form with
particular data), which would trigger the cross-posting

•	 When the Recipe object is committed to the database, we could listen for the
after_insert event emitted by SQLAlchemy and push out our summary to
the connected social networks then

As the first two options are relatively simple, somewhat boring, and we haven't
explored SQLAlchemy events at all in this book so far, the third option is the one
that we'll implement.

SQLAlchemy events
One of the less well-known features of SQLAlchemy is the event API, which
publishes several core and ORM-level hooks that will allow us to attach to and
execute arbitrary code.

The event system is very similar in spirit (if not in
implementation) to the Blinker dispatching system that we
saw in a previous chapter. Instead of creating, publishing,
and consuming blinker-based signals, we are simply going to
listen for events published by the SQLAlchemy subsystem.

Most applications will never need to implement handlers for the various events
that are published. They are usually the purview of plugins and extensions to
SQLAlchemy, which allow the developer to augment the functionality of their
application without requiring them to write large amounts of boilerplate connector /
adapter / interface logic to interact with these plugins or extensions.

Dinnerly – Recipe Sharing

[162]

The SQLAlchemy events that we are interested in are categorized under ORM Events.
Even in this restricted umbrella of events (there are a plethora of additional published
core events that we won't even discuss here), there are still quite a few events. What
most developers are interested in, generally, are the mapper-level events:

•	 before_insert: This receives an object instance before an INSERT statement
is emitted corresponding to that instance

•	 after_insert: This receives an object instance after an INSERT statement is
emitted corresponding to that instance

•	 before_update: This receives an object instance before an UPDATE statement
is emitted corresponding to that instance

•	 after_update: This receives an object instance after an UPDATE statement is
emitted corresponding to that instance

•	 before_delete: This receives an object instance before a DELETE statement is
emitted corresponding to that instance

•	 after_delete: This receives an object instance after a DELETE statement has
been emitted corresponding to that instance

Each named event is emitted along with the SQLAlchemy Mapper object (which
defines the correlation of class attributes to database columns), Connection object
that was/will be used to execute the query, and target object instance that was being
acted on.

Generally, the idea is that the developer would use the raw connection object to
execute simple SQL statements (for example, increment a counter, add a row to a
logging table, and so on). We, however, will use the after_insert event to publish
a summary of our recipe to both Twitter and Facebook.

To make things a bit simpler from an organizational standpoint, let's move the
Twitter and Facebook OAuth client object instantiations to their own module in
application/users/services.py:

from application import oauth

twitter = oauth.remote_app(
 'twitter',
 consumer_key='<consumer key>',
 consumer_secret='<consumer secret>',
 base_url='https://api.twitter.com/1/',
 request_token_url='https://api.twitter.com/oauth/request_token',
 access_token_url='https://api.twitter.com/oauth/access_token',
 authorize_url='https://api.twitter.com/oauth/authenticate',
 access_token_method='GET')

Chapter 7

[163]

facebook = oauth.remote_app(
 'facebook',
 consumer_key='<consumer key>',
 consumer_secret='<consumer secret>',
 request_token_params={'scope': 'email,publish_actions'},
 base_url='https://graph.facebook.com',
 request_token_url=None,
 access_token_url='/oauth/access_token',
 access_token_method='GET',
 authorize_url='https://www.facebook.com/dialog/oauth')

In moving this functionality to a separate module, we can avoid some of the more
nasty possibilities for circular imports. Now, in the application/recipes/models.
py module, we will add the following function that will be invoked when the
after_insert event is emitted and identified by the listens_for decorator:

from application.users.services import twitter, facebook
from sqlalchemy import event

@event.listens_for(Recipe, 'after_insert')
def listen_for_recipe_insert(mapper, connection, target):
 """Listens for after_insert event from SQLAlchemy
 for Recipe model instances."""

 summary = target.summarize()

 if target.user.twitter:
 twitter_response = twitter.post(
 'statuses/update.json',
 data={'status': summary})
 if twitter_response.status != 200:
 raise ValueError("Could not publish to Twitter.")

 if target.user.facebook:
 fb_response = facebook.post('/me/feed', data={
 'message': summary
 })
 if fb_response.status != 200:
 raise ValueError("Could not publish to Facebook.")

Dinnerly – Recipe Sharing

[164]

Our listener function only requires a target (the recipe instance that was acted on) for
our purposes. We get the recipe summary thanks to our previously written Recipe.
summarize() method, and then use the post method of both OAuth client objects
(accounting for the different endpoint URIs and expected payload formats for each
service) to create a status update across whichever services the user who posted the
recipe has connected to.

The error-handling code for the function that we defined
here is somewhat inefficient; each API may return different
HTTP error codes, and it's quite possible that one service may
accept the post while the other would refuse it for some as yet
unknown reason. Handling the various failure modes that may
arise when interacting with multiple remote third-party APIs is
complex and could be the subject of a book itself.

Finding common friends
A very typical feature of most modern, socially-oriented web applications is the
ability to find users on an application that you are already familiar with on some
other application social network. This helps you to bootstrap any sort of friendship/
follower model that you may want to implement for your application. Nobody likes
to have zero friends on a new platform, so why not connect with the friends that
you've already made in other places?

This is relatively easy to accomplish by finding the intersection of accounts that the
user is following on Twitter and users that currently exist in the Dinnerly application.

An intersection C of two sets, A and B, is the set of common
elements that exist in A and B and no other elements.
If you don't already understand the basic concepts of mathematical
sets and the operations that can be performed on them, a primer on
the naïve set theory should be on your reading list.

We start by adding a route handler that an authenticated user can query to find their
list of common friends in our application/users.views.py module:

from flask import abort, render_template
from flask.ext.login import login_required

…

@users.route('/twitter/find-friends')
@login_required
def twitter_find_friends():

Chapter 7

[165]

 """Find common friends."""

 if not current_user.twitter:
 abort(403)

 twitter_user_id = current_user.twitter.twitter_user_id

 # This will only query 5000 Twitter user IDs.
 # If your users have more friends than that,
 # you will need to handle the returned cursor
 # values to iterate over all of them.
 response = twitter.get(
 'friends/ids?user_id={}'.format(twitter_user_id))

 friends = response.json().get('ids', list())
 friends = [int(f) for f in friends]

 common_friends = User.query.filter(
 User.twitter_user_id.in_(friends))

 return render_template('users/friends.html',
 friends=common_friends)

We used simple abort() calls in the preceding method, but
there's nothing stopping you from creating templates that are
rendered with additional information to help the end user
understand why a certain operation failed.

The preceding view function is wrapped with the login_required decorator from
our trusty Flask-Login extension to ensure that any request to this route is made by
an authenticated user. An unauthenticated user would not be able to find common
friends on Dinnerly for somewhat obvious reasons.

We then ensure that the authenticated user has connected a set of Twitter OAuth
credentials and pluck out the twitter_user_id value so that we can properly
construct the Twitter API request, which requires either the ID or screen_name of
the user in question.

While screen_name might seem slightly easier to debug and
reason about than a long numeric identifier, remember that it is
possible for a person to update screen_name on Twitter at any
time. If you wanted to rely on this value, you would need to write
some code to verify and update the locally stored screen_name
value if and when it does change on the remote service.

Dinnerly – Recipe Sharing

[166]

Once the GET request is made for the Twitter IDs of the people that the account
follows on the remote service, we parse this result and construct a list of integers that
we can then pass to a SQLAlchemy query on the User-mapped class. Now that we've
obtained a list of users, we can pass these to our view (which we will not provide an
implementation of—this is left as an exercise for the reader).

Of course, finding common friends is only half of the equation. Once we've found
users that are our friends on Twitter, the next step is to follow them on Dinnerly
as well. For this, we need to add a (minimal!) social component to our application,
similar to what we implemented in a previous chapter.

This will require adding a few database-related entities, which we can do using
our normal procedure of updating/adding the relevant models and then recreating
the database schema, but we'll take this opportunity to explore a more formalized
method of tracking schema-related changes.

Interlude – database migrations
For quite some time in the world of application development, we used a variety of
tools to track and record code-related changes over time. Generally, these fall under
the umbrella of version control systems, or VCS, and there are many of them to
choose from: Git, Mercurial, Subversion, Perforce, Darcs, and several others. Each
system functions in a slightly (or not so slightly) different manner, but they all have
the same goal of preserving point-in-time snapshots of a codebase (or portions of a
codebase, depending on the tool being used) so that it can be recreated at a later time.

One aspect of web applications that is generally difficult to capture and track is
the current state of the database. In the past, we made do by storing entire SQL
snapshots along with the application code and would instruct developers to drop
and recreate their database. The next level of improvement on this would be the
creation of small SQL-based scripts that should be run in a particular order to
gradually build up the underlying schema progressively in such a way that when
modifications are required, another small SQL-based script is added to the list.

While this latter method is quite flexible (it can work for almost any type of
application that depends on a relational database), a slight abstraction that could
leverage the functionality of the SQLAlchemy object-relational model that we
already use would be beneficial.

Chapter 7

[167]

Alembic
Such an abstraction already exists, and it's called Alembic. This library, by the
same author of SQLAlchemy, allows us to create and manage the changesets that
correspond to the schema modifications that are required to accommodate the
modifications that are made to our SQLAlchemy data models.

As with most of the libraries that we've discussed over the course of this book, it has
been wrapped in a Flask extension as Flask-Alembic. Let's install it in our current
virtual environment:

$ pip install flask-alembic

As most of Flask-Alembic's functionalities can and should be controlled via CLI
scripts, the package includes hooks to enable a Flask-Script command. So let's install
this as well:

$ pip install flask-script

We will create our manage.py Python script to control our CLI commands as sibling
to our application/ package and ensure that it includes the db hooks to integrate
Flask-Alembic:

from flask.ext.script import Manager, Shell, Server
from application import create_app, db
from flask_alembic.cli.script import manager as alembic_manager

Create the `manager` object with a
callable that returns a Flask application object.
manager = Manager(app=create_app)

def _context():
 """Adds additional objects to our default shell context."""
 return dict(db=db)

if __name__ == '__main__':
 manager.add_command('db', alembic_manager)
 manager.add_command('runserver', Server(port=6000))
 manager.add_command('shell', Shell(make_context=_context))
 manager.run()

Dinnerly – Recipe Sharing

[168]

Now that we have both of these extensions installed, we need to configure the
Flask-Alembic extension so that it's aware of our application object. We will do this
in the usual way in our application factory function:

…
from flask.ext.alembic import Alembic

…
Intialize the Alembic extension
alembic = Alembic()

def create_app(config=None):
 app = Flask(__name__, static_folder=None)

 if config is not None:
 app.config.from_object(config)

 import application.users.models
 import application.recipes.models
 # …
 alembic.init_app(app)

 from application.users.views import users
 app.register_blueprint(users, url_prefix='/users')

 return app

Let's capture the current database schema that is described by the SQLAlchemy
models that we defined in our application:

$ python manage.py db revision 'Initial schema.'

This will create two new files in the migrations/ folder (which was created the
first time this command was run), one of which will be named with a bunch of
random characters followed by _initial_schema.py.

Chapter 7

[169]

The random-looking characters are actually not so random:
they are hash-based identifiers that help the migration
system behave in a more predictable manner when there
can be multiple developers working on migrations for
different portions of the application all at the same time,
which is somewhat typical these days.
The other file, script.py.mako, is the template that
Alembic will utilize to generate these automatic revision
summaries when the command is invoked. This script can
be edited to suit your needs, but don't remove any of the
template (${foo}) variables!

The generated migration file includes two function definitions: upgrade() and
downgrade(). The upgrade function is run when Alembic takes the current database
revision (which is None at this point) and attempts to bring it to the target (often
the latest) revision. The downgrade() function does the same but for the opposite
direction. Having both is very convenient for rollback-type situations, when switching
between code branches that contain different sets of migrations, and several other
edge cases. Many developers ignore the generation and testing of downgrade
migrations and then sorely regret it at a later date in the lifetime of the project.

Your exact migration may look a little bit different based on what relational database
you're using, but it should look something similar to this:

"""Initial schema.

Revision ID: cd5ee4319a3
Revises:
Create Date: 2015-10-30 23:54:00.990549

"""

revision identifiers, used by Alembic.
revision = 'cd5ee4319a3'
down_revision = None
branch_labels = ('default',)
depends_on = None

from alembic import op
import sqlalchemy as sa

def upgrade():

Dinnerly – Recipe Sharing

[170]

 ### commands auto generated by Alembic - please adjust! ###
 op.create_table('user',
 sa.Column('id', sa.Integer(), nullable=False),
 sa.Column('username', sa.String(length=40), nullable=True),
 sa.Column('created_on', sa.DateTime(), nullable=True),
 sa.PrimaryKeyConstraint('id')
)
 op.create_table('facebook_connection',
 sa.Column('id', sa.Integer(), nullable=False),
 sa.Column('user_id', sa.Integer(), nullable=False),
 sa.Column('facebook_id', sa.Integer(), nullable=False),
 sa.Column('access_token', sa.String(), nullable=False),
 sa.Column('name', sa.String(), nullable=True),
 sa.ForeignKeyConstraint(['user_id'], ['user.id'],),
 sa.PrimaryKeyConstraint('id'),
 sa.UniqueConstraint('user_id')
)
 op.create_table('recipe',
 sa.Column('id', sa.Integer(), nullable=False),
 sa.Column('title', sa.String(), nullable=True),
 sa.Column('ingredients', sa.Text(), nullable=True),
 sa.Column('instructions', sa.Text(), nullable=True),
 sa.Column('created_on', sa.DateTime(), nullable=True),
 sa.Column('user_id', sa.Integer(), nullable=True),
 sa.ForeignKeyConstraint(['user_id'], ['user.id'],),
 sa.PrimaryKeyConstraint('id')
)
 op.create_index(
 op.f('ix_recipe_created_on'), 'recipe',
 ['created_on'], unique=False)
 op.create_table('twitter_connection',
 sa.Column('id', sa.Integer(), nullable=False),
 sa.Column('user_id', sa.Integer(), nullable=False),
 sa.Column('screen_name', sa.String(), nullable=False),
 sa.Column('twitter_user_id', sa.Integer(), nullable=False),
 sa.Column('oauth_token', sa.String(), nullable=False),
 sa.Column('oauth_token_secret', sa.String(), nullable=False),
 sa.ForeignKeyConstraint(['user_id'], ['user.id'],),
 sa.PrimaryKeyConstraint('id'),
 sa.UniqueConstraint('user_id')
)
 ### end Alembic commands ###

Chapter 7

[171]

def downgrade():
 ### commands auto generated by Alembic - please adjust! ###
 op.drop_table('twitter_connection')
 op.drop_index(
 op.f('ix_recipe_created_on'), table_name='recipe')
 op.drop_table('recipe')
 op.drop_table('facebook_connection')
 op.drop_table('user')
 ### end Alembic commands ###

Now, there's quite a lot going on in this script, or at least it seems so. What's
happening in the upgrade() function is the creation of the tables that correspond to
the model metadata that we've defined in the application and the fields that belong
to them. Alembic was able to infer what needed to be generated by comparing the
current model definitions with the currently active database schema and outputting
the list of commands that are required to synchronize them.

Most of the syntax elements should be relatively self-explanatory if you are familiar
with relational database terminology (columns, primary keys, constraints, and so
on), and you can read about what they all mean in the Alembic operation reference:
http://alembic.readthedocs.org/en/latest/ops.html

With the initial schema migration generated, now it's time to apply it:

$ python manage.py db upgrade

This will emit the necessary SQL (based on the generated migration) to the RDBMS
that you configured in the Flask-SQLAlchemy configuration.

Summary
After this rather lengthy and content-filled chapter, you should feel more at ease
with OAuth and OAuth-related implementations and general terminology, and
additionally, the usefulness of database migrations, especially the style of migrations
produced by Alembic that are synchronized to the table and the constraint metadata
declared in the application models.

The chapter started out with an in-depth exploration of the OAuth authorization
grant flow and terminology—no small feat considering the complex nature of
OAuth! Once we established a bit of a knowledge baseline, we implemented an
application that leveraged Flask-OAuthlib to provide users with the ability to create
accounts and sign in with third-party services such as Twitter and Facebook.

http://alembic.readthedocs.org/en/latest/ops.html

Dinnerly – Recipe Sharing

[172]

After fleshing out the data handling portions of the example application, we
then turned our attention to Alembic, the SQLAlchemy data migration toolkit, to
synchronize the changes in our models with our relational database.

The project that we started in this final chapter is a great kick-off point for most
socially-aware web applications. You are highly encouraged to use the knowledge
gained in this and the previous chapters to create a modern, highly-tested, functional
web application.

[173]

Index
A
Alembic 167-171
application factory

about 52, 53, 92, 93
application context 54
app object, instantiating 55

application, setting up
about 147-149
common friends, finding 164-166
models, declaring 149-152
OAuth in views, handling 153-159
recipes, creating 159, 160
recipes, posting to Twitter and

Facebook 161
SQLAlchemy events 161-163

approaches, newsfeed-like service
Fan-out on Read 59
Fan-out on Write 59
Naïve Normalization 59

B
Blinker

custom signals, creating 72, 73
publish/subscribe events 70
signals, from extensions 71
signals, from Flask 71

Blueprint-based application
setting up 122-125

C
command-line interface (CLI) 17
Cross-Site Request Forgery (CSRF) 35

D
database

migrations 166
data mapper 25
data model, Snap application

about 41-43
content attribute 43
content-sensitive default functions,

using 44
created_on attribute 43
extension attribute 43
hash_key attribute 43
name attribute 43
user attribute 43
user_id attribute 43

dependency hell
avoiding 5

distributed version control system
(DVCS) 122

dunder 125, 126

E
exceptions

handling 75-80

F
Flask extensions

about 134
GitHubber 135-140
usage 135

[174]

Flask application structure
about 11-13
blueprint 18, 19
from module to package 13-17
from package to blueprint 17

Flask-RESTful
API authentication 100
APIs 94-97
API, testing 108-111
authentication protocols 101-103
input validation 107, 108
new users, creating 106, 107
password handling, with hybrid

attributes 98-100
users, obtaining 104, 105

Flask-Script commands
about 129
optional arguments 131-134
required arguments 131-134
submanagers 130, 131

Flask-SQLAlchemy
about 23
basics 24
benefits 24, 25
configuring 23
declarative mapping 25-29
snap data models 29-31

Flask-WTF
about 32-35
application SECRET_KEY,

configuring 39, 40
blueprint, hooking up 40
URL 32
user passwords, hashing 37-39

functional testing
about 81-84
and integration testing 66-69
and unit testing 55-58

I
integration testing

and functional testing 66-69
Internet Engineering Task Force (IETF) 143

M
manage.py file

about 126-128
built-in default commands 128, 129

marshalling 119

N
newsfeed

displaying 85-88
implementing 58-66

O
OAuth

about 141, 142
access token(s) 144
advantages 142, 143
authorization server 144
consumer 143
flow type 144
provider 144
resource owner 144

OAuth 1.0 146

P
packages

adding, to virtual environment 7
uninstalling, from testing environment 8

Photo Stream API
about 91, 92
application factory 92

pip 2-4
publish/subscribe events

using, with Blinker 70

S
setuptools 2-4
Shutterbug

file uploads, in distributed systems 116, 117
photos, uploading 114-116
photo uploads, testing 117, 118
users photos, fetching 119, 120

[175]

signals, Flask
request_finished 71
request_started 71

signals, Flask-Login
user_logged_in 71
user_logged_out 71
user_unauthorized 71

signals, Flask-SQLAlchemy extension
before_models_committed 71
models_committed 71

Snap application
building 22
data model 41
Flask-Bcrypt, used for authentication 31, 32
Flask-Login, used for authentication 31, 32
running 40, 41
view handlers 44-50

Socializer
about 51
application factory 52, 53
starting with 51

SQLAlchemy events 161-164

T
testing environment

packages, uninstalling from 8
three-legged authorization 146

U
unit testing

and functional testing 55-58

V
version control system (VCS) 9
virtualenv

working with 6
virtual environment

activating 7
creating 6
deactivating 7
packages, adding to 7

virtualenvwrapper tool
used, for simplifying common

operations 8-10

W
Werkzeug

about 93
middlewares 112-114

Thank you for buying
Flask Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Web Development with Django
Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1.	 Improve your skills by developing models,
forms, views, and templates.

2.	 Create a rich user experience using Ajax and
other JavaScript techniques.

3.	 A practical guide to writing and using APIs to
import or export data.

Flask Framework Cookbook
ISBN: 978-1-78398-340-7 Paperback: 258 pages

Over 80 hands-on recipes to help you create
small-to-large web applications using Flask

1.	 Get the most out of the powerful Flask
framework while remaining flexible with
your design choices.

2.	 Build end-to-end web applications, right from
their installation to the post-deployment stages.

3.	 Packed with recipes containing lots of sample
applications to help you understand the
intricacies of the code.

Please check www.PacktPub.com for information on our titles

Rapid Flask [Video]
ISBN: 978-1-78355-425-6 Duration: 00:42 hrs

Get your web applications up and running in no time
with Flask

1.	 Build a web app using Flask from beginning to
end – never touch PHP again!

2.	 Not just "hello, world"- create a fully functional
web app that includes web services, HTML
forms, and more.

3.	 Your apps won't look like they came out of
the '90s – learn how to integrate basic styles
and icons.

4.	 Go further – Get a glimpse of how to utilize
Flask's more popular extensions.

Instant Flask Web Development
ISBN: 978-1-78216-962-8 Paperback: 78 pages

Tap into Flask to build a complete application in a
style that you control

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Build a small but complete web application
with Python and Flask.

3.	 Explore the basics of web page layout using
Twitter Bootstrap and jQuery.

4.	 Get to know how to validate data entry using
HTML forms and WTForms.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting on the Right
Foot – Using Virtualenv
	Setuptools and pip
	Avoiding dependency hell, the Python way
	Working with virtualenv
	Creating a new virtual environment
	Activating and deactivating virtual environments
	Adding packages to an existing environment
	Uninstalling packages from an existing environment

	Simplifying common operations – using the virtualenvwrapper tool
	Summary

	Chapter 2: Small to Big – Growing the Flask Application Structure
	Your first Flask application structure
	From module to package
	From package to blueprint
	Our first blueprint

	Summary

	Chapter 3: Snap – the Code Snippet Sharing Application
	Getting started
	Flask-SQLAlchemy
	Configuring Flask-SQLAlchemy
	SQLAlchemy basics
	Snap data models

	Flask-Login and Flask-Bcrypt for authentication
	Flask-WTF – form validation and rendering
	Hashing user passwords
	Configure an application SECRET_KEY
	Hook up the blueprint

	Let's run this thing
	The data model for snaps
	Better defaults with content-sensitive default functions

	Snap view handlers

	Summary

	Chapter 4: Socializer – the
Testable Timeline
	Starting off
	Application factories
	The application context
	Instantiating an app object

	Unit and functional testing
	Social features – friends and followers
	Functional and integration testing
	Publish/subscribe events with Blinker
	Signals from Flask and extensions
	Creating custom signals

	Graceful handling of exceptions
	Functional testing
	Your newsfeed
	Summary

	Chapter 5: Shutterbug, the Photo
Stream API
	Starting off
	The application factory
	Interlude – Werkzeug
	Simple APIs with Flask-RESTful
	Improved password handling with hybrid attributes
	API authentication
	Authentication protocols

	Getting users
	Creating new users
	API testing

	Interlude – Werkzeug middlewares
	Back to Shutterbug – uploading photos
	Testing the photo uploads

	Fetching the user's photos

	Summary

	Chapter 6: Hublot – Flask CLI Tools
	Starting off
	The manage.py file
	The built-in default commands

	The Flask-Script commands across Blueprints
	Submanagers
	The required and optional arguments

	Flask extensions – the basics
	When should an extension be used?
	Our extension – GitHubber

	Summary

	Chapter 7: Dinnerly – Recipe Sharing
	First OAuth
	Why use OAuth?
	Terminology
	So what's wrong with OAuth 1.0?
	Three-legged authorization

	Setting up the application
	Declaring our models
	Handling OAuth in our views
	Creating recipes
	Posting recipes to Twitter and Facebook
	SQLAlchemy events

	Finding common friends

	Interlude – database migrations
	Alembic

	Summary

	Index

