
Edited by Wolfgang Engel

Ad
va

nc
ed

 R
en

de
rin

g 
Te

ch
ni

qu
es

Advanced Rendering Techniques

K24427

ISBN: 978-1-4822-6461-6

9 781482 264616

90000
Advanced
Rendering
Techniques

Engel

The latest edition of this bestselling game development reference offers proven tips and techniques for the real-
time rendering of special effects and visualization data that are useful for beginners and seasoned game and 
graphics programmers alike. 

Exploring recent developments in the rapidly evolving field of real-time rendering, GPU Pro6: Advanced 
Rendering Techniques assembles a high-quality collection of cutting-edge techniques for advanced graphics 
processing unit (GPU) programming. It incorporates contributions from more than 45 experts who cover the latest 
developments in graphics programming for games and movies. 

The book covers advanced rendering techniques that run on the DirectX or OpenGL runtimes, as well as on any 
other runtime with any language available. It details the specific challenges involved in creating games across  
the most common consumer software platforms such as PCs, video consoles, and mobile devices.

The book includes coverage of geometry manipulation, rendering techniques, handheld devices programming, 
effects in image space, shadows, 3D engine design, graphics-related tools, and environmental effects. It also 
includes a dedicated section on general purpose GPU programming that covers CUDA, DirectCompute, and  
OpenCL examples.

In color throughout, GPU Pro6 presents ready-to-use ideas and procedures that can help solve many of your daily 
graphics programming challenges. Example programs with downloadable source code are also provided on the 
book’s CRC Press web page.

Computer Game Development / Design

www.allitebooks.com

http://www.allitebooks.org


GPU Pro6

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


GPU Pro6

Advanced Rendering Techniques

Edited by Wolfgang Engel

www.allitebooks.com

http://www.allitebooks.org


CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150318

International Standard Book Number-13: 978-1-4822-6462-3 (PDF (non e-book))

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but 
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to 
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. 
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, 
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without 
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright 
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a 
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to 
infringe.

Library of Congress Cataloging‑in‑Publication Data

GPU pro 6 : advanced rendering techniques / edited by Wolfgang Engel.
pages cm

Includes bibliographical references and index.
ISBN 978-1-4822-6461-6 (hardback)

1.  Rendering (Computer graphics) 2.  Graphics processing units--Programming. 3.  Computer graphics. 4.  Real-time data processing. 5.  Digital video.  
I. Engel, Wolfgang. 

T385.G26674 2015
006.6’6--dc23 2015006268

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org


Contents

Acknowledgments xv

Web Materials xvii

I Geometry Manipulation 1
Wolfgang Engel

1 Dynamic GPU Terrain 3
David Pangerl

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Terrain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dynamic Modification . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Physics Synchronization . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Bandwidth-Efficient Procedural Meshes in the GPU via Tessellation 19
Gustavo Bastos Nunes and João Lucas Guberman Raza

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Procedural Mesh and the Graphics Pipeline . . . . . . . . . . . 19

2.3 Hull Shader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Domain Shader . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Noise in Procedural Meshes . . . . . . . . . . . . . . . . . . . . 23

2.6 Performance Optimizations . . . . . . . . . . . . . . . . . . . . 23

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v

www.allitebooks.com

http://www.allitebooks.org


vi Contents

3 Real-Time Deformation of Subdivision Surfaces on Object Collisions 27
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Dynamic GPU Terrain
David Pangerl

1.1 Introduction

Rendering terrain is crucial for any outdoor scene. However, it can be a hard task
to efficiently render a highly detailed terrain in real time owing to huge amounts
of data and the complex data segmentation it requires. Another universe of com-
plexity arises if we need to dynamically modify terrain topology and synchronize
it with physics simulation. (See Figure 1.1.)

This article presents a new high-performance algorithm for real-time terrain
rendering. Additionally, it presents a novel idea for GPU-based terrain modifica-
tion and dynamics synchronization.

Figure 1.1. Dynamic terrain simulation in action with max (0.1 m) resolution rendered
with 81,000 tris in two batches.

3
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1.2 Overview

The basic goal behind the rendering technique is to create a render-friendly mesh
with topology that can smoothly handle lowering resolution with distance with
minimal render calls.

1.3 Terrain Data

Because rendering and manipulation of all the data is performed on a GPU, we
need to conserve the amount of data (i.e., reduce the number of rendering and
simulation parameters to a minimum) and prepare the data in a GPU-compatible
form. Terrain data are saved in a R16G16B16A16 texture format.

Terrain data attributes include

• terrain height—a normalized terrain height,

• texture blend—a texture index and blend parameters,

• flowability—a measure used to simulate condensed cliffs produced by a plow
modification,

• compression—a measure used to simulate wheel compression.

Flowability. Terrain flowability is used to simulate terrain particles’ ability to
spread to neighboring particles. A flowability parameter is fundamental in dy-
namic erosion modification for cliff creation.

1.4 Rendering

Rendering terrain was one of the most important parts of the algorithm develop-
ment. We needed a technique that would require as few batches as possible with
as little offscreen mesh draw as possible.

We ended up with a novel technique that would render the whole terrain in
three or fewer batches for a field of view less than 180 degrees and in five batches
for a 360-degree field of view.

This technique is also very flexible and adjustable for various fields of view
and game scenarios.

1.4.1 Algorithm

It all starts with the render mesh topology and vertex attributes. A render mesh
is designed to discretely move on per level resolution grid with the camera field
of view in a way that most of the mesh details are right in front of the camera
view. A GPU then transforms the render mesh with the terrain height data.
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Figure 1.2. The two neighboring levels showing the intersection and geomorphing at-
tributes.

Render mesh topology. As mentioned before, the terrain mesh topology is the
most important part of the algorithm.

Terrain render mesh topology is defined by quad resolution R, level size S,
level count L, and center mesh level count Lc:

• R, the quad resolution, is the edge width of the lowest level (Level0) and
defines the tessellation when close to the terrain.

• S, the level size, defines the number of edge quads. Level 0 is a square made
of S × S quads, each of size R×R.

• L, the level count, defines the number of resolution levels.

• Lc, the center mesh level count, is the number of levels (from 0 to Lc) used
for the center mesh.

Each resolution level R is doubled, which quadruples the level area size. Levels
above 0 have cut out the part of the intersection with lower levels except the
innermost quad edge, where level quads overlap by one tile to enable smooth
geomorphing transition and per-level snap movement. (See Figure 1.2.)
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Figure 1.3. A blue center mesh (Mesh 0); green top side mesh (Mesh 1); and white
left, bottom, and right side meshes (Mesh 2, Mesh 3, and Mesh 4, respectively). On
the intersection of Mesh 0 and Mesh 1, the mesh tri overlap is visible. It is also very
important that all mesh rectangles are cut into triangles in the same way (which is why
we cannot use the same mesh for Mesh 0 and Mesh 1).

All vertices have a level index encoded in the vertex color G channel. The
vertex color channels R and B are used to flag geomorphing X and Z blending
factors.

With this method, we get a large tri-count mesh that would, if rendered,
have most of the triangles out of the rendering view. To minimize the number
of offscreen triangles, we split the render mesh into five parts: the center mesh
with Lc levels (Mesh 0) and four-sided meshes with levels from Lc + 1 to L
(Mesh 1–Mesh 4).

The center mesh is always visible, whereas side meshes are tested for visibility
before rendering.

With this optimization, we gain two additional render batches; however, the
rendering is reduced by 76% when a field of view is less than 180 degrees. (See
Figure 1.3.)

For low field of view angles (60 degrees or less), we could optimize it further
by creating more side meshes. For example, if we set Lc to 2 and create eight side
meshes, we would reduce the render load by an additional 55% (we would render
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58,000 triangles). However, if we looked at the terrain from straight above, we
would end up rendering the entire render mesh because the center mesh is so
small that it would not fill the screen.

Choosing terrain parameters. Render mesh topology parameters play a very im-
portant role in performance, so they should be chosen according to each project’s
requirements.

Consider a project where we need a landfill with a rather detailed modification
resolution and neither big rendering size (∼ 200 × 200 m) nor view distance
(∼500 m).

And now a bit of mathematics to get render mesh numbers:

• View extend (how far will the terrain be visible?)—V = R×S×2L−1

2 .

• Max level quad resolution—Q = R× 2L−1.

• Level 0 tri count—TL0 = 2 × S2.

• Level n tri count—TLn = 2(S2 − (S2 − 2)2).

• Total tri count—T = TL0 + L× TLn .

• Mesh 0 tri count—TM0 = TL0 + (Lc − 1) × TLn .

• Mesh n tri count—TMn =
(L−Lc)×TLn

4 .

Because we had lots of scenarios where the camera was looking down on the
terrain from above, we used a reasonably high center mesh level count (Lc 4),
which allowed us to render the terrain in many cases in a single batch (when we
were rendering the center mesh only).

We ended up with the quad resolution R 0.1 m, the level size S 100, the level
count L 8, and the center mesh level count Lc 4. We used a 2048× 2048 texture
for the terrain data. With these settings we got a 10 cm resolution, a render view
extend of ∼1 km, and a full tri count of 127,744 triangles. Because we used a field
of view with 65 degrees, we only rendered ∼81,000 triangles in three batches.

As mentioned previously, these parameters must be correctly chosen to suit
the nature of the application. (See Figures 1.4 and 1.5.)

CPU calculations. We calculate per-resolution-level snapping on a CPU. Each
resolution level snap value is its edge size. This is the only terrain calculation
made directly on the CPU.

A terrain render position is snapped to a double level Q size so that each
level is aligned with a higher level. A vertex shader snaps all vertices at �x and �z
position to a vertex level snap position.
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Figure 1.4. Color coded mesh topology for L = 8 and Lc = 4.

Figure 1.5. Wire frame showing different levels of terrain mesh detail.

The following level shift is used to skip resolution levels that are too small for
the camera at ground height:

i n t shift=( in t ) floor ( log ( 1 + cameragroundheight / 5 ) ) ;

The CPU code is

f l o a t snapvalue=Q ;
f l o a t snapmax=2 � snapvalue ;
possnap0 . x=floor ( camerapos . x / snapmax + 0.01 f ) � snapmax ;
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possnap0 . z=floor ( camerapos . z / snapmax + 0.01 f ) � snapmax ;
f l o a t levelsnap=snapvalue ;

TTerrainRendererParams [ 0 ] . z=possnap0 . x − camerapos . x ;
TTerrainRendererParams [ 0 ] . w=possnap0 . z − camerapos . z ;

f o r ( i n t a=1; a<levels ; a++)
{

levelsnap=levelsnap � 2 ;
f l o a t l=levelsnap � 2 ;

TVector lsnap ;
lsnap . x=floor ( possnap0 . x / l + 0.01 f ) � l ;
lsnap . z=floor ( possnap0 . z / l + 0.01 f ) � l ;
TTerrainRendererParams [ a ] . x=lsnap . x − possnap0 . x ;
TTerrainRendererParams [ a ] . y=lsnap . z − possnap0 . z ;
TTerrainRendererParams [ a ] . z=lsnap . x − camerapos . x ;
TTerrainRendererParams [ a ] . w=lsnap . z − camerapos . z ;

}

Vertex shader. All other terrain-rendering algorithm calculations are done in the
vertex shader:

• perform vertex shader texture fetch,

• calculate world-space position,

• calculate level resolution shift,

• calculate geomorphing parameters and blending factors.

Geomorphing is performed on the inner-level edge where lower-level points
lie on edges of a higher level. These points are smoothly shifted onto the edge
position while they are closing the distance to where they are hidden and the
higher level is shown.

f l o a t 4 pos0=TTerrainRendererParams [ 1 6 ] ;
f l o a t 4 siz0=TTerrainRendererParams [ 1 7 ] ;
//
f l o a t 4 posWS=input . pos ;
//
i n t level=input . tex1 . g ;
posWS . xz+=TTerrainRendererParams [ level ] . xy ;
//
i n t xmid=input . tex1 . r ;
i n t zmid=input . tex1 . b ;
f l o a t geomorph=input . tex1 . a ;
//
f l o a t levelsize =input . tex2 . x ;
f l o a t levelsize2 =input . tex2 . y ;
//
output . color0=1;
//
f l o a t 4 posterrain=posWS ;
//
posterrain=(posterrain − pos0 ) / siz0 ;
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//
output . tex0 . xy=posterrain . xz ;
//
f l o a t 4 geo0=posWS ;
f l o a t 4 geox=posWS ;
f l o a t 4 geo1=posWS ;
//
geox=(geox − pos0 ) / siz0 ;

// ////////////////////////////////
// output c en t e r geo as tex0
// ////////////////////////////////
output . tex0 . xy=geox . xz ;

// ////////////////////////////////
// sample c en t e r he ight
// ////////////////////////////////
f l o a t heix =tex2Dlod ( User7SamplerClamp , f l o a t 4 ( geox . x , geox . z ,
0 , 0 ) ) . r ;
//
heix=heix � siz0 . y + pos0 . y ;

// ////////////////////////////////
// geomorphing
// ////////////////////////////////
i f ( geomorph > 0 )
{

f l o a t geosnap=levelsize ;
//
i f ( xmid )
{
geo0 . x−=geosnap ;
geo1 . x+=geosnap ;
}
//
i f ( zmid )
{

geo0 . z−=geosnap ;
geo1 . z+=geosnap ;

}
//
geo0=(geo0 − pos0 ) / siz0 ;
geo1=(geo1 − pos0 ) / siz0 ;
//
f l o a t hei0 =tex2Dlod ( User7SamplerClamp ,

f l o a t 4 ( geo0 . x , geo0 . z , 0 , 0 ) ) . r ;
f l o a t hei1 =tex2Dlod ( User7SamplerClamp ,

f l o a t 4 ( geo1 . x , geo1 . z , 0 , 0 ) ) . r ;

// geomorph
f l o a t heigeo=(hei0+hei1 ) � 0 . 5 � siz0 . y + pos0 . y ;
//
posWS . y=lerp ( heix , heigeo , geomorph ) ;

}
e l s e
{

posWS . y=heix ;
}
//
posWS . w=1;
output . pos =mul ( posWS , TFinalMatrix ) ;
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Figure 1.6. A sample of a static render mesh for a dynamic terrain on a small area.

1.4.2 Rendering Terrain for Small Areas

For a small contained dynamic area (e.g., a dump truck cargo area or a dump
hole), we use a standard rendering technique with a static mesh (with the level
of details) that covers the area. (See Figure 1.6.)

Topology of the mesh in this case is not important because it is small and
always rendered as a whole.

1.5 Dynamic Modification

Dynamic terrain modification was the second important aspect of the new al-
gorithm. Previously, we developed several techniques that used CPU terrain
modification; however, it was difficult to optimize these techniques and therefore
the main target of the new modification algorithm was the one executed on the
GPU.

1.5.1 Algorithm Overview

The following is a high-level overview of the algorithm.
As shown in Figure 1.7, we took advantage of the fact that all modifications

(red rectangle) in the large main terrain texture (blue rectangle) are mostly done
in a very small area (a few meters at the most).

Initially, we created a small temporary modification render texture (black
rectangle) that we use as a ping-pong data buffer. While processing, we first
selected this temporary modification texture as a render target and the main
texture as a source and copied the modified location of the main mesh into the
temporary modification texture with a plain data copy shader to maintain the
texture pixel size.

Next, we swapped the roles and selected the main texture as a render target
and the small temporary modification texture as the texture source. Then we
rendered the rectangle only on the modified part of the main texture with the

www.allitebooks.com

http://www.allitebooks.org
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Copy

Modification shader

Figure 1.7. Modifications (red rectangle) in the large main terrain texture (blue rect-
angle) are done in a very small area.

modification shader. Modification shaders can have additional masks to perform
the desired modification (e.g., a plow mask, cylinder mask for wheels, or sphere
mask).

The temporary texture is sampled in many effects several times around the
target pixel to get the final result (e.g., an erosion shader or plow shader).

We use a 128 × 128 temporary modification texture (covering 12.8 × 12.8 m
changes).

1.5.2 Plow

A plow modification shader is the most complex terrain modification that we do.
The idea is to displace the volume moved by the plow in front of the plow while
simulating the compression, terrain displacement, and volume preservation.

We use the texture query to measure how much volume the plow would remove
(the volume displaced from the last plow location). Then we use the special plow
distribution mask and add the displaced volume in front of the plow.

Finally, the erosion simulation creates a nice terrain shape.

1.5.3 Erosion

Erosion is the most important terrain modification. It is performed for a few
seconds everywhere a modification is done to smooth the terrain and apply a
more natural look.

Erosion is a simple function that sums target pixel height difference for neigh-
boring pixels, performs a height adjustment according to the pixel flowability
parameter, and adds a bit of a randomization for a natural look.

Unfortunately, we have not yet found a way to link the erosion simulation
with the volume preservation.
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1.5.4 Wheels

Wheel modification is a simulation of a cylindrical shape moving over a terrain.
It uses a terrain data compression factor to prevent oversinking and to create a
wheel side supplant.

We tried to link this parameter with the terrain data flowability parameter
(to reduce the texture data), but it led to many problems related to the erosion
effect because it also changes the flowability value.

1.6 Physics Synchronization

One drawback of GPU-only processing is that sometimes data needs to be syn-
chronized with the physics, which is in the CPU domain. To do that, we need to
transfer data from the GPU memory to the CPU memory to perform synchro-
nization.

1.6.1 Collision Update

Because upon downloading a full terrain data texture (2000 × 2000 in our case)
every frame would be a performance killer, we have to collect and localize eventual
terrain changes.

These changes are copied from the main texture into a smaller one for every
few frames and downloaded into the main memory and used to update collision
mesh information.

We found out that using a 64× 64 texture (capturing 6.4× 6.4 m) was totally
adequate for our needs. Preparation, downloading, and synchronizing in this
manner takes less than 0.1 ms.

1.7 Problems

1.7.1 Normals on Cliffs

Normals are calculated per pixel with the original data and with a fixed offset
(position offset to calculate slope). This gives a very detailed visual terrain shape
even from a distance, where vertex detail is very low. (See Figure 1.8.)

The problem occurs where flowability is very low and the terrain forms cliffs.
What happens is that the triangle topology is very different between high and low
details, and normals, which are calculated from the high-detailed mesh, appear
detached. (See Figure 1.9.)

One way of mitigating this would be to adjust normal calculation offset with
the edge size, where flowability is low, but with this we could lose other normal
details.
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Figure 1.8. Normal on cliffs problem from up close. High-detail topology and normals
are the same, and this result is a perfect match.

1.7.2 Physics Simulation on Changing Terrain

Physics simulation (currently we are using Physx 3.3) is very temperamental
about changing the cached contact point collision, which we are constantly do-
ing by changing the terrain topology below wheels. If the ground penetrates a
collision too deeply, it usually causes a dynamic object to be launched into orbit.

To remedy this behavior we have to adjust the physics solver to limit the
maximum penetration depth.

1.7.3 Inconsistent Texture Copy Pixel Offset

When we are performing a dynamic terrain modification, we need to copy from
the main texture into the smaller temporary modification texture and back again.
With the bilinear texture filtering, this can cause a minor texture shift that is very
noticeable when performed repeatedly. Somehow, the per-pixel texture offset is
linked to the device resolution even if the texture size is the same.

We have to make an initialization calibration to find an appropriate pixel
offset whenever the resolution is changed.
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Figure 1.9. Normal on cliffs problem from a distance. Low-detail topology (clearly
visible in the bottom wire frame image) and per-pixel normals are not the same.

1.8 Conclusion
1.8.1 Future Work

At the moment, the algorithm described here uses a single texture for the whole
terrain and as such is limited by either the extend or the resolution. By adding a
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Figure 1.10. Examples.

texture pyramid for coarser terrain detail levels, we could efficiently increase the
render extend and not sacrifice the detail.

Mesh 0 and Mesh 2 (as well as Mesh 1 and Mesh 2) are theoretically the same,
so we could reuse them to optimize their memory requirements.
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Only one level quad edge makes a noticeable transition to a higher level (a
lower-lever detail) at a close distance. By adding more overlapping quad edges
on lower levels, we would be able to reduce the effect and make smoother geo-
morphing.

Currently, we have not yet found a way to maintain the terrain volume, so the
simulation can go into very strange places (e.g., magically increasing volume).

Because we have already downloaded change parts for collision synchroniza-
tion, we could also use this data to calculate the volume change and adjust
simulation accordingly.

1.8.2 Summary

This paper presents a novel algorithm for terrain rendering and manipulation on
a GPU.

In Section 1.4, “Rendering,” we showed in detail how to create and efficiently
render a very detailed terrain in two or three render batches.

In Section 1.5, “Dynamic Modification,” we demonstrated how the terrain can
be modified in real time and be synchronized with the CPU base collision.

Figure 1.10 provides an example of the algorithm at work.
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Bandwidth-Efficient Procedural
Meshes in the GPU via

Tessellation
Gustavo Bastos Nunes and João Lucas

Guberman Raza

2.1 Introduction

Memory bandwidth is still a major bottleneck in current off-the-shelf graphics
pipelines. To address that, one of the common mechanisms is to replace bus con-
sumption for arithmetic logic unit (ALU) instructions in the GPU. For example,
procedural textures on the GPU mitigate this limitation because there is little
overhead in the communication between CPU and GPU. With the inception of
DirectX 11 and OpenGL 4 tessellator stage, we are now capable of expanding pro-
cedural scenarios into a new one: procedural meshes in the GPU via parametric
equations, whose analysis and implementation is the aim of this article.

By leveraging the tessellator stage for generating procedural meshes, one is
capable of constructing a highly detailed set of meshes with almost no overhead
in the CPU to GPU bus. As a consequence, this allows numerous scenarios such
as constructing planets, particles, terrain, and any other object one is capable of
parameterizing. As a side effect of the topology of how the tessellator works with
dynamic meshes, one can also integrate the procedural mesh with a geomorphic-
enabled level-of-detail (LOD) schema, further optimizing their shader instruction
set.

2.2 Procedural Mesh and the Graphics Pipeline

To generate a procedural mesh in the GPU via the tessellator, this article proposes
leveraging parametric meshes. The points of a parametric mesh are generated via
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a function that may take one or more parameters. For 3D space, the mathemati-
cal function in this article shall be referenced as a parametric equation of g(u, v),
where u and v are in the [0, 1] range. There are mechanisms other than paramet-
ric surface equations, such as implicit functions, that may be used to generate
procedural meshes. However, implicit functions don’t map well to tessellator use,
because its results imply if a point is in or out of a surfaces mesh, which is best
used in the geometry shader stage via the marching cubes algorithm [Tatarchuk
et al. 07]. Performance-wise, the geometry shader, unlike the tessellator, was not
designed to have a massive throughput of primitives.

Although the tessellator stage is performant for generating triangle primitives,
it contains a limit on the maximum number of triangle primitives it can generate.
As of D3D11, that number is 8192 per patch. For some scenarios, such as simple
procedural meshes like spheres, that number may be sufficient. However, to
circumvent this restriction so one may be able to have an arbitrary number of
triangles in the procedural mesh, the GPU must construct a patch grid. This is
for scenarios such as terrains and planets, which require a high poly count. Each
patch in the grid refers to a range of values within the [0, 1] domain, used as a
source for u and v function parameters. Those ranges dissect the surface area of
values into adjacent subareas. Hence, each one of those subareas that the patches
define serve as a set of triangles that the tessellator produces, which themselves
are a subset of geometry from the whole procedural mesh.

To calculate the patch range p we utilize the following equation:

p =
1√
α
,

where α is the number of patches leveraged by the GPU. Because each patch
compromises a square area range, p may then serve for both the u and the v
range for each produced patch. The CPU must then send to the GPU, for each
patch, a collection of metadata, which is the patches u range, referenced in this
article as [pumin , pumax ], and the patches v range, referenced in this article as
[pvmin , pvmax ]. Because the tessellator will construct the entire geometry of the
mesh procedurally, there’s no need to send geometry data to the GPU other than
the patch metadata previously described. Hence, this article proposes to leverage
the point primitive topology as the mechanism to send metadata to the GPU,
because it is the most bandwidth-efficient primitive topology due to its small
memory footprint. Once the metadata is sent to the GPU, the next step is to set
the tessellation factors in the hull shader.

2.3 Hull Shader

The hull shader’s purpose is to receive geometry data, which in this article would
be one control point per patch. With that geometry data, the hull shader may
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then set the tessellation factor per domain edge as well as the primitive’s interior.
The tessellation factor determines the number of triangle primitives that are
generated per patch. The higher the tessellation factor set in the hull shader for
each patch, the higher the number of triangle primitives constructed. The hull
shader’s requirement for this article is to produce a pool of triangle primitives,
which the tessellator shader then leverages to construct the mesh’s geometry
procedurally. Hence, the required tessellation factor must be set uniformly to
each patch edges and interior factors, as exemplified in the code below:

HS_CONSTANT_DATA_OUTPUT BezierConstantHS ( InputPatch<VS_
CONTROL_POINT_OUTPUT ,
INPUT_PATCH_SIZE> ip , u int PatchID : SV_PrimitiveID )
{

HS_CONSTANT_DATA_OUTPUT Output ;
Output . Edges [ 0 ] = g_fTessellationFactor ;
Output . Edges [ 1 ] = g_fTessellationFactor ;
Output . Edges [ 2 ] = g_fTessellationFactor ;
Output . Edges [ 3 ] = g_fTessellationFactor ;
Output . Inside [ 0 ] = Output . Inside [1 ]= g_fTessellationFactor ;
r e turn Output ;

}

Because the patch grid will have primitives that must end up adjacent to each
other, the edges of each patch must have the same tessellation factor, otherwise
a patch with a higher order set of tessellation might leave cracks in the geometry.
However, the interior of the primitive might have different tessellation factors per
patch because those primitives are not meant to connect with primitives from
other patches. A scenario where altering the tessellation factor may be leveraged
is for geomorphic LOD, where the interior tessellation factor is based from the
distance of the camera to the procedural mesh. The hull shader informs the
tessellator how to constructs triangle primitives, which the domain shader then
leverages. This LOD technique is exemplified in the high poly count procedural
mesh shown in Figures 2.1 and 2.2, with its subsequent low poly count procedural
mesh in Figures 2.3 and 2.4.

2.4 Domain Shader

The domain shader is called for each vertex generated by the tessellator. It also
receives a pair (u, v) of parametric coordinates for each generated vertex. For
this article, we shall reference that coordinate pair as du and dv. Because these
parametric coordinates are in domain space, the domain shader must then map
them into patch grid space. To do so, we do a linear interpolation:

pu = pumin + du ∗ pumax ,

pv = pvmin + dv ∗ pvmax ,
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Figure 2.1. A high poly count mesh with noise. Figure 2.2. The same mesh in Figure 2.1, but
shaded.

Figure 2.3. The same mesh in Figure 2.1, but with
a lower tessellation factor.

Figure 2.4. The same mesh in Figure 2.3, but
shaded.

where pu and pv are the parameters to be leveraged in a parametric equation
of the implementer’s choice. The example in Figure 2.5 uses the following code
snippet:

f l o a t 3 heart ( f l o a t u , f l o a t v )
{

f l o a t pi2 = 2 � PI ;
f l o a t pi = PI ;
f l o a t x , y , z ;
f l o a t s = u ;
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Figure 2.5. Parametric heart generated in the
GPU.

Figure 2.6. Deformed cylinder generated in the
GPU.

f l o a t t = v ;
x = cos ( s � pi ) � sin ( t � 2 � pi ) −

pow ( abs ( sin ( s � pi ) � sin ( t � 2 � pi ) ) , 0 . 5 f ) � 0 . 5 f ;
y = cos ( t � 2 � pi ) � 0 . 5 f ;
z = sin ( s � pi ) � sin ( t � 2 � pi ) ;
f l o a t 3 heart = f l o a t 3 (x , y , z ) ;
r e turn heart ;

}

2.5 Noise in Procedural Meshes

Noise with procedural meshes allows applications to generate a myriad of differ-
ent mesh outputs based on a common factor. For example, with the algorithm
proposed in this article for a sphere, noise may allow an application to construct
several different types of planets, asteroids, rocks, etc., by altering the generated
vertices of the mesh. A possible effect is exemplified in Figure 2.6, as it displays
the deformation of a cylinder with Perlin noise as described in [Green 05].

2.6 Performance Optimizations

Because all the primitives are being generated in the GPU, primitives won’t be
subject to frustum culling. To optimize this aspect, clients should determine if
the triangles generated from a patch will be in the frustum or not. This can
be done by a heuristic that verifies if the points of the given patch are within a
volume that intersects with the frustum. Once that’s done, the application can
adjust the patch’s parametric range or cull the patch altogether from being sent
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to further states in the GPU. Depending on the optimization, the former can be
done on the client or in the GPU hull shader via setting the tessellation factor
to 0.

Another set of optimizations relates to normal calculations when using noise
functions. Calculating the normal of the produced vertices might be one of the
main bottlenecks, because one needs to obtain the nearby positions for each pixel
(on per-pixel lighting) or per vertex (on per-vertex lighting). This circumstance
becomes even further problematic when leveraging a computationally demanding
noise implementation. Take the example in the proposal by [Perlin 04]. It calcu-

lates the new normal (
−→
Nn) by doing four evaluations of the noise function while

leveraging the original noiseless normal (
−→
No):

F0 = F (x, y, z),

Fx = F (x + ε, y, z),

Fy = F (x, y + ε, z),

Fz = F (x, y, z + ε),

−→
dF =

∣∣∣∣Fx − F0

ε
,
Fy − F0

ε
,
Fz − F0

ε

∣∣∣∣ ,
−→
Nn = normalize(

−→
No +

−→
dF ).

However, given that the domain shader for each vertex passes its coordinates
(u, v) in tangent space, in relation to the primitive that each vertex belongs to,

one might be able to optimize calculating the normal vector (
−→
N ) by the cross

product of the tangent (
−→
T ) and binormal (

−→
B ) vectors (which themselves will

also be in tangent space) produced by the vertices in the primitive:

F0 = g(u, v) + normalize(
−→
No) × F (g(u, v)),

Fx = g(u + ε, v) + normalize(
−→
No) × F (g(u + ε, v)),

Fy = g(u, v + ε) + normalize(
−→
No) × F (g(u, v + ε)),

−→
T = Fx − F0,
−→
B = Fy − F0,
−→
N = T ×B,

where the parametric function is g(u, v), the noise function that leverages the

original point is F (g(u, v)), and the original normal is
−→
No. This way, one only

does three fetches, as opposed to four, which is an optimization in itself because
noise fetches are computationally more expensive than doing the cross product.

Lastly, in another realm of optimization mechanisms, the proposed algorithm
produces a high quantity of triangles, of which the application might not be able
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to have a predefined understanding of its output topology. Deferred shading could
then be used to reduce the number of operations done in the resulting fragments.

2.7 Conclusion

For the proposed algorithm, the number of calculations linearly increases with
the number of vertices and patches, thus making it scalable into a wide range
of scenarios, such as procedural terrains and planets. An example of such a
case would be in an algorithm that also leverages the tessellation stages, such
as in [Dunn 15], which focuses on producing volumetric explosions. Other do-
mains of research might also be used to extend the concepts discussed herein, due
to their procedural mathematical nature, such as dynamic texture and sounds.
Lastly, as memory access continues to be a performance bottleneck, especially
in hardware-constrained environments such as mobile devices, inherently mathe-
matical processes that result in satisfactory visual outputs could be leveraged to
overcome such limitations.
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3.1 Introduction

Scene environments in modern games include a wealth of moving and animated
objects, which are key to creating vivid virtual worlds. An essential aspect in
dynamic scenes is the interaction between scene objects. Unfortunately, many
real-time applications only support rigid body collisions due to tight time budgets.
In order to facilitate visual feedback of collisions, residuals such as scratches
or impacts with soft materials like snow or sand are realized by dynamic decal
texture placements. However, decals are not able to modify the underlying surface
geometry, which would be highly desirable to improve upon realism. In this
chapter, we present a novel real-time technique to overcome this limitation by
enabling fully automated fine-scale surface deformations resulting from object
collisions. That is, we propose an efficient method to incorporate high-frequency
deformations upon physical contact into dynamic displacement maps directly on
the GPU. Overall, we can handle large dynamic scene environments with many
objects (see Figure 3.1) at minimal runtime overhead.

An immersive gaming experience requires animated and dynamic objects.
Such dynamics are computed by a physics engine, which typically only considers
a simplified version of the scene in order to facilitate immediate visual feedback.
Less attention is usually paid to interactions of dynamic objects with deformable
scene geometry—for example, footprints, skidmarks on sandy grounds, and bullet
impacts. These high-detail deformations require a much higher mesh resolution,
their generation is very expensive, and they involve significant memory I/O. In
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Figure 3.1. Our method allows computation and application of fine-scale surface defor-
mations on object collisions in real time. In this example, tracks of the car and barrels
are generated on the fly as the user controls the car.

most real-time applications, it is thus too costly to compute fine-scale deforma-
tions on the fly directly on the mesh. Instead, good cost-efficient approximations
are deformations on a template as decal color textures, bump maps, or displace-
ments.

Recently, we have introduced a more flexible approach to this problem [Schäfer
et al. 14]. We dynamically generate and store displacements using tile-based
displacement maps—that is, deformations are computed, stored, and applied
individually on a per-patch level. While low-frequency dynamics are still handled
by the CPU physics engine, fine-detail deformations are computed on the fly
directly on the GPU. Every frame, we determine colliding objects, compute a
voxelization of the overlap region, and modify displacements according to the
resulting deformations. Deformed patches are then rendered efficiently using the
hardware tessellator. As our algorithm runs entirely on the GPU, we can avoid
costly CPU–GPU data transfer, thus enabling fine-scale deformations at minimal
runtime overhead.

In this chapter, we describe the implementation of our system, which is
available on GitHub as part of this publication1. The input to our deforma-
tion framework are large scenes composed of quadrilateral subdivision meshes.

1https://github.com/hsdk/DeformationGPU
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More specifically, we process Catmull-Clark subdivision surfaces, which we ren-
der using feature-adaptive subdivision and the GPU hardware tessellator [Nießner
et al. 12]. Deformations are realized by analytic displacements, which can be effi-
ciently updated at runtime without a costly normal map re-computation [Nießner
and Loop 13]. In order to keep GPU storage requirements at a minimum, we use
dynamic memory management, thus only allocating space for displacements of
surface patches affected by deformations.

3.2 Deformable Surface Representation

We represent deformable objects as displaced subdivision surfaces, where the
base mesh is a Catmull-Clark mesh [Catmull and Clark 78], and high-frequency
detail is stored in displacement offsets. On modern hardware, these high-quality
surface representations are efficiently evaluated and rendered using the hardware
tessellation unit [Nießner et al. 12]. Catmull-Clark surfaces are defined by a coarse
set of control points, which are refined at render time and converge to a limit
surface that is C2 continuous everywhere except at non–valence-four vertices,
where it is C1. On top of this surface, displacements are applied along the
analytic surface normal of the subdivided mesh.

If we detect object collisions causing deformations, we update the displace-
ment data accordingly (see Section 3.4). When rendering this surface, the normals
resulting from these displacements are required. If displacements are static, these
normals can be precomputed and stored in a high-resolution normal map, yet in
our case we have to update these normals on the fly, which is costly. We thus
employ analytic displacements [Nießner and Loop 13], where normals are ana-
lytically obtained from scalar surface offsets, allowing for efficient displacement
updates without costly normal re-computations (see Section 3.4.3).

3.2.1 Analytic Displacements

The key idea of analytic displacements is the combination of a C2 base surface
s(u, v) with a C1 offset function D(u, v). As a result, the displaced surface
f(u, v) = s(u, v) + Ns(u, v)D(u, v) is C1 everywhere and provides a continuous
normal field ∂

∂uf(u, v) × ∂
∂vf(u, v); s(u, v) ∈ R

3, D(u, v) ∈ R
1, and f(u, v) ∈ R

3.
D(u, v) is a scalar-valued, biquadratic B-spline with Doo-Sabin connectivity and
special treatment at extraordinary vertices. The connectivity is dual with respect
to the base Catmull-Clark surface, which provides a one-to-one mapping between
base patches and the subpatches of the displacement function.

Tile-based texture format. We store scalar-valued displacement offsets (i.e., con-
trol points of the biquadratic B-spline) in a tile-based texture format similar to
PTex [Burley and Lacewell 08] (see Figure 3.2). The key advantage of a tile-based
format is the elimination of seam artifacts at (u, v)-boundaries because texels are
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PagesUV offset in page

Tile data
Mip 0

Mip 1

Mip 2

Figure 3.2. The tile-based texture format for analytic displacements: each tile stores a
one-texel overlap to avoid the requirement of adjacency pointers. In addition, a mipmap
pyramid, computed at a tile level, allows for continuous level-of-detail rendering. All
tiles are efficiently packed in a large texture array.

aligned in parameter space; that is, the parametric domain of the tiles matches
with the Catmull-Clark patches, thus providing consistent (u, v)-parameters for
s(u, v) and D(u, v). In order to evaluate the biquadratic function D(u, v), 3 × 3
scalar control points (i.e., subpatch; see Figure 3.3) need to be accessed (see Sec-
tion 3.2.1). At base patch boundaries, this requires access to neighboring tiles.

(a) (b)

Figure 3.3. (a) A 3 × 3 control point array of a scalar-valued biquadratic B-spline
subpatch of a texture tile storing displacement data. (b) Another set of control points
of the same tile where the one-texel boundary overlap is used; overlap data is redundant
with adjacent tiles. Each tile corresponds to a Catmull-Clark base patch.
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s t r u c t TileDescriptor
{

i n t page ; // t e x tu r e s l i c e
i n t uOffset ; // t i l e s t a r t u
i n t vOffset ; // t i l e s t a r t v
uint size ; // t i l e width , he ight
uint nMipmap ; // number o f mipmaps

} ;

TileDescriptor GetTile ( Buffer<uint> descSRV , uint patchID )
{

TileDescriptor desc ;
uint offset = patchID � 4 ;
desc . page = descSRV [ offset ] ;
desc . uOffset = descSRV [ offset + 1 ] ;
desc . vOffset = descSRV [ offset + 2 ] ;
uint sizeMip = descSRV [ offset + 3 ] ;
desc . size = 1 << ( sizeMip >> 8) ;
desc . nMipmap = ( sizeMip & 0 xff ) ;
r e turn desc ;

}

Listing 3.1. Tile descriptor: each tile corresponds to a Catmull-Clark base face and is
indexed by the face ID.

This access could be done using adjacency pointers, yet pointer traversal is ineffi-
cient on modern GPUs. So we store for each tile a one-texel overlap, making tiles
self-contained and such pointers unnecessary. While this involves a slightly larger
memory footprint, it is very beneficial from a rendering perspective because all
texture access is coherent. In addition, a mipmap pyramid is stored for every tile,
allowing for continuous level of detail. Note that boundary overlap is included at
all levels.

All tiles—we assume a fixed tile size—are efficiently packed into a large texture
array (see Figure 3.2). We need to split up tiles into multiple pages because the
texture resolution is limited to 16,000 × 16,000 on current hardware. Each page
corresponds to a slice of the global texture array. In order to access a tile, we
maintain a buffer, which stores a page ID and the (u, v) offset (within the page)
for every tile (see Listing 3.1). Entries of this buffer are indexed by corresponding
face IDs of base patches.

Efficient evaluation. In order to efficiently render the displaced objects, we use
the GPU hardware tessellation unit. The Catmull-Clark base surface s(u, v) and
the corresponding normal Ns(u, v) are exactly evaluated using feature-adaptive
subdivision [Nießner and Loop 13]. Because there is a one-to-one mapping be-
tween the Catmull-Clark base patches and texture tiles, displacement data can be
retrieved by the patch ID, u, v ∈ [1, 0]× [1, 0] triple. That is, we obtain the 3× 3
array of scalar-valued biquadratic displacement coefficients di,j of the subpatch
corresponding to the base patch u, v. For each base patch, the scalar displacement
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function D(u, v) is then evaluated using the B-spline basis functions B2
i :

D(u, v) =

2∑
i=0

2∑
j=0

B2
i (T (u))B2

j (T (v))di,j ,

where the subpatch domain parameters û, v̂ are given by the linear transforma-
tion T ,

û = T (u) = u− �u� +
1

2
and v̂ = T (v) = v − �v� +

1

2
.

In order to obtain the displaced surface normal Nf (u, v), the partial deriva-
tives of f(u, v) are required:

∂

∂u
f(u, v) =

∂

∂u
s(u, v) +

∂

∂u
Ns(u, v)D(u, v) + Ns(u, v)

∂

∂u
D(u, v).

In this case, ∂
∂uNs(u, v) would involve the computation of the Weingarten equa-

tion, which is costly. Therefore, we approximate the partial derivatives of f(u, v)
(assuming small displacements) by

∂

∂u
f(u, v) ≈ ∂

∂u
s(u, v) + Ns(u, v)

∂

∂u
D(u, v),

which is much faster to compute. The computation of ∂
∂v f(u, v) is analogous.

Rendering implementation. The rendering of subdivision surfaces with analytic
displacements can be efficiently mapped to the modern graphics pipeline with the
hardware tessellation unit. The Catmull-Clark base surface s(u, v) is converted
into a set of regular bicubic B-spline patches using DirectX Compute Shaders
[Nießner et al. 12]—that is, all regular patches, which have only valence-four
vertices, are directly sent to the tessellation unit as they are defined as bicubic
B-splines. Irregular patches, which have at least one non–valence-four vertex,
are adaptively subdivided by a compute kernel. Each refinement step turns an
irregular patch into a set of smaller regular patches and an irregular patch next
to the extraordinary vertex. After only a few adaptive subdivision steps, the size
of irregular patches is reduced to just a few pixels and can be rendered as final
patch filling quads; no further tessellation is required.

All generated regular patches are sent to the hardware tessellation unit, where
the domain shader takes the 16 patch control points to evaluate s(u, v) and
Ns(u, v) using the bicubic B-spline basis functions. In addition, the domain
shader evaluates a displacement function D(u, v) and computes the displaced
vertices f(u, v) = s(u, v) + Ns(u, v)D(u, v). Generated vertices are then passed
to the rasterization stage. In the pixel shader, the shading normals Nf (u, v)
are computed based on the partial derivatives of the displacement function; i.e.,
∂
∂uD(u, v) and ∂

∂vD(u, v) are evaluated. Code for the evaluation of analytic dis-
placements is shown in Listing 3.2, the domain shader part in Listing 3.3, and the
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Texture2DArray<f l o a t> g_displacementData : r e g i s t e r ( t6 ) ;
Buffer<uint> g_tileDescriptors : r e g i s t e r ( t7 ) ;

f l o a t AnalyticDisplacement ( in uint patchID , in float2 uv ,
inout f l o a t du , inout f l o a t dv )

{
TileDescriptor tile = GetTile ( g_tileDescriptors , patchID ) ;

float2 coords = float2 ( uv . x � tile . size + tile . uOffset ,
uv . y � tile . size + tile . vOffset ) ;

coords −= float2 ( 0 . 5 , 0 . 5 ) ;
int2 c = int2 ( rount ( coords ) ) ;

f l o a t d [ 9 ] ;
d [ 0 ] = g_displacementData [ int3 ( c . x−1, c . y−1, tile . page ) ] . x ;
d [ 1 ] = g_displacementData [ int3 ( c . x−1, c . y−0, tile . page ) ] . x ;
d [ 2 ] = g_displacementData [ int3 ( c . x−1, c . y+1, tile . page ) ] . x ;
d [ 3 ] = g_displacementData [ int3 ( c . x−0, c . y−1, tile . page ) ] . x ;
d [ 4 ] = g_displacementData [ int3 ( c . x−0, c . y−0, tile . page ) ] . x ;
d [ 5 ] = g_displacementData [ int3 ( c . x−0, c . y+1, tile . page ) ] . x ;
d [ 6 ] = g_displacementData [ int3 ( c . x+1, c . y−1, tile . page ) ] . x ;
d [ 7 ] = g_displacementData [ int3 ( c . x+1, c . y−0, tile . page ) ] . x ;
d [ 8 ] = g_displacementData [ int3 ( c . x+1, c . y+1, tile . page ) ] . x ;

f l o a t evalCoord = 0.5 − ( f l o a t ( c ) − coords ) ;
f l o a t displacement = EvalQuadricBSpline ( evalCoord , d , du , dv ) ;

du �= tile . size ;
dv �= tile . size ;
r e turn displacement ;

}

Listing 3.2. Analytic displacement lookup and evaluation.

pixel shader computation in Listing 3.4. Note that shading normals are obtained
on a per-pixel basis, leading to high-quality rendering even when the tessellation
budget is low.

Evaluating f(u, v) and Nf (u, v) for regular patches of the Catmull-Clark patch
is trivial because tiles correspond to surface patches. Regular patches generated
by feature-adaptive subdivision, however, only correspond to a subdomain of a
specific tile. Fortunately, the feature-adaptive subdivision framework [Nießner
et al. 12] provides local parameter offsets in the domain shader to remap the
subdomain accordingly.

Irregular patches only remain at the finest adaptive subdivision level and
cover only a few pixels. They require a separate rendering pass because they
are not processed by the tessellation stage; patch filling quads are rendered in-
stead. To overcome the singularity of irregular patches, we enforce the par-
tial derivatives of the displacement function ∂

∂uD(u, v) and ∂
∂vD(u, v) to be 0

at extraordinary vertices; i.e., all adjacent displacement texels at tile corners
corresponding to a non–valence-four vertex are restricted to be equal. Thus,
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void ds_main_patches ( in HS_CONSTANT_FUNC_OUT input ,
in OutputPatch<HullVertex , 16> patch ,
in float2 domainCoord : SV_DomainLocation ,
out OutputVertex output )

{
// eva l the base s u r f a c e s (u , v )
float3 worldPos = 0 , tangent = 0 , bitangent = 0;
EvalSurface ( patch , domainCoord , worldPos , tangent , bitangent ) ;
float3 normal = normalize ( cross ( Tangent , BiTangent ) ) ;

f l o a t du = 0 , dv = 0;
f l o a t displacement = AnalyticDisplacement ( patch [ 0 ] . patchID ,

domainCoord , du , dv ) ;
worldPos += displacement � normal ;

output . pos = mul ( ProjectionMatrix , float4 ( worldPos , 1 . 0 ) ) ;
output . tangent = tangent ;
output . bitangent = bitangent ;
output . patchCoord = domainCoord ;

}

Listing 3.3. Analytic displacement mapping evaluation in the domain shader.

float4 ps_main ( in OutputVertex input ) : SV_TARGET
{

// compute p a r t i a l d e r i v a t i v e s o f D(u , v )
f l o a t du = 0 , dv = 0;
f l o a t displacement = AnalyticDisplacement ( input . patchID ,

input . patchCoord , du , dv ) ;
// compute base s u r f a c e normal N s (u , v )
float3 surfNormal = normalize ( cross ( input . tangent ,

input . bitangent ) ) ;
float3 tangent = input . tangent + surfNormal � du ;
float3 bitangent = input . bitangent + surfNormal � dv ;
// compute an a l y t i c d i sp lacement shading normal N f (u , v )
float3 normal = normalize ( cross ( tangent , bitangent ) ) ;

// shading
. . .

}

Listing 3.4. Analytic displacement mapping evaluation in the pixel shader.

Nf (u, v) = Ns(u, v) ∀(u, v)extraordinary. A linear blend between this special treat-
ment at extraordinary vertices and the regular Nf (u, v) ensures a consistent C1

surface everywhere.

3.3 Algorithm Overview

Our aim is to provide highly detailed deformations caused by object-object col-
lisions. To achieve instant visual feedback, we approximate collisions and apply
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(a) (b) (c) (d)

Figure 3.4. Algorithm overview: (a) Subdivision surfaces with quadratic B-spline dis-
placements are used as deformable object representation. (b) The voxelization of the
overlapping region is generated for an object penetrating the deformable surface. (c) The
displacement control points are pushed out of the voxelization, (d) creating a surface
capturing the impact.

deformations by updating displacement data. This is much more cost efficient
than a physically correct soft body simulation and also allows for visually plau-
sible results. In this section, we provide an overview of our algorithm as outlined
in Figure 3.4. A detailed description of our implementation can be found in
Section 3.4.

For simplicity, we first assume collisions only between a rigid penetrating
object and a deformable one. We represent deformable objects as displaced
subdivision surfaces (see Section 3.2). The penetrating object can be either a
subdivision surface or a regular triangle mesh (see Figure 3.4(a)). For all collid-
ing deformable-penetrating object pairs, we compute the deformation using the
following algorithm:

• Approximate the penetrating object by computing a solid voxelization us-
ing an improved variant of the real-time binary voxelization approach by
Schwarz [Schwarz 12] (see Figure 3.4(b)).

• From the voxelization, determine displacement offsets of deformable objects
to match the shape of the impact object (Figure 3.4(c) and (d)). This is
achieved by casting rays from the deformable object’s surface and modifying
the displacements accordingly.

In the case that both objects are deformable, we form two collision pairs, with
each deformable acting as a rigid penetrating object for the other deformable and
only applying a fraction of the computed deformations in the first pass.

3.4 Pipeline

In this section, we describe the implementation of the core algorithm and highlight
important details on achieving high-performance deformation updates.



36 I Geometry Manipulation

3.4.1 Physics Simulation

Our algorithm is designed to provide immediate visual feedback on collisions with
deformable objects made of soft material such as sand or snow. Because a full soft
body simulation would be too expensive in large scene environments, we inter-
pret deformable objects as rigid bodies with fine-scale dynamic surface detail. We
handle rigid body dynamics using the Bullet physics engine [Coumans et al. 06].
All dynamic objects are managed on the CPU and resulting transformation ma-
trices are updated every frame. In theory, we could also process low-frequency
deformations on base meshes if allowed by the time budget; however, we have not
explored this direction.

After updating rigid bodies, we search for colliding objects and send pairs
that hit a deformable to our deformation pipeline on the GPU.

3.4.2 Voxelization

Once we have identified all potential deformable object collisions (see above),
we approximate the shape of penetrating objects using a variant of the binary
solid voxelization of Schwarz [Schwarz 12]. The voxelization is generated by a
rasterization pass where an orthogonal camera is set up corresponding to the
overlap region of the objects’ bounding volumes. In our implementation, we
use a budget of 224 voxels, requiring about 2 MB of GPU memory. Note that
it is essential that the voxelization matches the shape as closely as possible to
achieve accurate deformations. We thus determine tight bounds of the overlap
regions and scale the voxelization anisotropically to maximize the effective voxel
resolution.

Intersecting volume. In order to determine the voxelization space, we intersect the
oriented bounding boxes (OBBs) of a collision pair. The resulting intersecting
volume is extended such that it forms a new OBB that conservatively bounds
the overlapping region (see Figure 3.5). We precompute all OBBs in model space
during loading and transform OBBs at runtime using the physics rigid transfor-
mations. Exceptions are skinned animations, for which we apply skinning in a
compute shader and recompute the OBB each frame.

Efficient GPU implementation. The voxelization of objects is generated by per-
forming a simple rasterization pass using an orthographic camera. The voxel
grid is filled in a pixel shader program using scattered write operations (see List-
ing 3.5). We determine the voxelization direction—i.e., the camera direction—
according to the major axis of the intersection volume. Clipping an object against
the intersecting volume results in nonclosed surfaces, which cannot be handled
in all cases by the original voxelization approach by Schwarz. However, the vox-
elization will be correct if we guarantee that front-faces are always hit first—i.e.,
they are not being clipped. Therefore, we construct intersecting OBBs such that
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Figure 3.5. Generation of the OBB for voxelization: a new OBB is derived from the
intersecting OBBs of the deformable and the penetrating object.

at least one of the faces is completely outside of the penetrating object OBB. The
voxelization is then performed toward the opposite direction of the face, which is
on the outside. We use either of two kernels to perform the voxelization and fill
the adaptively scaled voxel grid forward or backward, respectively, as shown in
Listing 3.5.

RWByteAddressBuffer g_voxels : r e g i s t e r ( u1 ) ;

float4 PS_VoxelizeSolid ( in OutputVertex input ) : SV_TARGET
{

// trans form fragment p o s i t i o n to voxe l g r i d
float3 fGridPos = input . posOut . xyz / input . posOut . w ;
fGridPos . z �= g_gridSize . z ;
int3 p = int3 ( fGridPos . x , fGridPos . y , fGridPos . z + 0 . 5 ) ;

i f ( p . z > i n t ( g_gridSize . z ) )
discard ;

// apply adapt ive voxe l g r i d s c a l e
uint address = p . x � g_gridStride . x

+ p . y � g_gridStride . y
+ ( p . z >> 5) � 4 ;

#i f d e f VOXELIZE BACKWARD
g_voxels . InterlockedXor ( address ,

˜(0 xffffffffu << ( p . z & 31) ) ) ;
// f l i p a l l voxe l s below
f o r ( p . z = ( p . z & (˜31) ) ; p . z > 0 ; p . z −= 32) {

address −= 4;
g_voxels . InterlockedXor ( address , 0 xffffffffu ) ;

}
#e l s e

g_voxels . InterlockedXor ( address , 0 xffffffffu << ( p . z & 31) ) ;
// f l i p a l l voxe l s below
f o r ( p . z = ( p . z | 31) + 1 ; p . z < g_gridSize . z ; p . z += 32) {

address += 4;
g_voxels . InterlockedXor ( address , 0 xffffffffu ) ;

}
#end i f
}

Listing 3.5. Pixel shader implementation of the binary voxelization using atomic
operations.
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3.4.3 Ray Casting

In the previous stage, we generated a voxelization of the penetrating object into
the space of the intersecting volume. Now, all patches of the deformable surface
within the intersecting volume are to be displaced such that they no longer inter-
sect with the (voxelization of the) penetrating object. Our implementation of this
process is shown in Listing 3.6. First, we evaluate the surface at all control points
of the displacement B-spline (patch parameter-space position of the displacement
map texels) and compute their corresponding world-space positions. More pre-
cisely, these are Catmull-Clark surface points, evaluated at the knot points of
the displacement B-spline, with applied displacement (see Figure 3.4(b)). Hence,
we account for the previous surface offset in case the surface at this position is
already displaced.

If such a control point lies within the penetrating object, we move it in the
negative base surface normal direction until it leaves the penetrating object (the
red control points in Figure 3.4). Therefore, we cast a ray that originates at the
control points’ corresponding world-space position pointing along the negative
base surface normal. This step involves evaluating the Catmull-Clark surface.
Fortunately, this evaluation is very fast using the regular B-spline patches ob-
tained by adaptive subdivision.

We now traverse the rays through the binary voxelization using a 3D digital
differential analyzer (DDA) (see Listing 3.7). We also make sure that the ray can
actually hit the voxel volume by first intersecting the ray with the voxel grid’s
OBB. Thereby, control points outside the voxelization (e.g., the yellow one in
Figure 3.4) and outside the overlap region (the red ones) are left unchanged. In
case the ray can hit the voxel volume but the surface position and thus the ray
originates outside the voxel volume, the initial ray distance is updated such that it
lies on the intersection point with the voxel grid. Then, we trace the ray through
the voxel grid and on each set voxel encountered we update the displacement
distance until we leave the voxel volume. It is important to trace the ray until
it leaves the voxelization, otherwise concave objects would result in an incorrect
deformation, as depicted in Figure 3.6.

After ray traversal, we update the displacement by applying the negative
traveled distance to account for the deformation and write the result into the
displacement map.

3.4.4 Overlap Update

Once surface deformations are computed, we need to update the analytic dis-
placement map tile overlap in order to enforce fast, watertight, and consistent
evaluation during rendering. This requires copying B-spline coefficients (displace-
ment values) from the boundary to the overlap region of the adjacent patches.
To this end, we precompute patch adjacency in a preprocessing step. More pre-
cisely, per patch we store the indices of the four neighboring patches and the
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#de f i n e NUMBLOCKS (TILE SIZE/DISPLACEMENT DISPATCH TILE SIZE)
[ numthreads ( DISPLACEMENT_DISPATCH_TILE_SIZE ,

DISPLACEMENT_DISPATCH_TILE_SIZE , 1) ]
void ComputeDisplacementCS ( uint3 blockIdx : SV_GroupID ,

uint3 threadIdx : SV_GroupThreadID )
{

uint patchID = blockIdx . x + g_PrimitiveIdBase ;

TileDescriptor tile = GetTile ( g_TileInfo , patchID ) ;
i f ( threadIdx . x >= tile . size | | threadIdx . y >= tile . size )

re turn ;

i n t patchLevel = GetPatchSubDLevel ( patchID ) ;

// threadIdx to t i l e coord
float2 tileUV = ComputeTileCoord ( patchID , tile ,

blockIdx , threadIdx ) ;
// threadIdx to ( sub−) patch coord
float2 patchUV = ComputePatchCoord ( patchID , patchLevel ,

blockIdx , threadIdx ) ;

int3 coord = int3 ( tile . uvOffset + tileUV . xy � tile . size ,
tile . page ) ;

f l o a t disp = g_displacementUAV [ coord ] ;

// eva l s u r f a c e and apply d i sp lacement
float3 worldPos = 0;
float3 normal = 0;

float3 controlPoints [ 1 6 ] = ReadControlPoints ( patchID ) ;
EvalPatch ( controlPoints , patchUV , worldPos , normal ) ;
worldPos += disp � normal ;

// t r a v e r s e ray un t i l l e av ing s o l i d
float3 rayOrigin = mul ( ( g_matWorldToVoxel ) ,

float4 ( worldPos , 1 . 0 ) ) . xyz ;
float3 rayDir = normalize ( mul ( ( float3x3 ) g_matWorldToVoxel ,

−normal . xyz ) ) ;

f l o a t distOut = 0;
i f ( ! VoxelDDA ( rayOrigin , rayDir , dist ) ) ;

r e turn ;

float3 p = rayDir � distOut ;
p = mul ( ( float3x3 ) ( ( ( g_matNormal ) ) ) , p ) ;
disp = disp − length ( p ) ;

g_displacementUAV [ coord ] = disp ;
}

Listing 3.6. Implementation of displacement update using voxel ray casting.
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bool IsOutsideVolume ( int3 voxel ) {
re turn ( any ( voxel < 0) | | any ( voxel > int3 ( g_gridSize ) ) )

}
bool VoxelDDA ( in float3 origin , in float3 dir , out f l o a t dist )
{

PreventDivZero ( dir ) ;
float3 dt = abs ( 1 . 0 / dir ) ;

f l o a t tEnter , tExit ;
i f ( ! intersectRayVoxelGrid ( origin , dir , tEnter , tExit ) )

re turn false ;

// s t a r t on g r i d boundary un l e s s o r i g i n i s i n s i d e g r i d
tEnter = max ( 0 . 0 , tEnter − 0 . 5 � min3 ( dt . xyz ) ;

float3 p = origin + tEnter � dir ;
int3 gridPos = floor ( p ) ;

// check i f ray i s s t a r t i n g in voxe l volume
i f ( IsOutsideVolume ( gridPos ) )

re turn false ;

float3 tMin = INFINITY ;
// update step , d i r components are != 0 ( PreventDivZero )
tMin . x = ( dir . y < 0 . 0 ) ? ( p . x−gridPos . x ) : ( gridPos . x−p . x+1) ;
tMin . y = ( dir . y < 0 . 0 ) ? ( p . y−gridPos . y ) : ( gridPos . y−p . y+1) ;
tMin . z = ( dir . z < 0 . 0 ) ? ( p . z−gridPos . z ) : ( gridPos . z−p . z+1) ;
tMin �= dt ;

int3 step = 1;
i f ( dir . x <= 0 . 0 ) step . x = −1;
i f ( dir . y <= 0 . 0 ) step . y = −1;
i f ( dir . z <= 0 . 0 ) step . z = −1;

uint maxSteps = g_gridSize . x + g_gridSize . y + g_gridSize . z ;
[ allow_uav_condition ]
f o r ( uint i = 0; i < maxSteps ; i++) {

t = min ( tMin . x , min ( tMin . y , tMin . z ) ) ;

i f ( tEnter + t >= tExit ) break ;

i f ( IsVoxelSet ( gridPos ) )
dist = t ;

i f ( tMin . x <= t ) { tMin . x += dt . x ; gridPos . x += step . x ; }
i f ( tMin . y <= t ) { tMin . y += dt . y ; gridPos . y += step . y ; }
i f ( tMin . z <= t ) { tMin . z += dt . z ; gridPos . z += step . z ; }

i f ( IsOutsideVolume ( gridPos ) ) break ;
}
re turn ( dist > 0) ;
}

Listing 3.7. Implementation of the voxel digital differential analyzer (DDA) algorithm
for ray casting.
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Deformable
 surface

Intersecting volume

(a) (b) (c)

Figure 3.6. (a) Illustration of the ray casting behavior when tracing from the surface
of the deformable through the voxelized volume. (b) The incorrect deformations that
occur when using the distance of the first exit of the ray. (c) Tracing the ray throughout
the complete volume yields correct deformations.
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Figure 3.7. Example of the adjacency information storage scheme: for the green patch,
we store all neighboring patch indices and indices of the shared edges in the neighboring
patches in counterclockwise order.

shared edges’ indices oriented with respect to the respective neighboring patch
as depicted in Figure 3.7.

In our implementation, we handle the edge overlap separately from the corner
overlap region, as the corners require special treatment depending on whether
the patch is regular or connected to an irregular vertex.

Edge overlap. Using the precomputed adjacency information, we first update the
edge overlap by scattering the boundary displacements coefficients to the adjacent
neighbors overlap region. This process is depicted in Figure 3.8 for a single patch.

Corner overlap. Finally, we have to update the corner values of the overlap re-
gion to provide a consistent evaluation of the analytic displacement maps during
rendering. The treatment of the corner values depends on the patch type. For
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(a) (b)

Figure 3.8. Edge overlap update for a single patch: (a) The direction of the overlap
updates originates from the blue patch. (b) The two adjacent patches (red and yellow)
receive their resulting overlap data by gathering the information from the blue patch.

Catmull-Clark subdivision surfaces two patch types are possible:

• Regular patches: All vertices of a patch have exactly four incoming edges.

• Irregular patches: At least one vertex of the patch has a valence different
from four.

In the regular case, the corner values of a patch can simply be copied to the
diagonal patch’s boundary corner (see Figure 3.9(a)). In our implementation, we
do not store the patch index of the diagonal adjacent patch. However, after the
edges are updated, we can achieve exactly the same result by copying the correct

(a) (b)

Figure 3.9. Corner overlap update at regular vertices. (a) The direction of the corner
overlap update originates from the blue patch. The required information is also stored
in the direct neighbors of the green patch after the edge overlap update pass. (b) The
resulting corner overlap update is gathered from the overlap of the adjacent yellow
patch.
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(a) (b)

Figure 3.10. Corner overlap update at irregular vertices: (a) texels to be gathered and
(b) the result of scattering the resulting average value to the adjacent tiles.

coefficient from the adjacent patch’s edge to the boundary corner as depicted in
Figure 3.9(b).

In order to provide a watertight and consistent evaluation in the irregular
case, all four corner coefficients must contain the same value. Therefore, we run
a kernel per irregular vertex and average the interior corner coefficients of the
connected patches (see Figure 3.10(a)). Then, we scatter the average to the four
corner texels of the analytic displacement map in the same kernel.

In the end, the overlap is updated and the deformed mesh is prepared for
rendering using displacement mapping.

3.5 Optimizations

3.5.1 Penetrated Patch Detection

The approach described in the previous sections casts rays for each texel of each
patch of a deformed object: a compute shader thread is dispatched for each texel
to perform the ray casting in parallel. This strategy is obviously inefficient since
only a fraction of the patches of a deformed object will be affected. This can be
prevented by culling patches that are outside the overlap regions. To this end, we
compute whether the OBB of the penetrating object and the OBB of each patch
of the object to be deformed do overlap. For this test, we extend the OBBs of the
patches by the maximum encountered displacement to handle already displaced
patches’ surfaces properly. In case an overlap is detected, the patch (likely to be
intersected by the penetrating object) is marked, and its patch index is enqueued
for further processing. Also, the update of tile overlaps is only necessary for these
marked patches.

Intersection. The patch intersection detection stage is implemented entirely on
the GPU using a compute shader. One dispatch detects the collision of a single
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penetrating object’s OBB with all patches of the scene. For each patch, a thread
is dispatched. In the compute shader the OBB of the patch is computed on the
fly from the patches’ control points and overlap tested against the OBB of the
penetrating object. If an overlap is found, the patch index is appended to the list
to be handled for further processing.

Intersection batching. The previously depicted intersection stage implementation
dispatches threads for each penetrating object sequentially, thus causing unnec-
essary and redundant memory accesses because the same patch control points
have to be read over multiple kernel dispatches. This memory I/O overhead
can significantly be reduced by batching multiple penetrating objects into a sin-
gle dispatch. Batching the intersection testing of multiple penetrating objects
into a single dispatch additionally reduces the number of total compute shader
dispatches required. For patches requiring memory allocation, their index is ap-
pended to a global append buffer. In addition, we use further append buffers for
each penetrating object. If a patch is possibly affected by a penetrating object,
the patch index is appended to the penetrating object’s append buffer for ray
casting. Finally, the overlap is updated only once per deformable object after all
penetrating collisions are processed.

3.5.2 Memory Management

Because we want to support deformation on scenes with a large number of patches
at high tile resolutions, statically preallocating tile memory for each possibly de-
formed patch would require unreasonably large amounts of GPU memory. There-
fore, we preallocate a predefined number of tiles and manage a table of tile de-
scriptors pointing to these unused tiles. In addition, we use an atomic index i for
memory allocation, which points to the end of the free memory table when no
tiles are in use.

If memory allocation is required for a patch, this is implemented using an
atomic decrement operation on i and fetching the tile descriptor of the tile it
pointed to before decrementation. (See Listing 3.8.)

3.5.3 Optimized Pipeline

Our final deformation pipeline, including the proposed optimizations, is depicted
in Figure 3.11.

3.6 Results

In this section, we provide several screenshots showing the qualitative results of
our real-time deformations pipeline. The screenshots in Figure 3.12 are taken
from our example scene (see Figure 3.1) consisting of a snowy deformable terrain
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Buffer<uint> g_isctResults : r e g i s t e r ( t0 ) ;
Buffer<uint3> g_memoryTable : r e g i s t e r ( t1 ) ;
RWBuffer<uint4> g_tileDescriptors : r e g i s t e r ( u0 ) ;
RWBuffer<i n t> g_atomicIndex : r e g i s t e r ( u1 ) ;

void allocTile ( uint tileID ) {
i n t i = 0;
InterlockedAdd ( g_atomicIndex [ 0 ] , −1, i ) ;

// copy page ID and s t a r t o f f s e t s (u , v )
g_tileDescriptors [ tileID ] . xyz = g_memoryTable [ i ] . xyz ;

}

[ numthreads ( ALLOCATOR_BLOCKSIZE , 1 , 1) ]
void AllocateTilesCS ( uint3 DTid : SV_DispatchThreadID ) {

uint tileID = DTid . x ;
i f ( tileID >= g_NumTiles ) re turn ;

i f ( IsTileIntersected ( tileID ) && IsNotAllocated ( tileID ) )
allocTile ( tileID ) ;

}

Listing 3.8. Compute shader for tile memory allocation with atomic operations.
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Figure 3.11. Overview of deformation pipeline with optimizations.

subdivision surface, dynamic objects like the car and barrels, and static objects
such as trees and houses.

We start by presenting the parameters that impact the overall quality of the
deformations.
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(a) (b)

(c) (d)

Figure 3.12. Results of the proposed deformation pipeline on snowy surface: (a) an
example of animated character deforming the surface; (b) high-quality geometric detail
including shadows and occlusion; and (c) wireframe visualization of a deformed surface.
(d) Even at low tessellation densities, the deformation stored in the displacement map
can provide visual feedback in shading.

3.6.1 Influence of Tile Resolution

The first parameter is the tile resolution for storing the per-patch displacement
coefficients. Figure 3.13 shows a comparison of the deformation quality for dif-
ferent tile resolutions ((a) 32 × 32 and (b) 128 × 128). Obviously, the lower
resolution tiles (a) cannot represent the impact of the collider on the surface well.
Employing our tile memory allocation scheme (Section 3.5.2) enables very high
tile resolution (b) on the deformed patches and thus highly detailed deforma-
tions. These tile resolutions would not be possible using static preallocation for
all patches without memory management due to the limited GPU memory.
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(a) (b)

Figure 3.13. Comparison of deformation quality using different tile resolutions per
patch: (a) The higher resolution (128×128) captures high-frequency detailwhile (b) the
lower (32× 32) does not.

3.6.2 Influence of Voxelization

The second parameter that influences the overall quality most is the approxima-
tion of the penetrating object shape. The quality of the voxelization is limited
by the chosen voxel grid size. Choosing too low a voxel grid resolution results
in a low-quality deformation as shown in the example in Figure 3.14. In our
implementation, we use a single voxel grid per penetrating object. Voxelizing
the object only in the overlapping region as described in Section 3.4.2 results in
a much better utilization of the available voxel space in the region of interest
compared to voxelizing the entire object.

Figure 3.14. Choosing too coarse a voxel grid cannot capture the shape of the pene-
trating object (wheel) well and results in a low-quality deformation.
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(128 × 128) unoptimized

With intersect, memory allocation

With batching

(32 × 32) optimized

128 × 128 32 × 32

(128 × 128)
unoptimized

With intersect,
memory allocation With batching (32 × 32) optimized

0.000Intersect 0.108 0.042 0.042
0.000Memory management 0.006 0.006 0.006
0.012Voxelization 0.012 0.012 0.012

11.027Ray casting 0.061 0.061 0.033
0.122Overlap update 0.026 0.007 0.006

11.161Sum overhead per collider 0.213 0.128 0.099

0.000 0.050 0.100 0.150 0.200 0.250 0.300Time in ms

Figure 3.15. Timings in milliseconds on an NVIDIA GTX 780 for the different optimiza-
tions. The first three bars (from top to bottom) show the effects of our optimizations
for a tile resolution of 128× 18 texels, while the last bar shows the timings for a 32× 32
tile resolution with all optimizations enabled.

3.6.3 Performance

In this section we provide detail timings of our deformation pipeline, including
the benefits of the optimizations presented in Section 3.5. While we use the stan-
dard graphics pipeline for rendering and the voxelization of the models, including
hardware tessellation for the subdivision surfaces, we employ compute shaders for
patch-OBB intersection, memory management, ray casting (DDA), and updating
the tile overlap regions.

Figure 3.15 summarizes the performance of the different pipeline stages and
the overall overhead per deformable-penetrator collision pair measured on an
NVIDIA GTX 780 using a default per-patch tile size of 128 × 128.

The measurements in Figure 3.15 show that ray casting is the most expensive
stage of our algorithm. With a simple patch–voxel volume intersection test we
can greatly improve the overall performance by starting ray casting and overlap
updates only for the affected patches. This comes at the cost of spending addi-
tional time on the intersection test, which requires reading the control points of
each patch. Because fetches from global memory are expensive, we optimize the
intersection stage by computing the intersection with multiple penetrating objects
after reading the control points, which further improves overall performance.
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The chosen displacement tile size—as expected—only influences the ray cast-
ing and overlap stage. Because the computational overhead for the higher tile
resolution is marginal, the benefits in deformation quality easily pay off.

3.7 Conclusion

In this chapter, we described a method for real-time visual feedback of surface
deformations on collisions with dynamic and animated objects. To the best of
our knowledge, our system is the first to employ a real-time voxelization of the
penetrating object to update a displacement map for real-time deformation. Our
GPU deformation pipeline achieves deformations in far below a millisecond for a
single collision and scales with the number of deforming objects since only objects
close to each other need to be tested. We believe that this approach is ideally
suited for complex scene environments with many dynamic objects, such as in
future video game generations. However, we emphasize that the deformations
aim at a more detailed and dynamic visual appearance in real-time applications
but cannot be considered as a physical simulation. Therefore, we do not support
elasticity, volume preservation, or topological changes such as fractures.
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Realistic Volumetric Explosions
in Games

Alex Dunn

4.1 Introduction

In games, explosions can provide some of the most visually astounding effects.
This article presents an extension of well-known ray-marching [Green 05] tech-
niques for volume rendering fit for modern GPUs, in an attempt to modernize
the emulation of explosions in games

Realism massively affects the user’s level of immersion within a game, and
previous methods for rendering explosions have always lagged behind that of
production quality [Wrennige and Zafar 11]. Traditionally, explosions in games
are rendered using mass amounts of particles, and while this method can look
good from a static perspective, the effect starts to break down in dynamic scenes
with free-roaming cameras. Particles are camera-facing billboards and, by nature,
always face the screen; there is no real concept of rotation or multiple view angles,
just the same texture projected onto the screen with no regard for view direction.
By switching to a volumetric system, explosions look good from all view angles
as they no longer depend on camera-facing billboards. Furthermore, a single
volumetric explosion can have the same visual quality as thousands of individual
particles, thus, removing the strain of updating, sorting, and rendering them
all—as is the case with particle systems.

By harnessing the power of the GPU and the DirectX 11 tessellation pipeline,
I will show you that single-pass, fully volumetric, production-quality explosions
are now possible in the current generation of video games. We will be exploring
volumetric rendering techniques such as ray marching and sphere tracing, as well
as utilizing the tessellation pipeline to optimize these techniques.

There are certain drawbacks to the technique, such as it not being as generic
a system as particles. It’s more of a bespoke explosion system and like particles,
the effect is generally quite pixel heavy from a computational perspective.
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Figure 4.1. Pipeline flow overview of the technique.

4.2 Rendering Pipeline Overview

Explosions are represented by a single volumetric sphere with detail layered on
top. The explosion is rendered by first generating a hemisphere mesh of a radius
equal to the maximum radius of the explosion. (The explosion won’t have a
uniform radius, so instead we define a maximum radius, which is the distance
from the explosion at its most extended point, to its core.) Then, shrink the
hemisphere around the explosion to form a tight-fitting semi-hull. This is done in
order to decrease the amount of degenerate fragments when later performing ray
marching in the pixel shader. An overview of the technique is shown in Figure 4.1.

4.3 Offline/Preprocessing

First, we must create a 3D volume of noise, which we can use later to create some
nice noise patterns. We can do this offline to save precious cycles later in the pixel
shader. This noise is what’s going to give the explosions their recognizable cloud-
like look. In the implemention described here, simplex noise was used—however,
it should be noted that it isn’t a requirement to use simplex noise; in fact, in your
own implementation you are free to use whatever type of noise you want, so long
as it tiles correctly within our volume. In order to conserve bandwidth and fully
utilize the cache, size, and format of this texture is detrimental to the performance
of the technique. The implementation demonstrated here uses a 32×32×32 sized
volume with a 16-bit floating point format, DXGI_FORMAT_R16_FLOAT. The noise is
calculated for each voxel of the volume using its UVW coordinate as the position
parameter for the noise function.
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Figure 4.2. The life of a vertex. In an actual implementation, the level of subdivision
should be much higher than shown in the diagram.

4.4 Runtime

As the effect will be utilizing the tessellation pipeline of the graphics card for ren-
dering, it is required to submit a draw call using one of the various patch primitive
types available in Direct X. For this technique, the D3D11_PRIMITIVE_TOPOLOGY1_

CONTROL_POINT_PATCHLIST primitive type should be used as we only need to submit
a draw call that emits a single vertex. This is because the GPU will be doing
the work of expanding this vertex into a semi-hull primitive. The life of a vertex
emitted from this draw call throughout this technique is shown in Figure 4.2.

4.4.1 Semi-Hull Generation

The GPU starts rendering our explosion with the vertex shader. This is run
once per explosion. Its job is to read values from some data buffer, which stores
position, radius, and “time lived” in seconds, and passes them down to the next
shader in the pipeline, the hull shader. For your own implementation, it’s entirely
up to you how this information is stored, so long as it’s accessible by the GPU.

The next stage of the pipeline is the hull shader. It runs once for each point
of the input primitive and outputs control points for the next stage. This hull
shader will be using the quad domain. When using this domain, the shader will
load in a single vertex patch and the data associated with it (loaded in by the
vertex shader previously) and output the four corner vertices of a quad (control
points), each with its own copy of the data.

The tessellator stage is fixed function in DirectX 11. Its main purpose is to
accept the control points generated by the hull shader as inputs and subdivide
them. While programming the subdivision of control points is out of our reach
in DirectX 11, we do have control over the level of subdivision. For the purposes
of this article, we will just use a constant tessellation level. However, there is
scope to adaptively tessellate your primitives based on the onscreen size of the
explosions. A higher tessellation level can provide a tighter fitting hull around the
explosion and thus decrease the amount of fragments rendered, which can make
a big difference for high-quality, close-up explosions. The performance gains vary
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from case to case though, so I’d suggest profiling to find the best fit for your own
implementations.

Once the patch has been subdivided, the next stage of the tessellation pipeline
takes over. With the domain shader, we first transform the vertices into a screen-
aligned hemisphere shape, with the inside of the sphere facing the camera and
the radius set to that of the explosion. Then we perform a technique called
sphere tracing [Hart 94] to shrink wrap the hemisphere around the explosion to
form a tight-fitting hull. Sphere tracing is a technique not unlike ray marching,
where starting at an originating point (a vertex on the hemisphere hull), we move
along a ray toward the center of the hemisphere. Normally, when ray marching,
we traverse the ray at fixed size intervals, but when sphere tracing, we traverse
the ray at irregular intervals, where the size of each interval is determined by a
distance field function evaluated at each step. A distance field function represents
the signed distance to the closest point on an implicit surface from any point in
space. (You can see an example of a signed distance function for an explosion in
Listing 4.1).

4.4.2 Pixel Shading

The last programmable stage required for the effect is the pixel shader. This
shader is invoked for each visible pixel of the explosion on screen; it is here
where the bulk of the work will be done. For each pixel, it is required to step,
or “march,” through our explosion and evaluate the color at each step. The
stepping will take place along a per-pixel ray, calculated using the world-space
position of the pixel. The ray is then marched from front to back. At each step
along the ray, a distance field function is evaluated. This function is the distance
function for a sphere, perturbed by the value stored in the noise texture for the
current position. A source code snippet is provided in Listing 4.1. The function
DrawExplosion, will return the distance to the explosion from a point in world
space and provide the amount of displacement caused by noise at that point. If
the distance returned from this function is less than some epsilon, then this step
is inside the explosion and contributes to the final color of this pixel. (For a great
primer on this technique, see [Green 05].)

The method FractalNoise, used in Listing 4.1, calculates how perturbed the
surface of the explosion will be at a given point in world space. The inner me-
chanics of this function can be seen in Listing 4.2.

The FractalNoise function uses the noise volume we created offline earlier.
The volume is sampled multiple times. The location of each sample is calcu-
lated from the original sampling position by applying a constant frequency fac-
tor. Each sample read in this fashion is known as an octave. Once we have
completed reading all the samples, the values from each are summed to give the
final noise value. We found that four octaves provided a fairly reasonable visual
experience.
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// Returns the d i s t an c e to the su r f a c e o f a sphere .
f l o a t SphereDistance ( float3 pos , float3 spherePos , f l o a t radius )
{

float3 relPos = pos − spherePos ;
r e turn length ( relPos ) − radius

}

// Returns the d i s t an c e to the su r f a c e o f an exp l o s i on .
f l o a t DrawExplosion

(
float3 posWS ,
float3 spherePosWS ,
f l o a t radiusWS ,
f l o a t displacementWS ,
out f l o a t displacementOut

)
{

displacementOut = FractalNoise ( posWS ) ;

f l o a t dist = SphereDistance ( posWS , spherePosWS , radiusWS ) ;

r e turn dist − displacementOut � displacementWS ;
}

Listing 4.1. HLSL source: Distance field function for explosion.

// How many octaves to use when ca l c u l a t i n g the f r a c t a l no i s e .
s t a t i c const uint kNumberOfNoiseOctaves = 4;

// Returns a no i s e va lue by t ex tu r e lookup .
f l o a t Noise ( const float3 uvw )
{

re turn _NoiseTexRO . Sample ( g_noiseSam , uvw , 0 ) ;
}

// Ca l cu l a t e s a f r a c t a l no i s e va lue from a world−space po s i t i o n .
f l o a t FractalNoise ( const float3 posWS )
{

const float3 animation = g_AnimationSpeed � g_time ;

float3 uvw = posWS � g_NoiseScale + animation ;
f l o a t amplitude = 0.5 f ;
f l o a t noiseValue = 0;

[ unroll ]
f o r ( uint i=0 ; i<kNumberOfNoiseOctaves ; i++ )
{

noiseValue += amplitude � Noise ( uvw ) ;
amplitude �= g_NoiseAmplitudeFactor ;
uvw �= g_NoiseFrequencyFactor ;

}

re turn noiseValue ;
}

Listing 4.2. HLSL source: the noise function.
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Figure 4.3. A collection of explosions rendered using different primitive types.

The color of the explosion at each step is calculated by performing a lookup
into a gradient texture using the displacementOut parameter (from Listing 4.1) as
a texture coordinate. This color is then blended with the other samples gathered
from previous steps before the next step of the ray.

This process is repeated either until we hit the exit point of our ray or, as
a further optimization, until the output color has reached full opacity and no
further steps would contribute to the final color of the pixel. (It is important to
note that this optimization will only work when marching through the explosion
from front to back.)

4.5 Visual Improvements

4.5.1 Primitives

While this article has so far only demonstrated how to create an explosion based
on the sphere primitive shape, it’s possible to extend the technique to handle a
variety of shapes, as you can see in Figure 4.3.

In Listing 4.1, there is a method called SphereDistance, which calculates the
distance to the closest point on a sphere from some point in world space. In order
to render an explosion with a different underlying primitive type, this method
can be swapped for one that calculates the distance to another primitive, or even
a collection of primitives. See Listing 4.3 for a list of basic primitive functions
written in HLSL.

Rendering an explosion with one of the customized primitives above can be
useful in situations where explosions are formed from explosive containers. For
example, the cylinder primitive type would be useful when modeling an explosion
that’s to be associated with an old game developer favorite, the exploding barrel.

4.5.2 Extra Step

When the number of steps used to render an explosion is low, and when the
explosion intersects some of the scene geometry, certain view angles relative to
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f l o a t Sphere ( float3 pos , float3 spherePos , f l o a t radius )
{

float3 relPos = pos − spherePos ;
r e turn length ( relPos ) − radius

}

f l o a t Cone ( float3 pos , float3 conePos , f l o a t radius )
{

float3 relPos = pos − conePos ;

f l o a t d = length ( relPos . xz ) ;
d −= lerp ( radius � 0 . 5 f , 0 , 1 + relPos . y/ radius ) ;

d = max ( d ,− relPos . y − radius ) ;
d = max ( d , relPos . y − radius ) ;

r e turn d ;
}

f l o a t Cylinder ( float3 pos , float3 cylinderPos , f l o a t radius )
{

float3 relPos = pos − cylinderPos ;

float2 h = radius . xx � float2 ( 1 . 0 f , 1 . 5 f ) ; // Width , Radius
float2 d = abs ( float2 ( length ( relPos . xz ) , relPos . y ) ) − h ;

r e turn min ( max ( d . x , d . y ) , 0 . 0 f ) + length ( max ( d , 0 . 0 f ) ) ;
}

f l o a t Box ( float3 pos , float3 boxPos , float3 b )
{

float3 relPos = pos − boxPos ;
float3 d = abs ( relPos ) − b ;

r e turn min ( max ( d . x , max ( d . y , d . z ) ) , 0 . 0 f )
+ length ( max ( d , 0 . 0 f ) ) ;

}

f l o a t Torus ( float3 pos , float3 torusPos , f l o a t radius )
{

float3 relPos = pos − boxPos ;

float2 t = radius . xx � float2 ( 1 , 0 .01 f ) ;
float2 q = float2 ( length ( relPos . xz ) − t . x , relPos . y ) ;

r e turn length ( q ) − t . y ;
}

// Rendering a c o l l e c t i o n o f p r im i t i v e s can be ach ieved by
// us ing mu l t i p l e p r im i t i v e d i s t an c e funct ions , combined
// with the �min � f un c t i on .
f l o a t Cluster ( float3 pos )
{

float3 spherePosA = float3 (−1 , 0 , 0) ;
float3 spherePosB = float3 ( 1 , 0 , 0) ;
f l o a t sphereRadius = 0.75 f ;

r e turn min ( Sphere ( pos , spherePosA , sphereRadius ) ,
Sphere ( pos , spherePosB , sphereRadius ) ) ;

}

Listing 4.3. HLSL source: a collection of distance functions for various primitives.
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Off On

Figure 4.4. The extra step trick in action.

the intersection geometry can produce an ugly banding artifact in which the slices
of the volume are completely visible.

The extra step trick [Crane et al. 07] attempts to minimize this artifact by
adding one final step at the end of the ray marching, passing in the world-space
position of the pixel instead of the next step position. Calculating the world-
space position of the pixel can be done any way you see fit; in the approach
demonstrated here, we have reconstructed world-space position from the depth
buffer. (See Figure 4.4.)

4.5.3 Lighting

Lighting the explosion puffs from a directional light is possible by performing a
similar ray-marching technique to the one seen earlier while rendering the explo-
sion [Ikits et al. 03]. Let’s go back to when we were rendering via ray marching.
In order to accurately calculate lighting, we need to evaluate how much light
has reached each step along the ray. This is done at each rendering step by ray
marching from the world-space position of the step toward the light source, ac-
cumulating the density (in the case of the explosion this could be the opacity of
the step) until either the edge of the volume has been reached or the density has
reached some maximum value (i.e., the pixel is fully shadowed).

Because this is rather expensive, as an optimization you don’t need to calculate
the lighting at every step. Depending on the amount of steps through the volume
and the density of those steps, you can just calculate the lighting value for one
in every x steps and reuse this value for the next steps. Use best judgement and
check for visual artifacts while adjusting the x variable.

4.6 Results

The screenshots in Figures 4.5–4.7 were rendered using 100 steps (but only a few
rays will actually use this much) with the shrink wrapping optimization enabled.
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Figure 4.5. A shot of a clustered volumetric explosion. Here, a collection of spheres has
been used to break up the obvious shape of a singular sphere.

Figure 4.6. Varying the displacement to color gradient over time can provide a powerful
fourth dimension to the effect.

4.7 Performance

The performance of this explosion technique is certainly comparable to that of
a particle-based explosion. With the shrink wrapping optimization, rendering
times can be significantly reduced under the right circumstances. In Figure 4.8,
you’ll see a visual comparison of the shrink wrapping technique and the effect it
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Figure 4.7. As the life of an explosion comes to an end, the entire effect turns more
smoke than flame.

Figure 4.8. Here you can see the amount of rays required to step through the explosion
(more red means more steps are required): with no shrink wrapping optimizations
(left), with shrink wrapping and early out for fully opaque pixels (middle), and the final
rendering (right).

has on the number of steps required to render a volumetric explosion. Following
this, Figure 4.9 shows a graph detailing the amount of time taken to render the
same explosion with shrink wrapping on and off across a range of rendering steps.
For both datasets, the exact same GPU and driver were used (NVIDIA GTX980
with driver v344.11) and the time taken has been calculated by recording an
average over 200 frames.

4.7.1 Further Optimizations

Half-resolution up-sampling. With a slight modification to [Cantlay 07], we can
significantly reduce the pixel workload by reducing the size of the rendering buffer.
This technique works by binding a low-resolution render target in place of the
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Figure 4.9. See how the shrink wrapping optimization improves the render time. All
numbers were captured using a GTX980 (driver v344.11). Timings were averaged over
200 frames.

back buffer just before rendering an explosion, then, once the explosions have
been rendered, up-sampling the texture associated with the low-resolution render
target by rendering it to the full-resolution back buffer.

There are several corner cases to be aware of—depth testing and edge inter-
sections to name a couple—that are out of the scope of this article. I recommend
reading [Cantlay 07], in which these are thoroughly explained.

Depth testing. Currently, when rendering an explosion, we do so by rendering the
back faces (front-face culling) of the sphere geometry. The upside of this is that
we can still see the back faces while inside the explosion, which allows us to keep
rendering. The downside is that we can’t perform hardware depth testing for
early exiting pixels, which are occluded by nearer geometry but have to resort to
performing a texture read-dependent branch in the pixel shader.

It’s possible, with very little tweaking, to render the explosion by using the
front faces (back face culling) which will allow the correct use of hardware depth
testing on a read-only depth buffer (we still need to read from the depth buffer
in the shader to figure out the depth of the scene, so the DSV bound must be
readonly, that is, created with ’flags = 0’). The only downside is that once the
camera moves inside the explosion, the front faces are no longer visible, and the
explosion disappears. The solution to this is to switch to the back faces once the
camera enters the volume.
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4.8 Conclusion

Volumetric explosions undoubtedly provide a much richer visual experience over
particle-based techniques, and as I’ve shown, it’s possible to use them now in the
current generation of games. This article has demonstrated how to best utilize the
modern graphics pipeline and DirectX, taking full advantage of the tessellation
pipeline. The optimization methods described allow for implementing this effect
with a minimal impact on frame times.
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II

Rendering

This is an exciting time in the field of real-time rendering. With the release of new
gaming consoles comes new opportunities for technological advancement in real-
time rendering and simulation. The following articles introduce both beginners as
well as expert graphics programmers to some of the latest trends and technologies
in the field of real-time rendering.

Our first article is “Next-Generation Rendering in Thief” by Peter Sikachev,
Samuel Delmont, Uriel Doyon, and Jean-Normand Bucci in which a number of
advanced rendering techniques, specifically designed for the new-generation of
gaming consoles, are presented. The authors discuss real-time reflections, contact
shadows, and compute-shader-based postprocessing techniques.

Next is “Grass Rendering and Simulation with LOD” by Dongsoo Han and
Hongwei Li. In this article, the authors present a GPU-based system for grass
simulation and rendering. This system is capable of simulating and rendering
more than 100,000 blades of grass, entirely on the GPU, and is based on earlier
work related to character hair simulation.

“Hybrid Reconstruction Antialiasing” by Micha�l Drobot provides the reader
with a full framework of antialiasing techniques specially designed to work ef-
ficiently with AMD’s GCN hardware architecture. The author presents both
spatial and temporal antialiasing techniques and weighs the pros and cons of
many different implementation strategies.

Egor Yusov’s “Real-Time Rendering of Physically Based Clouds Using Pre-
computed Scattering” provides a physically based method for rendering highly
realistic and efficient clouds. Cloud rendering is typically very expensive, but here
the author makes clever use of lookup tables and other optimizations to simulate
scattered light within a cloud in real time.

Finally, we have “Sparse Procedural Volume Rendering” by Doug McNabb in
which a powerful technique for volumetric rendering is presented. Hierarchical
data structures are used to efficiently light and render complex volumetric effects
in real time. The author also discusses methods in which artists can control volu-
metric forms and thus provide strong direction on the ultimate look of volumetric
effects.

The new ideas and techniques discussed in this section represent some of the
latest developments in the realm of real-time computer graphics. I would like
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to thank our authors for generously sharing their exciting new work and I hope
that these ideas inspire readers to further extend the state of the art in real-time
rendering.

—Christopher Oat
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II

Next-Generation Rendering
in Thief

Peter Sikachev, Samuel Delmont, Uriel Doyon,
and Jean-Normand Bucci

1.1 Introduction

In this chapter we present the rendering techniques used in Thief, which was
developed by Eidos Montreal for PC, Playstation 3, Playstation 4, Xbox 360,
and Xbox One. Furthermore, we concentrate solely on techniques, developed
exclusively for the next-generation platforms, i.e., PC, Playstation 4, and Xbox
One.

We provide the reader with implementation details and our experience on a
range of rendering methods. In Section 1.2, we discuss our reflection rendering
system. We describe each tier of our render strategy as well as final blending and
postprocessing.

In Section 1.3, we present a novel contact-hardening shadow (CHS) approach
based on the AMD CHS sample. Our method is optimized for Shader Model 5.0
and is capable of rendering high-quality large shadow penumbras at a relatively
low cost. Section 1.4 describes our approach toward lit transparent particles
rendering.

Compute shaders (CSs) are a relatively new feature in graphics APIs, intro-
duced first in the DirectX 11 API. We have been able to gain substantial benefits
for postprocessing using CSs. We expound upon our experience with CSs in
Section 1.5.

Performance results are presented in the end of each section. Finally, we
conclude and indicate further research directions in Section 1.6.

65
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1.2 Reflections

Reflections rendering has always been a tricky subject for game engines. As long
as the majority of games are rasterization based, there is no cheap way to get
correct reflections rendered in the most general case. That being said, several
methods for real-time reflection rendering produce plausible results in special
cases.

1.2.1 Related Methods

One of the first reflection algorithms used for real-time applications, was real-
time planar reflection (RTPR) rendering [Lengyel 11]. This method yields an
accurate solution for geometry reflected over a plane and is typically used for
water or mirror reflections. The method involves rendering objects, or proxies
of them, as seen through the reflection plane. Depending on the number of
things rendered in the reflection scene, it is possible to balance performance
and quality, but the technique is generally considered to be expensive. The
main drawback of this method is that in practice, several planes of different
heights and orientations would be required to model correctly the environment
view surrounding the player, which would be unacceptably expensive to process.
This prevents the technique from being used across a wide range of environments.

Cube map reflections are another approach that has been used for many
years [NVIDIA Corporation 99]. Though they are very fast and they can han-
dle nonplanar objects, cube maps have their limitations, too. They usually lack
resolution and locality compared to other techniques. One also usually needs
to precompute cube maps in advance, as it is usually prohibitively expensive to
generate cube maps dynamically at runtime. This could additionally complicate
an asset pipeline. Precomputed cube maps will not reflect a change in lighting or
dynamic objects. Moreover, cube maps do not produce high-quality reflections
when applied to planar surfaces, which was one of our main scenarios.

Screen-space reflection (SSR) is a relatively new technique that has grown
quickly in popularity [Uludag 14]. It has a moderate performance cost and is easy
to integrate. Moreover, it provides great contact reflections (i.e., reflections that
occur when an object stands on a reflecting surface; these reflections “ground” an
object) hardly achieved by other techniques. However, SSR is prone to numerous
artifacts and fails to reflect invisible (or offscreen) parts of a scene. Therefore, it
is usually used in combination with some backup technique.

Image-based reflection (IBR) is a method that utilizes planar proxies in order
to approximate complex geometries to accelerate ray tracing [Wright 11]. It was
developed and shown off in the Unreal Engine 3 Samaritan demo. IBR can
achieve good results in reflection locality and allows an arbitrary orientation of
a reflector. However, the complexity grows linearly with the number of proxies,
which could become prohibitive for large scenes.
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Figure 1.1. From left to right: cube map reflections only, SSR + cube maps, IBR +
cube maps, and SSR + IBR + cube maps. [Image courtesy Square Enix Ltd.]

Numerous variations of the methods discussed above have been proposed and
used in real-time rendering. For instance, localized, or parallax-corrected cube
maps [Lagarde and Zanuttini 13] are arguably becoming an industry standard.
In the next sections, we will describe the reflection system we used in Thief.

1.2.2 Thief Reflection System Overview

Creating a reflection system that perfectly handles every surface type, in real
time, is a very difficult problem. Therefore, together with the art department, we
developed a specification of requirements and limitations for the Thief reflection
system. Given that Thief was originally designed for the Xbox 360 and Playsta-
tion 3 generation of platforms, we had quite a generous performance budget for
the reflection system on the next-generation platforms: 5 ms. Beforehand, we
implemented the real-time planar reflection method, which ran at 10 ms. This
running time was obviously unacceptable; moreover, this technique could render
reflections for only one plane.

The majority of reflections in the game world come from the ground (wet
spots, tile, etc.), therefore we limited ourselves to quasi-horizontal surfaces. How-
ever, since Thief is a multilevel game (e.g., you can make your way across rooftops
instead of streets), unlike [Lagarde and Zanuttini 13], we could not be limited to
a single reflection plane. As mentioned above, we performed tests with PRTR
and the single reflection plane limitation was insufficient for our assets.

The target was to accurately capture human-sized objects and contact reflec-
tions. In addition, we also wanted to capture principal landmarks (e.g., large
buildings). Finally, as torches and bonfires are a typical light source in the world
of Thief, we needed a way to render reflection from certain transparent geometry
as well.

To achieve these goals, we came up with a multitier reflection system, outlined
in Figure 1.1. The reflection system of Thief consists of the following tiers:
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• screen-space reflections (SSR) for opaque objects, dynamic and static, within
a human height of a reflecting surface;

• image-based reflections (IBR) for walls and far away landmarks;

• localized cube map reflections to fill the gaps between IBR proxies;

• global cube map reflections, which are mostly for view-independent sky-
boxes.

Each tier serves as a fallback solution to the previous one. First, SSR ray-marches
the depth buffer. If it does not have sufficient information to shade a fragment
(i.e., the reflected ray is obscured by some foreground object), it falls back to
image-based reflection. If none of the IBR proxies are intersected by the reflection
ray, the localized cube map reflection system comes into play. Finally, if no
appropriate localized cube map is in proximity, the global cube map is fetched.
Transition between different tiers is done via smooth blending, as described in
Section 1.2.6.

1.2.3 Screen-Space Reflections

SSR is an image-based reflection technique based on ray-marching through the
depth buffer [Kasyan et al. 11]. We use the lit color buffer, the normal buffer,
and the depth buffer from the current frame. SSR is applied before rendering
translucent geometry in order to avoid perspective artifacts.

At each fragment we reconstruct the camera-space position, using the screen
uv-coordinates, the fetched depth, and the projection matrix. Afterward, we ray-
march with a constant step along the reflected ray until the analytical depth of
the fetch along the ray is more than the depth buffer fetch from the same screen-
space position. Finally, the intersection location is refined with several binary
search steps, as shown in Figure 1.2.

Reflected object

Reflected surface

Figure 1.2. Screen-space reflections linear steps (green) and binary search steps (orange
and then red).
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This method yields very accurate reflections at the contact of a reflective
surface and a reflected object. There are, however, several major issues with
SSR. First, this method is very expensive: at each fragment we need to make
several potentially uncoalesced (due to the discrepancy of reflection rays) texture
fetches, some of which are even view-dependent (binary search). Second, reflected
information is often missing: it’s either out of screen or obscured by a closer
object.

We address the first issue with several optimization techniques, described
below in this subsection. The second issue is addressed by falling back to the
subsequent tier of the reflection system.

We decrease the memory traffic by approximating the normal at the fragment
with a normal pointing vertically up. This dramatically increases the number of
texture fetches at neighboring fragments that might be coalesced and processed
within a single dynamic random-access memory (DRAM) burst. However, this
naturally results in ideal mirror-like reflections without any normal perturbation.
We address this issue further in Section 1.2.7.

Moreover, we use dynamic branching to employ early exit for the constant
step loop when the first intersection with the depth buffer is found. Although
it might result in false ray-depth buffer collision detection, we compromise on
accuracy in order to further save on bandwidth.

Another optimization is decreasing the number of samples for the distant
fragments. We came up with an empirical formula that decreases the number of
steps proportional to the exponent of the distance:

Nlinear samples = max(1, k1e
−k2d),

where depth is denoted with d, k1 is the linear factor, and k2 is the exponential
factor.

Additionally, we use a bunch of early-outs for the whole shader. We check
if the surface has a reflective component and if a reflection vector points to the
camera. The latter optimization does not significantly deteriorate visual quality,
as in these situations SSR rarely yields high-quality results anyway and the re-
flection factor due to the Fresnel equation is already low. Moreover, this reduces
the SSR GPU time in the case when IBR GPU time is high, thus balancing the
total.

However, one should be very careful when implementing such an optimization.
All fetches inside the if-clause should be done with a forced mipmap level; all
variables used after should be initialized with a meaningful default value, and
the if-clause should be preceded with a [branch] directive. The reason is that a
shader compiler might otherwise try to generate a gradient-requiring instruction
(i.e., tex2D) and, therefore, flatten a branch, making the optimizations useless.



70 II Rendering

1.2.4 Image-Based Reflections

Image-based reflections are a reflection technique implemented in [Wright 11].
The key idea is to introduce one or more planar quad reflection proxies and pre-
render an object of interest into it. During fragment shading, we just ray-trace
the reflected ray against an array of proxies in the pixel shader. A similar idea
is utilized in [Lagarde and Zanuttini 13]. However, in the latter, the reflections
are rendered only for planes at a single height. Therefore, we were unable to use
optimizations proposed in [Lagarde and Zanuttini 13].

In Thief, our ambition was to have around 50 IBR proxies per scene. IBR
back-face culling effectively reduces the visible proxy count by half. A straightfor-
ward approach resulted in well over 8 ms of GPU time at the target configuration,
which was totally unacceptable. Therefore, we employed a series of acceleration
techniques, described below.

First, we utilized the same approach for normal approximation as for SSR to
increase memory coalescing. This allowed the following optimizations:

• rejecting planes not facing the player,

• rejecting planes behind the player,

• tile-based IBR rendering (discussed below).

Bump perturbation was then performed for SSR and IBR together.
Second, we introduced tile-based IBR. Because we have limited ourselves to

quasi-horizontal reflections, we divided the entire screen space into a number of
vertical tiles. Our experiments have proven 16 tiles to be an optimal number.
After that, for each reflection proxy, we calculate the screen-space coordinates
for each vertex. If a vertex is in front of the near clip plane, we flip the w sign
before perspective divide in order to handle close proxies. Then x-coordinates
of the transformed vertices might be used as minimum and maximum values to
determine the tiles covered by the proxy’s reflection.

However, due to perspective projection, this method would result in reflections
being cut, especially when a proxy approaches the screen borders. To fix that,
we introduce the following workaround. For each of two vertical sides of the
proxy, we extend them to the intersections with top and bottom screen borders
as shown in Figure 1.3. The resultant x-coordinates are used to decrease the
minimum and/or increase the maximum. The pseudocode of this method is
shown in Algorithm 1.1.

The above mentioned optimization decreases GPU time dramatically; how-
ever, if a player looks straight down, all the proxies start occupying almost all
tiles due to high perspective distortions. To alleviate performance drops in this
case, we use a bounding sphere test in the pixel shader for an early-out before
the actual high-cost tracing. While this check deteriorates the performance in the
most common cases, it increases GPU performance in the worst cases, resulting
in a more consistent frame rate.
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Figure 1.3. IBR tile-based rendering optimization. IBR proxy is shown in orange. Tiles
are shown in dotted blue lines, and vertical sides extensions are shown in orange dotted
lines. The affected tiles are shaded with thin red diagonal lines.

1: xmin = 1
2: xmax = −1
3: for all IBR proxies in front of player and facing player do
4: find AABB of the current proxy
5: for all vertices of AABB do
6: calculate vertex coordinate in homogeneous clip space
7: w := |w|
8: calculate vertex coordinate in screen clip space
9: xmin := min(x, xmin)

10: xmax := max(x, xmax)
11: end for
12: for all vertical edges of AABB in screen space do
13: calculate intersections x1 and x2 with top and bottom of the screen
14: xmin := min(x1, x2, xmin)
15: xmax := max(x1, x2, xmax)
16: end for
17: for all IBR tiles do
18: if the tile overlaps with [xmin, xmax] then
19: add the proxy to the tile
20: end if
21: end for
22: end for

Algorithm 1.1. Algorithm for finding affected tiles for an IBR proxy.

Additionally, in order to limit the number of active IBR proxies in the frame,
we introduced the notion of IBR rooms. Essentially, an IBR room defines an
AABB so that a player can see IBR reflections only from the IBR proxies in
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Figure 1.4. Non-glossy reflection rendering (left) and CHGR (right). [Image courtesy
Square Enix Ltd.]

the same room. Moreover, the lower plane of an IBR room’s AABB defines the
maximum reflection extension of each of the proxies inside it. This allowed us to
drastically limit the number of reflections when a player is looking down.

As a side note, Thief has a very dynamic lighting environment. In order to
keep the IBR reflection in sync with the dynamic lights, IBR had to be scaled
down based on the light intensity. This makes the IBR planes disappear from
reflection when lights are turned off. Although this is inaccurate since the IBR
textures are generated from the default lighting setup, it was not possible to know
which parts of the plane were actually affected by dynamic lighting.

Also, IBRs were captured with particles and fog disabled. Important particles,
like fire effects, were simulated with their own IBRs. Fog was added accordingly
to the fog settings and the reflection distance after blending SSR and IBR.

1.2.5 Contact-Hardening Glossy Reflections

Because the majority of the reflecting surfaces in Thief are not perfect mirror
reflectors, we decided to simulate glossy reflections. Glossy SSR reflections are
not a new feature, having been first implemented in [Andreev 13]. We decided to
take SSR a step further and render contact-hardening glossy reflections (CHGRs).
An example of a CHGR is shown in Figure 1.4.

The main phenomena we wish to capture is that a reflection is sharpest near
the contact point of the reflected object and the reflecting surface. The reflection
grows more blurry as these two surfaces get farther away from each other.

The algorithm for CHGR rendering is as follows. First, we output the distance
between the reflecting surface and the point where the reflected ray hits the
reflected object. Because we want to limit the size of the render targets, we



1. Next-Generation Rendering in Thief 73

//World−space un i t i s 1 cent imete r
i n t distanceLo = in t ( worldSpaceDistance ) % 256 ;
i n t distanceHi = in t ( worldSpaceDistance ) / 256 ;

packedDistance = float2 ( f l o a t ( distanceLo ) / 255 .0 f ,
f l o a t ( distanceHi ) / 255 .0 f ) ;

Listing 1.1. Reflection distance packing.

float3 reflectedCameraToWorld =
reflect ( cameraToWorld , worldSpaceNormal ) ;

f l o a t reflectionVectorLength =
max ( length ( reflectedCameraToWorld ) , FP_EPSILON ) ;

f l o a t worldSpaceDistance = 255.0 f � ( packedDistance . x +
256.0 f � packedDistance . y ) /
reflectionVectorLength ;

. . .
// Re f l e c t i o n s o r t i ng and b lend ing
. . .
float4 screenSpaceReflectedPosition =

mul ( float4 ( reflectedPosition , 1) , worldToScreen ) ;
screenSpaceReflectedPosition /= screenSpaceReflectedPosition . w ;

ReflectionDistance = length ( screenSpaceReflectedPosition . xy −
screenSpaceFragmentPosition . xy ) ;

Listing 1.2. Reflection distance unpacking.

utilize R8G8B8A8 textures for color and depth information. As 8 bits does not
provide enough precision for distance, we pack the distance in two 8-bit channels
during the SSR pass, as shown in Listing 1.1.

The IBR pass unpacks the depth, performs blending, and then converts this
world-space distance into screen-space distance as shown in Listing 1.2. The
reason for this is twofold. First, the screen-space distance fits naturally into the
[0, 1] domain. As we do not need much precision for the blurring itself, we can
re-pack it into a single 8-bit value, ensuring a natural blending. Second, the
screen-space distance provides a better cue for blur ratio: the fragments farther
away from the viewer should be blurred less than closer ones, if both have the
same reflection distance.

The second step is to dilate the distance information. For each region, we
select the maximum distance of all the pixels covered by the area of our blur
kernel. The reason for this is that the distance value can change suddenly from one
pixel to the next (e.g., when a close reflection proxy meets a distant background
pixel). We wish to blur these areas with the maximum blur coefficient from
the corresponding area. This helps avoid sharp silhouettes of otherwise blurry
objects. This problem is very similar to issues encountered with common depth-
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of-field rendering algorithms. In order to save on memory bandwidth, we apply a
two-pass, separable dilation maximum filter. This provides us with an acceptable
approximation.

Finally, we perform the blur with the adjustable separable kernel. In addition
to selecting the Gaussian parameters based on the distance value, we also apply
the following tricks. First, we ignore the samples with zero specular intensity in
order to avoid bleeding at the silhouette of an object. This requires on-the-fly
adjustment of the kernel in the shader. Second, we follow the same heuristic as
in [Andersson 13], so we blur the image more in the vertical direction than in the
horizontal direction, achieving more plausible visual results.

1.2.6 Reflection Blending

As our reflection system consists of several tiers, we need to define how we blend
between them. In addition to the distance factor, our SSR pass also outputs a
blending factor. This factor depends on the following:

• height (the longer we cast a reflection ray, the less contribution it makes),

• tracing accuracy (depth delta between the ray coordinate and the fetched
depth),

• surface tilt (the more the surface normal diverges from vertical, the less
SSR should contribute),

• Reflection ray going toward camera or out of screen.

Afterward, IBR is merged on top, outputting a cumulative blending factor. Fi-
nally, the cube map is applied. Figure 1.5 shows seamless blending between SSR
and IBR.

Figure 1.5. SSR only (left) and SSR blended with IBR (right). [Image courtesy Square
Enix Ltd.]
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Figure 1.6. Reflection blending without sorting (left) and with sorting (right). [Image
courtesy Square Enix Ltd.]

However, this approach causes certain problems in cases when a transparent
IBR proxy is in front of the object that could be potentially reflected with SSR.
Figure 1.6 shows the issue. To address this problem, instead of simply blending
SSR and IBR, we perform layer sorting beforehand. We create a small (three to
four entries) array of reflection layers in the IBR shader and inject SSR results
into it as the first element. The array is kept sorted when we add every subsequent
IBR trace result. Thus, we end up with the closest intersections only.

1.2.7 Bump as a Postprocess

As mentioned above, we assume that the normal is pointing up for SSR and IBR
rendering in order to apply acceleration techniques. Furthermore, in order to
reduce memory bandwidth, we render reflection at half resolution. Together, this
diminishes high-frequency details, which are crucial for reflections, especially on
highly bumped surfaces. To alleviate this, we apply a bump effect as a postprocess
when upscaling the reflection buffer to full resolution.

The main idea is very similar to the generic refraction approach [Sousa 05].
We use the difference between the vertical normal and the per-pixel normal to
offset the UV in the rendered reflection texture. To fight reflection leaking, we
revert to the original fetch if the new fetch is significantly closer than the old one.
Figure 1.7 shows the benefits of applying reflection bump.

1.2.8 Localized Cube Map Reflections

In the SSR, IBR, and cube map reflection strategies, the cube map would ideally
only contain the skybox and some far away geometry since the playable envi-
ronment would be mapped by IBR planes. In this situation, only one cube map
would be required. In practice, the IBR planes have many holes and do not con-
nect perfectly to each other. This is a consequence of how our IBR planes are
generated using renderable textures.
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Figure 1.7. Reflection without bump (left) and with bump as a postprocess (right).
[Image courtesy Square Enix Ltd.]

When a reflected ray enters into one of these cracks and hits the skybox,
it results in a bright contrast pixel because most Thief scenes typically use a
skybox that is much brighter than the rest of the environment. To fix this, we
used localized cube maps taken along the playable path. Any primitive within
reach of a localized cube map would then use it in the main render pass as the
reflected environment color.

Technically, the cube map could be mapped and applied in screen space using
cube map render volumes, but we chose to simply output the cube map sample
into a dedicated render target. This made the cube map material-bound and
removed its dependency with the localized cube map mapping system.

The main render pass in Thief would output the following data for reflective
primitives:

• material lit color (sRGB8),

• environment reflection color + diffuse lighting intensity (sRGB8),

• world normal + reflectivity (RGB8).

After generating the IBR and SSR half-resolution reflection texture, the fi-
nal color is computed by adding SSR, IBR, and finally the environment reflec-
tion color (i.e., cube map color). If the material or platform does not support
IBR/SSR, the color would simply be added to the material-lit color and the extra
render targets are not needed.
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Figure 1.8. Creation of the multiple volumes for covering the whole environment. [Image
courtesy Square Enix Ltd.]

Note here that we needed the diffuse lighting intensity to additionally scale
down the IBR and cube map color because they were captured with the default
lighting setup, which could be very different from the current in-game lighting
setup. This scale was not required for the SSR because it is real-time and accu-
rate, while the IBR proxies and cube maps are precomputed offline.

1.2.9 Art Pipeline Implications

For each level in Thief, we set a default cube map. This one is used by all
the geometry that has reflective materials. This cube map is pretty generic and
reflects the most common area of the level.

We then identify the areas where we require a more precise cube map defini-
tion. The decision is often based on lighting conditions or the presence of water
puddles. For an area that could benefit from a more precise cube map, artists add
a localized cube map, which comes with its own scene capture preview sphere.
This is shown in the Figure 1.8.

We then built our entire environment using these volumes that enhance the
look of the level. After using a build process, we generated all the cube maps for
the volumes created. Figure 1.9 shows the additional build process created with
the different resources generated.

Thief ’s reflection systems strongly enhanced the visual quality and next-
generation look of the game. It was deeply embedded into the artistic direction
of the title. The water puddles, in particular, helped create the unique look our
artists wanted for the game. This also contributed to the gameplay of Thief.
Because light and shadows are so important to our gameplay, the reflective water
puddles became an additional challenge the player must manage when trying to
stay hidden in the shadows.

For Thief, we dedicated a budget of 5 ms for the reflection pipeline. Given the
allocated budget and the production stage at which we pushed the data in, we had
to make clever choices, sometimes using all available techniques and other times
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Figure 1.9. Build process generating the individual cube map captures. [Image courtesy
Square Enix Ltd.]

using only one, given the rendering stresses of an environment. For example,
certain environment condition might force us to use only one technique. Poor
lighting condition could be a good example where you do not want to pay the
extra cost of an expensive cube map or IBR planes.

We found that screen-space reflections were very easy for our art team to
integrate. For this reason, we used SSR as our base tool for most of our reflection
needs. This would then dictate where some of our IBR planes should go; it was
a fallback solution when SSR failed.

1.2.10 Results

We came up with a robust and fast reflection system that is ready for the next-
generation consoles. Both SSR and IBR steps take around 1–1.5 ms on Playsta-
tion 4 (1080p) and Xbox One (900p). However, these are worst case results, i.e.,
taken on a synthetic scene with an SSR surface taking up the whole screen and 50
IBR proxies visible. For a typical game scene, the numbers are usually lower than
that. Reflection postprocessing is fairly expensive (around 2 ms). However, we
did not have time to implement it using compute shaders, which could potentially
save a lot of bandwidth.
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Figure 1.10. Shadow with ordinary filtering (left) and with contact-hardening shadows
(right). [Image courtesy Square Enix Ltd.]

Our reflection system does not support rough reflections. Taking into account
the emerging interest in physically based rendering solutions, we are looking into
removing this limitation. Reprojection techniques also look appealing both for
quality enhancement and bandwidth reduction.

1.3 Contact-Hardening Shadows

Contact-hardening shadows (CHSs), similar to percentage-closer soft shadows
(PCSSs) [Fernando 05], are a shadow-mapping method to simulate the dynamic
shadows from area lights. The achieved effect is a sharper shadow as the shadow
caster and the receiver are closer to each other and a blurrier (softer) shadow as
the caster and the receiver are farther from each other (see Figure 1.10). The
implementation in Thief is based on the method from the AMD SDK [Gruen 10].

This method is easy to integrate because it uses the shadow map generated
by a single light source and can just replace ordinary shadow filtering. One of the
main drawbacks in this technique is the extensive texture fetching, and in Thief
we implemented an optimized method for Shader Model 5.0 that drastically limits
the access to the shadow map. The CHS process is divided into three steps, which
are the blocker search, the penumbra estimation, and the filtering.

1.3.1 Blocker Search

The first step consists of computing the average depth of the blockers inside a
search region around the shaded point (that we will reference as average blocker
depth). A kernel grid of N × N texels centered at the shaded point covers this
search region. A blocker is a texel in the shadow map representing a point closer
to the light than the currently computed fragment, as shown in Figure 1.11. This
average-blocker-depth value will be used in the penumbra estimation.
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Light source

Caster

Shadow map
Search region

Figure 1.11. Blockers in a 8× 8 search grid.

Shader Model 5.0’s new intrinsic GatherRed() accelerates this step by sampling
four values at once. In Thief, we decided to use a 8 × 8 kernel size, which
actually performs 16 samples instead of 64 for a Shader Model 4.0 implementation
(see Listing 1.4). Increasing the size of the kernel will allow a larger penumbra,
since points that are farther from the shaded one can be tested, but it obviously
increases the cost as the number of texture fetches grows.

Because the penumbra width (or blurriness) is tightly related to the size of
the kernel, which depends on the shadow map resolution and its projection in
world space, this leads to inconsistent and variable penumbra width when the
shadow map resolution or the shadow frustum’s FOV changes for the same light
caster/receiver setup. Figure 1.12 shows the issue.

To fix this issue in Thief, we extended the CHS by generating mips for the
shadow map in a prepass before the CHS application by downsizing it iteratively.
Those downsizing operations are accelerated with the use of the GatherRed()

intrinsic as well. Then, in the CHS step, we dynamically chose the mip that gives

Figure 1.12. For the same 8 × 8 search grid, a smaller search region due to higher
resolution shadow map (left) and a bigger search region due to wider shadow frustum
(right).
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#de f i n e KERNEL SIZE 8
f l o a t wantedTexelSizeAt1UnitDist =

wantedPenumbraWidthAt1UnitDist / KERNEL_SIZE ;
f l o a t texelSizeAt1UnitDist =

2� TanFOVSemiAngle / shadowMapResolution ;
f l o a t MaxShadowMip =
−log ( texelSizeAt1UnitDist / wantedTexelSizeAt1UnitDist ) / log ( 2 ) ;

MaxShadowMip = min ( f l o a t ( MIPS_COUNT −1) , max ( MaxShadowMip , 0 . 0 ) ) ;
// both BlkSearchShadowMipIndex and MaxShadowMip are passed
// to the shader as parameters
i n t BlkSearchShadowMipIndex = ceil ( MaxShadowMip ) ;

Listing 1.3. Algorithm for choosing a mip from a user-defined penumbra width, the
shadow map resolution, and the FOV angle of the shadow frustum.

Figure 1.13. Shadow-map mips layout. [Image courtesy Square Enix Ltd.]

a kernel size in world space that is closer to a user-defined parameter. Listing 1.3
shows how the mip index is computed from this user-defined parameter, the
shadow map resolution, and the FOV angle of the shadow frustum. This process
can be done on the CPU and the result is passed to a shader as a parameter.

Unfortunately, the GatherRed() intrinsic does not allow mip selection. There-
fore, the mips are stored in an atlas, as shown in Figure 1.13, and we offset the
texture coordinates to sample the desired mip. This is achieved by applying a
simple offset scale to the coordinates in texture space (see Listing 1.4).

In order to save on fragment instructions, the function returns, as an early
out, a value of 0.0 (fully shadowed) if the average blocker depth is equal to 1.0
(found a blocker for all samples in the search region) or returns 1.0 (fully lit) if
the average blocker depth is equal to 0.0 (no blocker found). Listing 1.4 shows
the details of the average-blocker-depth compute.
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#de f i n e KERNEL SIZE 8
#de f i n e BFS2 (KERNEL SIZE − 1) / 2

float3 blkTc = float3 ( inTc . xy , inDepth ) ;
// TcBiasScale i s a s t a t i c ar ray ho ld ing the o f f s e t−s c a l e
in the shadow map f o r every mips .
float4 blkTcBS = TcBiasScale [ BlkSearchShadowMipIndex ] ;
blkTc . xy = blkTcBS . xy + blkTc . xy � blkTcBS . zw ;
// g vShadowMapDims . xy i s the shadow map r e s o l u t i o n
// g vShadowMapDims . zw i s the shadow map t ex e l s i z e
float2 blkAbsTc = ( g_vShadowMapDims . xy � blkTc . xy ) ;
float2 fc = blkAbsTc − floor ( blkAbsTc ) ;
blkTc . xy = blkTc . xy − ( fc � g_vShadowMapDims . zw ) ;
f l o a t blkCount = 0; f l o a t avgBlockerDepth = 0;
[ loop ] f o r ( i n t row = −BFS2 ; row <= BFS2 ; row += 2 )
{

float2 tc = blkTc . xy + float2(−BFS2 � g_vShadowMapDims . z ,
row� g_vShadowMapDimensions . w ) ;

[ unroll ] f o r ( i n t col = −BFS2 ; col <= BFS2 ; col += 2 )
{

float4 depth4 = shadowTex . GatherRed ( pointSampler , tc . xy ) ;
float4 blk4 = ( blkTc . zzzz <= depth4 ) ? ( 0 ) . xxxx : ( 1 ) . xxxx ;
float4 fcVec = 0;
i f ( row == −BFS2 )
{

i f ( col == −BFS2 )
fcVec = float4 ((1.0− fc . y ) � (1.0− fc . x ) ,

(1.0− fc . y ) , 1 , (1.0− fc . x ) ) ;
e l s e i f ( col == BFS2 )

fcVec = float4 ((1.0− fc . y ) , (1.0− fc . y ) � fc . x , fc . x , 1) ;
e l s e

fcVec = float4 ((1.0− fc . y ) , (1.0− fc . y ) , 1 , 1) ;
}
e l s e i f ( row == BFS2 )
{

i f ( col == −BFS2 )
fcVec = float4 ((1.0− fc . x ) , 1 , fc . y , (1.0− fc . x ) � fc . y ) ;

e l s e i f ( col == BFS2 )
fcVec = float4 (1 , fc . x , fc . x � fc . y , fc . y ) ;

e l s e
fcVec = float4 (1 , 1 , fc . y , fc . y ) ;

}
e l s e
{

i f ( col == −BFS2 )
fcVec = float4 ((1.0− fc . x ) , 1 , 1 , (1.0− fc . x ) ) ;

e l s e i f ( col == BFS2 )
fcVec = float4 (1 , fc . x , fc . x , 1) ;

e l s e
fcVec = float4 ( 1 , 1 , 1 , 1 ) ;

}
blkCount += dot ( blk4 , fcVec . xyzw ) ;
avgBlockerDepth += dot ( depth4 , fcVec . xyzw � blk4 ) ;
tc . x += 2.0� g_vShadowMapDims . z ;

}
}
i f ( blkCount == 0.0 ) // Early out − f u l l y l i t

re turn 1 . 0 f ;
e l s e i f ( blkCount == KERNEL_SIZE � KERNEL_SIZE ) // Fu l ly shadowed

re turn 0 . 0 f ;
avgBlockerDepth /= blkCount ;

Listing 1.4. Average-blocker-depth compute.
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widthpenumbra =
(depthreceiver − avgBlockerDepth) · widthlight

avgBlockerDepth

Algorithm 1.2. Algorithm for computing the penumbra estimation.

1.3.2 Penumbra Estimation

Based on the average-blocker-depth value from the previous step and the user-
defined light width, a factor (the penumbra estimation) is computed. Algo-
rithm 1.2 is pretty straightforward and is the same as many other PCSS im-
plementation.

1.3.3 Filtering

The final CHS step consists of applying a dynamic filter to the shadow map to
obtain the light attenuation term. In this step, we also take advantage of the
shadow-map mips. The main idea is to use higher-resolution mips for the sharp
area of the shadow and lower-resolution mips for the blurry area. In order to
have a continuous and unnoticeable transition between the different mips, we use
two mips selected from the penumbra estimation and perform one filter operation
for each mip before linearly blending the two results (see Figure 1.14). Doing so

Figure 1.14. Mips used for the filtering, depending on the user-defined region search
width and the penumbra estimation. [Image courtesy Square Enix Ltd.]
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#de f i n e KERNEL SIZE 8
#de f i n e FS2 (KERNEL SIZE − 1) / 2

f l o a t Ratio = penumbraWidth ;
f l o a t clampedTexRatio = max ( MaxShadowMip − 0 . 001 , 0 . 0 ) ;
f l o a t texRatio = min ( MaxShadowMip � Ratio , clampedTexRatio ) ;
f l o a t texRatioFc = texRatio − floor ( texRatio ) ;
uint textureIndex = min ( uint ( texRatio ) , MIPS_COUNT −2) ;
float4 highMipTcBS = TcBiasScale [ textureIndex ] ; // h igher r e s
float4 lowMipTcBS = TcBiasScale [ textureIndex +1]; // lower r e s
// Pack mips Tc in to a f l oa t4 , xy f o r high mip , zw f o r low mip
float4 MipsTc = float4 ( highMipTcBS . xy + inTc . xy� highMipTcBS . zw ,

lowMipTcBS . xy + inTc . xy� lowMipTcBS . zw ) ;
float4 MipsAbsTc = ( g_vShadowMapDims . xyxy � MipsTc ) ;
float4 MipsFc = MipsAbsTc − floor ( MipsAbsTc ) ;
MipsTc = MipsTc − ( MipsFc � g_vShadowMapDims . zwzw ) ;
. . .
//Apply the same dynamic weight matrix to both mips
// us ing r a t i o along with the corre spond ing MipsTc and MipsFc
. . .
r e turn lerp ( highMipTerm , lowMipTerm , texRatioFc ) ;

Listing 1.5. Shadow mips filtering and blending.

gives a realistic effect with variable levels of blurriness, using the same kernel
size (8 × 8 in Thief ) through the whole filtering. The highest mip index possible
(which corresponds to a penumbra estimation of 1.0) is the same one used in the
blocker search step.

As described above, we need to get the attenuation terms for both selected
mips before blending them. A dynamic weight matrix is computed by feeding
four matrices into a cubic Bézier function, depending only on the penumbra
estimation, and used to filter each mip (not covered here; see [Gruen 10] for the
details). Like the previous steps, this is accelerated using the GatherCmpRed()

intrinsic [Gruen and Story 09]. Listing 1.5 shows how to blend the filtered mips
to obtain the final shadow attenuation term.

The number of shadow map accesses for the blocker search is 16 (8× 8 kernel
with the use of GatherCmpRed()) and 2×16 for the filter step (8×8 kernel for each
mip with the use of GatherCmpRed()), for a total of 48 texture fetches, producing
very large penumbras that are independent from the shadow resolution (though
the sharp areas still are dependent). A classic implementation in Shader Model
4.0 using a 8× 8 kernel with no shadow mipmapping would perform 128 accesses
for smaller penumbras, depending on the shadow resolution.

Performance-wise, on an NVIDIA 770 GTX and for a 1080p resolution, the
CHS takes 1–2 ms depending on the shadow exposure on the screen and the
shadow map resolution. The worst case corresponds to a shadow covering the
whole screen.
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Figure 1.15. Old-generation Thief particles rendering (left) and next-generation version
(right). Notice the color variation of the fog due to different lighting. [Image courtesy
Square Enix Ltd.]

1.4 Lit Particles

Another addition made for the next-generation version of Thief was the support
for lit particles. Prior to this, our particle system colors had to be tweaked by
hand, and this meant that particles could not react to lighting changes. With
lighting support, particles look much more integrated into the environment and
they appear to react more dynamically to changes in lighting.

The lighting feature set for particles included static light maps, static shadow
maps, projected textures, and up to four dynamic lights. We experimented with
having dynamic shadow maps, but it revealed too much about the geometry used
to render the visual effects (it made it obvious that we were using camera-aligned
sprites). Each sprite would have a well-defined shadow mapped as a plane, while
the texture used for the particle is usually meant to fake a cloud-like shape.
This issue was not visible with static light maps and shadow maps because they
were mapped as 3D textures across the particle bounds. Figure 1.15 shows a
comparison between old- and next-generation versions of particle rendering in
Thief.

1.5 Compute-Shader-Based Postprocessing

One of the major novelties of the DirectX 11 API and the next-generation con-
soles’ hardware is the support of compute shaders. One particular feature of
compute shaders is the introduction of local data storage (LDS), a.k.a. thread
group shared memory (TGSM). LDS is a cache-like on-chip memory, which is
generally faster than VRAM but slower than register memory. One can use LDS
to exchange data between shader threads running within the same thread group.
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Figure 1.16. Gaussian-based DoF with circular bokeh (top) and DoF with hexagonal
bokeh (bottom). [Image courtesy Square Enix Ltd.]

This functionality can be used for numerous applications. One obvious use
case is decreasing bandwidth for postprocesses, which computes a convolution
of a fairly large radius. In Thief, we used this feature for depth-of-field (DoF)
computations, as will be described below.

1.5.1 Depth-of-Field Rendering

For our DoF algorithm we used two approaches: Gaussian blur for the round-
shaped bokeh and [White and Barré-Brisebois 11] for hexagonal bokeh. Fig-
ure 1.16 shows examples of these techniques. Both approaches result in two
separable filter passes. DoF is texture-fetch limited, as kernels take a big number
of samples to accommodate a large radius bokeh.
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Figure 1.17. Fetching of texels with a filter kernel using local data storage.

1.5.2 Improving Bandwidth by Using Local Data Storage

In order to reduce the texture bandwidth for the DoF pass, we use LDS. The
main idea is for a filter of radius k and n threads to prefetch 2k + n samples
as shown in Figure 1.17. Each of the n threads loads a texel; additionally,
every thread close to the thread group boundaries loads another texel. Then,
each thread stores the values it loaded into LDS. Finally, to compute the ker-
nel, each thread reads values from LDS instead of DRAM, hence the bandwidth
reduction.

Initially, we used the code from Listing 1.6 to load and store from LDS.
However, this resulted in even worse performance than not using LDS at all. The
reason for this is a four-way LDS memory bank conflict, which we introduced.
As bank size on the majority of the video cards is 32-bits wide, each thread will
make a strided access with stride = 4. To fix that, we needed to de-vectorize our
code, as shown in Listing 1.7.

1.5.3 Results

To understand the LDS win, we tested different implementations of the DoF ker-
nel filters. For a DoF pass using a kernel with radius = 15 for a FP16 render
target, we got 0.15 ms without LDS, 0.26 with vectorized LDS structure, and
0.1 ms for de-vectorized LDS on AMD HD7970. Both next-generation consoles
have shown a speedup with a similar factor. In contrast, using LDS on NVIDIA
GPUs (GeForce 660 GTX) resulted in no speedup at all in the best case. As a
result, on AMD GPUs (which include next-generation consoles), using compute
shaders with LDS can result in a significant (33%) speedup if low-level perfor-
mance considerations (e.g., banked memory) are taken into account.
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groupshared float4 fCache [ NR_THREADS + 2 � KERNEL_RADIUS ] ;

Texture2D inputTexture : r e g i s t e r ( t0 ) ;
RWTexture2D<float4> outputTexture : r e g i s t e r ( u0 ) ;

[ numthreads ( NR_THREADS , 1 , 1) ]
void main ( uint3 groupThreadID : SV_GroupThreadID ,

uint3 dispatchThreadID : SV_DispatchThreadID )
{

//Read t ex tu r e to LDS
in t counter = 0;
f o r ( i n t t = groupThreadID . x ;

t < NR_THREADS + 2 � KERNEL_RADIUS ;
t += NR_THREADS , counter += NR_THREADS )

{
i n t x = clamp (

dispatchThreadID . x + counter − KERNEL_RADIUS ,
0 , inputTexture . Length . x − 1) ;

fCache [ t ] = inputTexture [ int2 ( x , dispatchThreadID . y ) ] ;
}
GroupMemoryBarrierWithGroupSync ( ) ;

. . .
//Do the ac tua l b lur
. . .

outputTexture [ dispatchThreadID . xy ] = vOutColor ;
}

Listing 1.6. Initial kernel implementation. Notice a single LDS allocation.

1.6 Conclusion

In this chapter, we gave a comprehensive walkthrough for the rendering tech-
niques we implemented for the next-generation versions of Thief. We presented
our reflection system, the contact-hardening shadow algorithm, particles lighting
approach, and compute shader postprocesses. Most of these techniques were inte-
grated during the later stages of Thief production, therefore they were used less
extensively in the game than we wished. However, we hope that this postmortem
will help game developers to start using the techniques, which were not practical
on the previous console generation.

1.7 Acknowledgments

We would like to thank Robbert-Jan Brems, David Gallardo, Nicolas Longchamps,
Francis Maheux, and the entire Thief team.



1. Next-Generation Rendering in Thief 89

groupshared f l o a t fCacheR [ NR_THREADS + 2 � KERNEL_RADIUS ] ;
groupshared f l o a t fCacheG [ NR_THREADS + 2 � KERNEL_RADIUS ] ;
groupshared f l o a t fCacheB [ NR_THREADS + 2 � KERNEL_RADIUS ] ;
groupshared f l o a t fCacheA [ NR_THREADS + 2 � KERNEL_RADIUS ] ;

Texture2D inputTexture : r e g i s t e r ( t0 ) ;
RWTexture2D<float4> outputTexture : r e g i s t e r ( u0 ) ;

[ numthreads ( NR_THREADS , 1 , 1) ]
void main ( uint3 groupThreadID : SV_GroupThreadID ,

uint3 dispatchThreadID : SV_DispatchThreadID )
{

//Read t ex tu r e to LDS
in t counter = 0;
f o r ( i n t t = groupThreadID . x ;

t < NR_THREADS + 2 � KERNEL_RADIUS ;
t += NR_THREADS , counter += NR_THREADS )

{
i n t x = clamp (

dispatchThreadID . x + counter − KERNEL_RADIUS ,
0 , inputTexture . Length . x − 1) ;

float4 tex = inputTexture [ int2 (x , dispatchThreadID . y ) ] ;
fCacheR [ t ] = tex . r ;
fCacheG [ t ] = tex . g ;
fCacheB [ t ] = tex . b ;
fCacheA [ t ] = tex . a ;

}
GroupMemoryBarrierWithGroupSync ( ) ;

. . .
//Do the ac tua l b lur
. . .

outputTexture [ dispatchThreadID . xy ] = vOutColor ;
}

Listing 1.7. Final kernel implementation. Notice that we make a separate LDS
allocation for each channel.
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II

Grass Rendering and Simulation
with LOD

Dongsoo Han and Hongwei Li

2.1 Introduction

Grass rendering and simulation are challenging topics for video games because
grass can cover large open areas and require heavy computation for simulation.
As an extension of our previous hair technology, TressFX [Tre 13], we chose grass
because it has unique challenges. (See Figure 2.1.) Our initial plan was to support
rendering many individual grass blades covering a wide terrain and simulating
their interactions using rigid bodies and wind.

To satisfy our requirements, we developed an efficient and scalable level-of-
detail (LOD) system for grass using DirectX 11. In addition to LOD, a master-
and-slave system reduces simulation computation dramatically but still preserves
the quality of the simulation.

Figure 2.1. Grass rendering and simulation with balls.

91
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Figure 2.2. Five grass blade types generated by an in-house tool.

2.2 Render Grass Blades

To make the grass look natural, it is vital to acquire a natural shape for the
grass blades. We first adopted the method described in [Bouatouch et al. 06],
where they generate grass blade in a procedural manner. For each grass blade,
its stem is defined as a parabolic curve formed by tracking the motion of a point,
shooting from the root vertex, with a random initial speed and angle. This
method is simple yet effective, but cannot provide a rich variance in the grass
blade geometric appearance as they are always parabolic curves, tall or low,
curved or straight. It is difficult to generate complex and natural-looking grass
blades using this approach since the blades are poorly described by a quadratic
curve alone.

We find instancing can tackle this variance problem very well. First, we
generate a few grass blade types, each of which has a fixed number of knots.
In our application, the number of knots is 16, which balances the efficiency of
simulation and the smoothness of blade shape. Also, we have experimented with
different numbers of types and find five is good enough to create a grass lawn
with rich variance. More types do not hurt the performance but do not increase
the visual quality much either. Figure 2.2 shows five blade types that we created
using an in-house tool.

To further increase the variance, when we instantiate these blade types and
plant them in the scene (we call it the growing process), we randomize orien-
tations, lengths, widths, and textures of instantiated blades. For example, for
the fifth blade type, its length can vary between 0.1 m and 0.15 m. When it is
instantiated, its length will be set to a number between 0.1 m and 0.15 m with
regards to the normal distribution. Each knot on the blade is linearly scaled to
this new length. The range of length for each blade type is hard coded. The vari-
ance is further enhanced by distributing blade types unevenly. Some of them will
be used more often than others. The probability of instantiating one particular
blade type is tweaked for the best look in the final scene.

The grass blade created by hand or tool only describes the blade stem. The
stem is expanded to a blade in the runtime so that we can set the width of each
blade separately. Each line segment in the stem becomes a quad, i.e., two tri-
angles. There are 16 knots and thus there are 15 quads or 30 triangles. The
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Figure 2.3. Expand the stem to grass blade in vertex shader. The two overlapping
vertices from two triangles are dragged to opposite positions in the vertex shader.

expansion direction follows the binormal of the grass blade, and the expansion
width is chosen by the user. Moreover, we reduce the expansion width gradually
from bottom knots to top in order to make a sharp blade tip. This geometry
expansion was firstly implemented in a geometry shader, but the performance
was not satisfying. We then adopted the approach presented in TressFX, where
they do the geometry expansion in the vertex shader by expanding two degraded
triangles to normal, nondegenerate triangles. Figure 2.3 illustrates the process of
expanding the degenerate triangles. We also modified our in-house blade mod-
eling tool so that its output became a triangle strip: each knot in the stem is
duplicated into two vertices at the same coordinate as the knot, and one line
segment becomes two triangles. At runtime, we upgrade triangles by translating
two overlapping vertices at the knot position in opposite directions determined
by the modulo 2 result of the vertex ID, e.g., SV_VertexID.

Regarding the rendering, we do not have much freedom in choosing a shading
model for the grass blade for there are thousands of blades to be rendered in one
frame. It must be a lightweight shading model that still can create a promising,
natural appearance for the grass blade. Under this constraint, we adopt the con-
ventional Phong model and replace its ambient component with Hemispherical
Ambient Light [Wilhelmsen 09]. Hemispherical ambient light is a good approx-
imation of the true ambient color of grass in lieu of the more precise ambient
occlusion and color, which can be very expensive to generate. It is computed as
the sum of sky light and earth light as shown in following equation:

ambient = skylight× ratio + earthlight× (1 − ratio),

where ratio is defined by the dot product between the hemisphere’s “up” direction
and the vertex normal.

We also investigated screen-space translucency [Jimenez and Gutierrez 10],
but the increase in the visual quality is minor, and it added an extra 50 shader
instructions, so we did not use it.

Besides the lighting model, a grass blade has both a front and a back face, and
thus we cannot disable face culling on the GPU. We rely on DirectX’s semantic
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SV_IsFrontFace to tell us whether the current pixel is now facing forward or
backward. If it is the back face, we invert the normal and use the back surface
texture in the shading computation.

2.3 Simulation

Like hair simulation in TressFX, each grass blade is represented as vertices and
edges. We usually use 16 vertices for each blade and 64 for the thread group size
for compute shaders, but it is possible to change the thread group size to 32 or
128.

For hair simulation in TressFX, three constraints (edge length, global shape,
and local shape) are applied after integrating gravity. The TressFX hair simula-
tion includes a “head” transform. This is required in a hair simulation since the
character’s head can change its position and orientation, but we do not require
this transform for grass. We can also skip applying the global shape constraint
because grass gets much less force due to the absence of head movement. For the
edge length constraint and the local shape constraint, two to three iterations are
usually good enough.

The last step of simulation before going to LOD is to run a kernel to prevent
grass blades from going under the ground. This can be done simply by moving
each vertex position above the position of the blade root vertex position.

2.3.1 Master-and-Slave System

Master blades are the grass blades that are actively simulated. During the process
of growing blades procedurally, we arrange master blade vertex positions followed
by slave vertex positions. In our demo, we typically use a 1:4 ratio of master to
slave blades, but that ratio can be easily changed during the growing process.

After simulating master blades, we copy the master vertex positions to their
slaves. The important part of this process is that we should add perturbations so
that slave blades are not exactly showing the same motion of their master. The
perturbations become larger along the vertices toward the tip so that blades can
be separated wider between tips and avoid parallel patterns. It is also possible
to increase or decrease the perturbations based on the master blade’s velocity so
that if the master moves faster, the slaves will be farther behind.

2.3.2 Distance-Based Sorting

For LOD, two new read/write buffers (QuantizedLODDistance and LODSortedStrand

Index) were added to TressFX. QuantizedLODDistance is to store the distances
from the camera to each blade. LODSortedStrandIndex is to store the blade index
for QuantizedLODDistance. Basically, these two buffers make key and value pairs
for sorting.
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Figure 2.4. Kernel execution flow chart of radix sort.

The sorting algorithm we choose must run on the GPU efficiently and support
key and value pairs. Also, we need to count how many keys are less than a given
distance threshold so that we can determine the work item size for dispatch.
Choosing radix sort could give us an extra benefit that, if we quantize the distance
value in 8 bits, we need only one pass. Normally, radix sort needs four passes to
sort 32-bit keys with an 8-bit radix; see Figure 2.4.

After simulating master blades and updating slave vertices, ComputeCamera

Distance in Listing 2.1 calculates the distance from the camera position to each
blade. Also, frustum culling is performed here, and a negative distance value
will be assigned if the blade is outside of the camera’s frustum. We quantize the
distance values to 8 bits using the maximum distance given as user input.

Listings 2.2, 2.3, and 2.4 show the full code of radix sort. The inputs of radix
sort are QuantizedLODDistance and LODSortedStrandIndex. PrefixScan performs a
prefix scan of all the elements of QuantizedLODDistance. Before running the next
kernels of radix sort, we read the prefix scan data on the CPU and compute the
LOD ratio, which is a ratio of the number of valid blades to the number of total
blades. We use this LOD ratio to compute the thread group size for simulation
during the next frame.

Listing 2.5 shows how we can use a prefix scan to get the LOD ratio. We
first calculate the quantized distance threshold and simply read the value of the
prefix-scan array using the quantized distance threshold as an index; the prefix
scan stores counts of values.
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#de f i n e THREAD GROUP SIZE 64

RWStructuredBuffer<uint> QuantizedLODDistance : r e g i s t e r ( u6 ) ;
RWStructuredBuffer<uint> LODSortedStrandIndex : r e g i s t e r ( u7 ) ;

// cameraPos , cameraDir , and maxDist are g iven through
// const bu f f e r .

[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void ComputeCameraDistance ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
uint3 DTid : SV_DispatchThreadID )

{
uint globalBladedIndex , globalRootVertexIndex ;

// Calcu late i n d i c e s above here .

float4 pos = g_HairVertexPositions [ globalRootVertexIndex +1];
f l o a t dist = dot ( ( pos . xyz − cameraPos . xyz ) , cameraDir . xyz ) ;

// Perform frustum cu l l i n g and as s i gn negat ive d i s t an c e
// i f t h i s blade i s out o f frustum here .

// Quantize d i s t an c e i n to 8 b i t s (0 ˜ 2ˆ8−1)
// so that rad ix s o r t can s o r t i t in one pass .
i f ( dist < 0 | | dist > maxDist )

dist = maxDist ;

uint quantizedDist = ( uint ) ( ( dist / maxDist ) � 255 . f ) ;

QuantizedLODDistance [ globalBladedIndex ] = quantizedDist ;
LODSortedStrandIndex [ globalBladedIndex ] = globalBladedIndex ;

}

Listing 2.1. Compute camera distance kernel.

#de f i n e RADIX 8 // 8 b i t
#d e f i n e RADICES (1 << RADIX) // 256 or 0x100
#de f i n e RADIX MASK (RADICES − 1) // 255 or 0xFF
#de f i n e THREAD GROUP SIZE RADICES

cbuffer CBRadixSort : r e g i s t e r ( b0 )
{

i n t numElement ;
i n t bits ;
f l o a t dummy [ 2 ] ;

}

// UAVs
RWStructuredBuffer<uint> QuantizedLODDistance : r e g i s t e r ( u0 ) ;
RWStructuredBuffer<uint> histogramTable : r e g i s t e r ( u1 ) ;
RWStructuredBuffer<uint> particiallySortedData : r e g i s t e r ( u2 ) ;
RWStructuredBuffer<uint> prefixScan : r e g i s t e r ( u3 ) ;
RWStructuredBuffer<uint> LODSortedStrandIndex : r e g i s t e r ( u4 ) ;
RWStructuredBuffer<uint> particiallySortedValue : r e g i s t e r ( u5 ) ;

groupshared uint sharedMem [ RADICES ] ;
groupshared uint sharedMemPrefixScan [ RADICES ] ;
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uint pow2 ( uint a )
{

re turn ( ( ( uint ) 1) << a ) ;
}

// Each thread (work item ) works on one e lement .
[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void HistogramTable ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
uint3 DTid : SV_DispatchThreadID )

{
uint localId = GIndex ;
uint groupId = GId . x ;
uint groupSize = RADICES ;
uint globalId = groupSize � groupId + localId ;

// I n i t i a l i z e shared memory .
sharedMem [ localId ] = 0 ;
GroupMemoryBarrierWithGroupSync ( ) ;

particiallySortedData [ globalId ]
= QuantizedLODDistance [ globalId ] ;

particiallySortedValue [ globalId ]
= LODSortedStrandIndex [ globalId ] ;

uint value = particiallySortedData [ globalId ] ;
value = ( value >> bits ) & RADIX_MASK ;
InterlockedAdd ( sharedMem [ value ] , 1) ;

GroupMemoryBarrierWithGroupSync ( ) ;

uint index = RADICES � groupId + localId ;
histogramTable [ index ] = sharedMem [ localId ] ;

}

Listing 2.2. Constant buffer, UAVs, and histogram table kernels in radix sort.

// There i s only one thread group and the each thread
// (work item ) works on each column on histogram tab l e .
[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void ColumnScanHistogramTable ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
uint3 DTid : SV_DispatchThreadID )

{
uint localId = GIndex ;
uint numHistograms = numElement / THREAD_GROUP_SIZE ;
uint sum = 0;

f o r ( uint i = 0; i < numHistograms ; i++ )
{

sum += histogramTable [ RADICES � i + localId ] ;
histogramTable [ RADICES � i + localId ] = sum ;

}
}

// There i s only one thread group .
[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void PrefixScan ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
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uint3 DTid : SV_DispatchThreadID )
{

uint localId = GIndex ;

uint numHistograms = numElement / THREAD_GROUP_SIZE ;
sharedMemPrefixScan [ localId ]

= histogramTable [ RADICES � ( numHistograms − 1) + localId ] ;
sharedMem [ localId ] = sharedMemPrefixScan [ localId ] ;
GroupMemoryBarrierWithGroupSync ( ) ;

uint iter = ( uint ) ( log2 (256) ) ;
uint k = localId ;

f o r ( uint i = 0; i < iter ; i++ )
{

i f ( k >= pow2 ( i ) )
sharedMem [ k ] = sharedMemPrefixScan [ k ]

+ sharedMemPrefixScan [ k−pow2 ( i ) ] ;

GroupMemoryBarrierWithGroupSync ( ) ;
sharedMemPrefixScan [ k ] = sharedMem [ k ] ;
GroupMemoryBarrierWithGroupSync ( ) ;

}

i f ( localId > 0 )
prefixScan [ localId ] = sharedMemPrefixScan [ localId −1] ;

e l s e
prefixScan [ localId ] = 0 ;

}

Listing 2.3. Column scan histogram table and prefix scan kernels in radix sort.

// Each thread (work item ) works on one e lement .
[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void PrefixScanTable ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
uint3 DTid : SV_DispatchThreadID )

{
uint localId = GIndex ;
uint groupId = GId . x ;

uint index = RADICES � groupId + localId ;
sharedMem [ localId ] = histogramTable [ index ] ;
GroupMemoryBarrierWithGroupSync ( ) ;

sharedMem [ localId ] += prefixScan [ localId ] ;
histogramTable [ index ] = sharedMem [ localId ] ;

}

// One thread (work item ) works on one e lement .
[ numthreads ( THREAD_GROUP_SIZE , 1 , 1) ]
void Rearrange ( uint GIndex : SV_GroupIndex ,

uint3 GId : SV_GroupID ,
uint3 DTid : SV_DispatchThreadID )

{
uint localId = GIndex ;
uint groupId = GId . x ;

i f ( localId == 0 )
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{
f o r ( i n t i = 0; i < RADICES ; i++ )
{

uint element = particiallySortedData [ groupId
� RADICES + i ] ;

uint value = ( element >> bits ) & RADIX_MASK ;
uint index ;

i f ( groupId == 0 )
{

index = prefixScan [ value ] ;
prefixScan [ value ]++;

}
e l s e
{

index = histogramTable [ RADICES � ( groupId−1) + value ] ;
histogramTable [ RADICES � ( groupId−1) + value ]++;

}

QuantizedLODDistance [ index ] =
particiallySortedData [ groupId � RADICES + i ] ;

LODSortedStrandIndex [ index ] =
particiallySortedValue [ groupId � RADICES + i ] ;

}
}

}

Listing 2.4. Prefix scan table and rearrange kernels in radix sort.

// distThresholdLOD i s a d i s t anc e th r e sho l d f o r LOD
// and maxDistanceLOD i s the maximum d i s t anc e f o r quan t i z a t i on .
unsigned in t quantizedDistThresholdLod =

( unsigned in t ) ( ( distThresholdLOD / maxDistanceLOD ) � 255 . f ) ;

i n t count = prefixScan [ quantizedDistThresholdLod +1];
LODRatio = ( f l o a t ) count / ( f l o a t ) numMasterBlades ;

Listing 2.5. Calulating the LOD ratio.

2.3.3 Wind

There are two kinds of wind motions: local ambient and global tidal motions.
Local ambient motion is small scale and is independent of neighboring blades.
In TressFX, wind was applied to each vertex by calculating the force from the
wind and edge vectors. In grass, we simplified this by grabbing the tip vertex and
moving it along the wind vector. This simple method works as well as the force-
based approach. The amount of displacement is controlled by the magnitude of
the wind. To prevent a visible directional pattern, perturbations are added into
the wind directions and magnitudes.

Global tidal motion is also simple. This is wavy motion and neighbor blades
should work together. In our grass, we simply sweep the grass field with large
cylindrical bars and the collision handling system generates the nice wave motion.
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2.4 Conclusion

With 32,768 master blades and 131,072 slave blades, simulating an entire grass
field takes around 2.3 ms without LODs. Because radix sort takes around 0.3 ms,
we see that simulation time can easily drop by more than 50% with LODs using
reasonable distance thresholds.

In our test, we applied only one distance threshold. However, it is also possible
to use multiple distance thresholds. This would allow us to smoothly change
between LOD regions and reduce popping problems during camera movement.

Bibliography

[Bouatouch et al. 06] Kadi Bouatouch, Kévin Boulanger, and Sumanta Pat-
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II

Hybrid Reconstruction
Antialiasing

Micha�l Drobot

3.1 Introduction

In this article, we present the antialiasing (AA) solution used in the Xbox One
and Playstation 4 versions of Far Cry 4, developed by Ubisoft Montreal: hybrid
reconstruction antialiasing (HRAA). We present a novel framework that utilizes
multiple approaches to mitigate aliasing issues with a tight performance budget
in mind.

The Xbox One, Playstation 4, and most AMD graphics cards based on the
GCN architecture share a similar subset of rasterizer and data interpolation fea-
tures. We propose several new algorithms, or modern implementations of known
ones, making use of the aforementioned hardware features. Each solution is tack-
ling a single aliasing issue: efficient spatial super-sampling, high-quality edge
antialiasing, and temporal stability. All are based around the principle of data
reconstruction. We discuss each one separately, identifying potential problems,
benefits, and performance considerations. Finally, we present a combined solu-
tion used in an actual production environment. The framework we demonstrate
was fully integrated into the Dunia engine’s deferred renderer. Our goal was
to render a temporarily stable image, with quality surpassing 4× rotated-grid
super-sampling, at a cost of 1 ms at a resolution of 1080p on the Xbox One and
Playstation 4 (see Figure 3.1).

3.2 Overview

Antialiasing is a crucial element in high-quality rendering. We can divide most
aliasing artifacts in rasterization-based rendering into two main categories: tem-
poral and spatial. Temporal artifacts occur as flickering under motion when de-
tails fail to get properly rendered due to missing the rasterization grid on certain

101
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Figure 3.1. The crops on the right show no AA (top), SMAA (middle), and the presented
HRAA (bottom) results. Only HRAA is capable of reconstructing additional details
while providing high-quality antialiasing.

frames. Spatial artifacts result from signal under-sampling when dealing with a
single, static image. Details that we try to render are just too fine to be properly
resolved at the desired resolution, which mostly manifests itself as jagged edges.

Both sources of aliasing are directly connected with errors of signal under-
sampling and occur together. However, there are multiple approaches targeting
different aliasing artifacts that vary in both performance and quality. We can
divide these solutions into analytical, temporal, and super-sampling–based ap-
proaches.

In this article, we present a novel algorithm that builds upon all these ap-
proaches. By exploring the new hardware capabilities of modern GPUs (we will
base our findings on AMD’s GCN architecture), we optimize each approach and
provide a robust framework that shares the benefits of each algorithm while min-
imizing their shortcomings.

3.3 Related Work

A typical antialiasing solution used in offline rendering is to super-sample (SSAA)
the image; render at a higher resolution and then perform a resolve step, which
is a down-sampling filter into the desired final resolution [Burley 07]. If enough
samples are used, then this type of antialiasing tackles all the aliasing problems
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mentioned earlier. Unfortunately, it requires effectively rendering the image mul-
tiple times and is of limited usefulness for real-time rendering.

An optimized version of super-sampling is provided by graphics hardware in
the form of multi-sampled antialiasing (MSAA) [Kirkland et al. 99]. Instead of
shading all pixels at higher resolution, only samples along triangle edges are ras-
terized multiple times (but only shaded once), which is followed by an optimized
resolve. MSAA proves to be a valid solution to spatial aliasing issues, but is
strictly limited to triangle edges. All samples need to be stored in an additional
framebuffer until they are resolved, therefore making this method very expensive
in terms of memory consumption. As a result, not many games use it as the main
antialiasing solution on performance-limited platforms.

It is worth noting that the number of gradient steps on antialiased edges
is strictly correlated to the number of samples that MSAA or SSAA uses (i.e.,
4×MSAA can provide a maximum of five gradients depending on the sampling
pattern and edge orientation).

On the previous generation of consoles (Xbox 360 and Playstation 3), we
observed a rise in popularity of image-based, postprocessing, morphological an-
tialiasing solutions such as FXAA [Lottes 09], MLAA [Reshetov 09], and SMAA
[Jimenez et al. 11]. These algorithms provided excellent results, with perceptual
quality comparable to extremely high levels of MSAA rendering at a fraction
of the cost of MSAA. A typical morphological filter derives visually perceivable
edges from the current image and performs edge re-vectorization. Unfortunately
the result still relies only on the final rasterized image data, which can suffer
from temporal and spatial aliasing. In practice, static images that are pro-
cessed with these algorithms look much better than what the hardware-based
MSAA can achieve. Unfortunately the quality degrades dramatically under mo-
tion, where spatial and temporal under-sampling result in “wobbly” edges and
temporal flicker of high-contrast details.

It is clear that morphological methods alone will not achieve the high-quality
spatio-temporal results of super-sampling. This sparked research in two differ-
ent directions: analytical- and temporal-based antialiasing. Several researchers
experimented with postprocessing methods, augmented by additional informa-
tion, derived from actual triangle-edge equation. Probably the most well known
is GBAA [Persson 11], which calculates per-pixel signed distance to the closest
triangle edge. This information is stored in an additional buffer and is used later
during a postprocessing pass to effectively rerasterize triangle edge-pixel inter-
sections analytically. This method can provide a high level of quality and perfect
temporal stability of triangle edges. Unfortunately, due to its use of a geometry
shader pass to gather triangle information, it exhibits poor performance and thus
never gained widespread adoption. It is also hindered by multiple other issues
that we will discuss in-depth in Section 3.5.

Another approach gaining popularity is based on temporal algorithms that
try to perform filtering using previously rendered frames utilizing image temporal
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coherency [Nehab et al. 07]. This effectively allows multi-sampled algorithms to
be amortized over time [Yang et al. 09]. Several titles use temporal resolves to
augment SSAO [Bavoil and Andersson 12, Drobot 11] or to stabilize the final
image in motion [Sousa 13]. Some engines experiment with temporal super-
sampling [Malan 12]; however, due to a lack of robust sample rejection methods,
those approaches are rather conservative, i.e., accumulating only two frames using
a limited subset of visible pixels [Sousa 11].

Recently Killzone: Shadow Fall used a robust temporal up-sampling method,
effectively rendering images with 2× super-sampling. It also used previously re-
constructed frames to stabilize images in motion in order to avoid image flickering
[Valient 14].

Several researchers have tried to combine the benefits of hardware-based
MSAA, temporal sampling and morphological filtering into one combined so-
lution. This resulted in 4×SMAA [Jimenez et al. 12], which combines the quality
of SMAA edge gradients with the temporal stability of 2×MSAA and 2×temporal
super-sampling. Unfortunately, not many console titles can afford this due to the
use of expensive 2×MSAA.

One more research direction has been toward optimizing sampling patterns
for multi-sampled approaches [Akenine-Möller 03]. Unfortunately, this approach
didn’t get much traction in the real-time rendering field due to a lack of hard-
ware and software support for custom sampling patterns. Only a few predefined
sampling patterns are supported in hardware-based MSAA modes.

Another hardware-based solution involves augmenting the standard MSAA
pipeline with coverage samples that can be evaluated with minimal performance
and memory overhead. This solution was, up to this point, a part of the fixed
GPU pipeline in the form of EQAA [AMD 11] and CSAA [Young 06].

3.4 Hybrid Antialiasing Overview

Our antialiasing solution can be divided into several components. Each one can
stand on its own and can be freely mixed with any other approach.

The aim of each component is to tackle a different source of aliasing, so each
algorithm can be used to its best effect in limited use-case scenarios.

Our framework is built around the following components:

• temporally stable edge antialiasing,

• temporal super-sampling,

• temporal antialiasing.
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3.5 Temporally Stable Edge Antialiasing

The aim of this component is to provide perceptually plausible gradients, for
geometric edges, that remain stable under motion. We do not need to worry
about pixel discontinuities that come from texture data or lighting, as that source
of aliasing will be taken care of by a different framework component.

In Section 3.3, we briefly discussed potential algorithms that would suit our
needs for high-quality edge rendering: morphological and analytical. However,
only the latter can provide temporally stable antialiasing. Unfortunately, all
purely analytical methods exhibit problems, including performance issues.

We would like to propose a new implementation based on AMD’s GCN archi-
tecture that makes analytical edge antialiasing virtually free. In Section 3.5.1, we
propose several extensions as well as real production issues connected with the
method itself. Section 3.5.2 offers a brief introduction to EQAA’s inner work-
ings. It also introduces a new algorithm—coverage reconstruction antialiasing—
that uses coverage samples from hardware-based EQAA to analytically estimate
the edge orientation as well as triangle spatial coverage, building upon previous
analytical-only algorithms.

3.5.1 Analytical Edge Antialiasing (AEAA)

The original GBAA algorithm relies on a geometry shader to pass down geometry
information to the pixel shader. Interpolators are used to store the distance
to the edge in the major direction. Then, the pixel shader selects the closest
signed distance to the currently rasterized pixel and outputs it into an additional
offscreen buffer. Distance data needs to contain the major axis and the actual
signed distance value in range [−1, 1], where 0 is considered to be at the rasterized
pixel center. Later, a fullscreen postprocessing pass searches for each pixel’s
immediate neighbor’s closest edges. After an edge crossing the pixel is found, we
use its orientation and distance to blend the two nearest pixels accordingly (see
Figure 3.2).

D = min3 (d0, d1, d2)

d2

d1

d0

D

Figure 3.2. In analytical distance-to-edge techniques, every triangle writes out the
distance to the closest edge used to antialias pixels in a postprocessing pass.
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Morphological Frame A

Analytical Frame B

Analytical Frame A

Morphological Frame B

Figure 3.3. Antialiased edge changes in motion when using analytical data. Note that
every morphological solution will fail as no gradient change will be detected due to the
same results of rasterization. This gets more problematic with shorter feature search
distance.

Such methods provide temporally stable edge antialiasing, as the blend factor
relies on continuous triangle information rather than discrete rasterization results
(see Figure 3.3).

Gradient length is limited only by storage. In practice, it is enough to store
additional data in 8 bits: 1 bit for the major axis and 7 bits for signed distance,
providing 64 effective gradient steps.

This algorithm also deals efficiently with alpha-tested silhouettes, if a mean-
ingful distance to an edge can be estimated. This proves to be relatively easy
with nonbinary alpha channels. Alpha test derivatives can be used to estimate
the distance to a cutout edge. A better solution would be to use signed distance
fields for alpha testing and directly output the real distance to the edge.

Both methods are fast and easy to implement in practice. It is worth noting
that the final distance to the edge should be the minimum of the geometric
distance to the triangle edge and the edge derived from the alpha channel.
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We implemented GBAA and optimized it to take advantage of the benefits
of the new hardware features found in modern GPUs. AMD’s GCN architecture
allows pixel shaders to sample vertex data from the triangle descriptors used to
rasterize the current pixel. This means that we no longer need the expensive
geometry-shader stage to access vertex data in order to calculate the distance to
the edge as shown by [Drobot 14].

The snippet in Listing 3.1 shows the improved GBAA algorithm with offsets
directly evaluated in the pixel shader. The final postprocess resolve step remains
unchanged from the original algorithm.

// Calcu late c l o s e s t ax i s d i s t an c e between point X
// and l i n e AB. Check aga in s t known d i s tanc e and d i r e c t i o n
f l o a t ComputeAxisClosestDist ( f l o a t 2 inX ,
f l o a t 2 inA ,
f l o a t 2 inB ,
inout u int ioMajorDir ,
inout f l o a t ioAxisDist )
{
f l o a t 2 AB = normalize ( inB − inA ) ;
f l o a t 2 normalAB = f l o a t 2 (−AB . y , AB . x ) ;
f l o a t dist = dot ( inA , normalAB ) − dot ( inX , normalAB ) ;
bool majorDir = ( abs ( normalAB . x ) > abs ( normalAB . y ) ) ;
f l o a t axisDist = dist � rcp ( majorDir ? normalAB . x : normalAB . y )←↩

;

i f ( axisDist < ioAxisDist ) ioAxisDist = axisDist ;
i f ( axisDist < ioAxisDist ) ioMajorDir = majorDir ;
}

void GetGeometricDistance ( f l o a t 2 inScreenCoord ,
out f l o a t oDistance ,
out bool oMajorDir )
{
// GetParameterX are HW implementation dependant

f l o a t 2 sc = GetParameterInterpolated ( inScreenCoord ) ;
f l o a t 2 sc0 = GetParameterP0 ( inScreenCoord )
f l o a t 2 sc1 = GetParameterP1 ( inScreenCoord ) ;
f l o a t 2 sc2 = GetParameterP2 ( inScreenCoord ) ;

oDistance = FLT_MAX ;

ComputeAxisClosestDist ( sc , sc0 , sc1 , oMajorDir , oDistance ) ;
ComputeAxisClosestDist ( sc , sc1 , sc2 , oMajorDir , oDistance ) ;
ComputeAxisClosestDist ( sc , sc2 , sc0 , oMajorDir , oDistance ) ;
}

// inAlpha i s r e s u l t o f AlphaTest ,
// i . e . , Alpha − AlphaRef
// We assume alpha i s a d i s t an c e f i e l d
void GetSignedDistanceFromAlpha ( f l o a t inAlpha ,
out f l o a t oDistance ,
out bool oGradientDir )
{

// Find alpha t e s t g rad i en t
f l o a t xGradient = ddx_fine ( inAlpha ) ;
f l o a t yGradient = ddy_fine ( inAlpha ) ;
oGradientDir = abs ( xGradient ) > abs ( yGradient ) ;
// Compute s igned d i s t anc e to where alpha reaches ze ro
oDistance = −inAlpha � rcp ( oGradientDir ? xGradient : yGradient ) ;
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}

void GetAnalyticalDistanceToEdge ( f l o a t inAlpha ,
f l o a t 2 inScreenCoord ,
out f l o a t oDistance ,
out bool oMajorDir )
{
bool alphaMajorAxis ; f l o a t alphaDistance ;
GetSignedDistanceFromAlpha ( inAlpha ,
alphaDistance ,
alphaMajorAxis )
GetGeometricDistance ( inScreenCoord ,
oDistance ,
oMajorDir ) ;
i f ( alphaDistance < oDistance ) oDistance = alphaDistance ;
i f ( alphaDistance < oDistance ) alphaMajorAxis = alphaMajorAxis ;
}

Listing 3.1. Optimized GBAA distance to edge shader. This uses direct access to vertex
data from within the pixel shader.

In terms of quality, the analytical methods beat any morphological approach.
Unfortunately, this method proves to be very problematic in many real-world
scenarios. Malan developed a very similar antialiasing solution and researched
further into the practical issues [Malan 10].

The main problem stems from subpixel triangles, which are unavoidable in
a real game production environment. If an actual silhouette edge is composed
of multiple small or thin triangles, then only one of them will get rasterized per
pixel. Therefore, its distance to the edge might not be the actual distance to the
silhouette that we want to antialias. In this case, the resulting artifact will show
up as several improperly smoothed pixels on an otherwise antialiased edge, which
tends to be very visually distracting (see Figure 3.4 and Figure 3.5).

Malan proposed several ways of dealing with this problem [Malan 10]. How-
ever, none of these solutions are very practical if not introduced at the very
beginning of the project, due to complex mesh processing and manual tweaking.

Another issue comes again from the actual data source. Hints for antialiasing
come from a single triangle, therefore it is impossible to correctly detect and pro-
cess intersections between triangles. Many assets in a real production scenario
have intersecting triangles (i.e., a statue put into the ground will have side trian-
gles intersecting with the terrain mesh). GPU rasterization solves intersections
by depth testing before and after rendering a triangle’s pixels. Therefore, there
is no analytical information about the edge created due to intersection. In effect,
the distance to the closest edge does not represent the distance to the intersection
edge, which results in a lack of antialiasing.

3.5.2 Coverage Reconstruction Antialiasing (CRAA)

In order to improve upon the techniques and results shared in Section 3.5.1, we
would like to find a way to determine more information about a triangle’s actual
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Figure 3.4. False distance to a silhouette edge due to subpixel triangles. Taking a single
triangle into account would result in rerasterization of a false edge (blue) instead of the
real silhouette edge (red).

Figure 3.5. Top to bottom: a visualization of analytical distance to edge, rasterized
edge, analytically antialiased edge, an edge using 5-bit gradients, and an edge showing
minor artifacts when multiple triangles intersect one pixel.

intersections and edges within a pixel. With this information, we could partially
address most of the aforementioned issues. Fortunately, EQAA provides exactly
the information we are interested in by using AMD’s hardware EQAA.
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EQAA overview. The enhanced quality antialiasing (EQAA) framework augments
the standard MSAA color/depth resolve with coverage samples. The rasterizer,
while processing triangles, can do cheap analytical sample coverage tests within
a triangle. The results of such tests are saved into a compressed buffer called a
fragment mask (FMask). The FMask acts as an indirection table that associates
sample locations with color fragments that were rasterized and stored in the
fragment buffer (as in normal MSAA). The number of samples can be higher
than the number of stored fragments. In order to accomidate this, a sample in
FMask may be marked as “unknown” if it is associated with a fragment that
cannot be stored in the fragment buffer (see Figure 3.6).

An important aspect of coverage rendering is correct depth testing. Normally,
incoming coverage samples need to be tested against depth fragments stored in
the MSAA depth buffer. In order to get correct coverage information, normal
MSAA would require a depth buffer that stores of the same number of depth
fragments as the number of coverage samples (we can get away with storing
fewer color fragments because FMask allows us to associate a single fragment
with multiple samples). Fortunately, one feature of AMD’s GCN architecture is
an ability to work with a compressed depth buffer, which is stored as a set of
plane equations. When this mode is enabled, EQAA uses these plane equations
to do correct depth testing by analytically deriving depth values for all coverage
samples. This means that it is possible to get correct coverage information, even
if depth and color information is evaluated and stored as a single fragment (thus
MSAA is effectively turned off for all render targets).

Another important requirement for correctly resolving coverage is to sort tri-
angles from front to back. Otherwise, due to the rules of rasterization, it is
possible for a triangle to partially overlap a pixel and not get rasterized. If that
happens, then that pixel’s coverage value might not get updated. Therefore, it
is essential to sort objects from front to back (which most rendering engines do
already). Fragment sorting is mostly taken care of by GCN hardware. Unfortu-
nately, it is still possible to get incorrect results due to subpixel triangles that
won’t get rasterized and therefore can’t correctly update pixel coverage informa-
tion.

The memory footprint of FMask is directly proportional to number of unique
fragments and samples used. For every sample, we need enough bits to index any
of the fragment stored for that pixel and also an additional flag for an unknown
value. For the sake of this article, we will focus on use cases with one fragment
and eight samples (1F8S)—which require 1 bit per sample, thus 8 bits per pixel
total (see Figure 3.7). Such a setup proved to be optimal with regard to EQAA
performance as well as the FMask’s memory footprint.

CRAA setup. Our goal is to use part of the EQAA pipeline to acquire coverage
information at a high resolution (8 samples per pixel) without paying the com-
putational and memory overhead of full MSAA rendering. We would like to use
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Figure 3.6. The steps here illustrate an updated FMask as new triangles are rasterized.
Important note: in the last step, the red triangle does not need to evict Sample 3 if
it would fail a Z-test against the sample. (This, however, depends on the particular
hardware setup and is beyond the scope of this article.)
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Figure 3.7. Simple rasterization case and corresponding FMask.

information recovered from the coverage data to derive blending hints in a similar
fashion to AEAA.

In our simplified case of 1F8S we know that FMask will be an 8-bit value,
where the nth bit being set to 0 represents the nth sample being associated with
the rasterized fragment (therefore it belongs to the current pixel’s triangle and
would pass depth testing), while 1 informs us that this sample is unknown—i.e.,
it was occluded by another triangle.

We can think of FMask as a subset of points that share the same color. If
we were to rasterize the current pixel with this newly acquired information, we
would need to blend the current pixel’s fragment weighted by the number of
its known coverage samples, with the other fragment represented by “unknown”
coverage samples. Without adding any additional rendering costs, we could infer
the unknown color fragments from neighboring pixels. We assume that the depth
buffer is working in a compressed mode and that EQAA is using analytical depth
testing, thus providing perfectly accurate coverage information.
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Figure 3.8. Here we illustrate the process of finding an edge that divides a set of
samples into “known” and “unknown” samples. Later, this half plane is used to find an
appropriate neighboring pixel for deriving the unknown color value.

Single edge scenario. We can apply the same strategy behind AEAA to a simple
case in which only a single edge has crossed the pixel. In this case, the pixel’s
FMask provides a clear division of coverage samples: those that passed will be on
one side of the edge, while failed samples will be on the other side. Using a simple
line-fitting algorithm, we can find an edge that splits our set of samples into two
subsets—passed and failed. This edge approximates the real geometric edge of the
triangle that crossed the pixel. In the same spirit of the GBAA algorithm, we find
the major axis of the edge as well as its distance from the pixel’s center. Then we
just need to blend the nearest neighboring pixel color with the current fragment
using the edge distance as a weight. Thus, this technique infers the unknown
samples from the pixel closest to the derived half plane (see Figure 3.8).
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f l o a t 4 CRAA ( Texture2DMS<f l o a t4> inColor ,
Texture2D<uint2> inFMask ,
uint2 inTexcord )

{
// Read FMask / HW dependant
u int iFMask = inFMask . Load ( uint3 ( viTexcoord , 0 ) ) ;
u int unknownCov = 0;
f l o a t 2 hP = 0 . 0 ;

// Average a l l d i r e c t i o n s to unknown samples
// to approximate edge ha l f p l an e
f o r ( u int iSample = 0; iSample < NUM_SAMPLES ; ++iSample )

i f ( getFMaskValueForSample ( iFMask , iSample ) == UNKNOWN_CODE )
{

hP += TexColorMS . GetSamplePosition ( iSample ) ;
unknownCoverage++;

}

// Find fragment o f f s e t to p i x e l on the other s i d e o f edge
int2 fOff = int2 ( 1 , 0) ;
i f ( abs ( hP . x ) > abs ( hP . y ) && hP . x <= 0 . 0 ) fOff = int2 (−1 , 0) ;
i f ( abs ( hP . x ) <= abs ( hP . y ) && hP . x > 0 . 0 ) fOff = int2 ( 0 , 1) ;
i f ( abs ( hP . x ) <= abs ( hP . y ) && hP . x <= 0 . 0 ) fOff = int2 ( 0 ,−1) ;

// Blend in i n f e r r e d sample
f l o a t knownCov = NUM_SAMPLES −− unknownCoverage ;
f l o a t 4 color = inColor . Load ( viTexcoord , 0 ) � knownCov ;
color += inColor . Load ( viTexcoord + fOff , 0 ) � unknownCov ;
r e turn color /= NUM_SAMPLES ;

}

Listing 3.2. A simple shader for finding the half plane that approximates the orientation
of the “unknown” subset of samples. The half plane is then used to find the closest pixel
on the other side of the edge in order to infer the unknown sample’s color.

The resolve we have described is akin to GBAA with a limited number of
gradient steps (the number of steps is equal to the number of samples used by
EQAA). An important thing to note is that our resolve does not need to know
anything about the neighboring geometric data (all the information that is needed
for reconstruction is contained within the pixel). This is an important difference,
because we can reconstruct an edge that was created as the result of rasterizating
multiple overlapping triangles; GBAA can only recreate the edge of a single
triangle.

Our resolve can be efficiently implemented at runtime by approximating the
half plane (see Listing 3.2) while still providing quality comparable to MSAA
with the same sampling ratio (see Figure 3.9).

Complex scenario. Following what we learned about resolving simple edges using
FMask, we would now like to apply similar ideas to resolving more complex
situations in which multiple edges cross a given pixel. In order to achieve this, we
would like to be able to group together “failed” samples from different triangles
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Figure 3.9. A challenging rendering scenario for antialiasing (top left). Rasterization
grid and edge layout (top right). Simple 8×CRAA resulting in edge antialiasing compa-
rable to 8×MSAA apart from pixels that are intersected by multiple triangles (bottom
left). The results of 8×MSAA (bottom right).

into multiple disconnected sets. For every disconnected set, we find edges (up
to two edges in our implementation) that split it off from other sets. Then we
use the acquired edges to find major directions that should be used for subset
blending. For every subset of unknown fragments, we blend in a color from the
neighboring fragment associated with that subset and weighted by the subset’s
area coverage within the pixel. Finally, we sum all the color values for each
subset and blend this with the current fragment’s known color weighted by the
percentage of passing coverage samples. This way, we can partially reconstruct
the subpixel data using the current pixel’s surrounding neighborhood (see Figure
3.10).

Using precomputed LUT. Clearly, our algorithm could be rewritten to provide a
set of weights for blending colors from the surrounding 3× 3 pixel neighborhood.
The blend weights rely only on the data present in FMask, and thus our blend
weights can be precomputed and stored in a look up table (LUT), which is indexed
directly by a pixel’s FMask bit pattern.

In our 1F8S case, the LUT would only need 256 entries. Our implementation
uses only top, bottom, left, and right neighboring pixels and uses only 4-bit
gradients or blend weights. Therefore, the whole LUT requires 256×4×4 = 512-
byte array, which easily fits entirely within the cache.

We also experimented with more complex LUT creation logic. FMask can be
evaluated in a morphological fashion to distinguish shapes, thus calculating more
accurate and visually plausible gradients. Unfortunately, due to our project’s time
constraints, we did not have time to properly pursue this direction of research.
We believe that a significant quality improvement can be gained from smarter
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Figure 3.10. One of the possible methods for finding blend weights for sample subsets.
The bottom image illustrates a blend weight resolve using a lookup table.

FMask analysis. Using 1F16S would also provide significantly better precision
and subpixel handling.

It is worth noting that even the simple logic presented in this section allows for
significant aliasing artifact reduction on thin triangles. Figure 3.11 illustrates a
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Figure 3.11. Top to bottom: edge layout, rasterized edge, simple 8×CRAA resolve, and
8×CRAA LUT correctly resolving subpixel artifacts.

problematic case for AEAA, where our simple CRAA resolve correctly antialiased
the edge. Unfortunately, when there are too many subpixel triangles that don’t
pass rasterization, CRAA may also fail due to incorrect coverage information. In
practice, this heavily depends on the exact rendering situation, and still CRAA
has much more relaxed restrictions than AEAA.

The code snippet in Listing 3.3 illustrates the CRAA LUT resolve properly
resolving minor subpixel details (see Figure 3.10).

f l o a t 4 CRAA_LUT ( Texture2DMS<f l o a t4> inColor ,
Texture2D<uint2> inFMask ,
Texture1D<uint> inCRAALUT ,
uint2 inTexcord )

{
// Read FMask / HW dependant
u int iFMask = inFMask . Load ( uint3 ( viTexcoord , 0 ) ) ;
u int LUTREsult = inCRAALUT [ iFMask ] ;
f l o a t wC , wN , wE , wS , wW ;

// LUT i s packed as 8 b i t i n t e g e r we ights
// North 8b | West 8b | South 8b | East 8b
// Can a l s o pack whole neighborhood we ights in 4 b i t s
ExctractLUTWeights ( LUTResult , wC , wN , wE , wS , wW ) ;

f l o a t 4 color = inColor . Load ( viTexcoord + int2 ( 0 , 0) � wC ;
color += inColor . Load ( viTexcoord + int2 ( 0 ,−1) � wN ;
color += inColor . Load ( viTexcoord + int2 ( 0 , 1) � wE ;
color += inColor . Load ( viTexcoord + int2 ( 0 , 1) � wS ;
color += inColor . Load ( viTexcoord + int2 (−1 , 0) � wW ;
r e turn color ;

}

Listing 3.3. CRAA LUT implementation.
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3.6 Temporal Super-Sampling

3.6.1 Overview

Temporal super-sampling can be succinctly described by the following simple
algorithm:

1. Every frame, offset the projection matrix by a subpixel offset.

2. Use the current frame’s N motion vectors to reproject data from frame
N − k to time step N .

3. Test if the reprojected data is valid:

• No occlusion occurred.

• The data comes from the same source (i.e., object or triangle).

• The data is not stale (i.e., due to lighting changes).

4. Accumulate data from frame N with data reprojected from frame N − k.

5. Repeat steps 2–4 for k frames back in time.

The number k dictates the number of unique subpixel offsets used for jitter in
order to get spatially unbiased results after converging by accumulation of all the
k samples. However, it is easy to see that by increasing the number k of frames of
history, the algorithm has a much higher complexity and therefore a much higher
chance of failure.

The most proper (and expensive) approach would be to hold the last k frames
in memory along with their motion vectors and additional data required to verify
sample validity. Then we would need to evaluate a series of dependent reads
and checks to verify if reprojected pixels were valid back in both the spatial and
temporal domains. For a given pixel, we could only accumulate as many samples
as managed to pass these checks until we encountered the first failure. This
approach would guarantee a very high-quality result [Yang et al. 09], however the
cost when k > 1 is prohibitively expensive for real-time, performance-oriented
scenarios, such as games.

Other solutions rely on a so-called history buffer that holds all the accumu-
lated samples, thus simplifying the previously described method to the k = 1 case.
Unfortunately, this solution can’t guarantee convergence as it is impossible to re-
move stale samples from the history buffer without discarding it totally. Also,
the validation functions need to be much more conservative in order to prevent
incoherent samples from entering the history buffer. This approach, when used
for super-sampling, results in a somewhat unstable image with possible “fizzing”
high-contrast pixels since they can’t converge [Malan 12]. Very similar approaches
can be used to stabilize the image over time (instead of super-sampling), as shown
in [Sousa 13] and [Valient 14]. We will be discussing this more in Section 3.7.
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Figure 3.12. One sample centroid rasterization pattern.

Figure 3.13. Two rotated samples from a standard 2×MSAA pattern.

Taking all pros and cons into account, we decided to pursue the highest pos-
sible quality with k = 1. This means that we are only dealing with one frame of
history, and for every single frame we have two unique samples at our disposal
(assuming that our history sample was accepted as valid); we would like to get
as much data from them as possible.

3.6.2 Sampling Patterns

A single sample resolve can’t provide any gradients (see Figure 3.12 for a baseline
reference).

As discussed in Section 3.6.1, we want to maximize the resolve quality while
using only two unique samples. One possible way to achieve this is through a
more complex resolve and sampling pattern. Currently, common implementations
of 2× super-sampling use the 2×MSAA sampling pattern (see Figure 3.13).

One possible improvement upon this is to use a quincunx sampling pattern
[NVIDIA 01]. This pattern relies on sharing a noncentral sample with adjacent
pixels; thus, the resolve kernel needs to sample corner data from neighboring
pixels (see Figure 3.14).

In practice, quincunx sample positions are not very beneficial. Having sam-
pling points on regular pixel rows and columns minimizes the number of potential
edges that can be caught. In general, a good pattern should be optimized for
maximum pixel row and column coverage. The 4× rotated-grid pattern is a good
example (see Figure 3.15).
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Figure 3.14. Quincunx sampling and resolve pattern guarantees higher-quality results
than 2×MSAA while still keeping the sample count at 2.

Figure 3.15. The 4× rotated-grid super-sampling pattern maximizes row and column
coverage.

3.6.3 FLIPQUAD

[Akenine-Möller 03] proposed several other low-sample-cost patterns such as FLIP-
TRI and FLIPQUAD. We will focus on FLIPQUAD as it perfectly matches our
goal of using just two unique samples. This sampling pattern is similar to quin-
cunx in its reuse of samples between pixels. However, a massive quality improve-
ment comes from putting sampling points on pixel edges in a fashion similar to
the rotated-grid sampling patterns. This provides unique rows and columns for
each sample, therefore guaranteeing the maximum possible quality.

The FLIPQUAD pattern requires a custom per-pixel resolve kernel as well as
custom per-pixel sampling positions (see Figure 3.16). An important observation
is that the pattern is mirrored, therefore every single pixel quad is actually the
same.

The article [Laine and Aila 06] introduced a unified metric for sampling pat-
tern evaluation and proved FLIPQUAD to be superior to quincunx, even sur-
passing the 4× rotated-grid pattern when dealing with geometric edges (see Fig-
ure 3.17 and Table 3.1).

We can clearly see that the resolve kernel is possible in a typical pixel shader.
However, the per-pixel sampling offsets within a quad were not supported in hard-
ware until modern AMD graphic cards exposed the EQAA rasterization pipeline
extensions. This feature is exposed on Xbox One and Playstation 4, as well as
through an OpenGL extension on PC [Alnasser 11].
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Figure 3.16. FLIPQUAD provides optimal usage of two samples matching quality of
4× rotated-grid resolve.

Figure 3.17. Left to right: single sample, FLIPQUAD, and quincunx. [Image courtesy
[Akenine 03].]

The implementation of the FLIPQUAD pattern is fairly straightforward using
2×MSAA. The snippets in Listings 3.4 and 3.5 give sampling positions for pixels
within a quad and the reconstruction kernel.

3.6.4 Temporal FLIPQUAD

In Section 3.6.3 we discussed implementing FLIPQUAD sampling and reconstruc-
tion on modern hardware. However, in the context of temporal super-sampling,
we need to adapt our pattern and resolve kernel. We decided to split the pattern
into two subsets—one that will be used to render even frames (blue) and one
used on odd frames (red) (see Figure 3.18).

Pattern E

1× Centroid > 1.0

2× 2 Uniform Grid 0.698

2× 2 Rotated Grid 0.439

Quincunx 0.518

FLIPQUAD 0.364

Table 3.1. Error metric (E) comparison against a 1024-sample reference image as
reported by [Laine and Aila 06] (lower is better).
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// Indexed [SAMPLES LOCATIONS] in n/16 p i x e l o f f s e t s
int2 gFQ_Q00 [ 2 ] = { int2 (−8,−2) , int2 ( 2 ,−8) } ;
int2 gFQ_Q10 [ 2 ] = { int2 (−8 , 2) , int2 (−2,−8) } ;
int2 gFQ_Q01 [ 2 ] = { int2 (−8 , 2) , int2 (−2,−8) } ;
int2 gFQ_Q11 [ 2 ] = { int2 (−8,−2) , int2 ( 2 ,−8) } ;

Listing 3.4. FLIPQUAD sample array.

s0 = CurrentFrameMS . Sample ( PointSampler , UV , 0) ;
s1 = CurrentFrameMS . Sample ( PointSampler , UV , 1) ;
s2 = CurrentFrameMS . Sample ( PointSampler , int2 ( 1 , 0) , 0) ;
s3 = CurrentFrameMS . Sample ( PointSampler , int2 ( 0 , 1) , 1) ;

r e turn 0 .25 � ( s0 + s1 + s2 + s3 ) ;}

Listing 3.5. FLIPQUAD reconstruction kernel.

To resolve this sampling scheme properly, we need two resolve kernels—one
for even and one for odd frames (see Listings 3.6 and 3.7). Due to the alternating
patterns, in each frame the kernel will be guaranteed to properly resolve horizontal
or vertical edges. If data from the previous frame is accepted, a full pattern will
be properly reconstructed.

It is worth noting that an incorrect (or missing) FLIPQUAD reconstruction
pass will result in jigsaw edges, which are a direct result of a nonuniform sampling
grid (see Figure 3.19).

1
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32

0

Figure 3.18. Temporal FLIPQUAD pattern. Red samples are rendered on even frames.
Blue samples are rendered on odd frames.
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// Indexed [FRAME] [SAMPLES LOCATIONS] in n/16 p i x e l o f f s e t s
// BLUE RED
int2 gTempFQ_Q0 [ 2 ] [ 1 ] = { int2 (−8,−2) , int2 ( 2 ,−8) } ;
int2 gTempFQ_Q1 [ 2 ] [ 1 ] = { int2 (−8 , 2) , int2 (−2,−8) } ;
int2 gTempFQ_Q2 [ 2 ] [ 1 ] = { int2 (−8 , 2) , int2 (−2,−8) } ;
int2 gTempFQ_Q3 [ 2 ] [ 1 ] = { int2 (−8,−2) , int2 ( 2 ,−8) } ;

Listing 3.6. Temporal FLIPQUAD sample array.

#i f d e f i n ed (ODDFRAME) // RED
// Hor izonta l patte rn f o r frame [ 1 ]
int2 offset0 = int2 (0 , 1) ;
int2 offset1 = int2 (1 , 0) ;
#e l s e i f d e f i n ed (EVENFRAME) // BLUE
int2 offset0 = int2 (1 , 0) ;
int2 offset1 = int2 (0 , 1) ;
#end i f

s0 = CurrentFrame . Sample ( PointSampler , UV ) ;
s1 = CurrentFrame . Sample ( PointSampler , UV , offset0 ) ;
s2 = PreviousFrame . Sample ( LinearSampler , previousUV ) ;
s3 = PreviousFrame . Sample ( LinearSampler , previousUV , offset1 ) ;

r e turn 0 .25 � ( s0 + s1 + s2 + s3 ) ;}

Listing 3.7. Temporal FLIPQUAD reconstruction kernel.

Rasterization should happen at sample locations in order to take full advan-
tage of FLIPQUAD. This can be easily achieved by using the sample prefix in
HLSL’s interpolator definition. This way, texture data will be offset properly,
resulting in a correctly super-sampled image.

Figure 3.19. Top to bottom: edge rasterized on an even frame and then an odd frame
and the final edge after temporal FLIPQUAD reconstruction kernel.
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// Quad de f i n ed as ( sample p o s i t i o n s wi th in quad)
// s00 s10
// s01 s11
DDX [ f ( s00 ) ] = [ f ( s00 ) −− f ( s10 ) ] / dx , dx = | s00 −− s10 |
DDY [ f ( s00 ) ] = [ f ( s00 ) −− f ( s01 ) ] / dy , dy = | s00 −− s01 |

// Hardware assumes dx = dy = 1
// In case o f sampl ing patte rn from L i s t i n g 6 . dx != dy
// Footprint−based sampl ing p i c k s base mip l e v e l
// Based on max(ddx , ddy)
// Frame A max(ddx , ddy) != Frame B max(ddx , ddy)
// Imp l i e s non temporar i ly coherent mip s e l e c t i o n

// Calcu lated in 1/16 th o f p i x e l
// Frame A (BLUE)
dx = |−8 −− (16 + (−8) ) | = 16
dy = |−2 −− (16 + ( 2) ) | = 20
baseMip ˜ max ( dx , dy ) = 20

// Frame B (RED)
dx = | 2 −− (16 + (−2) ) | = 12
dy = |−8 −− (16 + (−8) ) | = 16
baseMip ˜ max ( dx , dy ) = 16}

Listing 3.8. Default method for derivative calculation.

3.6.5 Temporal FLIPQUAD and Gradients

One side effect of using the temporal FLIPQUAD pattern is a nonuniform dis-
tance between samples within a quad. This causes problems for the gradient
calculation and mipmap selection. Graphics cards rely on calculating per-pixel
(or per-quad) derivatives using differentials within a quad. This process is fairly
straightforward (see Listing 3.8).

As an optimization, spatial distances, used to normalize the differential, are
assumed to be 1. However, if we look at our temporal FLIPQUAD pattern,
we clearly see that distances between samples are different between the x- and
y-axes, and we alternate from frame to frame (see Listing 3.8).

Nonuniform distances will result in a biased mipmap level-of-detail calcula-
tion, as ddx(uv) or ddy(uv) will be increasing faster than it should. In effect,
the textures will appear sharper or blurrier than they should be. In the worst
case, a single texture can select different mipmap levels, under the same viewing
direction, when rendering even and odd frames. This would lead to temporal in-
stability since bilinear filtering picks the mipmap based on max(ddx, ddy), which,
in this case, would result in differences between frames (see Figure 3.20).

One way to solve this issue would be to switch all texture samples to a
gradient-based texture read (i.e., tex2Dgrad in HLSL) and to calculate the gradi-
ents analytically taking sample distance into account. Unfortunately, this com-
plicates all shaders and can have significant performance overhead.
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Figure 3.20. The top row shows even and odd frames of the reordered Temporal
FLIPQUAD pattern. The bottom row shows the default temporal FLIPQUAD pat-
tern clearly suffering from mipmap level mismatches. (The bottom right represents an
oversharpened odd frame).

Another option is to change the pattern in order to minimize frame-to-frame
sample distance variance. While this will not provide correct results, the error
may not be noticeable in practice as long as it is temporarily stable (see Figure
3.20). Please note that this also requires different offsets (kernel and projection
matrix offsets) to shift samples outside the pixel window (see Listings 3.9 and 3.10
for details).

// Indexed [FRAME] [SAMPLES LOCATIONS] in n/16 p i x e l o f f s e t s
int2 gTempFQ_Q0 [ 2 ] [ 1 ] = { int2 ( 0 ,−2) , int2 (−2 , 0) } ;
int2 gTempFQ_Q1 [ 2 ] [ 1 ] = { int2 ( 0 , 2) , int2 ( 2 , 0) } ;
int2 gTempFQ_Q2 [ 2 ] [ 1 ] = { int2 ( 0 , 2) , int2 ( 2 , 0) } ;
int2 gTempFQ_Q3 [ 2 ] [ 1 ] = { int2 ( 0 ,−2) , int2 (−2 , 0) } ;
int2 gProjMatOff [ 2 ] [ 1 ] = { int2 (−8 , 0) , int2 ( 0 , 8) } ;}

Listing 3.9. Reordered temporal FLIPQUAD with additional projection matrix offsets.
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#i f d e f i n ed (ODDFRAME) // RED
// Hor izonta l patte rn f o r frame [ 1 ]
int2 offset0 = int2 (0 ,−1) ;
int2 offset1 = int2 (1 , 0) ;
#e l s e i f d e f i n ed (EVENFRAME) // BLUE
int2 offset0 = int2 (1 , 0) ;
int2 offset1 = int2 (0 ,−1) ;
#end i f

s0 = CurrentFrame . Sample ( PointSampler , UV ) ;
s1 = CurrentFrame . Sample ( PointSampler , UV , offset0 ) ;
s2 = PreviousFrame . Sample ( LinearSampler , previousUV ) ;
s3 = PreviousFrame . Sample ( LinearSampler , previousUV , offset1 ) ;

r e turn 0 .25 � ( s0 + s1 + s2 + s3 ) ;}

Listing 3.10. Reordered temporal FLIPQUAD reconstruction kernel.

3.6.6 History Sample Acceptance Method

Our acceptance method for history samples is based on the algorithm used in
Killzone: Shadow Fall [Valient 14].

The history sample from frame N − 1 is valid only if

• the motion flow between frame N and N − 1 is coherent,

• the color flow between frames N and N − 2 is coherent. (Note that N − 2
and N have the same subpixel jitter.)

The first constraint guarantees that a sample was not occluded and was moving
in a similar direction. The second constraint guarantees that there was no major
change in lighting conditions between frames with the same subpixel jitter. Both
tests use a 3 × 3 neighborhood using the sum of absolute differences to estimate
the degree of similarity between frames. It is possible to achieve reasonable
results using a smaller neighborhood, however, testing might need to be more
conservative.

If any constraint fails, then we fall back to clamping history samples to the
current frame color bounding box, as described in Section 3.7. This guarantees no
ghosting and enhanced temporal stability. It is worth noting that the color flow
constraint is very important in a real production environment. It enables the
unrestricted usage of animated textures and particle effects as well as lighting
changes. Another important benefit is that it grants convergence in the event
that the viewport becomes fixed.

3.6.7 Resampling

Any reprojection method is prone to numerical diffusion errors. When a frame
is reprojected using motion vectors and newly acquired sampling coordinates do
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not land exactly on a pixel, a resampling scheme must be used. Typically, most
methods resort to simple bilinear sampling. However, bilinear sampling will result
in over-smoothing. If we would like to use a history buffer in order to accumulate
multiple samples, we will also accumulate resampling errors, which can lead to
serious image quality degradation (see Figure 3.22). Fortunately, this problem is
very similar to well-researched fluid simulation advection optimization problems.

In fluid simulation, the advection step is very similar to our problem of image
reprojection. A data field of certain quantities (i.e., pressure and temperature)
has to be advected forward in time by a motion field. In practice, both fields
are stored in discretized forms; thus, the advection step needs to use resampling.
Assuming that the operation is a linear transform, this situation is equal to the
problem of reprojection.

Under these circumstances, a typical semi-Lagrangian advection step would be
equal to reprojection using bilinear resampling. A well-known method to prevent
over-smoothing is to use second order methods for advection. There are several
known methods to optimize this process, assuming that the advection operator is
reversible. One of them is the MacCormack scheme and its derivation: back and
forth error compensation and correction (BFECC). This method enables one to
closely approximate the second order accuracy using only two semi-Lagrangian
steps [Dupont and Liu 03].

BFECC is very intuitive. In short, we advect the solution forward and back-
ward in time using advection operator A and its reverse, AR. Operator error is
estimated by comparing the original value against the newly acquired one. The
original value is corrected by error (ϕ

n−ϕ̂n

2 ) and finally advected forward into the
next step of the solution (see Algorithm 3.1 and Figure 3.21 for an illustration).

In the context of reprojection, our advection operator is simply a bilinear
sample using a motion vector offset. It is worth noting that the function described
by the motion vector texture is not reversible (i.e., multiple pixels might move to
same discretized position).

A correct way to acquire a reversible motion vector offset would be through a
depth-buffer–based reprojection using an inverse camera matrix. Unfortunately,
this would limit the operator to pixels subject to camera motion only. Also, the
operator would be invalid on pixels that were occluded during the previous time
step.

1: ϕ̂n+1 = A(ϕn).
2: ϕ̂n = AR(ϕ̂n+1).

3: ϕ̄ = ϕn +
ϕn − ϕ̂n

2
.

4: ϕn+1 = A(ϕ̄).

Algorithm 3.1. Original BFECC method.
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1: ϕ̂n+1 = A(ϕn).
2: ϕ̂n = AR(.ϕ̂n+1).

3: ϕn+1 = ϕ̂n+1 +
ϕn − ϕ̂n

2
.

Algorithm 3.2. Simplified BFECC method.

Another option is to assume a high-coherency motion vector field (texture)
and just use a negative motion vector for the reverse operator. However, this
approach would break under perspective correction (i.e., high slopes) as well as
with complex motion.

In practice, we used a mix of both approaches. The reverse operator is ac-
quired through depth-based reprojection for static pixels and reversing motion
vectors for pixels from dynamic objects. For us, this proved to be both efficient
and visually plausible (even if not always mathematically correct).

Another important optimization we used was inspired by the simplified BFECC
method by [Selle et al. 08]. In this approach, it is proven that the error is not
time dependent; therefore the results from frame n + 1 can be directly com-
pensated by an error estimate. This simplifies the original BFECC by one full
semi-Lagrangian (see Algorithm 3.2).

Unfortunately, the proposed method requires reading ϕ̂n, ϕn, and ϕ̂n+1 in
order to evaluate ϕn+1. However, as we already assumed that the error estimate
is time invariant, we can as use the values from step n + 1 to estimate the error.

Therefore, we can calculate ϕn+1 using only ϕ̂n+1 and ̂̂ϕn+1
, where ̂̂ϕn+1

is easy to
acquire in a shader (see Algorithm 3.3, Listing 3.11, and Figure 3.21 for details).

One last thing worth mentioning is that BFECC, by default, is not uncon-
ditionally stable. There are multiple ways of dealing with this problem, but we
found bounding by local minima and maxima to be the most practical [Dupont
and Liu 03, Selle et al. 08]. Listing 3.11 presents the simplest implementation of
our optimized BFECC, and Figure 3.22 demonstrates the results.

1: ϕ̂n+1 = A(ϕn).
2: ϕ̂n = AR(ϕ̂n+1).

3: ̂ϕ̂
n+1

= A(ϕ̂n).

4: ϕn+1 = ϕ̂n+1 +
ϕ̂n+1 − ̂ϕ̂

n+1

2
.

Algorithm 3.3. Shader optimized simplified BFECC method.
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// Pass outputs phiHatN1Texture
// A( ) operator use s motion vec tor t e x tu r e
void GetPhiHatN1 ( f l o a t 2 inUV , int2 inVPOS )
{

f l o a t 2 motionVector = MotionVectorsT . Load ( i n t 3 ( inVPOS , 0) ) . xy ;
f l o a t 2 forwardProj = inUV + motionVector ;
// Perform advect ion by operator A( )

re turn PreviousFrameT . SampleLevel ( Linear , forwardProj , 0) . rgb ;
}

// Pass outputs phiHatTexture
// AR() operator use s negat ive va lue from motion vec tor t e x tu r e
// phiHatN1 tex tu r e i s generated by prev ious pass GetPhiHatN1 ( )
void GetPhiHatN ( f l o a t 2 inUV , int2 inVPOS )
{

f l o a t 2 motionVector = MotionVectorsT . Load ( i n t 3 ( inVPOS , 0) ) . xy ;
f l o a t 2 backwardProj = inUV − motionVector ;

// Perform r e v e r s e advec t ion by operator AR()
re turn phiHatN1T . SampleLevel ( Linear , backwardProj , 0) . rgb ;

}

// Fina l operat ion to ge t c o r r e c t l y resampled phiN1
// A( ) operator use s motion vec tor t e x tu r e
// phiHatN1 and phiHatN tex tu r e s are generated by prev ious pa s se s
void GetResampledValueBFECC ( f l o a t 2 inUV , int2 inVPOS )
{

f l o a t 3 phiHatN1 = phiHatN1T . Load ( i n t 3 ( inVPOS , 0) ) . rgb ;

// Find l o c a l minima and maxima
f l o a t 3 minima , maxima ;
GetLimitsRGB ( phiHatN1Texture , inUV , minima , maxima ) ;

f l o a t 2 motionVector = MotionVectors . Load ( i n t 3 ( inVPOS , 0) ) . xy ;
f l o a t 2 A = inUV + motionVector ;

// Perform advect ion by operator A( )
f l o a t 3 phiHatHatN1 = phiHatT . SampleLevel ( Linear , A , 0) . rgb ;

// Perform BFECC
f l o a t 3 phiN1 = 1.5 � phiHatN1 − 0 . 5 � phiHatHatN1 ;

// Limit the r e s u l t to minima and maxima
phiN1 = clamp ( phiN1 , minima , maxima ) ;
r e turn phiN1 ;

}

Listing 3.11. Reordered temporal FLIPQUAD reconstruction kernel.

3.7 Temporal Antialiasing (TAA)

3.7.1 Overview

In Sections 3.5 and 3.6, we presented methods for improving spatial and temporal
stability and resolution of antialiased images. However, even when using 4×
rotated-grid super-sampling and dedicated edge antialiasing, disturbing temporal
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Figure 3.21. Conceptual scheme of the original BFCE method (left) and of the shader
optimized BFCE used for texture resampling (right).

Figure 3.22. Continuous resampling of 30 frames using a history buffer. The camera is
in motion, panning from left to right. Using bilinear sampling shows numerical diffusion
errors resulting in a blurry image (left). Using optimized linear BFCE helps to minimizes
blurring (right).

artifacts may occur. Ideally we would like to accumulate more frames over time
to further improve image quality. Unfortunately, as described in Sections 3.6.1
and 3.6.6, it is very hard to provide a robust method that will work in real-world
situations, while also using multiple history samples, without other artifacts.
Therefore, several methods rely on super-sampling only in certain local contrast
regions of an image [Malan 12, Sousa 13, Valient 14]. These approaches rely on
visually plausible temporal stabilization (rather than super-sampling). We would
like to build upon these approaches to further improve our results.
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Figure 3.23. Frequency-based acceptance function plot.

3.7.2 Frequency-Based Acceptance Metric

A simple temporal antialiasing scheme can be described as a cumulative blend
between the current frame and an accumulation buffer of previous frames (history
data). However, finding the correct blend factor is difficult. We would like to
stabilize the data such that we avoid fluctuations over time and enhance the
image quality by accumulating new information. On the other hand, we need to
detect when data becomes stale or invalid.

We build a color bounding box of fresh data by sampling the 3 × 3 spatial
neighborhood from the current frame. From this data we evaluate the local
minima, maxima, and mean value per RGB channel.

We follow a reasoning grounded in signal frequency analysis. If our history
data is too similar to the local mean, it does not bring much new information
to the current frame and might even diffuse the result if it contains accumulated
errors (i.e., due to sampling errors). The more “different” the data is from mean,
the more important it is. However, certain information might just be a fluctuation
that skews the data. With all of this in mind, we can treat information that is in
close proximity to fresh data’s local minima and maxima as valid (to a degree).
Therefore, we could plot our function of history data acceptance as two peaks
centered at a local minima and maxima, with a slope curve steered by a user
controlled δ value (see Figure 3.23).

To reduce incorrectly accepted samples even further, we utilize motion-based
constraints as described in Section 3.6.6. This combination method minimizes the
possible reprojection artifacts to a 3× 3 pixel neighborhood (i.e., ghosting) while
still guaranteeing a very high level of temporal stabilization. It’s worth noting
that this method can’t provide convergence in the context of super-sampling
(or jittered rendering), as sample acceptance relies on local data changes. See
Listing 3.12 for details.

www.allitebooks.com
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// curMin , curMax , curMean are e st imated from 3x3 neighborhood
f l o a t 3 getTAA ( f l o a t 2 inCurtMotionVec ,

f l o a t 2 inPrevMotionVec ,
f l o a t 3 inCurtMean ,
f l o a t 3 inCurtMin ,
f l o a t 3 inCurtMax ,
f l o a t 3 inCurtValue ,
f l o a t 3 inPrevValue )

{

// Motion coherency weight
f l o a t motionDelta = length ( inCurMotionVec − inPrevMotionVec ) ;
f l o a t motionCoherence = saturate ( c_motionSens � motionDelta ) ) ;

// Calcu late c o l o r window range
f l o a t 3 range = inCutMin − inCurMax ;

// Of f s e t the window bounds by de l t a percentage
f l o a t 3 extOffset = c_deltaColorWindowOffset � range ;
f l o a t 3 extBoxMin = max ( inCurMin − extOffset . rgb , 0 . 0 ) ;
f l o a t 3 extdBoxMax = inCurMax + extOffset ;

// Calcu late d e l t a s between prev ious and current c o l o r window
f l o a t 3 valDiff = saturate ( extBoxMin − inPrevValue ) ;
valDiff += saturate ( inPreviousValue − extBoxMax ) ;
f l o a t 3 clampedPrevVal = clamp ( inPrevValue , extBoxMin , extBoxMax ) ;

// Calcu late d e l t a s f o r current p i x e l aga in s t prev ious
f l o a t 3 meanWeight = abs ( inCurValue − inPreValue ) ;
f l o a t loContrast = length ( meanWeight )� c_loWeight ;
f l o a t hiContrast = length ( valDiff ) � c_hiWeight ;

// Calcu late f i n a l we ights
f l o a t denom = max ( ( loContrast − hiContrast ) , 0 . 0 ) ;
f l o a t finalWeight = saturate ( rcp ( denom + epsilon ) ) ;

// Check blend weight aga in s t minimum bound
// Prevents the a lgor i thm from s t a l l i n g
// in a � sadd le � due to numerical impre c i s i on
// Regu late s minimum blend o f current data
finalWeight= max ( c_minLimiter , w ) ;

// Correc t prev ious samples accord ing to motion coherency we ights
finalWeight = saturate ( finalWeight − motionCoherence ) ;
// F ina l va lue blend
re turn lerp ( inCurValue , clampedPrevVal , finalWeight ) ;

}

Listing 3.12. Temporal antialiasing using our frequency-based acceptance metric.

3.8 Final Implementation

Our final framework’s implementation can be split into two main stages:

• temporally stable edge antialiasing, which includes

◦ SMAA,
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Figure 3.24. Data flow graph in our implementation of the HRAA pipeline.

◦ CRAA,

◦ AEAA (GBAA);

• Temporal FLIPQUAD reconstruction combined with temporal antialiasing
(TAA) (see Listing 3.13).

Figure 3.24 illustrates the data flow inside the framework.
During production, we implemented and optimized all three approaches to

temporarily stable edge antialiasing.
SMAA was implemented with geometric edge detection based on depth and

normal buffers. Edges were refined by a predicated threshold based on the lumi-
nescence contrast. Our edge-detection algorithm choice was dictated by making
the resolve as temporally stable as possible.

CRAA and AEAA used the implementations described in Sections 3.5.1 and
3.5.2. Our EQAA setup used a 1F8S configuration, while our AEAA offset buffer
was compressed down to 5 bits (utilizing the last remaining space in our tightly
packed G-buffer).

The results of either edge antialiasing pass were used as N , N − 1, and N − 2
frame sources in the last pass. The history buffer used by TAA at frame N was
the output buffer of TAA from frame N − 1.

3.9 Results Discussion

Our packing/performance scheme resulted in fairly low-quality gradients coming
out of edge antialiasing (only 3 bits for steps). However, FLIPQUAD reconstruc-
tion provided two to four times the edge gradients virtually for free. In prac-
tice, the whole system provided excellent results, matching a 4× rotated-grid
super-sampled reference while providing much higher-quality edge antialiasing
and temporal stability at minimal cost.
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// Unoptimized pseudocode f o r f i n a l
// Temporal FLIPQUAD re con s t ru c t i on & TAA
// Frames N & N−2 are assumed
// To have same j i t t e r o f f s e t s
f l o a t 3 getFLIPQUADTaa ( )
{

f l o a t 3 curMin , currMax , curMean ;
GetLimits ( currentValueTexture , curMin , curMax , curMean ) ;

f l o a t 3 prevVal = Resample ( prevValueTexture ) ;
f l o a t 3 prevPrevVal = Resample ( prevPrevValueTexture ) ;

// Get sums o f ab so lu t e d i f f e r e n c e
f l o a t 3 curSAD = GetSAD ( curValueTexture ) ;
f l o a t 3 prevPrevSAD = GetSAD ( prevPrevValueTexture ) ;

// Motion coherency weight
f l o a t moCoherence = GetMotionCoherency ( curMotionTexture ,

prevMotionTexture ) ;

// Color coherency weight
f l o a t colCoherence = GetColorCoherency ( curSAD , prevPrevSAD ) ;

// FLIPQUAD parts
f l o a t 3 FQCurPart = GetCurFLIPQUAD ( curValueTexture ) ;
f l o a t 3 FQPrevPart = GetPrevFLIPQUAD ( prevValueTexture ) ;
f l o a t FQCoherency = motionCoherence + colorCoherence ;
f l o a t 3 clampFQPrev = clamp ( FQPrevPart , curMin , curMax ) ;

// This l e r p a l l ows f u l l convergance
// I f c o l o r f l ow (N−2 to N) i s coherent
FQPrevPart = lerp ( FQPrevPart , clampFQPrev , colCoherence ) ;

// Fina l r e c on s t ru c t i on blend
f l o a t 3 FLIPQUAD = lerp ( FQCurPart , FQPrevPart , 0 . 5 � moCoherence ) ;

f l o a t 3 historyVal = Resample ( historyValueTexture ) ;

r e turn getTAA ( curMotionTexture , prevMotionTexture ,
curMin , curMax , curMean ,
FLIPQUAD , historyVal )

}

Listing 3.13. Pseudocode for the combined temporal FLIPQUAD reconstruction and
temporal antialiasing.

While temporal FLIPQUAD and TAA remained stable and reliable compo-
nents of the framework, the choice of the edge antialiasing solution proved to be
problematic.

SMAA provided the most visually plausible results on static pixels under any
circumstances. The gradients were always smooth and no edge was left without
antialiasing. Unfortunately, it sometimes produced distracting gradient wobble
while in motion. The wobble was partially mitigated by the FLIPQUAD and
TAA resolves. Unfortunately, SMAA had the highest runtime cost out of the
whole framework.



3. Hybrid Reconstruction Antialiasing 135

AEAA provided excellent stability and quality, even in close-ups where tri-
angles are very large on screen. Unfortunately, objects with very high levels
of tessellation resulted in very objectionable visual noise or even a total loss of
antialiasing on some edges. Even though this was the fastest method for edge
antialiasing, it proved too unreliable for our open world game. It is worth noting
that our AEAA implementation required us to modify every single shader that
writes out to the G-buffer. This might be prohibitively expensive in terms of
developer maintainability and runtime performance.

CRAA mitigated most of the issues seen with AEAA and was also the easiest
technique to implement. Unfortunately, on the current generation of hardware,
there is a measurable cost for using even a simple EQAA setup and the cost scales
with the number of rendered triangles and their shader complexity. However,
in our scenario, it was still faster than SMAA alone. Even though we were
able to solve multiple issues, we still found some finely tessellated content that
was problematic with this technique and resulted in noisy artifacts on edges.
These artifacts could be effectively filtered by temporal FLIPQUAD and TAA.
Unfortunately the cost of outputting coverage data from pixel shaders was too
high for our vegetation-heavy scenarios. We did not experiment with manual
coverage output (i.e., not hardware based).

At the time of writing, we have decided to focus on two main approaches for
our game: SMAA with AEAA used for alpha-tested geometry or CRAA with
AEAA used for alpha-tested geometry. SMAA with AEAA is the most expensive
and most reliable while also providing the lowest temporal stability. CRAA with
AEAA provides excellent stability and performance with medium quality and
medium reliability. The use of AEAA for alpha-tested objects seems to provide
the highest quality, performance, and stability in both use cases; therefore, we
integrated its resolve filter into the SMAA and CRAA resolves. See the perfor-
mance and image quality comparisons of the full HRAA framework in Figure 3.25
and Table 3.2.

3.10 Conclusion

We provided a production proven hybrid reconstruction antialiasing framework
along with several new algorithms, as well as modern implementations of well-
known algorithms. We believe that the temporal FLIPQUAD super-sampling
as well as temporal antialiasing will gain wider adoption due to their low cost,
simplicity, and quality. Our improvements to distance-to-edge–based methods
might prove useful for some projects. Meanwhile, CRAA is another addition to
the temporally stable antialiasing toolbox. Considering its simplicity of imple-
mentation and its good performance, we believe that with additional research it
might prove to be a viable, widely adopted edge antialiasing solution. We hope
that the ideas presented here will inspire other researchers and developers and
provide readers with valuable tools for achieving greater image quality in their
projects.
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Figure 3.25. Comparison of different HRAA setups showing different scenarios based on
actual game content. From left to right: centroid sampling (no antialiasing), temporal
FLIPQUAD (TFQ), AEAA + TFQ, CRAA + TFQ, and SMAA + TFQ.

Single Pass Timing (ms) G-Buffer Overhead (%)

BFECC single value 0.3 N/A

Temporal FLIPQUAD
(TFQ)

0.2 N/A

AEAA 0.25 < 1% C

8×CRAA 0.25 < 8% HW/C

SMAA 0.9 N/A

TAA 0.6 N/A

TFQ + TAA 0.62 N/A

AEAA(alpha test) +
8×CRAA + TFQ +
TAA

0.9 < 3% HW/C

SMAA + TFQ + TAA 1.4 N/A

Table 3.2. Different HRAA passes and timings measured on an AMD Radeon HD 7950
at 1080p resolution, operating on 32-bit image buffers. “C” means content dependent
and “HW” means hardware type or setup dependent.
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II

Real-Time Rendering of
Physically Based Clouds Using

Precomputed Scattering
Egor Yusov

4.1 Introduction

Rendering realistic clouds has always been a desired feature for a variety of appli-
cations, from computer games to flight simulators. Clouds consist of innumerable
tiny water droplets that scatter light. Rendering clouds is challenging because
photons are typically scattered multiple times before they leave the cloud. De-
spite the impressive performance of today’s GPUs, accurately modeling multiple
scattering effects is prohibitively expensive, even for offline renderers. Thus, real-
time methods rely on greatly simplified models.

Using camera-facing billboards is probably the most common real-time method
[Dobashi et al. 00, Wang 04, Harris and Lastra 01, Harris 03]. However, bill-
boards are flat, which breaks the volumetric experience under certain conditions.
These methods have other limitations: lighting is precomputed resulting in static
clouds [Harris and Lastra 01], multiple scattering is ignored [Dobashi et al. 00],
or lighting is not physically based and requires tweaking by artists [Wang 04].
Volume rendering techniques are another approach to render clouds [Schpok
et al. 03, Miyazaki et al. 04, Riley et al. 04]. To avoid aliasing artifacts, many
slices usually need to be rendered, which can create a bottleneck, especially
on high-resolution displays. More physically accurate methods exist [Bouthors
et al. 06, Bouthors et al. 08], which generate plausible visual results, but are
difficult to reproduce and computationally expensive.

We present a new physically based method to efficiently render realistic ani-
mated clouds. The clouds are comprised of scaled and rotated copies of a single
particle called the reference particle. During the preprocessing stage, we precom-
pute optical depth as well as single and multiple scattering integrals describing

141



142 II Rendering

the light transport in the reference particle for all possible camera positions and
view directions and store the results in lookup tables. At runtime, we load the
data from the lookup tables to approximate the light transport in the cloud in
order to avoid costly ray marching or slicing. In this chapter, we elaborate upon
our previous work [Yusov 14b]. In particular, the following improvements have
been implemented:

• a better real-time shading model based on precomputed lookup tables,

• an improved method to calculate light attenuation in the body of the cloud
using a 3D grid,

• a new particle generation algorithm,

• performance optimization, including GPU-based particle sorting.

We briefly review the main concepts of this method, but we will concentrate on
implementation details and improvements. Additional information can be found
in the original paper [Yusov 14b].

4.2 Light Transport Theory

Now we will briefly introduce the main concepts of the light transport in a partic-
ipating medium. More information can be found in [Riley et al. 04,Bouthors 08].
There are three phenomena that can be found in a participating medium: scatter-
ing, absorption, and emission. Scattering only changes the direction of a photon
traveling through the medium. Absorption eliminates the photon by transform-
ing its energy into other forms, while emission does the opposite. The intensity
of these processes is described by scattering, absorption, and emission coeffi-
cients βSc, βAb, and βEm, respectively. Absorption and scattering both reduce
the intensity of light traveling through the medium. The extinction coefficient
βEx = βAb + βSc describes the net attenuation. In the cloud body, emission and
absorption are negligible: βEm = βAb = 0. As a result, both scattering and
extinction can be described by the same coefficient: βSc = βEx = β.

The intensity of light traveling from point A to point B inside the cloud is
reduced by a factor of e−τ(A,B). τ(A,B), called optical depth, is the integral of
the extinction coefficient over the path from A to B:

τ(A,B) =

∫ B

A

β(P) · ds, (4.1)

where P = A + B−A
||B−A|| · s is the current integration point.

To determine the intensity of single scattered light, we need to step along
the view ray and accumulate all the differential amounts of sunlight scattered at
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Figure 4.1. Single scattering.

every point toward the camera:

L
(1)
In (C, �v) =

∫ P1

P0

β(P) · LSun · e−τ(Q,P) · e−τ(P,P0) · P (θ) · ds. (4.2)

In this equation, C is the camera position and �v is the view direction. P0 and
P1 are the points where the view ray enters and leaves the cloud body, LSun is
the intensity of sunlight outside the cloud, and Q is the point through which the
sunlight reaches the current integration point P (Figure 4.1). P (θ) is the phase
function that defines how much energy is scattered from the incident direction
to the outgoing direction, with θ being the angle between the two. Note that
the sunlight is attenuated twice before it reaches the camera: by the factor of
e−τ(Q,P) on the way from the entry point Q to the scattering point P, and by
the factor of e−τ(P,P0) on the way from the scattering point to the camera.

The phase function for cloud droplets is very complex [Bohren and Huff-
man 98]. In real-time methods, it is common to approximate it using the Cornette-
Shanks function [Cornette and Shanks 92]:

P (θ) ≈ 1

4π

3(1 − g2)

2(2 + g2)

(1 + cos2(θ))

(1 + g2 − 2g cos(θ))3/2
. (4.3)

Using the intensity L
(1)
In of single scattering, we can compute secondary scat-

tering L
(2)
In , then third-order scattering L

(3)
In , and so on. The nth-order scattering

intensity measured at point C when viewing in direction �v is given by the follow-
ing integral:

L
(n)
In (C, �v) =

∫ P1

P0

J (n)(P, �v) · e−τ(P,P0) · ds. (4.4)
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Figure 4.2. Multiple scattering.

In Equation (4.4), J (n)(C, �v) is the net intensity of order n− 1 light L
(n−1)
In (C, �v)

that is scattered in the view direction:

J (n)(P, �v) = β(P) ·
∫
Ω

L
(n−1)
In (P, �ω) · P (θ) · dω, (4.5)

where integration is performed over the whole sphere of directions Ω, and θ is the
angle between �ω and �v (see Figure 4.2).1

The total in-scattering intensity is found by calculating the sum of all scat-
tering orders:

LIn(C, �v) =
∞∑

n=1

L
(n)
In (C, �v). (4.6)

The final radiance measured at the camera is the sum of in-scattered intensity
and background radiance LB (see Figure 4.1) attenuated in the cloud:

L(C, �v) = LIn(C, �v) + e−τ(P0,P1) · LB. (4.7)

4.3 Precomputed Solutions

Equations (4.1)–(4.7) are very complex and cannot be solved at runtime. Our
solution to this problem is to model the light transport in a reference volumetric
particle at preprocess time and to solve all the equations for that particle. We
store the resulting information in lookup tables and use it at runtime to compute
shading.

4.3.1 Optical Depth

Consider some inhomogeneous volumetric particle with known density distribu-
tion (Figure 4.3 (left)). Our goal is to precompute the optical depth integral in

1Strictly speaking, θ is the angle between the incident direction −�ω and the outgoing direc-
tion −�v, which is the same.
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Figure 4.3. Volumetric particle (left) and 4D parameterization (middle and right).

Equation (4.1) through the particle for every camera position and view direction.
To describe every ray piercing the particle, we need 4D parameterization.2 The
first two parameters are the azimuth ϕS ∈ [0, 2π] and zenith θS ∈ [0, π] angles
of the point S where the view ray enters the particle’s bounding sphere (Fig-
ure 4.3 (middle)). The other two parameters are the azimuth ϕv ∈ [0, 2π] and
zenith θv ∈ [0, π/2] angles of the view ray in the tangent frame constructed at
the entry point S (Figure 4.3 (right)). The z-axis of this frame is pointing toward
the sphere center. Note that we only need to consider the rays going inside the
sphere; thus, the maximum value for θv is π/2.

To precompute the optical depth integral, we go through all possible values
of ϕS , θS , ϕv, and θv and numerically evaluate the integral in Equation (4.1).
Section 4.5.1 provides additional details.

4.3.2 Single Scattering

In contrast to optical depth, we cannot precompute scattering inside the inho-
mogeneous particle. The reason for this is that we also need to account for the
light direction, and this would require five parameters, which is impractical. So
we precompute scattering in a homogeneous spherical particle. We assume that
the light is shining in the positive z direction. Due to the symmetry of the prob-
lem, the light field is symmetrical with respect to the light direction, so the ϕS

parameter can be dropped. On the other hand, to compute Equation (4.5), we
need to know the light field in the entire volume, not only on the sphere’s sur-
face. We thus use the distance from the sphere center to the start point as the
fourth parameter. Our parameterization for computing single scattering is then
θS ∈ [0, π], ϕv ∈ [0, 2π], θv ∈ [0, π], r ∈ [0, 1]. Note that because we now need to
cover the entire sphere of directions, the maximum value for θv is π.

Precomputing single scattering is then implemented by going through all the
parameter values and numerically evaluating Equation (4.2). Since the particle is
assumed to be homogeneous, β(P) ≡ β. Sun intensity, LSun, and phase function,
P (θ), are factored out and evaluated separately. Additional details can be found
in Section 4.5.1.

2We assume that the camera is always located outside the particle’s bounding sphere.
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4.3.3 Multiple Scattering

We use the same parameterization for the multiple scattering lookup table as for
the single scattering. To precompute multiple scattering, we process scattering
orders one by one, and for every order we perform three steps:

1. compute the J (n) term using the previous order L(n−1) for all parameter
values according to Equation (4.5);

2. compute the current order L(n) according to Equation (4.4);

3. accumulate the current scattering order.

Implementation details are given in Section 4.5.1.
After each scattering order is processed, we retain only the light field on the

surface, discarding the rest of the data. It must be noted that in contrast to
optical depth, scattering is not linear with respect to density and particle radius.
In our original method, we precomputed scattering for a number of densities and
encoded the resulting information in a 4D lookup table with the fourth parameter
being the particle density scale. This, however, required additional storage and
two fetches from a 3D texture. We found out that using just one density still
works reasonably well and simplifies the algorithm.

Computing cloud shading using the precomputed lookup tables is discussed
in Section 4.5.3.

4.4 Volume-Aware Blending

Our clouds consists of a collection of individual particles and we need to merge
them together into a continuous medium. A typical way to achieve this would be
using alpha blending. This method, however, is primarily intended for blending
“thin” objects such as glass or tree leaves. Our particles are volumetric enti-
ties, and there is no way to account for their intersections using standard alpha
blending. To solve the problem, we propose a new technique, which we call
volume-aware blending. The key idea of this technique is to keep track of the
volumetric element closest to the camera, for each pixel, and blend every new
particle against this representation.

The algorithm starts by clearing the closest element buffer and the back buffer.
It then renders all volumetric particles back to front. Each particle’s extent is
tested against the current closest element. If the particle is closer to the camera,
then the closest element’s color is written into the back buffer using alpha blending
and the new particle replaces the closest element (see Figure 4.4). If the particle
is located farther from the camera, then its color is blended into the back buffer
and the closest element is retained.

If the particle extent intersects the current closest element, then things be-
come a bit more involved. First, the tail is alpha-blended into the back buffer
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Figure 4.4. Volume-aware blending when the new particle does not intersect the closest
element.
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Figure 4.5. Volume-aware blending when the new particle intersects the closest element.

(Figure 4.5). Next, the color of the intersection is computed using the density-
weighted average:

Ti = e−(ρ0+ρ1)·di·β , (4.8)

Ci =
C0 · ρ0 + C1 · ρ1

ρ0 + ρ1
· (1 − Ti), (4.9)

where C0, C1, ρ0, and ρ1 are non–alpha-premultiplied colors and densities, and
di is the intersection length. The color of the front part is then alpha-blended
with the resulting color Ci, and the new merged element is written back as shown
in Figure 4.5 (right). Section 4.5.4 provides additional details.

4.5 Implementation

We implemented our method in C++ using the Direct3D 11 API. The full source
code can be found in the supplemental materials to this book. It is also available
at https://github.com/GameTechDev/CloudsGPUPro6.

4.5.1 Precomputing Light Transport

Our precomputed data constitute a 4D and a 3D lookup table. The optical depth
integral is stored in a 32×16×32×16 (NϕS = 32, NθS = 16, Nϕv = 32, Nθv = 16)
8-bit lookup table. Multiple scattering is stored in a 32 × 64 × 16 (NθS = 32,
Nϕv = 64, Nθv = 16) 16-bit float lookup table. The first table requires 0.25 MB
of storage, while the latter requires 64 KB. Note that in contrast to our base
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method, we use a different approach to approximate single scattering that does
not rely on a precomputed lookup table.

Because current graphics hardware does not natively support 4D textures, we
implement them with 3D textures, such that a X × Y × Z × W 4D texture is
stored as a X×Y ×Z ·W 3D texture. We perform manual filtering for the fourth
coordinate as shown below:

#de f i n e SAMPLE 4D(tex3DLUT, LUT DIM, f4LUTCoords , fLOD, Resu l t ) \
{ \

f l o a t 3 f3UVW0 ; \
f3UVW0 . xy = f4LUTCoords . xy ; \
f l o a t fQSlice = f4LUTCoords . w � LUT_DIM . w − 0 . 5 ; \
f l o a t fQ0Slice = floor ( fQSlice ) ; \
f l o a t fQWeight = fQSlice − fQ0Slice ; \
f3UVW0 . z = ( fQ0Slice + f4LUTCoords . z ) / LUT_DIM . w ; \
/� f r a c ( ) a s su r e s wraparound f i l t e r i n g o f w coo rd ina t e�/ \
f l o a t 3 f3UVW1 = frac ( f3UVW0 + f l o a t 3 (0 ,0 ,1/ LUT_DIM . w ) ) ; \
Result = lerp ( \

tex3DLUT . SampleLevel ( samLinearWrap , f3UVW0 , fLOD ) , \
tex3DLUT . SampleLevel ( samLinearWrap , f3UVW1 , fLOD ) , \
fQWeight ) ; \

}

Note that ϕS and ϕv coordinates require wraparound filtering to avoid arti-
facts. We use the frac() function to achieve this for the fourth coordinate. Also
note that the z-coordinate cannot be filtered with wraparound mode.

The precomputation process can be summarized as follows:

1. Precompute the optical depth integral.

2. Precompute single scattering in the whole volume and store the data in the
temporary 32-bit float lookup table.

3. For scattering order n from 2 to N ,

(a) evaluate the J (n) term in the whole volume,

(b) evaluate L
(n)
In in the whole volume,

(c) accumulate L
(n)
In in the multiple scattering lookup table.

4. Copy multiple scattering radiance on the sphere’s surface from the tempo-
rary lookup table into the final 16-bit float table

The rest of this subsection gives details on each step.

Optical depth. Precomputing the optical depth integral as discussed in Sec-
tion 4.3.1 is implemented by a shader that renders slices of the lookup table one
by one. The shader code is shown in Listing 4.1.

The shader first computes the start position and the ray direction from the
input 4D coordinates using the OpticalDepthLUTCoordsToWorldParams() function
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1 float2 PrecomputeOpticalDepthPS ( SQuadVSOutput In ) : SV_Target
2 {
3 float3 f3StartPos , f3RayDir ;
4 // Convert lookup tab l e 4D coo rd ina t e s i n to the s t a r t
5 // po s i t i o n and view d i r e c t i o n
6 OpticalDepthLUTCoordsToWorldParams (
7 float4 ( ProjToUV ( In . m_f2PosPS ) , g_Attribs . f4Param . xy ) ,
8 f3StartPos , f3RayDir ) ;
9

10 // I n t e r s e c t the view ray with the un i t sphere
11 float2 f2RayIsecs ;
12 // f3StartPos i s l o c a t ed exac t l y on the su r f a c e ; s l i g h t l y
13 // move i t i n s i d e the sphere to avoid p r e c i s i o n i s s u e s
14 GetRaySphereIntersection ( f3StartPos + f3RayDir �1e−4, f3RayDir ,
15 0 , 1 . f , f2RayIsecs ) ;
16
17 float3 f3EndPos = f3StartPos + f3RayDir � f2RayIsecs . y ;
18 f l o a t fNumSteps = NUM_INTEGRATION_STEPS ;
19 float3 f3Step = ( f3EndPos − f3StartPos ) / fNumSteps ;
20 f l o a t fTotalDensity = 0;
21 f o r ( f l o a t fStepNum=0.5; fStepNum < fNumSteps ; ++fStepNum )
22 {
23 float3 f3CurrPos = f3StartPos + f3Step � fStepNum ;
24 f l o a t fDensity = ComputeDensity ( f3CurrPos ) ;
25 fTotalDensity += fDensity ;
26 }
27
28 re turn fTotalDensity / fNumSteps ;
29 }

Listing 4.1. Precomputing optical depth integral.

(lines 3–8). The first two components come from the pixel position, the other
two are stored in the g_Attribs.f4Param.xy uniform variable. The shader then
intersects the ray with the unit sphere (lines 11–15) and finds the ray exit point
(line 17). The GetRaySphereIntersection() function takes the ray start position
and direction, sphere center (which is 0), and radius (which is 1) as inputs and
returns the distances from the start point to the intersections in its fifth argu-
ment (the smallest value always go first). Finally, the shader performs numerical
integration of Equation (4.1). Instead of storing the integral itself, we store the
normalized average density along the ray, which always lies in the range [0, 1]
and can be sufficiently represented with an 8-bit UNorm value. Optical depth
is reconstructed by multiplying that value by the ray length and extinction co-
efficient. The ComputeDensity() function combines several 3D noises to evaluate
density at the current point.

Single scattering. Precomputing single scattering (Section 4.3.2) is performed by
a pixel shader as presented in Listing 4.2. Note that single scattering is computed
inside the entire volume, not only on the surface, and a temporary 4D lookup table
is used to store it. The fourth coordinate of this table encodes the distance from
the sphere center and is provided by the uniform variable g_Attribs.f4Param.y.
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1 f l o a t PrecomputeSingleSctrPS ( SQuadVSOutput In ) : SV_Target
2 {
3 float3 f3EntryPoint , f3ViewRay , f3LightDir ;
4 ScatteringLUTToWorldParams (
5 float4 ( ProjToUV ( In . m_f2PosPS ) , g_Attribs . f4Param . xy ) ,
6 g_Attribs . f4Param . z , f3EntryPoint , f3ViewRay , f3LightDir ) ;
7
8 // I n t e r s e c t the view ray with the un i t sphere
9 float2 f2RayIsecs ;

10 GetRaySphereIntersection ( f3EntryPoint , f3ViewRay ,
11 0 , 1 . f , f2RayIsecs ) ;
12 float3 f3EndPos = f3EntryPoint + f3ViewRay � f2RayIsecs . y ;
13
14 f l o a t fNumSteps = NUM_INTEGRATION_STEPS ;
15 float3 f3Step = ( f3EndPos − f3EntryPoint ) / fNumSteps ;
16 f l o a t fStepLen = length ( f3Step ) ;
17 f l o a t fCloudMassToCamera = 0;
18 f l o a t fParticleRadius = g_Attribs . RefParticleRadius ;
19 f l o a t fInscattering = 0;
20 f o r ( f l o a t fStepNum=0.5; fStepNum < fNumSteps ; ++fStepNum )
21 {
22 float3 f3CurrPos = f3EntryPoint + f3Step � fStepNum ;
23 GetRaySphereIntersection ( f3CurrPos , f3LightDir ,
24 0 , 1 . f , f2RayIsecs ) ;
25 f l o a t fCloudMassToLight = f2RayIsecs . x � fParticleRadius ;
26 f l o a t fAttenuation = exp (
27 −g_Attribs . fAttenuationCoeff �

28 ( fCloudMassToLight + fCloudMassToCamera ) ) ;
29
30 fInscattering += fAttenuation � g_Attribs . fScatteringCoeff ;
31 fCloudMassToCamera += fStepLen � fParticleRadius ;
32 }
33
34 re turn fInscattering � fStepLen � fParticleRadius ;
35 }

Listing 4.2. Precomputing single scattering.

The shader numerically integrates Equation (4.2). Note that the phase func-
tion P (θ) and the sun intensity LSun are omitted. Thus, at every step, the shader
needs to compute the following integrand: β(P)·e−τ(Q,P) ·e−τ(P,P0). The scatter-
ing/extinction coefficient β(P) is assumed to be constant and is provided by the
g_Attribs.fScatteringCoeff variable. We use β = 0.07 as the scattering/extinc-
tion coefficient and a reference particle radius of 200 meters. Extinction e−τ(Q,P)

from the current point to the light entry point is evaluated by intersecting the ray
going from the current point toward the light with the sphere (lines 23–25). Ex-
tinction e−τ(P,P0) toward the camera is computed by maintaining the total cloud
mass from the camera to the current point in the fCloudMassToCamera variable
(line 31).

Multiple scattering. After single scattering, we compute up to N = 18 scattering
orders. During this process, we use three temporary 4D 32-bit float lookup tables:
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one to store the J (n) term, the other to store the current order scattering L
(n)
In ,

and the third to accumulate higher-order scattering. Note that these intermediate
tables cover the entire volume.

Computing every scattering order consists of three steps, as discussed in Sec-
tion 4.3.3. The first step is evaluating the J (n) term according to Equation (4.5).
This step is implemented by the shader shown in Listing 4.3.

The first step in this shader, like the prior shaders, retrieves the world-
space parameters from the 4D texture coordinates (lines 3–6). In the next
step, the shader constructs local frame for the ray starting point by calling the
ConstructLocalFrameXYZ() function (lines 8–10). The function gets two direc-
tions as inputs and constructs orthonormal basis. The first direction is used as
the z-axis. Note that the resulting z-axis points toward the sphere center (which
is 0).

The shader then runs two loops going through the series of zenith θ and
azimuth ϕ angles (lines 18–19), which sample the entire sphere of directions. On
every step, the shader constructs a sample direction using the (θ, ϕ) angles (lines
23–25), computes lookup coordinates for this direction (lines 26–28), and loads
the order n− 1 scattering using these coordinates (lines 29–31). Remember that
the precomputed single scattering does not comprise the phase function and we
need to apply it now, if necessary (lines 32–34). g_Attribs.f4Param.w equals 1
if we are processing the second-order scattering and 0 otherwise. After that, we
need to account for the phase function P (θ) in Equation (4.5) (line 35). For single
scattering, we use anisotropy factor g = 0.9, and for multiple scattering we use
g = 0.7 to account for light diffusion in the cloud. Finally, we need to compute
the dω = dθ · dϕ · sin(θ) term (lines 37–40).

After the J (n) term is evaluated, we can compute nth scattering order ac-
cording to Equation (4.4). The corresponding shader performing this task is very
similar to the shader computing single scattering (Listing 4.4). The difference
is that in the integration loop we load J (n) from the lookup table (lines 19–23)
instead of computing sunlight attenuation in the particle. We also use trapezoidal
integration to improve accuracy.

In the third stage, the simple shader accumulates the current scattering order
in the net multiple scattering lookup table by rendering every slice with additive
blending.

4.5.2 Particle Generation

We wanted to efficiently control the level of detail and provide high fidelity for
close clouds, while still being able to render distant clouds. To do this, we use
a nested grid structure inspired by the geometry clipmaps method [Losasso and
Hoppe 04]. The grid consists of a number of rings. Particles in each next outer
ring are twice the size of particles in the inner ring and have twice the spacing
interval. We refer to this structure as a cell grid (Figure 4.6 (left)). Each cell
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1 f l o a t GatherScatteringPS ( SQuadVSOutput In ) : SV_Target
2 {
3 float3 f3StartPos , f3ViewRay , f3LightDir ;
4 ScatteringLUTToWorldParams (
5 float4 ( ProjToUV ( In . m_f2PosPS ) , g_Attribs . f4Param . xy ) ,
6 f3StartPos , f3ViewRay , f3LightDir ) ;
7
8 float3 f3LocalX , f3LocalY , f3LocalZ ;
9 ConstructLocalFrameXYZ (−normalize ( f3StartPos ) , f3LightDir ,

10 f3LocalX , f3LocalY , f3LocalZ ) ;
11
12 f l o a t fJ = 0;
13 f l o a t fTotalSolidAngle = 0;
14 const f l o a t fNumZenithAngles = SCTR_LUT_DIM . z ;
15 const f l o a t fNumAzimuthAngles = SCTR_LUT_DIM . y ;
16 const f l o a t fZenithSpan = PI ;
17 const f l o a t fAzimuthSpan = 2� PI ;
18 f o r ( f l o a t Zen = 0 . 5 ; Zen < fNumZenithAngles ; ++Zen )
19 f o r ( f l o a t Az = 0 . 5 ; Az < fNumAzimuthAngles ; ++Az )
20 {
21 f l o a t fZenith = Zen/ fNumZenithAngles � fZenithSpan ;
22 f l o a t fAzimuth = ( Az/ fNumAzimuthAngles − 0 . 5 ) � fAzimuthSpan ;
23 float3 f3CurrDir =
24 GetDirectionInLocalFrameXYZ ( f3LocalX , f3LocalY , f3LocalZ ,
25 fZenith , fAzimuth ) ;
26 float4 f4CurrDirLUTCoords =
27 WorldParamsToScatteringLUT ( f3StartPos , f3CurrDir ,
28 f3LightDir ) ;
29 f l o a t fCurrDirSctr = 0;
30 SAMPLE_4D ( g_tex3DPrevSctrOrder , SCTR_LUT_DIM ,
31 f4CurrDirLUTCoords , 0 , fCurrDirSctr ) ;
32 i f ( g_Attribs . f4Param . w == 1 )
33 fCurrDirSctr �= HGPhaseFunc ( dot(−f3CurrDir , f3LightDir ) ,
34 0 . 9 ) ;
35 fCurrDirSctr �= HGPhaseFunc ( dot ( f3CurrDir , f3ViewRay ) , 0 . 7 ) ;
36
37 f l o a t fdZenithAngle = fZenithSpan / fNumZenithAngles ;
38 f l o a t fdAzimuthAngle = fAzimuthSpan / fNumAzimuthAngles �

39 sin ( ZenithAngle ) ;
40 f l o a t fDiffSolidAngle = fdZenithAngle � fdAzimuthAngle ;
41 fTotalSolidAngle += fDiffSolidAngle ;
42 fJ += fCurrDirSctr � fDiffSolidAngle ;
43 }
44
45 // Total s o l i d ang le should be 4�PI . Renormal ize to f i x
46 // d i s c r e t i z a t i o n i s s u e s
47 fJ �= 4� PI / fTotalSolidAngle ;
48
49 re turn fJ ;
50 }

Listing 4.3. Computing J term.

in the grid contains a predefined number of layers. Each voxel of a resulting
3D structure can potentially contain a particle. We refer to this structure as a
particle lattice (Figure 4.6 (right)). To facilitate particle generation and lighting,
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1 f l o a t ComputeScatteringOrderPS ( SQuadVSOutput In ) : SV_Target
2 {
3 // Transform lookup coo rd i na t e s i n to the world parameters
4 // I n t e r s e c t the ray with the sphere , compute
5 // s t a r t and end po in t s
6 . . .
7
8 f l o a t fPrevJ = 0;
9 SAMPLE_4D ( g_tex3DGatheredScattering , SCTR_LUT_DIM ,

10 f4StartPointLUTCoords , 0 , fPrevJ ) ;
11 f o r ( f l o a t fStepNum=1; fStepNum <= fNumSteps ; ++fStepNum )
12 {
13 float3 f3CurrPos = f3StartPos + f3Step � fStepNum ;
14
15 fCloudMassToCamera += fStepLen � fParticleRadius ;
16 f l o a t fAttenuationToCamera = exp ( −g_Attribs . fAttenuationCoeff �

17 fCloudMassToCamera ) ;
18
19 float4 f4CurrDirLUTCoords =
20 WorldParamsToScatteringLUT ( f3CurrPos , f3ViewRay , f3LightDir ) ;
21 f l o a t fJ = 0;
22 SAMPLE_4D ( g_tex3DGatheredScattering , SCTR_LUT_DIM ,
23 f4CurrDirLUTCoords , 0 , fJ ) ;
24 fJ �= fAttenuationToCamera ;
25
26 fInscattering += ( fJ + fPrevJ ) / 2 ;
27 fPrevJ = fJ ;
28 }
29
30 re turn fInscattering � fStepLen � fParticleRadius �

31 g_Attribs . fScatteringCoeff ;
32 }

Listing 4.4. Computing order-n scattering.

Figure 4.6. Cell grid (left) and 3D lattice (right).

we maintain two additional 3D structures: cloud density 3D lattice and light
attenuation 3D lattice. These two structures have twice the resolution of the
particle lattice in each dimension and are implemented as 3D textures.
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The steps for particle generation and processing are as follows:

1. Process the 2D cell grid to build a list of valid nonempty cells, and compute
the cell attributes.

2. Compute the density for each voxel of the cloud density lattice located in
the nonempty cells.

3. Process the visible voxels of the light attenuation lattice located in the
nonempty cells and compute attenuation for each voxel.

4. Process the particle lattice and generate particles for visible cells whose
density is above the threshold.

5. Process the particles and store lighting information.

6. Sort the particles.

Every step mentioned above is implemented by a compute shader. We use
a GPU-based implementation, thus the CPU does not know how many GPU
threads need to be executed for each compute kernel. We use the Dispatch

Indirect() function to let the GPU assign work to itself. This function takes
the same arguments as the regular Dispatch() function, but these arguments are
stored in a GPU buffer. What is important is that other compute kernels can
write data to that buffer, thus allowing the GPU to control itself. We discuss
each step in detail below.

Processing cell grid. The processing cell grid is performed by a compute shader
that executes one thread for every cell. It computes the cell center and size based
on the camera world position and the location of the cell in the grid. Using the
cell center, the shader then computes the base cell density by combining two 2D
noise functions. If the resulting value is above the threshold, the cell is said to be
valid (Figure 4.7). The shader adds indices of all valid cells to the append buffer
(g_ValidCellsAppendBuf), which at the end of the stage contains an unordered
list of all valid cells. If a cell is also visible in the camera frustum, the shader
also adds the cell to another buffer (g_VisibleCellsAppendBuf) that collects valid
visible cells.

Processing cloud density lattice. In the next stage, we need to process only those
voxels of the lattice that are located within the valid cells of the cloud grid. To
compute the required number of GPU threads, we execute a simple one-thread
compute shader:

RWBuffer<uint> g_DispatchArgsRW : r e g i s t e r ( u0 ) ;
[ numthreads (1 , 1 , 1) ]
void ComputeDispatchArgsCS ( )
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Figure 4.7. Valid cells.

{
u int s = g_GlobalCloudAttribs . uiDensityBufferScale ;
g_DispatchArgsRW [ 0 ] = ( g_ValidCellsCounter . Load ( 0 ) � s�s�s �

g_GlobalCloudAttribs . uiMaxLayers + THREAD_GROUP_SIZE−1) /
THREAD_GROUP_SIZE ;

}

The number of elements previously written into the append buffer can be copied
into a resource suitable for reading (g_ValidCellsCounter) with the CopyStructure

Count() function. The buffer previously bound as UAV to g_DispatchArgsRW is
then passed to the DispatchIndirect() function to generate the required number
of threads. Each thread then reads the index of the valid cell it belongs to from
g_ValidCellsUnorderedList, populated at the previous stage, and finds out its
location within that cell. Then the shader combines two 3D noise functions with
the cell base density to create volumetric noise. The noise amplitude decreases
with altitude to create typical cumulus cloud shapes with wider bottoms and
narrower tops.

Light attenuation. Light attenuation is computed for every voxel inside the visible
grid cells. To compute the required number of threads, we use the same simple
compute shader used in the previous stage, but this time provide the number of
valid and visible cells in the g_ValidCellsCounter variable. Light attenuation is
then computed by casting a ray from the voxel center toward the light and ray
marching through the density lattice. We perform a fixed number of 16 steps.
Instead of storing light attenuation, we opt to store the attenuating cloud mass
because it can be properly interpolated.
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Particle generation. The next stage consists of processing valid and visible voxels
of the cloud lattice and generating particles for some of them. To generate the
required number of threads, we again use the simple one-thread compute shader.
The particle generation shader loads the cloud density from the density lattice
and, if it is not zero, it creates a particle. The shader randomly displaces the
particle from the voxel center and adds a random rotation and scale to eliminate
repeating patterns. The shader writes the particle attributes, such as position,
density, and size, into the particle info buffer and adds the particle index into
another append buffer (g_VisibleParticlesAppendBuf).

Processing visible particles. This is required to compute lighting information. In
particular, we compute the color of the sunlight reaching the center of the particle,
ignoring occlusion by the cloud and the intensity of ambient skylight. We also
sample the light-attenuating mass texture to compute the light occlusion. We use
the value on the particle surface to compute attenuation for multiple scattering
and the value in the particle center for single scattering. Moreover, we scale the
light-attenuating mass by a factor of 0.25 to account for strong forward scattering
when computing attenuation for multiple scattering.

Sorting. Sorting particles back to front is the final stage before they can be ren-
dered and is necessary for correct blending. In our original work, we sorted all
the voxels of the particle lattice on the CPU and then streamed out only valid
visible voxels on the GPU. This approach had a number of drawbacks. First, it
required active CPU–GPU communication. Second, due to random offsets, par-
ticle order could slightly differ from voxel order. But the main problem was that
all voxels were always sorted even though many of them were actually empty,
which resulted in significant CPU overhead.

We now sort particles entirely on the GPU using the merge sort algorithm by
Satish et al. [Satish et al. 09] with a simplified merge procedure. We begin by
subdividing the visible particle list into subsequences of 128 particles and sorting
each subsequence with a bitonic sort implemented in a compute shader. Then we
perform a number of merge stages to get the single sorted list. When executing
the binary search of an element to find its rank, we directly access global memory.
Because the number of particles that need to be sorted is relatively small (usually
not greater than 50,000), the entire list can fit into the cache and merging is still
very efficient even though we do not use shared memory.

An important aspect is that we do not know how many particles were gen-
erated on the GPU and how many merge passes we need to execute. Thus, we
perform enough passes to sort the maximum possible number of particles. The
compute shader performs an early exit, with very little performance cost, when
no more work needs to be done.
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4.5.3 Rendering

After visible particles are generated, processed, and sorted, they are ready for
rendering. Since only the GPU knows how many particles were generated, we
use the DrawInstancedIndirect() function. It is similar to DrawInstanced(), but
reads its arguments from a GPU buffer. We render one point primitive per
visible particle. The geometry shader reads the particle attributes and generates
the particle bounding box, which is then sent to the rasterizer.

In the pixel shader, we reconstruct the view ray and intersect it with the
ellipsoid enclosed in the particle’s bounding box. If the ray misses the ellip-
soid, we discard the pixel. Otherwise, we apply our shading model based on the
precomputed lookup tables, as shown in Listing 4.5.

Our first step is to compute the normalized density along the view ray using
the optical depth lookup table (lines 2–10). We randomly rotate the particle
around the vertical axis to eliminate repetitive patterns (line 6). f3EntryPoint

USSpace and f3ViewRayUSSpace are the coordinates of the entry point and the view
ray direction transformed into the particle space (which is unit sphere space, thus
the US suffix). Next, we compute the transparency (lines 14–17).

Our real-time model consists of three components: single scattering, multiple
scattering, and ambient light. We compute single scattering in lines 20–27. It
is a product of a phase function, sunlight attenuation (computed as discussed
in Section 4.5.2), and the sunlight intensity. Because single scattering is most
noticeable where cloud density is low, we multiply the value by the transparency.

Next, we evaluate multiple scattering by performing a lookup into the precom-
puted table (lines 30–39). We multiply the intensity with the light attenuation.
Since multiple scattering happens in dense parts of the cloud, we also multiply
the intensity with the opacity (1-fTransparency).

Finally, we use an ad hoc approximation for ambient light (lines 42–52). We
use the following observation: ambient light intensity is stronger on the top
boundary of the cloud and decreases toward the bottom. Figure 4.8 shows dif-
ferent components and the final result.

Figure 4.8. From left to right, single scattering, multiple scattering, ambient, and all
components.
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1 // Compute lookup coo rd i na t e s
2 float4 f4LUTCoords ;
3 WorldParamsToOpticalDepthLUTCoords ( f3EntryPointUSSpace ,
4 f3ViewRayUSSpace , f4LUTCoords ) ;
5 // Randomly ro ta t e the sphere
6 f4LUTCoords . y += ParticleAttrs . fRndAzimuthBias ;
7 // Get the normal ized den s i t y along the view ray
8 f l o a t fNormalizedDensity = 1. f ;
9 SAMPLE_4D_LUT ( g_tex3DParticleDensityLUT , OPTICAL_DEPTH_LUT_DIM ,

10 f4LUTCoords , 0 , fNormalizedDensity ) ;
11
12 // Compute ac tua l c loud mass by mu l t i p l y i ng the normal ized
13 // den s i t y with ray length
14 fCloudMass = fNormalizedDensity � fRayLength ;
15 fCloudMass �= ParticleAttrs . fDensity ;
16 // Compute transparency
17 fTransparency = exp ( −fCloudMass � g_Attribs . fAttenuationCoeff ) ;
18
19 // Evaluate phase f unc t i on f o r s i n g l e s c a t t e r i ng
20 f l o a t fCosTheta = dot(−f3ViewRayUSSpace , f3LightDirUSSpace ) ;
21 f l o a t PhaseFunc = HGPhaseFunc ( fCosTheta , 0 . 8 ) ;
22
23 float2 f2Attenuation = ParticleLighting . f2SunLightAttenuation ;
24 // Compute i n t e n s i t y o f s i n g l e s c a t t e r i ng
25 float3 f3SingleScattering =
26 fTransparency � ParticleLighting . f4SunLight . rgb �

27 f2Attenuation . x � PhaseFunc ;
28
29 // Compute lookup coo rd ina t e s f o r mu l t i p l e s c a t t e r i n g
30 float4 f4MultSctrLUTCoords =
31 WorldParamsToScatteringLUT ( f3EntryPointUSSpace ,
32 f3ViewRayUSSpace , f3LightDirUSSpace ) ;
33 // Load mu l t i p l e s c a t t e r i ng from the lookup tab l e
34 f l o a t fMultipleScattering =
35 g_tex3DScatteringLUT . SampleLevel ( samLinearWrap ,
36 f4MultSctrLUTCoords . xyz , 0 ) ;
37 float3 f3MultipleScattering =
38 (1−fTransparency ) � fMultipleScattering �

39 f2Attenuation . y � ParticleLighting . f4SunLight . rgb ;
40
41 // Compute ambient l i g h t
42 float3 f3EarthCentre = float3 (0 , −g_Attribs . fEarthRadius , 0 ) ;
43 f l o a t fEnttryPointAltitude = length ( f3EntryPointWS − f3EarthCentre ) ;
44 f l o a t fCloudBottomBoundary =
45 g_Attribs . fEarthRadius + g_Attribs . fCloudAltitude −
46 g_Attribs . fCloudThickness /2 . f ;
47 f l o a t fAmbientStrength =
48 ( fEnttryPointAltitude − fCloudBottomBoundary ) /
49 g_Attribs . fCloudThickness ;
50 fAmbientStrength = clamp ( fAmbientStrength , 0 . 3 , 1 ) ;
51 float3 f3Ambient = (1−fTransparency ) � fAmbientStrength �

52 ParticleLighting . f4AmbientLight . rgb ;

Listing 4.5. Real-time shading.

4.5.4 Volume-Aware Blending

Blending is the final stage after all particle shading attributes are computed. To
implement the volume-aware blending technique described in Section 4.4, we use
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an unordered access view, which enables the pixel shader to read and write to
arbitrary memory locations. For each pixel on the screen, we store the following
information about the closest element: minimal/maximal distance along the view
ray, optical mass (which is the cloud mass times the scattering coefficient), and
color:

s t r u c t SParticleLayer
{

f l o a t 2 f2MinMaxDist ;
f l o a t fOpticalMass ;
f l o a t 3 f3Color ;

} ;

The pixel shader implements the merging scheme described in Section 4.4
and is shown in the code snippet given in Listing 4.6. The shader creates an
array of two layers. The properties of one layer are taken from the attributes of
the current particle (lines 8–10). The other layer is read from the appropriate
position in the buffer (lines 12–17). Then the layers are merged (lines 20–23),
and the merged layer is written back (line 26) while color f4OutColor is passed
to the output merger unit to be blended with the back buffer.

1 // I n i t ex t en s i on s
2 IntelExt_Init ( ) ;
3 . . .
4 // Proce ss current p a r t i c l e and compute i t s c o l o r f3NewColor ,
5 // mass fCloudMass , and ex t en t s fNewMinDist/fNewMaxDist
6
7 SParticleLayer Layers [ 2 ] ;
8 Layers [ 1 ] . f2MinMaxDist = float2 ( fNewMinDist , fNewMaxDist ) ;
9 Layers [ 1 ] . fOpticalMass = fCloudMass � g_Attribs . fAttenuationCoeff ;

10 Layers [ 1 ] . f3Color = f3NewColor ;
11
12 uint2 ui2PixelIJ = In . f4Pos . xy ;
13 uint uiLayerDataInd =
14 ( ui2PixelIJ . x + ui2PixelIJ . y � g_Attribs . uiBackBufferWidth ) ;
15 // Enable p i x e l shader o rd e r i ng
16 IntelExt_BeginPixelShaderOrdering ( ) ;
17 Layers [ 0 ] = g_rwbufParticleLayers [ uiLayerDataInd ] ;
18
19 // Merge two l a y e r s
20 SParticleLayer MergedLayer ;
21 float4 f4OutColor ;
22 MergeParticleLayers ( Layers [ 0 ] , Layers [ 1 ] , MergedLayer ,
23 f4OutColor . rgb , f4OutColor . a ) ;
24
25 // Store updated l a ye r s
26 g_rwbufParticleLayers [ uiLayerDataInd ] = MergedLayer ;

Listing 4.6. Volume-aware blending.
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Particle info buffer g_rwbufParticleLayers is declared as a read/write buffer:

RWStructuredBuffer<SParticleLayer> g_rwbufParticleLayers ;

It must be noted that the algorithm described above would not work as ex-
pected on standard DirectX 11–class graphics hardware. The reason is that
we are trying to read from the same memory in parallel from different pixel
shader threads, modify data, and write it back. There is no efficient way on
DirectX 11 to serialize such operations. Intel graphics chips, starting with the
Intel HD Graphics 5000, can solve this problem. They contain a special exten-
sion, called pixel shader ordering. When it is enabled, it guarantees that all
read–modify–write operations from different pixel shader instances, which map
to the same pixel, are performed atomically. Moreover, the pixel shader in-
stances are executed in the same order in which primitives were submitted for
rasterization. The second condition is very important to ensure temporally sta-
ble results. In DirectX 11, the extensions are exposed through two functions.
IntelExt_Init() tells the compiler that the shader is going to use extensions, and
after the call to IntelExt_BeginPixelShaderOrdering(), all instructions that ac-
cess UAVs get appropriately ordered. It is worth mentioning that this capability
will be a standard feature of DirectX 12, where it will be called rasterizer ordered
views.

After all particles are rendered, the closest volume buffer needs to be merged
with the back buffer. We render a screen-size quad and perform the required
operations in the pixel shader.

During rendering, we generate three buffers: cloud color, transparency, and
the distance to the closest cloud. To improve performance, we render the clouds to
a quarter resolution buffers (1/2×1/2) and then upscale to the original resolution
using a bilateral filter.

4.5.5 Integration with Atmospheric Effects

To render the earth’s atmosphere, we use the method described in our earlier
work [Yusov 14a]. To create the effect of light shafts, we employ a light-space
cloud transparency buffer. This buffer is populated by projecting the 2D noise
(Section 4.5.2) onto the light projection plane. The buffer has the same structure
as a cascaded shadow map. We use this buffer to attenuate the sunlight. We
assume that the cloud altitude is fixed. Then, at each step, we check if the
current sample on the ray is below or above this altitude. If it is, we sample the
light-space attenuation texture to get the amount of light that reaches the point
through the cloud. We use the same minimum–maximum structure to accelerate
the ray traversal. To eliminate artifacts, we reduce the step size to one texel
when crossing the cloud altitude. We also use screen-space cloud transparency
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Figure 4.9. Sample refinement takes cloud transparency into account.

and distance to the cloud to attenuate the light samples along the view ray (please
refer to [Yusov 14b] for more details).

One important missing detail is sample refinement (see [Yusov 14a]), which
needs to account for screen-space cloud transparency. When computing coarse
unoccluded in-scattering, we take the screen-space cloud transparency and dis-
tance to attenuate the current sample. This automatically gives the desired effect
(Figure 4.9) with a minimal increase in performance cost.

4.6 Results and Discussion

Figure 4.10 shows some images generated using our method under different light-
ing conditions. To evaluate the performance, we used two test platforms. The
first platform is an Ultrabook powered by an Intel Core i5 CPU and an Intel
HD Graphics 5200 GPU (47 W shared between CPU and GPU). Our second
test platform is a desktop workstation powered by an Intel Core i7 CPU and an
NVIDIA GeForce GTX 680 GPU (195 W TDP). The viewport resolution was
set to 1280 × 720 on the first platform and to 1920 × 1080 on the second. Note
also that the NVIDIA GPU does not support pixel shader ordering, so images
were rendered with volume-aware blending disabled. Also note that this feature
is going to be exposed in DirectX 12, so it will soon be available on a wide range
of graphics hardware.

We used four quality settings: low, medium, high, and highest (Table 4.1).
Figure 4.11 compares images rendered by our algorithm in each setting.

Table 4.2 summarizes the performance of different stages of the algorithm on
our first test platform.

Rendering particles takes the most time, about 70% of the rendering time,
in all cases. The main sticking point is sampling the precomputed optical depth
texture. Reducing its resolution can significantly improve performance at the
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Figure 4.10. Images generated by our algorithm.

Profile Num. rings Ring dimension Num. layers Num. particles

Low 4 120 3 2919

Medium 5 136 4 7103

High 5 168 6 15,725

Highest 5 216 8 33,702

Table 4.1. Quality profiles.

Profile Clearing Processing Sorting Rendering Total

Low 0.62 0.63 0.24 4.22 5.71

Medium 1.31 1.00 0.31 8.72 11.34

High 2.98 2.07 0.48 15.73 21.26

Highest 6.53 4.62 0.83 26.5 28.48

Table 4.2. Performance of the algorithm on Intel HD Graphics 5200, 1280 × 720 reso-
lution (times in ms).
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Figure 4.11. Test scene rendered in different quality profiles: highest (top left), high
(top right), medium (bottom left), and low (bottom right).

Profile Processing Sorting Rendering Total

Low 0.38 0.1 1.74 2.22

Medium 0.65 0.11 3.73 4.49

High 1.39 0.14 6.53 8.06

Highest 2.97 0.24 10.72 13.93

Table 4.3. Performance of the algorithm on NVIDIA GeForce GTX 680, 1920 × 1080
resolution (times in ms).

cost of lower quality. The processing stage includes all the steps discussed in
Section 4.5.2 except sorting, which is shown in a separate column. The clearing
column shows the amount of time required to clear the cloud density and light
attenuation 3D textures to initial values. This step takes almost the same time
as processing itself. This is because of the low memory bandwidth of the GPU.
Rendering light scattering effects takes an additional 5.8 ms. In the medium-
quality profile, the total required time is less than 20 ms, which guarantees real-
time frame rates.

Performance results on our high-end test platform are given in Table 4.3.
Because our second GPU has much higher memory bandwidth, the performance
of the algorithm is significantly better. It takes less than 2.3 ms to render the
clouds in low profile and less than 4.5 ms to render in medium profile at full
HD resolution. Since clearing the 3D textures takes much less time, we do not
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separate this step in Table 4.3. Computing atmospheric light scattering takes an
additional 3.0 ms of processing time. Also note that the GTX 680 is a relatively
old GPU. Recent graphics hardware provides higher memory bandwidth, which
will improve the performance of our method.

4.6.1 Limitations

Our method is physically based, not physically accurate. We make two main
simplifications when approximating shading: scattering is precomputed in a ho-
mogeneous spherical particle, and energy exchange between particles is ignored.
Precomputing the scattering inside an inhomogeneous particle would require a
5D table. It is possible that some degrees of that table can allow point sampling,
which would reduce the lookup into the table to two fetches from a 3D texture.
This is an interesting direction for future research.

The other limitation of our method is that our volume-aware blending can
precisely handle the intersection of only two particles. When more than three
particles intersect, the method can fail. However, visual results are acceptable in
most cases. We also believe that our method gives a good use-case example for
the capabilities of upcoming GPUs.

4.7 Conclusion

In this chapter we presented a new method for rendering realistic clouds. The
key idea of our approach is to precompute optical depth and single and multiple
scattering for a reference particle at preprocess time and to store the resulting
information in lookup tables. The data is then used at runtime to compute cloud
shading without the need for ray marching or slicing. We also presented a new
technique for controlling the level of detail as well as a method to blend the
particles accounting for their volumetric intersection. We believe that our idea
of precomputing scattering is promising and can be further improved in future
research. The idea of precomputing transparency can also be used for rendering
different kinds of objects such as distant trees in forests.
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II

Sparse Procedural
Volume Rendering

Doug McNabb

5.1 Introduction

The capabilities and visual quality of real-time rendered volumetric effects dis-
proportionately lag those of film. Many other real-time rendering categories have
seen recent dramatic improvements. Lighting, shadowing, and postprocessing
have come a long way in just the past few years. Now, volumetric rendering
is ripe for a transformation. We now have enough compute to build practical
implementations that approximate film-style effects in real time. This chapter
presents one such approach.

5.2 Overview of Current Techniques

There are many different kinds of volumetric effects, and games render them with
several different techniques. We cover a few of them here.

Many games render volumetric effects with 2D billboard sprites. Sprites can
produce a wide range of effects, from smoke and fire to water splashes, froth,
and foam. They have been around for years, and talented artists are constantly
getting better at using them. But, the sprite techniques have limits and are begin-
ning to show their age. The growing excitement for virtual reality’s stereoscopic
rendering is particularly difficult because the billboard trick is more apparent
when viewed in stereo, challenging the illusion. We need a better approximation.
The techniques presented here help improve the illusion. (See the example in
Figure 5.1.)

There have been several recent advancements in rendering light scattering in
homogeneous media, enabling effects like skies, uniform smoke, and fog. These
techniques leverage the volume’s uniformity to simplify the light-scattering ap-
proximations. They’re now fast enough to approximate multiple scattering in

167
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Figure 5.1. Sparse procedural volume rendering example.

real time with amazing visual quality [Yusov 14]. Light scattering in heteroge-
neous participating media is the more-general problem, and correspondingly is
more expensive. Our technique approximates single scattering in heterogeneous
media and can look very good. It is worth noting that our scattering model is
simpler than the typical homogeneous counterparts to accommodate the added
complexity from heterogeneous media.

Fluid simulation is another mechanism for generating volumetric effects. The
results are often stunning, particularly where accuracy and realism are required.
But, the costs can be high in both performance and memory. Developers typically
use these simulations to fill a volume with “stuff” (e.g., smoke, fire, water, etc.),
and then render that volume by marching rays originating from the eye’s point of
view. They periodically (e.g., every frame) update a 3D voxel array of properties.
Each voxel has properties like pressure, mass, velocity, color, temperature, etc.
Our technique fills the volume differently, avoiding most of the traditional sim-
ulation’s computation and memory costs. We can use less memory than typical
fluid simulations by directly populating the volume from a small set of data. We
can further reduce the memory requirements by filling the volume on demand,
processing only the parts of the volume that are covered by volume primitives.
This volume-primitive approach is also attractive to some artists as it gives good
control over sculpting the final effect.

5.3 Overview

Our goal for rendering the volume is to approximate efficiently how much light
propagates through the volume and reaches the eye. We perform a three-step



5. Sparse Procedural Volume Rendering 169

process to produce our results:

1. Fill a volume with procedural volume primitives.

2. Propagate lighting through the volume.

3. Ray-march the volume from the eye’s point of view.

Before we compute how much light propagates through a volume, we need
to know the volume’s contents; we need to fill the volume with interesting stuff.
Volume primitives are an inexpensive, expressive option for describing a volume’s
contents [Wrennige and Zafar 11]. Different volume primitive types are charac-
terized by their different mechanisms for describing and controlling the contents.
Procedural volume primitives describe the contents with algorithms controlled by
a set of parameters (e.g., size, position, radius, etc.). We can populate a volume
with multiple primitives, sculpting more-complex results. There are many possi-
ble volume primitive types. Our system implements a single “displaced sphere”
procedural volume primitive. We often refer to them interchangeably as particles
and displaced spheres.

Rendering a single volume primitive is interesting, but a system that can ren-
der many and varied overlapping volume primitives is much more useful. We need
to render many volume primitives within a unified volume; they need to correctly
shadow and occlude each other. Supporting translucent volume primitives is par-
ticularly useful. We satisfy these requirements by decoupling the volume “filling”
step from the light propagation step. We fill a metavoxel with all relevant volume
primitives before we propagate lighting by ray-marching through the volume. We
simplify light propagation by supporting only a single directional light (e.g., the
sun), allowing us to orient the volume to align with the light’s direction. This
enables us to traverse trivially the volume one voxel at a time along the light’s
direction. Each light propagation step illuminates the current voxel with the
current light intensity. At each step, the intensity is attenuated to account for
absorption and scattering. Note that we propagate only the light intensity. This
process can be extended (at additional cost) to accommodate colored light by in-
dependently propagating each of the red, green, and blue wavelength intensities.

We capture the volume’s lit color and density (or opacity) at each voxel. Note
that our model doesn’t include light scattered from the neighboring volume. This
could presumably be added at additional cost in time and complexity. Our model
does account for shadows cast by the rest of the scene onto the volume, and for
casting the volume’s shadow onto the rest of the scene.

When the eye sees the lit volume, the amount of light it sees at each voxel is
reduced by any other voxels between the lit volume and the eye. This is similar to
propagating light through the volume with a couple of important differences. The
eye view is a perspective view, in contrast to the directional light’s orthographic
view. And, each voxel along the eye ray can both occlude more-distant voxels
and contribute light (if the voxel is emissive, or lit by the light).
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Voxels

Metavoxels

Figure 5.2. A large volume composed of metavoxels, which are composed of voxels.

The volume may also occlude the background; the amount of light from the
background that reaches the eye can be absorbed and scattered by the volume.
Our approach separates these two eye-view contributions. We determine the
lit volume’s contribution with a pixel shader and attenuate the background’s
contribution with alpha blending.

5.4 Metavoxels

The key point of our approach is that we can gain efficiency by avoiding un-
occupied parts of the volume. Each of our tasks can be made significantly less
expensive: we can fill fewer voxels, propagate light through fewer voxels, and
ray-march fewer voxels. We accomplish this by logically subdividing the volume
into a uniform grid of smaller volumes. Each of these smaller volumes is in turn
a collection of voxels, which we call a metavoxel. (See Figure 5.2.)

The metavoxel enables us to efficiently fill and light the volume. Most im-
portantly, it allows us to avoid working on empty metavoxels. It also allows pro-
cessing multiple metavoxels in parallel (filling can be parallel; lighting has some
dependencies). It allows us to switch back and forth between filling metavox-
els and ray-marching them, choosing our working set size to balance performance
against memory size and bandwidth. Using a small set improves locality. Reusing
the same memory over many metavoxels can reduce the total memory required
and may reduce bandwidth (depending on the hardware). It also improves ray-
marching efficiency, as many rays encounter the same voxels.

Figure 5.3 shows a few variations of a simple scene and the related metavoxels.
The first pane shows a few stand-in spheres, a camera, and a light. The second
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Figure 5.3. A simple scene (left), with all metavoxels (middle) and with only interest-
ing/occupied metavoxels (right).

Figure 5.4. Multiple spheres and the metavoxels they cover.

pane shows a complete volume containing the spheres. The third pane shows the
scene with only those metavoxels covered by one or more spheres. This simplified
example shows a total volume of 512(83) metavoxels. It requires processing only
64 of them, culling 7/8 of the volume.

Figure 5.4 shows a stream of simple spheres and a visualization of the metavox-
els they cover. Note how the metavoxels are tilted toward the light. Orienting
the volume this way allows for independently propagating light along each voxel
column. The lighting for any individual voxel depends only on the voxel above it
in the column (i.e., the next voxel closer to the light) and is unrelated to voxels
in neighboring columns.

Computers get more efficient every year. But memory bandwidth isn’t pro-
gressing as rapidly as compute efficiency. Operating on cache-friendly metavoxels
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Figure 5.5. High-level algorithm.

may be more useful in the coming years as compute efficiency will almost certainly
continue to outpace bandwidth efficiency. Ray-marching multiple metavoxels one
at a time can be more efficient than ray-marching a larger volume. The metavoxel
localizes the sample points to a relatively small volume, potentially improving
cache hit rates and minimizing expensive off-chip bandwidth.

We fill a metavoxel by testing its voxels against the set of particles that cover
the metavoxel. For each of the voxels covered by a particle, we compute the
particle’s color and density at the covered location. Limiting this test to the
metavoxel’s set of voxels is more efficient than filling a much larger volume;
choosing a metavoxel size such that it fits in the cache(s) can reduce expen-
sive off-chip bandwidth. Processing a single voxel multiple times, e.g., once for
each particle, can also be more efficient if the voxel’s intermediate values are in
the cache. Populating the metavoxel with one particle type at a time allows us
to maintain separate shaders, which each process different particle types. Note
that we currently populate the volume with only a single particle type (displaced
sphere). But, composing an effect from multiple particle types is a desirable fea-
ture and may be simplified through sharing intermediate results versus a system
that requires that a single shader support every particle type.

5.5 Algorithm

Our goal is to render the visible, nonempty metavoxels. Figure 5.5 shows that
we loop over each of these interesting metavoxels, filling them with particles (i.e.,
our displaced sphere volume primitive), and then ray-marching them from the
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Figure 5.6. Visualization of binning rules.

eye. It’s worth noting that “visible” here means visible either from the eye’s view
or the light’s view. We consider the light’s view when culling because even if
a metavoxel lies outside the eye view, it may still lie between the light and the
eye’s view such that the metavoxels that are within the eye’s view may receive
its shadows. We need to propagate lighting through all parts of the volume that
contribute to the final scene.

5.5.1 Binning

We determine the interesting metavoxels using a binning process. Binning adds a
small amount of extra work but it reduces the overall workload. We can quickly
generate a list for each metavoxel containing the indices for the particles that
cover the metavoxel, and only those particles. It also allows us to completely
avoid metavoxels that aren’t covered by any particles.

Each bin holds a list of particle indices. We populate the bin with an index
for every particle that covers the metavoxel. We maintain an array of bins—one
bin for every metavoxel. (For example, were we to subdivide our total volume
into 32 × 32 × 32 metavoxels, then we would have a 32 × 32 × 32 array of bins.)
A typical sparsely populated volume will involve a small fraction of these, though
the algorithm does not inherently impose a limit.

We bin a particle by looping over the metavoxels covered by the particle’s
bounding box. (See Figure 5.6.) We refine the approximation and improve overall
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// Determine the p a r t i c l e � s e x t en t s
min = particleCenter − particleRadius
max = particleCenter + particleRadius

// Loop over each metavoxel wi th in the ex t en t s
// Append the p a r t i c l e to those b ins f o r the
// metavoxels a l s o covered by the bounding sphere
f o r Z in min . Z to max . Z

f o r Y in min . Y to max . Y
f o r X in min . X to max . X

i f particleBoundingSphere covers metavoxel [ Z , Y , X ]
append particle to metavoxelBin [ Z , Y , X ]}

Listing 5.1. Binning pseudocode.

efficiency by testing each of these metavoxels against the particle’s bounding
sphere. If the particle’s bounding sphere covers the metavoxels, then we append
the particle to the metavoxel’s bin.

Listing 5.1 shows simple pseudocode for binning a particle.

5.5.2 Filling Metavoxels

Our goal is to ray-march the metavoxels from the eye’s point of view. Before we
can do that, we need a metavoxel through which to march rays. We populate
a metavoxel by testing each of its voxels against each volume-primitive particle.
We say the voxel is covered by the particle if and only if the voxel is inside the
volume primitive.

We reduce the number of tests by testing each metavoxel only against the par-
ticles that cover it; many more particles may participate in the system, but they
may cover only other metavoxels. There are many more potential optimizations
for reducing the total number of tests (e.g., progressive/hierarchical traversal).
Some of these strategies can be explored within this framework, but some of them
encourage fundamental changes. We look forward to future improvements.

Our task for filling the metavoxel has two goals:

1. a final density value for every voxel,

2. a final color value for every voxel.

We use a simple model for combining particle densities and colors:

densityfinal =

n∑
1

densityn,

colorfinal = max(color0 . . . colorn).

The final density is given by a simple sum of the densities for every particle
that covers the voxel. Color is more complex. We could blend colors together
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Figure 5.7. Determining coverage.

proportionally to particle density (i.e., a dense particle affects the final color more
than a less-dense particle). In practice, simply accepting the maximum between
two colors produces plausible results and is computationally inexpensive. This
won’t work for every effect, but it efficiently produces good results for some.

Different color components may be required for different effects. For example,
fire is emissive with color ranging from white through yellow and orange to red,
then black as the intensity drops. Smoke is often constant color and not emissive.
The diffuse color is modulated by light and shadow, while the emissive color is
not.

We compute the density by performing a coverage test. Figure 5.7 shows our
approach. We determine the particle’s density at each voxel’s position. If a voxel
is inside the displaced sphere, then we continue and compute the particle’s color
and density. Voxels outside the displaced sphere are unmodified. Note that the
displacement has a limited range; there are two potentially interesting radii—
inner and outer. If the voxel is inside the inner radius, then we can be sure
it’s inside the displaced sphere. If the voxel is outside the outer radius, then we
can be sure that it’s outside the displaced sphere. Coverage for voxels that lie
between these two points is defined by the displacement amount.

We radially displace the sphere. The position of each point on the displaced
sphere’s surface is given by the length of the vector from the sphere’s center to
the surface. If the vector from the sphere’s center to the voxel is shorter than
this displacement, then the voxel is inside the sphere; otherwise it’s outside.

Note a couple of optimizations. First, the dot product inexpensively computes
length2: A · A = length2(A). Using distance2 allows us to avoid the potentially
expensive square-root operations. The second optimization comes from storing
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Figure 5.8. Example cube map: 3D noise sampled at sphere surface, projected to cube
map faces.

our displacement values in a cube map. The cube map, like the displacement
is defined over the sphere’s surface. Given a voxel at position (X,Y, Z) and the
sphere’s center at (0, 0, 0), the displacement is given by cubeMap[X,Y, Z].

We don’t currently support dynamically computed noise. We suspect that a
dynamic solutions would benefit from using a cube map for intermediate storage
as an optimization; the volume is 3D while the cube map is 2D (cube map lo-
cations are given by three coordinates, but they project to a flat, 2D surface as
seen in Figure 5.8). The number of expensive dynamic-noise calculations can be
reduced this way.

We determine each voxel’s lit color by determining how much light reaches
it and multiplying by the unlit color. We propagate the lighting through the
volume to determine how much light reaches each voxel. (See Figure 5.9.)

There are many possible ways to compute the color: constant, radial gradient,
polynomial, texture gradient, cube map, noise, etc. We leave this choice to the
reader. We note a couple of useful approximations: Figure 5.10 shows the results
of using the displacement map as an ambient occlusion approximation and using
the radial distance as a color ramp (from very bright red-ish at the center to dark
gray further out). The ambient occlusion approximation can help a lot to provide
form to the shadowed side.

Many of the displaced sphere’s properties can be animated over time: position,
orientation, scale, opacity, color, etc. This is a similar paradigm to 2D billboards,
only with 3D volume primitives.
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Figure 5.9. Propagating light through a metavoxel’s voxels.

Figure 5.10. Procedural colors.

5.5.3 Light Propagation

We propagate light through the metavoxel with a simple loop. We use the ras-
terizer and pixel shader to perform the work. We draw one pixel for each of the
metavoxel’s voxel columns—i.e., a two-triangle quad covering one pixel for each
of our voxel columns (e.g., for a 32 × 32 × 32 metavoxel, we draw a 32 × 32 pixel
square). Our pixel/fragment shader loops over each voxel in the corresponding
voxel column.
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// 100% l i g h t propagate s to s t a r t
propagatedLight = 1

// Loop over a l l voxe l s in the column
f o r Z in 0 to METAVOXEL_HEIGHT

// Light t h i s voxe l
color [ Z ] �= propagatedLight

// Attenuate the l i g h t l e av ing t h i s voxe l
propagatedLight /= (1 + density [ Z ] )

Listing 5.2. Light propagation pseudocode.

Listing 5.2 shows pseudocode for propagating lighting through the metavoxel.
At each step, we light the current voxel and attenuate the light for subsequent
voxels.

5.5.4 Eye-View Ray March

We march along the eye rays, through the metavoxel, accumulating color from
the metavoxel’s lit voxels and attenuating according to the voxel’s density.

We implement the eye-view ray march by drawing a cube (i.e., 6 quads =
12 triangles) with the rasterizer from the eye’s point of view. The pixel shader
executes once for each pixel covered by the cube. Listing 5.3 gives pseudocode for
the pixel shader. It loops along a ray from the eye through the pixel, sampling the

// The ray s t a r t s at the eye and goes through the
// near plane at the current p i x e l
ray = pixelPosition − eyePosition

// Compute the s t a r t and end po in t s where the ray
// en t e r s and e x i t s t h i s metavoxel
start = intersectFar ( ray , metavoxel )
end = intersectNear ( ray , metavoxel )

// Clamp the ray to the eye p o s i t i o n
end = max ( eyePosition , end )

// Start assuming volume i s empty
// == black , and 100% transmittance
resultColor = 0
resultTransmittance = 1

// step along the ray , accumulating and attenuat ing
f o r step in start to end

color = volume [ step ] . rgb
density = volume [ step ] . a
blendFactor = 1/(1 + density )
resultColor = lerp ( color , resultColor , blendFactor )
resultTransmittance �= blendFactor

Listing 5.3. Ray march pseudocode.
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Figure 5.11. Metavoxel sort order.

volume as a 3D texture at each step. It accumulates lighting from the sample’s
color and attenuates it by the sample’s alpha (i.e., density). The end result is a
color and an alpha we can use with alpha blending to composite with our back
buffer.

Note that we draw this box with front-face culling. If the eye is inside the box,
then it sees only back faces. If we were to use back-face culling, then the pixels
wouldn’t draw and no ray marching would occur. We also don’t want to draw
without culling because that would potentially cause our pixels to unnecessarily
draw twice.

5.5.5 Metavoxel Sort Order

Lastly, we need to render the metavoxels in the correct order for the alpha blend-
ing to be correct. We render the metavoxels one at a time, propagating light and
ray-marching each one. The results blend to a shared render target. Because the
metavoxels can contain semitransparent voxels, order matters.

Figure 5.11 demonstrates why we need to process our metavoxels from the
top to bottom (with respect to the light) and back to front (with respect to
the eye). Light propagation dictates the top-to-bottom order because an indi-
vidual metavoxel’s final colors depend on how much light propagates through
any metavoxels nearer the light. Similarly, we need to blend each metavoxel’s
eye-view ray march results with those of previously rendered metavoxels.

There’s a twist, however. Rendering from top to bottom and back to front can
produce incorrect results for those metavoxels below the perpendicular (the green
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line from the camera). The eye is looking down on those metavoxels. So, the
eye can see through some previously rendered metavoxels. In this case, we need
to render the more-recent metavoxel behind the previously rendered metavoxel.
The solution is to process all of the metavoxels above the perpendicular before
processing those below. We also switch sort order and render those metavoxels
below the line sorted front to back.

The different sort orders require different alpha-blending modes. We render
back to front with over blending. We render front to back with under blending
[Ikits et al. 04].

It is possible to render all metavoxels sorted front to back with under blending.
That requires maintaining at least one column of metavoxels. Light propagation
requires processing from top to bottom. Sorting front to back can require render-
ing a metavoxel before those above it have been processed. In that case, we would
still propagate the lighting through the entire column before ray-marching them.
Consistently sorting front to back like this could potentially allow us to “early
out,” avoiding future work populating and ray-marching fully occluded voxels.

5.6 Conclusion

Computers are now fast enough for games to include true volumetric effects.
One way is to fill a sparse volume with volume primitives and ray-march it from
the eye. Efficiently processing a large volume can be achieved by breaking it
into smaller metavoxels in which we process only the occupied metavoxels that
contribute to the final image. Filling the metavoxels with volume primitives
allows us to efficiently populate the volume with visually interesting contents.
Finally, sampling the metavoxels from a pixel shader as 3D textures delivers an
efficient ray-marching technique.
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III

Lighting

Lighting became one of the most active areas of research and development for
many of the game teams. Ever increasing speed of the GPUs in Playstation 4,
Xbox One, and new PCs finally give programmers enough power to move beyond
the Phong lighting model and rudimentary shadow algorithms. We’re also seeing
solutions for in-game indirect diffuse or specular lighting, be it prerendered or
real-time generated.

The chapter “Real-Time Lighting via Light Linked List” by Abdul Bezrati
discusses an extension to the deferred lighting approach used at Insomniac Games.
The algorithm allows us to properly shade both opaque and translucent surfaces
of a scene in an uniform way. The algorithm manages linked lists of lights affecting
each pixel on screen. Each shaded pixel then can read this list and compute the
appropriate lighting and shadows.

This section also includes two chapters about techniques used in Assassin’s
Creed IV: Black Flag from Ubisoft. “Deferred Normalized Irradiance Probes” by
John Huelin, Benjamin Rouveyrol, and Bart�lomiej Wroński describes the global
illumination with day–night cycle support. The authors take time to talk about
various tools and runtime optimizations that allowed them to achieve very quick
turnaround time during the development.

“Volumetric Fog and Lighting” by Bart�lomiej Wroński focuses on volumetric
fog and scattering rendering. The chapter goes beyond screen-space ray marching
and describes a fully volumetric solution running on compute shaders and offers
various practical quality and performance optimizations.

The next chapter, “Physically Based Light Probe Generation on GPU” by
Ivan Spogreev, shows several performance optimizations that allowed the gener-
ation of specular light probes in FIFA 15. The algorithm relies on importance
sampling in order to minimize the amount of image samples required to correctly
approximate the specular reflection probes.

The last chapter in this section is “Real-Time Global Illumination Using
slices” by Hugh Malan. Malan describes a novel way of computing single-bounce
indirect lighting. The technique uses slices, a set of 2D images aligned to scene
surfaces, that store the scene radiance to compute and propagate the indirect
lighting in real time.

I would like to thank all authors for sharing their ideas and for all the hard
work they put into their chapters.

—Michal Valient
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III

Real-Time Lighting via
Light Linked List

Abdul Bezrati

1.1 Introduction

Deferred lighting has been a popular technique to handle dynamic lighting in
video games, but due to the fact that it relies on the depth buffer, it doesn’t
work well with translucent geometry and particle effects, which typically don’t
write depth values. This can be seen in Figure 1.1, where the center smoke effect
and the translucent water bottles are not affected by the colorful lights in the
scene.

Common approaches in deferred engines have been to either leave translucent
objects unlit or apply a forward lighting pass specifically for those elements. The
forward lighting pass adds complexity and an extra maintenance burden to the
engine.

At Insomniac Games, we devised a unified solution that makes it possible to
light both opaque and translucent scene elements (Figure 1.2) using a single path.
We have named our solution Light Linked List (LLL), and it requires unordered
access views and atomic shader functions introduced with DirectX 10.1–level
hardware.

The Light Linked List algorithm shares the performance benefits of deferred
engines in that lighting is calculated only on the pixels affected by each light
source. Furthermore, any object not encoded in the depth buffer has full access
to the lights that will affect it. The Light Linked List generation and access is
fully GPU accelerated and requires minimal CPU handholding.

1.2 Algorithm

The Light Linked List algorithm relies on a GPU-accessible list of light affecting
each pixel on screen. A GPU Linked List has been used in the past to implement

183
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Figure 1.1. Smoke effect and translucent water bottles don’t receive any scene lighting
in a traditional deferred lighting engine.

Figure 1.2. Smoke effects and translucent water bottles receive full-scene lighting via
the LLL.

Order Independent Transparency as well as Indirect Illumination [Gruen and
Thibieroz 10].

For each new frame in the game, we populate the linked list of lights and we
later access it to evaluate lighting at each pixel.
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1.2.1 GPU List Structure

For efficient lighting using the Light Linked List, we need to store each light’s
minimum and maximum depths so we can quickly reject any pixel that is outside
of the light’s boundaries. We also store the index of the light into a global array,
where we keep each light’s attributes such as colors, radii, intensities, etc.

Finally, we store a link to the next light at the current screen pixel: The Light
Linked List algorithm follows a LIFO convention, where the last linked element
stored is evaluated first.

s t r u c t LightFragmentLink
{

f l o a t m_MinDepth ; // Light minimum depth at the current p i x e l
f l o a t m_MaxDepth ; // Light maximum depth at the current p i x e l

u int m_LightIndex ; // Light index in to the f u l l in format ion array
u int m_Next ; // Next LightFragmentLink index

} ;

1.2.2 GPU Structure Compressed

Because memory can be scarce on some systems and in an effort to reduce band-
width usage, we chose to compress the LightFragmentLink structure and shave off
half of the original memory requirements.

Both minimum and maximum light depths were converted to half precision
and packed into a single unsigned integer uint. HLSL provides the useful intrinsic
f32tof16 to convert from full precision to half precision float. The light index was
compressed from 32 to 8 bits, which puts an upper limit of 256 maximum visible
lights at any frame. In practice, we found out that our scenes rarely ever exceed
75 lights per shot, but if the need for more than 256 lights ever comes up, we
can either allocate more bits for the index or place it back in its own unsigned
integer.

The link to the next fragment bits were reduced from 32 down to 24 bits in or-
der to fit with the 8-bit light index. A 24-bit unsigned integer allows for more than
16 million actively linked fragments at once. The compressed LightFragmentLink

structure stands at 8 bytes, whereas previously it required 16 bytes of memory.

s t r u c t LightFragmentLink
{

u int m_DepthInfo ; // High b i t s min depth , low b i t s max depth
u int m_IndexNext ; // Light index and l i nk to the next fragment

} ;
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1.2.3 Required Resources

To generate the Light Linked List, we use a total of four buffers, though the
algorithm can easily be modified to require only three.

The first buffer is a pool of all the LightFragmentLinks that can be allocated
and linked during a single frame. This resource is a read and write structured
buffer:

RWStructuredBuffer < LightFragmentLink > g_LightFragmentLinkedBuffer

The LightFragmentLink minimum and maximum depth values will be generated
in separate draw calls, and thus we need a buffer to temporarily store one value
while waiting for the matching depth to render. The second required buffer is a
read and write byte address buffer:

RWByteAddressBuffer g_LightBoundsBuffer

The third buffer is also a read and write byte address buffer that will be used
to track the index of the last LightFragmentLink placed at any given pixel on
screen:

RWByteAddressBuffer g_LightStartOffsetBuffer

The final buffer is an optional depth buffer that will be used to perform
software depth testing within a pixel shader. We chose to store the depth as
linear in a FP32 format instead of the typical hyper values.

1.2.4 Light Shells

To render the dynamic lights into the LLL buffers, we represent the lights as
geometry: Point lights are represented by spheres (Figure 1.3), spotlights are
represented by cones, and area lights are represented by boxes.

To perfectly represent a sphere or a cone in 3D space with polygons, we need
an extremely well-tessellated mesh, which places a heavy burden on both memory
resources and GPU rendering time. To work around the tessellation problem, we
resort to creating coarsely tessellated geometry that is oversized enough to fully
contain the original high-resolution mesh.

1.3 Populating the Light Linked List

The pixel shader that generates the light linked list can be described in three
steps. The first step is to perform a software depth test to reduce the number
of LightFragmentLinks allocated in a single frame. The depth test is followed by
collecting the light’s minimum and maximum depth, before moving forward with
the allocation of a LightFragmentLink element.
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Figure 1.3. The light shell displayed in gray is used to describe a point light in the
scene.

1.3.1 Software Depth Test

The Light Linked List algorithm allocates and links LightFragmentLink elements
when the back faces of the light geometry get rasterized and sent to the pixel
shader. In the common scenario where the scene geometry intersects the light
sources, the hardware depth test can let the front faces pass through but occlude
the back faces and thus interfere with the allocation of a LightFragmentLink (Fig-
ure 1.4).

To guarantee that back faces get processed by the pixel shader, we disable the
hardware depth test and only perform the software test against the front faces;
this will be explained in detail in the next section.

Occluder

Front Faces Back Faces

Figure 1.4. Front faces in green pass the hardware depth test, whereas back faces fail.
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1.3.2 Depth Bounds

The LightFragmentLink structure stores both minimum and maximum light depth;
however, those two values are rasterized by the hardware and sent to the pixel
shaders at different times: The minimum depth will be carried through by the
light geometry’s front faces, whereas the maximum depth will be provided by the
geometry’s back faces.

We first draw the light geometry with back-ace culling turned on to allow
rasterization of only the front faces. A pixel is determined to belong to a front-
or back-facing polygon by the use of the HLSL semantic SV_IsFrontFace.

We perform a software depth test by comparing the light depth against the
scene’s depth. If the test fails, we turn the light depth into a negative value. If
the test passes, we leave the target value unaltered.

The light’s incoming depth is stored in an unsigned integer’s lower 16 bits,
the global light index in the upper 16 bits, and this value is then written to the
g_LightBoundsBuffer resource.

// Detect f r on t f a c e s
i f ( front_face == true )
{

// Sign w i l l be negat ive i f the l i g h t s h e l l i s occ luded
f l o a t depth_test = sign ( g_txDepth [ vpos_i ] . x − light_depth ) ;

// Encode the l i g h t index in the upper 16 b i t s and the l i n e a r
// depth in the lower 16
u int bounds_info = ( light_index << 16) | f32tof16 ( light_depth �

depth_test ) ;

// Store the f r on t f a c e i n f o
g_LightBoundsBuffer . Store ( dst_offset , bounds_info ) ;

// Only a l l o c a t e a LightFragmentLink on back f a c e s
re turn ;

}

Once we have processed the front faces, we immediately rerender the light
geometry but with front-face culling enabled.

We fetch the information previously stored into g_LightBoundsBuffer, and
we decode both the light ID and the linear depth. At this point, we face two
scenarios.

In the first scenario, the ID decoded from the g_LightBoundsBuffer sample
and the incoming light information match. In this case, we know the front faces
were properly processed and we proceed to check the sign of the stored depth:
if it’s negative we early out of the shader since both faces are occluded by the
regular scene geometry.

The second scenario occurs when the decoded ID doesn’t match the light
information provided by the back faces. This scenario can happen when the
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frustum near clip intersects the light geometry. In this case, the minimum depth
to be stored in the LightFragmentLink is set to zero.

// Load the content that was wr i t ten by the f r on t f a c e s
u int bounds_info = g_LightBoundsBuffer . Load ( dst_offset ) ;

// Decode the s to r ed l i g h t index
u int stored_index = ( bounds_info >> 16) ;

// Decode the s to r ed l i g h t depth
f l o a t front_depth = f16tof32 ( bounds_info >> 0 ) ;

// Check i f both f r on t and back f a c e s were proce ssed
i f ( stored_index == light_index )
{

// Check the case where f r on t f a c e s rendered but were occ luded
// by the scene geometry
i f ( front_depth < 0)
{

re turn ;
}

}
// Mismatch , the f r on t f a c e was cu l l e d by the near c l i p
e l s e
{
front_depth = 0;
}

1.3.3 Allocation of LightFragmentLink

Now that we know both minimum and maximum light depths are available to
us, we can move forward with the allocation of a LightFragmentLink. To al-
locate a LightFragmentLink, we simply increment the internal counter of our
StructuredBuffer containing all the fragments. To make the algorithm more ro-
bust and to avoid driver-related bugs, we must validate our allocation and make
sure that we don’t overflow:

// A l l o c a t e
u int new_lll_idx = g_LightFragmentLinkedBuffer . IncrementCounter ( ) ;

// Don � t ove r f l ow
i f ( new_lll_idx >= g_VP_LLLMaxCount )
{

re turn ;
}

Once we have allocated a LightFragmentLink, we need to update our second
RWByteAddressBuffer to keep track of the last inserted LLL element. Again, we
make use of the HLSL atomic function InterlockedExchange:
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u int prev_lll_idx ;

// Get the index o f the l a s t l i nked element s t o r ed and r ep l a c e
// i t in the p roc e s s
g_LightStartOffsetBuffer . InterlockedExchange ( dst_offset , new_

lll_idx , prev_lll_idx ) ;

At this point, we have all four of the required values to populate and store a
valid LightFragmentLink:

// Encode the l i g h t depth va lue s
u int light_depth_max = f32tof16 ( light_depth ) ; // Back f ac e depth
u int light_depth_min = f32tof16 ( front_depth ) ; // Front f a c e depth

// Fina l output
LightFragmentLink element ;

// Pack the l i g h t depth
element . m_DepthInfo = ( light_depth_min << 16) | light_depth_max ;

// Index/Link
element . m_IndexNext = ( light_index << 24) | ( prev_lll_idx &

0 xFFFFFF ) ;

// Store the e lement
g_LightFragmentLinkedBuffer [ new_lll_idx ] = element ;

1.4 Accessing the Light Linked List

Accessing the Light Linked List is the same whether your engine uses a deferred
or a forward renderer.

The first step is to convert the incoming pixel position from viewport space to
an LLL index, and we do so by first converting the vPos to the LLL resolution,
as shown below.

u int lll_x = uint ( ( vpos_f . x / g_VP_Width ) � g_VP_LLLWidth ) ;
u int lll_y = uint ( ( vpos_f . y / g_VP_Height ) � g_VP_LLLHeight ) ;
u int src_index = lll_y � g_VP_LLLWidth + lll_x ;

With the LLL index calculated, we fetch our first link from the unordered
access view resource g_LightStartOffsetView and we start our lighting loop; the
loop stops whenever we find an invalid value.

u int src_index = ScreenUVsToLLLIndex ( screen_uvs ) ;
u int first_offset = g_LightStartOffsetView [ src_index ] ;

// Decode the f i r s t e lement index
u int element_index = ( first_offset & 0 xFFFFFF ) ;
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// I t e r a t e over the Light Linked L i s t
wh i l e ( element_index != 0 xFFFFFF )
{

// Fetch
LightFragmentLink element = g_LightFragmentLinkedView [←↩

element
_index ] ;

// Update the next e lement index
element_index = ( element . m_IndexNext & 0 xFFFFFF ) ;
. . .

}

Once we have acquired a valid LightFragmentLink, we decode the stored light
depths and we perform a simple bounds test against the incoming pixel: if the
pixel lies outside the light’s bounds, we skip the rest of the lighting loop.

// Decode the l i g h t bounds
f l o a t light_depth_max = f16tof32 ( element . m_DepthInfo >> 0 ) ;
f l o a t light_depth_min = f16tof32 ( element . m_DepthInfo >> 16 ) ;

// Do depth bounds check
i f ( ( l_depth > light_depth_max ) | | ( l_depth < light_depth_min ) )
{

cont inue ;
}

If our pixel lies within the light’s bounds, we decode the global light index
stored in the LightFragmentLink and we use it to read the full light information
from a separate global resource.

// Decode the l i g h t index
u int light_idx = ( element . m_IndexNext >> 24) ;

// Access the l i g h t environment
GPULightEnv light_env = g_LinkedLightsEnvs [ light_idx ] ;

1.5 Reduced Resolution

One way to reduce the memory footprint of the algorithm is to shrink the reso-
lution at which the Light Linked List is stored. Running at a full resolution of
1080p and assuming an even light distribution of 32 lights per pixel, the total
memory required for the linked list would be

1920 × 1080 × 32 × LightFragmentLink = 506.25 MB.

In practice, generating the Light Linked List at one quarter of the native game
resolution, or even one eighth, is largely sufficient and reduces the required mem-
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ory footprint by a significant amount:

(1920 ÷ 8) × (1080 ÷ 8) × 32 × LightFragmentLink = 7.91 MB.

1.5.1 Depth Down-Sampling

For engines that perform either a depth prepass or have a G-buffer, layer we need
to down-sample the depth buffer to match the resolution of the LLL.

Scaling down the depth buffer must be done via point sampling and the use
of the function max to avoid missing light information due to aggressive Z-culling.
To speed up the down-sampling of the depth buffer, we make extensive use of the
GatherRed function, which allows us to read four depth samples at once. Below
is an example of how to down-sample a full-resolution depth buffer down to one
eighth across the width and height:

f l o a t 4 d4_max ;

{
f l o a t 4 d4_00 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−3 , −3)) ;
f l o a t 4 d4_01 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−1 , −3)) ;
f l o a t 4 d4_10 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−3 , −1)) ;
f l o a t 4 d4_11 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−1 , −1)) ;
d4_max = max ( d4_00 , max ( d4_01 , max ( d4_10 , d4_11 ) ) ) ;

}

{
f l o a t 4 d4_00 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−3 , 3) ) ;
f l o a t 4 d4_01 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−1 , 3) ) ;
f l o a t 4 d4_10 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−3 , 1) ) ;
f l o a t 4 d4_11 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(−1 , 1) ) ;
d4_max = max ( d4_max , max ( d4_00 , max ( d4_01 , max ( d4_10 , ←↩

d4_11 ) ) ) ) ;
}

{
f l o a t 4 d4_00 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(3 , −3)) ;
f l o a t 4 d4_01 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(1 , −3)) ;
f l o a t 4 d4_10 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(3 , −1)) ;
f l o a t 4 d4_11 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2←↩

(1 , −1)) ;
d4_max = max ( d4_max , max ( d4_00 , max ( d4_01 , max ( d4_10 , ←↩

d4_11 ) ) ) ) ;
}

{
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f l o a t 4 d4_00 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2 (←↩
3 , 3) ) ;

f l o a t 4 d4_01 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2 (←↩
1 , 3) ) ;

f l o a t 4 d4_10 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2 (←↩
3 , 1) ) ;

f l o a t 4 d4_11 = g_txDepth . GatherRed ( g_samPoint , screen_uvs , int2 (←↩
1 , 1) ) ;
d4_max = max ( d4_max , max ( d4_00 , max ( d4_01 , max ( d4_10 , ←↩

d4_11 ) ) ) ) ;
}

// Calcu late the f i n a l max depth
f l o a t depth_max = max ( d4_max . x , max ( d4_max . y , max ( d4_max . z , ←↩

d4_max . w ) ) ) ;

1.6 Conclusion

The Light Linked List algorithm helped us to drastically simplify our lighting
pipeline while allowing us to light translucent geometry and particle effects, which
were highly desirable. With Light Linked List, we were able to match or improve
the performance of our deferred renderer, while reducing memory use. Addition-
ally, the flexibility of Light Linked List allowed us to easily apply custom lighting
for materials like skin, hair, cloth, and car paint.

In the future, we intend to further experiment with a more cache-coherent
layout for the LightFragmentLink buffer, as this seems likely to yield further per-
formance improvements.
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2.1 Introduction

In this chapter we present deferred normalized irradiance probes, a technique
developed at Ubisoft Montreal for Assassin’s Creed 4: Black Flag. It was devel-
oped as a cross-console generation scalable technique and is running on all of our
six target hardware platforms: Microsoft Xbox 360, Microsoft Xbox One, Sony
Playstation 3, Sony Playstation 4, Nintendo WiiU, and PCs. We propose a par-
tially dynamic global illumination algorithm that provides high-quality indirect
lighting for an open world game. It decouples stored irradiance from weather and
lighting conditions and contains information for a whole 24-hour cycle. Data is
stored in a GPU-friendly, highly compressible format and uses only VRAM mem-
ory. We present the reasoning behind a higher achieved quality than what was
possible with other partially baked solutions like precomputed radiance transfer
(under typical open-world game constraints).

We also describe our tools pipeline, including a fully GPU-based irradiance
baking solution. It is able to generate bounced lighting information for a full-
day cycle and big game world in less than 8 minutes on a single PC machine.
We present multiple optimizations to the baking algorithm and tools that helped
achieve such performance and high productivity.

We provide details for both CPU and GPU runtime that stream and generate
data for a given world position, time of day, and lighting conditions.

Finally, we show how we applied the calculated irradiance information in a
fullscreen pass as part of our global ambient lighting and analyze the performance
of whole runtime part of the algorithm. We discuss achieved results and describe
how this technique affected art pipelines.

In the last section of our chapter, we propose potential improvements to de-
veloped solutions: analysis of pros and cons of different irradiance data storage
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basis and possible next-generation runtime extensions to improve the quality even
more.

2.1.1 Overview

Achieving realistic, runtime lighting is one of biggest unsolved problems in real-
time rendering applications, especially in games. Simple direct lighting achieved
by analytical lights is quite easy to compute in real time. On the other hand,
indirect lighting and effects of light bouncing around the scene and its shadowing
are very difficult to compute in real time. Full-scene lighting containing both
direct and indirect lighting effects is called global illumination (GI), and full
runtime high-quality GI is the Holy Grail of rendering.

A full and proper solution to the light transport equation is impossible in the
general case—as it is an infinite integral and numerical solutions would require an
infinite number of samples. There are lots of techniques that approximate results,
but proper GI solutions are far from being close to real time (they achieve timing
of seconds, minutes, or even hours).

In games and real-time rendering, typically used solutions fall into three cat-
egories:

1. static and baked solutions,

2. dynamic crude approximations,

3. partially dynamic, partially static solutions.

The first category includes techniques like light mapping, radiosity normal map-
ping [McTaggart 04], or irradiance environment mapping [Ramamoorthi and Han-
rahan 01]. They can deliver very good final image quality, often indistinguishable
from ground truth for diffuse/Lambertian lighting. Unfortunately, due to their
static nature, they are not usable in games featuring very dynamic lighting con-
ditions (like changing time of day and weather).

The second category of fully dynamic GI approximation is gaining popularity
with next-generation consoles and powerful PCs; however, it still isn’t able to
fully replace static GI. Current dynamic GI algorithms still don’t deliver a com-
parable quality level as static solutions (light propagation volumes [Kaplanyan
09]), rely on screen-space information (deep screen-space G-buffer global illumina-
tion [Mara et al. 14]), or have prohibitive runtime cost (voxel cone tracing [Crassin
11]).

There are some solutions that try to decouple some elements of the light
transport equation—for example, shadowing like various screen-space ambient
occlusion techniques—but they capture only a single part of the phenomenon.

The final category containing partially dynamic and partially static solutions
is the most interesting one thanks to a variety of different approaches and so-
lutions working under different constraints. Usually in computer games we can
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assume that some of scene information is static (like placements of some objects
and scene geometry) and won’t change, so it is possible to precompute elements
of a light transport integral and apply them in the runtime. In our case, some
constraints were very limiting—very big open world size, previous generations of
consoles as two major target platforms, dynamic weather, and dynamic time of
day. On the other hand, due to the game setting, we didn’t need to think about
too many dynamic lights affecting GI and could focus only on sky and sun/moon
lighting.

An example of partially dynamic solutions is precomputed radiance trans-
fer [Sloan et al. 02]. It assumes that shaded scene is static, and lighting conditions
can be dynamic but are fully external (from faraway light sources). Under such
constraints, it is possible to precompute radiance transfer, store it using some
low-frequency basis, and then in runtime compute a product integral with simi-
lar representation of lighting in the scene. Using orthonormal storage functions
like spherical harmonics, the product integral is trivial and very efficient, as it
simplifies to a single dot product of basis functions coefficients. The biggest prob-
lem of typical partially resident texture (PRT) solutions is a long baking time
and large memory storage requirements (if stored per vertex or in PRT texture
maps). Interesting and practical variations and implementations of this technique
for an open-world game with dynamic weather, sky, and lighting conditions was
presented as deferred radiance transfer volumes by Mickael Gilabert and Nikolay
Stefanov at GDC 2012 [Gilabert and Stefanov 12].

Its advantages are numerous—relatively small required storage, real-time per-
formance on previous generations of consoles, good quality for open-door render-
ing scenarios, and full dynamism. For Assassin’s Creed 4, we tried integrating
this technique in our engine. Unfortunately, we found that while it delivered
good quality for uninhabited and rural areas, it wasn’t good enough in case of
dense, colonial towns with complex shadowing. Achieved results were too low
of frequency, both in terms of temporal information (indirect lighting direction
and irradiance didn’t change enough when changing time of day and the main
light direction) as well as spatial density (a probe every 4 meters was definitely
not enough). We realized that simple second-order spherical harmonics are not
able to capture radiance transfer in such complex shadowing of the scene (the
result was always a strong directional function in the upper hemisphere, so light-
ing didn’t change too much with changing time of day). We decided to keep
parts of the solution but to look for a better storage scheme fitting our project
requirements.

2.1.2 Theory and Introduced Terms

In general, rendering an equation for a single point and angle can be expressed
as

Lo(x, ωo) = Le(x, ω) +

∫
Ω

f(x, ωo, ω)Li(x, ω)(ω · n)dω,
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where Lo is outgoing radiance, x is position in space, ωo is outgoing radiance
direction, ω is incoming radiance direction, Le is radiance emitted by the surface,
f is the bidirectional reflectance distribution function, Li is incident radiance,
n is the surface normal, and Ω is the hemisphere centered around the surface
normal; (ω · n) is the dot product of the incoming radiance direction and surface
normal clamped to positive-only values (and equals 0 for the lower hemisphere).

This equation applies to a single point in space and is recursive (the outgoing
radiance of one point becomes part of the incoming radiance to another point in
space). Therefore, it’s impossible to simply solve it for any generic case or just
precompute some of its terms. However, if we are interested in light transport
only for diffuse (Lambertian) lighting for nonemissive surfaces, we can simplify
this equation a lot:

Lo(x, ωo) =
cdiff
π

∫
Ω

Li(x, ω)(ω · n)dω,

where cdiff is the albedo color of the shaded surface.
The integral in this equation is called irradiance. We introduce the term

normalized irradiance as the final irradiance of a shaded point caused by a single
directional light source of white color and unified brightness. Our key reasoning
behind using this term in our algorithm is that because such simplified lighting
transport equation is linear, we can compute light transport for the whole scene
for such normalized lighting from a single light direction and then de-normalize
it for specific lighting conditions by multiplying it by a given color.

2.2 Deferred Normalized Irradiance Probes Algorithm

2.2.1 Requirements

We needed an algorithm that could handle the dynamic and changing time-of-day
cycle and multiple weather presets very well.

Due to Assassin’s Creed 4 being shipped on the previous generation of consoles—
Microsoft Xbox 360 and Sony Playstation 3—we had quite strict memory and
performance budgets: a maximum 1 MB of used memory for relatively large ef-
fect ranges (at least several blocks away in colonial towns), preferably using only
VRAM (not to take memory away from gameplay systems on Playstation 3) and
under 1 millisecond of runtime cost on those consoles over seven years old.

Our game required coherent and simple handling of both static and dynamic
objects—the lighting system and renderer should be transparent to this informa-
tion and light the whole scene in a single pass.

Finally, as we decided to add a global illumination algorithm during actual
game production when some levels were almost ready, its impact on the art
pipelines had to be minimal. Baking times needed to be short enough to allow
the artist to do many lighting iterations per hour, and, in the case of changing
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scene geometry, lighting shouldn’t be completely broken. Therefore, we decided
to do the baking on the artists’ computers and wanted to allow them to re-bake
quickly (within seconds) some parts of levels instead of having to set up lighting
server farms and rely on nightly builds.

2.2.2 Assumptions and Limitations

We observed that we can simplify diffuse global illumination in Assassin’s Creed
4 with the following conditions being met and assumptions being made:

1. Game levels are fully static in terms of object placement and diffuse mate-
rials.

2. There is no diffuse GI caused by dynamic objects.

3. There is only a single dominant light: sun/moonlight affects GI.

4. Weather affects only light color and intensity, not light direction.

5. Worlds are very big, but only parts of them are fully accessible to the player
and need global illumination.

6. We had a good-quality and optimal system for handling direct sky lighting
and its occlusion already [St-Amour 13].

Based on this information, we were able to decouple normalized irradiance from
dominant light transferred from the weather-modified parameters—weather-
specific lighting color and intensity. As sky lighting was a separate term, this
was even easier as our algorithm could focus only on diffuse indirect sunlight.
It is a low-frequency term, so it allowed us to reduce the temporal and spatial
resolution and meet memory requirements.

2.2.3 Algorithm Overview

Our algorithm is based on baking normalized irradiance into a grid of light probes
covering world areas that are accessible for players. To support dynamic time
of day, we decided to keyframe eight different times of day (spaced three hours
apart). Our keyframes are captured at midnight, 3am, 6am, 9am, noon, 3pm,
6pm, and 9pm. In the runtime, we interpolate diffuse normalized irradiance
information from textures storing keyframed data, de-normalize the irradiance in
the runtime using sun radiance, and then apply it in a deferred manner.

As we are storing only a single layer of information, it must be interpolated
correctly with changing height. We do it in the runtime using available height
information texture and blend the stored GI with a neutral global light probe
with irradiance specified by lighting artists.
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Figure 2.1. Simplified diagram of our algorithm split into two parts.

The whole algorithm is split into two parts: the static, tool-side part and the
final runtime part.

The tool-side part consists of the following steps:

1. Spawn a uniform 2.5D grid of light probes, placing them on the lowest point
accessible to the player (near the ground).

2. Split the probes into regularly sized sectors of 16 × 16 probes.

3. For each sector, render a cube map with G-buffer information for each probe
and a single, high-resolution shadow map for every keyframed hour for the
whole sector using calculated light direction.

4. Using pixel shaders, compute normalized irradiance for every light probe
and keyframed hour, and store it in a texture.

Having such baked textures storing this information, we are able to use them in
the runtime in the following steps:

1. Stream in textures in the sectors around the camera.

2. Determine a probe-snapped 2D viewport of the sectors around the camera.

3. Blend normalized irradiance information from two keyframed hours. De-
normalize it while drawing irradiance data from the offscreen buffer.

4. On the CPU or SPU, prepare height information from available gameplay
data.

5. In the deferred ambient pass, combine all computed information with sky
lighting and SSAO into the final per-pixel ambient lighting.

A simplified diagram showing these steps and split between the editor and runtime
parts is shown in Figure 2.1. Both parts will be covered in detail in following
sections.
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Figure 2.2. A light probe and the four vectors constructed using the irradiance basis.

2.2.4 Data Structure

Our light probes are using the Far Cry 3 storage basis. The basis is constructed
using three vectors pointing up in space (as in the Half Life 2 irradiance storage
basis) and an additional vector that points directly down (shown in Figure 2.2).
Every vector stores directly normalized irradiance (irradiance response to unified-
intensity white light) information in 8-bit sRGB. Unfortunately, such basis is not
normalized, not orthonormal, and prone to ringing, ground color bleeding, and
errors. We were aware of such mathematical limitations and improperness, but in
our case it didn’t produce any artifacts that artists would consider unacceptable.
We will discuss this basis usage and propose better alternatives in Section 2.5.2.

Every light probe contains information for eight keyframed hours. Therefore,
every probe takes exactly 96 bytes:

3 bytes normalized irradiance × 4 basis vectors × 8 hours.

We store light probes in a uniform 2.5D grid. The grid density is 1 probe
every 2 meters, and such assumptions helped us to keep the runtime code very
simple. We organized light probes into sectors of 16 × 16 light probes (32 ×
32 meters). Therefore, such a sector takes 24 kB of memory. We store sectors
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Figure 2.3. Packed normalized irradiance texture for a single sector.

as noncompressed 2D RGBA textures—texture color channels correspond to the
different basis vectors (see Figure 2.3). Having our memory budget of 1 MB, we
were able to load GI data of up to around 200 meters, but it wasn’t necessary
and was larger than our engine’s regular streaming grid size.

2.3 Tool Side of the Algorithm

Our goal was to generate all this data directly on the artist’s computer, provide
interactive iterations on the lighting, and not rely on a render farm approach that
would generate the GI data overnight.

A typical Assassin’s Creed world is a square sized approximately 1 km on
each 2D axis. Because we had to handle current-generation and next-generation
consoles, our target resolution was 1 probe every 2 meters. This meant spawning
more than 110,000 probes on just a single layer. Trimming this data as much as
possible was a necessity to keep the baking times reasonable.

2.3.1 Probe-Spawning Process

We wanted the transition process in our pipelines between the old system and
our new solution to be as fast and transparent for game editor users as possible.
Placing probes by hand would mean too much manual work in a project with
such a big scope, and we decided that we need some other, automatic solution—
even if manual placement would give us better results. We decided to find a
probe-placement solution that would require as little artist input as possible.

Using a simple uniform 2.5D grid gave us a few advantages: it not only
usually is easy to implement, but it also guarantees a perfect repartition and easy
interpolation of the probes. It can be a really good thing to get a good overall
quality quickly, but, on the other hand, it means that many probes generated
are not adapting to the actual mesh layout and the frequency of GI information.
We observed that sometimes we ended up having probes at places we didn’t
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Figure 2.4. Example probe placement—notice the lack of probes on buildings’ rooftops.

need them. And because the number of probes directly drove the generation and
baking process times, we had to address the problem of game levels over-sampling.

In order to reduce the number of probes, we had to remove as many unneces-
sary probes automatically as possible—for instance, probes inside houses, in the
ocean, or in unattainable areas. We decided to use the player and AI navigation
mesh (navmesh) for that for a few reasons: it gave us a simple representation of
our world, easy to query, but it also provided clues to where the player can and,
most importantly, can’t go.

We also wanted to avoid placing probes on the roofs. We used the navigation
mesh in conjunction with another representation of our world called the ground-
heights map (usually used for sound occlusion, it stores only the ground height;
no roofs or platforms are included in this data). By computing the difference
between the navmesh z position and the ground height position, we decided,
under a certain threshold, whether to spawn the probe or not—see Figure 2.4
and Figure 2.5.

If included, the probe was spawned on the lowest z position of the navmesh.
The xy position was decided by the regular grid. This gave us a 70% reduction
of the number of probes spawned in our biggest game world, bringing it down to
30,000 probes.

Because of memory constraints, we couldn’t keep all the data for the whole
world loaded at the same time on consoles: we split it by sectors of 32×32 meters,
aligned on the uniform grid. Therefore, the texture owned by a sector is 16 × 16
texels.
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Figure 2.5. Example probe placement—regular grid.

Probes inside a sector could be moved, deleted, or added by artists to adjust
the baking position if the automatic placement was problematic. At the export
time, every texel of the deferred normalized irradiance probe (DNIP) texture was
taking the closest probe available. During the game’s postmortem, we were told
that this feature was used very rarely: the original placement heuristic was robust
enough.

2.3.2 Baking

For each probe, we needed to get irradiance value for four basis vectors. We
didn’t have any baking solution in our engine, and writing a dedicated ray tracer
or renderer was out of question. We also wanted the lighting artists to be able
to iterate directly on their computers (not necessarily DirectX 11 compatible at
that point), so it had to be completely integrated inside our world editor.

Due to such constraints, we decided to use cube-map captures. It meant
getting one G-buffer cube map and one shadow map for each time of day, lighting
them, and integrating them to get the irradiance values. The normalized lighting
was done at eight different times of day, with a plain white light, no weather
effects enabled (rain, fog) and neutral but still artist-controllable ambient terms
(to be able to still capture some bounces in the shadowed areas). To do the
integration, for each basis and for each time of day, we computed a weighted
integral of normalized irradiance responses against the basis.
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The irradiance computation is very similar to that of [Elias 00]: for every
single basis vector and for every cube-map texel, we project incoming radiance
to diffuse the lighting contribution. To do this efficiently, we have a multiplier
map that takes into account both Lambert’s cosine law term and the hemicube’s
shape compensation. This weight map is normalized (the sum of all texel weights
for a single basis is 1). Compensation is necessary because different cube-map
texels corresponding to different positions subtend a different solid angle on a
hemisphere. Once incoming radiance is multiplied by a bidirectional reflectance
distribution function (BRDF) and normalization factors for a given basis, we can
integrate it by simply adding all texel contributions together.

We faded the integrated radiance smoothly with distance. The reasoning for
it was to avoid popping and aliasing artifacts that could happen because of a
limited cube-map far plane (for optimization purposes)—in some cases, GI could
suddenly appear. Then for every basis vector, we merged whole information
from relevant cube-map faces and downscaled the result down to one pixel that
represented our normalized irradiance at a given probe position or basis direction.
All the data was then packed in our sector textures and added to our loading grid
to be streamable at runtime.

Therefore, our first version directly used our renderer to generate each face of
each cube map at each time of day independently, integrating the results on the
CPU by locking the cube-map textures and integrating radiance in serial loops.
Even with efficient probe number reduction like the one mentioned in Section
2.3.1, computing the data for around 30,000 probes for eight different times of
day was a lengthy process: at 60 fps and 48 renders for every probe (6 faces ×
8 times of day), it would take 400 minutes. This “quick and dirty” prototype
generated data for the world in 12 hours. Most of the time was spent on the CPU
and GPU synchronization and on the inefficient, serial irradiance integration. The
synchronization problem was due to the fact that on PCs it is not uncommon
for the GPU to be 2–3 frames behind the CPU and the command buffer being
written due to driver scheduling and resource management. Also, sending and
copying lots of data between GPU and CPU memory (needed for reading) is
much slower than localized, GPU-only operations. Therefore, when we tried to
lock the cube-map textures for CPU read-back in the näıve way (after every
single cube-map face being rendered), we spent an order of magnitude higher
times on synchronization and CPU computations than on the actual rendering.
(See Figure 2.6.)

Therefore, the first step was to remove the CPU irradiance calculations part
by processing all the downscaling and irradiance calculations on the GPU and
reading back only final irradiance values on the CPU. This kind of operation is
also trivially parallelizable (using many simple 2 × 2 down-sample steps) and is
well suited for the GPU, making the whole operation faster than the CPU version.

But even when the whole algorithm was running on the GPU, we were still
losing a lot of time on the CPU when locking the final result (1 lock per probe)
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Figure 2.6. Diagram showing the first näıve implementation for the GPU-based baker.
Work is done on a per-probe basis.
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Figure 2.7. Overview of batched baking rendering pipeline. “Render Sector N” means
drawing, lighting, and computing irradiance for each of the 16× 16 probes in Sector N .

because the CPU was well ahead of the GPU. We decided to use a pool of textures
and lock only when we knew the GPU actually wrote the data and it was ready
to be transferred (we checked it using asynchronous GPU queries). Batching also
helped: instead of locking texture for every probe, we locked once per sector—
each probe was directly writing its data to its own texel inside the sector’s texture.
At that point, our entire baker was running asynchronously between CPU and
GPU and was generating the whole map in around three hours. The GPU cost
was still high, but we were mainly CPU traversal bound at that point. (See
Figure 2.7.)

To cut some of the CPU cost, we wrote a new occlusion culling system that
was much less accurate (it didn’t matter for such short rendering distances), but
simpler and faster. We used a simple custom traversal per sector (radial distance
around the sector) and used also a reduced far-plane distance during the cube-
map generation.

To reduce the GPU workload, we also generated only one shadow map per
sector, instead of per probe. This helped reduce the GPU cost, as well as the
CPU cost of traversing the scene for the shadow geometry pass each time for each
time of day.

For each face of the cube map, we were generating the G-buffer only once. We
could reuse it for each time of day, as material properties like albedo and normals
don’t change over time. We could light the cube maps per every keyframed
time with the albedo, normal, and depth information we had, plus the sun and
shadow-map direction at the requested time of day.

At the end, generating our biggest world was taking 8 minutes on an artist’s
computer. The baking was so fast that we provided a real-time baking mode.
It was collecting the closest probes and computed lighting for them in the back-
ground. This way, artists could see the result of their work with GI almost
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RenderSector
Draw shadow maps containing sector f o r the eight times of day
For each probe in sector

For each of the six directions
Render G−buffer centered on probe
For each time of day

Use sector shadow map f o r current time of day
Perform lighting

For every basis
Compute texels irradiance BRDF contribution
Down−sample irradiance contribution until 1 x1

Listing 2.1. Pseudocode used by the final GPU baker.

immediately, and it updated continuously when they moved meshes or changed
lighting parameters.

Listing 2.1 summarizes the final GPU baker.

2.3.3 Debugging Tools

We also created a set of debugging tools for our algorithm and pipeline. The
tools were aimed to help visualize the baking process by showing a normalized
lighting cube map generated for each probe, the associated depth, the shadow
map used, and also the runtime 2D texture used for the rendering later on. So by
just selecting a probe, we could see all that information, debug the whole baking
process, and pinpoint potential issues immediately. We had many display modes
that showed probes placed in the world. Probes could be displayed showing either
the stored, normalized data (not multiplied by the final sun color and intensity)
or with the full final lighting on. We also provided a mode that showed which
probe was selected for each sector texel.

In Figure 2.8, you can see the rendered data on the left and the sector bound-
aries in pink. Interesting information is shown by the green lines—they connected
probes to additional points in the sector texture that didn’t have a probe placed,
and that probe was used to fill those texels to avoid any potential interpolation
artifacts.

2.4 Runtime Details of Algorithm

2.4.1 Streaming

Each texture like the one in Figure 2.3 is embedded inside regular entities. These
entities are owned by sectors of 32× 32 meters, and the textures are streamed in
like any other resource. They represent a subrectangle of the final textures that
will be used during the final ambient lighting pass.
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Figure 2.8. Implemented GI baking debugging tools. Top left inset, from left to right:
the six faces of the normalized cube map for the current time of day, the associated depth
for those faces, the current sector shadowmap, and the runtime heightmap texture (see
Section 2.4.3).

Because all these texture are relatively lightweight (24 kB of VRAM per sec-
tor), the impact on the game streaming system was negligible and no additional
effort was necessary to improve the loading times.

2.4.2 Resolved DNIP Textures

Having a varying number of textures at runtime (based on what is currently
loaded) is not convenient to use for a unified ambient lighting pass: texture arrays
are not available on Playstation 3 or Xbox 360, per-pixel dynamic branching is
slow, and additional filtering work would be necessary for data between sectors.
Therefore, we decided to generate an intermediate set of textures instead: the
resolved DNIP textures.

These textures encode the irradiance in the same manner as the sector tex-
tures, but instead of storing normalized irradiance for multiple times of day, we
store the final irradiance based on the current time of day and weather condi-
tions. Figure 2.9 shows these resolved DNIP textures. This way, we have a fixed
number of textures that cover the entire space around the camera: no additional
work for filtering is needed.

Generating these resolve textures is done on the GPU. Figure 2.10 is a repre-
sentation of the draw calls that are issued. Each square is a draw call; the one in
yellow is currently being issued.
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RRRR GGGG BBBB

Figure 2.9. Resolved DNIP textures—the circle shape is a radial attenuation of the
DNIP to hide popping when streaming data in or out.

16

16

Figure 2.10. Debug representation for the resolved DNIP textures: yellow square—
single blitted sector; blue area—whole final irradiance texture; dashed squares—squares
only partially blitted into final texture.

Each of these draw calls will interpolate the DNIP data from the two closest
stored times of day, and multiply the result by the current lighting condition.
Based on the distance to the camera, we fade out the DNIP contribution to a
constant color. This allows us to stream in and out the DNIP data that is far
away without any discontinuity. This shader is very cheap to evaluate (works
on a configuration of three 128 × 128 render targets): less than 0.1 ms on Play-
station 3.

Once these textures are generated, we use them during the ambient lighting
pass.
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(a)
(b) (c)

(d)

Figure 2.11. Visual summary of DNIP evaluation: (a) resolved DNIP textures, (b) world
height-map data, (c) world-space normals buffer, and (d) final indirect sunlight GI
contribution.

2.4.3 Ambient Lighting Pass

This pass works at full resolution on all platforms and needs to be as efficient as
possible. The goal of this pass is to get the final ambient lighting color based on
the pixel normal and position. The resolved DNIP textures contain the current
ambient lighting in four directions. We compute the final color for the pixel in a
similar manner as [Gilabert and Stefanov 12], but we precomputed the weights of
each basis direction in a lookup cube texture: our profiling tools indicated that
on a Sony Playstation 3, a better ALU:TEX ratio was achieved this way. Addi-
tionally, the packing used for the DNIP textures allows us to get the final color
with three dot products per one texture read, because no swizzling is required
inside the shader.

As mentioned before, the DNIP data is 2D only. During the resolve pass, we
need to fade out the data vertically to a user-specified neutral color. This is done
on the CPU by generating a dynamic texture based on height-map data. The
difference between the current pixel height and the height stored in the dynamic
texture is computed and scaled. This gives a factor to interpolate the DNIP data
to a neutral value. Figure 2.11 is a visualization of the whole process. Figures
2.12 and 2.13 show how the final image is composited from different lighting
contributions.

Jean-Francois St-Amour described our sky lighting occlusion factor (Figure
2.12(b)) where direct sky lighting gets an occlusion multiplier from a distance
field called world ambient occlusion [St-Amour 13]. It consists of a low-resolution
blurred top-down shadow map that is being sampled to get an estimated occluder
height. (See Figure 2.14.)
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(a) (b)

(c) (d)

Figure 2.12. Lighting composition: (a) direct sunlight, (b) direct sky lighting, (c) indi-
rect sunlight (exaggerated), and (d) composed ambient lighting buffer.

Figure 2.13. Final composed image with direct sunlight and albedo.

(a) (b)

Figure 2.14. World ambient occlusion: (a) source top-down depth map and (b) blurred
shadow map used for the runtime evaluation of the world ambient occlusion.
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Figure 2.15. Examples of final images using DNIP in Assassin’s Creed 4.

DNIP results are added to the sky lighting, giving the final ambient color.

On next-generation consoles and PCs, this ambient term gets multiplied by
SSAO before being added to the direct lighting. On the previous generation of
consoles, because of memory constraints, SSAO was multiplied at the end of the
lighting pass (after sunlight and local lights). It was improper, but allowed us to
alias some render targets and save a considerable amount of GPU memory.

2.5 Results and Discussion

2.5.1 Performance

The quality offered by the technique, associated with small performance impact
at runtime, and the low overhead on production allowed us to ship it on all the
maps in Assassin’s Creed 4: Black Flag. Figure 2.15 shows the final achieved
effect, composed with direct and sky lighting.
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GPU Performance Cost 1.2 ms Fullscreen Pass 720p (Playstation 3)

Memory cost (probe data) 600 kB (VRAM only)

Memory cost (render targets) 56 kB

CPU cost 0.6 ms (amortized)

Num probes (non-optimized) ∼ 110,000

Num probes (optimized) ∼ 30,000, 1 probe per 2 meters

Full baking time for game world 8 minutes (GTX 680, one machine)

Table 2.1. Summary of the DNIP technique.

Table 2.1 gives a summary of the important data used by the DNIP technique.
The GPU time indicates the total time taken by both the resolved DNIP textures
generation and the ambient lighting pass. The 600 kB of VRAM is for a total of
25 DNIP textures of streamed sectors, which covers an area of 160 × 160 meters
around the camera. The render targets are the resolved DNIP textures, which
are 64 × 64 and cover an area of 128 × 128 meters around the camera.

2.5.2 Limitations and Future Extensions

Even if we are happy with the results we got in Assassin’s Creed 4, removing
support for current-generation consoles together with the additional processing
power of Playstation 4 and Xbox One would allow for a lot of improvements.

Increasing the probe density in the X,Y, Z directions is the first easy solution.
Having a layered approach like this would require some additional work on the
resolve step of the algorithm, but it is definitely doable.

Used storage basis is not perfect, as we are losing any directional bounce
coming from the sides and the ground color is bleeding to the sides (Figure ??).
We tried changing the basis used by [Gilabert and Stefanov 12] to a six-axis cube
basis. It was giving us definitely superior results, but was eventually dropped
because of the performance and memory cost for Playstation 3 and Xbox 360.
We decided to keep platform parity on such important topics as the lighting. On
next-generation consoles, we could store lighting properly in 16-bit HDR formats.
This way we could combine the DNIP data together with the sky lighting and
achieve physically based sky occlusion.

Handling multiple light bounces was implemented, but dropped because of
the increased baking time and the lack of HDR support in the engine. To do
it, we were performing multiple passes of our algorithm iteratively (in the style
of radiosity techniques). One-pass results were injected as additional indirect
lighting into the second pass. Due to the linear properties of Lambertian lighting,
it is mathematically correct. Unfortunately, for it to work properly, we would need
to conserve energy to ensure that each additional pass does not add energy to
the scene, but rather diffuses it—which was not the case because of our selected
lighting basis (energy was lost in some directions but added in the direction of
basis vectors).
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Thanks to our baking algorithm running only on the GPU and not needing
any special data structures, generating the indirect lighting in the runtime for the
closest probes could also be another path to explore. This way we could support
single- or multi-bounce indirect lighting from various light sources and occluded
by dynamic objects, instead of just the key lighting.

Finally, having multiple volumes of GI would allow us to work at multiple
content-dependent frequencies and help solve the potential light leaking problem
that would happen in any game mixing indoors and outdoors. This was not a
problem on Assassin’s Creed 4, as it was a game based mostly on exteriors—in
our case almost no system supported mixed interiors and exteriors, which was
solved by game design and in data. All the interiors were already separate areas
into which players were teleported instead of being real areas embedded in the
world.
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Volumetric Fog and Lighting
Bart�lomiej Wroński

3.1 Introduction

This chapter presents volumetric fog, a technique developed at Ubisoft Montreal
for Microsoft Xbox One, Sony Playstation 4, and PCs and used in Assassin’s
Creed 4: Black Flag. We propose a novel, real-time, analytical model for calcu-
lating various atmospheric phenomena. We address the problem of unifying and
calculating in a coherent and optimal way various atmospheric effects related to
atmospheric scattering, such as

• fog with varying participating media density,

• smoke and haze,

• crepuscular rays or light shafts,

• volumetric lighting and shadows.

This chapter provides a brief introduction to a light-scattering model that
includes effects of in- and out-scattering and the Beer–Lambert law. We also
describe how scattering can be computed and integrated numerically.

Volumetric fog supports light scattering coming from multiple light sources
in a coherent and efficient manner. We include proper light shadowing (for volu-
metric shadows and light-shaft effects) and in-scattering of lighting coming from
any complex ambient and global illumination models. The described technique
uses compute shaders and data storage in volume textures. Unlike existing ray-
marching solutions, our algorithm doesn’t store information for a single depth
value from a depth buffer but for all possible depth values for a given camera ray.
Using volumetric storage, we are able to decouple multiple stages of atmospheric
effects and calculate them in different resolutions. All phases of volumetric fog
are independent of screen resolution, and due to use of trilinear filtering, the
produced effect is free of edge artifacts.

217
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The presented algorithm is compatible with many different shading models
and rendering scenarios. It can be applied in deferred and forward shading mod-
els, doesn’t require a depth prepass, and supports multiple layers of transparency
at no additional cost. It can be computed asynchronously from regular scene
geometric rendering on platforms that support such types of rendering (next-
generation consoles, new APIs like AMD Mantle, and potentially DirectX 12).

3.2 Overview

Atmospheric scattering is a very important physical phenomenon describing in-
teraction of light and various particles and aerosols in transporting media (like
air, steam, smoke, or water). It is responsible for various visual effects and phe-
nomena, like sky color, clouds, fog, volumetric shadows, light shafts, and “god
rays.”

Computer graphics research tries to reproduce those effects accurately. They
not only increase realism of rendered scenes and help to establish visual distinction
of distances and relations between objects, but also can be used to create a specific
mood of a scene or even serve as special effects. Computer games and real-time
rendering applications usually have to limit themselves to simplifications and
approximations of the phenomena, including analytical exponential fog [Wenzel
06], image-based solutions [Sousa 08], artist-placed particles and billboards, or,
recently, various modern ray-marching–based solutions [Tóth and Umenhoffer 09,
Vos 14, Yusov 13].

All of those approaches have their limitations and disadvantages—but ray
marching seemed most promising and we decided to base our approach on it.
Still, typical 2D ray marching has number of disadvantages:

• Solutions like epipolar sampling [Yusov 13] improve the performance but
limit algorithms to uniform participating media density and a single light
source.

• The power of current GPUs allows us to calculate effect only in smaller-
resolution buffers, which produces visual artifacts like jagged lines. More
advanced up-sampling algorithms like bilateral up-sampling can miss some
thin geometric features or introduce artifacts for high-contrast source im-
ages. Volumetric fog also operates on small-resolution volumes but uses 3D
trilinear filtering to prevent edge artifacts from happening due to missing
depth information in low-resolution image in 2D solutions.

• Most algorithm variations are not compatible with forward shading and
multiple layers of transparent affected objects. A notable exception here
is the solution used in Killzone: Shadow Fall [Vos 14], which uses low-
resolution 3D volumes specifically for particle shading. Still, in this ap-
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Out-scattering

Absorption

Transmission

Figure 3.1. Process of atmospheric scattering.

proach, scattering effects for shaded solid objects are computed in an image-
based manner.

Therefore, we decided to develop a novel solution that would overcome all
those limitations, and we present the solution that we call volumetric fog. We
used volumetric textures to transform the whole scattering problem into a 3D,
easy-to-parallelize, filterable domain.

3.2.1 Atmospheric Scattering

The phenomenon of light scattering is caused by the interaction of photons with
particles that form any transporting media. When light traverses any medium
that isn’t void, photons and light rays may collide with particles that create such
a medium. On collision, they may either be diffused or absorbed (and turned into
thermal energy). In optics, such a process is usually modeled statistically, and
we can define the amount of energy that takes part in the following processes:

• transmittance,

• scattering,

• absorption.

As energy is always conserved, we can write that

Lincoming = Ltransmitted + Labsorbed + Lscattered.

We can see these processes in Figure 3.1.
Depending on the particles that form the participating medium, the amount

of light that takes part in those processes can be different. One example of
scattering models is Rayleigh scattering. It is scattering of very small particles
(like Earth’s atmosphere air particles) and it responsible for the blue color of the
sky. It is very isotropic and uniform but is wavelength dependent—scattering is
stronger for shorter wavelengths and absorption is negligible.
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Figure 3.2. Example polar plot of a phase function for clouds [Bouthors et al. 06]. In
this plot, we see how much scattering happens in which direction—zero being the angle
of the original light path direction.

On the other hand, so-called Mie scattering of bigger particles (like aerosols
or dust) has a very anisotropic shape with a strong forward lobe and much higher
absorption proportion.

In reality, photons may get scattered many times before entering the eye or
camera and contributing to the final image. This is called multi-scattering. Un-
fortunately, such effects are difficult and very costly to compute, so for real-time
graphics we use a single-scattering model. In this model, atmospheric scatter-
ing contributes to the final image in two separate phenomena, in-scattering and
out-scattering.

In-scattering is the effect of additional light entering the paths between shaded
objects and the camera due to scattering. Therefore, we measure larger radi-
ance values than without the scattering. Out-scattering has the opposite effect—
because of scattering, photons exit those paths and radiance gets lost. The phys-
ical term describing how much light gets through the medium without being
out-scattered is transmittance. When in- and out-scattering effects are combined
in a single-scattering model, they result in contrast loss in comparison to the
original scene.

Characteristics of different scattering types can be modeled using three math-
ematical objects: scattering coefficient βs, absorption coefficient βa, and a phase
function. A phase function is a function of the angle between an incoming light
source and all directions on a sphere describing how much energy is scattered in
which direction. We can see an example of a complex phase function (for clouds)
in Figure 3.2.

A very common, simple anisotropic phase function that is used to approximate
Mie scattering is the Henyey–Greenstein phase function. It is described using the
following formula:

p(θ) =
1

4π

1 − g2

(1 + g2 − 2g cos θ)3/2
,

where g is the anisotropy factor and θ is the angle between the light vector and
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Figure 3.3. Polar plot of Henyey–Greenstein phase function for different g anisotropy
coefficients (0.0, 0.1, 0.2, 0.3, and 0.4). In this plot, the positive x-axis corresponds to
the original view direction angle.

the view vector (facing the camera). We can see how this phase function looks
for different anisotropy factors in Figure 3.3.

The Henyey–Greenstein phase function has two significant advantages for use
in a real-time rendering scenario. First, it is very efficient to calculate in shaders
(most of it can be precomputed on the CPU and passed as uniforms) for analytical
light sources. Second, the Henyey–Greenstein phase function is also convenient
to use for environmental and ambient lighting. Very often, ambient lighting,
sky lighting, and global illumination are represented using spherical harmon-
ics [Green 03]. To calculate the integral of spherical harmonics lighting with a
phase function, one has to calculate the spherical harmonics representation of
the given function first. This can be difficult and often requires the expensive
step of least-squares fitting [Sloan 08]. Fortunately, the Henyey–Greenstein phase
function has trivial and analytical expansion to zonal spherical harmonics, which
allows efficient product integral calculation of lighting that is stored in the spher-
ical harmonics (SH). The expansion up to the fourth-order zonal SH is simply
(1, g, g2, g3).

Finally, the last physical law that is very useful for light scattering calculations
is the Beer–Lambert law that describes the extinction of incoming lighting (due to
the light out-scattering). This law defines the value of transmittance (proportion
of light transported through medium to incoming light from a given direction).
It is defined usually as

T (A → B) = e
∫ B
A

βe(x)dx

where βe is the extinction coefficient, defined as the sum of scattering and ab-
sorption coefficients. We can see from the Beer–Lambert law that light extinction
is an exponential function of traveled distance by light in a given medium.
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3.3 Volumetric Fog Algorithm

Volumetric fog is an extension of existing ray-marching algorithms like in [Tóth
and Umenhoffer 09]. However, by decoupling and splitting typical ray-marching
steps and using intermediate storage, we aimed to solve the aforementioned dis-
advantages of classic 2D ray-marching solutions.

We based our algorithm on existing research on atmospheric scattering used in
the CGI industry and movies [Wrennige et al. 10] and computer games algorithms
using hardware volumetric 3D textures as an intermediate storage [Kaplanyan 09].
An article by Wrennige et al. describes how 3D textures and grids are used in
the VFX industry to compute single- and multi-scattering effects and introduces
a solution to scattering by numerical, iterative integration [Wrennige et al. 10].
We used a similar approach, but simplified it and adapted it to GPUs, real-
time graphics, and pipelines used by in games. That article also mentions how
to handle aliasing and subsampling problems that we faced. While we couldn’t
apply this part of CGI research directly due to prohibitive computational cost, it
inspired our own solutions.

Volumetric fog requires DirectX 11+–level hardware (or OpenGL 4.3+) to
work as it relies on compute shaders and random-access writes into volumetric
textures using unordered access views.

3.3.1 The Algorithm Steps Overview

The algorithm consists of the following steps, run as separate passes:

1. estimating the density of participating media,

2. calculating in-scattered lighting,

3. ray marching,

4. applying the effect to shaded objects.

All passes compute volumetric information about scattering for the whole space
within the camera frustum. We compute and store it for many steps or slices
along sparse camera rays. Such information is stored in 3D textures.

3.3.2 Volumetric Texture Storage Format

For storage between multiple passes, volumetric fog uses view-frustum–aligned
3D volumetric textures. Depending on the target hardware platform, Assassin’s
Creed 4 used 3D textures sized 190 × 90 × 128 or 190 × 90 × 64 texels. The
X and Y dimensions are uniformly aligned with the main screen or viewport
X and Y dimensions. The Z dimension is uniformly aligned with screen depth,
but uses nonuniform, exponential depth slice distribution to an artist-defined
range (in the case of Assassin’s Creed 4, only 50–100 meters). Depending on
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Figure 3.4. Mapping of a camera frustum to a 3D texture with volumetric intermediate
storage data layout and format.

performance budgets and target hardware platforms (for example high-end PCs),
used resolutions could be larger as the algorithm scales linearly in terms of used
compute threads and the arithmetic logic unit (ALU).

We used two of such textures: one for in-scattered lighting at a given point and
a density-related extinction coefficient and the second one to store final lookups
for integrated in-scattering and transmittance. The used format for those two
textures was a four-channel (RGBA) 16-bit floating point. The volumetric tex-
ture’s layout can be seen in Figure 3.4.

The resolution of volumetric textures may seem very low in the X and Y
dimensions, and it would be true with 2D ray-marching algorithms. To calcu-
late information for low-resolution tiles, classic ray-marching approaches need
to pick a depth value that is representative of the whole tile. Therefore, many
depth values contained by this tile might not be represented at all. Algorithms
like bilateral up-sampling [Shopf 09] try to fix it in the up-sampling process by
checking adjacent tiles for similar values. However, this approach can fail in case
of thin geometric features or complex geometry. Volumetric fog doesn’t suffer
from this problem because, for every 2D tile, we store scattering values for many
depth slices. Even very small, 1-pixel wide objects on screen can get appropriate
depth information. Figure 3.5 shows this comparison of 2D and 3D approaches
in practice.

Still, even with better filtering schemes, small-resolution rendering can cause
artifacts like under-sampling and flickering of higher-frequency signals. Sec-
tions 3.3.7 and 3.4.3 will describe our approach to fix those problems.

A significant disadvantage of such low volume resolution rendering is visual
softness of the achieved effect, but it can be acceptable for many scenarios. In
our case, it did fit our art direction, and in general it can approximate a “soft”
multi-scattering effect that would normally have prohibitive calculation cost.
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Figure 3.5. FlatXZ scene slice. (a) A smaller-resolution 2D image (black lines represent
depth) causes lack of representation for a small object (black dot)—no adjacent tiles
contain proper information. (b) All objects, even very small ones, get proper filtered
information (3D bilinear filtering shown as green boxes).

3.3.3 Estimation of Participating Media Scattering Coefficients

To be able to calculate scattering coefficients and solve scattering, we need first to
calculate participating medium density. Therefore, the first part of our algorithm
computes the density of the participating medium at every 3D point correspond-
ing to a volume texture texel and stores it in an intermediate volumetric texture.

In our algorithm implementation, we have support for varying densities of par-
ticipating media. This allows not only for physically based density distributions,
but also artist-authored and dynamically changing ones. Mie scattering is usu-
ally modeled using exponential height distributions due to the fact that aerosol
particles are heavier than air and tend to gather near the ground. Exponential
height density distribution is expressed using the equation

d(h) = d0 × e−hD,

where d(h) is the calculated density for height h, d0 is density at the reference
level (literature usually specifies it as ground or sea level), and D is the scaling
coefficient describing how fast the density attenuates. Coefficient D depends on
the type of aerosols and particles, and in typical in-game rendering scenarios, it
probably will be specified by the environment and lighting artists.

The second part of density estimation is purely art driven. We wanted to
simulate clouds of dust or water particles, so we decided to use the animated,
volumetric GPU shader implementation of Ken Perlin’s noise function [Perlin 02,
Green 05]. It is widely used in procedural rendering techniques as it has advan-
tage of smoothness, lack of bilinear filtering artifacts, derivative continuity, and
realistic results. We can see it in Figure 3.6. Perlin’s improved noise can be com-
bined in multiple octaves at varying frequencies to produce a fractal turbulence
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(a) (b)

Figure 3.6. (a) Bilinear textured noise compared to (b) volumetric 3D improved Perlin
noise [Green 05].

effect similar to clouds. We exposed animation tempo as an editable parameter
but connected noise movement direction to the game world wind direction to
make medium-density animation coherent with gameplay and particle wind. We
tried using 2–3 octaves of noise to achieve a “cloudy” and fractal appearance of
noise, but due to art direction preference decided to use only a single, simple
octave of noise.

For Assassin’s Creed 4, we didn’t try any other density variation techniques,
but we will describe them and ideas for extending controllability of effects in
Section 3.4.4.

Due to exponential distribution of Z slices of volumetric texture, we must
multiply the final estimated density by a slice length to get the amount of scat-
tering that happens in given slice of space (more particles and more scattering in
bigger or longer slices).

3.3.4 In-Scattered Light Calculation

Knowing the participating medium density, we were able to estimate scattering
coefficients and calculate in-scattered lighting at every texel of the volumetric
texture representing the camera frustum space covered by the volumetric fog
effect.

We dispatched a compute shader launched in a 3D group one thread per
volume texture texel and used unordered access views to access and write to vol-
umetric texture and store such data. For every texel of our volumetric texture, we
reconstructed its world position using corresponding world-space camera vectors.
Using reconstructed position, it is possible to calculate shadowing and lighting
for given point in space. The efficient and aliasing-free shadowing algorithm that
we used for the sunlight will be explained in Section 3.3.7.
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In a similar manner, we can calculate a list of dynamic lights (point- and
spotlights) affecting the participating medium at a given point. In our case, we
had a small number of lights affecting our scene in the camera frustum (between
0 and 4), so we were able to loop over all of them in negligible runtime cost. We
performed regular light culling and added information about them to a constant
buffer. Our compute shader simply looped over a uniform containing the number
of lights and added contributions from them in every loop iteration. This allowed
us to have proper, ordered influence of many local lights without any need for
sorting.

Having lighting and shadowing information, we can simply multiply it by
the scattering coefficient estimated from the participating medium density, the
participating medium albedo, and a phase function for the given angle between
light direction and the vector facing the camera. Whole computations performed
per every texel in this pass of volumetric fog can be seen in HLSL pseudocode at
Listing 3.1.

//World−space p o s i t i o n o f vo lumetr i c t e x tu r e t e x e l
f l o a t 3 worldPosition

= CalcWorldPositionFromCoords ( dispatchThreadID . xyz ) ;

// Thickness o f s l i c e −− non−constant due to exponen t i a l s l i c e
// d i s t r i b u t i o n
f l o a t layerThickness = ComputeLayerThickness ( dispatchThreadID . z ) ;

//Estimated den s i t y o f p a r t i c i pa t i n g medium at g iven po int
f l o a t dustDensity = CalculateDensityFunction ( worldPosition ) ;

// Sca t t e r i ng c o e f f i c i e n t
f l o a t scattering = g_VolumetricFogScatteringCoefficient � dustDensity
� layerThickness ;

// Absorption c o e f f i c i e n t
f l o a t absorption = g_VolumetricFogAbsorptionCoefficient � dustDensity
� layerThickness ;

//Normalized view d i r e c t i o n
f l o a t 3 viewDirection = normalize ( worldPosition − g_WorldEyePos . xyz ) ;

f l o a t 3 lighting = 0.0 f ;

// Light ing s e c t i o n BEGIN
// Adding a l l c on t r i bu t i ng l i g h t s rad iance and mu l t i p l y i ng i t by
// a phase f unc t i on −− vo lumetr i c fog equ i va l en t o f BRDFs

lighting += GetSunLightingRadiance ( worldPosition )
� GetPhaseFunction ( viewDirection , g_SunDirection ,
g_VolumetricFogPhaseAnisotropy ) ;

lighting += GetAmbientConvolvedWithPhaseFunction ( worldPosition ,
viewDirection , g_VolumetricFogPhaseAnisotropy ) ;

[ loop ]
f o r ( i n t lightIndex = 0; lightIndex < g_LightsCount ; ++lightIndex )
{
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f l o a t 3 localLightDirection =
GetLocalLightDirection ( lightIndex , worldPosition ) ;

lighting += GetLocalLightRadiance ( lightIndex , worldPosition )
� GetPhaseFunction ( viewDirection , localLightDirection ,
g_VolumetricFogPhaseAnisotropy ) ;

}

// Light ing s e c t i o n END

// Fina l ly , we apply some po t e n t i a l l y non−white fog s c a t t e r i n g albedo
color lighting �= g_FogAlbedo ;

// Fina l in−s c a t t e r i n g i s product o f outgoing rad iance and s c a t t e r i ng
// c o e f f i c i e n t s , wh i l e e x t i n c t i o n i s sum o f s c a t t e r i n g and absorpt ion
f l o a t 4 finalOutValue = f l o a t 4 ( lighting � scattering , scattering
+ absorption ) ;

Listing 3.1. Pseudocode for calculating in-scattering lighting, scattering, and absorption
coefficients in compute shaders.

The last part of lighting in-scattering that helps to achieve scene realism is
including ambient, sky, or indirect lighting. Ambient lighting can be a dominat-
ing part of scene lighting in many cases, when analytical lights are shadowed.
Without it, the scene would be black in shadowed areas. In a similar way, if am-
bient lighting is not applied to in-scattering, the final scattering effect looks too
dark (due to lighting out-scattering and extinction over the light path). Figure
3.7 shows a comparison of a scene with and without any ambient lighting.

The main difference between direct lighting and ambient lighting is that ambi-
ent lighting contains encoded information about incoming radiance from all pos-
sible directions. Different engines and games have different ambient terms—e.g.,
constant term, integrated cube sky lighting, or environment lighting containing
global illumination. The main problem for calculating the in-scattering of ambi-
ent lighting is that most phase functions have only simple, directional, analytical
forms, while ambient contribution is usually omnidirectional but nonuniform.

(a) (b)

Figure 3.7. Effect of adding ambient lighting to volumetric fog in-scattering calculations:
(a) Fog without sky lighting or GI = darkening, and (b) Fog with sky lighting and GI.
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Figure 3.8. Volumetric fog algorithm steps.

In our case, ambient lighting was split into two parts. First, the indirect
sunlight was stored and shaded using deferred normalized irradiance probes, de-
scribed in the previous chapter [Huelin et al. 15]. We used a simple irradiance
storage basis constructed from four fixed-direction basis vectors, so it was trivial
to add their contribution to volumetric fog and calculate the appropriate phase
function. The second part was the cube-map–based sky lighting (constructed in
real time from a simple sky model) modulated by the precomputed sky visibility
[St-Amour 13]. It was more difficult to add it properly to the fog due to its
omnidirectional nature. Fortunately, when we calculated the cube-map represen-
tation using CPU and SPU jobs, we computed a second, simpler representation
in spherical-harmonics basis as well. As described in Section 3.2.1, this orthonor-
mal storage basis is very simple and often used to represent environment lighting
[Green 03]. We used the Henyey–Greenstein phase function due to its very simple
expansion to spherical harmonics and calculated its product integral with the sky
lighting term in such form.

The optimization that we used in Assassin’s Creed 4 combines density estima-
tion and lighting calculation passes together. As we can see in Figure 3.8, those
passes are independent and can be run in serial, in parallel, or even combined. By
combining, we were able to write out the values to a single RGBA texture—RGB
contained information about in-scattered lighting, while alpha channel contained
extinction coefficient (sum of scattering and absorption coefficients).

This way we avoided the cost of writing and reading memory and launch-
ing a new compute dispatch between those passes. We also reused many ALU
computations—local texture-space coordinates, slice depth, and the texture voxel
world position. Therefore, all computations related to in-scattering were per-
formed locally and there was no need for an intermediate density buffer. It’s
worth noting though that in some cases it may be beneficial to split those passes—
for example, if density is static, precomputed, or artist authored, or if we simply
can calculate it in lower resolution (which often is the case). Splitting passes can
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lower effective register count and increase shader occupancy of them as well. It
is also impossible to evaluate density in the lighting pass if some dynamic and
nonprocedural density estimation techniques are used.

3.3.5 Ray Marching and Solving the Scattering Equation

The final volumetric step of our algorithm is an extension of typical ray-marching
techniques [Tóth and Umenhoffer 09] that uses already computed values of light
in-scattered into the view ray direction. Contrary to the previous pass, this pass
is executed as a 2D group and operates serially, slice by slice. Our algorithm
launches a 2D dispatch group of X × Y threads for a slice of our volumetric
texture.

This compute shader pass marches along the view rays, accumulating scat-
tering coefficients and the in-scattered lighting. It could be described as the
following simple loop:

1. Read in-scattered lighting and extinction coefficients at slice N , starting
with zero.

2. Add an extinction coefficient to the extinction accumulation register, and
calculate transmittance from it using the Beer–Lambert law.

3. Apply transmittance to in-scattered lighting at a given slice, and add the
result to the in-scattering accumulation RGB registers.

4. Write out to another volumetric texture at the same position RGB as the
accumulated in-scattering and alpha of the transmittance value.

5. Increase N and proceed back to the Step 1.

Progress of ray-marching 
computer shader

3D texture with local
in-scattering and extinction

3D texture with accumulated
in-scattering and transmittance

Step 0

2D group of X × Y
compute shader threads

Step Z – 1

X axis

Z 
ax

is

Z 
ax

is

X axis

Figure 3.9. Scattering equation integration progress.
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The pass progresses with this loop until all Z slices are processed. This process
is illustrated in Figure 3.9.

A single step of this process accumulates both in-scattering color as well as
the scattering extinction coefficients, which are applied in the Beer–Lambert
law. This way, we can calculate transmittance for not only color but also the
in-scattered lighting. Lighting in-scattered farther away from camera gets out-
scattered by decreasing the transmittance function, just like the incoming radi-
ance of shaded objects. Without it, with very long camera rays, in-scattering
would improperly accumulate to infinity—instead, it asymptotically approaches
some constant value. The entire code responsible for this is presented on List-
ing 3.2.

// One step o f numerical s o l u t i o n to the l i g h t
// s c a t t e r i n g equat ion
f l o a t 4 AccumulateScattering ( in f l o a t 4 colorAndDensityFront ,
in f l o a t 4 colorAndDensityBack )
{

// rgb = in−s c a t t e r ed l i g h t accumulated so far ,
// a = accumulated s c a t t e r i n g c o e f f i c i e n t
f l o a t 3 light = colorAndDensityFront . rgb + saturate (

exp(−colorAndDensityFront . a ) ) � colorAndDensityBack . rgb ;
r e turn f l o a t 4 ( light . rgb , colorAndDensityFront . a +
colorAndDensityBack . a ) ;}

}

// Writing out f i n a l s c a t t e r i n g va lue s }
void WriteOutput ( in uint3 pos , in f l o a t 4 colorAndDensity )
{

// f i n a l va lue rgb = in−s c a t t e r ed l i g h t accumulated so far ,
// a = scene l i g h t t ransmittance
f l o a t 4 finalValue = f l o a t 4 ( colorAndDensity . rgb ,

exp(−colorAndDensity . a ) ) ;
OutputTexture [ pos ] . rgba = finalValue ;

}

void RayMarchThroughVolume ( uint3 dispatchThreadID )
{

f l o a t 4 currentSliceValue = InputTexture [ uint3 ( dispatchThreadID .
xy , 0) ] ;

WriteOutput ( uint3 ( dispatchThreadID . xy , 0) , currentSliceValue ) ;

f o r ( u int z = 1; z < VOLUME{\_} DEPTH ; z++)}
{

uint3 volumePosition =
uint3 ( dispatchThreadID . xy , z ) ;}
f l o a t 4 nextValue = InputTexture [ volumePosition ] ; }
currentSliceValue =}

AccumulateScattering ( currentSliceValue , nextValue ) ;}
WriteOutput ( volumePosition , currentSliceValue ) ;}

}
}

Listing 3.2. Process of numerical integration of scattering equation.
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// Read vo lumetr i c in−s c a t t e r i n g and transmittance
f l o a t 4 scatteringInformation = tex3D ( VolumetricFogSampler ,
positionInVolume ) ;
f l o a t 3 inScattering = scatteringInformation . rgb ;
f l o a t transmittance = scatteringInformation . a ;

// Apply to l i t p i x e l
f l o a t 3 finalPixelColor = pixelColorWithoutFog � transmittance . xxx
+ inScattering ;

Listing 3.3. Manual blending for applying the volumetric fog effect.

3.3.6 Applying the Effect on Deferred- or Forward-Shaded Objects

Having scattering values written into a volumetric texture, we can express pixel
color of a distant object as

ShadedPixelColor = ShadedPixelColor × Transmittance + InScattering,

where InScattering is described by the RGB value of a texel read from volumetric
texture and Transmittance is in its alpha.

Because we store 3D information for many discrete points along the view ray
(from camera position up to the effect range), it is trivial to apply the effect using
trilinear filtering to any amount of deferred- or forward-shaded objects. In the
case of deferred shading, we can read the value of the Z-buffer, and using it and
the screen position of shaded pixel, we can apply either hardware blending (Dest
× SourceAlpha + Source) or manual blending (Listing 3.3).

The sampler we are using is linear, so this way we get piecewise-linear ap-
proximation and interpolation of the in-scattering and transmittance functions.
It is not exactly correct (piecewise-linear approximation of an exponential decay
function), but the error is small enough, and even with the camera moving it
produces smooth results.

For the deferred-shaded objects, this step can be combined together with a
deferred lighting pass—as lighting gets very ALU heavy with physically based
rendering techniques, this could become a free step due to latency hiding. In-
formation for volumetric fog scattering can be read right at the beginning of the
lighting shader (it doesn’t depend on anything other than screen-space pixel po-
sition and depth value). It is not needed (there is no wait assembly instruction
that could stall the execution) until writing the final color to the lighting buffer,
so the whole texture fetch latency hides behind all the lights calculations.

For forward-lit objects, particles, and transparencies, we can apply scattering
in the same way. The advantage of our algorithm is that we can have any number
of layers of such objects (Figure 3.10) and don’t need to pay any additional cost
other than one sample from a volumetric texture and a fused multiplication–
addition operation.
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Transparent object Transparent object Solid object

Figure 3.10. Multiple layers of opaque and transparent objects and trilinear 3D texture
filtering.

3.3.7 Fighting Low-Resolution Under-Sampling Artifacts and Aliasing
Problems

A common rendering problem is aliasing and under-sampling of geometric edges,
shading, shadowing, and many other rendering pipeline elements. It happens
when trying to sample complex, high-frequency signals in much lower resolu-
tion. While volumetric lighting in general is rather low frequency, the volumetric
textures we used are so low resolution that some aliasing artifacts are inevitable.

In the case of Assassin’s Creed 4, the main sources of volumetric fog aliasing
were the shadow maps. Our rendering used four 1024×1024 shadow cascades that
contained lots of very high-frequency animated details, like palm leaves. When
the camera or those shadow-casting objects moved even slightly, the shadowing
result, which was originally a binary function, changed a lot, causing unpleasant
temporal artifacts. A common solution to any aliasing problem is super-sampling
or low-pass filtering the source or target signal. A comparison of binary shad-
owing with frequencies in signals much higher than the Nyquist frequency and
shadowing with proper low-pass filtering applied is shown in Figure 3.10. We
applied such a solution and down-pass filtering to the shadowing function of vol-
umetric lighting.

Our first attempt was using 32-tap percentage closer filtering (PCF) [Bunnell
and Pellacini 04] of the shadowing test, but its performance was unacceptable for
the real-time scenario and our budgets (a few-milliseconds filtering cost). We were
noticing very high cache miss ratios due to large source shadow map resolution.
We decided to look for other shadowing techniques that would allow us to down-
sample shadow maps, do filtering in much cheaper 2D space, and potentially use
some form of separable filtering on the signal.

There is ongoing research on the topic of better shadow-mapping techniques
with different tradeoffs. There are already many existing shadowing algorithms
that transform shadowing information from depth into some other domain and
perform shadowing tests using some function that is lower frequency and filter-
able. Examples of those techniques are variance shadow mapping [Myers 07],
convolution shadow maps [Annen et al. 07], exponential shadow maps [Annen
et al. 08], transmittance function mapping [Delalandre et al. 11], and Fourier
opacity mapping [Jansen and Bavoil 10].
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Figure 3.11. Under-sampling and aliasing problems without a low-pass filter caused by
small changes in the shadow map (top). Correct low-pass filtering helps to mitigate
such problems (bottom).

We decided to use exponential shadow mapping [Annen et al. 07] due to
its simplicity and low runtime and storage costs. It simplifies shadowing us-
ing exponential functions and allows us to perform shadow-map super-sampling,
down-scaling, and separable filtering. To perform low-pass filtering, we transform
the signal into the exponential domain and then do down-sampling four times for
each shadow cascade—we end up with 256×256-sized textures. Then we perform
separable Gaussian blur on those textures and end up with much lower frequency
signal. The final shadowing test is trivial and is a smooth comparison ramp func-
tion of preconvolved values stored in shadow maps and an exponential function
of the shadow-space depth of a shaded point in space.

The main disadvantage of exponential shadow maps that makes this algorithm
not practical for most cases of regular rendering is the problem of shadow leaking.
With exponential shadow maps, any fine-scale self-shadowing is impossible and
shadows tend to be almost transparent on shadowed surfaces that are near the
shadow casters. Shadows get harder farther away from shadow-casting objects,
which is nonrealistic (the opposite effect should be visible) and is usually an unac-
ceptable artifact. Fortunately in our case of volumetric shadows, self-shadowing
is not really an issue because we perform shadowing tests not of real hard surface
points but of the actual participating medium in between the surfaces. Therefore,
shadow leaking and hardening artifacts were not visible and exponential shadow
maps were good enough in our case.

3.4 Results and Discussion

Technique was implemented in Assassin’s Creed 4 for Microsoft Xbox One, Sony
Playstation 4, and Microsoft Windows PC computers. We can see the achieved
results (exaggerated, non-photorealistic rendering) in Figure 3.12.
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Figure 3.12. Examples of volumetric fog in Assassin’s Creed 4.

Our performance figures on Microsoft Xbox One are shown in Table 3.1. It is
worth noting that we included in this table the cost of a separate fullscreen pass
for effect application in deferred rendering—but in typical rendering scenarios
this pass would be combined with deferred lighting. We also included the costs
of shadow-map down-sampling and blurring—but those passes are not unique to
the volumetric fog. They could be reused for particle shadowing or other low-
frequency shadowing (translucent object shadowing), and this way the cost would
be amortized among multiple parts of the rendering pipeline.

We are satisfied with the achieved results and performance and are already
using it in many other projects. Still, it is possible to extend the algorithm and
improve the quality and controllability, allowing us to achieve a slightly different
visual effect and fit other rendering scenarios. It is also possible to improve
performance for games with tighter frame budgets—like 60 fps first-person or
racing games.



3. Volumetric Fog and Lighting 235

Total Cost 1.1 ms

Total cost without shadow-map operations and applying as a 0.55 ms
separate pass

Shadow-map down-sample 0.163 ms

Shadow-map blur 0.177 ms

Lighting volume and calculating scattering 0.43 ms

Solving scattering equation 0.116 ms

Applying on screen 0.247 ms

Table 3.1. Algorithm performance numbers on Microsoft Xbox One.

The main area for future improvements is related to the low effect resolution.
While most of the shadow aliasing is gone due to the described shadowing algo-
rithm, aliasing from both density calculation and lighting could still be visible
with extreme fog and scattering settings. Also, staircase bilinear filtering arti-
facts can be visible in some high-contrast areas. They come from piecewise linear
approximation of bilinear filtering—which is only a C0-continuous function.

Such strong scattering settings were never used in Assassin’s Creed 4, so we
didn’t see those artifacts. However, this algorithm is now an important part of
the Anvil game engine and its renderer and we discussed many potential im-
provements that could be relevant for other projects. We will propose them in
the following subsections.

3.4.1 Potential Optimizations

Biggest cost of the algorithm is the in-scattering lighting and density estimation
pass. It costs around 0.43 ms, even with very simple lighting models and only a
few local lights. In the case of many lights, it could be important to accelerate
this pass.

Because our volumetric lighting doesn’t depend on the shaded onscreen scene
geometry, only on the shadow maps, it is possible to reschedule it. With modern
AMD GPU hardware and APIs like Mantle or next-generation console APIs, it
is possible to use an asynchronous compute and launch the volumetric lighting in
parallel with some other raster- and bandwidth-heavy passes.

We also didn’t apply any early-out optimization to volumetric fog. Very often
the algorithm also performed all calculations (density estimation, in-scattering
calculation, and ray marching) for points behind the visible opaque objects. While
it made the cost and timing of volumetric fog fixed (which can be desirable when
creating frame time performance budgets), it was also a waste of GPU cycles. It
is possible to use a hierarchical Z-buffer (which became quite common for for-
ward and clustered lighting [Harada 12, Olsson et al. 12] or a hierarchical Z-buffer
culling [Hill and Collin 11]) to reduce the number of unnecessary computations.
By using such information, it is possible to perform an early-out exit in all algo-
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rithm passes and skip updating the fog texture volumes behind solid objects as
this information won’t be read and used for the shading of any currently visible
object. It doesn’t help in the worst case (when viewing distance is very large and
the whole screen covers the full fog range), but in an average case (half of the
screen is the ground plane or near objects), it could cut the algorithm cost by
30–50% by providing a significant reduction of both used bandwidth and ALU
operations. It could also be used for better 3D light culling like in [Olsson et
al. 12]. We didn’t have hierarchical Z-buffer information available in our engine,
and computing it would add some fixed cost, so we didn’t try this optimization.
On the other hand, relying on the depth buffer would mean that asynchronous
compute optimization could not be applied (unless one has a depth prepass).
Therefore, it is a tradeoff and its practical usage depends on the used engine,
target platforms, and whole rendering pipeline.

3.4.2 Interleaved or Stochastic Sampling

In our implementation of volumetric fog, we used fixed sampling pattern, always
sampling the center of the processed 3D texture texel. As literature proves [Tóth
and Umenhoffer 09, Vos 14], it can be beneficial to use interleaved or stochastic
sampling, alternating the sampling pattern between adjacent pixels and adding
some jitter inside pixel cells (Figure 3.13). This way it is possible to reduce alias-
ing and ringing artifacts and trade them for increased noise. Noise is usually
much easier to filter (it’s a high-frequency component easily removed by low-
pass filters), and the resulting image is more visually pleasant. We didn’t try
this approach in the shipped game, but it could be trivially extended into our
solution—and the demo code for this chapter has it implemented in the most
trivial form. It is possible to precompute some 3D sampling patterns that max-
imize sample variance in the neighborhood and are not biased and read them
from a wrapped, low-resolution 3D texture. The process of jittered and stratified
sampling and various possible sampling schemes are described very well in [Pharr
and Humphreys 10]. It could work especially well to vary those patterns also in
time with temporal super-sampling described in the next section.

3.4.3 Temporal Super-Sampling and Reprojection

One of rendering techniques that is gaining popularity is temporal super-sampling
and antialiasing using temporal reprojection techniques. Temporal super-sampling
and smoothing were used in Assassin’s Creed 4 for regular screen buffer antialias-
ing, but we also extended them easily to super-sample the screen-space ambient
occlusion. As [Vos 14] and [Valient 14] showed in articles and presentations about
Killzone: Shadow Fall technology, it can be used for many other effects, like
screen-space reflections and volumetric lighting. In the case of a 2D image, tem-
poral super-sampling and reprojection are quite difficult, as information for only
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Regular grid sampling Jittered grid sampling

Figure 3.13. Comparison of regular and jittered sampling patterns.

one layer of objects is stored (the depth buffer acts like a height field—we have
no information for objects behind it). Therefore, when reprojecting a dynamic
2D scene, occlusion artifacts are inevitable and there is a need to reconstruct
information for pixels that were not present in the previous frame (Figure 3.14).

In the case of volumetric reprojection, it is much easier, as we store informa-
tion for whole 3D viewing frustum in volumetric textures, as well as for the space
behind the shaded objects. Therefore, there are only two cases of improper data
after volumetric reprojection:

1. data for space that was occupied by objects that moved away as shading
changes,

2. data outside of the volume range.

We can see how much easier the reprojection is in a 3D case in Figure 3.15.
Reprojection itself stabilizes some motion flickering artifacts but isn’t the

solution for increasing image quality for a static scene or camera. A common

Frame N Frame N + 1,  unknown pixels
Improper reconstruction data

???

Figure 3.14. Problems with 2D temporal reprojection of a dynamic scene.
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Figure 3.15. Volumetric reprojection (top view of the whole view volume).

technique used as temporal super-sampling is to introduce a temporal jitter—a
variation between sampling points between frames. On its own, it would cause
serious temporal artifacts like noise or image shaking, but in conjunction with
the temporal reprojection and smoothing, it gives high-quality super-sampled
images. We prototyped it after shipping Assassin’s Creed 4, and we can see this
technique in use in Figure 3.16. It shows how staircase artifacts appearing due
to low resolution are fixed using temporal super-sampling with an accumulation
buffer and many alternating, Poisson-distributed samples. We definitely aim to
use this temporal super-sampling in future projects using volumetric fog.

Figure 3.16. Fixing under-sampling and staircase artifacts in volumetric fog without
(left) and with (right) temporal jittering and super-sampling.
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3.4.4 Artist-Authored Variation of Participating Media Density

In our algorithm implementation, participating medium had a simple, procedu-
rally modeled density using Perlin noise and simple exponential vertical attenu-
ation (Section 3.3.3). We believe that it could be beneficial to add other ways of
modeling scattering intensity and varying the participating medium density. We
see two potential ways of increasing variety of scattering intensity:

1. baked-on levels and static,

2. dynamic and gameplay influence.

The first option could be useful especially for games with big and varied levels.
Some parts of an environment contain lots of mist (plains and forests) or dust
(interiors of uninhabited old buildings). Such areas would benefit from having
different, larger scattering coefficients and a more pronounced scattering effect.
Depending on the game type and level structure, it could be stored in various
ways. For mainly outdoor, open-world games it could be stored as a simple,
low-resolution 2D world texture with density painted on by artists. For interiors,
artists and level designers could define them by adding analytical interior shapes.

Second, a dynamic way could utilize effects systems commonly used in games—
particle systems, force fields, analytical dynamic shapes, etc. Effect artists know
such tools very well and already use them for simulating scattering effects by al-
pha blending, so applying such tools in a physically based manner on volumetric
fog effects should be easy for them. The article [Wrennige et al. 10] describes
how it is possible to do this and counter common under-sampling and aliasing
artifacts (used in high-quality, CGI and movie rendering). Regarding games, [Vos
14] describes the use of particles for the injection of scattering intensities based
on an alpha particle into volumetric textures in an efficient way.
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III

Physically Based Light Probe
Generation on GPU

Ivan Spogreev

4.1 Introduction

As the quality and complexity of modern real-time lighting has steadily evolved,
increasingly more and more advanced and optimal methods are required in order
to hit performance targets. It is not merely enough nowadays to have a static
ambient term or simple cube-map reflections to simulate indirect light. The
environment needs to have lighting that fully matches the surroundings. The
shading needs to not only handle and properly process direct lighting coming
from the light source, but also lighting that bounces around the environment.
Lighting received by a surface needs to be properly reflected toward the camera
position as well. By generating and processing our lighting information entirely
on the GPU, we were able to achieve dynamic, physically based environment
lighting while staying well within our performance targets.

When we started working on FIFA 15, we decided that we require a physically
based system that can dynamically update indirect lighting for the players on the
pitch at runtime. The main goal was to generate the lighting information for the
pitch at level load time. Because FIFA has a playable loading screen, there is
significant latency and performance constraints on these lighting computations.
When a player waits for the match to get started, the system cannot result in
any frame drops or stuttering. This means that each step of the light-generation
procedure needs to complete within a few milliseconds so we can completely
render the rest of the frame. The second goal was to give the artist the ability to
iterate on the lighting conditions without waiting for a pass of content pipeline
to provide the relevant updates in lighting information. Under our approach,
each time the artist would change a light direction, color value, or sky texture,
he or she would immediately see an updated scene with the proper lighting.
Finally, our technique also allowed us to include many area lights directly into
the precalculated lighting information.
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4.2 Light Probes Theory

Correctly lighting an object is a computationally intensive process. The light
that propagates directly from a light source can bounce around the environment
before it hits a given object. We will define the light that propagates directly
from a light source as direct lighting, and the light that propagates as a result of
bounces in the environment as indirect lighting. Direct lighting can be solved in
a number of different ways depending on the light source type [Drobot 14] and
is not covered in this chapter. Here we will focus on indirect lighting and how to
calculate it.

To calculate all lighting coming from an environment we need to solve the
general rendering equation:

Lo(ω) =

∫
Ω

brdf(ωi, ωo) × Li(ωi) × (ωi · n)dωi, (4.1)

where ωo is the direction of the outgoing light, ωi is the negative direction of
the incoming light, Ω is the unit hemisphere containing all possible values for ωi,
Li(ωi) is radiance coming from direction, and ωi · n is the dot product of the
incoming direction and normal.

One can think about this integral as gathering all of the lighting information
from all possible directions for a given surface point. When the incoming light
from any particular direction hits a surface, we translate it to the reflected light
toward the direction of the camera. The material function that defines how the
light gets transformed and modulated is known as the bidirectional reflectance
distribution function (BRDF). There are different types of BRDFs for various
materials such as cloth, skin, hair, etc. In our work, we focused on dielectric
and electric materials like plastic, metals, wood, concrete, and so on. For such
materials, we treat light reflected directly off the surface differently than light
refracted into it. Metals, in particular, have the property of absorbing all the
refracted light. In contrast, dielectric materials absorb only a small fraction of
the refracted light, and usually, after scattering inside the material, the light
eventually finds its way back to out the surface and toward the viewer [Hoffman
12]. We define light resulting from scattering as diffuse reflection and differentiate
it from specular reflection, which is light resulting from a pure surface reflection.
Thus, the BRDF for such materials can be presented as a combination of the two
BRDFs, diffuse and specular:

BRDF = BRDFdiffuse + BRDFspecular.

This is actually a common approach for representing a large variety of material
types found in real-time applications such as video games [Hoffman 12].
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Figure 4.1. Light probes grid on a pitch.

Separating the integral in Equation (4.1) into two parts, we get

Lo(ω0) =

∫
Ω

brdf(ωi, ωo) × Li(ωi) × (ωi · n)dωi

=

∫
Ω

brdfD(ωi, ωo) × Li(ωi) × (ωi · n)dωi (4.2)

+

∫
Ω

brdfS(ωi, ωo) × Li(ωi) × (ωi · n)dωi.

In computer graphics, there are different methods to solve the rendering equa-
tion (e.g., path tracing and photon mapping), all of which require the tracing of
many rays and performing heavy computations. This is simply not an option for
games and real-time 3D graphics. So, instead of computing lighting every frame
for every single shading point, we preintegrate it for some base variables and use
the results later. Such precomputation should give us the quality we require with
the real-time performance we need.

The composition of the preintegrated lighting information for a given position
in space is commonly called a light probe. (See Figure 4.1.) Again, we introduce a
separation. We define two light probes for both parts of the integral in Equation
(4.2): diffuse light probes and specular light probes.

4.3 Generating Light Probes on the GPU

As described in the previous section, indirect lighting is light coming from the
environment (as opposed to directly from the light source). Environment lighting
for a given point in space can easily be represented by rendering the scene into
a cube-map texture. For our application, FIFA 15, we must do this rendering
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during level load corresponding to our dynamic lighting conditions for each game
match. When rendering into the cube map is complete, we run the preintegration
step that will be described in the Sections 4.3.3, 4.3.4, and 4.3.5. After the
preintegration step is done for one probe, we move to the next light probe and
repeat the process. This process can incidentally increase the loading time of a
level because we cannot render dynamic objects using the light probes without
the completion of the preintegration step. It was thus important to make this
process as performant as possible without making significant quality tradeoffs.

After a cube map gets generated, we need to solve the rendering integral in
Equation (4.2). One well-known tool to generate the probes themselves is called
CubeMapGen [Lagarde 12]. This tool can be used in the pipeline to generate the
lighting information from an environment. It is open source, so it can be modified
if need be. However, this tool uses the CPU to prefilter specular cube maps
and takes a significant amount of time to process a high resolution environment
map.

Because our goal was to generate the light probes in runtime during the level
loading and we had graphics cycles to spare, a GPU solution appeared more
favorable.

4.3.1 Generating Diffuse Light Probes from an Environment Map

First, we need to define our diffuse BRDF. We use the normalized Lambertian
BRDF. It is very simple and easy to preintegrate and also matches the required
visual quality:

Lambertian BRDF =
1

π
, (4.3)∫

Ω

brdfD(ωi, ωo) × Li(ωi) × (ωi · n)dωi =

∫
Ω

1

π
× Li(ωi) × (ωi · n)dωi.

The integral in Equation (4.3) depends on two vectors: normal and light
direction. While the normal is constant per shading point, the incoming light
(Li) varies across the hemisphere. We treat each pixel in a cube map as a light
source. Because the diffuse BRDF does not depend on the view direction, we
integrate the rendering equation for every possible normal direction. We do this
by integrating and projecting the rendering equation onto spherical harmonic
coefficients [Ramamoorthi and Hanrahan 01] in real time using the GPU [King
05]. This method allows us to preintegrate the diffuse part of the integral in
0.5 ms on a GeForce GTX 760.

Spherical harmonics and their usage in real-time 3D graphics is out of the
scope of this chapter. For more information, we recommend reading the great
article from Peter-Pike Sloan: “Stupid Spherical Harmonics (SH) Tricks”
[Sloan 08].
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4.3.2 Generating Specular Light Probes from an Environment Map

Similar to diffuse light probe generation, we start by defining our specular BRDF.
We use the Cook-Torrance BRDF [Cook and Torrance 81] shown in Equation (4.4)
as the specular part with the normalized GGX [Walter et al. 07, Burley 12], and
we use Equation (4.5) as the distribution function:

Cook-Torrance specular BRDF =
D × F ×G

4 × (V ·N) × (N · L)
, (4.4)

where D is the microfacet distribution function, F is the Fresnel term, G is the
geometric shadowing term, (V · N) is the dot product of the view and normal
vectors, and (N · L) is the dot product of the normal and light vectors; and

GGX D(H) =
a2

π(cos(θH)2 × (a2 − 1) + 1)2
, (4.5)

where H is the half vector, a = roughness2, and cos(θH) = (N ·H).
Using the GGX function (Equation (4.5)) gives us good-looking specular high-

lights. The function can also be easily integrated (as will be seen later).
For more detailed information on choosing a distribution function, a Fresnel

term ,and a masking term, please review the SIGGRAPH courses on physically
based rendering [Hill and McAuley 12].

As with diffuse light probes, we need to preintegrate the specular integral.
However, while the diffuse BRDF depends only on the normal and light direc-
tions, there are more variables in the specular BRDF. To simplify the BRDF
for preintegration, we first assume that there are neither Fresnel effects (F ) nor
shadow masking (G) on the material. This removes the F and G terms from
Equation (4.4). We integrate based on the reflected direction R—so for every
direction, we store a preintegrated value in the cube map. Furthermore, different
mip levels of the cube map correspond to different roughness values. The normal
(N) is the only remaining unknown variable (L is the light direction). In order
to simplify the integral further, we assume N is equal to V , which means that R
is equal to V as well.

The specular BRDF for the preintegration is therefore

brdfS(ωi, ωo) =
D

4 × (N · L)
, (4.6)∫

Ω

brdfS(ωi, ωo) × Li(ωi) × (ωi · n)dωi =

∫
Ω

D

4 × (N · L)
× Li(ωi) × (ωi · n)dωi.

Note that (N · V ) = 1 since N = V , as mentioned above.
Assuming N is equal to V obviously produces error (for example, long high-

lights are lost at grazing angles). Furthermore, we also introduce inaccuracy
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(a) (b) (c)

Figure 4.2. (a) When the function is regular, the Monte Carlo integration works well
with a small number of samples. (b) When the function is irregular, it gets harder to
estimate. (c) Importance sampling focuses on the difficult areas and gives us a better
approximation.

by removing the F and G terms. At runtime, we compensate for this error by
multiplying by a Fresnel term.

This derivation results in a prefiltering that is very similar to the split-sum
method introduced by Brian Karis [Karis 13]. The difference is that by splitting
the sum, they take into account the F and G terms, which produces more accurate
results in the final runtime indirect lighting.

Monte Carlo importance sampling. To solve the integral from Equation (4.6), we
use the Monte Carlo importance sampling method [Hammersley and Handscomb
64] shown in Equation (4.7):∫

Ω

f(x)dx ≈ 1

N

N∑
i=1

f(Xi)

p(Xi)
, (4.7)

where p(x) is the probability distribution function (PDF).
One can think of importance sampling as trying to focus on the most “im-

portant” areas of the function. If one can imagine a function that is very smooth
and regular (Figure 4.2(a)), then the sampling position would have little im-
pact on the result. But when the function has local extremes (Figure 4.2(b)),
it will be harder to estimate the integral correctly and many more samples will
be needed. Importance sampling helps to capture samples whose values have a
higher influence on the final result being computed (Figure 4.2(c)).

BRDF importance sampling. Using the BRDF shape as a PDF can result in a
sample distribution that matches the integrand well. For example, with a mirror-
like surface, it would make sense to focus on the directions around the reflection
direction (Figure 4.3) as this would be the area where most of the visible light
rays originate from.

In order to match the specular BRDF shape closely, we build the PDF based
on the distribution function D and the cosine between the half vector H and the
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Figure 4.3. Illustration of the BRDF importance sampling. Most of the samples get
generated toward the reflection vector, where the specular BRDF commonly has higher
values.

normal N (Equation (4.8)) [Burley 12]. This is because D has the most effect
on the BRDF’s shape. The multiplication by the cosine term will help in further
calculations:

PDF(H) = D(H) × cos(θH). (4.8)

The GGX microfacet distribution gives us the distribution of half vectors
around the normal. The PDF (Equation (4.8)) is therefore defined in half-vector
space. However, the integration step (Equation (4.6)) requires integrating the
light direction against a specific view direction. Therefore, we need to convert
the PDF from half-vector space to light space (from PDF(H) to PDF(L)).

Per [Pharr and Humphreys 04], this PDF conversion is simply

PDF(L) =
PDF(H)

4 cos(θH)
.

Because we can represent the half-vector in spherical coordinates φ, θ, we can
also represent the PDF as a multiplication of PDF(φ) and PDF(θ) [Pharr and
Humphreys 04]:

PDF(H) = PDF(φ) × PDF(θ).

From Equation (4.8) and Equation (4.5), we can see that the PDF(H) does not
depend on the angle φ. So we can simply derive [Pharr and Humphreys 04] that
PDF(φ) becomes constant with a value of 1

2π :

PDF(φ) =
1

2π
.
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Figure 4.4. The illustration of the correlation between PDF and CDF. (a) The sample
with the higher PDF value has more space on the CDF. (b) The inverse CDF maps
the uniform distributed values to the samples. A given value on the [0 : 1] interval has
higher chance to get mapped to the sample S1.

Therefore,

PDF(θ) =
D(H) × cos(θH)

PDF(φ)
=

2 × a2 × cos(θH)

(cos(θH)2 × (a2 − 1) + 1)2
.

By using the Monte Carlo importance sampling, with the PDF(H), we now
have all we need to approximate the specular part of the rendering integral:∫

Ω

D

4 × (n · ωi)
× Li(ωi) × (ωi · n)dωi (4.9)

≈ 1

N

N∑
i=1

D × Li(ωi) × (ωi · n)

4 × (n · ωi) × PDF(ωi)
=

1

N

N∑
i=1

Li(ωi),

where N is the number of samples, ωi is the sampling light direction, and Li(ωi)
is the sampling color in direction ωi.

The PDF only gives us the probability of a certain direction x. What we
actually require is the inverse; we need to be able to generate samples based on
a given probability. We start by computing a cumulative distribution function
(CDF) for our PDF [Papoulis 84, pp. 92–94] (Equation (4.10)). For a value x,
the CDF defines the uniformly distributed value ε on the [0 : 1] interval in a
proportion to PDF(x) [Papoulis 84, Pharr and Humphreys 04] (Figure 4.4(a)).
While the CDF has a uniform unit probability distribution, it is actually the
opposite of what we desire. To solve our problem, we simply need to calculate
the inverse CDF (Figure 4.4(b)).
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The following equations show how to calculate the CDFs (CDF(φ) and CDF(θ))
for the PDF function derived from the original specular BRDF based on the for-
mal definition (Equation (4.10)) of the CDF:

CDF(X) =

∫
PDF(x)dx, (4.10)

CDF(φ) =

∫ φ

0

1

2π
dx =

1

2π
φ,

CDF(θ) =

∫ q

0

2 × a2 × x

(x2 × (a2 − 1) + 1)2
dx =

1 − q2

1 + q2(a2 − 1)
,

where q = cos(θH).
We now invert our CDF functions to produce mappings from uniform values

ε1 and ε2 to the angles φ and θ, respectively:

φ = Inverse CDF(ε1) = ε1 × 2π, (4.11)

θ = Inverse CDF(ε2) = acos

(√
1 − ε2

1 + ε2(a2−1)

)
. (4.12)

Finally, we can now generate a direction (φ, θ) based on Equations (4.11) and
(4.12) from uniformly distributed random values (ε1, ε2) in [0 : 1].

Putting all this together we get the code in Listing 4.1.

//e1 , e2 i s pa i r o f two random values
//Roughness i s the current roughness we are i n t e g r a t i n g f o r
//N i s the normal
f l o a t 3 ImportanceSampleGGX ( f l o a t e1 , f l o a t e2 , f l o a t Roughness ,

f l o a t 3 N )
{

f l o a t a = Roughness � Roughness ;

// Calcu late phi and co s i n e o f theta us ing Equations (4 . 1 4 )
//and ( 4 . 1 5 )
f l o a t phi = 2 � PI � e1 ;
f l o a t cos_theta = sqrt ( ( 1 − e2 ) / ( 1 + ( a�a − 1) � e2 ) ) ;
f l o a t sin_theta = sqrt ( 1 − cos_theta � cos_theta ) ;

// Bui ld a h a l f vec tor
f l o a t 3 H ;
H . x = sin_theta � cos ( phi ) ;
H . y = sin_theta � sin ( phi ) ;
H . z = cos_theta ;

//Transform the vec tor from tangent space to world space
f l o a t 3 up = abs ( N . z ) < 0 .999? f l o a t 3 ( 0 , 0 , 1 ) : f l o a t 3 ( 1 , 0 , 0 ) ;
f l o a t 3 right = normalize ( cross ( up , N ) ) ;
f l o a t 3 forward = cross ( N , right ) ;

r e turn right � H . x + forward � H . y + N � H . z ;
}
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//For the g iven Roughness and the View vector f unc t i on
// samples the environment map us ing the BRDF importance sampl ing
//e1 , e2 i s pa i r o f two random values
// totalWeight the number o f the va l i d samples
f l o a t 3 SampleBRDF ( f l o a t e1 , f l o a t e2 , f l o a t Roughness , f l o a t 3 V )
{

f l o a t 3 N = V ;
// Calcu late the H vector us ing BRDF importance sampl ing
f l o a t 3 H = ImportanceSampleGGX ( e1 , e2 , Roughness , N ) ;
// Calcu late the L vec tor us ing the standard r e f l e c t i o n
// equat ion
f l o a t 3 L = 2 � dot ( V , H ) � H − V ;

f l o a t NoL = saturate ( dot ( N , L ) ) ;

f l o a t 3 color = 0;
//we sk ip the samples that are not in the same hemisphere
//with the normal
i f ( NoL > 0 )
{

//Sample the cube map in the d i r e c t i o n L
color += SampleTex ( L ) . rgb ;

}

re turn color ;
}

Listing 4.1. BRDF importance sampling.

We use the Hammersley quasirandom low-discrepancy sequence [Niederreiter
92] to generate the uniformly distributed random values ε1, ε2 on the GPU (List-
ing 4.2).

Figure 4.5 shows some results. We preintegrate an environment map using
1024 samples per direction. The performance numbers for BRDF Importance
Sampling preintegration on a GeForce GTX 760 are shown in Table 4.1 (timings
are in milliseconds).

f l o a t radicalInverse ( u int bits )
{

bits = ( bits << 16u ) | ( bits >> 16u ) ;
bits = (( bits & 0 x55555555u ) << 1u ) | ( ( bits & 0 xAAAAAAAAu )>>1u ) ;
bits = (( bits & 0 x33333333u ) << 2u ) | ( ( bits & 0 xCCCCCCCCu )>>2u ) ;
bits = (( bits & 0 x0F0F0F0Fu ) << 4u ) | ( ( bits & 0 xF0F0F0F0u )>>4u ) ;
bits = (( bits & 0 x00FF00FFu ) << 8u ) | ( ( bits & 0 xFF00FF00u )>>8u ) ;
r e turn f l o a t ( bits ) � 2.3283064365386963 e−10; // / 0x100000000

}

f l o a t 2 Hammersley ( u int i , u int N )
{

re turn f l o a t 2 ( f l o a t ( i ) / f l o a t ( N ) , radicalInverse ( i ) ) ;
}

Listing 4.2. The Hammersley function generates a uniformly distributed quasirandom
2D point (ε1, ε2).
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Figure 4.5. (a) The preintegrated specular BRDF for different roughness with 1024
samples per pixel. (b) The ground truth integration using 100,000 samples without the
importance sampling.

Number of Preintegrated Cube Map Face Size
samples 128 × 128 64× 64 32× 32 16× 16 8× 8

64 2.8 0.8 0.2 0.04 0.02

128 6.2 1.6 0.5 0.1 0.08

512 25 6.5 1.7 0.4 0.3

1024 - 13.5 3 1 0.7

4096 - 53.8 15 5 3

Table 4.1. BRDF importance sampling preintegration on GTX 760.

The main problem with BRDF importance sampling (and importance sam-
pling in general) is that a large number of samples are needed in order to reduce
noise and get a smooth image (Figure 4.6). This problem gets even worse when

256 1024 4096 16384

Figure 4.6. Number of samples and noise.
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Figure 4.7. Dark environment map with few bright light sources using 1024 samples.

there are high-frequency details in the environment map (Figure 4.7). Some of
our nighttime environments have area lights surrounded by dark regions (which
introduces a lot of high-frequency details). Having such noisy prefiltered maps is
a big issue. We needed some additional methods to help resolve this issue.

4.3.3 Prefiltered Environment Map

As mentioned above, thousands of samples are required for each pixel to keep
the noise level low. It might take too much time even on the GPU to prefilter
each probe for low roughness values (Table 4.1). We therefore use the following
approach [Kr̆ivánek and Colbert 08] to reduce noise and keep the number of
samples low.

The idea is simple: noise is created when there are high-frequency details in
areas with relatively low values in the PDF. In order to combat that, we filter
out the high-frequency details by creating a mip chain. This is in a similar vein
to using a mip chain to avoid aliasing when down-sampling an image. For higher-
probability samples, on the other hand, we still sample from the unfiltered image.

We proceed by using a ratio of the solid angle around a sample direction to
the solid angle subtended by one pixel in the environment map [Kr̆ivánek and
Colbert 08]. In the original paper, they found that biasing the mip level by 1
creates a less noisy result. However, in our case, we did not wish to bias in order
to preserve detail for lower roughness. Therefore, we pick the starting mip based
on the material roughness, as seen in Listing 4.3.

f l o a t pdf = a / pow ( NoH� NoH � ( a−1) + 1 , 2 ) ;
f l o a t area = 2 � PI ;

pdf = pdf � NoL / (4 � LoH ) ;
f l o a t s_solidangle = 1.0 / ( numBRDFSamples � pdf ) ; // sample s o l i d

// ang le
f l o a t p_solidangle = area / ( 1 . 0 � mapW � mapH ) ; // p i x e l s o l i d ang le
f l o a t base_mip = lerp ( 0 , 4 , Roughness ) ; // p ick s t a r t i ng mip based

// on roughness
f l o a t mipmapLevel = clamp ( 0 . 5 � log2 ( s_solidangle / p_solidangle ) ,

base_mip , 5 ) ;

Listing 4.3. Choosing a mip level based on the sample PDF.
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Figure 4.8. Source environment (left) and ground truth (right), with roughness 0.25
BRDF IS using 128 samples (middle left) and roughness 0.25 BRDF IS using 128 samples
with prefiltering (middle right).
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Figure 4.9. Error heat map of the final result using BRDF importance sampling with
prefiltering: (a) a result using 128 samples, and (b) a result using 1024 samples.

Prefiltering the environment map solves most of the problems with noise. We
found that it works well for daytime environments, where the energy is relatively
similar in the local pixel neighborhood. However, for nighttime, although there is
no noise in the result, the error is still higher due to the extremely high frequency
details (Figure 4.8) that get excessively blurred. For example, a low-probability
sample might get a lower energy value than it would have gotten in the ground
truth (Figure 4.9).

We are thus faced with a problem. On one hand, if we don’t prefilter the
environment map, the result is too noisy. On the other hand, prefiltering produces
high error with a low number of samples. So we added another technique for the
preintegration of probes with high roughness values.

4.3.4 Environment Map Importance Sampling

Previously we discussed BRDF importance sampling where we use the PDF to
match the behavior of the BRDF. But that might not always be the best sampling
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Figure 4.10. Sampling distribution.

Figure 4.11. Unwrapped environment map.

strategy. For example, consider the case of a dark room with very few bright light
sources (or in FIFA 15 ’s case, a nighttime stadium with small but bright area
light sources). Sampling based on the BRDF distribution might generate many
samples that miss the light sources. This will create variance when the samples do
hit the light source (especially if the samples had low probability). In that case, it
would have been preferable to instead generate samples that tend to point toward
light sources (i.e., pixels with high energy values). Environment map importance
sampling [Colbert et al. 10] allows us to achieve exactly this. We use environment
map importance sampling to focus the sample generation on areas with higher
intensity (Figure 4.10).

First, we reduce the number of dimensions that we are working with to sim-
plify calculations. Cube-map texture sampling is based on a 3D vector, yet it
really only has a 2D dependency. We instead use spherical surface coordinates
to represent a direction. We also need to map our sphere to a linear rectangular
texture. In order to do that, we simply stack each cube map face one after the
other (Figure 4.11).

In order to generate sample directions with proper probabilities, we need to
define the PDF, CDF, and inverse CDF (similarly to the BRDF importance
sampling). However, in this case, because the environment map is not analytical,
we need to work with discrete versions of these functions.

We start with the PDF. We simply use the luminosity of each pixel as a basis
for generating the PDF. This allows us to catch the “brightest” pixels in the
image. We also need to define two types of PDFs: marginal and conditional
(Figure 4.12). We use the marginal PDF to find which row of pixels we will
sample from. The sum of the PDF for a given row is the probability that a
random sample will fall within that row; this is the marginal PDF. Then we use
the conditional PDF of this row to find which column the sample falls into. The
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Figure 4.12. The structure of the marginal and conditional PDFs and CDFs. The
conditional PDF and CDF are unique for each row and are represented as a 1D array
for each row. However, there is only one marginal PDF and one marginal CDF for the
image, which are also represented as 1D arrays.

conditional and marginal PDFs can be calculated using the following equations:

conditional PDF(i,j) = luminance(i, j), (4.13)

marginal PDFj =

n∑
i=0

luminance(i, j). (4.14)

For each type of PDF we define, there is a corresponding CDF: marginal and
conditional CDFs. When a PDF is purely discrete, the CDF can be calculated as
the sum of the PDF values from 0 to m for each location m [Pharr and Humphreys
04]:

CDFm =
m∑

k=0

PDFk. (4.15)

The function that represents the summation of the rows’ probabilities is the
row-wise CDF for the image as a whole; this is the marginal CDF (Figure 4.12).
The individual row PDFs are unique and each also has its own column-wise CDF,
which is called the conditional CDF (Figure 4.12).

The simple example in Figure 4.13 demonstrates the behavior of the discrete
CDF. Samples with high probabilities get mapped to a wide range on the Y axis.
For example, if we randomly choose a [0 : 1] value on the Y axis, the third sample
will be picked with a probability of 0.7.

The inverse CDF is thus simply a mapping between a random [0 : 1] value and
its corresponding sample. Since by definition the CDF is a sorted array (Equation
(4.15)), we can use a binary search to find the corresponding sample’s index. In
short the algorithm can be described as follows:
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Figure 4.13. PDF and its corresponding CDF.

1. Generate a random number α in the range [0 : 1].

2. Find an i where CDF(i) ≤ α.

3. Then, i is the resulting sample with PDF(i).

Because we have the PDF, CDF, and inverse CDF, we can now generate the
environment map samples. It is worth noting that since the samples’ locations
depend on neither the BRDF nor the shading point location and orientation, the
samples can be pregenerated on the CPU. At the GPU stage, we simply integrate
using those samples.

The final sample generation process can thus be described as follows:

1. For each pixel in each row of the map, calculate the PDF value using Equa-
tion (4.13).

2. For each j, sum the conditional PDF values and store them into marginal
PDF(j) (Equation (4.14)).

3. For each row, build the conditional CDF using Equation (4.15).

4. Build the marginal CDF using the marginal PDFs, using the Equation
(4.15).

5. Pregenerate n samples on the CPU and pass them to the GPU.

Listing 4.4 shows the code that generates 128 samples using the stratified
sampling method [Niederreiter 92]. We found that in our case 128 samples give
the best results, given a required performance level.

Furthermore, we can improve the random sampling by stratifying the samples.
Random 2D sampling might sometimes produce bad coverage (Figure 4.14). By
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// Pregenerate 128 samples on CPU that we w i l l pass to the GPU
fo r ( i n t j = 0 ; j < 16 ; j++)
f o r ( i n t i = 0 ; i < 8 ; i++)
{

//Generate random values ( e1 , e2 ) us ing the s t r a t i f i e d sampl ing
//method
f l o a t e1 = f l o a t ( i ) / 8 . 0 f + randf ( ) / 8 . 0 f ;
f l o a t e2 = f l o a t ( j ) / 16 .0 f + randf ( ) / 16 .0 f ;

//Find the row f o r the sample based on the c ond i t i o n a l CDF
in t row = lower_bound ( marginalCDF , e1 ) ;
//Now, us ing our row , we f i nd the c o r r e c t column and the r e f o r e
// sample
i n t column = lower_bound ( conditionalCDF [ row ] , e2 ) ;

//Get the PDF values o f the sample f o r the f u r t h e r c a l c u l a t i o n
// o f the i n t e g r a l on the GPU
f l o a t pdfRow = marginalPDF [ row ] ;
f l o a t pdfColumn = conditionalPDF [ row ] [ column ] ;

// Save the sample p o s i t i o n and PDF values in the array
u in t32 t index = i + 8� j ;
SamplesData [ index �4 + 0 ] = row ;
SamplesData [ index �4 + 1 ] = column ;
SamplesData [ index �4 + 2 ] = pdfRow ;
SamplesData [ index �4 + 3 ] = pdfColumn ;

}

Listing 4.4. Generating samples based on environment PDF.

(a) (b)

Figure 4.14. (a) Random samples might produce bad coverage. (b) Stratified sampling
guarantees at least one sample in equally distributed areas.

stratifying the samples, we guarantee that we have at least one sample in equally
distributed areas. This reduces the probability of sample “clumping” around a
specific location.



260 III Lighting

We then have an array of samples that we pass on to the GPU. The GPU
receives flattened (u, v) coordinates. In order to use those samples, we have to
first convert (u, v) coordinates to direction vectors, and transform the PDF from
the (u, v) distribution to a distribution over a solid angle [Pharr and Humphreys
04]. The PDF conversion can be derived from the environment map unwrapping
where we have six cube-map faces in a row and each face has the field of view
equal to π

2 :

solid angle PDFu = PDFu × 6 × π

2
,

solid angle PDFv = PDFv × π

2
.

The final GPU code for the environment map importance sampling is shown
in Listing 4.5.

// Calcu late the outgoing rad iance f o r the sample d i r e c t i o n L
f l o a t 3 envMapSample ( f l o a t Roughness , f l o a t 2 uv , f l o a t 3 L ,

f l o a t 3 N , f l o a t pdfV , f l o a t pdfU )
{

//Cosine weight
f l o a t NoL = saturate ( dot (N , normalize ( L ) ) ) ;
f l o a t 3 color = unwrapTex . Load ( i n t 3 ( uv . xy , 0 ) ) . rgb ;

f l o a t 3 V = N ;
f l o a t 3 H = normalize ( L+V ) ;
f l o a t D = GGX ( Roughness , H , N ) ;
f l o a t brdf = D / (4� NoL ) ;

// Calcu late the s o l i d ang le
//dA ( area o f cube ) = (6�2�2)/Nˆ2
//N i s a f a c e s i z e
//dw = dA / r ˆ3 = dA � pow(x�x + y�y + z�z , −1.5)
f l o a t dw = (6�4 . 0 / ( CUBEMAP_SIZE � CUBEMAP_SIZE ) ) �

pow ( L . x�L . x + L . y�L . y + L . z�L . z , −1.5) ;

//pdfV and pdfU i s the PDFs f o r [ 0 ; 1 ] range in a cube map f ac e .
//We need to convert them to a s o l i d ang le range .
//Each f ac e has HALF PI fov and we have 6 f a c e s .
// So l i d Angle PDFu (saPDFu) = PDFu � 6 � HALF PI
// So l i d Angle PDFv (saPDFv) = PDFv � HALF PI

//E = brd f � c o l o r � NoL � dw / (saPDFu � saPDFv)

re turn brdf � color � NoL � dw � / ( pdfV � pdfU � 6 � PI � PI
� 0 . 5 � 0 . 5 ) ;

}

f l o a t 3 SampleENV ( i n t index , f l o a t Roughness , f l o a t 3 N , f l o a t 3 V )
{

//Get the po s i t i o n o f the sample
f l o a t 2 uv = samples [ index ] . xy ;

//Get the PDF values o f the current sample . Note that the f i n a l
//PDF i s pdfV� pdfU
f l o a t pdfV = samples [ index ] . z ;
f l o a t pdfU = samples [ index ] . w ;
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//Convert the uv sample po s i t i o n to a vec tor . We need t h i s to
// c a l cu l a t e the BRDF
f l o a t 3 L = normalize ( uvToVector ( uv ) ) ;
//Sample the l i g h t coming from the d i r e c t i o n L
//and c a l c u l a t e the sp e cu l a r BRDF fo r t h i s d i r e c t i o n
f l o a t 3 envIS = envMapSample ( Roughness , uv , L , N , pdfV , pdfU ) ;
r e turn envIS ;

}

f l o a t 3 PreintegrateSpecularLightProbe ( f l o a t Roughness ,
i n t numENVSamples , f l o a t 3 R )

{
//For the p r e i n t e g ra t i on , we assume that N=V=R
f l o a t 3 N = R ;
f l o a t 3 V = R ;

f l o a t 3 finalColor = 0;

//Sample a l l o f the pregenerated samples
f o r ( i n t i = 0; i < numENVSamples ; i++)
{

finalColor += SampleENV (i , Roughness , N , V ) ;
}

//The f i n a l c o l o r needs to be d iv ided by the number o f samples
// based on the Monte Carlo importance sampl ing d e f i n i t i o n
finalColor /= numENVSamples ;

r e turn finalColor ;
}

Listing 4.5. Environment map importance sampling.

Using this method helped us to reduce the error for the high roughness values
in the nighttime lighting conditions (Figure 4.15). However, using environment
map sampling alone isn’t necessarily the best solution. Similarly to BRDF sam-
pling, there can be situations where sampling purely based on the environment
would generate a lot of noise (or “fireflies”) (Figure 4.16). For example, this can
occur if the environment samples do not follow the BRDF’s specular lobe (much
more likely in low roughness materials).

Because all of the samples are pre-generated on CPU, the preintegration com-
putation time on the GPU for the high roughness values is less than 0.05 ms on
a GTX 460.

4.3.5 Combining Both Importance Sampling Methods

We now have two independent methods that both work well in different situations
(e.g., low roughness and/or high-frequency detail in the environment map). We
would like to somehow combine both methods to have a solution that works well
in most cases.

This is where multiple (or combined) importance sampling comes in. Multiple
importance sampling allows us to combine two sampling techniques. The equation
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Figure 4.15. Environment map importance sampling error for the roughness value 1
using 128 samples at the nighttime-specific lighting condition.

Figure 4.16. Specular light probe using environment map importance sampling. The
first probe is black because it is a perfect mirror and none of the samples hit the reflection
ray exactly.

for multiple importance sampling (or MIS) is as follows:

1

nf + ng

( nf∑
i=1

f(Xi)g(Xi)wf (Xi)

pf (Xi)
+

ng∑
i=1

f(Yi)g(Yi)wg(Yi)

pg(Yi)

)
,

where nf is the number of samples taken from the pf distribution method, ng

is the number of samples taken from pg, and wf and wg are special weighting
functions chosen such that the expected value of this estimator is the value of
the integral f(x)g(x) [Pharr and Humphreys 04]. In our case, pf is the BRDF
importance sampling distribution and pg is the environment map importance
sampling distribution.

For the weighing variables, wf and wg, we use the simplest possible method.
We pick wf to be nf , and wg to be ng. We found that this method gives acceptable
results for very low performance costs (as opposed to the balance heuristic; for
example, [Pharr and Humphreys 04]).

As for the number of samples for each method, we simply use a hard-coded
value that we achieved by trial and error (in our case, 64 for both methods). Fur-
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Figure 4.18. The ground truth render using 10,000 samples.

thermore, we only use environment map importance sampling when the roughness
is greater than 0.7. With lower roughness values, BRDF importance sampling
worked well alone. Figure 4.17 shows the number of samples for both methods
with different roughness values.

Listing 4.6 demonstrates the final preintegration function that uses the com-
bination of both methods.

Using the combined importance sampling gives us the required quality result
within less than 2 ms of GPU time. (See Figure 4.18.)

4.4 Conclusion

Implementing combined importance sampling on the GPU gave us the ability to
generate and prefilter the light probes during level loading. Each probe takes less
than 2 ms to preintegrate. (This time does not include the time it takes to gen-
erate the environment map itself.) However, we split the light probe generation
process across multiple frames in order to prevent frame drops.

Using environment importance sampling helps to reduce preintegration error
in nighttime situations with small and bright area lights. It also helped keep the
number of samples low in order to stay within performance restrictions. However,
we found that BRDF importance sampling works well for the majority of cases.
It is only during our specific case of nighttime lighting that BRDF importance
sampling (with prefiltering) alone was not enough.
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//Combined Importance Sampling f o r the s p e c i f i e d roughness and the
// r e f l e c t i o n vec tor R us ing numBRDFSamples f o r the BRDF IS
//and numENVSamples f o r the ENV IS
f l o a t 3 PreintegrateSpecularLightProbe ( f l o a t Roughness ,

i n t numENVSamples , i n t numBRDFSamples , f l o a t 3 R )
{

//For the p r e i n t e g ra t i on we assume that N=V=R
f l o a t 3 N = normalize ( R ) ;
f l o a t 3 V = normalize ( R ) ;

f l o a t 3 finalColor = 0;
f l o a t 3 envColor = 0;
f l o a t 3 brdfColor = 0;

// So lve the i n t e g r a l us ing environment importance sampl ing
f o r ( i n t i = 0; i < numENVSamples ; i++)
{

envColor += SampleENV (i , Roughness , N , V ) ;
}
// So lve the i n t e g r a l us ing BRDF importance sampl ing
f o r ( i n t i = 0; i < numBRDFSamples ; i++)
{

//Generate the un i formly d i s t r i b u t e d random values us ing
//Hammersley quasirandom low−d i sc repancy sequence
// ( L i s t i n g 4 . 2 )
f l o a t 2 e1e2 = Hammersley ( ( i ) , numBRDFSamples ) ;

brdfColor += SampleBRDF ( e1e2 . x , e1e2 . y , Roughness , N , V ) ;
}

//Divide each r e s u l t s by the number o f samples us ing to
//compute i t
envColor /= numENVSamples ;
brdfColor /= numBRDFSamples ;

//Combine both method based on the number o f samples us ing to
// so l v e each o f them
f l o a t envColorWeight = numENVSamples / ( numENVSamples +

numBRDFSamples ) ;
f l o a t brdfColorWeight = numBRDFSamples / ( numENVSamples +

numBRDFSamples ) ;

finalColor = envColor � envColorWeight +
brdfColor � brdfColorWeight ;

r e turn finalColor ;
}

Listing 4.6. Multiple (combined) importance sampling.

One positive side effect of having fast probe generation is quick feedback to
the artist. The artist is able to iterate on the lighting setup and see the results
almost instantaneously.

For future work, we would like to further optimize the shader code for specular
probe generation. This would allow us to place even more probes in the level
without affecting loading times.
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III

Real-Time Global Illumination
Using Slices

Hugh Malan

5.1 Introduction

In this chapter, we’ll present a method for implementing real-time single-bounce
global illumination.

In recent years, several practical real-time global illumination techniques have
been demonstrated. These have all been voxel-based scene databases.

The common theme of all these approaches is to initialize the data structure
using the lit scene geometry. Then, a propagation or blurring step is applied, and
after that the structure is ready for irradiance or reflection queries.

The Light Propagation Volumes (LPV) method [Kaplanyan and Dachs
-bacher 10] uses a voxel array, where each voxel contains a first-order spherical
harmonic representation of the irradiance. The array is initialized using reflective
shadow maps; the propagation step is to iteratively transfer irradiance from each
cell to its neighbors.

The voxel octrees algorithm [Crassin et al. 2011] converts the scene to an
octree representation, where each leaf holds radiance. Non-leaf nodes are calcu-
lated to have the average of child node colors. Sharp reflections are computed
by ray-tracing the octree and sampling the color from the leaf node hit; blurry
reflections and irradiance are found by sampling a parent node, whose generation
depends on blurriness.

The cascaded 3D volumes approach [Panteleev 2014] uses a sequence of 3D
volumes. They are all the same dimension, but each one’s side length doubles.
The algorithm is comparable to the octree approach, but it can be updated and
queried more efficiently.

267
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Figure 5.1. Example of a single slice.

5.2 Algorithm Overview

Like the voxel approaches described in the introduction, our algorithm works by
building a data structure using the lit scene geometry and then querying that
structure to evaluate irradiance.

Here, the datastructure is a collection of slices. A slice is a scaled and deformed
unit square, aligned to some surface of the scene (see Figure 5.1). During the
initialization step, it captures the radiance of that part of the scene. It can then
be queried to efficiently compute the irradiance due to the light emitted from
that surface.

Slices are arranged in an array of distorted cuboids (called cells) that are
fitted to the scene geometry; an example is shown in Figure 5.2.

To evaluate the irradiance for a particular location and surface normal, we
begin by finding the cell containing that location. Then, the six slices making up
the faces of that cell are queried to compute their irradiance. The six irradiance
values are combined by summing them.

Like the LPV approach, we also need to propagate light from cuboid to cuboid,
so a light emitted in one cuboid can illuminate geometry in another. This is done
at slice initialization time by allowing light from nearby slices to contribute.

The rest of the chapter will be organized as follows. To begin with, we’ll
discuss how to efficiently compute irradiance due to an emissive flat surface.



5. Real-Time Global Illumination Using Slices 269

Figure 5.2. Scene geometry with distorted cuboids (cells) fitted to it. The cuboid edges
are shown with red lines; dimmer lines indicate hidden edges.

Then, we’ll deal with the question of how to support multiple such surfaces, the
motivation for the distorted-cuboid approach, and how to set up the array of cells
to match the geometry for a given scene.

5.3 Approximating the Irradiance Due to an Emissive Plane

The irradiance at a point p with surface normal n is

E(p,n) =

∫
H+

Li(p,ω) cos θ dω, (5.1)

where H+ is the upper hemisphere above p centered on the direction n, and
Li(p, ω) is the incoming radiance reaching p from the direction ω—where ω can
be in spherical polar coordinates as (θ, φ).

Imagine a plane at z = 0 that emits light, where the radiance is defined by
a function r(x, y). We’re interested in finding an approximation to the function
E(p,n) that can be evaluated on the GPU in an efficient manner.

First, notice that evaluating irradiance can be expressed as a convolution of
r(x, y) with a kernel that depends on n and |pz|, i.e., the distance from the plane:

E(p,n) =

∫ x=+∞

x=−∞

∫ y=+∞

y=−∞
r(x, y)W (x − px, y − py,−pz,n)dy dx,
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where W is the convolution kernel

W (Δx,Δy,Δz,n) =
max(0, (Δx,Δy,Δz) · n)(√

(Δx2 + Δy2 + Δz2)
)3 .

Second, the kernel scales up with distance from the plane. If we sample a
point k times farther from the plane, then the weighting function scales too:

W (Δx,Δy, kΔz,n) =
max(0, (Δx,Δy,Δz) · n)(√

(Δx2 + Δy2 + (kΔz)2)
)3

=
max(0, k(Δx/k,Δy/k,Δz) · n)(√
k2((Δx/k)2 + (Δy/k)2 + Δz2)

)3
=

k · max(0, (Δx/k,Δy/k,Δz) · n)

k3
(√

((Δx/k)2 + (Δy/k)2 + Δz2)
)3

=
W (Δx/k,Δy/k,Δz,n)

k2
.

So, the convolution kernel scales up in proportion to distance from the plane:
for a point twice as far from the plane, the kernel is scaled up by a factor of 2 in
the x and y directions.

This fact suggests that for a given n, we could store the irradiance for the
volume (x, y, z) : x, yε[−s,+s], zε[0, t] in an image pyramid, where each level is
twice as far from the plane as the previous level and half the resolution. If s is
the distance to the first mip level, then

distance from emissive plane to layer m = s · 2m. (5.2)

The increase in texel size at each level corresponds to the increase in the
convolution kernel size, so the fidelity can be expected to be consistent for all
levels of the image pyramid.

This image pyramid can be implemented on the GPU by using a standard
mipmapped texture, sampled using trilinear filtering.

For a given distance d from the emissive plane, the mipmap parameter is

mipmap parameter = log2

(
d

s

)
(5.3)

5.4 Building the Image Pyramid

Our approach was inspired by the summed-Gaussian approach used in “Advanced
Techniques for Realistic Real-Time Skin Rendering” [d’Eon and Luebke 07]—a
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Figure 5.3. Irradiance contribution of a flat plane: cross section of the contribution of
each point using the ideal irradiance integral and a paired-Gaussian approximation.

nonseparable function may be approximated by a weighted sum of a series of
Gaussian blurs. Like that paper, we used just two Gaussian blurs.

The pair of blended Gaussian blurs were matched to the ideal convolution
kernel by minimizing the least-squared error. If d is the distance from the emissive
plane, here is the best-fit approximation:

g0 = blurred radiance image using Gaussian blur with standard deviation 1.368d;

g1 = blurred radiance image using Gaussian blur with standard deviation 0.532d;

approximate irradiance = 0.54g0 + 0.46g1. (5.4)

Figure 5.3 shows the comparison between the ideal and approximation.
The naive approach to generate the image pyramid is to consider each mipmap

in turn, and for the implied distance from the plane, calculate the Gaussian blur
radii, then blur and blend the radiance image correspondingly. Unfortunately,
this leads to prohibitively large tap counts for more distant images.

The solution we used is to generate a second image pyramid from the radi-
ance image as a preprocess—this image pyramid is like a mipchain; each layer
is constructed by down-sampling the previous layer by a factor of 2 using a box
filter.

Then, rather than blurring the full-resolution image, an appropriate mip level
is chosen as input to the aforementioned Gaussian blur. The standard deviation
of the Gaussian blur is specified in world units, so the number of taps will vary
depending which mip level is chosen—though obviously the quality will degrade
if the resolution and tap count are too low. This means the tap count for the
Gaussian blur can be controlled, and it’s possible to use even just 5–10 taps
without substantial quality loss.
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5.4.1 Putting It All Together

Given an emissive plane, begin by capturing the radiance and opacity in a texture
map (R). The image pyramid for irradiance queries is generated from R as follows:

1. Generate a standard mipmap chain for the texture map R. Each mipmap is
a half-size boxfiltered down-sample of the previous. Let R′ be the resulting
image pyramid. It contains radiance in RGB and opacity in A. The opacity
value is not used for the irradiance pyramid generated here, but is required
for the cell-to-cell propagation step described later in Section 5.8.

2. Allocate the irradiance image pyramid I. It will have the same dimensions
and mipmap count as R′. Each mipmap corresponds to a certain distance
from the emissive plane, defined by Equation (5.2).

3. For each mip level m of the image pyramid I, we generate the image as
described by Equation (5.4).

For the current mip level, compute its distance from the emissive plane, and
find the standard deviations of the two Gaussian blurs as a distance in world
space. Find the two source mip levels to use as inputs for the blurs. (We found
that evaluating the Gaussian out to two standard deviations and using five taps
gave acceptable results.) Blur those two input images using the appropriate
Gaussian functions, rescale the results so they’re the same resolution, and blend
the resulting two images to build the mipmap for I.

Note that because the image pyramid I contains RGB only, these image-
processing steps can discard the alpha channel.

5.4.2 Sampling the Image Pyramid

With the image pyramid described, it’s possible to query the irradiance. However,
we’re restricted to points that are directly above the planar region where the
texture map R is defined. Also, the surface normal must be facing directly
toward the emissive plane, as this is the assumption made for the image pyramid
construction.

First, we find the relative position of the query point within the image pyramid
volume, to obtain the (u, v) for sampling the pyramid. We compute the distance
to the plane d. The mipmap we need to sample is determined by Equation (5.3).
We sample the image pyramid with the computed (u, v) and mipmap parameter
and the resulting value is the irradiance.

As it stands, the restrictions on surface normal and position make this method
too limited to be useful. Here’s how the restrictions may be lifted.
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5.4.3 Supporting Arbitrary Normals

Consider the infinite plane at z = 0 radiating a constant color. Since the plane is
infinite and radiance constant, the irradiance measured at a particular point will
not vary if it’s moved (without crossing the plane). The only thing that matters
is what part of the visible hemisphere is covered by the emissive plane, and this
is unaffected by movement. So in this case, the irradiance depends only on the
surface normal.

Let E0 be the irradiance measured at the point pxyz with pz < 0, facing
directly toward the plane. Let E1 be the irradiance measured at the same point
with an arbitrary normal (nxyz; assume it to be normalized). Then

E1

E0
=

1 + nz

2
. (5.5)

We’ll use the relationship from Equation (5.5) to attenuate the value sampled
from the image pyramid, to support arbitrary query normals.

Proof: We’re interested in computing the irradiance for a scene consisting only
of a constant emissive plane. We may assume with no loss of generality that the
sample point is at the origin, and the upper hemisphere over which we gather
irradiance is (0, 0, 1). The plane is initially at z = −1, with surface normal
(0, 0, 1); it is rotated around the x axis by the angle θmax, where θmaxε [0, 180◦].
If θmax is 180◦, then the plane is above the origin with surface normal (0, 0,−1),
so the irradiance integral covers the full hemisphere as usual. But if θmax < 180◦,
then areas on the hemisphere for which θ > θmax correspond to rays that will miss
the emissive plane. Therefore, the irradiance integral is restricted to directions
in the range [0, θmax].

Figure 5.4 shows the situation. The grid represents the plane; it has been
faded out in the middle so it doesn’t obscure the rest of the diagram. The gray
truncated hemisphere represents the set of directions that intersect the emissive
plane.

The integral is identical to Equation (5.1), but expressed in spherical polar
coordinates (φ and θ) and restricted to directions that intersect the emissive
plane. For a given φ and θ, the z component is sin(φ) sin(θ), which is equivalent
to the cos(θ) term in Equation (5.1). We also scale by sin(φ) to compensate for
the change in area near the poles. Suppose the constant color radiated by the
plane is Lp. Then the integral is as follows:∫ θ=θmax

θ=0

∫ φ=π

φ=0

Lp sin(φ) sin(θ) sin(φ)dφdθ

= Lp

∫ θ=θmax

θ=0

sin(θ)dθ ·
∫ φ=π

φ=0

sin2(φ)dφ
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θmax θ

φ

Figure 5.4. Integral variables.

= Lp

∫ θ=θmax

θ=0

sin(θ) · π
2

= Lp[− cos(θ)]θmax
0 · π

2

= Lp([− cos(θmax)] − [− cos(0)]) · π
2

= Lp(1 − cos(θmax)) · π
2

= Lp · π · 1 − cos(θmax)

2

The irradiance E0, when the surface normal points directly toward the plane,
can be found by substituting θmax = π. This gives E0 = Lpπ. The ratio E1/E0

is therefore

E1

E0
=

1 − cos(θmax)

2
.

Substituting cos(θmax) = n · (0, 0,−1) = nfz gives Equation (5.5). �

5.4.4 Sampling Outside the Depth Pyramid Volume

A reasonable approximation for irradiance outside the image pyramid volume is
to clamp the sample point to the border of the image pyramid region, calculate
irradiance from the image pyramid using the clamped location, and then scale
down the resulting irradiance progressively as the query point moves farther from
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Figure 5.5. Sampling irradiance outside valid region.

the border, using

irradiance outside the valid region

= (irradiance at the border)·
(

1 +
d√

t2 + d2

)
. (5.6)

Figure 5.5 shows how the function is defined. The colored region on the left
is the valid region, where the image pyramid is defined; we’re considering it to
be an infinite half-plane for simplicity. The hemisphere indicates the “upper
hemisphere” (see Equation (5.1)) around which the irradiance for the sample
point is gathered.

For a given sample point, with a surface normal pointing toward the emissive
plane, we’re interested in how much the valid region contributes to the irradiance.
For points above the border, this will be exactly 50%. For points farther from
the valid region, this value will tend to 0%.

Figure 5.6 shows a cross section of valid half-plane and irradiance hemisphere.
There are strong similarities to the calculation of irradiance for a tilted plane
described in Section 5.4.3: in both cases, the irradiance integral is restricted to
a subset of the upper hemisphere, which can be expressed as the range 0 ≤ θ ≤
θmax.

Making use of Equation (5.5) means finding the normalized vector to the edge
of the valid region (s). Normalizing the vector s = (t, d) gives

(t, d) · 1√
t2 + d2

.



276 III Lighting

t

d

s

Valid region

Sample point and
upper hemisphere

θmax

Figure 5.6. Cross section showing contribution of valid region.

Substituting the appropriate component into Equation (5.5) and simplifying it
gives

fractional contribution of the valid region = 0.5 +
d

2
√
t2 + d2

. (5.7)

Dividing by 0.5, which is the value taken on the border, gives Equation (5.6).
Figure 5.7 is a graph of Equation (5.7), showing how the fractional contribu-

tion to irradiance changes for points past the border. The reason for using the
ratio t/d as an axis is that Equation (5.7) may be rewritten as a function of t/d.

5.4.5 Evaluating Irradiance Using the Image Pyramid

The image pyramid is sampled as follows. For the query point p, with normal n:

1. Find the relative position of p within the image pyramid volume, to obtain
the (u, v) for sampling the pyramid. Compute d, the distance to the plane.

2. Find the mipmap parameter using Equation (5.3).

3. Sample the image pyramid using trilinear filtering, with the mipmap pa-
rameter calculated at the previous step. Clamp the (u, v) to the image
pyramid region. Let cRGB be the color sampled.

4. If the query point is not within the image pyramid volume, attenuate cRGB

using Equation (5.6).

5. Attenuate cRGB based on surface normal using Equation (5.5).
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5.4.6 Results

Before moving on, it’s useful to compare the approximation that has been de-
scribed, with the ground truth result.

Figure 5.8 shows the scene. The black square with the cyan circle is the emis-
sive plane, at y = 0. We’ll evaluate the irradiance at points on the transparent
square, which are the points −32 ≤ x ≤ +32, −64 ≤ y ≤ 0, z = 0. For simplicity,
the surface normal used for sampling is n = (0, 1, 0), directly toward the emissive
plane.

Figure 5.9 to Figure 5.11 show the resulting irradiance. Figure 5.9 shows the
ground truth result where the indirect term at each point was evaluated using
16,000 importance-sampled rays. A lot of rays are needed because there’s only a
small bright region—even using 1000 rays per pixel gives noisy results.

Figure 5.10 shows the image-pyramid approximation described in this chapter.
The image pyramid only covers a subset of this space: −16 ≤ x, y ≤ +16,
between the yellow lines. Note that the values outside this region are still a good
approximation because the trilinear sample is attenuated using Equation (5.6).
For comparison, Figure 5.11 shows the standard boxfiltered mipchain without the
Gaussian blurs or attenuation.
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Figure 5.8. Emissive plane and sample area.

Figure 5.9. Ideal result—importance sampled using 16,000 rays.

Figure 5.10. Texture approximation. One trilinear
filtered lookup from a 256× 256 texture.

Figure 5.11. Comparison—trilinear lookup with-
out Gaussian blurs or attenuation.
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Figure 5.12. Extreme distortions cause significant approximation errors.

5.4.7 Limitations

It’s tempting to try using the slice approach with arbitrary heightfields. Unfor-
tunately, this can often give poor results: slices approximate the emissive surface
as a flat plane and weight the contributions of each part of the emissive plane ac-
cordingly. With a heightfield, it’s possible for there to be points quite close to our
sample point, which means they should contribute significantly to irradiance—but
with the slice approach, they have a very low contribution.

For instance, consider the situation shown in Figure 5.12. The green line is
a cross section through a heightfield. Suppose we’ve distorted a slice to match
it exactly, and use the slice to evaluate irradiance. The point p is the location
where we’d like to sample irradiance; the semicircle indicates the hemisphere for
the gather. The black line running vertically down from p to the heightfield
shows the distance to the heightfield; this will be the distance used to calculate
the mipmap parameter for the image pyramid lookup.

In Figure 5.12, point a is quite close to p, so it should contribute significantly
to irradiance. However, the slice approximation will weight it as if it were at b.

So, if the shape of a slice is distorted too much, the quality of the approxima-
tion will suffer.

In conclusion, if we restrict the emissive surfaces to near-planar surfaces, then
we can efficiently evaluate the indirect lighting contribution and, in addition, the
steps to build the image pyramid are cheap enough to run in real time.

In the next sections of the chapter, we’ll describe how to use this approach to
support more general scenes.

5.5 Combining Multiple Slices

5.5.1 Irradiance Values May Be Combined Only If
the Slices Do Not Occlude Each Other

The value sampled from the image pyramid is an RGB irradiance value.
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Figure 5.13. Two emissive squares; one completely occludes the other when irradiance
is gathered for the hemisphere indicated.

It’s tempting to combine the irradiance values sampled from different slices.
Unfortunately, the only way this can be reliably done is if the slices do not obscure
each other.

Imagine two nearly coincident squares, one red and one blue, with their ir-
radiance sampled, as shown in Figure 5.13. The red square does not contribute
to the irradiance at all when they are combined; it’s completely obscured by the
blue square.

In this case, occlusion completely changes the result—and occlusion isn’t ac-
counted for with the slice approximation. However, it is possible to sum the
irradiance and opacity sampled from two slices if they do not obscure each other
at all. Recall the irradiance definition from, Equation (5.1):

E(p,n) =

∫
H+

Li(p,ω) cos θ dω,

where Li(p,ω) is the incoming light falling on p from the direction ω. Define
LA
i (p,ω) to be the incoming light if there was only object A in the scene, and

LB
i (p,ω) similarly. These will give the RGB value (0, 0, 0) for directions that

don’t hit the corresponding object.
If there are no p and ω such that LA

i (p,ω) and LB
i (p,ω) are simultaneously

nonzero—i.e., there is no sample position p and direction ω from which one of
the objects occludes the other—then Li(p,ω) = LA

i (p,ω) + LB
i (p,ω). Then,

E(p,n) =

∫
H+

Li(p,ω) cos θ dω =

∫
H+

(LA
i (p,ω) + LB

i (p,ω)) cos θ dω

=

∫
H+

LA
i (p,ω) cos θ dω +

∫
H+

LB
i (p,ω)) cos θ dω

= [irradiance due to object A] + [iradiance due to object B].
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So, we can sum the irradiance from different objects/slices if they never occlude
each other.

However: the relation Li(p,ω) = LA
i (p,ω)+LB

i (p,ω) will still be a reasonable
approximation if the amount of overlap is low. If the amount of overlap is high—
such as the above example where one object completely occludes another—then
it will no longer hold.

5.5.2 An Array of Distorted Cubes

One way to construct a set of slices that never occlude each other is to arrange six
slices as faces of a cube, and to allow only sampling from points within the cube.
With this arrangement, we could accurately evaluate the irradiance within a cube
using slices—but this is, of course, far too restrictive to be generally useful.

However, it’s possible to stretch and skew the cube. The restriction that slices
never occlude each other is equivalent to requiring that the shape remains con-
vex. Secondly, there is the requirement that the slices not be too distorted from
their original square shape—the greater the distortion, the more the irradiance
approximation degrades.

A wide variety of shapes can be created that meet these two requirements:
cuboids and extruded parallelograms are possible, as are more esoteric shapes
created by nonlinear distortions, such as truncated square pyramids. It’s even
possible to allow a small amount of nonconvexity without the slice approximation
failing (see the discussion on occlusion in the previous section) so transformations
that lead to a slightly nonconvex result are still valid. An example is a bend or
twist operation. Each of these distorted cubes is called a cell.

The next step is to fit the cells together. If a particular face is flat, then it
could be shared with a neighboring cell: on the shared face, there would be two
coincident slices, one associated with each neighbor.

It’s possible to extend this even further to create a large group of cells that
fill space with no overlaps. In this case, the process of evaluating irradiance is
done by finding the cell that contains the query point, calculating the irradiance
contributed by each of its six slices, and summing those six values.

Allowing an arbitrary arrangement of cells would be possible, but we imposed
some restrictions to make the search for the cell containing the query point more
efficient, as well as the transformation to slice space for evaluating irradiance.

5.6 Layered Heightfields

The approach we chose was to define a set of layered heightfields for each axis.
For the x axis, we have x = fi(y, z), where the series of functions fi define the
heightfields; 0 ≤ i ≤ nx. Figure 5.14 shows an example.

We also require that fi(y, z) < fi+1(y, z) to enforce the layers to never inter-
sect, and for each successive heightfield to be farther along the x axis. A similar
series of functions gj , hk are defined for the y and z axes.
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Figure 5.14. Layered heightfields for the x axis.

These heightfields define the split between neighboring cells. They produce a
collection of cells that can be indexed using three integers (i, j, k), where 0 ≤ i ≤
nx, 0 ≤ j ≤ ny, and 0 ≤ k ≤ nz . The resulting arrangement of cells are like a
distortion of an nx × ny × nz array of voxels.

The region covered by the cell (i, j, k) occupies the set of points (fi(y, z),
gj(x, z), hk(x, y)) where x ∈ (i, i + 1), y ∈ (j, j + 1), and z ∈ (k, k + 1).

Defining the distortion in this way does not allow arbitrary distortions to be
represented. For instance, a twist distortion (like the “twirl” distortion in Adobe
Photoshop) with an angle of more than 90 degrees cannot be expressed as a series
of layered heightfields.

5.6.1 Mapping from World Space to Cell Space

The search for a containing cell is done on an axis-by-axis basis: for a given point
(x, y, z), find the identifier (i, j, k) of the containing cell. The value of i is the value
for which fi(y, z) ≤ x < f i+1(y, z); note that it’s independent of j and k and may
be done as a simple binary search within the series of heightfields. It specifically
avoids the need for a volume texture lookup. (If the layered heightfields are
constructed as described in Section 5.7, then the heightfields are restricted to a
series of regular intervals, which simplifies the lookup substantially: the value of
i can be found by querying two heightfields.) Values for j and k are computed in
a similar fashion.

Secondly, we can find the relative position within the cell. This is the point
(u, v, w), where 0 ≤ u, v, w ≤ 1. It is found by the relative position between the
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boundary heightfields:

u =
x− fi(y, z)

fi+1(y, z) − fi(y, z)
,

v =
y − gj(x, z)

gj+1(x, z) − gj(x, z)
, (5.8)

w =
z − hk(x, y)

hk+1(x, y) − hk(x, y)
.

The point (u, v, w) can be used directly for evaluating the slice irradiance. For
example, to evaluate the contribution of the slice on the fi side of the cell, the
texture coordinate to sample the slice texture is (v, w), and the value u can be
directly used to calculate the mipmap paramater (Equation (5.3)) if the distance
to the first mipmap is also expressed in that space. The other five slices making
up the cell can be evaluated in a similar way.

So at runtime, the full process of evaluating irradiance for a given point in
world space involves these steps:

• Search the layered heightfields for each of the three axes to find the cell
(i, j, k).

• Find the relative position (u, v, w) within the cell using Equation (5.9).

• Sample the image pyramid of each of the six slices associated with that cell.

• Scale and attenuate those six samples based on surface normal and distance
outside border (if need be) to evaluate irradiance using Equations (5.4) and
(5.5).

• Sum the resulting six irradiance values.

5.7 Slice Placement

For a given scene, we need a way to build the layered heightfields that divide up
the space, and define the cells. The goal is for the cell faces to be coincident with
scene geometry wherever possible.

The method we used is intended to be run offline, as a preprocess. It works
as follows.

Let the number of slices for each axis be nx, ny, and nz. Each axis will be
processed in turn. For each axis, we’ll generate the series of layered heightfields
described earlier: i.e., for the x axis, the heightfields will be of the form xi =
fi(y, z), for integer i with 0 ≤ i ≤ nx; for the y axis, the heightfields will be
of the form yj = gj(x, z) for integer j with 0 ≤ j ≤ ny; and similar for the z
axis. The collection of heightfields for a particular axis will never intersect each
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S0 S1 S2 S3 S4

Figure 5.15. Scene divided into equal parts. The geometry is shown in green; the arrows
on the left indicate the ray collection.

other—they’ll form a series of layers. So fi(y, z) < fi+1(y, z) always, with similar
restrictions for the g and h series.

5.7.1 Generating the Defining Heightfields

The problem is to find a collection of layered heightfields for each axis that
matches the significant surfaces of the scene.

This is the process to generate the x = fi(y, z) heightfield collection. This
approach is repeated with obvious modifications to generate the y and z axis
collections.

1. Find the scene extent: (xmin, ymin, zmin) − (xmax, ymax, zmax). Divide the
scene into nx equal-sized parts along the x axis, i.e., nx subsets, each cov-
ering the region (si, ymin, zmin) − (si+1, ymax, zmax), where s0 = xmin, s1 =
xmin + k, . . . , si = xmin + ik, . . . , snx = xmax.

2. Define a collection of rays in the direction (1, 0, 0) that originate from a
regular grid of points, i.e., (x, y, z) such that x = xmin, y = ymin + p ∗
(ymax − ymin)/pmax, and z = zmin + q ∗ (zmax − zmin)/qmax for integer p, q.
See Figure 5.15.
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3. For each ray in turn, trace the ray through the scene, finding each of the
surface intersections. Within each of the nx subset spaces defined at step
1, find the front-facing intersection with the minimum x component, and
the back-facing intersection with maximum x. (Front-facing means the
surface the ray intersected has a surface normal whose x component is
< 0—i.e., the ray hit the surface from the front. Back-facing means the
opposite.) Let Sj be the resulting set of intersection points for ray j.
Record the intersection by storing the ray parameter, i.e., the value p for
which (ray origin) + (ray direction × p) = intersection point. Figure 5.16
shows the relevant front- and back-faces for each scene subset.

4. We now assign a significance value to each of the points in S; Sj is {p0, p1,
. . . , pkmax}, the ordered set of surface intersection points for ray j. Let the
significance value of each point default to 0. For each k, if pk is back-
facing and pk+1 is front-facing, then the significance value is |pk+1 − pk|;
assign it to both pk and pk+1. Figure 5.17 shows red bars for each such
interval. Note that there are no significance bars passing through the solid
green regions, due to the check for back-face/front-face order. Ideally, the
significance value would measure how often that surface point is seen. We’re
approximating this using the distance between that point and the point it
is facing—this line segment is in open space, rather than within an object,
so it’s a space where the viewer may go, and the longer that line segment,
the larger the open space is. Conversely, a surface that is hidden by another
surface will be less significant.

5. Build a 2D table of value and weight for each scene subset. Within each of
the nx scene subsets, for each ray i we have up to two intersection points
(a front-facing one and a back-facing one) and an associated significance
value.

Compute the pair {v ∗ w,w}, where v is the sum of the ray parameters
and w is the sum of the associated significance value for those intersection
points— there will be zero, one, or two of them. Figure 5.18 shows the
average positions.

If there were no intersection points for the ray in this scene subset, let the
pair be {0, 0}.

Because the rays are defined to be a regular grid, indexed by the integers p
and q (see Step 2) assign the pair {v, w} to the table entry Ti(p, q), where
i indicates the scene subset.

6. Smooth and extrapolate the table associated with each of the scene subsets.
Let O(p, q) be the point at which the ray (p, q) originates. Then T ′i (p, q) =∑

0≤r≤pmax,0≤s≤qmax
Ti(r, s)·c−|0(p,q)−o(r,s), where c is a constant controlling
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S0 S1 S2 S3 S4

Figure 5.16. Red markers indicate front and back faces for each scene subset.

S0 S1 S2 S3 S4

Figure 5.17. Red bars indicate significance.
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S0 S1 S2 S3 S4

Figure 5.18. Average position of the intersection points in each scene subset.

the locality of the blur. Note that the values T (p, q) are pairs of real values
{a, b}; they are scaled and added like 2D vectors.

7. Output the heightfield. Define the 2D table Ui with the same dimensions
as T ′i . T ′i (p, q) is the pair {a, b}; the corresponding entry Ui(p, q) is defined
to be a/b. Note that b will be zero if and only if the b entry is zero for
all entries in table Ti (see Figure 5.19). Note that the heightfields follow
the scene geometry where possible, and there is no heightfield in the s− s1
subset.

In short, assign a significance value to the relevant surface intersections in each
scene subset, and perform a weighted blur that respects the significance factor to
extrapolate and smooth out the heightfield. The parameter and significance pair
is encoded as a homogeneous value specifically to support this step.

The heightfield Ui will be contained within scene subset i, thereby meeting
the requirement that the heightfields do not cross over.

Note that the input scene may well contain interpenetrating geometry—for
example, a ray traveling through the scene may intersect several consecutive front-
facing surfaces in a row. Also, there may be “open” or nonmanifold geometry—
i.e., a ray passing completely through the scene may encounter a different number
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S0 S1 S2 S3 S4

Figure 5.19. Final heightfield for each scene subset.

of front- and back-facing intersections. These problems are unavoidable when
working with production scenes. The nearest front-face/last back-face logic in
Step 3 is designed to support these situations.

5.7.2 Discussion

This approach works well for scenes which have strong axis-aligned features. That
is, scenes where the main surfaces are roughly parallel to the xy, xz, and yz
planes. Architectural scenes and game environments built out of prefabs usually
meet this requirement.

Large curved surfaces run the risk of problems. If the surface needs to be
represented by slices from more than one axis, parts of that surface may be
missed (leading to light leakage) or have regions included in two slices (leading
to too much indirect light).

These problem cases can usually be fixed by manually editing the distortion
function to ensure that the surface always aligns with one and only one slice.

The slice placement step was intended to run offline, as a preprocess, to gen-
erate slice geometry that does not change at runtime.
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Figure 5.20. Light propagating from one cell to another.

5.8 Propagating Irradiance

While the slice geometry does not change at runtime, the slice image pyramids
are intended to be regenerated at runtime in response to lighting changes. Local
lighting changes within a cell can be accommodated by recapturing the radiance
for those slices and rebuilding the image pyramid as described in Section 5.4.

However, this doesn’t allow light to have an effect outside the cell where it
was emitted. To achieve this, we use a propagation step, analogous to the light
propagation step described by [Kaplanyan and Dachsbacher 10]. For each step,
each cell is considered in turn, and light within that cell is propagated to its
neighbors. After enough steps, lighting changes will propagate throughout the
array of cells.

Figure 5.20 shows a cross section through a collection of cells. The shape of
the faces/slices are indicated by red lines—many have been omitted for clarity.
We’ll only consider some of the vertical slices, by the letters a−c. Light is emitted
from the slice marked “source,” as shown by the arrows.

Light is propagated from cell to cell in two ways. Firstly, it is propagated
forward—from source to slice a, in the example image. This is done as follows:
when regenerating slice a, the irradiance from source is sampled, scaled down by
(1−opacity), and added into the radiance of slice a, which is input for generating
the image pyramids.

This definition means if a point on slice a is opaque, then the light from source
will be blocked. If it’s transparent, then the irradiance will be continuous—there
will be no discontinuity or other artifact.

Secondly, it is propagated laterally—from source into slice b in Figure 5.20.
This is done when generating the image pyramid for each slice by allowing the
blurs to pick up color from neighboring slices, scaled by transparency of the
intervening slices (c in the example case).
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Figure 5.21. Light transport within a single cell.

Again, this definition means that if a slice is opaque, it will block the lateral
flow of light. If a slice is transparent, then the light will flow laterally from cell
to cell with no discontinuities or artifacts.

With this approach, the light will radiate outward in a plausible fashion, with
no discontinuities at the cell borders.

5.9 Results

Figure 5.21 shows the simplest case. Light radiated from a wall is captured by
a single slice. The floor plane samples that irradiance. The images demonstrate
how the irradiance softens and widens with distance from the emissive surface.
It also underlines that the emissive surface can radiate light in any pattern; it’s
not a point or line but a texture.

Figure 5.22 shows a scene with two cells separated by a perforated wall. This
scene shows light propagation from cell to cell and how the attenuation is affected
by the occluding wall. Note that the light that passes through the holes and falls
on the floor gives a sharper pool of light for the hole near the floor. The farther
hole gives a pool of light on the floor that’s blurrier and farther from the wall.

Figure 5.22. Light propagating from one cell to another, with attenuation.
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Figure 5.23. Sample scene.

Figure 5.24. Example of changes possible at runtime.

Figure 5.23 shows a production scene where the irradiance is provided using
slices. The inset image shows the direct lighting. The blue skylight was created
by adding constant blue light into the transparent areas of the topmost layer.
For this scene, the cells are roughly 5 m along each side, and each slice is 64× 64
resolution.

Figure 5.24 illustrates the sort of changes possible at runtime: the lefthand
image shows the a scene with a single light; on the right, a square hole has been



292 III Lighting

cut out of the balcony and the roof above is now lit by bounce light. The slice
shapes were not altered in any way: opening the hole in the balcony only changed
the transparency of one of the slices, allowing light to propagate from the cell
beneath the balcony to the cell above.

5.10 Conclusion

We have presented a method for efficiently evaluating irradiance from a flat sur-
face using an image pyramid, and an efficient method for rebuilding the image
pyramid at runtime.

The biggest weakness of this approach is the requirement that the scene be
represented by a set of slices. If this requirement can’t be met, there will be light
leakage and other quality problems. While most architectural and man-made
scenes can be adequately represented by slices, more organic environments are a
challenge.

In addition, this method won’t support dynamic objects moving through the
scene. While it can support limited changes to the architecture (e.g., doors
opening, a wall collapsing, a roof opening up), it isn’t a solution for real-time
irradiance effects due to characters moving through the scene.

In conclusion, this best use case for this approach is an architectural or other
manmade scene that can be accurately represented by slices; where the lighting
is dynamic, the effects of dynamic objects on irradiance is not significant, and
the runtime changes to the scene geometry are limited (e.g., doors opening and
closing). In this case, it will yield high-quality irradiance that updates in real
time.
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IV

Shadows

Shadows are the dark companions of lights, and although both can exist on their
own, they shouldn’t exist without each other in games. Achieving good visual
results in rendering shadows is considered one of the particularly difficult tasks
of graphics programmers.

The first article in the section, “Practical Screen-Space Soft Shadows” by
Márton Tamás and Viktor Heisenberger, describes how to implement a shadow
filter kernel in screen space while preserving the shadow color data in layers.

The next article, “Tile-Based Omnidirectional Shadows” by Hawar Doghra-
machi, shows how to implement efficient shadows in combination with a tiled de-
ferred shading system by using programmable draw dispatches, the programmable
clipping unit, and tetrahedron shadow maps.

The third and last article, “Shadow Map Silhouette Revectorization” by Vladi-
mir Bondarev, utilizes MLAA to reconstruct the shadow penumbra, concealing
the perspective aliasing with an additional umbra surface. This is useful for hard
shadow penumbras.

—Wolfgang Engel
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IV

Practical Screen-Space
Soft Shadows

Márton Tamás and Viktor Heisenberger

1.1 Introduction

This article describes novel techniques that extend the original screen-space soft
shadows algorithm [Gumbau et al. 10] in order to make sure that the speed of ren-
dering is optimal and that we take into consideration overlapping and translucent
shadows. We introduce layers, an essential component to filtering overlapping
shadows in screen space. We aim to render near one hundred properly filtered,
perceptually correct shadows in real time. We also aim to make this technique
easy to integrate into existing rendering pipelines.

1.2 Overview

Shadows are important to establish spatial coherency, establish relationships be-
tween objects, enhance composition, add contrast, and indicate offscreen space
that is there to be explored. As a gameplay element, they are used to project
objects onto walls with the intent to create new images and signs that may tell
a story. Shadows are often used to either lead the viewer’s eye or obscure unim-
portant parts of the scene.

In computer graphics, light emitters are often represented as a single point
with no definite volume. These kinds of mathematical lights cast only hard-
edged shadows (a point is entirely obscured by a shadow caster or not) called an
umbra. However, in the real world, lights usually have volume (like the sun), and
therefore they cast soft-edged shadows that consist of an umbra, penumbra (a
point is partially obscured by shadow caster), and antumbra (the shadow caster
appears entirely contained by the light source, like a solar eclipse). Figure 1.1
shows a real-world umbra, penumbra, and antumbra.

297
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Antumbra

Penumbra

Umbra

Figure 1.1. A real-life umbra, penumbra, and antumbra. The objects are lit by a desk
spot lamp.

1.3 History

Traditionally, umbras have been represented by either shadow mapping [Wil-
liams 78] or shadow volumes [Crow 77]. Shadow mapping works by rendering the
scene depth from the point of view of the light source and later in the lighting
pass sampling it and comparing the reprojected scene depth to it to determine if
a point is in a shadow. Shadow volumes work by creating shadow geometry that
divides space into shadowed and unshadowed regions. However, shadow volumes
are often bottlenecked by fill rate, leading to lower performance [Nealen 02].
Thus, we use shadow mapping.

While shadow volumes can achieve pixel-perfect hard shadows, shadow map-
ping’s quality depends on the allocated shadow map’s (depth texture’s) size. If
there’s not enough shadow map resolution, under-sampling will occur, leading to
aliasing. If there’s more than enough shadow map resolution, over-sampling will
occur, leading to wasted memory bandwidth. Shadow maps also suffer from pro-
jective aliasing, perspective aliasing, and erroneous self-shadowing, which needs
to be properly addressed.

To simulate penumbra, shadow mapping is often extended with shadow fil-
tering. In order to render soft shadows, percentage closer filtering (PCF) was
introduced by [Reeves et al. 87]. This technique achieves soft shadows by imple-
menting blurring in shadow space. Later, PCF was extended by a screen-space
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Figure 1.2. Hard shadows (left), a uniform penumbra rendered using PCF (middle), and
a perceptually correct variable penumbra rendered using SSSS. When using a variable
penumbra, shadow edges become sharper as they approach the shadow caster.

blurring pass [Shastry 05] that enables the use of large filter kernels. However,
these techniques can only achieve uniform penumbras. Figure 1.2 shows a com-
parison of hard shadows, shadows with uniform penumbras, and shadows with
variable-sized penumbras.

Percentage-closer soft shadows (PCSS) was introduced to properly render
variable-sized penumbras [Fernando 05]. PCSS works by varying the filter size
of the PCF blurring. It does a blocker search in order to estimate the size
of the penumbra at the given pixel, then uses that information to do variable-
sized blurring. However, PCSS still does the blurring step in shadow space, and,
depending on the shadow map and kernel size, this step can be a bottleneck,
especially when multiple lights are involved. Screen-space soft shadows (SSSS)
[Gumbau et al. 10] aims to combat this by deferring the blurring to a screen-space
pass so that it will be independent of the actual shadow map size. In screen space,
however, we need to account for the varying view angle and therefore we need
to use an anisotropic filter. Because the blocker search is still an expensive step
(O(n2)), SSSS was extended by [Gumbau et al. 10] with an alternate way to
estimate the penumbra size by doing a min filter on the shadow map. In addition,
this filter is separable and the result only needs to be coarse, so a low-resolution
result is acceptable (O(n + n), for much smaller n). [Engel 10] extends SSSS by
adding exponential shadow maps and an improved distance function. This allows
for self-shadowing, artifact-free soft shadows and better use of the same filter size
when viewed from far away.

Mipmapped screen-space soft shadows (MSSSS) [Aguado and Montiel 11] also
tries to further improve the speed of filtering. It transforms the shadow map
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Figure 1.3. Not handling overlapping shadows properly by using layers can lead to
artifacts (left), and correct overlapping shadows (right).

blurring problem into the selection of an appropriate mipmap level of a pre-
blurred screen-space shadow map based on the estimated size of the penumbra.
It also introduces an extension to the algorithm to account for multiple occlusions
by using numerous shadow maps.

These screen-space techniques are beneficial because they come with a con-
stant filtering cost, so one does not need to filter the shadows per light source,
but the whole screen. Therefore, lights and shadow map filtering are decoupled,
and one can employ huge filter kernels resulting in cheap, large penumbras. How-
ever, in screen space, another problem surfaces: overlapping shadows of multiple
lights. In order to properly account for overlapping shadows, we introduce layered
shadow mapping.

The reason we need layers is that if we were to just average the penumbra sizes
(storing only one penumbra size per pixel), then we would get incorrect values and
artifacts (see Figure 1.3), thus the shadows wouldn’t look perceptually correct
anymore. With the layers, we can store multiple penumbra sizes and shadow
data per pixel, so each light’s shadow will be blurred using the correct penumbra
size.

In addition, in real-life situations, shadows are often cast by translucent ob-
jects, so we also need to take into consideration translucent shadows. The aim of
this technique is to render fast, perceptually correct soft shadows with variable
penumbra sizes, also accounting for overlapping and translucent shadows. Figure
1.3 shows a comparison between not handling overlapping shadows and handling
overlapping shadows.

1.4 Algorithm Overview

1.4.1 G-Buffer Pass

This pass is highly implementation dependent, and while in the original SSSS
algorithm this was included in the distances (penumbra) map pass (covered later),
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we decided to separate this to make sure this technique can be easily integrated
into any rendering pipeline. It is possible to go with any G-buffer layout, provided
it contains at least the depth buffer and the normals of the scene, as we will need
these later. It is important to state that it doesn’t matter whether deferred
shading or deferred lighting or any of the other popular techniques is being used.
We decided to use deferred shading because of its simplicity and speed.

Our G-buffer layout consists of

• D24 depth buffer (stores distance between the viewer and the point being
processed),

• RGBA8 view-space normals (RGB channels; alpha channel is free).

1.5 Shadow Map Rendering Pass

In this pass, the standard shadow map rendering is performed, capturing the
scene depth from the point of view of the light source. Our technique currently
supports spotlights, point lights, and directional lights. Because we are rendering
soft shadows, this means that these lights will actually have volume. Note that
this will not change the lighting of lit surfaces though.

We consider point lights to be six different shadow casters, and therefore
they can be treated the same as spotlights. This means that we can efficiently
cull away spotlights, or parts of point lights (that also have shadow maps to be
rendered), that do not intersect the camera’s frustum as they will not influence
the final image. Also, one needs to make sure that projective and perspective
aliasing, as well as self-shadowing, is taken care of.

We also extend this pass by considering shadow casters that are not opaque.
When this is the case, the shadow caster will allow some light to pass through it,
and the shadow may even become colored. Consequently, we need to output an
RGBA color per pixel from the point of view of the light. Figure 1.4 shows the
contents of a translucency map.

1.6 Introducing Layers and Light Assignment

To allow for multiple overlapping shadows using the original SSSS technique, one
could just simply perform all the steps for each light and get correct results.
However, this approach is prohibitively expensive, and therefore we looked for a
way in which we could perform the screen-space anisotropic blurring for all of the
overlapping shadows in one pass.

There was one vital observation (that was also described later in [Anichini 14]):
if two lights’ volumes don’t intersect, their shadows will not overlap either. This
means that in screen space, the lights’ shadows will not overlap, and because of
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Figure 1.4. Contents of the translucency map: a red pole rendered from the point of
view of the light source.

this, nonintersecting lights’ shadows can be blurred in one pass, independently.
However, we also need to consider overlapping shadows from multiple lights.

We observed that this problem (blurring overlapping shadows) is essentially a
graph coloring problem, where each graph vertex color represents a shadow layer.
In each shadow layer, we store the data of several nonoverlapping lights. In this
graph, each light will be a vertex, and there will be an edge between two vertices
if the two lights intersect. Because determining the amount of colors needed to
color a graph is usually an NP-complete problem, we decided to use a simple
greedy algorithm, extended with some rules to help it. For example, since the
sun (the directional light) is expected to affect everything, it will be assigned a
dedicated layer.

Using the greedy algorithm means that the number of layers (colors) needed
equals the maximum vertex degree plus one, and therefore the number of screen-
space layers that need to be filtered is only dependent on the maximum number of
overlapping shadows produced by different lights (maximum vertex degree). One
disadvantage of the greedy vertex coloring is that its quality is highly dependent
on the order in which we consider the vertices. Therefore, we use a commonly
used vertex ordering scheme, namely, ordering the vertices by their vertex degree
in ascending order.

Essentially what we are doing with these layers is trying to minimize the
memory and bandwidth costs of overlapping shadows by grouping shadow data
into layers instead of storing and filtering them separately for each light source.

It is also advisable to restrict the number of layers for a given scene so that the
general coloring problem can be transformed into a k-coloring problem (where k
is the predefined number of layers). The shadow filtering will have a predictable
cost and artists can be told not to use more overlapping lights than the layer
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Figure 1.5. Point lights colored according to their respective layer. Each layer is
represented by a color (red, green, blue, and yellow). The white cubes illustrate the
lights’ positions.
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Figure 1.6. Lights are numbered and represented by circles (left), where each color
represents a layer (red, green, and blue). Lights and their intersections with each other
are represented on a graph (right). We can see that Light 1 has a vertex degree of 5, so
we would need a maximum of six layers to render these lights; however, in this case, by
using a good graph coloring algorithm, we can reduce the number of needed layers to
three.

budget allows for. In addition, in order to speed up the light intersection process,
one can use an arbitrary space division data structure such as an octree. The
actual layer layout is dependent on the exact technique being used (covered later).
Figure 1.5 illustrates the shadow layers and Figure 1.6 illustrates the graph.
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1.7 Layered Penumbra Map Pass

In this pass, we calculate all of the needed parameters for the anisotropic Gaussian
blur pass, mostly as described in [Gumbau et al. 10]. These parameters include

• distance from the viewer to the point being rendered (scene depth),

• distance of the shadow caster to the point being rendered (penumbra size),

• penumbra mask to determine whether a point needs to be blurred or not,

• shadow buffer (binary value) or exponential shadow buffer (float value, op-
tional),

• translucency map (RGBA values).

1.7.1 Scene Depth

Because we already calculated the scene depth in the G-buffer pass, it is unnec-
essary to do it again.

1.7.2 Layered Penumbra Map

There are two ways to calculate the penumbra size, as described in [Gumbau et
al. 10]:

• using blocker search convolution,

• using a separable min filter (covered later).

The first, the blocker search [Fernando 05], is performed by doing a convolu-
tion over the shadow map, searching for possible blockers (i.e., where a point is in
shadow), then using the average of these blockers’ distances (in light projection
space) to the light to estimate the penumbra size at a given point. The estimation
is done using the following equation, as described in [Gumbau et al. 10]:

wpenumbra =
(dreceiver − dblocker)

dblocker
· wlight,

where wlight is the size of the light that needs to be tweaked by an artist (empirical
value), dobserver is the distance to the viewer in light projection space, dblocker is
the average blocker distance, and dreceiver is the distance to the current point being
processed (in light projection space). We can reconstruct the light-projection-
space distance (dobserver) from a regular depth buffer rendered using a regular
OpenGL projection matrix (in Figure 1.7) as shown in Listing 1.1.

It is advisable to store the penumbra size values in at least a 16-bit float value.
This means that if we would like to store four layers, we can use an RGBA16F
texture. Each of the four layers would be represented by one color channel.
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Figure 1.7. The (symmetric perspective) OpenGL projection matrix, where n is the
near plane distance, f is the far, t = n× tan(fov× 0.5), and r = aspect × t

//# o f b i t s in depth t ex tu r e per p i x e l
unsigned bits = 16 ;
unsigned precision_scaler = pow (2 , bits ) − 1 ;
// gene ra t e s a pe r sp e c t i v e p r o j e c t i o n matrix
mat4 projmat = perspective ( radians ( fov ) , aspect , near , far ) ;
// a rb i t r a r y po s i t i o n in view space
vec4 vs_pos = vec4 (0 , 0 , 2 . 5 , 1) ;
// c l i p−space po s i t i o n
vec4 cs_pos = projmat � vs_pos ;
// pe r sp e c t i v e d i v i d e
vec4 ndc_pos = cs_pos / cs_pos . w ;
f l o a t zranged = ndc_pos . z � 0 . 5 f + 0.5 f ; // range : [ 0 . . . 1 ]
// t h i s goes i n to the depth bu f f e r
unsigned z_value = floor ( precision_scaler � zranged ) ;

// he lp e r v a r i a b l e s to convert back to view space
f l o a t A = −(far + near ) / ( far − near ) ;
f l o a t B = −2 � far � near / ( far − near ) ;

// ge t depth from the depth texture , range : [ 0 . . . 1 ]
f l o a t depth = texture ( depth_tex , texcoord ) . x ;
f l o a t zndc = depth � 2 − 1 ; // range : [ − 1 . . . 1 ]
// r e c on s t ru c t ed view−space z
f l o a t vs_zrecon = −B / ( zndc + A ) ;
// r e c on s t ru c t ed c l i p−space z
f l o a t cs_zrecon = zndc � −vs_zrecon ;

Listing 1.1. Reconstructing clip space z from the depth buffer.

We have two options for generating penumbra information for many lights:

• We can generate them separately and blend them together additively.

• We can batch them and generate all of them at once (covered later).

When generating the penumbra information for each light in a separate pass, at
each pixel there will be multiple layers in the penumbra map; therefore, we need
to store the penumbra information of each layer separately. We can achieve this
by using additive hardware blending.
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1.7.3 Layered Penumbra Mask

The penumbra mask essentially stores whether we found a blocker in the blocker
search or not. We can notice that the penumbra size calculated previously is in
essence just a value that tells us how much we should blur the shadows at a point.
In other words, this will scale the effective filter size of the anisotropic Gaussian
blurring. Therefore, we can store the penumbra mask in the penumbra size by
setting it to zero if the penumbra mask would be zero. Then we can just check
when doing the anisotropic blurring if the penumbra size is greater than zero and
only blur in that case.

1.7.4 Layered Shadow Buffer

There are two options on what to store in the shadow buffer:

• a binary value that only tells if the point is in shadow or not,

• an exponential shadow map, as described in [Engel 10].

If we are storing the binary shadow value, we can just perform a regular shadow
test by sampling the shadow map, reprojecting the scene depth, and comparing
the two. This way we can represent each shadow layer in just one bit, so we can
store 32 shadow layers in an R32U texture.

Otherwise, if we decide to do exponential shadow mapping, we need to store
the result on at least 8 bits so that four layers could fit into an RGBA8 texture.
The value that needs to be stored is defined by

tex(z, d, k) = ek·(z−d),

where z is the scene depth from the point of view of the viewer, d is the scene
depth from the point of view of the light source, and k is an empirical value (scale
factor) that is used to tweak the exponential shadow map.

1.7.5 Layered Translucency Map

In order to represent a penumbra in shadows that translucent objects cast, we
need to blur the translucency maps computed in the shadow rendering pass, too.
Therefore, we accumulate these maps into a layered translucency map. We can
represent each layer as an RGBA8 color value that we can pack into an R32F
float; so in an RGBA32F texture that has 128 bits, we can store four layers. The
packing is done as shown in code Listing 1.2.

1.8 Anisotropic Gaussian Blur Pass

Now we will need to blur the shadows to generate variable-sized penumbras. We
will sample the penumbra information generated in the previous pass.
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// input : f l o a t va lue in range [ 0 . . . 1 ]
u int float_to_r8 ( f l o a t val )
{

const u int bits = 8;
u int precision_scaler = uint ( pow ( u int (2 ) , bits ) ) − u int (1 ) ;
re turn u int ( floor ( precision_scaler � val ) ) ;

}

u int rgba8_to_uint ( vec4 val )
{

u int res = float_to_r8 ( val . x ) << 24 ;
res |= float_to_r8 ( val . y ) << 16 ;
res |= float_to_r8 ( val . z ) << 8 ;
res |= float_to_r8 ( val . w ) << 0 ;

re turn res ;
}

Listing 1.2. A function to pack an RGBA8 value into an R32F float.

f l o a t threshold = 0 . 2 5 ;
f l o a t filter_size =

// account f o r l i g h t s i z e ( a f f e c t s penumbra s i z e )
light_size �

// an i s o t r o p i c term , v a r i e s with viewing ang le
//added th r e sho ld to account f o r d imin i sh ing f i l t e r s i z e
// at graz ing ang l e s
sqrt ( max ( dot ( vec3 ( 0 , 0 , 1 ) , normal ) , threshold ) ) �

// d i s t anc e c o r r e c t i o n term , so that the f i l t e r s i z e
// remains constant no matter where we view the shadow from
( 1 / ( depth ) ) ;

Listing 1.3. Implementation of the variable filter size.

In order to account for various viewing angles, we need to modify the filter
size. To do this, we approximate the filter size by projecting the Gaussian filter
kernel into an ellipse following the orientation of the geometry. We used the
method described in [Geusebroek and Smeulders 03], which shows how to do
anisotropic Gaussian filtering while still keeping the kernel separable. We also
need to consider that if we are viewing the shadows from far away, the filter
size needs to be decreased to maintain the effective filter width. Because of the
nature of the dot product, the filter size can diminish at grazing angles, so we
need to limit the minimum filter size. The value that we are comparing to is
chosen empirically (usually 0.25 works well). Listing 1.3 shows how this variable
filter size is implemented.

Next, all we need to do is evaluate the Gaussian filter. Because this is sep-
arable, the blurring will actually take two passes: a horizontal and a vertical.
We will modify the filter size by the anisotropy value. We also need to sample
all layers at once at each iteration and unpack the individual layers. The layer
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f l o a t unpack_shadow ( vec4 shadow , i n t layer )
{

//4 l a y e r s
u int layered_shadow = uint (16 . 0 � shadow . x ) ;
r e turn ( ( layered_shadow & ( 1 << layer ) ) >> layer ) ;

}

vec4 hard_shadow = texture ( layered_shadow_tex , texcoord ) ;
f l o a t layer0 = unpack_shadow ( hard_shadow , 0 ) ;

Listing 1.4. Unpacking shadow data.

vec4 uint_to_rgba8 ( u int val )
{

u int tmp = val ;
u int r = ( tmp & 0 xff000000 ) >> 24 ;
u int g = ( tmp & 0 x00ff0000 ) >> 16 ;
u int b = ( tmp & 0 x0000ff00 ) >> 8 ;
u int a = ( tmp & 0 x000000ff ) >> 0 ;
re turn vec4 ( r / 255 . 0 , g / 255 . 0 , b / 255 . 0 , a / 255 .0 ) ;

}

Listing 1.5. A function to unpack an RGBA8 value from an R32F float.

unpacking is done as shown in Listing 1.4. Because this is a screen-space filter,
we need to take into consideration that the shadows might leak light if the filter
size is large. Therefore, if the depth difference between the center of the filter and
the actual sampled point is greater than a threshold (usually 0.03 works great),
then we don’t consider the sample.

If we decide to do the Gaussian blurring at half resolution, we can take ad-
vantage of the fact that we still have the hard shadow map information available
at the original resolution; therefore, if we sample the hard shadow map in a grid
pattern (four samples using texture gather), then we can eliminate some of the
aliasing artifacts (essentially super-sampling the layered shadow map). We can
also decide to use exponential shadow mapping, which will reduce some of the
self-shadowing artifacts.

If there are translucent shadow casters, then we need to blur them, too. We
need to do the same as for the opaque casters, only the unpacking will be different.
The unpacking is done as shown in Listing 1.5.

1.9 Lighting Pass

Finally, we need to apply lighting to the scene. This pass is also highly imple-
mentation dependent, but one can still easily integrate SSSS into one’s lighting
process. We use an optimized tiled deferred shader.
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When lighting, one needs to find out which layer the light belongs to, sample
the blurred shadow maps accordingly, and multiply the lighting with the shadow
value. Note that you only need to sample the screen-space soft shadows once for
each pixel and then use the appropriate layer.

1.10 Performance Considerations

There are various ways to speed up the SSSS rendering process. For example, we
can do the anisotropic Gaussian blurring at lower (practically half) resolution.
This essentially lowers the memory bandwidth requirement of the blurring.

In addition, we can do the penumbra generation at a lower resolution, too;
however, this will cause some aliasing near the shadow casters (where the penum-
bra size is low), which can be eliminated using the super-sampling method de-
scribed above.

We can also implement the min-filter approach. When using this, we need to
generate a low-resolution min-filtered shadow map, after the shadow-map gener-
ation pass. Then we substitute the blocker search result with this value. We can
also implement the penumbra mask by checking if this value is below a certain
threshold (the anisotropic Gaussian filter width would be negligible anyway).
This way we don’t need to store the penumbra sizes in screen space in layers,
because these min-filter maps are small enough to sample each of them in the
anisotropic blurring pass, so in the penumbra map pass we only calculate the
layered shadow buffer and layered translucency map. The rest of the algorithm
remains the same. However, as we observed at 4 layers and 16 lights, this ap-
proach is usually around 0.2 ms slower than storing the penumbra size as usual.
This may not be the case with more layers, though.

Additionally, instead of generating penumbra information for each light sep-
arately and blending them together additively, we can also batch the lights and
generate the penumbra information for all of them in one pass. However, if we
decide to go this way, then all the shadow map and min-filtered shadow map in-
formation needs to be available at once. This means that in one pass we need to
sample all of the shadow maps of all the visible lights. These can be passed to a
shader using texture arrays or texture atlases.

We can also adjust the kernel size of the Gaussian blurring. Usually a 11× 11
filter works well, but you can also implement huge filters like a 23 × 23 filter,
which will allow for enormous penumbras, or use an efficient 5 × 5 filter.

1.11 Results

The tests were run on a PC that has a Core i5 4670 processor, 8-GB DDR3 RAM,
and a Radeon 7770 1-GB graphics card. We used an untextured Sponza scene
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Figure 1.8. Shadows rendered using SSSS (left), and reference image rendered with
Blender (right).

with 16 colored lights each having a 1024 × 1024 shadow texture to illustrate
overlapping shadows.

1.12 Quality Tests

We generated reference images with Blender using path tracing and compared
them with the output of the quality tests to make sure that the results were
correct. Figure 1.8 shows these comparisons.

As you can see, our results closely match the reference; however, the Gaussian
filter size may affect the result. Because the blurring is done in screen space, we
can easily afford huge filter sizes. Note that we needed to adjust the light sizes
empirically to match the reference images.

Figure 1.9 shows additional examples from the Sponza scene.

1.13 Performance Analysis

Table 1.1 lists the performance results obtained by rendering the Sponza scene
with 16 shadow casting lights from the same point of view using our technique,
PCSS, PCF, and hard shadows. In the reference image, in our technique, and
in the PCSS case, the shadows have variable penumbras. In the PCF version,
they have uniform penumbras, and in the hard shadows version, they don’t have
penumbras.
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Figure 1.9. Screenshots with light sources rendered over the scene as boxes.

Technique/Resolution 720p 1080p

Lighting only 1.6 ms 3.7 ms

Hard shadows 22.1 ms 25.6 ms

PCF 5× 5 25.8 ms 34.1 ms

PCF 11× 11 33.9 ms 51.6 ms

PCF 23× 23 67.4 ms 126.6 ms

PCSS 5× 5 + 5× 5 30.1 ms 43.4 ms

PCSS 5× 5 + 11× 11 44.4 ms 75.1 ms

PCSS 5× 5 + 23× 23 70.6 ms 133.7 ms

SSSS blocker 5× 5 + 5× 5 33.4 ms 50.3 ms

SSSS blocker 5× 5 + 11× 11 33.8 ms 51.1 ms

SSSS blocker 5× 5 + 23× 23 34.6 ms 52.2 ms

SSSS min filter 5× 5 26.4 ms 31.7 ms

SSSS min filter 11× 11 27.0 ms 33.0 ms

SSSS min filter 23× 23 28.2 ms 35.8 ms

SSSS optimized 5× 5 24.7 ms 27.9 ms

SSSS optimized 11× 11 24.9 ms 28.4 ms

SSSS optimized 23× 23 25.4 ms 29.8 ms

Table 1.1. Performance results (frame times) from the Sponza scene.
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We included various versions of our technique, like the min-filter optimization
and the blocker search variant. We also included an optimized version that uses
the min-filter optimization, half-resolution Gaussian blurring, and penumbra gen-
eration, plus the mentioned super-sampling to maintain the quality. All of the
variants use the batching method to generate the layered penumbra data.

You can see that SSSS outperforms PCSS and delivers roughly the same per-
formance as PCF. It can be observed that while the techniques based on shadow-
space blurring (PCF and PCSS) took a severe performance hit when increasing
the resolution, the SSSS version didn’t suffer from this. In addition, increasing
the kernel size also had a great impact on the performance of the shadow-space
techniques, but the SSSS version still didn’t suffer from this problem.

1.14 Conclusion

We showed, that using layered shadow buffers, we can correctly handle overlap-
ping shadows and that we can use layered translucency maps to allow for colored
shadows cast by translucent shadow casters. We also showed that this technique
can be implemented in real time while still being perceptually correct.
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IV

Tile-Based
Omnidirectional Shadows

Hawar Doghramachi

2.1 Introduction

Rendering efficiently a massive amount of local light sources had already been
solved by methods such as tiled deferred shading [Andersson 09], tiled forward
shading [Billeter et al. 13], and clustered deferred and forward shading [Olsson
et al. 12]. However, generating appropriate shadows for a large number of light
sources in real time is still an ongoing topic. Since accurate shadows from direct
lights significantly improve the final image and give the viewer additional infor-
mation about the scene arrangement, their generation is an important part of
real-time rendering.

This chapter will demonstrate how to efficiently generate soft shadows for a
large number of omnidirectional light sources where each light casts individual
shadows. It will be further shown that this is accomplished without introducing
new artifacts, such as shadow flickering. The underlying algorithm is based on
shadow mapping, introduced in [Williams 78], thus it benefits from the architec-
ture of current rasterizer-based graphics hardware as well as from a wide range
of existing techniques to provide high-quality soft shadows.

For this, the concepts of programmable draw dispatch [Riccio and Lilley 13]
and tetrahedron shadow mapping [Liao 10] are combined via a novel usage of the
programmable clipping unit, which is present in current consumer graphics hard-
ware. For each light source a separate shadow map is generated, so a hierarchical
quad-tree is additionally utilized, which efficiently packs shadow maps of all light
sources as tiles into a single 2D texture map. In this way, significantly more
shadow maps can be stored in a limited amount of texture memory than with
traditional shadow mapping methods.

315
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2.2 Overview

The main target of this work is to utilize recently available features of common
consumer graphics hardware, exposed by the OpenGL graphics API, to acceler-
ate the computation of high-quality soft shadows for a high number of dynamic
omnidirectional light sources.

Traditional shadow map rendering typically first determines the meshes that
are overlapping the volumes of all relevant light sources which is already an
O(nm) time complexity task. After this information has been computed, for
each relevant mesh and light source, one GPU draw command is dispatched. For
omnidirectional lights, the situation is even more problematic: e.g., for a cube
map-based approach [Gerasimov 04], we need do the visibility determination for
six cube map faces and dispatch up to six GPU draw commands per mesh and
light source. The large amount of submitted draw calls can cause a significant
CPU overhead. The first part of the proposed algorithm bypasses this problem by
using the concept of programmable draw dispatch [Riccio and Lilley 13]. In this
way, the entire visibility determination and draw command generation process
is shifted to the GPU, avoiding almost the entire CPU overhead of traditional
methods.

The second part of the proposed technique makes use of the idea that for om-
nidirectional light sources it is not necessary to subdivide the 3D space into six
view volumes, as done for cube map–based approaches [Gerasimov 04]. Accord-
ing to tetrahedron shadow mapping [Liao 10], it is entirely enough to subdivide
the 3D space into four view volumes by a regular tetrahedron to produce accu-
rate shadows for omnidirectional light sources. In this way up to a third of the
draw call amount of cube map–based approaches can be saved. In contrast to
the tetrahedron shadow mapping algorithm as proposed in [Liao 10], the entire
process of creating shadow maps for four separate view directions is efficiently
moved to the GPU by introducing a novel usage of the programmable clipping
unit, which is part of current consumer graphics hardware. Furthermore, the
original method is extended in order to provide soft shadows.

Finally, this work takes advantage of the observation that the required shadow
map resolution is proportional to the screen area that the corresponding light
source influences—i.e., the smaller the radius of the light source and the larger
its distance to the viewer camera, the smaller the required shadow map resolution.
After determining the required resolution, the shadow maps of all relevant light
sources are inserted as tiles into one large 2D texture map, which will be called
the tiled shadow map. To make optimal use of the available texture space, a
hierarchical quad-tree is used. This concept not only saves memory bandwidth
at writing and reading of shadow maps, but further enables the use of a large
amount of shadow-casting light sources within a limited texture space.

The entire process of tile-based omnidirectional shadows can be subdivided
into four distinct steps:



2. Tile-Based Omnidirectional Shadows 317

• In a first preparation step, it is determined which meshes and light sources
are relevant, i.e., influence the final image. This can be done, for example,
by view frustum culling and GPU hardware occlusion queries. For all rele-
vant meshes and light sources, a linear list is written into a GPU buffer that
contains information about each mesh and each light source, respectively.
This process has an O(n + m) time complexity and is done on the CPU.

• On the GPU, a compute shader takes the previously generated buffers as
input and tests each mesh for overlap with each relevant light source. This
process has an O(nm) time complexity and thus is spread over a large
amount of parallel computing threads. As a result of this overlap test, the
corresponding draw commands are written into a GPU buffer, which will
be called the indirect draw buffer.

• By the use of a single indirect draw call submitted from the CPU, all GPU-
generated draw commands within the indirect draw buffer are executed.
In this way, shadow maps are generated for all relevant light sources and
written into corresponding tiles of the tiled shadow map.

• Finally, the tiled shadow map is sampled during the shading process by
all visible screen fragments for each relevant light source to generate soft
shadows.

2.3 Implementation

In the following subsections, each step will be described in detail. All explanations
assume a column-major matrix layout, right-handed coordinate system with the
y axis pointing upward, left-bottom corner as texture and screen-space origin, and
clip-space depth-range from −1.0 to 1.0. This work only focuses on generating
shadows for point lights, but as will be demonstrated in Section 2.5.2, it can be
easily extended to additionally support spotlights.

2.3.1 Preparation

In this step, it is first determined which lights are relevant for further processing.
Typically these are all shadow-casting light sources that are visible to the viewer
camera—that is, their light volume overlaps the view frustum and is not totally
occluded by opaque geometry. This can be accomplished by view frustum culling
and GPU hardware occlusion queries.

Tile resolution. After finding all relevant light sources, we need to determine how
large the influence of each light source on the final image is. For this, we first
compute the screen-space axis-aligned bounding box (AABB) of the spherical
light volume. Care must be taken not to clip the AABB against the boundaries
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Tile resolution
81922
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20482

10242

Figure 2.1. First four levels of a quad-tree that manages the tiles of a 8192× 8192 tiled
shadow map.

of the screen; for example, a large point light that is near to the viewer but only
a small portion of which is visible on the screen still requires a high-resolution
shadow map tile. After finding the width and height of the AABB, the larger of
these two values will be taken as an approximation for the required shadow map
tile resolution. However, to avoid extremely small or large values, the acquired
resolution should be clamped within a reasonable range. For the case that more
shadow-map tiles will be inserted than the tiled shadow map can handle, the lights
are sorted relative to their acquired tile resolution. In this way, light sources with
the smallest tile resolution will be at the end of the sorted light list and are the
first to be excluded from shadow-map rendering when the tiled shadow map runs
out of space.

Tile management. A typical texture resolution that should suffice in most cases
for a tiled shadow map is 8192× 8192. When using a 16-bit depth buffer texture
format at this resolution, we can keep the required amount of video memory
under 135 MB, which should be a reasonable value on modern graphics cards.

For the quad-tree implementation, a cache-friendly approach is chosen, where
all nodes are stored in a preallocated linear memory block. Instead of pointers,
indices are used to identify each node. Keeping all nodes in a linear list has
the further advantage that resetting the quad-tree is a very fast operation, since
we only have to iterate linearly over the node list. Each level of the quad-tree
corresponds to a power-of-two shadow map tile resolution and each node holds
the texture-space position of a tile in the tiled shadow map (Figure 2.1). To
increase runtime performance, the quad-tree nodes are already initialized with the
corresponding position values for a user-specified number of levels. The previously
acquired tile resolution should be clamped within a reasonable range since, on
the one hand, too small values would increase runtime performance for finding an
appropriate node and, on the other hand, too large values would rapidly occupy
the available texture space.

At runtime, each light source requests, in the order of the sorted light list,
a tile inside the quad-tree with the calculated tile resolution. For this, first we



2. Tile-Based Omnidirectional Shadows 319

must determine the lowest quad-tree level that has a tile resolution that is still
higher than the specified value:

level = log2(s) − ceil(log2(x)),

where s is the resolution of the entire tiled shadow map and x the specified
resolution. However, after finding a corresponding free tile node, the initially
acquired resolution is used instead of the power-of-two node value. Thus, popping
artifacts at shadow edges can be avoided, which would otherwise occur when the
distance of the viewer camera to the light source changes. Performance-wise,
the costs for the tile lookup are negligible; on an Intel Core i7-4810MQ 2.8 GHZ
CPU for 128 light sources, the average required time is about 0.16 ms. Lights that
cannot acquire a free tile due to an exaggerated light count are flagged as non–
shadow casting and ignored during shadow generation. Because such lights have
the smallest influence on the output image anyway, in general, visual artifacts
are hard to notice.

Matrix setup. After all relevant lights are assigned to a corresponding shadow
map tile, for each light source, the matrices that are used during shadow-map
rendering and shading have to be correctly set up. As initially described, a reg-
ular tetrahedron is used to subdivide the 3D space for omnidirectional shadows.
Because this part of the system builds upon tetrahedron shadow mapping as pro-
posed in [Liao 10], only the modifications introduced here will be described in
detail.

First, for each of the four tetrahedron faces, a view matrix needs to be found
that consists of a rotational and a translational part. The rotational part can be
precomputed since it is equal for all lights and never changes; yaw, pitch, and
roll values for constructing these matrices are listed in Table 2.1.

The translational part consists of the vector from the point light center to the
origin and must be recalculated whenever the light position changes. Concate-
nating the translation matrix with each of the rotation matrices yields the final
four view matrices.

In the next step, appropriate perspective projection matrices have to be cal-
culated. For this, the far plane is set to the radius of the point light. Table 2.2
shows the horizontal and vertical field of view (FOV) for each tetrahedron face.

Face Yaw Pitch Roll

A 27.36780516 180.0 0.0

B 27.36780516 0.0 90.0

C −27.36780516 270.0 0.0

D −27.36780516 90.0 90.0

Table 2.1. Yaw, pitch, and roll in degrees to construct the rotation matrices for the
four tetrahedron faces.
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Face Horizontal FOV Vertical FOV

A 143.98570868 + α 125.26438968 + β

B 125.26438968 + β 143.98570868 + α

C 143.98570868 + α 125.26438968 + β

D 125.26438968 + β 143.98570868 + α

Table 2.2. Horizontal and vertical FOV in degrees to construct the perspective pro-
jection matrices for the four tetrahedron faces. As can be seen, faces A and C and,
respectively, faces B and D share the same values. In order to provide soft shadows, the
values from the original paper have to be adjusted by α and β.

vec3 centers [ 4 ] = { vec3 (−1 ,0 ,−1) , vec3 (1 ,0 ,−1) , vec3 (0 ,−1 ,−1) ,
vec3 (0 ,1 ,−1) } ;

vec3 offsets [ 4 ] = { vec3(−r , 0 , 0 ) , vec3 ( r , 0 , 0 ) , vec3 (0 ,−r , 0 ) ,
vec3 (0 , r , 0 ) } ;

f o r ( u int i=0; i<4; i++)
{

centers [ i ] += offsets [ i ] ;
v [ i ] = normalize ( invProjMatrix � centers [ i ] ) ;

}
dilatedFovX = acos ( dot ( v [ 0 ] , v [ 1 ] ) ) � 180/ PI ;
dilatedFovY = acos ( dot ( v [ 2 ] , v [ 3 ] ) ) � 180/ PI ;
alpha = dilatedFovX − originalFovX ;
beta = dilatedFovY − originalFovY ;

Listing 2.1. Pseudocode for computing α and β that is used to extend the original FOV
values in order to provide soft shadows.

Because the original paper [Liao 10] did not take into account that soft shad-
ows require a slightly larger texture area for filtering, the original horizontal and
vertical FOV values must be increased by α and β (Table 2.2). These two angles
can be computed by first offsetting the center points of each clip-space edge at
the near plane with a dilation radius r. Using r = 0.0625 provides in practice
enough space for reasonable filter kernels while avoiding an unnecessary reduc-
tion of the effective texture resolution. The offset center points are transformed
into view space with the inverse projection matrix of tetrahedron face A, which is
built with the original FOV values and normalized to form the vectors v0, . . . ,v3

that point from the view-space origin to the transformed points. With the help
of these vectors, α and β can be calculated as shown in Listing 2.1.

Fortunately, the projection matrices are equal for all lights and never change;
thus, they can be precomputed.

Finally, the texture transformation matrices have to be calculated, which
will position the projected tetrahedron views correctly within the tiled shadow
map. Because the projected view area of each tetrahedron face correspond to a
triangle (Figure 2.2), these areas can be packed together into squared tiles, which
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Figure 2.2. (a) A perspective view of the used tetrahedron, where face B is facing away
from the camera. (b) The triangular-shaped projected views of the four tetrahedron
faces packed together into a squared tile.

perfectly fits to the proposed quad-tree–based partitioning scheme. All we need
for computing these matrices are the previously computed position coordinates
(px, py) and the size s of each shadow map tile in texture space:

MA =

⎛⎜⎜⎝
s 0 0 px
0 s/2 0 py − s/2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠, MB =

⎛⎜⎜⎝
s/2 0 0 px + s/2
0 s 0 py
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

MC =

⎛⎜⎜⎝
s 0 0 px
0 s/2 0 py + s/2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , MD =

⎛⎜⎜⎝
s/2 0 0 px − s/2
0 s 0 py
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

where MA, . . . ,MD are the texture transformation matrices for the tetrahedron
faces A, . . . , D.

Concatenating the texture, projection and view matrices finally gives the four
matrices that are required to render and fetch each shadow map tile and are
called shadow matrices.

Light buffer. In the order of the sorted light list, the position, radius, and four
shadow matrices of each light source have to be uploaded to the GPU, for which
a GL_SHADER_BUFFER_STORAGE buffer is used.

Mesh-info buffer. Similar as for the light sources, one first needs to determine
which meshes are relevant for further processing. Typically these are all shadow-
casting meshes that overlap the volumes of the point lights that are found to
be visible to the viewer camera. Because the actual light-mesh overlap test will
be done later on the GPU, at this stage, only a fast preexclusion of irrelevant
meshes should be performed. This could be done for instance by testing the
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AABB of the meshes for overlap with the AABB that encloses all relevant light
sources. An important prerequisite of the proposed technique is that commonly
processed meshes have to share the same vertex and index buffer. However, this
is strongly recommended anyway, since frequent switching of GPU resources has
a significant impact on the runtime performance due to a driver CPU overhead
[Riccio and Lilley 13]. According to the light buffer, the required information for
each relevant mesh is written into a GL_SHADER_BUFFER_STORAGE type GPU buffer.
For each mesh, its first index into the common index buffer, number of indices
required to draw the mesh, and minimum and maximum corners of the enclosing
AABB have to be uploaded.

2.3.2 Indirect Draw Buffer Generation

In this step, a compute shader takes the previously generated light and mesh-info
buffers as input and generates a command buffer with which the shadow maps
of all relevant light sources will be rendered later on. For this, two additional
GL_SHADER_BUFFER_STORAGE buffers are created, into which the results are written.

Indirect draw buffer. The first required output buffer is the command buffer it-
self. The first member of this buffer is an atomic counter variable that keeps
track of the number of indirect draw commands that are stored subsequently.
The indirect draw command structure is already predefined by the OpenGL
specification and contains the number of required mesh indices (count), num-
ber of instances to be rendered (instanceCount), first index into the bound index
buffer (firstIndex), offset to be applied to the indices fetched from the bound
index buffer (baseVertex), and offset for fetching instanced vertex attributes
(baseInstance).

Light-index buffer. The second required output buffer stores the indices of all
relevant lights that overlap the processed meshes. Corresponding to the indirect
draw buffer, an atomic counter variable keeps track of the number of subsequently
stored light indices.

Computation. A compute shader is dispatched to generate the indirect draw and
light-index buffers, whereby for each relevant mesh one thread group is spawned.
For each thread group, a multiple of 32 threads is used.

While each thread group processes one mesh, all threads within a thread
group iterate in parallel over all relevant lights and perform a sphere-AABB
overlap test between the volume of each point light and the AABB of each mesh.
For this, a fast overlap test is used as proposed in [Larsson et al. 07]. Each time
an overlap is detected, an atomic counter is incremented and the corresponding
light index is written into a light-index list. Both the atomic counter variable as
well as the light-index list are located in the fast shared thread group memory
of the GPU, thus avoiding frequent atomic writes into the global video memory,
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which would be more expensive [Harada et al. 13]. After all relevant lights are
processed for a mesh, a new indirect draw command is added to the indirect draw
buffer, but only if at least one light overlaps the AABB of the processed mesh.
This is done by incrementing the atomic counter of the indirect draw buffer and
writing the new draw command to the corresponding location. At this point,
we additionally increment the atomic counter of the light-index buffer with the
number of overlapping lights. This will return a start index into the light-index
buffer, which resides in the global video memory, from where the acquired light
indices in the shared thread group memory can be copied into the light-index
buffer. The copying process is done in parallel by each thread of a thread group
at the end of the compute shader.

Besides passing the firstIndex and count of the current mesh to the new in-
direct draw command, the number of overlapping lights is forwarded as instance

Count—i.e., later on, when the indirect draw command is executed, for each light
source a new mesh instance will be rendered. However, at that stage it is nec-
essary to acquire for each instance the corresponding light index. For this, we
write the obtained start index, which points into the light-index buffer, into the
baseInstance member of the draw command. This member will be only used by
the OpenGL pipeline if instanced vertex attributes are utilized—that is, vertex
attributes with a nonzero divisor. Since traditional instancing (e.g., to create
multiple instances of the same mesh at various locations) does not make much
sense in the proposed method, we can relinquish instanced vertex attributes,
which enables the use of the valuable baseInstance parameter. Fortunately, in
the context of OpenGL 4.4, the GL_ARB_shader_draw_parameters extension has
been introduced, which allows a shader to fetch various draw command related
parameters such as the baseInstance one. In this way, when the indirect draw
commands are executed later on, for each instance, an offset into the light-index
buffer can be retrieved in the vertex shader by summing the OpenGL supplied
draw parameters gl_BaseInstanceARB and gl_InstanceID. At this offset, the cor-
responding light index can be fetched from the light-index buffer. This approach
significantly reduces the required amount of video memory space in contrast to
generating for each overlapping light source a new indirect draw command, which
requires five times more space than a single light index. Listing 2.2 shows how
this can be done for OpenGL in GLSL.

#de f i n e MAX NUM LIGHTS 1024
#de f i n e LOCAL SIZE X 256

shared u int groupCounter ;
shared u int groupLightIndices [ MAX_NUM_LIGHTS ] ;
shared u int startLightIndex ;

layout ( local_size_x=LOCAL_SIZE_X ) in ;
void main ( )
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{
// i n i t i a l i z e group counte r
i f ( gl_LocalInvocationIndex == 0)

groupCounter = 0;
barrier ( ) ;
memoryBarrierShared ( ) ;

// i t e r a t e over a l l r e l e van t l i g h t sou r c e s
u int meshIndex = gl_WorkGroupID . x ;
f o r ( u int i=0; i<uniformBuffer . numLights ; i+=LOCAL_SIZE_X )
{

u int lightIndex = gl_LocalInvocationIndex+i ;
i f ( lightIndex < uniformBuffer . numLights )
{

vec3 lightPosition = lightBuffer . lights [ lightIndex ] .←↩
position ;

f l o a t lightRadius = lightBuffer . lights [ lightIndex ] . radius ;
vec3 mins = meshInfoBuffer . infos [ meshIndex ] . mins ;
vec3 maxes = meshInfoBuffer . infos [ meshIndex ] . maxes ;

// perform AABB−sphere over lap t e s t
vec3 distances = max ( mins−lightPosition , 0 . 0 ) +

max ( lightPosition−maxes , 0 . 0 ) ;
i f ( dot ( distances , distances ) <= ( lightRadius � lightRadius ) )
{

// For each over lap increment groupCounter and add
// l i gh t Index to l i gh t−index array in shared thread
// group memory .
u int index = atomicAdd ( groupCounter , 1) ;
groupLightIndices [ index ] = lightIndex ;

}
}

}
barrier ( ) ;
memoryBarrierShared ( ) ;

// In case at l e a s t one over lap has been detected , add new
// i n d i r e c t draw draw command to i n d i r e c t draw bu f f e r and
// determine s t a r t index in to l i gh t−index bu f f e r . Both
// bu f f e r s r e s i d e in g l oba l v ideo memory .
i f ( gl_LocalInvocationIndex == 0)
{

i f ( groupCounter > 0)
{

u int cmdIndex = atomicAdd ( drawIndirectCmdBuffer . counter , ←↩
1) ;

startLightIndex = atomicAdd ( lightIndexBuffer . counter ,
groupCounter ) ;

drawIndirectCmdBuffer . cmds [ cmdIndex ] . count =
meshInfoBuffer . infos [ meshIndex ] . numIndices ;

drawIndirectCmdBuffer . cmds [ cmdIndex ] . instanceCount = ←↩
groupCounter ;

drawIndirectCmdBuffer . cmds [ cmdIndex ] . firstIndex =
meshInfoBuffer . infos [ meshIndex ] . firstIndex ;

drawIndirectCmdBuffer . cmds [ cmdIndex ] . baseVertex = 0;
drawIndirectCmdBuffer . cmds [ cmdIndex ] . baseInstance =

startLightIndex ;
}

}
barrier ( ) ;
memoryBarrierShared ( ) ;

// Copy l i g h t i n d i c e s from shared thread group memory in to
// g l oba l v ideo memory .
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f o r ( u int i=gl_LocalInvocationIndex ; i<groupCounter ; i+=←↩
LOCAL_SIZE_X )

{
lightIndexBuffer . lightIndices [ startLightIndex+i ] =

groupLightIndices [ i ] ;
}

}

Listing 2.2. Compute shader for generating indirect draw buffer.

For the Crytek Sponza scene with 103 meshes and 128 processed light sources,
the GPU time taken for this computation task was about 0.02 ms on an NVIDIA
GeForce GTX 880 Mobile.

Finally, care must be taken to reset the atomic counters of the indirect draw
and light-index buffers at the beginning of each frame, which can be done by
using the OpenGL command glClearBufferSubData().

2.3.3 Indirect Shadow Map Rendering

At this stage, the previously generated indirect draw buffer is executed by the
OpenGL draw command glMultiDrawElementsIndirectCountARB(). This draw call
has been introduced in the context of OpenGL 4.4 with the GL_ARB_indirect_

parameters extension and is an improved version of the previously available
glMultiDrawElementsIndirect(). Since we have no idea on the host side how many
draw commands the GPU has generated and a corresponding query would be very
inefficient (since it introduces a synchronization point between CPU and GPU),
previously the only possibility was to execute glMultiDrawElementsIndirect()

with a maximum number of elements and discard draws by writing zero to the
instanceCount member of the indirect draw command. However, discarding draws
is not free [Riccio and Lilley 13]. With the new draw call glMultiDrawElements

IndirectCountARB(), the number of executed elements will be determined by tak-
ing the minimum of the value specified in the draw command itself and a value
that is sourced from a GL_PARAMETER_BUFFER_ARB type GPU buffer, for which the
atomic counter of the indirect draw buffer is used.

Programmable clipping. There is still one major obstacle that needs to be solved
prior to being able to render indirectly all shadow map tiles into the tiled shadow
map. As demonstrated, the previously generated shadow matrices will create tri-
angular projected areas that can be theoretically tightly packed as squared tiles,
but since we are rendering into a 2D texture atlas, these areas will overlap and
cause major artifacts. One possible solution could be the use of a viewport array.
However, since the maximum number of simultaneously set viewports is usually
limited to a small number, typically around 16, and the viewports are rectan-
gular and not triangular, this approach is not viable. Another possible solution
could be to discard in a fragment shader all fragments outside the projected tri-
angular areas, but this would be far too slow to be feasible. Fortunately, with



326 IV Shadows

c2

fD

fC

fA

c1

c0

c3

p

Figure 2.3. The green arrows show the tetrahedron face vectors fA, fC , and fD. Face
vector fB is pointing away from the camera. The four corners of the tetrahedron are
marked as c0, . . . , c3, and the center of the tetrahedron that coincides with the point
light position is shown as p. The three clipping planes that separate the view volume
of tetrahedron face D from its neighbors are depicted in blue, green, and yellow.

programmable clipping there exists another hardware-accelerated approach that,
to the knowledge of the author, had previously not been used in this context. The
clipping unit of current consumer graphics hardware allows the user to insert cus-
tom clipping planes inside shaders. This algorithm will take advantage of this
feature to efficiently render indirectly all shadow map tiles into the tiled shadow
map. Even though on the GPU a triangle setup that uses custom clipping planes
is slower than a regular setup, this will not have a significant performance impact
since only triangles that are actually clipped at the border of each tetrahedron
view volume are affected.

As stated at the beginning of this section, a regular tetrahedron is used to
subdivide the 3D space into four view volumes. Hence, each view volume is
separated from its neighbors by exactly three planes, as shown in Figure 2.3. In
order to clip against these planes, first the plane normals have to be calculated.
This can be done by using the four normalized tetrahedron face vectors as given
in [Liao 10] (Table 2.3).

With the help of the tetrahedron face vectors fA, . . . fD, the vectors v0, . . . , v3
can be calculated, which point from the tetrahedron center p to the tetrahedron
corners c0, . . . , c3 (Figure 2.3):

v0 = −fA, v1 = −fC , v2 = −fA, v3 = −fD.

In Listing 2.3, the normal of the yellow clipping plane illustrated in Figure 2.3
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Face x y z

A 0.0 −0.57735026 0.81649661

B 0.0 −0.57735026 −0.81649661
C −0.81649661 0.57735026 0.0

D 0.81649661 0.57735026 0.0

Table 2.3. The x, y, and z components of the four normalized tetrahedron face vectors.

normal = normalize ( cross ( v1 , v ) ) ;
rotationAxis = normalize ( cross ( fA , fD ) ) ;

// quat ( rotat ionAxi s , alpha ) i s a quate rn ion that r o ta t e s alpha
// degree s around ro ta t i onAx i s
rotatedNormal = quat ( rotationAxis , alpha ) � normal ;

Listing 2.3. Pseudocode for calculating clipping plane normal.

will be calculated, which separates the view volumes of faces A and D. All other
clipping plane normals can be calculated correspondingly.

Since later on it should be possible to generate soft shadows by applying,
e.g., percentage closer filtering (PCF), the plane normals have to be adjusted
appropriately. For this the plane normals are rotated in order to increase the
aperture of the tetrahedron view volumes. The angle α used for this is the same
as derived in the section “Matrix setup” on page 319; this angle ensures, on the
one hand, that a sufficient amount of primitives pass the clipping stage to account
for shadow map filtering and, on the other hand, that the projected tetrahedron
view areas do not overlap in the effective sampling area. Since the resulting 12
clipping plane normals are equal for all lights and never change at runtime, they
can be precalculated and added as constants into the corresponding shader.

At runtime, the precalculated normals are combined each time with the posi-
tion of the processed light source to construct the appropriate clipping planes.

Vertex processing. To render indirectly the shadow maps, a simple vertex shader is
required to fetch the vertex attributes (typically the vertex position), to calculate
the light index (as already described in the section “Computation” on page 322),
and to pass this value to a subsequent geometry shader.

Primitive processing. After the vertex shader, a geometry shader is invoked to
perform clipping with the precalculated plane normals. Depending on which of
the four view volumes of the tetrahedron the processed triangle intersects, up
to four new primitives have to be generated. Against all expectations, it has
proven to be far more performant to run a loop over four primitives in a single
geometry shader invocation than using geometry shader instancing and invoking
the geometry shader four times. The reasons for this can be that, in a high
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percentage of cases, less than four primitives have to be emitted and that the
light buffer data has to be fetched only once for each incoming primitive in the
loop-based approach.

An alternative strategy would be to cull the AABBs of the relevant meshes
against the four tetrahedron view volumes for each light in the indirect draw buffer
generation step and add for each overlap a new indirect draw command, thus
avoiding later the use of the geometry shader. However, it has shown that this
approach not only requires more video memory for storing the increased amount of
indirect draw commands, but also runs notably slower than the geometry shader
approach. A reason for this can be that the geometry shader performs culling on
a per-triangle basis, in contrast to culling AABBs of the relevant meshes.

Since back-face culling as implemented by the graphics hardware is performed
after the vertex and primitive processing stage, it is done manually at the begin-
ning of the geometry shader. By reducing the amount of processed primitives,
runtime performance can be further increased [Rákos 12]. This can be an addi-
tional reason why geometry shader instancing is performing more slowly, because
the back-face culling code has to be performed four times in contrast to the
loop-based solution, where this code is shared for all four primitives.

Though the clip distances are passed via gl_ClipDistance to the clipping unit
of the graphics hardware, it has proven that additionally culling primitives in the
shader further improves runtime performance. This can be done by only emitting
a new primitive when at least one of the calculated clip distances of the three
processed triangle vertices is greater than zero for all three clipping planes of the
processed tetrahedron face.

Finally, transforming the incoming vertices boils down to performing for each
relevant tetrahedron face one matrix multiplication with the matching shadow
matrix. Listing 2.4 shows the corresponding GLSL geometry shader.

f l o a t GetClipDist ( in vec3 lightPos , in u int vertexIndex , in u int
planeIndex )

{
vec3 normal = planeNormals [ planeIndex ] ; // c l i p p i ng plane normal
re turn ( dot ( gl_in [ vertexIndex ] . gl_Position . xyz , normal )

+dot(−normal , lightPosition ) ) ;
}

layout ( triangles ) in ;
layout ( triangle_strip , max_vertices = 12) out ;
void main ( )
{

const u int lightIndex = inputGS [ 0 ] . lightIndex ;
const vec3 lightPosition = lightBuffer . lights [ lightIndex ] . position ;

// perform back−f a c e c u l l i n g
vec3 normal = cross ( gl_in [ 2 ] . gl_Position . xyz−gl_in [ 0 ]

. gl_Position . xyz ,
gl_in [ 0 ] . gl_Position . xyz−gl_in [ 1 ]

. gl_Position . xyz ) ;
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vec3 view = lightPosition−gl_in [ 0 ] . gl_Position . xyz ;

i f ( dot ( normal , view ) < 0 . 0 f )
re turn ;

// i t e r a t e over te t rahedron f a c e s
f o r ( u int faceIndex=0; faceIndex <4; faceIndex++)
{

u int inside = 0;
f l o a t clipDistances [ 9 ] ;

// Calcu late f o r each vertex d i s t anc e to c l i pp in g p lanes and
// determine whether proce ssed t r i a n g l e i s i n s i d e view
// volume .
f o r ( u int sideIndex=0; sideIndex <3; sideIndex++)
{

const u int planeIndex = ( faceIndex�3)+ sideIndex ;
const u int bit = 1 << sideIndex ;

f o r ( u int vertexIndex=0; vertexIndex <3; vertexIndex++)
{

u int clipDistIndex = sideIndex�3+ vertexIndex ;
clipDistances [ clipDistIndex ] = GetClipDist ( lightPosition ,

vertexIndex , planeIndex ) ;
inside |= ( clipDistances [ clipDistIndex ] > 0 . 001 ) ?

bit : 0 ;
}

}

// I f t r i a n g l e i s i n s i d e volume , emit p r im i t i v e .
i f ( inside == 0 x7 )
{

const mat4 shadowMatrix =
lightBuffer . lights [ lightIndex ] . shadowMatrices [ faceIndex ] ;

// Transform vertex p o s i t i o n s with shadow matrix and
// forward c l i p d i s t an c e s to g raph i c s hardware .
f o r ( u int vertexIndex=0; vertexIndex <3; vertexIndex++)
{

gl_Position = shadowMatrix � gl_in [ vertexIndex ] . gl_Position ;
gl_ClipDistance [ 0 ] = clipDistances [ vertexIndex ] ;
gl_ClipDistance [ 1 ] = clipDistances [3+ vertexIndex ] ;
gl_ClipDistance [ 2 ] = clipDistances [6+ vertexIndex ] ;
EmitVertex ( ) ;

}
EndPrimitive ( ) ;

}
}

}

Listing 2.4. Geometry shader for indirect shadow map rendering.

Tiled shadow map. After the draw commands in the indirect draw buffer are
executed, the shadow map tiles of all relevant light sources are tightly packed
together into the tiled shadow map. Figure 2.4 shows this texture that was
generated for the scene in Figure 2.5.

As can be seen in Figure 2.4, the shadow map tiles of all light sources in
the processed scene are tightly packed; thus, shadow maps for significantly more
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Figure 2.4. A tiled shadow map (generated for the scene in Figure 2.5) with a resolution
of 8192×8192. The tile size is clamped between 64 and 512. Since the scene is rendered
with view frustum culling of invisible light sources, for 117 out of the 128 medium-sized
moving point lights, an individual shadow map tile is generated. With this texture and
clamped tile resolution, in the worst case, shadow map tiles for 256 light sources can
still be stored in the tiled shadow map.

omnidirectional light sources can be stored in a limited texture space than with
traditional shadow mapping systems.

2.3.4 Shading

Finally, the tiled shadow map can be used in the shading stage to produce high-
quality soft shadows. Shading methods such as tiled deferred shading [Andersson
09], tiled forward shading [Billeter et al. 13], or clustered deferred and forward
shading [Olsson et al. 12] require the shadow maps for all relevant light sources
to be created prior to the shading process as the proposed algorithm does. How-
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// matrix o f te t rahedron f ac e ve c to r s
mat4x3 faceMatrix ;
faceMatrix [ 0 ] = faceVectors [ 0 ] ;
faceMatrix [ 1 ] = faceVectors [ 1 ] ;
faceMatrix [ 2 ] = faceVectors [ 2 ] ;
faceMatrix [ 3 ] = faceVectors [ 3 ] ;

// determine f a c e that i s c l o s e s t to s p e c i f i e d l i g h t vec tor
vec4 dotProducts = −lightVecN � faceMatrix ;
f l o a t maximum = max ( max ( dotProducts . x , dotProducts . y ) ,

max ( dotProducts . z , dotProducts . w ) ) ;
u int index ;
i f ( maximum == dotProducts . x )

index = 0;
e l s e i f ( maximum == dotProducts . y )

index = 1;
e l s e i f ( maximum == dotProducts . z )

index = 2;
e l s e

index = 3;

// p r o j e c t fragment world−space p o s i t i o n
vec4 projPos =

lightBuffer . lights [ lightIndex ] . shadowMatrices [ index ]� position ;
projPos . xyz /= projPos . w ;
projPos . xyz = ( projPos . xyz �0 . 5 ) +0.5;

// c a l c u l a t e shadow term with HW− f i l t e r e d shadow lookup
f l o a t shadowTerm = texture ( tiledShadowMap , projPos . xyz ) ;

Listing 2.5. Generating the shadow term with a tiled shadow map.

ever, lighting methods such as deferred shading [Hargreaves and Harris 04] that
theoretically can reuse shadow map textures for multiple lights by alternating be-
tween shadow map rendering and shading, can profit as well from the proposed
method, since frequent switching of render states and GPU resources can be an
expensive operation.

Generating shadows with the help of a tiled shadow map is straightforward
and follows [Liao 10]. After acquiring the world-space position of the currently
shaded screen fragment, for each relevant light source it is first determined inside
which of the four tetrahedron view volumes the processed fragment is located.
The acquired fragment position is then multiplied with the corresponding shadow
matrix to yield the projected fragment position with which a shadow comparison
is done. See Listing 2.5 for details.

Besides performing a hardware-filtered shadow comparison, various filtering
approaches such as PCF [Reeves et al. 87] or percentage-closer soft shadows
(PCSS) [Fernando 05] can be used to produce high-quality soft shadows. Since,
as already described earlier in this section, the shadow projection matrices and
tetrahedron clipping plane normals are properly adapted, such filtering techniques
will not produce any artifacts by sampling outside of the appropriate shadow map
areas.
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2.4 Results

To capture the results, the Crytek Sponza scene was used, which contains without
the central banner 103 meshes and ∼280,000 triangles. The test machine had an
Intel Core i7-4810MQ 2.8 GHZ CPU and an NVIDIA GeForce GTX 880 Mobile
GPU and the screen resolution was set to 1280 × 720. For the lighting system,
tiled deferred shading [Andersson 09] is used.

A layered cube map–based shadowing solution is used as the reference for the
proposed technique. For this, the shadow maps of each point light are rendered
into a cube map texture array with 128 layer and a 16-bit depth buffer texture
format; each cube map face has a texture resolution of 256× 256. For each point
light, the 3D space is split up into six view frustums that correspond to the six
faces of a cube map. Each mesh is tested for overlap with each of the six view
frustums. Every time an overlap is detected, a new indexed draw call is submitted
to the GPU. To speed up rendering performance, all meshes share the same vertex
and index buffer and the cube map face selection is done in a geometry shader.
For a large number of light sources, it has proven to be more performant to
submit for each overlap a separate draw call rather than always amplifying the
input geometry in the geometry shader six times and using one draw call. To
improve the quality of the generated shadows, GL_TEXTURE_CUBE_MAP_SEAMLESS is
enabled, and besides performing hardware shadow filtering, 16× PCF is used for
soft shadows. In the remaining part of this section, the reference technique will
be referred to as the cube solution.

For the proposed method, a 8192 × 8192 tiled shadow map is used with a
16-bit depth buffer texture format. The tile size is clamped between 64 and 512
(see Figure 2.4). According to the reference method, hardware shadow filtering
in combination with 16× PCF is used to produce soft shadows. In the remain-
ing part of this section, this proposed technique will be referred to as the tiled
technique.

It can be seen in the comparison screenshots in Figure 2.5 that the quality
of both images is nearly equal while the proposed method runs more than three
times faster than the reference solution. In the close-up comparison screenshots
shown in Figure 2.6, we can also see that quality-wise the technique described
here comes very close to the reference solution.

For the performance measurements, the same scene configuration was used
as in Figure 2.5 with the exception that view frustum culling of invisible lights
was disabled; hence, for all 128 point lights in the scene, shadow maps were
generated. The measured frame times in Figure 2.7 show that the tiled technique
gets significantly faster compared to the reference cube solution as the number
of shadow-casting point lights increases. Figure 2.8 shows the number of draw
calls that were submitted for each frame from the CPU to render the shadow
maps. In the proposed method, the number of draw calls is constantly one due
to the indirect shadow map rendering, whereas the number of draw calls rapidly
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Figure 2.5. Real-time rendering (on an NVIDIA GeForce GTX 880 Mobile at 1280×720
resolution) of the Crytek Sponza scene (∼280,000 triangles) with 128 medium-sized
moving point lights, which all cast omnidirectional shadows via shadow maps. The
upper image is rendered with the proposed tiled method at 28.44 fps; the lower image is
the reference with the cube approach at 8.89 fps. Both methods use hardware shadow
filtering in combination with 16× PCF for providing high-quality soft shadows.

increases in the reference technique. Finally, in Table 2.4, CPU and GPU times
for shadow map rendering and shading are compared.

According to Table 2.4, the CPU times for rendering shadow maps with the
proposed technique are at a constant low value since only one indirect draw call
is submitted each frame. However, the CPU times for the reference technique are
drastically increasing with the light count due to the rising number of CPU draw
calls. When comparing the times taken by the GPU to render the shadow maps,
the proposed technique is significantly faster than the reference method, which
can be primarily attributed to the reduced number of primitives processed in the
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Figure 2.6. One shadow-casting point light is placed directly in front of the lion-head
model in the Crytek Sponza scene. The images on the left are rendered with the tiled
technique, and the images on the right with the reference cube technique. While the
images at the bottom show the final shading results, the images at the top visualize the
partitioning of the tetrahedron and cube, respectively, volumes. As can be seen, the
shadow quality of the proposed solution comes close to that of the reference method.

tiled solution. Considering the times taken by the GPU to shade all visible screen
fragments using tiled deferred shading, it first seems unexpected that the cube
solution would have higher execution times than the tiled technique. Though
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Figure 2.7. Frame times of tiled versus cube technique with an increasing number of
shadow-casting point light sources.
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Figure 2.8. Number of CPU submitted draw calls to render shadow maps in tiled and
cube technique with an increasing number of shadow-casting point lights.

doing a hardware texture lookup in a cube map is faster than doing the proposed
lookup, this is not true for performing PCF to produce soft shadows. While for
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Number Shadow CPU Shadow GPU Shading GPU
of Lights Tiled Cube Tiled Cube Tiled Cube

1 0.09 0.12 0.49 0.79 0.15 0.18

2 0.09 0.21 0.68 1.45 0.15 0.19

4 0.09 0.41 1.01 3.03 0.16 0.21

8 0.09 0.65 1.65 5.70 0.23 0.35

16 0.09 1.38 3.76 12.98 0.34 0.56

32 0.09 2.89 8.24 29.46 0.70 1.22

64 0.09 5.42 15.59 58.17 1.36 2.52

128 0.09 11.06 33.75 119.94 2.18 4.04

Table 2.4. Comparison of CPU and GPU times (ms) for shadow map rendering and
shading with an increasing number of shadow-casting point lights.

the tiled method it is enough to apply 2D offsets to the lookup coordinates, for
the cube technique a 3D direction vector, which is used for the texture lookup,
has to be rotated in 3D space.

According to the presented performance values, the proposed technique is
in all aspects and for all number of shadow-casting point lights faster than the
reference technique. On the one hand, the driver CPU overhead, present in the
reference method due to the high number of draw calls, can be nearly completely
eliminated; on the other hand, the time taken by the GPU to render the shadow
maps is significantly reduced.

2.5 Discussion

We now discuss some important aspects related to this technique and relevant
for real-time applications such as computer games.

2.5.1 Shadow Map Caching

To further improve runtime performance, it is possible to cache shadow map
tiles for certain lights. Every time a light does not move and the shadow-casting
geometry in its influence area remains unchanged, the corresponding shadow map
tile does not need to be cleared and recomputed. However, this should only be
the case when the corresponding tile size does not change significantly in order to
avoid popping artifacts at shadow edges and to better utilize the limited amount
of available texture space.

To achieve this in the indirect draw buffer generation step, such lights are
ignored and the associated tile nodes in the quad-tree are not reset. However,
clearing the tiled shadow map can no longer be done by simply calling glClear().
One possibility to selectively clear the used texture atlas is to render a list of
quadrilaterals that correspond to the tiles of the light sources that are not cached.
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2.5.2 Spotlights

Though this chapter focuses on point lights, it is trivial to include support for
spotlight shadows as well. Actually, it is easier to handle spotlight sources since
only one view volume that corresponds to the view frustum of the spotlight has
to be taken into account. However, when clipping the primitives while rendering
into the tiled shadow map, the clipping planes must be set to the four side planes
of the spotlight view frustum.

2.5.3 Dynamic, Skinned Meshes

Neither CPU- nor GPU-skinned meshes are an issue in the proposed method.
For CPU-skinned meshes, the one thing to keep in mind is that the same vertex
and index buffers should be used for all meshes. GPU-skinned dynamic meshes
are easy to handle as well. In addition to writing the light indices for each light
into the light-index buffer when the indirect draw buffer is generated, a unique
mesh ID is added prior to the light indices for each relevant mesh. Later on,
when the indirect draw commands are executed, according to the light index,
the unique mesh ID can be acquired and the corresponding transformation and
skinning matrices can be looked up in a GPU buffer. Due to the usage of a
geometry shader to render into the four faces of a tetrahedron, each mesh only
needs to be transformed and skinned once per point light source.

2.5.4 Alpha Testing

One aspect that needs to be discussed is handling meshes with alpha-tested ma-
terials since this involves a texture lookup into an alpha map. This problem can
be solved by three different approaches. The first solution is to simply render
each alpha-tested mesh separately into the tiled shadow map, hence omitting
the indirect draw pipeline but still using the proposed clipping-based geometry
shader approach. The second possibility is to pack all alpha maps into a common
texture atlas. The third option is to make use of the GL_ARB_bindless_texture ex-
tension, with which theoretically an arbitrary number of alpha maps can be used
simultaneously. However, it should be noted that this extension is not supported
by all graphics hardware that otherwise would support the proposed technique.

For the above discussed cases, the indirect draw buffer generation as well
as the indirect shadow map rendering step should be handled separately where
applicable to avoid dynamic shader branching. In most cases, this only means
dispatching the compute shader for generating the indirect draw buffer and sub-
mitting an indirect draw call a few times per frame, which will have only a slight
negative impact on the driver CPU overhead. Nevertheless, in all cases, one
unique tiled shadow map can be used.
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2.6 Conclusion

This chapter presented a comprehensive system for generating high-quality soft
shadows for a large number of dynamic omnidirectional light sources without the
need of doing approximations as merging shadows of multiple lights. It has been
demonstrated that this method is competitive quality-wise to a reference cube
map–based approach and performs with any tested number of shadow-casting
point lights faster. Furthermore, due to the usage of a tiled shadow map, sig-
nificantly more shadow maps can be stored for point light sources in a limited
amount of texture space than with a cube map–based approach.
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to Linux.
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IV

Shadow Map Silhouette
Revectorization

Vladimir Bondarev

Shadow Map Silhouette Revectorization (SMSR) is a two-pass filtering technique
inspired by MLAA [Jimenez et al. 11] that aims to improve the visual quality of a
projected shadow map by concealing the perspective aliasing with an additional
umbra surface. In most cases under-sampled areas result in a higher shadow
silhouette edge quality.

SMSR is based on the idea of reducing the perceptual error [Lopez-Moreno et
al. 10] by concealing the visible perspective aliasing around the shadow silhouette
edge.

3.1 Introduction

Shadow mapping [Williams 78] is known for its compatibility with rasterization
hardware, low implementation complexity, and ability to handle any kind of ge-
ometry. However, aliasing is also a very common problem in shadow mapping.
This chapter introduces a shadow map filtering technique that approximates an
additional umbra surface (space completely occluded from the direct light) based
on linear interpolation in projected view space.

Projection and perspective aliasing [Lloyd et al. 08] are the two main dis-
continuity types that deteriorate the quality of a projected shadow. Since the
introduction of shadow mapping, many algorithms have been developed to re-
duce or even completely remove shadow map aliasing. Most algorithms that are
developed to remove aliasing are not compatible to run in real time [Johnson
et al. 05] and in some cases propose additional hardware changes to allow for
real-time application [Lloyd et al. 08].

Most real-time shadow-mapping techniques can be divided in two main cate-
gories: sample redistribution (PSM, TSM, LiSPSM, and CSM) and filter-based
techniques (VSM, PCF, and BFSM). Shadow Map Silhouette Revectorization
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Figure 3.1. From left to right, the shadow silhouette revectorization process.

Figure 3.2. An uncompressed image (left), and the encoded shadow discontinuity buffer
(right). See Table 3.1 for color definition.

is a filtering technique that improves upon the conventional two-pass shadow-
mapping technique [Williams 78] by concealing the visible aliasing and yet re-
maining inside an acceptable performance range. In some scenes, SMSR can get
away with a much lower shadow-map resolution and at the same time is capable
of providing a high-quality umbra.

SMSR achieves a comparable result to shadow silhouette maps (SSM) [Sen et
al. 03], however with a very different approach. To generate a silhouette map,
SSM rasterizes the edges of all elements as quadrilaterals. In contrast to SMSR,
SSM will prove to be more performance intensive with a high polygon-count
scene.

3.2 Implementation

The SMSR technique consists of two fullscreen passes and requires access to the
depth buffer, shadow map, lighting buffer, view matrix, light matrix, and inverse
of the light matrix.

3.2.1 First Pass

The first pass searches for the exterior side of the shadow silhouette edge and
compresses the relative edge discontinuity directions into a two-component output
vector (Figure 3.1, second image, and Figure 3.2).

In screen space (camera view), we are looking for a shadow discontinuity
(edge). The kernel of the first pass compares the current shadow state with
the neighboring shadow-map sample state (left, top, right, and bottom). The
discontinuity is distinguished into two main types: exterior discontinuity, where
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Value Red Channel Green Channel

0.00 No discontinuity No discontinuity

0.50 Left Bottom

0.75 Left and right Bottom and top

1.00 Right Top

Table 3.1. Value definition of the two-channel discontinuity encoding.

the current fragment sample is inside the umbra and the next neighboring sample
is outside the umbra, and interior discontinuity, where the current fragment
sample is outside the umbra and the next neighboring sample is inside the umbra.

SMSR is only concerned with the exterior discontinuity of the shadow silhou-
ette edge. When an exterior discontinuity is detected, the direction from the
current fragment sample toward the discontinuity is encoded into one of the out-
put channels (used in the second pass to determine discontinuity orientation).
Horizontal discontinuities are stored into the red channel and vertical discontinu-
ities are stored into the green channel. Each channel has four possible states: for
example, the red channel uses the value 0.0 to indicate no discontinuity, 0.5 dis-
continuity to the left, 0.75 discontinuity to the left and right, and 1.0 discontinuity
to the right. The green channel uses the value 0.0 to indicate no discontinuity,
0.5 discontinuity to the bottom, 0.75 discontinuity to the bottom and top, and
1.0 discontinuity to the top.

To reduce the memory footprint, the discontinuity encoding can be stored in
a 4-bit channel. However, for the sake of simplicity, we are not doing it in this
implementation.

3.2.2 Second Pass

The second pass consists of five major steps and uses a shadow-map depth buffer,
a camera-view depth buffer, and the encoded data gathered by the first pass.

First, we have to find the discontinuity length (the length of the exterior
discontinuity along the shadow map on the same axis) of the current projected
camera-view fragment. To find the discontinuity length, we have to find the rel-
ative offset in the projected camera-view space to the neighboring shadow-map
sample on the same axis. This is done by transforming the current fragment’s
world-space position into the light-view space, applying an xy-offset to the neigh-
boring center of the next shadow map sample, replacing the z-vector component
by the depth value of the matched shadow map sample and then projecting the
coordinate back onto the projected camera-view space.

Second, after we have determined where in the screen space our neighboring
shadow-map sample is located, we repeat the step from the new location until we
find a break in discontinuity. The discontinuity break is initiated by exceeding
the delta-depth threshold, by reaching the maximum search distance, or by find-



344 IV Shadows

1
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Figure 3.3. Orientated normalized discontinuity space (ONDS) stretches from 0.0 to
1.0 on the y-axis over eight shadow-map samples and on x-axis over just one. The last
ONDS sample located near y = 1.0 indicates the discontinuity end.

ing a discontinuity on the opposite axis. By performing this iteration in screen
space, we approximate the length of the exterior discontinuity along the shadow
silhouette.

Third, we need to find a discontinuity contained in both channels (red and
green) that indicates a discontinuity end (see Figure 3.3). The discontinuity end
is used to determine the orientation of the exterior discontinuity along the shadow
silhouette edge.

Fourth, knowing the discontinuity length and the discontinuity end, we will
construct a normalized 2D space that stretches along the exterior discontinuity
of the shadow silhouette (orientated normalized discontinuity space (ONDS)).

Fifth, after ONDS is constructed, it’s normalized coordinate system is used
to interpolate a new additional umbra into the lighting buffer.

3.3 Results

SMSR successfully hides the visual perspective aliasing (see Figure 3.1, rightmost
image, and Figure 3.4) in under-sampled areas of the shadow map, and the un-
optimized version takes less than 1.5 ms to process on GTX 580, regardless of
the shadow-map resolution in full HD.

3.3.1 Inconsistencies

SMSR doesn’t come without its drawbacks, which are categorized into special
cases, absence of data, and mangled silhouette shape.

3.3.2 Special Cases

The technique is unable to handle exterior discontinuities with a parallel umbra
spacing of a single shadow-map sample, causing visual artifacts (see Figure 3.5,
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Figure 3.4. Configuration of the Crytek Sponza scene with a 1024× 1024 shadow map:
without SMSR (top) and with SMSR (bottom).

1 1

Figure 3.5. A closeup with SMSR (left) and without SMSR (right). Point 1 is the
discontinuity in more than two directions, a special case that makes it hard for SMSR
to handle. The current solution is to fill those areas completely with an umbra.

right image). SSM suffers from the same problem. The SMSR kernel has a dedi-
cated portion of code that fills all single shadow-map spacing with an additional
umbra, yielding less visually noticeable artifacts (see Figure 3.5, left image).
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Figure 3.6. A mangled silhouette shape with SMSR (top) and without SMSR (bottom).
Due to edge generalization and lack of shape understanding, SMSR changes the desired
object shape.

3.3.3 Absence of Data

In this specific scenario, the shadow discontinuity is prematurely interrupted by
an occluder or the search function goes outside the viewport boundaries. These
cases result in a varying or incorrect edge discontinuity length during the search
step, which results in a visible silhouette artifact.

3.3.4 Mangled Silhouette Shape

A typical MLAA approach distinguishes discontinuities into L-, Z-, and U-shaped
patterns. Taking the shape pattern into account helps to increase the precision
of the edge reapproximation and results in higher image quality. The current
approach of SMSR is unable to distinguish shape patterns and processes all dis-
continuities as L-shaped patterns. This inability to recognize shape patterns leads
to a coarse edge approximation and, particularly on low-resolution shadow maps,
will often change the shape of the object’s shadow (see Figure 3.6).

3.4 Future Work

Shadow Map Silhouette Revectorization effectively reduces the perceptual error
by concealing the perspective aliasing of an under-sampled shadow map area.
Unfortunately, projection and temporal aliasing remain unaddressed.

By saving the triangle edge data into the shadow map sample [Pan et al. 09],
it’s possible to approximate a more accurate shadow silhouette edge and at the
same time reduce temporal aliasing.

3.5 Conclusion

Shadow Map Silhouette Revectorization particularly shines in scenes with many
large polygons, where it has the ability to utilize a lower shadow-map resolution
(to reduce the GPU memory footprint) without sacrificing a great portion of
visual quality and effectively helps to conserve the GPU fill rate. However, the
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technique is in its early stage and can be improved in many different areas such
as interpolation based on shape patterns (to improve edge revectorization), soft
shadows (to improve realism), and temporal aliasing (to reduce jagged edges). It
can also be combined with other sample-redistribution techniques such as cascade
shadow maps (to optimize the use of shadow sample density where it is needed).
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V

Mobile Devices

Features of the latest mobile GPUs and the architecture of tile-based GPUs pro-
vide new and interesting ways to solve existing rendering problems. In this sec-
tion we will cover topics ranging from hybrid ray tracing to HDR computational
photography.

“Hybrid Ray Tracing on a PowerVR GPU” by Gareth Morgan describes how
an existing raster-based graphics engine can use ray tracing to add high-quality
effects like hard and soft shadows, reflection, and refraction while continuing to
use rasterization as the primary rendering method. The chapter also gives an
introduction to the OpenRL API.

“Implementing a GPU-Only Particle-Collision System with ASTC 3D Tex-
tures and OpenGL ES 3.0” by Daniele Di Donato shares how the author used
OpenGL ES 3.0 and ASTC 3D textures to do bandwidth-friendly collision de-
tection of particles on the GPU. The 3D texture stores a voxel representation of
the scene, which is used to do direct collision tests as well as lookup the nearest
surface.

“Animated Characters with Shell Fur for Mobile Devices” by Andrew Girdler
and James L Jones presents how the authors were able to optimize a high-quality
animation system to run efficiently on mobile devices. With OpenGL ES 3.0, they
made use of transform feedback and instancing in order to reach the performance
target.

“High Dynamic Range Computational Photography on Mobile GPUs” by Si-
mon McIntosh-Smith, Amir Chohan, Dan Curran, and Anton Lokhmotov ex-
plores HDR computational photography on mobile GPUs using OpenCL and
shares some very interesting results.

I would like to thank all the contributors in this section for their great work
and excellent articles.

—Marius Bjørge
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Hybrid Ray Tracing on a
PowerVR GPU

Gareth Morgan

1.1 Introduction

Ray tracing and rasterization are often presented as a dichotomy. Since the
early days of computer graphics, ray tracing has been the gold standard for
visual realism. By allowing physically accurate simulation of light transport, ray
tracing renders extremely high-quality images. Real-time rendering, on the other
hand, is dominated by rasterization. In spite of being less physically accurate,
rasterization can be accelerated by efficient, commonly available GPUs and has
mature standardized programing interfaces.

This chapter describes how an existing raster-based game engine renderer can
use ray tracing to implement sophisticated light transport effects like hard and
soft shadows, reflection, refraction, and transparency, while continuing to use
rasterization as the primary rendering method. It assumes no prior knowledge of
ray tracing.

The PowerVR Wizard line of GPUs adds hardware-based ray tracing accel-
eration alongside a powerful rasterizing GPU. Ray tracing acceleration hardware
vastly improves the efficiency and therefore the performance of the techniques
described.

1.2 Review

1.2.1 Conceptual Differences between Ray Tracing and Rasterization

In a ray tracer, everything starts with the initial rays (often called primary rays).
Typically, these rays emulate the behavior of a camera, where at least one ray
is used to model the incoming virtual light that gives color to each pixel in a
framebuffer. The rays are tested against the scene’s geometry to find the closest

351



352 V Mobile Devices

intersection, and then the color of the object at the ray’s intersection point is
evaluated. More precisely, the outgoing light that is reflecting and/or scattering
from the surface in the direction of the ray is computed. These calculations
often involve creating more secondary rays because the outgoing light from a
surface depends on the incoming light to that surface. The process can continue
recursively until the rays terminate by hitting a light-emitting object in the scene
or when there is no light contributed from a particular ray path.

Contrast this with rasterization, where the driving action is the submission
of vertices describing triangles. After the triangles are projected to screen space,
they are broken into fragments and the fragments are shaded. Each datum is
processed independently and there is no way for the shading of one triangle to
directly influence another unrelated triangle in the pipeline.

Ray tracing enables inter-object visibility, but the tradeoff is that every piece
of the scene that could possibly be visible to any ray must be built and resident
prior to sending the first ray into the scene.

1.2.2 GPU Ray Tracing

Early 3D games, such as Quake, all implemented their own rasterizers in soft-
ware on the CPU. Eventually, the power of the dedicated hardware in the GPU
outweighed the efficiency of the special purpose rasterizer built for the game,
and today almost all game renderers take advantage of a hardware abstraction
API, such as OpenGL. Today, ray tracing is at a similar stage of evolution. For
flexibility and portability, you can implement your own bespoke ray tracer and,
performance aside, all of the techniques we describe should work. In this chapter,
however, we will use OpenRL.

OpenRL is the ray-tracing API that can take advantage of the dedicated ray
tracing hardware in the PowerVR Wizard architecture. OpenRL is conceptually
based on OpenGL ES and, like OpenGL ES, is highly configurable by allowing
shaders to implement the behavior in certain sections of the process. You can
download the OpenRL SDK, including the library, code examples, and documen-
tation at http://community.imgtec.com/developers/powervr/openrl-sdk/.

If you don’t want to use OpenRL, you are free to write your own ray tracer
and all of these techniques from this chapter will still work. Alternatively, there
are several open source ray-tracing projects available, such as LuxRays [LuxRen-
der 14] or Cycles [Blender 14], that take advantage of the GPU for parallel ex-
ecution. Unfortunately, if you choose to go this route, dedicated ray-tracing
hardware acceleration will not provide any speed benefit.

1.2.3 The Simplest Ray Tracer Using OpenRL

To start out, we need to make the geometry available to OpenRL so the rays have
something to intersect. This is done by assembling the geometry into primitive
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Use shaders to
define ray 
behavior

Cast some rays
for each pixel

Submit geometry
(triangles)

Void main {
   if (dot(r1_inRay.
direction),
normal) >0) return;
else accumulate
(vec3(1.0));}

Figure 1.1. Ray tracing overview.

objects. Each primitive object represents a conceptual object within the scene—
for example, the glass top of a coffee table could be a primitive object. They are
defined in world space, and their state is retained from one frame to the next.

Each primitive object needs to know how to handle rays that intersect it. This
is done by attaching a ray shader to the object. The ray shader runs whenever a
ray intersects a piece of geometry. It can be used to define the look of the object’s
material or, more specifically, the behavior of the material when interacting with
rays. A ray shader can be thought of as a conceptual analogy to a fragment shader
in rasterization. There is, however, one big difference between OpenRL shaders
and traditional raster shaders: OpenRL shaders can emit rays, and hence trigger
future shader invocations. This feedback loop, where one ray intersection results
in secondary rays being emitted, which in turn causes more ray intersections,
is a vital part of the ray-tracing process. In OpenRL shaders, this process is
implemented via the built-in functions createRay() and emitRay(). The built-in
variable rl_OutRay represents the newly created ray. This ray structure is made
up of ray attributes, some of which are built-in, such as direction and origin,
and some of which can be user defined.

In the aforementioned glass coffee table example, the ray shader would de-
fine the appearance of a glass tabletop by emitting secondary rays based on the
material properties stored in the primitive object (such as color and density).
Those secondary rays will intersect other objects in the scene, defining how those
objects (for example, the base of the table or the floor it is resting on) contribute
to the final color of the glass tabletop.

The final step in our simple ray tracer is to create the primary rays. In
OpenRL, a frame shader is invoked once for every pixel and is used to program-
matically emit the primary rays.

The simplest camera is called a pinhole camera. This name comes from the
fact that every light ray passes through the exact same point in space, or pinhole
aperture, and therefore the entire scene is in perfect focus.
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Figure 1.2. Pinhole camera

void main ( ) {
vec3 direction = vec3 ( ( rl_FrameCoord / rl_FrameSize−0.5) . xy , 1 . 0 ) ;
createRay ( ) ;
rl_OutRay . origin = cameraPosition ;
rl_OutRay . direction = direction ;
emitRay ( ) ;
}

Listing 1.1. Pinhole camera frame shader.

Simulating a pinhole camera using ray tracing is as easy as emitting a primary
ray for every pixel of the image. These rays all share the same origin, which is
conceptually the focal point of the light, or the center of the camera’s aperture.
The direction of the ray is the vector from the ray’s origin through the center of
the pixel being traced.

1.2.4 Light, Rays, and Rendering

James Kajiya wrote, “All rendering methods are attempting to model the same
physical phenomenon, that of light scattering off of various surfaces” [Kajiya 86].
In a pure ray tracer like the example above, rays simulate the light in reverse,
starting at the camera and finding a path backward to an illumination source. In
this backward propagation model, rays are a means of estimating the incoming
light from a specific direction.



1. Hybrid Ray Tracing on a PowerVR GPU 355

(a) (b) (c)

Figure 1.3. G-buffer contents: (a) normals, (b) positions, and (c) material IDs.

Some highly specular materials, like glass, propagate light in a direction that
is largely dependent on the direction of the incoming light, while diffuse materials
like plaster will scatter incoming light across a whole hemisphere.

A ray is fundamentally a line. It has zero thickness and its intersection with a
surface is therefore a point.1 In order to approximate a diffuse material, renderers
often emit many rays to estimate the continuous function of incoming light from
all directions.

1.3 Combining Ray Tracing with Rasterization

Raster-based renderers rely on a variety of techniques to calculate the light that
is illuminating a surface. Some of these are simplistic, like a universal directional
light source that casts no shadows, and some are more complex, like prebaked
light maps. Ray tracing adds another tool to your toolbox: the ability to cast
rays into the scene to compute light transport and occlusion.

But how do you get a ray tracer, based on a world-space database of the
entire scene, to work with a rasterizer that only understands individual screen-
space fragments? By taking advantage of the deferred shading architecture used
by many modern rasterized renderers [Hargreaves and Harris 04]. In deferred
shading, instead of performing the lighting calculations in the fragment shader,
the properties of the fragment are simply written into a geometry buffer or G-
buffer.

After the first pass, this G-buffer contains a 2D screen-space texture for each
surface property (such as normal, position, albedo, and material information).
Critically, these surface properties are in now in world space. In deferred shading,
this G-buffer is then used as an input to a second, screen-space lighting pass. This
means lighting calculations are carried out only on the visible fragments.

In our hybrid rendering technique, this screen-space lighting step is replaced
by the ray tracer. The G-buffer is used as an input to the frame shader, so
rather than emitting rays from a camera, the primary rays are emitted directly

1OpenRL allows a ray’s spread to be tracked as it travels through the scene, and this enables
ray shaders to perform mipmapping during texture samples and differential functions within
the shader. However, a ray will only intersect one point on one surface.
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Figure 1.4. Deferred shading pipeline.

uniform sampler2D normalTexture ;
uniform sampler2D positionTexture ;

void main ( )
{
vec2 uv = rl_FrameCoord . xy / rl_FrameSize . xy ;
vec4 normal = texture2D ( normalTexture , uv ) ;
vec4 position = texture2D ( positionTexture , uv ;

i f ( normal . w==0.0) re turn ; //No fragment was rendered f o r t h i s
// p i x e l

IlluminateSurface ( normal , position ) ;
}

Listing 1.2. Hybrid frame shader.

from the surface. The results from the ray tracer render are then returned to
the rasterizer, where they are composited, along with the albedo color from the
original G-buffer, to produce the final frame.

Each G-buffer component is bound to a 2D texture uniform in the frame
shader, and those textures are sampled for each pixel. This provides the world-
space surface properties required to start tracing rays directly from the surface
defined by that pixel, without emitting any camera rays.

On a pixel-by-pixel basis, the frame shader can then decide which effects to
implement for that fragment and how many rays each effect uses based on the
material properties stored in the G-buffer. This allows the application to use its
ray budget on surfaces where raytraced effects will add most to the look or the
user experience.

Currently, hybrid ray tracing requires using two different APIs—one for ray
tracing (OpenRL) and one for rasterization; a separate OpenRL render context
must be created for the ray-tracing operations. Every frame, the contents of the
G-buffer must be transferred to the ray tracer, and the results must be returned
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rlBindTexture ( RL_TEXTURE_2D , normalTxt_RL ) ;
rlTexImage2D ( RL_TEXTURE_2D ,

0 ,
RL_RGBA ,
windowWidth ,
windowHeight ,
0 ,
RL_RGBA ,
RL_FLOAT ,
NULL ) ;

normalTxt_EGL = eglCreateImageKHR (
dpy ,
openRLContext ,
EGL_RL_TEXTURE_2D_IMG ,
( EGLClientBuffer ) normalTxt_RL ,
NULL ) ;

Listing 1.3. Create an EGL image bound to an OpenRL texture.

to the rasterizer for final frame render. On platforms where it is available, EGL
can be used to avoid this extra copy by sharing the contents of these textures
between the ray tracer and the rasterizer. Listing 1.3 shows how each OpenRL
texture object is bound on an EGL image object to achieve this.

The rest of this chapter will discuss some effects that can be added to your
raster-based renderer by taking advantage of the light simulation provided by ray
tracing.

1.4 Hard Shadows

Shadows are important optical phenomena, caused by objects blocking the path
between a light emitter and a surface. The nature of ray tracing, which has an
inherent understanding of the world-space layout of the scene, makes it very well
suited to shadow rendering.

Rendering physically correct hard shadows simply requires shooting a single
ray from the surface to the light. If the ray intersects any scene geometry, it
is discarded; if it reaches the light, then the surface is shaded, typically using
the traditional Lambertian lighting calculation (the “N dot L” diffuse lighting
equation used in 3D graphics for many years).

Ray tracing on PowerVR takes advantage of an optimization that is possible
with these kind of rays, referred to as shadow rays. As you are not interested
in what the shadow ray hits, only whether it hits anything before reaching its
endpoint, an optimization is possible. The intersection algorithm can terminate
at the first triangle collision, rather than continuing until it tests all triangles
to find the closest collision. In OpenRL shaders, this property is set on the ray
using the occlusionTest ray attribute. This feature is used in conjunction with the
defaultPrimitive ray attribute, which defines the ray shader that will be executed
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vec3 toLight = lightPosition − rl_IntersectionPoint ;

createRay ( ) ;
rl_OutRay . maxT = length ( toLight ) ;
rl_OutRay . direction = normalize ( toLight ) ;
rl_OutRay . occlusionTest = true ;
rl_OutRay . defaultPrimitive = lightPrimitive ;
emitRay ( ) ;

Listing 1.4. Emitting a shadow ray.

if the ray fails to hit any geometry. Finally, the distance to the light is calculated
and assigned to the ray’s maxT attribute.2 These attributes collectively mean that
the shader will run when there is no occluding geometry in the way, so light can
be accumulated into the framebuffer. If occluding geometry is encountered, the
ray is dropped and no light is accumulated. The shader fragment in Listing 1.4
shows how to implement hard shadows using these ray attributes.

1.5 Soft Shadows

In 3D graphics, lights are often approximated as infinitesimally small points. In
real life, however, lights are not infinitesimally small. From the point of view
of the shadowed surface, lights have a nonzero area. This causes soft shadows
with fuzzy edges. These edges are called the penumbra region. This phenomenon
occurs on parts of the shadowed surface where some of the light area is visible
and some is occluded. Scattering media like clouds or dust can also create soft
shadows because the light is no longer originating from a single point source.

Rendering soft shadows using ray tracing is also conceptually simple. At each
surface point, instead of shooting a single ray, as in the hard shadow case, we
shoot multiple rays.

The ray directions are calculated based on a table precomputed on the host
CPU. Each ray is shaded identically to the hard shadow case except it is assigned
a weight so the total contribution of all the rays is the same as for a single ray.
This weight can be encoded in a user-defined ray attribute.

What this technique is actually doing is performing Monte Carlo integration
to estimate what percentage of the light is visible at the surface point. The
domain we are integrating over is the solid angle representing the total light area
visible at the surface, and each ray is in fact a point sample in that domain. The
more samples we generate, the better our approximation will be.

2It is a historical convention in ray tracing to express the distance a ray travels between the
origin and the intersection point. In OpenRL, maxT is a far clipping distance, past which no
objects are evaluated for intersection.
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f l o a t weight = 1.0/ f l o a t ( numSamples ) ;
i n t ii , jj ;
f o r ( ii = 0; ii < numLights ; ii = ii + 1)
{
mat4 lightMatrix = lightToWorld [ ii ] ;
f o r ( jj = 0; jj < numSamples ; jj = jj + 1)
{
vec4 samplePos = lightMatrix � samples [ jj ] ;
vec3 toLight = samplePos . xyz − rl_IntersectionPoint ;

createRay ( ) ;
rl_OutRay . maxT = length ( toLight ) ;
rl_OutRay . direction = toLight/ rl_OutRay . maxT ;
rl_OutRay . color = vec3 ( weight ) ;
rl_OutRay . occlusionTest = true ;
rl_OutRay . defaultPrimitive = lightPrimitive ;
emitRay ( ) ;
}
}

Listing 1.5. Emitting multiple shadow rays.

We could use pseudorandom numbers to generate our ray directions, how-
ever numerical analysis theory tells us that for small numbers of rays, this will
produce a poor approximation of the integral. This is because random num-
bers will have uneven coverage over the domain. There are a number of other
sequences that will be more likely to produce a better distribution over the do-
main. The book Physically Based Rendering by Matt Pharr and Greg Humphreys
contains an excellent overview of sampling theory regarding ray tracing [Pharr
and Humphreys 04, Chapter 7].

There are many techniques that can be used to reduce the number of rays
emitted for each pixel but still produce a good estimate of the lighting integral.
One that works well with hybrid ray tracing is interleaved sampling [Keller and
Heidrich 01]. This technique takes advantage of the continuity between adjacent
pixels so that the final pixel color for one pixel is calculated using the ray tracing
results from its neighbors.

1.6 Reflections

Reflections are another optical phenomenon that are well suited for simulation
with ray tracing. They are an important aspect of rendering many material types,
not just perfectly reflective materials such as chrome and mirrors.

Reflections are caused by light bouncing off of a surface in a manner defined
by the law of the reflection. This is an ancient physical law first codified by Euclid
in the third century BC. It says that when light hits a perfectly reflective surface,
it is reflected at the same angle as the incident angle.
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void IlluminateSurface ( vec4 normal , vec4 position )
{

f l o a t reflectivity = position . w ; // Sur face r e f l e c t i v i t y
i f ( reflectivity >0.0)
DoReflection ( normal , position . xyx , reflectivity ) ;

}

Listing 1.6. Using surface properties.

Rendering reflections using ray tracing is very simple, and in fact how to do
so is suggested by looking at any textbook diagram of the law of reflection. When
shading the reflective surface, we simply emit an extra ray from the surface to
generate the reflection color. The direction of this reflection ray is calculated
by reflecting the direction of the incoming ray about surface normal. When the
reflection ray collides with objects in the scene, it should be shaded as if it were a
primary ray; in this way, the surface that is visible in the reflection will contribute
its color to the original surface.

When rendering reflections using a hybrid approach, there are several addi-
tional implementation details that must be handled. Firstly, we have to decide
whether the pixel we are shading is reflective. We can do this by encoding our
reflectivity in the G-buffer when we rasterize out fragments into it, then reading
it back in our frame shader to decide if we need a reflection ray.

Another issue is that we are emitting our primary rays from a surface defined
by a G-buffer pixel, so we don’t have an incoming ray to reflect. Therefore, we
have to calculate a “virtual” incoming ray based on the view frustum used by
the rasterizer. In this example, we pass in the corners of the view frustum as
four normalized vec3s, and then we can calculate the virtual ray’s direction by
interpolating between the corners based on the pixel position. We then reflect
this ray around the normal defined by the G-buffer producing our reflection ray
direction. The built-in RLSL function reflect is used to perform this calculation.

Finally, when our reflection ray hits a surface, we need to make sure the result
is the same as when the same surface is viewed directly. So the output from the
ray shader for a reflection ray must match the result of the compositing fragment
shader that produces the final color for directly visible surfaces.

1.7 Transparency

Transparency is a fundamental physical property that is not handled well by
rasterization. Rasterization approximates transparency using alpha blending.
Transparent objects are sorted by distance from the camera and rendered after
the opaque objects, in an order starting at the most distant. Transparency is ap-
proximated in the raster pipeline by having each fragment combine a percentage
of its color with the value already in the framebuffer.
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vec3 CalcVirtualInRay ( )
{
vec2 uv = rl_FrameCoord . xy/ rl_FrameSize . xy ;
vec3 left = mix ( frustumRay [ 0 ] , frustumRay [ 1 ] , uv . y ) ;
vec3 right = mix ( frustumRay [ 2 ] , frustumRay [ 3 ] , uv . y ) ;
vec3 cameraRay = mix ( left , right , uv . x ) ;

r e turn cameraRay ;
}

void DoReflection ( vec4 normal , vec3 position , f l o a t reflectivity )
{
vec3 inRay = CalcVirtualInRay ( ) ;
vec3 reflection = reflect ( inRay , normal ) ;

createRay ( ) ;
rl_OutRay . direction = reflection ;
rl_OutRay . origin = position ;
emitRay ( ) ;
}

Listing 1.7. Reflection in hybrid renderer.

Alpha blending causes many artifacts, as it bares little relation to how trans-
parency works in real life. Transparency is caused by light traveling through a
transparent medium, where some wavelengths are absorbed and some are not.
Ray tracing can be used to simulate transparency, independent of vertex sub-
mission order and without any of the artifacts and problems inherent in alpha
blending.

To render a transparent surface, we emit a transparency ray from the back
side of the surface, with the same direction as the incoming ray. If the surface
is translucent, the ray’s color will have its color ray attribute modulated with
the color of the surface. This transparency ray is treated exactly the same as a
reflection ray. The final color that the transparency ray contributes to the pixel
will be modulated by the color of the transparent surface it traveled through.
In this example, the surface transparency is stored in the alpha channel of the
surface color. If the surface is completely transparent, the ray has 100% intensity,
and as the surface becomes opaque, the ray’s intensity approaches zero.

Simple ray-traced transparency of this kind does not take into account the
behavior of many transparent materials. The physics of what happens when
light travels from one transparent medium to another is more complicated than
presented above. Some light is reflected off the surface (according the law of re-
flection discussed earlier) and some light bends, or refracts, changing its direction
based on the relative speed of light in the two media.

This too can be represented in a ray tracer using a simple combination of a
transparency ray and a reflection ray. The percentage of the light that is reflected
versus refracted is defined by Fresnel’s equations and can be approximated using
a power function.
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void DoTransparency ( vec4 normal , vec3 position , vec4 color )
{
vec3 inRay = CalcVirtualInRay ( ) ;

createRay ( ) ;
rl_OutRay . direction = inRay ;
rl_OutRay . origin = position ;
rl_OutRay . color = (1.0− color . a ) � rl_InRay . color � color . rgb ;
emitRay ( ) ;
}

Listing 1.8. Emitting a transparency ray.

f l o a t incidentDot = dot ( inRay , normal ) ;
vec3 atten = vec3 ( 1 . 0 ) ;
f l o a t powTerm = pow ((1.0− abs ( incidentDot ) ) , fresnelExp ) ;
f l o a t fres = KrMin+(Kr−KrMin ) � powTerm ;

i f ( rl_FrontFacing )
ior = 1.0 / ior ;

e l s e {
/� Beer � s Law to approximate attenuat ion . �/
atten = vec3 ( 1 . 0 ) − materialColour ;
atten �= materialDensity � −rl_IntersectionT ;
atten = exp ( atten ) ;

}

createRay ( ) ;
rl_OutRay . direction = refract ( rl_InRay . direction , normal , ior ) ;

/� For Total I n t e r n a l Re f l e c t i on , r e f l e c t ( ) r e tu rn s 0 . 0 �/
i f ( rl_OutRay . direction == vec3 ( 0 . 0 ) ) {

rl_OutRay . direction = reflect ( inRay , normal ) ;
}

rl_OutRay . color �= (1 . 0 − fres ) � atten ;
emitRay ( ) ;

Listing 1.9. Refraction shader.

1.8 Performance

Performance in a ray-tracing GPU is a big topic that cannot be covered by one
section of this chapter. Hopefully this section contains enough information to
provide a framework to begin to optimize your engine.

1.8.1 Rays per Pixel

The most obvious performance metric to measure is how many rays your engine
is using. Because each ray can trigger a shader that can potentially emit many
more rays, this is not always easy. To address this, OpenRL includes a tool called
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Figure 1.5. A sample heat map showing the most expensive pixels. Note the internal
ray bouncing on the refractive glass objects can generate many rays.

Profiler. Profiler can provide a heat mapthat displays a visual representation of
the number of rays that were cast for each pixel. This view can be useful to spot
a potential shader problem or a problematic interaction between shaders.

Naturally, some effects are just more expensive, so some variation in the heat
map is expected. But if some effects require more rays than can be sustained
across the entire frame, it is important to design the game so that those pix-
els never fill the entire frame. Other options are to build in a mechanism to
dynamically limit the effect quality up front based on the viewing position, or
progressively use more rays until you have consumed the time allotted for the
frame. This is sometimes necessary to maintain a stable frame rate.

1.8.2 Bottlenecks within the Ray Tracer

If the number of rays is within the expected ranges, but the performance is not
what you had hoped for, then you may have encountered one of several other
bottlenecks.

The Wizard architecture has a peak ray flow, measured in rays per second.
For the PowerVR GR6500, that is 300 MRays/second. The architecture is not
designed to exceed the peak ray flow, so if your measured performance is within
80% of the peak-ray-flow number, the best optimization opportunity is to reduce
the number of rays you are casting.

If your performance is substantially below the peak ray flow, the bottleneck
is geometry processing, executing shaders, or traversing rays (testing the rays
against the scene geometry to find the best hit).

Geometry processing can be ruled out by ensuring that the geometry remains
static from one frame to the next. To do this, make sure that no primitive objects
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(a) (b)

(c) (d)

Figure 1.6. An unfiltered soft shadow computation using (a) one, (b) two, (c) four, and
(d) eight rays per pixel. The quality gradually improves as more rays are used.

are created, removed, or modified, and that uniforms that affect a vertex shader
are not modified.

The cost of ray traversal is a direct function of the geometric complexity of
the scene. If reducing the complexity of your meshes yields a large performance
gain, then the ray tracer may be bottlenecked on traversal.

The most difficult factor to isolate is the shader. As in a rasterizer, one
valuable test may be to reduce the complexity of the shaders in the scene, for ex-
ample, by replacing the material ray shaders with a simple shader that visualizes
the normal at the ray intersection point. In ray tracing, however, this may also
mask the problem by avoiding the emission of secondary rays (and hence less ray
traversal).

Keep in mind that, in the Wizard architecture, ray and frame shaders execute
on exactly the same shading hardware as the vertex and fragment shaders used
in rasterization. Furthermore, they share exactly the same interface to memory.
This means that a heavy raster shader could bog down the system for ray tracing
or vice versa.

1.9 Results

All of the screenshots in Figures 1.7–1.12 were rendered with between one and
four rays per pixel, measured as a frame-wide average.
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Figure 1.7. Shadows and ray-traced transparency.

Figure 1.8. Multiple shadow casting lights.
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Figure 1.9. Reflections and refraction.

Figure 1.10. High-quality ray-traced shadow from a highly detailed occluder.
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Figure 1.11. Soft shadows from multiple lights.

Figure 1.12. Reflections and transparency.
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1.10 Conclusion

This chapter described one way of adding the sophisticated light transport sim-
ulation of ray tracing to a raster-based renderer. By using ray tracing as a tool
like this, the physically accurate rendering techniques that have long been used
in ray-tracing production renderers can be added to real-time renderers. As ray-
tracing acceleration becomes more wide spread in consumer GPUs, many other
techniques will likely be developed as computer graphics developers explore in-
novative ways to add ray tracing to their products.
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Implementing a GPU-Only
Particle-Collision System with

ASTC 3D Textures and
OpenGL ES 3.0

Daniele Di Donato

2.1 Introduction

Particle simulation has always been a part of games to realize effects that are
difficult to achieve in a rasterizer systems. As the name suggests, particles are
associated with the concept of small elements that appear in huge numbers. To
avoid the complexity of real-world physics, the particles used in graphics tend
to be simplified so they can be easily used in real-time applications. One of
these simplifications is to consider each particle independent and not interacting
with each other, which makes them suitable for parallelization across multiple
processors.

The latest mobile GPUs support OpenGL ES 3.0, and the new features added
gives us the right tools for implementing this simulation. We also wanted to
enable a more realistic behavior, especially concerning collisions with objects in
the scene. This can be computationally expensive and memory intensive since the
information of the geometry needs to be passed to the GPU and traversed, per
simulation step, if we want to parallelize the traditional CPU approach. With
the introduction of ASTC [Nystad et al. 12] and its support for 3D textures,
we are now able to store voxelized data on mobile devices with huge memory
savings. This texture can be used in the OpenGL pipeline to read information
about the scene and use it to modify the particle’s trajectory at the cost of a
single texture access per particle. The following sections describe all the steps of
the particle-system simulation in detail (Figure 2.1).

369
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Figure 2.1. Simulation steps.

2.2 GPU-Only Particle System

2.2.1 Gathering Information about the Surroundings

To handle collisions with objects, we need to give the particles knowledge of their
surroundings. This is achieved using a 3D texture describing uniform voxels of
our 3D scene. For each voxel, we check if it’s occupied by parts of the object and
we store informations for that location. For voxels that end up on the surface
of the mesh, we store a normal direction, while for internal voxels, we store the
direction to the nearest surface and the amount of displacement from the current
voxel to the nearest voxel on the surface. To achieve this, we used a freely
available software called Voxelizer [Morris 13]. Voxelizer uses 32-bit floats for the
mentioned values, so we convert them to 16-bit half-floats. This reduces the space
needed by the data to be stored in a 3D texture. ASTC allows converting 16-bit
per channel values, representing half-floats in our case, for the same memory cost.
This gives us a better precision compared to using 8-bit values.

2.2.2 Compression Using ASTC 3D

The ASTC texture compression format is a block-based compression algorithm
that is able to compress 2D and 3D textures in LDR or HDR format. Compared to
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Block Dimension Bit Rate (bits per pixel)

3× 3× 3 4.74

4× 3× 3 3.56

4× 4× 3 2.67

4× 4× 4 2.0

5× 4× 4 1.60

5× 5× 4 1.28

5× 5× 5 1.02

6× 5× 5 0.85

6× 6× 5 0.71

6× 6× 6 0.59

Table 2.1. ASTC 3D available block sizes.

other compression algorithms, ASTC offers more parameters to tune the quality
of the final image (more details are available in [Smith 14]). The main options
are the block size, the quality settings, and an indication of the correlation within
the color channels (and the alpha channel if present). For the 3D format, ASTC
allows the block sizes described in Table 2.1

Because the block compressed size is always 128 bits for all block dimensions
and input formats, the bit rate is simply 128/(number of texels in a block). This
specifies the tradeoff between quality and dimension of the generated compressed
texture. In Figure 2.2, various ASTC compressed 3D texture have been rendered
using slicing planes and various block sizes.

The other parameter to choose is the amount of time spent finding a good
match for the current block. From a high-level view, this option is used to increase
the quality of the compression at the cost of more compression time. Because
this is typically done as an offline process, we can use the fastest option for debug

Figure 2.2. From left to right: uncompressed 3D texture, ASTC 3D 3×3×3 compressed
texture, ASTC 3D 4 × 4 × 4 compressed texture, and ASTC 3D 5× 5 × 5 compressed
texture.
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purposes and compress using the best one for release. The options supported by
the free ARM ASTC evaluation codec [ARM Mali 15a, ARM Mali 15c] are very
fast, fast, standard, thorough, and exhaustive. The last parameter to set is the
correlation within the color channels. The freely available tools also allows us to
use various preset configuration options based on the data you want to compress.
For example, the tool has a preset for 2D normal maps compression that treats the
channels as uncorrelated and also uses a different error metric for the conversion.
This preset is not available for 3D textures, so we set the uncorrelation using
the fine-grained options available. Note that the ASTC compression tool used
does not store negative numbers, even in case of half-float format. This is due to
the internal implementation of the ASTC algorithm. Because our data contains
mostly unit vectors, we shifted the origin to be at [1, 1, 1] so that the vectors
resides in the [0, 0, 0] to [2, 2, 2] 3D cube.

2.2.3 Statistics of the Savings

Compressing the 3D texture using ASTC gave us a huge amount of memory
saving, especially thanks to its ability to compress HDR values at the same cost
as LDR values. As can be seen from Table 2.2, the memory saving can reach
nearly 90% with the subsequent reduction of memory read bandwidth, and hence
energy consumption. The memory read bandwidth has been measured using
ARM Streamline profiling tool on a Samsung Galaxy Note 10.1, 2014 edition.
We measured the average read bandwidth from the main memory to the L2
cache of the GPU running the demo for around two minutes for each ASTC
texture format we used. The energy consumption per frame is an approximation
computed using ARM internal reference values for DDR2 and DDR3 memory
modules.

2.3 Physics Simulation

The physics simulation is really simple and tries to approximate the physical
behavior. Each particle will be subject to the force of gravity as well as other
forces we choose to apply. Given an initial state t = 0 for the particles, we
simulate the second law of motion and compute the incremental movement after
a Δt. The Δt used in the demo is fixed to 16 ms since we assume the demo will
run at 60 fps. Methods that try to solve ordinary and partial derivative equations
using incremental steps are typically called explicit methods.

2.3.1 Explicit Methods

To delegate the physics computation to the GPU, we decided to use an explicit
method of computation for the simulation step, since this methods fits well with
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Sphere Skull Chalice Rock Hand

Texture Resolution 128× 128× 128 180× 255× 255 255 × 181× 243 78× 75× 127 43× 97× 127

Texture Size MB

Uncompressed 16.78 82.62 89.73 5.94 4.24

ASTC 3× 3× 3 1.27 6.12 6.72 0.45 0.34

ASCT 4× 4× 4 0.52 2.63 2.87 0.19 0.14

ASTC 5× 5× 5 0.28 1.32 1.48 0.10 0.07

Memory Read
Bandwidth in MB/s

Uncompressed 644.47 752.18 721.96 511.48 299.36

ASTC 3× 3× 3 342.01 285.78 206.39 374.19 228.05

ASCT 4× 4× 4 327.63 179.43 175.21 368.13 224.26

ASTC 5× 5× 5 323.10 167.90 162.89 366.18 222.76

Energy consumption
per frame DDR2
mJ per frame

Uncompressed 4.35 5.08 4.87 3.45 2.01

ASTC 3× 3× 3 2.31 1.93 1.39 2.53 1.54

ASCT 4× 4× 4 2.21 1.21 1.18 2.48 1.51

ASTC 5× 5× 5 2.18 1.13 1.10 2.47 1.50

Energy consumption
per frame DDR3
mJ per frame

Uncompressed 3.58 4.17 4.01 2.84 1.66

ASTC 3× 3× 3 1.90 1.59 1.15 2.08 1.27

ASCT 4× 4× 4 1.82 1.00 0.97 2.04 1.24

ASTC 5× 5× 5 1.79 0.93 0.90 2.03 1.24

Table 2.2. ASTC 3D texture compression examples with various block sizes.

the transform feedback feature available through OpenGL ES 3.0. For the pur-
pose of the demo, we implemented a simple Euler integration, and each shader
execution computes a step of the integration. This implementation is good enough
for the demo, but for advanced purposes, a variable time step can be used and
each shader execution can split this time step further and compute a smaller
integration inside the shader itself.

So, the physical simulation for step N + 1 will be dependent on a function of
step N and the delta time (Δt) that occurred between the simulation steps:

Y (t + Δt) = F (Y (t),Δt).

Due to the time dependency of position, velocity, and acceleration, this method
is suitable for use in our simulation.
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typede f s t ru c t _XFormFeedbackParticle
{

Vec3 Position ;
Vec3 Velocity ;
Vec4 Attrib ;
f l o a t Life ;

} XFormFeedbackParticle ;

glGenBuffers ( 2 , m_XformFeedbackBuffers ) ;

glBindBuffer ( GL_ARRAY_BUFFER ,
m_XformFeedbackBuffers [ 0 ] ) ;

glBufferData ( GL_ARRAY_BUFFER ,
s i z e o f ( XFormFeedbackParticle ) �

totalNumberOfParticles ,
NULL ,
GL_STREAM_DRAW ) ;

glBindBuffer ( GL_ARRAY_BUFFER ,
m_XformFeedbackBuffers [ 1 ] ) ;

glBufferData ( GL_ARRAY_BUFFER ,
s i z e o f ( XFormFeedbackParticle ) �

totalNumberOfParticles ,
NULL ,
GL_STREAM_DRAW ) ;

// I n i t i a l i z e the f i r s t bu f f e r with the p a r t i c l e s �

// data from the em i t t e r s
unsigned in t offset = 0;
f o r ( unsigned in t i = 0; i < m_Emitters . Length ( ) ; i++ )
{

glBindBuffer ( GL_ARRAY_BUFFER ,
m_XformFeedbackBuffers [ 0 ] ) ;

glBufferSubData ( GL_ARRAY_BUFFER ,
offset ,
m_Emitters [ i]−>MaxParticles ( ) �

s i z e o f ( XFormFeedbackParticle ) ,
m_Emitters [ i]−>Particles ( ) ) ;

offset += m_Emitters [ i]−>MaxParticles ( ) �

s i z e o f ( XFormFeedbackParticle ) ;
}

Listing 2.1. Transform feedback buffers initialization.

const char� xformFeedbackVaryings [ 4 ] = { ” oPar t i c l ePos” ,
” oPar t i c l eVe l ” ,
” oPa r t i c l eA t t r i b” ,
” oPa r t i c l e L i f e ” } ;

glTransformFeedbackVaryings ( m_XFormFeedbackShader ,
4 ,
xformFeedbackVaryings ,
GL_INTERLEAVED_ATTRIBS ) ;

Listing 2.2. Transform feedback output varyings definition.
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Position1 Velocity1 Attrib1 Life1 Position2 Velocity2 Attrib2 Life2 ...

Table 2.3. Order of GL_INTERLEAVED_ATTRIBS attributes.

Position1 Position2 Position3 ...

Velocity1 Velocity2 Velocity3 ...

Attrib1 Attrib2 Attrib3 ...

Life1 Life2 Life3 ...

Table 2.4. Order of GL_SEPARATE_ATTRIBS attributes.

2.3.2 OpenGL ES Transform Feedback Overview

Transform feedback allows users to store the result of a vertex shader execution
into a predefined vertex buffer. This feature fits well with the explicit methods
described above, since we can simulate the various steps using two buffers that are
swapped at each simulation step (this is usually called ping-ponging). After we
generate IDs for the transform feedback buffers using glGenBuffers, we initialize
them with a set of random particles. If multiple emitters are present, we can
store all their particles in the same buffer so that one step of the simulation can
actually update multiple emitters in the scene (see Listing 2.1).

Vertex shaders output various results to the subsequent fragment shader, so
we need a way to specify which results should also be written to the predefined
output buffer. This can be done after we attach the vertex program that will run
the simulation to the main program.

The command glTransformFeedbackVaryings (see Listing 2.2) will check if the
specified strings are defined as output of the vertex shaders, and GL_INTERLEAVED_

ATTRIBS will tell OpenGL in which layout to store the data. Possible options
are GL_INTERLEAVED_ATTRIBS and GL_SEPARATE_ATTRIBS. The former will store the
result of the vertex shader in a single buffer and in order as specified by the strings
passed to the function and the particles’ data will look like Table 2.3. The latter
stores each attribute in a separate buffer (see Table 2.4).

During the rendering, we do the following:

1. Set which buffer to use as the destination buffer for transform feedback
using the specific GL_TRANSFORM_FEEDBACK_BUFFER flag.

glBindBufferBase ( GL_TRANSFORM_FEEDBACK_BUFFER ,
0 ,
m_XformFeedbackBuffers [ 1 ] ) ;

2. Set which buffer is the source buffer and how the data is stored in it.

glBindBuffer ( GL_ARRAY_BUFFER , m_XformFeedbackBuffers [ 0 ] ) ;
glEnableVertexAttribArray ( m_ParticlePositionLocation ) ;
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glEnableVertexAttribArray ( m_ParticleVelocityLocation ) ;
glEnableVertexAttribArray ( m_ParticleAttribLocation ) ;
glEnableVertexAttribArray ( m_ParticleLifeLocation ) ;

//We s t o r e in one bu f f e r the 4 f i e l d s that r ep r e s en t a ←↩
p a r t i c l e

// Pos i t i on : 3 f l o a t va lue s f o r a t o t a l o f 12 byte s
// Ve l o c i t y : 3 f l o a t va lue s f o r a t o t a l o f 12 byte s
// Attr ib : 2 f l o a t va lue s f o r a t o t a l o f 8 byte s
// l i f e : 1 f l o a t va lue f o r a t o t a l o f 4 byte s

glVertexAttribPointer ( m_ParticlePositionLocation ,
3 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
0) ;

glVertexAttribPointer ( m_ParticleVelocityLocation ,
3 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
12) ;

glVertexAttribPointer ( m_ParticleAttribLocation ,
4 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
24) ;

glVertexAttribPointer ( m_ParticleLifeLocation ,
1 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
40) ;

3. Enable transform feedback and disable the rasterizer step. The former is
done using the glBeginTransformFeedback function to inform the OpenGL
pipeline that we are interested in saving the results of the vertex shader
execution. The latter is achieved using the GL_RASTERIZER_DISCARD flag
specifically added for the transform feedback feature. This flag disables
the generation of fragment jobs so that only the vertex shader is executed.
We disabled the fragment execution since the rendering of the particles re-
quired two different approaches based on the scene rendered and splitting
the simulation from the rendering gave us a cleaner code base to work with.

glEnable ( GL_RASTERIZER_DISCARD ) ;
glBeginTransformFeedback ( GL_POINTS ) ;

4. Render the particles as points.
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glDrawArrays ( GL_POINTS , 0 , MaxParticles ) ;

5. Disable transform feedback and re-enable the rasterizer.

glEndTransformFeedback ( ) ;
glDisable ( GL_RASTERIZER_DISCARD ) ;

2.3.3 Manage the Physics in the Vertex Shader Using 3D Textures

The attributes of each particle are read in the vertex shader as vertex attributes
and used to compute the next incremental step in the physics simulation. First,
we compute the total forces acting on the particles. Since this is a very simple sim-
ulation, we ended up simulating just the gravity, a constant force, and the air fric-
tion. The air friction is computed using the Stokes’ drag formula [Wikipedia 15]
because the particles are considered to be small spheres:

Fd = −6πηrv,

where η is the dynamic viscosity coefficient of the air and is equal to 18.27 μ Pa,
r is the radius of the particle (we used 5 μm in our simulation), and v is the
velocity of the particle. Since the first part of the product remains constant, we
computed it in advance to avoid computing it per particle.

//Air f r i c t i o n i s g iven by 6 . 0 � 3 .14 � 5 � 0.000018 = 0.0016956
vec3 totalForce = uConstantForce +

( uParticleMass � gravity ) −
0.0016956 � iParticleVel ;

vec3 totalAcceleration = totalForce / uParticleMass ;

oparticlePos_worldSpace = iparticle_Pos +
( iparticle_Vel � uDeltaT ) +
( totalAcceleration � uDeltaTSquared ) ;

The new position is then transformed using the transformation matrix derived
by the bounding box of the model. This matrix is computed to have the bounding
box minimum to be the origin (0, 0, 0) of the reference. Also, we want the area
of world space inside the bounding box to be mapped to the unit cube space
(0, 0, 0)–(1, 1, 1). Applying this matrix to the particle’s position in world space
gives us the particle’s coordinate in the space with the origin at the minimum
corner of the bounding box and also scaled based on the dimension of the model.
This means that the particles positioned in bounding box space within (0, 0, 0)
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and (1, 1, 1) have a chance to collide with the object, and this position is actually
the 3D texture coordinate we will use to sample the 3D texture of the model.

• Host code.

uBoundingBoxMatrix = ( (1 . 0/ max . x−min . x , 0 .0 ,0 .0 ,− min . x ) ,
( 0 . 0 , 1 .0/ max . y−min . y , 0 . 0 , −min . y ) ,
( 0 . 0 , 0 . 0 , 1 .0/ max . z−min . z , −min . z ) ,
( 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ) �

inverse ( ModelMatrix ) ;

• Vertex shader.

vec4 oParticlePos_BBSpace = uBoundingBoxMatrix �

vec4 ( oparticlePos_worldSpace , 1 . 0 ) ;

vec4 surfaceNormal = texture ( uCollisionTexture , tex3dCoord ) ;

The surface’s normal will be encoded in a 32-bit field and stored to be used
later in the rendering pass to orient the particles in case of collisions. Due to
the discrete nature of the simulation, it can happen that a particle goes inside
the object. We recognize this event when sampling the 3D texture since we store
a flag plus other data in the alpha channel of the 3D texture. When this event
happens, we use the gradient direction stored in the 3D texture plus the amount
of displacement that needs to be applied and we “push” the particle to the nearest
surface. The push is applied to the particles in the bounding-box space, and the
inverse of the uBoundingBoxMatrix is then used to move the particles back to the
world space. Discrete time steps can cause issues when colliding with completely
planar surfaces since a sort of swinging can appear, but at interactive speeds
(≥ 30 fps), this is almost unnoticeable. For particles colliding with the surface
of the object, we compute the new velocity direction and magnitude using the
previous velocity magnitude, the surface normal, the surface tangent direction,
and a bouncing resistance to simulate different materials and particle behavior.
We use the particle’s mass as sliding factor so that heavier particles will bounce
while lighter particles such as dust and smoke will slide along the surface. A
check needs to be performed for the tangent direction since the normal and the
velocity can be parallel, and in that case, the cross product will give an incorrect
result (see Listing 2.3).

The velocity is then used to move the particle to its new position. Because
we want to avoid copying memory within the GPU and CPU, the lifetime of
all the particles should be managed in the shader itself. This means we check
if the lifetime reached 0 and reinitialize the particle attributes such as initial
position, initial velocity, and total particle duration. To make the simulation more
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f l o a t slidingFactor = clamp ( uParticleMass , 0 . 0 , 1 . 0 ) ;
vec3 velocityDir = normal i z e ( iparticle_Vel ) ;
vec3 tangentDir = c r o s s ( surfaceNormal . xyz , velocityDir ) ;

i f ( l ength ( tangentDir ) < 0 .0001 )
{

tangentDir = getRandomTangentDir ( surfaceNormal . xyz , 0 . 0 ) ;
}

iparticle_Vel = length ( iparticle_Vel ) �

( surfaceNormal . xyz � slidingFactor +
tangentDir . xyz � ( 1.0− slidingFactor ) ) �

uBouncingResistance ;

Listing 2.3. Particle-collision behavior.

interesting, some randomness can be added while the particles are flowing and
no collision occurred. The fragment shader of the simulation is actually empty.
This is understandable since we do not need to execute any fragment work for
the simulation results. Also, we have enabled the GL_RASTERIZER_DISCARD to skip
all fragment work from being executed. In a way that differs from the OpenGL
standard, OpenGL ES needs a fragment shader to be attached to the program,
even if is not going to be used.

2.4 Rendering the Particles

After updating the particles’ locations, we can render them as we want. In our
demo, we decided to render them as smoke particles and as confetti. The light
lamp shape on the floor is procedurally generated using its texture coordinates.
The shadows are created using a projected texture that is generated from the
light point of view. This texture is used for the shadows of the floor as well the
ones on the objects. To achieve this we implement an incremental approach:

1. Render the object without color enabled so that its depth is stored in the
depth buffer. We need to do this step to prevent particles behind the object
(from the point of view of the light) from casting shadows on the object.

2. Render the particles with depth testing on, but not depth writing.

3. Render the object normally using the texture generated at Step 2 for the
shadows.

4. Render the object as shadow in the texture from Step 2.

5. Render the floor with the result of Step 4 for the shadows.
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This approach can be optimized. For example, we can use two different frame-
buffers for the shadow of the floor and on the object so that we avoid incremental
renderings (refer to [Harris 14] for more information). To achieve this, we copy
the result of the texture created at the end of Step 2 into the other framebuffer
and then render the object as shadow on it.

2.4.1 Smoke Scene

In this scene, the smoke (Figure 2.3) is rendered as point sprites since we always
want them to face the viewpoint. The smoke is rendered using a noise texture and
some mathematics to compute the final color as if it was a 3D volume. To give
the smoke a transparent look, we need to combine different overlapping particles’
colors. To do so, we used blending and disabled the Z-test when rendering the
particles. This gives a nice result, even without sorting the particles based on the
Z-value (otherwise we have to map the buffer in the CPU). Another reason for dis-
abling it is to achieve soft particles. From Mali-T600 GPUs onward, we can use a
specific extension in the fragment shader called GL_ARM_shader_framebuffer_fetch

to read back the values of the framebuffer (color, depth, and stencil) without
having to render to a texture [Björge 14]. The extension allows us to access a
set of built-in variables (gl_LastFragColorARM, gl_LastFragDepthARM, gl_LastFrag
StencilARM) from the fragment shader, and for each pixel, the value is based on
previous rendering results.

#exten s i on GL ARM shader f ramebuf f e r f e tch depth stenc i l : enab le
#i f d e f GL ARM shader f ramebuf f e r f e tch depth stenc i l
f l o a t dla= (2 . 0 � uNear ) /

( uFar + uNear − gl_LastFragDepthARM � ( uFar − uNear ) ) ;
#e l s e

//Texture read f a l l b a c k
#end i f

This feature makes it easier to achieve soft particles, and in the demo, we use a
simple approach. First, we render all the solid objects so that the Z-value will be
written in the depth buffer. Afterward, we render the smoke and we can read the
depth value of the object and compare it with the current fragment of the particle
(to see if it is behind the object) and fade the color accordingly. This technique
eliminates the sharp profile that is formed by the particle quad intersecting the
geometry due to the Z-test. During development, the smoke effect looked nice,
but we wanted it to be more dense and blurry. To achieve all this, we decided to
render the smoke in an offscreen render buffer with a lower resolution compared
to the main screen. This gives us the ability to have a blurred smoke (since the
lower resolution removes the higher frequencies) as well as lets us increase the
number of particles to get a denser look. The current implementation uses a
640× 360 offscreen buffer that is up-scaled to 1080p resolution in the final image.
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Figure 2.3. Smoke scene.

A näıve approach causes jaggedness on the outline of the object when the smoke
is flowing near it due to the blending of the up-sampled low-resolution buffer.
To minimize this effect, we apply a bilateral filter. The bilateral filter is applied
to the offscreen buffer and is given by the product of a Gaussian filter in the
color texture and a linear weighting factor given by the difference in depth. The
depth factor is useful on the edge of the model because it gives a higher weight
to neighbor texels with depth similar to the one of the current pixel and lower
weight when this difference is higher. (If we consider a pixel on the edge of a
model, some of the neighbor pixels will still be on the model while others will be
far in the background.)

2.4.2 Confetti Scene

In this case, we used quads instead of points since we needed to rotate the parti-
cles when they slide along the surfaces (Figure 2.4). Those quads are initialized
to min = (−1,−1, 0) and max = (1, 1, 0). The various shapes are achieved proce-
durally checking the texture coordinates of the quad pixels. To rotate the quad
accordingly, we retrieve the normal of the last surface touched and compute the
tangent and binormal vectors. This gives us a matrix that we use to rotate the
initial quad position, and afterward we translate this quad into the position of
the particle that we computed in the simulation step.

2.4.3 Performance Optimization with Instancing

Even if the quad data is really small, they waste memory because the quads are
all initialized with the same values and they all share the same number of vertices
and texture coordinates. The instancing feature introduced in OpenGL ES 3.0
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Figure 2.4. Confetti scene.

allows us to avoid replication of vertex attribute by defining just one “template”
of the mesh we want to render. This template is then instantiated multiple times
and the user will vary the parameters (matrices, colors, textures, etc.) to represent
multiple meshes with different characteristic with a single draw call (Figure 2.5).

OpenGL ES instancing overview.

1. Bind the buffers that we will use as the template source data.

glBindBuffer ( GL_ARRAY_BUFFER , m_QuadPositionBuffer ) ;
glEnableVertexAttribArray ( m_QuadPositionLocation ) ;
glVertexAttribPointer ( m_QuadPositionLocation ,

3 ,
GL_FLOAT ,
GL_FALSE ,
0 ,
( void �) 0 ) ;

// Set up quad t ex tu r e c oo rd ina t e bu f f e r
glBindBuffer ( GL_ARRAY_BUFFER , m_TexCoordBuffer ) ;
glEnableVertexAttribArray ( m_QuadTexCoordLocation ) ;
glVertexAttribPointer ( m_QuadTexCoordLocation ,

2 ,
GL_FLOAT ,
GL_FALSE ,
0 ,
( void �) 0 ) ;

2. Set a divisor for each vertex attribute array. The divisor specifies how the
vertex attributes advance in the array when rendering instances of primi-
tives in a single draw call. Setting it to 0 will make the attribute advance
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Figure 2.5. OpenGL ES 3.0 instancing.

once per vertex, restarting at the start of each instance rendered. This is
what we want to happen for the initial quad position and texture coordinate
since they will be the same for each particle (instance) rendered.

glVertexAttribDivisor ( m_QuadPositionLocation , 0 ) ;
glVertexAttribDivisor ( m_QuadTexCoordLocation , 0 ) ;

3. For the attributes computed in the simulation step, we would like to shift
the vertex buffer index for each of the particles (instances) to be rendered.
This is achieved using a divisor other than zero. The divisor then specifies
how many instances should be rendered before we advance the index in the
arrays. In our case, we wanted to shift the attributes after each instance is
rendered, so we used a divisor of 1.

glVertexAttribDivisor ( m_UpdatedParticlePosLocation , 1 ) ;
glVertexAttribDivisor ( m_UpdatedParticleLifeLocation , 1 ) ;
glVertexAttribDivisor ( m_UpdatedParticleAttribLocation , 1 ) ;

4. Bind the buffer that was output from the simulation step. Set up the vertex
attributes to read from this buffer.

glBindBuffer ( GL_ARRAY_BUFFER , m_XformFeedbackBuffers [ 1 ] ) ;

glVertexAttribPointer ( m_UpdatedParticlePosLocation ,
3 ,
GL_FLOAT ,
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GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
0) ;

glVertexAttribPointer ( m_UpdatedParticleAttribLocation ,
4 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
24) ;

glVertexAttribPointer ( m_UpdatedParticleLifeLocation ,
1 ,
GL_FLOAT ,
GL_FALSE ,
s i z e o f ( XFormFeedbackParticle ) ,
40) ;

5. Render the particles (instances). The function allows to specify how many
vertices belong to each instance and how many instances we want to render.
Note that when using instancing, we are able to access a built-in variable
gl_InstanceID inside the vertex shader. This variable specifies the ID of
the instance we are currently rendering and can be used to access uniform
buffers.

glDrawArraysInstanced ( GL_TRIANGLE_STRIP , 0 , 4 , MaxParticles ) ;

6. Always set back to 0 the divisor for all the vertex attribute arrays since
they can affect subsequent rendering even if we are not using indexing.

glDisableVertexAttribArray ( m_QuadPositionLocation ) ;
glDisableVertexAttribArray ( m_QuadTexCoordLocation ) ;
glVertexAttribDivisor ( m_UpdatedParticlePosLocation , 0 ) ;
glVertexAttribDivisor ( m_UpdatedParticleAttribLocation , 0 ) ;
glVertexAttribDivisor ( m_UpdatedParticleLifeLocation , 0 ) ;

2.5 Conclusion

Combining OpenGL ES 3.0 features enabled us to realize a GPU-only particle
system that is capable of running at interactive speeds on current mobile devices.
The techniques proposed are experimental and have some drawbacks, but the
reader can take inspiration from this chapter and explore other options using
ASTC LDR/HDR/3D texture as well as OpenGL ES 3.0. In case there is need to
sort the particles, the compute shader feature recently announced in the OpenGL
ES 3.1 specification will enable sorting directly on the GPU.
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An issue derived from the use of a texture is the texture’s resolution. This
technique can describe a whole 3D static scene in a single 3D texture, but the
resolution of it needs to be chosen carefully since too small resolution can cause
parts of objects to not collide properly since multiple parts with different normals
will be stored in the same voxel. Also, space is wasted if the voxelized 3D scene
contains parts with no actual geometry in them but that fall inside the volume
that is voxelized. Since we are simulating using a discrete time step, issues can
appear if we change the system too fast. For example, we can miss the collision
detection in narrow parts of the object if we rotate it too fast.
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Animated Characters with
Shell Fur for Mobile Devices

Andrew Girdler and James L. Jones

3.1 Introduction

Fur effects have traditionally presented a significant challenge in real-time graph-
ics. On the desktop, the latest techniques employ DirectX 11 tessellation to
dynamically create geometric hair or fur strands on the fly that number in the
hundreds of thousands [Tariq and Bavoil 08,Lacroix 13]. On mobile platforms, de-
velopers must make do with a much smaller performance budget and significantly
reduced memory bandwidth. To compound this, mobile devices are increasingly
featuring equal or higher resolution screens than the average screens used with
desktop systems.

Many artists are today able to create very detailed models of creatures with
advanced animations to be used in 3D applications. This chapter will describe
a system to animate and render fully detailed meshes of these creatures with a
shell fur effect in real time on mobile platforms. This is made possible by utilizing
new API features present in OpenGL ES 3.0, including transform feedback and
instancing.

We used this technique in the creation of our SoftKitty technical demo, which
was first shown at Mobile World Conference 2014. It enabled a high-polygon
model of a cat to be animated with 12-bone-per-vertex skinning and then ren-
dered with shell fur at native resolution on an Apple iPad Air. Thanks to the
optimizations in this chapter, the device was able to render the cat and a high
detail environment in excess of 30 fps.

3.2 Overview

This approach is an optimization of the shell fur technique presented by [Kajiya
and Kay 89]. Traditionally, combining a shell fur effect with a skinned mesh
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Figure 3.1. Technique overview diagram.

would require the skinned positions to be recomputed for every layer of fur. In
addition to this, there would be a separate draw call per layer, resulting in the base
mesh being transferred to the GPU multiple times per frame. This is inefficient
and, depending on model complexity, possibly not viable on bandwidth-limited
platforms.

This approach avoids these issues by first skinning the mesh in a separate
transform feedback pass and then using instancing to submit the mesh and create
the offset layers of fur with a single draw call. We have also simplified the design
of the textures used to create the fur, transitioning from one texture per layer
to a single texture for all. There are two approaches to implementing this, the
choice of which is decided by model complexity and platform limitations. (See
Figure 3.1.)

3.3 Creating a Shell Fur Texture

Traditional shell fur techniques have utilized a separate texture per shell layer
to encode the density and length of the strands [Lengyel et al. 01]. An early
optimization we used, which was partially necessitated by the use of instancing,
was to encode the strand length, and thereby density, onto a single texture. We
encoded the length as an integer between 0 (no fur) and the default number of
layers and then sampled it in the fur shader to decide whether a strand should
be drawn or not. We stored this in the alpha channel of the texture with the
intention of storing a color variance (having some strands lighter and some darker
than others) in the RGB channels; however, we later removed this as the inherent
variance in our diffuse texture was sufficient to give a convincing effect.
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f o r ( layer < numLayers )
rand ( setSeed )
length = 1.5 f − layer / numLayers
//hand tuned f a l l o f f
density = inDensity� length
f o r i < density

newxycoords=rand ( )
i f xycoord . a != layer

xycoord . a+=1.

An alternative approach would be to maintain a single texture per layer and
create a 2DTextureArray to pass into the fur instancing shader. This could be
explored if more flexibility in the fur was needed, but the single-texture approach
was sufficient for our needs and was more bandwidth efficient.

We also created a separate fur length map, using the same UV coordinates
as the model’s diffuse texture to decide the relative length of the fur for a given
location on the model, with white being full length and black being no fur.

3.4 Bone Batches or Single Pass?

We identified two approaches to performing the transform feedback stage for
skinning. The first involves performing a separate transform feedback pass for
each bone batch, skinning the associated vertices and then appending them into
a single output buffer. The second (theoretically more efficient) approach is to
export your model with a single batch, pass all the bone matrices into a single
pass and skin all the vertices in one go. This avoids the overhead of running
multiple transform feedback passes (which may be substantial if the number of
batches is high), but depending on the complexity of the model, you may hit an
upper limit on the number of uniform matrices that can be passed into a shader.
This is an implementation-defined limit that can vary substantially, although we
found on several test platforms that using a uniform buffer object (UBO) allowed
for a greater number of matrices to be passed in.

Our model had just under 240 bone matrices, as it was designed for offline
rendering. If using a model with a near or greater count than this, it would be
advisable to use multiple passes, keeping the number of batches to a minimum. If
tuning for optimum performance, it would be advisable to test both approaches
on your target platform.

3.5 Model Data and Setup

When setting up to performing the transform feedback pass with multiple bone
batches, we adopted the approach of having a single output buffer (the size of
the entire mesh’s vertices and normals) and then two buffers for input—one for
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glGenTransformFeedbacks (1 , &m_TransformFeedbackObject ) ;
glGenBuffers ( BONE_BATCHES+1, m_ModelDataBuffer ) ;
// m ModelDataBuffer [ 0 ] i s output bu f f e r
glGenBuffers ( BONE_BATCHES , m_SkinningDataBuffer ) ;

OutputModelData = new ModelDataStruct [ pMesh . nNumVertex ] ;
f o r ( unsigned in t i = 0; i < pMesh . nNumVertex ; ++i )
{

//Copy data in to OutputModelData
}
glBindBuffer ( GL_ARRAY_BUFFER , m_ModelDataBuffer [ 0 ] ) ;
glBufferData ( GL_ARRAY_BUFFER , s i z e o f ( ModelDataStruct )

� pMesh . nNumVertex , OutputModelData , GL_STATIC_DRAW ) ;
glBindBuffer ( GL_ARRAY_BUFFER , 0) ;
delete [ ] OutputModelData ;

// load ing each batch o f v e r t i c e s i n to i t s own bu f f e r
f o r ( unsigned in t Batch = 0; Batch < BONE_BATCHES ; ++Batch )
{

// Calcu late or r e t r i e v e BatchVertexCount
InputModelData = new ModelDataStruct [ BatchVertexCount ] ;
f o r ( i n t i = 0; i < BatchVertexCount ;++i )
{

//Copy data in to InputModelData
}
glBindBuffer ( GL_ARRAY_BUFFER , m_ModelDataBuffer [ Batch+1]) ;
glBufferData ( GL_ARRAY_BUFFER , s i z e o f ( ModelDataStruct )

� BatchVertexCount , InputModelData , GL_STATIC_DRAW ) ;
glBindBuffer ( GL_ARRAY_BUFFER , 0) ;
delete [ ] InputModelData ;

InputSkinningData = new BoneDataStruct [ BatchVertexCount ] ;
f o r ( i n t i = 0; i < BatchVertexCount ;++i )
{

//Copy bone we ights and i n d i c e s i n to InputSkinningData
}
glBindBuffer ( GL_ARRAY_BUFFER , m_SkinningDataBuffer [ Batch ] ) ;
glBufferData ( GL_ARRAY_BUFFER , s i z e o f ( BoneDataStruct )

� BatchVertexCount , InputSkinningData , GL_STATIC_DRAW ) ;
glBindBuffer ( GL_ARRAY_BUFFER , 0) ;
delete [ ] InputSkinningData ;

}

Listing 3.1. Creating buffers per bone batch.

vertices and normals and one for skinning data. These input buffers were created
per bone batch, containing only the data specific to that bone batch.

If using a single bone batch, the code path in Listing 3.1 can still be used
with a batch count of 1. When using the single buffer approach, we created our
UBO in the following manner:

glGenBuffers (1 ,& uiUBO ) ;
glBindBuffer ( GL_UNIFORM_BUFFER , uiUBO ) ;
uiIndex = glGetUniformBlockIndex ( ShaderId , szBlockName ) ;
glUniformBlockBinding ( ShaderId , uiIndex , uiSlot ) ;
glBindBufferBase ( GL_UNIFORM_BUFFER , uiSlot , uiUBO ) ;
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glUseProgram ( m_TransformFeedback . uiId ) ;
glBindTransformFeedback ( GL_TRANSFORM_FEEDBACK , m_TFObject ) ;
glEnable ( GL_RASTERIZER_DISCARD ) ;
i n t iTotalVerts = 0;

f o r ( unsigned in t Batch = 0; Batch < BONE_BATCHES ; ++Batch )
{ // Calcu late or r e t r i e v e BatchVertexCount

glBindBufferRange ( GL_TRANSFORM_FEEDBACK_BUFFER , 0 ,
m_ModelDataBuffer [ 0 ] , iTotalVerts � s i z e o f ( ModelDataStruct ) ,
BatchVertexCount � s i z e o f ( ModelDataStruct ) ) ;

glBeginTransformFeedback ( GL_POINTS ) ;
//Enable Attr ib Arrays
glBindBuffer ( GL_ARRAY_BUFFER , m_ModelDataBuffer [ Batch+1]) ;
// Set Vertex and Normal Attr ib po in t e r s
glBindBuffer ( GL_ARRAY_BUFFER , m_SkinningDataBuffer [ Batch ] ) ;
// Set Bone Weight and Index Attr ib po in t e r s
glUniform1i ( m_TransformFeedback . uiBoneCount , pMesh . sBoneIdx . n ) ;

#i f d e f i n ed (UBO)
m_matrixPaletteUBO . UpdateData ( m_BoneMatrixPalette [ 0 ] . ptr ( ) ) ;

#e l s e
glUniformMatrix4fv ( m_TransformFeedback . uiBoneMatrices ,

BONE_PALETTE_SIZE , GL_FALSE , m_BoneMatrixPalette [ 0 ] . ptr ( ) ) ;
#end i f

glDrawArrays ( GL_POINTS , 0 , BatchVertexCount ) ;
iTotalVerts += BatchVertexCount ;
glEndTransformFeedback ( ) ;
// Disab le Attr ib Arrays

}
glDisable ( GL_RASTERIZER_DISCARD ) ;

Listing 3.2. Performing the TF pass.

3.6 Animation with TF

In performing the transform feedback (TF) pass, we transform the vertices to
their skinned position and write them all into a single output buffer. We bind
the specific range of the output buffer to write to before beginning and ending
TF for every batch; we also then bind the batch specific buffers for input data.
While the input data refers to specific vertices in each batch, the bone indices
are relative to the entire bone matrix palette array; as such, we passed in all the
bone matrices for every pass either using a standard uniform or a UBO. (See
Listing 3.2.)

We then performed the skinning normally in the shader in Listing 3.3.

3.7 Instancing for Fur Shells

We now submit the output of the transform feedback stage as a single buffer to
be drawn with instancing. (See Figure 3.2.) We pass in the shell fur texture and
the fur length texture, which governs the offset between layers of the fur. We
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#i f d e f i n ed (UBO)
layout ( std140 ) uniform BoneMatrixStruct
{ highp mat4 BoneMatrixArray [ NUM_BONE_MATRICES ] ; } ;

void main ( )
{

gl_Position = vec4 ( inVertex , 1 . 0 ) ; // r equ i r ed
f o r ( i n t i = 0; i < BoneCount ; ++i )
{
// perform sk inn ing normal ly

}
oPosition = position . xyz ;
oNormal = normalize ( worldNormal ) ;

}

Listing 3.3. TF shader.

Figure 3.2. Wireframe view of the final model.

also specify the number of instances to draw, which should be the same as the
number of layers used in creating the fur texture. We found with our model,
depending on platform and resolution, a count of between 11 and 25 gave good
visual results while maintaining workable performance. We bind the TexCoord

array to a structure that is created when we load our model from disk. (The
vertices have not been reordered, so this data is unchanged by the process.) (See
Listing 3.4.)

The shell position is then calculated in the shader as shown in Listing 3.5.

Having calculated a base alpha value per layer in the vertex shader, we sample
the StrandLengthTexture to establish where fur should be drawn and how long
it should be. We leave the base layer solid, and we alpha out strands that the
random distribution decided should have ended:
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//Bind Fur Texture , Fur Length Texture , D i f f u s e Texture
glUniform1i ( m_FurShader . uiLayerCount , m_FurLayers ) ;
UpdateShaderMatrices (&m_FurShader , m_WorldFromModel ) ;
glBindBuffer ( GL_ARRAY_BUFFER , m_ModelDataBuffer [ 0 ] ) ;
//Bind Vertex , Normal Array
glBindBuffer ( GL_ARRAY_BUFFER , m_OriginalModelVbo ) ;
//Bind Texcoord Arrays
glEnable ( GL_BLEND ) ;
glBlendFunc ( GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA ) ;
glDrawArraysInstanced ( GL_TRIANGLES , 0 , nNumVertex , m_FurLayers ) ;
glDisable ( GL_BLEND ) ;
// Disab le Attr ib arrays

Listing 3.4. Submitting the mesh.

InstanceID = gl_InstanceID ;
oShellDist = ( f l o a t ( InstanceID ) ) /( f l o a t ( LayerCount ) −1.0) ;
oAlpha = (1.0− pow ( oShellDist , 0 . 6 ) ) ; // tweaked f o r n i c e r f a l l o f f
shellDist �= texture ( ShellHeightTexture , inTexCoord ) . r ;
highp vec3 shellPos = inVertex + inNormal� oShellDist ;
gl_Position = ProjectionFromModel � vec4 ( shellPos , 1 . 0 ) ;

Listing 3.5. Instancing shader.

highp f l o a t alpha = oAlpha ;
highp f l o a t strandLength = texture ( StrandLengthTexture ,

oTexCoord ) . a / ( f l o a t ( LayerCount ) /255 .0) ;
i f ( InstanceID > 0 && oShellDist > strandLength ) { alpha = 0 . 0 ; }

3.8 Lighting and Other Effects

In our implementation, we used a minimalist Cook-Torrance BRDF [Schüler 09] to
shade the model and fur. (See Figures 3.3 and 3.4 for results.) We experimented
with tweaking the alpha values of the fur by hand to achieve a falloff that, when
lit, gave a cleaner edge to the fur, avoiding crawling and noise.

For the environment shading, we used a precomputed diffuse reflectance tex-
ture and an analytic specular term in the shader. We also stored separate textures
for the precomputed shadows so that we could seamlessly merge the shadows
cast from the cat into the floor shadow. Having the cat dancing in and out of
the shadow was an important part of what we were trying to achieve, and this
technique worked well. (See Figure 3.5.) As we were only dealing with a single
directional light, we first computed a projected shadow texture for the cat by ren-
dering from outside the window using the preskinned mesh from the transform
feedback pass. We then computed the light direction and used this to project the
texture to the floor plane situated beneath the cat.
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Figure 3.3. Final model lit within the scene.

Figure 3.4. Close-up of fur effect.
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Figure 3.5. Model in shadow.

3.9 Conclusion

In moving from skinning every shell individually to using transform feedback, we
saw a dramatic performance increase. With a low-polygon early test model on
a mobile platform using 18 layers, performance increased from 29 fps to being
Vsync limited at 60 fps. We were then able to increase to 30 layers and maintain
a framerate above 30 fps. When we later incorporated the changes to the fur
texture and incorporated instancing, we saw performance rise to 50 fps. With
our final, full-detail model, on a high-performance mobile platform, we were able
to run 17 shells on a 1920 × 1080 display. This gave more than sufficient visual
quality and allowed us to render a surrounding scene and other effects, all in
excess of 30 fps.

We were able to achieve a pleasing result without the additional use of fins,
and our implementation also did not include any force, intersection, or self-
shadowing effects. These are all additional avenues that could be explored on
higher-performance platforms in the future.
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4.1 Introduction

Mobile GPU architectures have been evolving rapidly, and are now fully pro-
grammable, high-performance, parallel-processing engines. Parallel programming
languages have also been evolving quickly, to the point where open standards such
as the Khronos Group’s OpenCL now put powerful cross-platform programming
tools in the hands of mobile application developers.

In this chapter, we will present our work that exploits GPU computing via
OpenCL and OpenGL to implement high dynamic range (HDR) computational
photography applications on mobile GPUs. HDR photography is a hot topic in
the mobile space, with applications to both stills photography and video.

We explore two techniques. In the first, a single image is processed in order
to enhance detail in areas of the image at the extremes of the exposure. In the
second technique, multiple images taken at different exposures are combined to
create a single image with a greater dynamic range of luminosity. HDR can be
applied to an image to achieve a different goal too: as an image filter to create
a range of new and exciting visual effects in real time, somewhat akin to the
“radioactive” HDR filter from Topaz Labs [Topaz Labs 15].

These HDR computational photography applications are extremely compute-
intensive, and we have optimized our example OpenCL HDR code on a range of
GPUs. In this chapter, we shall also describe the approach that was taken during
code optimization for the ARM Mali mobile GPUs and give the performance
results we achieved on these platforms.

We also share the OpenCL/OpenGL interoperability code we have developed,
which we believe will be a useful resource for the reader. Surprisingly little is

397
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(a) (b) (c)

(d)

Figure 4.1. Images taken with different exposures: (a) −4 stops, (b) −2 stops, (c) +2
stops, and (d) +4 stops. [Image from [McCoy 08].]

available in the literature on how to efficiently implement HDR pipelines, and
even less as real source code. We hope this chapter will address both of these
shortcomings.

4.2 Background

Real-world scenes contain a much higher dynamic range of brightness than can
be captured by the sensors available in most cameras today. Digital cameras use
8 bits per pixel for each of the red, green, and blue channels, therefore storing
only 256 different values per color channel. Real-world scenes, however, can have
a dynamic range on the order of about 108 : 1, therefore requiring up to 32 bits
per pixel per channel to represent fully.

To compensate for their relatively low dynamic range (LDR), modern digital
cameras are equipped with advanced computer graphics algorithms for producing
high-resolution images that meet the increasing demand for more dynamic range,
color depth, and accuracy. In order to produce an HDR image, these cameras
either synthesize inputs taken concurrently from multiple lenses with different
exposures, or they take multiple-exposure images in sequential order and combine
them into a single scene. Figure 4.1 shows a set of over- and underexposed images
of a scene that can be captured in such a way.

The synthesis process produces a 32-bit image encoding the full HDR of the
scene. Standard displays, such as computer monitors, TVs, and smartphone or
tablet screens, however, only have a dynamic range of around 256 : 1, which
means that they are not capable of accurately displaying the rendered HDR
image. Therefore, to display HDR images on a standard display, the images first
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(a) (b)

Figure 4.2. HDR images obtained using (a) global and (b) local tone-mapping operators.
[Image from [McCoy 08].]

need to be compressed to a lower dynamic range in a way that preserves image
detail. This process of compressing an HDR image to a lower dynamic range is
called tone mapping. Once a 32-bit HDR image is tone mapped, the resulting
8-bit HDR image can then be rendered to standard displays. Figure 4.2 shows
examples of the outputs of two different tone-mapping operators (TMOs).

4.2.1 Smartphone Photography

Today, nearly all digital cameras embed EXIF (exchangeable image file format)
information about each image [Chaney 15]. This information contains dozens
of parameters from the time the picture was taken, including camera aperture,
exposure, GPS location, etc. Recently, the photo-sharing network Flickr marked
a shift in how people take pictures, noting that the majority of images being
uploaded to their site were now being taken using smartphones. Smartphone
cameras have greatly improved in the last few years, introducing higher megapixel
counts, better lenses, and since 2010 an option to take HDR images [GSM Arena
15]. Increasing use of such cameras has led to the emerging field of high dynamic
range imaging (HDRI).

To obtain an HDR image, a smartphone takes multiple images in quick succes-
sion with different exposures. The motivation behind taking multiple-exposure
images is to obtain detail in over- and underexposed parts of the image, which is
often otherwise lost due to a camera’s auto gain control. These images are then
synthesized and a TMO is applied to render the HDR image on the screen.

HDRI blends several LDR images taken at different exposures highlighting
light and dark parts of a scene (as in Figure 4.1). These multiple-exposure images
take a varying amount of time to acquire. For example, an overexposed image
that brings out detail in the dark parts of an image needs to leave the camera
shutter open for longer to allow for more light to get through. Therefore, in order
to acquire HDR images of a scene in real time, multiple lenses are needed looking
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(a) (b)

Figure 4.3. HDR look achieved by Topaz Adjust: (a) original image and (b) HDR
image.

at the same scene with the use of a beam splitter. Unfortunately, most mobile
phones and other handheld cameras do not yet come with the multiple lenses
that would be required to acquire multiple-exposure images in real time. For
this reason, the HDR TMOs we present in this chapter not only perform well on
32-bit HDR images but also bring out details in a single-exposure LDR image,
giving them a HDR look.

Figure 4.3 shows the results of an HDR effect on a single image as obtained
by Topaz Adjust, a plug-in for Adobe Photoshop [Topaz Labs 15]. The plugin
is able to enhance local gradients that are hard to see in the original image.
Furthermore, photographers often manually apply a pseudo-HDR effect on an
LDR image to make it more aesthetically pleasing. One way to achieve such a
pseudo-HDR effect, as described by Kim Y. Seng [Seng 10], is to create under-
and overexposed versions of a well-exposed LDR image. Seng then uses these
artificial under- and overexposed images as the basis for creating a 32-bit HDR
image before tone-mapping it using a TMO.

4.2.2 Efficient Smartphone Image Processing Pipelines

Currently, most applications running on mobile devices tend to use the CPU,
perhaps exploiting SIMD instructions, to run the compute part of the code and
use the GPU just for the graphics part, such as compositing and rendering to
the screen. However, today’s mobile GPUs are now fully programmable compute
units in themselves, and through new languages such as OpenCL, or extensions
to existing APIs, such as the latest compute shaders in OpenGL, the GPU can
also help with the computationally intensive “heavy lifting” required by the ap-
plication. Using the GPU in this way can result in higher framerates, but there
can be more than just a performance advantage from using the GPU for some of
the application’s computational needs. An experiment carried out by S. Huang et
al. to compare the energy consumptions of a single-core CPU, a multicore CPU,
and a GPU showed that using the GPU can result in much more energy-efficient
computation [Huang et al. 09]. For mobile devices, this energy saving translates
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into improved battery life, and thus using general-purpose computing on GPUs
(GPGPU) has become a hot topic for mobile applications.

One aim of this chapter is to describe an efficient, open source implementation
of a pipeline that can be used to capture camera frames and display output
of HDR TMOs in real time. The second aim of the example presented in this
chapter is to demonstrate an efficient code framework that minimizes the amount
of time taken to acquire the camera frames and render the display to output. The
pipeline should be such that it can be used for any image-processing application
that requires input from a camera and renders the output to a display. This
pipeline should also make it possible to create HDR videos.

We present our example pipeline in OpenCL to serve as a real, worked ex-
ample of how to exploit GPU computing in mobile platforms. We also exploit
OpenCL/OpenGL interoperability with the goal of equipping the reader with a
working template from which other OpenCL/OpenGL applications can be quickly
developed.

4.3 Tone-Mapping Operators

Tone-mapping operators exist for a range of applications. Some TMOs are de-
signed to focus on producing aesthetically pleasing results, while others focus on
reproducing as much image detail as possible or maximizing the image contrast.
TMOs can be broadly classified into global and local operators.

Global operators are nonlinear functions that use luminance and other global
variables of an input image to obtain a mapping of all the input pixels to the
output pixels. Each individual pixel is then mapped in the same way, independent
of any neighboring pixels. This spatially uniform characteristic of global TMOs
often results in the unfortunate side effect of local contrast reduction. However,
because global TMOs are easy to implement and computationally inexpensive
(compared to local TMOs), they are prime candidates for use in digital cameras
and other handheld devices that might be computationally limited.

Local TMOs have a different mapping for each pixel in the original image. The
function used by these operators changes for each pixel depending on the local
features of the image. These spatially varying local operators are much slower
to compute and harder to implement than global operators and can often result
in artifacts in certain areas of the image, making the output look unrealistic.
However, if implemented correctly, they generally provide better results than
global TMOs, since human vision is mainly sensitive to local contrast.

Figure 4.2 shows the results of applying global and local TMOs to an HDR
image obtained by synthesizing the LDR images in Figure 4.1. Even though the
global TMO is able to highlight details from each of the exposures, the results
of the local TMO are much more aesthetically pleasing, as there is more local
contrast in the image.
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Reinhard’s global TMO. The tonal range of an image describes the number of
tones between the lightest and darkest part of the image. Reinhard et al. im-
plemented one of the most widely used global TMOs for HDRI, which computes
the tonal range for the output image [Reinhard et al. 02]. This tonal range is
computed based on the logarithmic luminance values in the original images.

The algorithm first computes the average logarithmic luminance of the entire
image. This average, along with another parameter, is then used to scale the
original luminances. Then, to further allow for more global contrast in the image,
this approach lets the high luminances often “burn out” by clamping them to
pure white. This burning out step is accomplished by computing the smallest
luminance value in the original image and then scaling all of the pixels accordingly.

For many HDR images, this operator is sufficient to preserve details in low-
contrast areas, while compressing higher luminances to a displayable range. How-
ever for very high dynamic range images, especially where there is varying local
contrast, important detail can still be lost.

Reinhard’s global TMO uses the key value of the scene to set the tonal range
for the output image. The key of a scene can be approximated using the loga-
rithmic average luminance L̄w:

L̄w = exp

(
1

N

∑
x,y

log(δ + Lw(x, y))

)
,

where Lw(x, y) is the luminance of pixel (x, y), N is the total number of pixels
in the image, and δ is a very small value to avoid taking the logarithm of 0 in
case there are pure black pixels in the image. Having approximated the key of
the scene, we need to map this to middle-gray. For well-lit images, Reinhard
proposes a value of 0.18 as middle-gray on a scale of 0 to 1, giving rise to the
following equation:

L(x, y) =
a

L̄w
Lw(x, y), (4.1)

where L(x, y) is the scaled luminance and a = 0.18. Just as in film-based pho-
tography, if the image has a low key value, we would like to map the middle-gray
value, i.e, L̄w, to a high value of a to bring out details in the darker parts of the
image. Similarly, if the image has a high key value, we would like to map L̄w to a
lower value of a to get contrast in the lighter parts of the scene. In most natural
scenes, occurrences of high luminance values are quite low, whereas the majority
of the pixel values have a normal dynamic range. Equation (4.1) doesn’t take
this into account and scales all the values linearly.

Reinhard’s global TMO can now be defined as

Ld(x, y) =
L(x, y)

(
1 + L(x,y)

L2
white

)
1 + L(x, y)

, (4.2)



4. High Dynamic Range Computational Photography on Mobile GPUs 403

where Lwhite is the smallest luminance that we would like to be burnt out. Al-
though Lwhite can be another user-controlled parameter, in this implementation
we will set it to the maximum luminance in the image, Lmax. This will prevent
any burn out; however, in cases where Lmax < 1, this will result in contrast
enhancement, as previously discussed.

The operator has a user-controlled parameter, a. This is the key value and
refers to the subjective brightness of a scene: the middle-gray value that the scene
is mapped to. Essentially, setting a to a high value has an effect of compressing
the dynamic range for darker areas, thus allowing more dynamic range for lighter
areas and resulting in more contrast over that region. Similarly, decreasing a
reduces the dynamic range for lighter areas and shows more contrast in darker
parts of a scene. Since the brightness of a scene is very much subjective to the
photographer, in this implementation a will be a controllable parameter that can
be changed by the user.

The global TMO is one of the most widely implemented TMOs because of its
simplicity and effectiveness. It brings out details in low-contrast regions while
compressing high luminance values. Furthermore, Equation (4.1) and Equation
(4.2) are performed on each pixel independently, and therefore it is fairly straight-
forward to implement a data parallel version using OpenCL in order to exploit
the compute capability of the GPU.

Reinhard’s local TMO. Although the global TMO works well in bringing out de-
tails in most images, detail is still lost for very high dynamic range images. Rein-
hard’s local TMO proposes a tone reproduction algorithm that aims to emphasize
these details by applying dodging and burning.

Dodging and burning is a technique used in traditional photography that
involves restraining light (dodging) or adding more light (burning) to parts of
the print during development. Reinhard et al. extended this idea for digital
images by automating the process for each pixel depending on its neighborhood.
This equates to finding a local key, i.e., a in Equation (4.1), for each pixel, which
can then be used to determine the amount of dodging and burning needed for the
region. Along with the key value a, the size of each region can also vary depending
on the contrast in that area of the image. This size depends on the local contrast
of the pixel. To find the optimal size region over which to compute a, Reinhard’s
approach uses a center-surround function at multiple scales. Center-surround
functions are often implemented by subtracting two Gaussian blurred images. For
this TMO, Reinhard chose to implement the center-surround function proposed
for Blommaert’s model for brightness perception [Blommaert and Martens 90].
This function is constructed using Gaussian profiles of the form

Ri(x, y, s) =
1

π(αis)2
exp

(
−x2 + y2

(αis)2

)
.

This circularly symmetric profile is constructed for different scales s around each
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pixel (x, y) in the image. In Bloommaert’s center-surround function, the Gaussian
profile is then convolved with the image, resulting in response Vi as a function of
scale s and luminance L(x, y) for each pixel (x, y):

Vi(x, y, s) = L(x, y) ⊗Ri(x, y, s). (4.3)

Because the response requires convolving two functions, it can either be per-
formed in the spatial domain or they can be multiplied in the Fourier domain for
improved efficiency. The example HDR GPU pipeline described in this chapter
makes use of mipmaps as an alternative to the Gaussian profile. Equation (4.4)
is the final building block required for Bloommaert’s center-surround function:

V (x, y, s) =
V1(x, y, s) − V2(x, y, s)

2φa/s2 + V1(x, y, s)
, (4.4)

where V1 is the center response function and V2 is the surround response function
obtained using Equation (4.3). The 2φa/s2 term in the denominator prevents
V from getting too large when V1 approaches zero. The motive behind having
V1 in the denominator is discussed later. Similarly to the global TMO, a is the
key value of the scene, ϕ is a sharpening parameter, and s is the scale used to
compute the response function.

The center-surround function expressed in Equation (4.4) is computed over
several scales s to find the optimal scale sm. This equates to finding the suitably
sized neighborhood for each pixel, and therefore plays an important role in the
dodging-and-burning technique. An ideal-sized neighborhood would have very
little contrast changes in the neighborhood itself; however, the area surrounding
the neighborhood would have more contrast. The center-surround function com-
putes the difference between the center response V1 and surround response V2.
For areas with similar luminance values, these will be much the same, however
they will differ in higher-contrast regions. Starting at the lowest scale, the local
TMO selects the first scale sm such that

|V (x, y, sm)| < ε, (4.5)

where ε is a user controlled parameter, which we set to 0.05 in our implementation.
Equation (4.5) amounts to finding the largest neighborhood around a pixel such
that the luminance in the center area is fairly even. Note that V1(x, y, s) can serve
as a local neighborhood average for that pixel. Therefore, this local logarithmic
average luminance can be used in place of the global one in Equation (4.2):

Ld(x, y) =
L(x, y)

1 + V1(x, y, sm)
. (4.6)

A dark pixel in a relatively bright area will satisfy L < V1. In such cases,
Equation (4.6) will decrease the Ld of that pixel, which will have the effect of
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contrast enhancement in that area. Similarly, if a pixel is light in a relatively
dark area (L > V1), the local TMO will increase Ld.

V1(x, y, sm) plays an important part in controlling the right amount of local
contrast in the image. This boils down to choosing the right sm for each pixel.
If sm is too small, then V1 will be close to L and Equation (4.6) will reduce to
the global operator. However, if sm is too large, then the resulting tone-mapped
image will have halo artifacts around the bright regions.

The set of scale sizes to check can be predetermined. Reinhard’s method does
not suggest any particular set of scales; however, the implementation proposed
by Akyuz [Akyüz 12] suggests using the scale set {1, 2, 4, 8, 16, 32, 64}. To find
the optimal scale sm, we start from the smallest scale and compute center and
surround responses individually for each. To make the algorithm computationally
efficient, Reinhard’s method suggests setting the center size of the next higher
scale to be the size of the current surround. It further suggests maintaining the
ratio of 1.6 between the center and surround size; however, since mipmaps are
used in this implementation, the next level mipmap can simply be set as the
surround.

Just as for the global operator, a is still a user-controlled variable allowing
the photographer to obtain more contrast for either dark or light parts of the
scene while decreasing the contrast in the other. The local TMO comes with a
few more parameters, namely ϕ and ε. In Equation (4.5), ε serves as a threshold
to find the suitable scale sm for the pixel neighborhood. A small ε causes sm to
be larger and hence results in an increased contrast in the overall image, since
there is more contrast at larger scales than smaller ones. On the other hand, ϕ
serves as an edge-enhancing parameter. Increasing ϕ has more or less the same
effects as that of decreasing ε. However, the effects are only noticeable at smaller
scales since ϕ is divided by s2.

Reinhard’s local TMO makes use of traditional photographic techniques to
enhance contrast in digital images. The concept behind the local and global op-
erators is more or less the same; however, the local TMO uses information in the
pixel’s neighborhood to find the suitable “local key” and use that to scale the
pixel’s luminance. The local TMO is inherently much more compute-intensive
due to multiple convolutions required for each pixel to find the suitable neighbor-
hood. This makes the local TMO much more challenging to implement in real
time. In this implementation, to minimize the computation required, mipmaps
are generated at multiple levels using the OpenGL API instead of using the more
compute-intensive Gaussian kernel approach.

Histogram equalization. Contrast enhancement using histogram equalization is
one simple way of increasing the global contrast of many images, especially when
there isn’t much variance between the luminance values in those images. His-
togram equalization essentially spreads these densely populated values over the
entire luminance range (usually 8-bit), increasing the contrast in low-contrast
areas.
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The algorithm computes a histogram of the luminance values for an image,
calculates its cumulative distribution function (CDF), and then replaces the orig-
inal histogram with the flattened version of the CDF. The histogram will then
have luminance values uniformly distributed over the entire range [UCI iCAMP
10].

Histogram equalization is not an HDR TMO; however, it can be compu-
tationally expensive. We include an example of this technique in source code
accompanying this chapter (available on the CRC Press website) to demonstrate
that our framework is not just limited to HDRI TMOs.

4.4 Related Work

The LDR of cameras has inspired many solutions to produce TMOs for HDR
images in recent years. J. Kuang et al. performed a study to compare several
existing HDR rendering algorithms [Kuang et al. 07]. In their study, they im-
plemented nine different algorithms and carried out psychophysical experiments
whereby they required human observers to evaluate the rendered image. Their
results could be useful when selecting an HDR algorithm to implement based
solely on the output image. However, the paper does not provide a comparative
performance analysis between techniques. In this chapter, we will show results
from implementations of several TMOs and compare their performance on various
GPUs.

Sing Bing Kang et al. proposed a method to generate an HDR video by tak-
ing multiple-exposure images in quick succession [Kang et al. 03]. They did this
by automatically determining the temporal exposure bracketing during capture,
motion-compensating information between neighboring images, and tone map-
ping for viewing the results. We take a different approach in this chapter, as we
will focus on processing single-exposure images as opposed to multiple images
of different exposures. The technique presented by Kang et al. is quite effec-
tive, however the frame rate is limited by the rate at which the camera can vary
exposures. Motion between exposures can become a problem, and so Kang’s
method required an algorithm to account for motion between the images. Their
implementation was too slow for real-time image processing.

TMOs, in particular local operators, are computationally expensive and there-
fore currently require a GPU implementation to be able to operate in real time.
There have been several proposed real-time implementations of Reinhard’s global
and local TMOs [Akyüz 12, Krawczyk et al. 05, Chiu et al. 11, Kiser et al. 12].
However, the real-time OpenGL implementation proposed by Akyuz in [Akyüz
12] is most relevant to this research topic. Akyuz presented an HDRI pipeline on
the GPU for Reinhard’s global and local TMOs. Although the implementation is
in OpenGL (as opposed to OpenCL), it provides an insight on how the algorithm
can be modified for a GPGPU implementation. We can also use the results from
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Akyuz’s work as an efficiency benchmark for the OpenCL implementation we
present in this chapter.

Perhaps the most closely related work to ours is that by Chris McClana-
han [McClanahan 11]. McClanahan created a Linux and Android application
that uses a single video camera to create tone-mapped HDR images in real time.
The implementation uses OpenCV and OpenMP but does not appear to include
a GPGPU implementation. Furthermore, the frame rate of the Linux implemen-
tation is very low, even on low-resolution images. Nevertheless, McClanahan’s
work provides a benchmark against which we can compare.

4.5 GPGPU Using OpenCL

Traditionally, a GPU was designed for one task: speeding up the processing of
an image that ends up being rendered to a screen. Today’s GPUs are now highly
data parallel computational engines, making them really good at performing the
same calculation over and over on different data.

Upon evaluating the HDR TMO discussed in this chapter, it should be obvious
that often similar operations are applied on each individual pixel in the image.
Therefore, these algorithms should benefit from being executed on a GPU. How-
ever, in order to take advantage of the highly concurrent nature of a GPU, the
algorithms have to be programmed to take advantage of it. Implementing algo-
rithms in such a way is called general purpose computing on GPUs (GPGPU).

This brings us nicely to OpenCL (Open Computing Language). OpenCL is a
cross-platform open standard for parallel programming across different kinds of
hardware, and can target both CPUs and GPUs, and from embedded SoCs to
high-end desktop, workstation, and server GPUs. The framework is standardized
by the Khronos Group, which includes ARM, Imagination, Qualcomm, AMD,
Intel, NVIDIA, IBM, Samsung, Apple, and most of the other vendors in the
CPU/GPU space.

OpenCL 1.0 was released in late 2008, and support by multiple CPU and GPU
vendors appeared by mid-2009. Since its initial release, OpenCL has evolved
rapidly through two minor releases (OpenCL 1.1 in 2010 and 1.2 in 2011) and
a major OpenCL 2.0 release in late 2013. The rapid pace of evolution in the
OpenCL standard is challenging for programmers to track and absorb. These
modifications to the standard have been necessary, due to the rapid pace of
evolution in computer hardware.

This section will now focus on the core features of OpenCL—those that have
not changed much since the introduction of the first standard. We explain
OpenCL in terms of its key models:

• platform model,

• execution model,

• memory model.
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Figure 4.4. The OpenCL platform model with a single host and multiple devices.
Each device has one or more compute units, each of which has one or more processing
elements.

The platform model is presented in Figure 4.4 and consists of a host and one
or more devices. The host is a familiar CPU-based system supporting file I/O,
user interaction, and other functions expected of a system. The devices are where
the bulk of the computing takes place in an OpenCL program. Example devices
include GPUs, many-core coprocessors, and other devices specialized to carry out
the OpenCL computations. A device consists of one or more compute units (CUs)
each of which presents the programmer with one or more processing elements
(PEs). These processing elements are the finest-grained units of computation
within an OpenCL program.

The platform model gives programmers a view of the hardware they can use
when optimizing their OpenCL programs. Then, by understanding how the plat-
form model maps onto different target platforms, programmers can optimize their
software without sacrificing portability.

OpenCL programs execute as a fine-grained SPMD (single program, multiple
data) model. The central ideal behind OpenCL is to define an index space of
one, two, or three dimensions. Programmers map their problem onto the indices
of this space and define a block of code, called a kernel, an instance of which runs
at each point in the index space.

Consider the matrix multiplication OpenCL kernel in Listing 4.1. Here we
have mapped the outermost two loops of the traditional sequential code onto a
2D index space and run the innermost loop (over k) within a kernel function.
We then ran an instance of this kernel function, called a work item in OpenCL
terminology, for each point in the index space.
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__kernel void mat_mul ( const unsigned in t Order ,
__global const f l o a t �A ,
__global const f l o a t �B ,
__global f l o a t �C )

{
i n t i , j , k ;

i = get_global_id ( 0 ) ;
j = get_global_id ( 1 ) ;
f o r ( k = 0; k < Order ; k++)

C [ i� Order+j ] += A [ i� Order+k ] � B [ k� Order+j ] ;
}

Listing 4.1. A parallel matrix multiply as an OpenCL kernel.

A more detailed view of how an OpenCL program executes is provided in
Figure 4.5, which summarizes the OpenCL execution model. The global index
space, in this case two dimensions each of size 16, implies a set of work items that
execute a kernel instance at each point. These work items are grouped together
into blocks with the same shape as the global index space. Blocks of work items,
called work groups, cover the full index space.

Logically, the work items in a single work group run together. Hence, they
can synchronize their execution and share memory in the course of their compu-
tation. This is not the case, however, for the work groups. There are no ordering
constraints among the work groups of a single kernel instance; hence, there are
no synchronization constructs among work groups. This limitation has impor-
tant implications for sharing data, which we will cover as part of the memory
hierarchy discussion.

To a programmer used to the flexibility of programming with threads (e.g.,
Pthreads, Java threads, etc.), these restrictions on synchronization may seem
onerous. They were included in the OpenCL execution model, however, for a good
reason. OpenCL is designed for high-throughput parallel computing typically
associated with highly data parallel algorithms. High performance is achieved
by creating a large internal work pool of work groups that are ready to execute.
A scheduler can then stream these runnable work groups through the compute
units of a device to keep them fully occupied.

Because compute devices such as GPUs may have their own discrete memories,
a heterogeneous platform often cannot provide a single coherent address space.
The memory model in OpenCL, therefore, takes this into account by defining
how the memory in OpenCL is decomposed into different address spaces aligned
with the platform model. We present this concept in Figure 4.6.

Starting at the bottom of Figure 4.6, consider the host memory. As the name
implies, host memory is defined by the host and only directly visible to the host
(although this is relaxed in OpenCL 2.0). The next layer in the memory hierarchy
is the global memory, which includes a read-only memory segment called the
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Figure 4.5. A problem is decomposed onto the points of an N-dimensional index space
(N = 1, 2, or 3), known in OpenCL as an NDRange. A kernel instance runs at each
point in the NDRange to define a work item. Work items are grouped together into work
groups, which evenly tile the full index space.
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Figure 4.6. The memory model in OpenCL 1.X and its relationship to the platform
model. Here, P devices exist in a single context and therefore have visibility into the
global/constant memory.
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constant memory. Global and constant memories hold OpenCL memory objects
and are visible to all the OpenCL devices involved in a computation (i.e., within
the context defined by the programmer). The onboard DRAM of a discrete
GPU or FPGA will typically be mapped as global memory. It is worth noting
that, for discrete devices, moving data between host memory and global memory
usually requires transferring data across a bus, such as PCI Express, which can
be relatively slow.

Within an OpenCL device, each compute unit has a region of memory local
to the compute unit called local memory. This local memory is visible only to
the processing elements within the compute unit, which maps nicely onto the
OpenCL execution model, with one or more work groups running on a compute
unit and one or more work items running on a processing element. The local
memory within a compute unit corresponds to data that can be shared inside a
work group. The final part of the OpenCL memory hierarchy is private memory,
which defines a small amount of per work-item memory visible only within a work
item.

Another important OpenCL buffer type for any application that wants to
mix OpenCL and OpenGL functionality, is the textured images buffer. These
are available in 2D and 3D and are a global memory object optimized for image
processing, supporting multiple image formats and channels. There is a one-to-
one correspondence between an OpenCL textured image and certain OpenGL
textures. In fact, as discussed later, this correspondence can be taken advantage
of to optimize the framework we will present in this chapter.

Data movement among the layers in the memory hierarchy in OpenCL is
explicit—that is, the user is responsible for the transfer of data from host mem-
ory to global memory and so on. Commands in the OpenCL API and kernel
programming language must be used to move data from host memory to global
memory, and from global memory to either local or private memory.

4.6 OpenGL ES and Android

OpenGL is a “cross-platform graphics API that specifies a standard software
interface for 3D graphics processing hardware” [Android 15]. OpenGL ES is a
subset of the OpenGL specification intended for embedded devices. Although a
powerful API in itself, the main use of OpenGL ES in the implemented Android
version of our HDR framework is to provide image acquisition and to render the
output of our OpenCL TMO kernels to the display. All of the manipulation of
the images in our example framework is performed by OpenCL kernels.

4.6.1 OpenCL and OpenGL Interoperability

One of the main hurdles in achieving a real-time implementation of an Android
pipeline to process and render camera images is the transfer of image data to
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and from the GPU’s memory. Although the camera input is stored on the GPU,
existing image-processing applications tend to transfer the data to the host device
(the CPU), where they serially process the data and render it to the display using
OpenGL. Clearly this process can cause several inefficient transfers of data back
and forth between the CPU and GPU.

What is required is an approach that avoids any unnecessary memory transfers
between the GPU’s memory and the host’s memory. OpenCL/OpenGL interop-
erability supports this approach. Input from the camera can be acquired in the
form of an OpenGL ES texture using Android’s SurfaceTexture object. OpenCL
then allows a programmer to create a textured image from an OpenGL texture,
which means that the camera data doesn’t need to be transferred to the host,
instead staying resident in the GPU from image acquisition all the way to ren-
dering the output of the OpenCL kernels to the screen. Furthermore, even on
the GPU, the data doesn’t actually move as we switch between OpenCL and
OpenGL; instead it just changes ownership from OpenGL to OpenCL and back
again. To achieve this pipeline, interoperability between OpenCL and OpenGL
ES needs to be established.

4.6.2 EGL

To enable OpenCL and OpenGL ES interoperability, the OpenCL context must
be initialized using the current display and context being used by OpenGL ES.
OpenGL ES contexts are created and managed by platform-specific windowing
APIs. EGL is an interface between OpenGL ES and the underlying windowing
system, somewhat akin to GLX, the X11 interface to OpenGL with which many
readers might already be familiar.

To avoid unnecessary use of memory bandwidth, the implementation makes
use of OpenGL ES to bind the input from the camera to a texture. An OpenGL
ES display and context is then created by acquiring a handle to the Android
Surface. The context and display are then used to create a shared OpenCL
context. This shared context allows OpenCL to have access to the camera texture
and therefore to perform computations upon it. Because the Android OS has
only recently included support for such APIs, to date not many examples have
appeared in this area.

4.7 Implementing an HDR Pipeline Using OpenCL
and OpenGL ES

TMOs work best on a 32-bit HDR image obtained by synthesizing multiple LDR
images of various exposures. The 32-bit HDR image is then processed to obtain
an 8-bit HDR image that combines details from each of the original LDR images.
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To achieve a real-time implementation of the HDRI pipeline, multiple cam-
eras are required, with each capturing a different-exposure image and therefore
capturing the full dynamic range of the scene among them. However, as discussed
earlier, since we are aiming for an implementation on a smartphone with a single
camera, we will only have single-exposure images available to us as input for our
real-time pipeline. This section discusses the design and implementation details
of a GPU pipeline using OpenCL to achieve an HDR look on single-exposure
images.

For the example HDR pipeline presented in the rest of this chapter, we used
OpenCL v1.1, since this version is supported by all mobile GPU vendors at the
time of writing. We also used OpenGL ES 4.2 since this is the version of GL
currently supported by the Android OS. We have also written the code in C/C++
in order to achieve the best performance possible (OpenCL/GL bindings for Java,
Python, etc. exist, but would not have given the necessary performance).

4.7.1 Pseudo-HDR Pipeline with Image Synthesis

Multiple-exposure images are a set of under- and overexposed LDR images high-
lighting details in bright and dark regions of a scene, respectively. It’s common
practice to adjust an image’s brightness and contrast to highlight its dark or
bright regions. Since here we are limited to using a single-exposure image as the
input for our process, we can use a set of such adjusted images as inputs to the
pseudo-HDR pipeline.

This is a commonly used approach. For example, Seng manually created a set
of over- and underexposed images from a single RAW image using Photomatix
[Seng 10]. He then used Photomatix’s HDR feature to synthesize and tone-map
the pseudo-underexposed and pseudo-overexposed images to create a pseudo-
HDR image. This section discusses how this method can be automated. Figure
4.7 shows the modified pipeline to obtain a pseudo-HDR image using single-
exposure images.

Step 1: Contrast adjustment. To employ Seng’s method for our psuedo-HDR
pipeline, we first need to create multiple-exposure images by adjusting the con-
trast of a well-exposed original image. Here we create multiple images such that
each output image brings out details in a certain dynamic range. For our pur-
poses, we used Photomatix to create the under- and overexposed versions of our
original input image.

Step 2: Image synthesis. To obtain an HDR image, the multiple-exposure LDR
images of a scene are first synthesized. An HDR pixel Ij can be obtained as
follows:

Ij =

∑N
i=1

pijw(pij)
ti∑N

i=1 w(pij)
, (4.7)
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Figure 4.7. Pseudo-HDR pipeline that takes multiple input images with a range of
contrasts.

where N is the number of LDR images, w(pij) is the weight of pixel ij, and ti is
the exposure time of the LDR image i.

The serial implementation of Equation (4.7) is straightforward and is therefore
not presented here. The algorithm simply iterates over each pixel, computes its
luminance and weight, and uses those with the image exposure to calculate the
32-bit HDR pixel color.

Clearly the calculation of each pixel is independent of all the others, and so
this natural data parallelism is ideal for a GPU implementation.

Listing 4.2 shows the OpenCL kernel implemented for the image synthesis
process. Since the number of LDR images can vary, the kernel is passed a 1D ar-
ray, LDRimages, containing all the images. The 1D array is of type unsigned char,
which is sufficient to store each 8-bit color value per pixel.

The if statement on line 10 ensures that the work items don’t access out-of-
bound memory. The for loop on line 14 uses Equation (4.7) to synthesize the
LDR pixels from different images into an HDR pixel. Once an HDR pixel is
calculated, it is stored in the 1D array HDRimage. The array HDRimage is of type
float, which is sufficient to store the higher dynamic range of the pixel.

Step 3: Automating contrast adjustment. We now have a 32-bit HDR image. The
three tone-mapping algorithms we have previously described can now be used
to tone map the 32-bit HDR image, producing an 8-bit HDR image that can be
rendered on most displays. Their implementation is discussed in more detail later
on in this chapter.

4.7.2 HDR Tone-Mapping Operators

This section will describe the OpenCL implementations of the three tone-mapping
algorithms.
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1 //LDRimages c on ta in s num images LDR images
2 // exposure s c on ta in s num images exposures , one f o r each LDR image
3 //HDRimage i s the output syn the s i s ed 32−b i t image .
4 kernel void s t i t c h ( __global uchar � LDRimages ,
5 __global f l o a t � exposures ,
6 __global f l o a t � HDRimage ) {
7
8 in t gid = get_global_id ( 0 ) ; //ID in the e n t i r e g l oba l memory
9

10 i f ( gid < IMAGE_SIZE ) {
11 f l o a t weightedSum = 0;
12 f l o a t 3 hdr , ldr ;
13 hdr . x = hdr . y = hdr . z = 0;
14 f o r ( i n t i=0; i < NUM_IMAGES ; i++) {
15 ldr . x = LDRimages [ i� IMAGE_SIZE �4 + ( gid �4 + 0) ] ;
16 ldr . y = LDRimages [ i� IMAGE_SIZE �4 + ( gid �4 + 1) ] ;
17 ldr . z = LDRimages [ i� IMAGE_SIZE �4 + ( gid �4 + 2) ] ;
18
19 f l o a t luminance = getPixelLuminance ( ldr ) ;
20 f l o a t w = weight ( luminance ) ;
21 f l o a t exposure = exposures [ i ] ;
22
23 hdr . x += ( ldr . x/ exposure ) � w ;
24 hdr . y += ( ldr . y/ exposure ) � w ;
25 hdr . z += ( ldr . z/ exposure ) � w ;
26
27 weightedSum += w ;
28 }
29
30 HDRimage [ gid�4 + 0 ] = hdr . x /( weightedSum + 0.000001) ;
31 HDRimage [ gid�4 + 1 ] = hdr . y /( weightedSum + 0.000001) ;
32 HDRimage [ gid�4 + 2 ] = hdr . z /( weightedSum + 0.000001) ;
33 HDRimage [ gid�4 + 3 ] = getPixelLuminance ( hdr ) ;
34 }
35 }

Listing 4.2. OpenCL kernel for image synthesis.

Histogram equalization. The histogram equalization algorithm first computes the
brightness histogram of the image. A cumulative distribution function (CDF)
of the histogram is then created, which in turn is used to create a new set of
brightness values for the image. This process requires several steps, described
below.

Brightness histogram. In OpenCL, writes to global memory cannot be synchro-
nized between work items in different work groups. Therefore, a global
histogram array can’t be used to accumulate the results, as it would re-
sult in race conditions between work items. Instead, local histogram arrays
are used—one for each work group. The results of these per-work-group
histograms are written to global memory, which are then safely merged
together into a single histogram by a separate kernel.

The code to perform this partial histogram is included in Listing 4.3 (see
kernels partial_hist and merge_hist). These take an LDR image as an
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1 const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | ←↩
CLK_ADDRESS_NONE | CLK_FILTER_NEAREST ;

2
3 //Kernel to perform histogram equa l i z a t i o n us ing the modi f i ed
4 // b r i gh tn e s s CDF
5 kernel void histogram_equalisation ( read_only image2d_t ←↩

input_image ,
6 write_only image2d_t output_image ,
7 __global u int � brightness_cdf ) {
8 int2 pos ;
9 uint4 pixel ;

10 f l o a t 3 hsv ;
11 f o r ( pos . y = get_global_id ( 1 ) ; pos . y < HEIGHT ; pos . y += ←↩

get_global_size ( 1 ) ) {
12 f o r ( pos . x = get_global_id ( 0 ) ; pos . x < WIDTH ; pos . x += ←↩

get_global_size ( 0 ) ) {
13 pixel = read_imageui ( image , sampler , pos ) ;
14
15 hsv = RGBtoHSV ( pixel ) ; //Convert to HSV to get hue and
16 // sa tu ra t i on
17
18 hsv . z = (( HIST_SIZE −1)�( brightness_cdf [ ( i n t ) hsv . z ] − ←↩

brightness_cdf [ 0 ] ) )
19 /( HEIGHT� WIDTH − brightness_cdf [ 0 ] ) ;
20
21 pixel = HSVtoRGB ( hsv ) ; //Convert back to RGB with the
22 //modi f i ed b r i gh tn e s s f o r V
23
24 write_imageui ( output_image , pos , pixel ) ;
25 }
26 }
27 }

Listing 4.3. OpenCL kernel to equalize the image histogram.

input and, allocating one pixel to each work item, compute the brightness
value for each pixel. Once the brightness value is computed, the index
corresponding to that value is incremented in the local histogram array
l_hist. To ensure correct synchronization among different work items, a
barrier call is made just before writing to the shared l_hist array. Once
the l_hist array has been modified, the results are written to the global
partial histogram array. The merge_hist kernel then merges the partial
histograms together. This kernel is executed with global size of 256, so as
to have a one-to-one correspondence between the work items and the indices
of the image histogram. For this last kernel, each work item computes the
sum over all the partial histograms for the index value corresponding to the
work item’s ID. Once the sum is computed, the final histogram value for
this work item is then set to this sum.

Cumulative distribution function. Computing the cumulative distribution function
is an operation that is not so well suited for GPGPU, due to the sequential
nature of the algorithm required to compute it. Several OpenCL SDKs
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provide implementations of a parallel scan, which can be used to compute
the cumulative distribution function of a histogram. However, since the
histogram is only of size 256, it is not very computationally expensive to
compute this sequentially.

Histogram equalization. Once the CDF of the original histogram has been com-
puted, it can be used to compute new brightness values for each pixel;
see Listing 4.3. Once the RGB pixel is obtained from the image using an
OpenCL image sampler, it is converted to HSV format on line 14. Using
the formulation discussed earlier, we then compute the equalized brightness
value for this pixel. The HSV value with the modified V is then converted
to RGB on line 19, before the results are written to the image.

Unlike previous kernels, this kernel is executed in 2D. This is because the
output image is a textured 2D image as opposed to a 1D buffer.

4.7.3 Reinhard Global Tone-Mapping Operator

Reinhard’s global TMO iterates over the entire image twice, once to compute
Lmax and L̄w and a second time to adjust each pixel according to these values
and the key value (a) of the scene.

Computing Lmax and L̄w. As discussed previously, the Lmax of a scene is the
largest luminance value, whereas L̄w is the average logarithmic luminance of
a scene. Calculating these values serially is straightforward; however, to obtain
them using an OpenCL kernel, we will need to perform a reduction over the entire
image. As described in [Catanzaro 10], the fastest way to perform a reduction
is in a two-stage process. Here, each work item i performs reduction operations
over the following array indices:

{i + n× global_size|i + n× global_size < array_size}, ∀n ∈ N.

The result from this equation is then stored in the local array, and reduction
is then performed over this local array. The output of this stage of the reduction
is one partial reduction value for each work group. The second stage of the two-
stage reduction requires execution of a separate kernel, which simply performs
reduction over these partial results.

The input image to the kernel is a 2D texture image, therefore it’s natural to
want to run this kernel in 2D. However, this requires implementing a novel 2D
version of the above two-stage reduction. The main difference is that now each
work item (x, y) performs reduction operations over the image pixels at positions:

{(x+m×gx, y+n×gy) | (x+m×gx, y+n×gy) < (imagewidth, imageheight)},
∀m,n ∈ N,

where gx and gy are the global sizes in the x and y dimensions, respectively.
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1 const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | ←↩
CLK_ADDRESS_NONE | CLK_FILTER_NEAREST ;

2
3 //This k e rn e l computes logAvgLum by performing reduct ion
4 //The r e s u l t s are s t o r ed in an array o f s i z e num work groups
5 kernel void computeLogAvgLum ( __read_only image2d_t image ,
6 __global f l o a t � lum ,
7 __global f l o a t � logAvgLum ,
8 __local f l o a t � logAvgLum_loc ) {
9

10 f l o a t lum0 ;
11 f l o a t logAvgLum_acc = 0. f ;
12
13 int2 pos ;
14 uint4 pixel ;
15 f o r ( pos . y = get_global_id ( 1 ) ; pos . y < HEIGHT ; pos . y += ←↩

get_global_size ( 1 ) ) {
16 f o r ( pos . x = get_global_id ( 0 ) ; pos . x < WIDTH ; pos . x += ←↩

get_global_size ( 0 ) ) {
17 pixel = read_imageui ( image , sampler , pos ) ;
18 // lum0 = p i x e l . x � 0 .2126 f + p i x e l . y � 0 .7152 f + p i x e l . z � ←↩

0 .0722 f ;
19 lum0 = dot ( GLtoCL ( pixel . xyz ) , ( f l o a t 3 ) (0 .2126 f , 0 .7152f , ←↩

0 .0722 f ) ) ;
20
21 logAvgLum_acc += log ( lum0 + 0.000001 f ) ;
22 lum [ pos . x + pos . y� WIDTH ] = lum0 ;
23 }
24 }
25
26 pos . x = get_local_id ( 0 ) ;
27 pos . y = get_local_id ( 1 ) ;
28 const i n t lid = pos . x + pos . y� get_local_size ( 0 ) ; // Local ID in
29 // one dimension
30 logAvgLum_loc [ lid ] = logAvgLum_acc ;
31
32 //Perform p a r a l l e l r educt ion
33 barrier ( CLK_LOCAL_MEM_FENCE ) ;
34
35 f o r ( i n t offset = ( get_local_size ( 0 ) � get_local_size ( 1 ) ) /2 ; offset←↩

> 0 ; offset = offset /2) {
36 i f ( lid < offset ) {
37 logAvgLum_loc [ lid ] += logAvgLum_loc [ lid + offset ] ;
38 }
39 barrier ( CLK_LOCAL_MEM_FENCE ) ;
40 }
41
42 //Number o f workgroups in x dim
43 const i n t num_work_groups = get_global_size ( 0 ) / get_local_size ( 0 )←↩

;
44 const i n t group_id = get_group_id ( 0 ) + get_group_id ( 1 ) �←↩

num_work_groups ;
45 i f ( lid == 0) {
46 logAvgLum [ group_id ] = logAvgLum_loc [ 0 ] ;
47 }
48 }

Listing 4.4. OpenCL kernel to compute Lmax and L̄w.

The 2D kernel used to compute such a reduction is shown in Listing 4.4.
As described above, first each work item (x, y) computes the sum and maxi-
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mum of luminances over a range of image pixels (line 17–25). This sum and
maximum is then stored in local arrays at an index corresponding to the pixel’s
position. A wave-front reduction is then performed over these local arrays (lines
36–42), and the result is then stored in the global array for each work group.
The finalReduc kernel is then used to perform reduction over the partial re-
sults, where num_reduc_bins is the number of work groups in the execution of the
computeLogAvgLum kernel. Once the sum over all the luminance values is com-
puted, we take its average and calculate its exponential.

Once we have calculated Lmax and L̄w, these values are plugged into Equation
(4.7), with L(x, y) = Lw(x, y) a

L̄w
, Lwhite = Lmax, and Lw(x, y), the luminance of

pixel (x, y). Once the values of Lmax and L̄w have been computed, the rest of the
computation is fully data parallel, thus benefitting from a GPGPU implementa-
tion. Due to limited space, the OpenCL kernel is not presented here as it only
requires a simple modification of the serial implementation. The code can be
found in the example pipeline source code accompanying this chapter (available
on the CRC Press website) .

4.7.4 Reinhard Local Tone-Mapping Operator

Reinhard’s local TMO is similar to the global TMO in that it also computes the
average logarithmic luminance of the entire image. To do this, the computeLog

AvgLum and finalReduc kernels used for Reinhard’s global TMO are modified so
that they do not compute Lmax. Instead, the local TMO computes the aver-
age logarithmic luminance over various-sized neighborhoods for each pixel. For
greater performance, these kernels are all fused together into one master kernel
called reinhardLocal, as shown in Listing 4.5.

1 const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | ←↩
CLK_ADDRESS_NONE | CLK_FILTER_NEAREST ;

2
3 //Computes the mapping f o r each p i x e l as per Reinhard � s Local TMO
4 kernel void reinhardLocal ( __read_only image2d_t input_image ,
5 __write_only image2d_t output_image ,
6 __global f l o a t � lumMips ,
7 __global i n t � m_width ,
8 __global i n t � m_offset ,
9 __global f l o a t � logAvgLum_acc ) {

10
11 f l o a t factor = logAvgLum_acc [ 0 ] ;
12
13 //Assumes Phi i s 8 . 0
14 constant f l o a t k [ 7 ] = {
15 256 . f � KEY / ( 1 . f �1 . f ) ,
16 256 . f � KEY / ( 2 . f �2 . f ) ,
17 256 . f � KEY / ( 4 . f �4 . f ) ,
18 256 . f � KEY / ( 8 . f �8 . f ) ,
19 256 . f � KEY / ( 1 6 . f �16 . f ) ,
20 256 . f � KEY / ( 3 2 . f �32 . f ) ,
21 256 . f � KEY / ( 6 4 . f �64 . f )
22 } ;
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23
24 int2 pos , centre_pos , surround_pos ;
25 f o r ( pos . y = get_global_id ( 1 ) ; pos . y < HEIGHT ; pos . y += ←↩

get_global_size ( 1 ) ) {
26 f o r ( pos . x = get_global_id ( 0 ) ; pos . x < WIDTH ; pos . x += ←↩

get_global_size ( 0 ) ) {
27 surround_pos = pos ;
28 f l o a t local_logAvgLum = 0. f ;
29 f o r ( u int i = 0; i < NUM_MIPMAPS −1; i++) {
30 centre_pos = surround_pos ;
31 surround_pos = centre_pos /2 ;
32
33 int2 m_width_01 , m_offset_01 ;
34 m_width_01 = vload2 (0 , &m_width [ i ] ) ;
35 m_offset_01 = vload2 (0 , &m_offset [ i ] ) ;
36
37 int2 index_01 = m_offset_01 + ( int2 ) ( centre_pos . x , ←↩

surround_pos . x ) ;
38 index_01 += m_width_01 � ( int2 ) ( centre_pos . y , surround_pos←↩

. y ) ;
39
40 f l o a t 2 lumMips_01 = factor ;
41 lumMips_01 �= ( f l o a t 2 ) ( lumMips [ index_01 . s0 ] , lumMips [←↩

index_01 . s1 ] ) ;
42
43 f l o a t centre_logAvgLum , surround_logAvgLum ;
44 centre_logAvgLum = lumMips_01 . s0 ;
45 surround_logAvgLum = lumMips_01 . s1 ;
46
47 f l o a t cs_diff = fabs ( centre_logAvgLum − surround_logAvgLum←↩

) ;
48 i f ( cs_diff > ( k [ i ] + centre_logAvgLum ) � EPSILON ) {
49 local_logAvgLum = centre_logAvgLum ;
50 break ;
51 } e l s e {
52 local_logAvgLum = surround_logAvgLum ;
53 }
54 }
55
56 uint4 pixel = read_imageui ( input_image , sampler , pos ) ;
57
58 f l o a t 3 rgb = GLtoCL ( pixel . xyz ) ;
59 f l o a t 3 xyz = RGBtoXYZ ( rgb ) ;
60
61 f l o a t Ld = factor / ( 1 . f + local_logAvgLum ) � xyz . y ;
62 pixel . xyz = convert_uint3 ( ( f l o a t 3 ) 255 . f � \
63 clamp ( ( pow ( rgb . xyz/ xyz . y , ( f l o a t 3 ) SAT ) �( f l o a t 3 ) Ld ) , 0 . f , ←↩

1 . f ) ) ;
64
65 write_imageui ( output_image , pos , pixel ) ;
66 }
67 }
68 }

Listing 4.5. OpenCL kernels for Reinhard’s local tone-mapping operator.

Computing HDR luminance. To recap, for each pixel the local TMO creates a
Gaussian kernel to compute the average logarithmic luminance in a neighbor-
hood. However, Gaussian kernels are expensive to compute, therefore this imple-
mentation makes use of OpenGL mipmaps.
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Mipmaps of the luminance values are created at different scales and then
used as an approximation to the average luminance value at that scale. Using
OpenGL’s API, mipmaps up to Level 7 are computed. The reinhardLocal kernel
in Listing 4.5 gets passed these seven mipmaps in the array lumMips. The for

loop on line 29 is the core of this TMO. Each mipmap is iterated over to obtain
the average logarithmic luminance at that scale. Lines 37 to 45 compute the
center and surround functions V1 and V2 used in Equation (4.4). Lines 47 to 53
compute V as in Equation (4.4) and checks whether it is less than ε (Equation
(4.5)) to determine the appropriate average logarithmic luminance, V1(x, y, sm),
for that pixel. Once the optimal center function V1 is computed, the remaining
code implements Equation (4.6) to obtain the HDR luminance for that pixel.

Writing to output. Having computed the HDR luminance array Ld, the local
tone-map kernel simply modifies the luminance values to reflect the new dynamic
range. We first obtain the original RGB pixel, convert it to (x, y, z), modify its
luminance, and convert it back to RGB.

4.8 Android Implementation

One of the contributions of this chapter is the fully working Android Open-
CL/OpenGL pipeline, which we will describe in this section. The overall aim of
the pipeline is to acquire camera frames, process them in OpenCL, and render the
output to the screen using OpenGL. Ideally, the pipeline should be fast enough
to allow for real-time image processing. This means that the time between ac-
quiring a camera frame and passing it to OpenCL should be negligible. Our
example pipeline achieves this by avoiding the image transfer between the GPU
and the host by using OpenCL/OpenGL interoperability. Using this approach,
the camera texture is kept on the GPU, and just before the OpenCL kernels are
executed, the ownership of the texture is transferred to OpenCL.

To achieve OpenCL–OpenGL interoperability, an OpenCL context must first
be initialized using the current OpenGL context as per the OpenCL specification.
Then, OpenCL memory objects are created using the OpenGL data objects. Just
before enqueing the OpenCL kernels, the ownership of the data objects is passed
from OpenGL to OpenCL. Once the OpenCL kernels are executed, the OpenGL
objects can be released so that they can be used as the basis for rendering. This
section discusses the implementation details of this pipeline.

Java Native Interactive. Our example Android application is written in Java; how-
ever, the OpenCL kernel execution code is in C++ for performance reasons.
Therefore, to call various C++ functions from the Android application we make
use of the Java Native Interface (JNI).

OpenCL. To enable OpenCL and OpenGL ES interoperability, the OpenCL con-
text must be initialized using the current display and context being used by
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OpenGL ES. OpenGL ES contexts on Android are created and managed by
EGL, the previously described interface between OpenGL ES and the underlying
windowing system. Therefore, to create an OpenCL context for interoperability,
the properties array must be initialized such that it holds the EGL context and
display.

There are two classes in the Android framework API that allow a developer
to create and manipulate graphics with the OpenGL ES API: GLSurfaceView and
GLSurfaceView.Renderer.

GLSurfaceView. This class provides a canvas where we can draw and manipulate
objects using OpenGL ES API calls. More importantly, GLSurfaceView manages
an EGL display that enables OpenGL ES to render onto a surface. Therefore, by
using GLSurfaceView, we don’t have to worry about managing the EGL windowing
life cycle.

GLSurfaceView.Renderer. This defines the methods required for drawing graph-
ics in GLSurfaceView. When GLSurfaceView is instantiated, it must be provided
with a renderer class that extends GLSurfaceView.Renderer. This is further dis-
cussed later on in the chapter.

OpenCL texture image. After the OpenCL context has been successfully initial-
ized, OpenCL image textures can be created for the kernels from the camera
input.

Convert GL TEXTURE EXTERNAL OES to GL TEXTURE 2D. A SurfaceTexture object
can be used to capture frames from the camera as an OpenGL ES texture. The
SurfaceTexture object is initialized using an OpenGL ES texture ID. However,
the texture ID must be bound to the GL_TEXTURE_EXTERNAL_OES texture target.
Unfortunately, as per the OpenCL specification, when creating an OpenCL tex-
ture image from an OpenGL texture, GL_TEXTURE_EXTERNAL_OES isn’t a valid tex-
ture target. Therefore, the GL_TEXTURE_EXTERNAL_OES is used instead to create a
GL_TEXTURE_2D texture.

Then the fragment shader in Listing 4.6 is executed. Note that since we are
sampling from GL_TEXTURE_EXTERNAL_OES, the directive

extensionGL_OES_ EGL_image_external : require

must be declared in the fragment shader. This results in the contents of the
GL_TEXTURE_EXTERNAL_OES target texture being copied to the GL_TEXTURE_2D tex-
ture rather than being rendered to the display. At this point we now have an
OpenGL ES GL_TEXTURE_2D texture on the GPU which contains the camera data.
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1 extension GL_OES_EGL_image_external : require
2
3 precision mediump f l o a t ;
4 uniform samplerExternalOES sTexture ;
5 varying vec2 texCoord
6
7 void main ( ) {
8 gl_FragColor = texture2D ( sTexture , texCoord ) ;
9 }

Listing 4.6. Fragment shader that samples from a GL_TEXTURE_ EXTERNAL_OES texture.

1 mem_images [ 0 ] = clCreateFromGLTexture2D ( m_clContext ,
2 CL_MEM_READ_ONLY , GL_TEXTURE_2D , 0 , in_tex , &err ) ;
3 err = clEnqueueAcquireGLObjects ( m_queue , 1 , &mem_images [ 0 ] , 0 , 0 , 0 ) ;
4 runCLKernels ( ) ; // Function to run OpenCL k e r n e l s
5 err = clEnqueueReleaseGLObjects ( m_queue , 1 , &mem_images [ 0 ] , 0 , 0 , 0 ) ;

Listing 4.7. Creating an OpenCL image from an OpenGL texture.

Create an OpenCL image from OpenGL 2D texture. Using JNI, the C++ global
state is then instructed to use the previously created OpenCL context to create an
OpenCL texture image from the provided input texture ID. Combining OpenCL
and OpenGL allows OpenCL kernels to modify the texture image on the GPU,
but before the kernels can access the texture data, the host needs to create an
OpenCL memory object specifically configured for this purpose (line 1 in Listing
4.7).

4.8.1 Render Output to Display

Having applied TMO to an LDR image, the results now need to be displayed on
the Android device. To do so, we create another OpenGL texture and instruct the
OpenCL kernels to render the output to that instead. Then, once the OpenCL
kernels have been executed, an OpenGL fragment shader can be used to render
the contents of the output texture.

One important design point to note is that OpenGL and OpenCL cannot
simultaneously access the same data. The OpenCL kernels need to acquire ex-
clusive access to the data, which can be achieved by making a call to clEnqueue

AcquireGLObjects. Once the data has been acquired, OpenCL kernels to process
this data can then be enqueued. Finally, for OpenGL ES to be able to reuse the
texture, the OpenCL context must give up the exclusive access to the texture
(for example, see line 5 in Listing 4.7).

Once the OpenCL kernels have been executed and access to the textures is
given up, the contents of the resulting texture can be rendered to the display in
Java (Listing 4.8).
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precision mediump f l o a t ;
uniform sampler2D sTexture ;
varying vec2 texCoord ;
void main ( ) {

gl_FragColor = texture2D ( sTexture , texCoord ) ;
} ;

Listing 4.8. Java code to render the result texture to the display.

4.8.2 GLSurfaceView.Renderer

Extending GLSurfaceView.Renderer requires implementation of the following meth-
ods.

onSurfaceCreated. This method is called by the Android framework every time
the EGL context is created or recreated. Aside from when the application first
starts, this typically happens when the Android device wakes up after going to
sleep.

Because the OpenCL context relies on the OpenGL ES context created from
EGL, it is important to ensure that the OpenCL context is recreated every time
this method gets called. Therefore, in onSurfaceCreated, we make calls to C++
through JNI to initialize the OpenCL properties. These OpenCL properties are
then used to create a new OpenCL context, which in turn is used to execute the
OpenCL kernels.

Building OpenCL kernels and initializing OpenCL memory objects every time
a new frame is available can be quite expensive. However, these OpenCL ob-
jects can’t simply be created only when the app starts, as they rely on an ac-
tive OpenCL context. Therefore, the following tasks are also carried out when
onSurfaceCreated is called:

• creating OpenCL command queue,

• creating and building the TMO OpenCL program,

• creating all the required kernels,

• creating buffers and textured images,

• setting kernel arguments.

onDrawFrame. This method repeatedly gets called by the GLSurfaceView.Renderer

API and is responsible for rendering objects to the display. Therefore, this
method is the ideal place to execute the tone-mapping process.

First, updateTexImage is called to update the camera texture with the latest
available frame. An OpenGL ES 2D texture is then created from the camera
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texture as described earlier. The texture ID of this texture is then passed to
the C++ global state, where the OpenCL tone-mapping kernels are executed to
create a pseudo-HDR effect on the image. Once the tone-mapping process has
finished, the output texture is then rendered to the display.

onSurfaceChanged. This method is called when the surface size changes. How-
ever, the method is redundant here as the orientation is locked in our example
application.

4.8.3 Mipmap Generation

Mipmaps are used for our implementation of Reinhard’s local TMO. OpenGL
ES provides built-in functionality to generate the complete chain of mipmaps by
making a call to glGenerateMipmap. Once generated, the corresponding OpenCL
textures can be created by making a call to clCreateFromGLTexture2D(). However,
executing the said function returns an error, which as per the OpenCL specifica-
tion is raised when the “OpenGL implementation does not support creating from
nonzero mipmap levels” [Khronos 15].

To get around this, an OpenCL kernel (called channel_mipmap in the available
source code) was implemented, which, when executed, generates the next level
mipmap. As discussed previously, for Reinhard’s local TMO, we set the number
of mipmaps to 8.

4.8.4 Reading from an OpenGL Texture

When called from an OpenCL kernel, read_imageui returns the RGBA value of a
pixel at a specified coordinate. The returned pixel values represent an 8-bit color
each and therefore should be in the range of {0, . . . , 255}.

However, while testing our example application, we ran into problems with
Qualcomm’s OpenCL implementation on their Snapdragon chipset. Their OpenCL
implementation (incorrectly) returns values ranging between 0 and 15,359. More-
over, there is no linear mapping between the original 8-bit values and the ones
returned by read_imageui, making it nontrivial to obtain the original 8-bit color
values.

Using linear interpolation on a subset of the reversed mapping, we have man-
aged to generate a suitable polynomial function. However, this polynomial is of
a very high degree and therefore is quite computationally expensive to execute.
Instead, we have produced a function called GL_to_CL(), which is a combination
of four linear functions and a quartic function. This work-around code is included
in our example pipeline (available on the CRC Press website) for those wishing
to try it on a Snapdragon platform (although, of course, this bug may be fixed
in their OpenCL implementation at some stage).
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Device Peak performance Global Memory Local
(32-bit GFLOPS) Bandwidth (GB/s) per CU (KB) Memory

ARM Mali T604 68 12.8 –

NVIDIA GTX 760 2258 192 48

Intel i3-3217U 29 25.6 32

Qualcomm Adreno 330 129 12.8 8

Table 4.1. Specifications for the devices under test.

4.9 Performance of Our HDR Effects

Each of the TMOs we have implemented has been run on images of different
sizes to measure their performances. These tests were carried out on a range of
devices, as detailed below.

First, we have an ARM Mali-T604–based device: an Arndale development
board sporting a Samsung Exynos 5 5250 processor. This processor includes two
ARM Cortex A-15 CPU cores and a four-core Mali T604 GPU. A second device
in our test is an Android-based Sony Xperia Z Ultra smartphone. This device
comes with an embedded Qualcomm Snapdragon 800 quad-core processor and
Adreno 330 GPU. Other OpenCL-compatible devices used to analyze the results
are an NVIDIA GTX 760 and an Intel i3-3217U CPU. Table 4.1 lists the relevant
specifications for each of these devices.

The GFLOPS figure is a measure of peak performance—in this case, billions
of single precision floating point operations per second. Global and local memory
are the amount of memory resources available to an OpenCL kernel at the time
of execution. If an OpenCL kernel exhausts its local memory, then any overspill
is typically stored in global memory instead, with correspondingly slower access
speeds.

Reinhard global TMO performance. Reinhard’s global TMO iterates over the entire
image twice; once to compute Lmax and L̄w, and a second time to adjust each pixel
according to these values and the key value (a) of the scene. To achieve a real-
time implementation, the kernels need to be executed in less than 33 milliseconds
(30 fps). Figure 4.8 compares the execution times of different-sized images, all
running the same OpenCL code on the ARM Mali T604 and NVIDIA GTX 760
platforms.

The NVIDIA GTX 760, being a fast, discrete, desktop GPU, executes the
OpenCL kernels on all image sizes in less than 2.5 ms, achieving more than 400 fps
at 1080p. This is much faster than the equivalent OpenGL implementation by
Akyuz, which achieved 103 fps on a 1024 × 768 image, albeit on much slower
hardware. The ARM Mali T604 GPU can process the two smaller images fast
enough to render the output in real time. However, processing a 1080p image is
slightly borderline, coming in at about 28 fps. With a little more optimization,
30 fps is probably achievable on this platform.
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Figure 4.8. Reinhard’s global TMO timings (lower is better).
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Figure 4.9. Reinhard’s local TMO timings (lower is better).

Reinhard local TMO performance. Because Reinhard’s Local TMO requires iter-
ating over multiple sizes of neighborhood for each pixel, the algorithm is much
more computationally expensive than its global TMO counterpart. Analyzing
the results in Figure 4.9, we see that the desktop GPU again processes all the
images in less than 33 ms to achieve a real-time implementation. Our OpenCL
implementation achieves 250 fps (4.0 ms) on a 1920 × 1080 image compared to
Akyuz’s OpenGL implementation, which has a frame rate of 103 fps on a slightly
smaller (1027 × 768) image.
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Reduction

Reinhard Local TMO
Proportion of time taken by each OpenCL kernel

Mipmaps
New luminance mappings
Writing to output texture

Figure 4.10. The fraction of total time spent in each kernel within Reinhard’s local
TMO.

For the more data-expensive and computationally expensive local TMO, the
ARM Mali T604 GPU achieves real-time performance for the 640 × 480 image
size (30.8 fps), but doesn’t exceed our 30 fps goal for the two larger image sizes,
instead achieving 15.9 fps on a 1280× 720 image and 7.8 fps for the 1920× 1080
HD image.

A closer look at the execution time of each kernel shows that most of the time
is spent in computing the luminance mappings used to scale each luminance value
from the original image (Figure 4.10). These mappings are computed based on
the luminance of the scene.

When recording a video or taking a picture, the luminance of the scene doesn’t
vary much between frames. We could therefore take advantage of this to achieve
a higher frame rate by only computing a new set of mappings once every few
frames, as opposed to computing them for every frame.

Histogram equalization. Although not an HDR TMO, histogram equalization is
a demonstration that our example Android pipeline is not limited to just HDR
TMOs and can be used for other classes of image-processing applications that
require input from a camera and render the output to a display.

Figure 4.11 shows the execution times of our histogram equalization example
OpenCL code, this time on a different set of our target devices. Once again,
the desktop GPU is the fastest device. However it is interesting to note that
the Intel CPU performs this benchmark much faster than the Adreno 330 GPU,
demonstrating that this code is memory bandwidth limited rather than compute
limited.
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Figure 4.11. Histogram equalization performance results.

4.9.1 Performance Summary

Overall, the example OpenCL kernel implementations presented in this chapter
perform better than any previously reported results. Upon closer inspection of
the various TMO algorithms we have implemented, Reinhard’s global TMO is the
least compute intensive. It can achieve real time on 720p images across all the
devices we have tested. As expected, the desktop GPU performed best, achieving
a frame rate far greater than 30 fps across all the algorithms and all the different-
sized images. However, many embedded GPUs are now capable to achieving
30 fps or better for certain image sizes, a very interesting result that shows that
real-time HDR pipelines are now within reach for some mobile platforms.

All of this source code is available as a working OpenCL/OpenGL framework,
supporting both Linux and Android OSs. We encourage the reader to try the
code for themselves and benchmark the hardware platforms of their choice.

4.10 Conclusions

The main contributions of this chapter are

• a description of HDR TMO that can be used to create a pseudo-HDR effect
on an image;

• an efficient GPGPU OpenCL/OpenGL implementation of the above algo-
rithms;

• a pipeline that captures camera images, tone-maps them using the above
OpenCL implementations, and renders the output to display;
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• a demonstration of a working OpenCL–OpenGL interoperability that avoids
any unnecessary data transfer in the example pipeline.

For a scene where the overall luminance is very low, Reinhard’s TMOs work very
well by adjusting the luminance of the image to highlight details in both the
dark and the bright regions. The OpenCL implementations of these algorithms
have been demonstrated to be efficient and portable. An Android pipeline was
also described, which acquired camera frames, tone-mapped them using OpenCL
kernels, and rendered the output to a display. Using OpenGL ES and OpenCL
interoperability, this pipeline was further optimized to avoid any data transfer
of the camera frames. The pipeline can be used for other image-processing ap-
plications that require input from the camera. To demonstrate this, an OpenCL
histogram equalization program has also been provided.
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VI

Compute

Short and sweet is this section, presenting three rendering techniques that make
intensive use of the compute functionality of modern graphics pipelines. GPUs,
including those in new game consoles, can nowadays execute general-purpose
computation kernels, which opens doors to new and more efficient rendering tech-
niques and to scenes of unseen complexity. The articles in this section leverage
this functionality to enable large numbers of dynamic lights in real-time ren-
dering, more complex geometry in ray tracing, and fast approximate ambient
occlusion for direct volume rendering in scientific visualization applications.

“Compute-Based Tiled Culling,” Jason Stewart’s chapter, focuses on one chal-
lenge in modern real-time rendering engines: they need to support many dynamic
light sources in a scene. Both forward and deferred rendering can struggle with
problems such as efficient culling, batch sizes, state switching, or bandwidth con-
sumption, in this case. Compute-based (tiled) culling of lights reduces state
switching and avoids culling on the CPU (beneficial for forward rendering), and
computes lighting in a single pass that fits deferred renderers well. Jason details
his technique, provides a thorough performance analysis, and deduces various
optimizations, all documented with example code.

In “Rendering Vector Displacement-Mapped Surfaces in a GPU Ray Tracer,”
Takahiro Harada’s work targets the rendering of vector displacement-mapped
surfaces using ray-tracing–based methods. Vector displacement is a popular and
powerful means to model complex objects from simple base geometry. However,
ray tracing such geometry on a GPU is nontrivial: pre-tessellation is not an op-
tion due to the high (and possibly unnecessary) memory consumption, and thus
efficient, GPU-friendly algorithms for the construction and traversal of accel-
eration structures and intersection computation with on-the-fly tessellation are
required. Takahiro fills this gap and presents his method and implementation of
an OpenCL ray tracer supporting dynamic tessellation of vector displacement-
mapped surfaces.

“Smooth Probablistic Ambient Occlusion for Volume Rendering” by Thomas
Kroes, Dirk Schut, and Elmar Eisemann covers a novel and easy-to-implement
solution for ambient occlusion for direct volume rendering (DVR). Instead of ap-
plying costly ray casting to determine the accessibility of a voxel, this technique
employs a probabilistic heuristic in concert with 3D image filtering. This way,
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ambient occlusion can be efficiently approximated and it is possible to interac-
tively modify the transfer function, which is critical in many applications, such
as medical and scientific DVR.

—Carsten Dachsbacher
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Compute-Based Tiled Culling
Jason Stewart

1.1 Introduction

Modern real-time rendering engines need to support many dynamic light sources
in a scene. Meeting this requirement with traditional forward rendering is prob-
lematic. Typically, a forward-rendered engine culls lights on the CPU for each
batch of scene geometry to be drawn, and changing the set of lights in use requires
a separate draw call. Thus, there is an undesirable tradeoff between using smaller
pieces of the scene for more efficient light culling versus using larger batches and
more instancing for fewer total draw calls. The intersection tests required for
light culling can also be a performance burden for the CPU.

Deferred rendering better supports large light counts because it decouples
scene geometry rendering and material evaluation from lighting. First, the scene
is rendered and geometric and material properties are stored into a geometry
buffer or G-buffer [Saito and Takahashi 90]. Lighting is accumulated separately,
using the G-buffer as input, by drawing light bounding volumes or screen-space
quads. Removing lighting from the scene rendering pass eliminates the state
switching for different light sets, allowing for better batching. In addition, CPU
light culling is performed once against the view frustum instead of for each batch,
reducing the performance cost. However, because each light is now accumulated
separately, overlapping lights increase bandwidth consumption, which can de-
crease GPU performance [Lauritzen 10].

This chapter presents a better method for supporting large light counts:
compute-based tiled culling. Modern GPUs, including those in Xbox One and
Playstation 4, can execute general-purpose computation kernels. This capability
allows light culling to be performed on the GPU. The technique can be used with
both forward and deferred rendering. It eliminates light state switching and CPU
culling, which helps forward rendering, and it calculates lighting in a single pass,
which helps deferred rendering. This chapter presents the technique in detail, in-
cluding code examples in HLSL and various optimizations. The companion code
implements the technique for both forward and deferred rendering and includes
a benchmark.

435
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Far plane

Near plane

Scene geometry

Max Z

Min Z

(b)

Figure 1.1. Partitioning the scene into tiles. (a) Example screen tiles. (b) Fitting view
frustum partitions to the screen tiles. For clarity, the tiles shown in this figure are very
large. They would typically be 16× 16 pixels.

In addition to using the companion code to measure performance, results are
presented using Unreal Engine 4, including a comparison of standard deferred
rendering versus tiled deferred.

1.2 Overview

Compute-based tiled culling works by partitioning the screen into fixed-size tiles,
as shown in Figure 1.1(a). For each tile, a compute shader1 loops over all lights in
the scene and determines which ones intersect that particular tile. Figure 1.1(b)
gives a 2D, top-down example of how the tile bounding volume is constructed.
Four planes are calculated to represent the left, right, top, and bottom of an

1This chapter uses Direct3D 11 terminology. In Direct3D 11, the general-purpose computa-
tion technology required for tiled culling is called DirectCompute 5.0, and the general-purpose
kernel is called a compute shader.
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Figure 1.2. Tiled culling overview.

asymmetric partition of the view frustum that fits exactly around the tile. To
allow for tighter culling, the minimum and maximum scene depths are calculated
for the tile, as shown in Figure 1.1(b) for Tile 0. These depth values form the
front and back of the frustum partition. This gives the six planes necessary for
testing the intersection between light bounding volumes and the tile.

Figure 1.2 provides an overview of the algorithm. Figure 1.2(a) shows a 2D
representation of a tile bounding volume, similar to that shown for Tile 0 in
Figure 1.1(b). Several scene lights are also shown. Figure 1.2(b) shows the input
buffer containing the scene light list. Each entry in the list contains the center
and radius for that light’s bounding sphere.

The compute shader is configured so that each thread group works on one tile.
It loops over the lights in the input buffer and stores the indices of those that
intersect the tile into shared memory.2 Space is reserved for a per-tile maximum
number of lights, and a counter tracks how many entries were actually written,
as shown in Figure 1.2(c).

Algorithm 1.1 summarizes the technique.
Referring back to Figure 1.2 as a visual example of the loop in Algorithm 1.1,

note from Figure 1.2(a) that two lights intersect the frustum partition: Light 1
and Light 4. The input buffer index (Figure 1.2(b)) of each intersecting light is
written to shared memory (Figure 1.2(c)). To make this thread safe, so that lights
can be culled in parallel, a counter is stored in shared memory and incremented
using the atomic operations available in compute shaders.

1.3 Implementation

This section gives an implementation in HLSL of the compute-based tiled-culling
algorithm discussed in the previous section. The three parts of Algorithm 1.1
will be presented in order: depth bounds calculation, frustum planes calculation,
and intersection testing.

2Compute shader execution is organized into thread groups. Threads in the same thread
group have access to shared memory.
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Input: light list, scene depth
Output: per-tile list of intersecting lights

calculate depth bounds for the tile;
calculate frustum planes for the tile;

for i← thread_index to num_lights do
current_light ← light_list[i];
test intersection against tile bounding volume;
if intersection then

thread-safe increment of list counter;
write light index to per-tile list;

end
i← i+ num_threads_per_tile;

end

Algorithm 1.1. Basic tiled culling.

1.3.1 Depth Bounds Calculation

As mentioned previously (in Footnote 2), compute shader execution is organized
into thread groups. You specify the exact organization as part of the compute
shader. In HLSL, this is done with the numthreads attribute, as shown on line 15
of Listing 1.1. For tiled culling, the thread groups are organized to match the tile
size. For example, TILE_RES is defined as 16 in Listing 1.1, and the 16 × 16-pixel
tile size results in a 16 × 16-thread layout in the compute shader.

Compute shaders are executed with the Dispatch method, which specifies the
number of thread groups to launch. For example, a 1920×1080 screen resolution
with 16 × 16-pixel tiles requires 120 × 68 tiles to cover the screen. Thus, by
calling Dispatch(120,68,1) for a compute shader with [numthreads(16,16,1)],
each thread maps to a particular screen pixel.

To calculate the depth bounds, each thread simply reads its pixel’s depth
value from the scene depth buffer and performs a thread-safe atomic minimum
and maximum in shared memory. The depth buffer read happens on lines 20–
21 of Listing 1.1. The globalIdx variable used to address the depth buffer is the
SV_DispatchThreadID value (see line 16), one of the special system-value semantics
available to compute shaders. Because the thread group layout from the Dispatch

call matches the screen tiles and the thread layout from the numthreads attribute
matches the tile size, the SV_DispatchThreadID value corresponds to a screen pixel
address and can be used directly with the Load function.

One minor complication with the depth bounds calculation is that the scene
depth value is floating point, but the atomic minimum and maximum functions
(InterlockedMin and InterlockedMax on lines 43–44) only operate on integer types.
Therefore, asuint is used to store the raw bits of the floating point depth value,
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1 Texture2D<f l o a t> g_SceneDepthBuffer ;
2
3 // Thread Group Shared Memory ( aka l o c a l data share , or LDS)
4 groupshared uint ldsZMin ;
5 groupshared uint ldsZMax ;
6
7 // Convert a depth va lue from po s t p r o j e c t i o n space
8 // in to view space
9 f l o a t ConvertProjDepthToView ( f l o a t z )

10 {
11 re turn ( 1 . f /( z� g_mProjectionInv . _34 + g_mProjectionInv . _44 ) ) ;
12 }
13
14 #de f i n e TILE RES 16
15 [ numthreads ( TILE_RES , TILE_RES , 1 ) ]
16 void CullLightsCS ( uint3 globalIdx : SV_DispatchThreadID ,
17 uint3 localIdx : SV_GroupThreadID ,
18 uint3 groupIdx : SV_GroupID )
19 {
20 f l o a t depth = g_SceneDepthBuffer . Load ( uint3 ( globalIdx . x ,
21 globalIdx . y , 0 ) ) . x ;
22 f l o a t viewPosZ = ConvertProjDepthToView ( depth ) ;
23 uint z = asuint ( viewPosZ ) ;
24
25 uint threadNum = localIdx . x + localIdx . y� TILE_RES ;
26
27 // There i s no way to i n i t i a l i z e shared memory at
28 // compi le time , so thread ze ro does i t at runtime
29 i f ( threadNum == 0)
30 {
31 ldsZMin = 0 x7f7fffff ; // FLTMAX as a u int
32 ldsZMax = 0;
33 }
34 GroupMemoryBarrierWithGroupSync ( ) ;
35
36 // Parts o f the depth bu f f e r that were never wr i t ten
37 // ( e . g . , the sky ) w i l l be ze ro ( the companion code use s
38 // inve r t ed 32−b i t f l o a t depth f o r b e t t e r p r e c i s i o n ) .
39 i f ( depth != 0 . f )
40 {
41 // Calcu late the minimum and maximum depth f o r t h i s t i l e
42 // to form the f r on t and back o f the frustum
43 InterlockedMin ( ldsZMin , z ) ;
44 InterlockedMax ( ldsZMax , z ) ;
45 }
46 GroupMemoryBarrierWithGroupSync ( ) ;
47
48 f l o a t minZ = asfloat ( ldsZMin ) ;
49 f l o a t maxZ = asfloat ( ldsZMax ) ;
50
51 // Frustum planes and i n t e r s e c t i o n code goes here
52 . . .
53 }

Listing 1.1. Depth bounds calculation.

and the minimum and maximum are performed against these unsigned bits. This
works because the floating point depth is always positive, and the raw bits of a
32-bit floating point value increase monotonically in this case.
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1 // Plane equat ion from three po ints , s imp l i f i e d
2 // f o r the case where the f i r s t po int i s the o r i g i n .
3 // N i s normal ized so that the plane equat ion can
4 // be used to compute s igned d i s t anc e .
5 float4 CreatePlaneEquation ( float3 Q , float3 R )
6 {
7 // N = normal i z e ( c r o s s (Q−P,R−P) ) ,
8 // except we know P i s the o r i g i n
9 float3 N = normalize ( cross ( Q , R ) ) ;

10 // D = −(N dot P) , except we know P i s the o r i g i n
11 re turn float4 ( N , 0 ) ;
12 }
13
14 // Convert a po int from po s t p r o j e c t i on space i n to view space
15 float3 ConvertProjToView ( float4 p )
16 {
17 p = mul ( p , g_mProjectionInv ) ;
18 re turn ( p/p . w ) . xyz ;
19 }
20
21 void CullLightsCS ( uint3 globalIdx : SV_DispatchThreadID ,
22 uint3 localIdx : SV_GroupThreadID ,
23 uint3 groupIdx : SV_GroupID )
24 {
25 // Depth bounds code goes here
26 . . .
27 float4 frustumEqn [ 4 ] ;
28 { // Construct frustum planes f o r t h i s t i l e
29 uint pxm = TILE_RES� groupIdx . x ;
30 uint pym = TILE_RES� groupIdx . y ;
31 uint pxp = TILE_RES �( groupIdx . x+1) ;
32 uint pyp = TILE_RES �( groupIdx . y+1) ;
33 uint width = TILE_RES� GetNumTilesX ( ) ;
34 uint height = TILE_RES� GetNumTilesY ( ) ;
35
36 // Four c o rn e r s o f the t i l e , c l o c kwi s e from top− l e f t
37 float3 p [ 4 ] ;
38 p [ 0 ] = ConvertProjToView ( float4 ( pxm /( f l o a t ) width �2 . f−1.f ,
39 ( height−pym ) /( f l o a t ) height �2 . f−1.f , 1 . f , 1 . f ) ) ;
40 p [ 1 ] = ConvertProjToView ( float4 ( pxp /( f l o a t ) width �2 . f−1.f ,
41 ( height−pym ) /( f l o a t ) height �2 . f−1.f , 1 . f , 1 . f ) ) ;
42 p [ 2 ] = ConvertProjToView ( float4 ( pxp /( f l o a t ) width �2 . f−1.f ,
43 ( height−pyp ) /( f l o a t ) height �2 . f−1.f , 1 . f , 1 . f ) ) ;
44 p [ 3 ] = ConvertProjToView ( float4 ( pxm /( f l o a t ) width �2 . f−1.f ,
45 ( height−pyp ) /( f l o a t ) height �2 . f−1.f , 1 . f , 1 . f ) ) ;
46
47 // Create plane equat ions f o r the f ou r s i d e s , with
48 // the p o s i t i v e ha l f−space ou t s i d e the frustum
49 f o r ( uint i=0; i<4; i++)
50 frustumEqn [ i ] = CreatePlaneEquation ( p [ i ] , p [ ( i+1)&3]) ;
51 }
52 // I n t e r s e c t i o n code goes here
53 . . .
54 }

Listing 1.2. Frustum planes calculation.
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1.3.2 Frustum Planes Calculation

The frustum planes code appears in Listing 1.2 and is straightforward. The four
corners of the tile are constructed in postprojection space and converted to view
space. These four corners are then used to calculate the planes for the four sides
of the frustum partition. Two corners and the origin give the three points needed
for each plane equation.

To calculate the pixel locations of the four corners, the groupIdx variable is
used, which holds the SV_GroupID value (see line 23), another of the special system-
value semantics available to compute shaders. Because the thread group layout
from the Dispatch call matches the screen tiles, the SV_GroupID value corresponds
to the tile number.

One subtlety happens on lines 33–34. Note that the screen size might not be
evenly divisible by the tile size, so the screen width and height cannot be used
directly in the four corners calculation. Instead, the code calculates the “whole
tile” resolution, which is the closest greater-than (or equal-to) value that is evenly
divisible by the tile size.

1.3.3 Intersection Testing

The depth bounds and the four plane equations form the six sides of the tile
bounding volume. Light culling is accomplished by testing light bounding vol-
umes for intersection against the tile bounding volume. This is shown in List-
ing 1.3.

In this example, the light bounding volumes are spheres (a natural fit for point
lights), and a standard frustum versus sphere intersection test is performed. That
is, the sphere is tested against the six planes of the frustum. If it passes, the index
of the light in the input buffer is written to shared memory.

Note on line 28 that each thread starts the loop at a different index and
increments the loop counter by NUM_THREADS, which is 256 for 16 × 16-pixel tiles.
This allows 256 lights to be culled in parallel for each loop iteration. To make
the parallel culling thread safe, InterlockedAdd is used on line 44 to increment
the output list counter.

As mentioned in the introduction, compute-based tiled culling can be applied
to forward rendering [Harada et al. 12] and deferred rendering [Andersson 09].
When used with forward rendering, it is commonly called Forward+ [Harada
et al. 12]. When used with deferred rendering, it is called tile-based deferred
[Lauritzen 10] or simply tiled deferred [Lauritzen 12]. For Forward+, the compute
shader writes the per-tile list to an output buffer (i.e., RWBuffer). The forward
pixel shader then calculates the tile to which it belongs and uses the list for
that tile as input to calculate the lighting. For tiled deferred, the same compute
shader that does the light culling can then do the lighting, using the list in shared
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1 Buffer<float4> g_LightBufferCenterAndRadius ;
2
3 #d e f i n e MAX NUM LIGHTS PER TILE 256
4 groupshared uint ldsLightIdxCounter ;
5 groupshared uint ldsLightIdx [ MAX_NUM_LIGHTS_PER_TILE ] ;
6
7 // Point−plane d i stance , s imp l i f i e d f o r the case where
8 // the plane pas s e s through the o r i g i n
9 f l o a t GetSignedDistanceFromPlane ( float3 p , float4 eqn )

10 {
11 // dot ( eqn . xyz , p) + eqn .w, except we know eqn .w i s ze ro
12 re turn dot ( eqn . xyz , p ) ;
13 }
14
15 #de f i n e NUMTHREADS (TILE RES�TILE RES)
16 void CullLightsCS ( . . . )
17 {
18 // Depth bounds and frustum planes code goes here
19 . . .
20 i f ( threadNum == 0)
21 {
22 ldsLightIdxCounter = 0;
23 }
24 GroupMemoryBarrierWithGroupSync ( ) ;
25
26 // Loop over the l i g h t s and do a
27 // sphere versus frustum i n t e r s e c t i o n t e s t
28 f o r ( uint i=threadNum ; i<g_uNumLights ; i+=NUM_THREADS )
29 {
30 float4 p = g_LightBufferCenterAndRadius [ i ] ;
31 f l o a t r = p . w ;
32 float3 c = mul ( float4 ( p . xyz , 1 ) , g_mView ) . xyz ;
33
34 // Test i f sphere i s i n t e r s e c t i n g or i n s i d e frustum
35 i f ( ( GetSignedDistanceFromPlane (c , frustumEqn [ 0 ] ) < r ) &&
36 ( GetSignedDistanceFromPlane (c , frustumEqn [ 1 ] ) < r ) &&
37 ( GetSignedDistanceFromPlane (c , frustumEqn [ 2 ] ) < r ) &&
38 ( GetSignedDistanceFromPlane (c , frustumEqn [ 3 ] ) < r ) &&
39 (−c . z + minZ < r ) && ( c . z − maxZ < r ) )
40 {
41 // Do a thread−s a f e increment o f the l i s t counte r
42 // and put the index o f t h i s l i g h t i n to the l i s t
43 uint dstIdx = 0;
44 InterlockedAdd ( ldsLightIdxCounter , 1 , dstIdx ) ;
45 ldsLightIdx [ dstIdx ] = i ;
46 }
47 }
48 GroupMemoryBarrierWithGroupSync ( ) ;
49 }

Listing 1.3. Intersection testing.

memory directly. Even if lights overlap, the G-buffer is only read once for each
pixel, and the lighting results are accumulated into shader registers instead of
blended into a render target, reducing bandwidth consumption.
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1.4 Optimization

This section covers various optimizations to the compute-based tiled-culling tech-
nique. Common pitfalls to avoid are presented first, followed by several optimiza-
tions to the basic implementation from the previous section.

1.4.1 Common Pitfalls

Part of optimization is avoiding common pitfalls. Two such pitfalls for compute-
based tiled culling are described in this section: forgetting to be cache friendly
and choosing a suboptimal tile size. The pitfalls are illustrated by making two
seemingly small changes to the code in Section 1.3 and showing that those changes
hurt performance dramatically.

For the first change, note that line 1 in Listing 1.3 shows that the light bound-
ing spheres (centers and radii) were stored in a buffer with no other data. How-
ever, for convenience and code clarity, developers might decide to include other
light data in the same buffer, as shown below.

s t r u c t LightArrayData
{

f l o a t 4 v4CenterAndRadius ;
f l o a t 4 v4Color ;

} ;
StructuredBuffer<LightArrayData> g_LightBuffer ;

For the second change, recall that line 14 in Listing 1.1 defines TILE_RES

as 16, resulting in 16 × 16 threads per thread group, or 256 threads. For AMD
GPUs, work is executed in 64-thread batches called wavefronts, while on NVIDIA
GPUs, work is executed in 32-thread warps. Thus, efficient compute shader
execution requires the number of threads in a thread group to be a multiple of
64 for AMD or 32 for NVIDIA. Since every multiple of 64 is a multiple of 32,
standard performance advice is to configure the thread count to be a multiple of
64. Because 256 is a multiple of 64, setting TILE_RES to 16 follows this advice.
Alternatively, setting TILE_RES to 8 (resulting in 8×8-pixel tiles) yields 64 threads
per thread group, which is certainly also a multiple of 64, and the smaller tile
size might result in tighter culling.

Although these two changes seem minor, both decrease performance, as shown
in Figure 1.3. The “unoptimized” curve contains both changes (combined light
data in a StructuredBuffer and 8 × 8 tiles). For the cache friendly curve, the

3All performance data in this chapter was gathered on an AMD Radeon R7 260X GPU.
The R7 260X was chosen because its performance characteristics are roughly comparable to the
Xbox One and Playstation 4.



444 VI Compute

Number of Lights

Unoptimized
3.0
2.8

2.6
2.4
2.2
2.0

1.8
Ti

m
e (

m
s)

1.6
1.4
1.2
1.0

0.8
0.6

Cache Friendly
Cache Friendly and 16 × 16 Tiles

0 64 128 192 256 320 384 448 512 576 640 704 768 832 996 960 1024

Figure 1.3. Basic optimizations.3Tiled-culling compute shader execution time versus
number of lights for Forward+ rendering at 1920 × 1080 using the companion code for
this chapter.

StructuredBuffer is replaced with the declaration shown in line 1 of Listing 1.3
containing only the data needed for culling. Note that, while performance is
similar for much of the chart, performance improves by nearly 1 ms for 1024
lights. Specifically, compute shader execution time decreases from 2.93 ms to
1.99 ms, a 32% reduction.

The “cache friendly” label hints at why this configuration improves perfor-
mance. Data not needed for culling pollutes the cache during compute shader
execution, eventually becoming a bottleneck as light count increases. In general,
a structure of arrays (in this case, separate arrays for culling data and light color)
is often better for GPU execution than an array of structures, because it allows
more cache-friendly memory access.

The “cache friendly and 16 × 16 tiles” curve keeps the cache-friendly light
buffer and changes TILE_RES back to 16, resulting in the implementation given
in Section 1.3. Because there are now 256 threads, many threads do not have
any lights to cull at the lower end of the chart, resulting in a slight performance
decrease initially. However, this version scales much better with increasing light
counts. At 1024 lights, compute shader execution time is 0.97 ms, a 51% reduction
from the previous version and a 67% reduction from the unoptimized version.

The 16 × 16 configuration is better because more threads per thread group
results in more wavefronts/warps in flight per thread group. This allows GPU
schedulers to better hide memory latency by switching execution to a new wave-
front/warp when the current one hits a high-latency operation.
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Figure 1.4. Depth discontinuity optimization strategies. (a) Scene depth discontinuities
can cause a large depth range in the tile bounding volume. (b) The Half Z method splits
the depth range in half and culls against the two ranges. (c) The Modified Half Z method
calculates a second minimum and maximum, bounded by the Half Z value.

1.4.2 Depth Discontinuities

Having covered the basic optimizations already present in the code from Sec-
tion 1.3, additional optimizations will now be presented, starting with those for
discontinuities in scene depth.

Figure 1.4 shows 2D representations of a tile bounding volume, similar to that
shown for Tile 0 in Figure 1.1(b). As demonstrated in Figure 1.4(a), a foreground
object in front of a background object can lead to a large depth range in the
tile bounding volume. Lights can intersect the empty space between foreground
and background but not actually affect any pixels in the tile. That is, depth
discontinuities can lead to an increase in false-positive intersections.

Half Z. Figure 1.4(b) shows a strategy to better handle depth discontinuities
called the Half Z method. It simply divides the depth range in two at the midpoint
and culls against two depth ranges: one from Min Z to Half Z, and one from Half
Z to Max Z. A separate per-tile list is maintained for each depth range. This
method requires only two additional plane tests and is a minor change to the
code. Listing 1.4 shows the intersection test for this method.

Modified Half Z. Figure 1.4(c) shows a second strategy called the Modified Half
Z method. It performs additional atomic operations to find a second maximum
(Max Z2) between Min Z and Half Z and a second minimum (Min Z2) between
Half Z and Max Z. This can result in tighter bounding volumes compared to the
Half Z method, but calculating the additional minimum and maximum is more
expensive than simply calculating Half Z, due to the additional atomic operations
required.

Light count reduction results. Figure 1.5 shows the reduction in per-tile light count
at depth discontinuities from the methods discussed in this section. Note the
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// Test i f sphere i s i n t e r s e c t i n g or i n s i d e frustum
i f ( ( GetSignedDistanceFromPlane ( c , frustumEqn [ 0 ] ) < r ) &&

( GetSignedDistanceFromPlane ( c , frustumEqn [ 1 ] ) < r ) &&
( GetSignedDistanceFromPlane ( c , frustumEqn [ 2 ] ) < r ) &&
( GetSignedDistanceFromPlane ( c , frustumEqn [ 3 ] ) < r ) )

{
i f (−c . z + minZ < r && c . z − halfZ < r )
{

// Do a thread−s a f e increment o f the l i s t counte r
// and put the index o f t h i s l i g h t i n to the l i s t
uint dstIdx = 0;
InterlockedAdd ( ldsLightIdxCounterA , 1 , dstIdx ) ;
ldsLightIdxA [ dstIdx ] = i ;

}
i f (−c . z + halfZ < r && c . z − maxZ < r )
{

// Do a thread−s a f e increment o f the l i s t counte r
// and put the index o f t h i s l i g h t i n to the l i s t
uint dstIdx = 0;
InterlockedAdd ( ldsLightIdxCounterB , 1 , dstIdx ) ;
ldsLightIdxB [ dstIdx ] = i ;

}
}

Listing 1.4. Half Z method.

column in the foreground of the left side of the scene in Figure 1.5(a). This causes
depth discontinuities for tiles along the column, resulting in the high light counts
shown in red in Figure 1.5(c) for the baseline implementation in Section 1.3.

The results for the Half Z method are shown in Figure 1.5(d). Note that the
light counts for tiles along the column have been reduced. Then, for the Modified
Half Z method, note that light counts have been further reduced in Figure 1.5(e).

Performance results. Figure 1.6 shows the performance of these methods. Note
that, while Figure 1.3 measured only the tiled-culling compute shader, Figure 1.6
measures both the compute shader and the forward pixel shader for Forward+
rendering. More time spent during culling can still be an overall performance
win if enough time is saved during lighting, so it is important to measure both
here.

The “Baseline” curve is from the implementation in Section 1.3. The “Half
Z” curve shows this method at a slight performance disadvantage for lower light
counts, because the savings during lighting do not yet outweigh the extra cost
of testing two depth ranges and maintaining two lists. However, this method
becomes faster at higher light counts. The “Modified Half Z” curve starts out
with a bigger deficit, due to the higher cost of calculating the additional minimum
and maximum with atomics. It eventually pulls ahead of the baseline method,
but never catches Half Z. However, this method’s smaller depth ranges can still
be useful if additional optimizations are implemented, as shown next.
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Figure 1.5. Tiled-culling optimization results using the companion code for this chapter.
(a) Scene render. (b) Log scale lights-per-tile legend. (c) Baseline. (d) Half Z. (e)
Modified Half Z. (f) Modified Half Z with AABBs.
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Figure 1.6. Tiled-culling optimizations. GPU execution time versus number of lights
using the companion code for this chapter. The vertical axis represents the combined
time for the tiled-culling compute shader and the forward pixel shader in Forward+
rendering at 1920× 1080.

1.4.3 Frustum Planes versus AABBs

In our previous discussion of the results in Figure 1.5, one result was not men-
tioned. If view-space axis-aligned bounding boxes (AABBs) are used to bound
the tile instead of frustum planes, per-tile light counts can be further reduced, as
shown in Figure 1.5(f).

Testing intersection against a frustum using six planes is an approximation.
As shown in Figure 1.7(a), the actual intersection volume has curved corners.
Regions exist outside the curved corners that will still pass testing against the
planes, resulting in false-positive intersections.

Fitting an AABB around the tile’s frustum partition will also produce regions
where false-positive intersections can occur, as illustrated in Figure 1.7(b). The
key difference is that, as the depth range decreases (i.e., as Max Z gets closer to
Min Z), these regions get smaller for AABBs, as shown in Figure 1.7(c).

Referring back to Figure 1.5(f), using AABBs with the smaller depth ranges
of the Modified Half Z method results in a significant reduction in per-tile light
counts. Whereas the previous results showed improvement primarily at depth
discontinuities, this method shows an overall improvement. For small depth
ranges, the AABB intersection volume nearly matches the true volume, resulting
in tighter culling.

Referring back to Figure 1.6, the “Modified Half Z, AABB” curve still starts
out at a deficit, due to the increased cost of finding the second minimum and max-
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Figure 1.7. Frustum planes versus AABBs. False positive intersections will occur in
the shaded regions. (a) Frustum intersection testing. (b) AABB intersection testing.
(c) AABB intersection with a small depth range.

imum. However, it scales better as light count increases, eventually overtaking
the Half Z method.

1.4.4 Parallel Reduction

Using AABBs with the smaller depth ranges of the Modified Half Z method
produces good culling results, but the cost of the second minimum and maximum
is significant. There is, however, another way to calculate the depth bounds:
parallel reduction. Using the methods first outlined in [Harris 07], as well as
the results from [Engel 14], an optimized parallel reduction implementation can
be used to produce the smaller depth ranges of the Modified Half Z method, as
shown in Listing 1.5.

1 Texture2D<f l o a t> g_SceneDepthBuffer ;
2 RWTexture2D<float4> g_DepthBounds ;
3
4 #d e f i n e TILE RES 16
5 #de f i n e NUM THREADS 1D (TILE RES/2)
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6 #de f i n e NUMTHREADS (NUM THREADS 1D�NUM THREADS 1D)
7
8 // Thread Group Shared Memory ( aka l o c a l data share , or LDS)
9 groupshared f l o a t ldsZMin [ NUM_THREADS ] ;

10 groupshared f l o a t ldsZMax [ NUM_THREADS ] ;
11
12 // Convert a depth va lue from po s t p r o j e c t i o n space
13 // in to view space
14 f l o a t ConvertProjDepthToView ( f l o a t z )
15 {
16 re turn ( 1 . f /( z� g_mProjectionInv . _34 + g_mProjectionInv . _44 ) ) ;
17 }
18
19 [ numthreads ( NUM_THREADS_1D , NUM_THREADS_1D , 1 ) ]
20 void DepthBoundsCS ( uint3 globalIdx : SV_DispatchThreadID ,
21 uint3 localIdx : SV_GroupThreadID ,
22 uint3 groupIdx : SV_GroupID )
23 {
24 uint2 sampleIdx = globalIdx . xy �2 ;
25
26 // Load f ou r depth samples
27 f l o a t depth00 = g_SceneDepthBuffer . Load ( uint3 ( sampleIdx . x ,
28 sampleIdx . y , 0 ) ) . x ;
29 f l o a t depth01 = g_SceneDepthBuffer . Load ( uint3 ( sampleIdx . x ,
30 sampleIdx . y+1 ,0)) . x ;
31 f l o a t depth10 = g_SceneDepthBuffer . Load ( uint3 ( sampleIdx . x+1,
32 sampleIdx . y , 0 ) ) . x ;
33 f l o a t depth11 = g_SceneDepthBuffer . Load ( uint3 ( sampleIdx . x+1,
34 sampleIdx . y+1 ,0)) . x ;
35
36 f l o a t viewPosZ00 = ConvertProjDepthToView ( depth00 ) ;
37 f l o a t viewPosZ01 = ConvertProjDepthToView ( depth01 ) ;
38 f l o a t viewPosZ10 = ConvertProjDepthToView ( depth10 ) ;
39 f l o a t viewPosZ11 = ConvertProjDepthToView ( depth11 ) ;
40
41 uint threadNum = localIdx . x + localIdx . y� NUM_THREADS_1D ;
42
43 // Use p a r a l l e l r educt ion to c a l c u l a t e the depth bounds
44 {
45 // Parts o f the depth bu f f e r that were never wr i t ten
46 // ( e . g . , the sky ) w i l l be ze ro ( the companion code use s
47 // inve r t ed 32−b i t f l o a t depth f o r b e t t e r p r e c i s i o n ) .
48 f l o a t minZ00 = ( depth00 != 0 . f ) ? viewPosZ00 : FLT_MAX ;
49 f l o a t minZ01 = ( depth01 != 0 . f ) ? viewPosZ01 : FLT_MAX ;
50 f l o a t minZ10 = ( depth10 != 0 . f ) ? viewPosZ10 : FLT_MAX ;
51 f l o a t minZ11 = ( depth11 != 0 . f ) ? viewPosZ11 : FLT_MAX ;
52
53 f l o a t maxZ00 = ( depth00 != 0 . f ) ? viewPosZ00 : 0 . 0 f ;
54 f l o a t maxZ01 = ( depth01 != 0 . f ) ? viewPosZ01 : 0 . 0 f ;
55 f l o a t maxZ10 = ( depth10 != 0 . f ) ? viewPosZ10 : 0 . 0 f ;
56 f l o a t maxZ11 = ( depth11 != 0 . f ) ? viewPosZ11 : 0 . 0 f ;
57
58 // I n i t i a l i z e shared memory
59 ldsZMin [ threadNum ] = min ( minZ00 , min ( minZ01 ,
60 min ( minZ10 , minZ11 ) ) ) ;
61 ldsZMax [ threadNum ] = max ( maxZ00 , max ( maxZ01 ,
62 max ( maxZ10 , maxZ11 ) ) ) ;
63 GroupMemoryBarrierWithGroupSync ( ) ;
64
65 // Minimum and maximum using p a r a l l e l r educt ion , with the
66 // loop manually un ro l l e d f o r 8x8 thread groups (64 threads
67 // per thread group )
68 i f ( threadNum < 32)
69 {
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70 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
71 ldsZMin [ threadNum +32] ) ;
72 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
73 ldsZMax [ threadNum +32] ) ;
74 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
75 ldsZMin [ threadNum +16] ) ;
76 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
77 ldsZMax [ threadNum +16] ) ;
78 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
79 ldsZMin [ threadNum +8]) ;
80 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
81 ldsZMax [ threadNum +8]) ;
82 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
83 ldsZMin [ threadNum +4]) ;
84 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
85 ldsZMax [ threadNum +4]) ;
86 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
87 ldsZMin [ threadNum +2]) ;
88 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
89 ldsZMax [ threadNum +2]) ;
90 ldsZMin [ threadNum ] = min ( ldsZMin [ threadNum ] ,
91 ldsZMin [ threadNum +1]) ;
92 ldsZMax [ threadNum ] = max ( ldsZMax [ threadNum ] ,
93 ldsZMax [ threadNum +1]) ;
94 }
95 }
96 GroupMemoryBarrierWithGroupSync ( ) ;
97
98 f l o a t minZ = ldsZMin [ 0 ] ;
99 f l o a t maxZ = ldsZMax [ 0 ] ;

100 f l o a t halfZ = 0.5 f �( minZ + maxZ ) ;
101
102 // Calcu late a second se t o f depth va lue s : the maximum
103 // on the near s i d e o f Hal f Z and the minimum on the f a r
104 // s i d e o f Hal f Z
105 {
106 // See the companion code f o r d e t a i l s
107 . . .
108 }
109
110 // The f i r s t thread wr i t e s to the depth bounds t ex tu r e
111 i f ( threadNum == 0)
112 {
113 f l o a t maxZ2 = ldsZMax [ 0 ] ;
114 f l o a t minZ2 = ldsZMin [ 0 ] ;
115 g_DepthBounds [ groupIdx . xy ] = float4 ( minZ , maxZ2 , minZ2 , maxZ ) ;
116 }
117 }

Listing 1.5. Depth bounds using parallel reduction.

As noted in [Harris 07] and [Engel 14], an optimized parallel reduction imple-
mentation requires each thread to work on more than one source value. For the
code in Listing 1.5, each thread loads four depth samples in a 2 × 2 grid instead
of just a single sample. However, this requires the thread layout to be 8 × 8 for
16× 16-pixel tiles. That is, the parallel reduction must be executed in a separate
compute shader. However, even with the extra overhead of an additional pass,
the four-samples-per-thread method is faster than keeping the parallel reduction
in the culling compute shader but only loading a single sample per thread.
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Referring back to Figure 1.6, the “Modified Half Z, AABB, Parallel Reduc-
tion” curve is the fastest method throughout. For 1024 lights, the baseline code
executes in 3.97 ms, whereas this final optimized version takes 3.52 ms, a reduc-
tion of roughly half a millisecond. This represents an 11% decrease in execution
time compared to the baseline.

1.5 Unreal Engine 4 Results

Results to this point have been gathered using the companion code for this chap-
ter. This section presents results using the Unreal Engine 4 Infiltrator real-time
demo. Unreal Engine 4 is a leading real-time rendering engine that implements
the tiled-deferred technique. The Infiltrator demo allows results to be gathered
using state-of-the-art visuals.

Figures 1.8 and 1.9 show two examples of the per-tile light count reduction
achieved by using the Modified Half Z method with AABBs. Note the results for
baseline tiled culling, which uses an implementation similar to Section 1.3. In
each example, high-light-count areas appear along the silhouette of the infiltra-
tor character, where the transition from foreground to background causes depth
discontinuities. These areas are eliminated in the optimized version. In addition,
the tighter tile bounding volumes from AABBs with small depth ranges reduce
light counts overall.

Figure 1.10 shows the GPU execution time improvement of the optimized
method (Modified Half Z with AABBs using parallel reduction for the depth
ranges) compared to the baseline implementation similar to Section 1.3. For
tiled deferred, the execution time includes the three parts of Algorithm 1.1 (depth
bounds calculation, tile bounding volume construction, and intersection testing),
as well as the lighting calculations. As shown in Figure 1.10, the optimized
version is substantially faster over the entire Infiltrator demo. Average cost of
the baseline implementation is 5.17 ms, whereas the optimized average cost is
3.74 ms, a reduction of 1.43 ms, or roughly 28% faster.

1.5.1 Standard Deferred versus Tiled Deferred

Unreal Engine 4 can apply lighting using either standard deferred or tiled de-
ferred, offering the opportunity to compare the performance of the two methods.
Figure 1.11 shows the GPU execution time improvement of the optimized tiled-
deferred method compared to the standard-deferred method. Note that, while
tiled deferred is usually faster in the demo, there are areas where standard de-
ferred is faster (i.e., the negative values in the chart). Recall that the primary
lighting performance concern with standard deferred is the extra bandwidth con-
sumed when blending overlapping lights. In areas without much light overlap,
the savings from tiled deferred’s single-pass lighting might not outweigh the cost
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(a)

(b)

(c)

Figure 1.8. Unreal Engine 4 Infiltrator demo: Example 1. (a) Scene render. (b) Baseline
tiled culling. (c) Modified Half Z with AABBs.
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(a)

(b)

(c)

Figure 1.9. Unreal Engine 4 Infiltrator demo: Example 2. (a) Scene render. (b) Baseline
tiled culling. (c) Modified Half Z with AABBs.
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Figure 1.10. Unreal Engine 4 tiled-culling execution time improvement for the optimized
version compared to the baseline implementation. Performance was measured over the
entire Infiltrator demo at 1920× 1080.

of calculating the depth bounds and performing the per-tile culling. However, av-
eraged over the entire demo, tiled deferred is still faster overall. Specifically, the
average cost of standard deferred is 4.28 ms, whereas the optimized tiled-deferred
average cost is 3.74 ms, a reduction of 0.54 ms, or roughly 13% faster.

It is natural to wonder exactly how many lights are needed in a scene with
“many lights” before tiled deferred is consistently faster than standard deferred.
The answer will depend on several factors including the depth complexity of the
scene and the amount of light overlap. For the Infiltrator demo, Figure 1.12 is a
scatterplot of the data used to generate Figure 1.11 plotted against the number
of lights processed during that particular frame. The demo uses a wide range of
light counts, from a low of 7 to a high of 980. The average light count is 299 and
the median is 218.

For high light counts (above 576), tiled deferred has either comparable or
better performance, and is often significantly faster. For example, for counts
above 640, tiled deferred is 1.65 ms faster on average. Conversely, for low light
counts (below 64), standard deferred is faster. For light counts above 64 but
below 576, the situation is less clear from just looking at the chart. Standard
deferred values appear both above and below tiled deferred in this range. How-
ever, it is worth noting that tiled deferred comes out ahead on average over each
interval on the “Number of Lights” axis (i.e., [0, 64], [64, 128], [128, 192], etc.)
except [0, 64].



456 VI Compute

Tiled Deferrd vs. Standard Deferred
5.0

4.0

3.0

2.0

1.0

0.0

–1.0

Re
du

ct
io

n 
in

 G
PU

 E
xe

cu
tio

n 
Ti

m
e (

m
s)

–2.0
Unreal Engine 4 Infiltrator Real-Time Demo

Figure 1.11. Unreal Engine 4 optimized tiled-deferred execution time improvement
compared to standard deferred. Performance was measured over the entire Infiltrator
demo using 1920× 1080 screen resolution.
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Figure 1.12. Unreal Engine 4 optimized tiled deferred versus standard deferred. GPU
execution time versus number of lights. Performance was measured over the entire
Infiltrator demo at 1920× 1080.

To get a clearer picture of average performance, Figure 1.13 applies a moving
average to the data in Figure 1.12. The data shows that, while standard deferred
is 0.76 ms faster on average for light counts of 70 and below, tiled deferred is
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Figure 1.13. Unreal Engine 4 optimized tiled deferred versus standard deferred. GPU
execution time versus number of lights. A moving average was applied to the data in
Figure 1.12 to show overall trends.

on par with or faster than standard deferred for above 70 lights. Thus, for the
particular case of the Infiltrator demo, 70 is the threshold for when tiled deferred
is consistently faster than (or at least comparable to) standard deferred.

Referring back to Figure 1.12, another thing to note about the data is that the
standard deviation is lower for tiled deferred. Specifically, the standard deviation
is 1.79 ms for standard deferred and 0.90 ms for tiled deferred, a 50% reduction.
Note that worst-case performance is also much better for tiled deferred, with no
tiled deferred data point appearing above the 6.0 ms line. That is, in addition to
getting faster performance on average, tiled deferred also offers more consistent
performance, making it easier to achieve a smooth framerate.

1.6 Conclusion

This chapter presented an optimized compute-based tiled-culling implementation
for scenes with many dynamic lights. The technique allows forward rendering to
support such scenes with high performance. It also improves the performance
of deferred rendering for these scenes by reducing the average cost to calculate
lighting, as well as the worst-case cost and standard deviation. That is, it provides
both faster performance (on average) and more consistent performance, avoiding
the bandwidth bottleneck from blending overlapping lights. For more details, see
the companion code.
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VI

Rendering Vector
Displacement-Mapped Surfaces

in a GPU Ray Tracer
Takahiro Harada

2.1 Introduction

Ray tracing is an elegant solution to render high-quality images. By combining
Monte Carlo integration with ray tracing, we can solve the rendering equation.
However, a disadvantage of using ray tracing is its high computational cost, which
makes render time long. To improve the performance, GPUs have been used.
However, GPU ray tracers typically do not have as many features as CPU ray
tracers. Vector displacement mapping is one of the features that we do not see
much in GPU ray tracers. When vector displacement mapping is evaluated on the
fly (i.e., without creating a large number of polygons in the preprocess and storing
them in the memory), it allows us to render a highly geometric detailed scene
from a simple mesh. Since geometric detail is an important factor for realism,
vector displacement mapping is an important technique in ray tracing. In this
chapter, we describe a method to render vector displacement-mapped surfaces in
a GPU ray tracer.

2.2 Displacement Mapping

Displacement mapping is a technique to add geometric detail to a simple ge-
ometry. Although the goal is similar to normal mapping, it actually creates
high-resolution geometries, as shown in Figure 2.1, from a low-resolution mesh
(Figure 2.2), while normal mapping only changes the normal vector to add an il-
lusion of having a geometric detail. There are two types of displacement mapping.
The one we usually call displacement mapping uses textures storing scalar values,
which are used as offsets for the displacement using the surface normal as the

459
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Figure 2.1. The “Party” scene with vector displacement-mapped surfaces rendered
using the proposed method. The rendering time is 77 ms/frame on an AMD FirePro
W9100 GPU. Instancing is not used to stress the rendering algorithm. If pretessellated,
the geometry requires 52 GB of memory.

Figure 2.2. The base mesh used for the “Party” scene.

displacement direction. We call this approach scalar displacement mapping. The
other is vector displacement mapping, which uses a texture storing vector values
that are used as the displacement vector of the surface. Because the displacement
can be an arbitrary direction, it gives a lot of freedom for what we create from
a simple geometry. For example, scalar displacement mapping cannot create an
overhang as shown in Figure 2.3, but vector displacement mapping can.
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Figure 2.3. Illustration of vector displacement mapping. (a) Simple geometry (a quad).
(b) A vector displacement map. (c) Surface after applying vector displacement.

This freedom in vector displacement mapping poses technical challenges when
it is ray traced. Although we could use algorithms, such as the method proposed
by [Smits et al. 00], for ray tracing a scalar displacement-mapped surface by
utilizing the constraint in the displacement direction, we cannot apply it for a
vector displacement-mapped surface because the assumption does not apply. In
vector displacement mapping, there is no constraint in displacement direction.
So when we check the intersection of a ray with a vector displacement patch
(VD patch), we cannot avoid creating the detailed geometry by tessellating and
displacing vertices and building a spatial acceleration structure for those.

2.3 Ray Tracing a Scene with Vector Displacement Maps

Ray tracing requires identifying a closest hit point for a ray with the scene, which
is accelerated by using a spatial acceleration structure. Bounding volume hierar-
chies (BVHs) as acceleration structures are often employed. When we implement
a ray tracer only for simple primitives such as triangles and quads, we compute
the intersection to a primitive once we encounter it during BVH traversal. How-
ever, an intersection to a VD patch is much more expensive to compute than an
intersection test with these simple primitives, especially when direct ray tracing
is used (i.e., a VD patch is tessellated and displaced on the fly). To amortize the
cost of tessellation and displacement, we want to gather all the rays intersecting
the AABB of a VD patch and process them at once rather than subdividing and
displacing a VD patch every time a ray hits its AABB, as studied by [Hanika
et al. 10].

2.4 Ray Tracing a Vector Displacement Patch

This section focuses on the ray–VD patch intersection, although using it in a ray
tracer requires additional changes, which are going to be discussed in Section
2.5. In this section, we first describe a single-threaded implementation of the
intersection of a ray with a VD patch to simplify the explanation. We then
extend it for a parallel implementation using OpenCL.
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2.4.1 Single Ray

To intersect a ray with a VD patch, we first need to build the detailed geometry of
the patch by tessellating it to generate vertices, which are then displaced by the
value fetched from the vector displacement map. Although there are several ways
to generate vertices, we simply generate them uniformly on the patch (i.e., all the
generated vertices are on the plane of the patch) without geometry smoothing.

Data structure. We could find the closest intersection by testing primitives in the
scene one by one, but it is better to create a spatial acceleration structure to do
this efficiently. As we build it on the fly, the build performance is as important
as the intersection performance. Therefore, we employed a simple acceleration
structure. A patch is split into four patches recursively to build a complete
quad BVH. At the lowest level of the BVH, four vertex positions and texture
coordinates are linearly interpolated from the values of the root patch. The
displaced vertex position is then calculated by adding the displacement vector
value, which is fetched from a texture using the interpolated texture coordinate.
Next, the AABBs enclosing these four vertices are computed and used as the
geometry at the leaves rather than a quad because we subdivide the patch smaller
than a pixel size. This allows us not to store geometries (e.g., vertices), but only
store the BVH. Thus, we can reduce the data size for a VD patch. A texture
coordinate and normal vector are also computed and stored within a node. Once
leaf nodes are computed, it ascends the tree level by level and builds the nodes
of the inner level. It does this by computing the union of AABBs and averaging
normal vectors and texture coordinates of the four child nodes. This process is
repeated until it reaches the root node.

For better performance, the memory footprint for the BVH has to be reduced
as much as possible. Thus, an AABB is compressed by quantizing the maximum
and minimum values into 2 byte integers (maxq,minq) these as follows:

maxq = 0xfff7 × (maxf − minroot)/extentroot + 1,

minq = 0xfff7 × (minf − minroot)/extentroot,

extentroot = maxroot − minroot.

where maxf and minf are uncompressed maximum and minimum values, respec-
tively, of the AABB and maxroot and minroot are values of the root AABB. We
considered compressing them into 1-byte integers, but the accuracy was not high
enough since the subdivision level can easily go higher than the resolution limit
of 1-byte integers (i.e., eight levels). We also quantized texture coordinates and
the normal vectors into 4 bytes each. Therefore, the total memory footprint for
a node is 20 bytes (Figure 2.4).

We separate the hierarchy of the BVH from the node data (i.e., a node does
not store links to other nodes such as children). This is to keep the memory
footprint for nodes small. We only store one hierarchy data structure for all VD
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Figure 2.4. Quad BVH. Each node stores two links: one pointing to the first children
(red), and one pointing to the skip node (green). To check if a node is a leaf of level
i, the node index is compared to (4i − 1)/3, e.g., leaf nodes of level 2 BVH are nodes
whose index is greater than 5. Data layout in a node is shown on the left.

patches because we always create a complete quad BVH so that the hierarchy
structure is the same for all the BVHs we construct. Although we build a BVH at
different depths (i.e., levels), we only compute and store the hierarchy structure
for the maximum level we might build. As nodes are stored in breadth-first order,
leaf nodes can be identified easily by checking their index. Leaf nodes at the ith
level are nodes with indices larger than (4i − 1)/3, as shown in Figure 2.4.

We use stackless traversal for BVH traversal. Thus, a node in the hierarchy
structure stores two indices of the first child and the skip node (Figure 2.4). These
two indices are packed and stored in 4 bytes of data.

To summarize the data structure we have

• precomputed data for the hierarchy structure,

• BVH (array of nodes) built on the fly.

In Listing 2.1, they are denoted as gNodes and gLinks, respectively.

Traversal and intersection. The primary reason we employed a stackless traversal is
to reduce the memory traffic and register pressure, which affects the performance.
Moreover, since the data for the state of the ray is the index of the current node,
we could easily shuffle rays to improve the performance, although we have not
investigated this optimization yet.

As we have already built the BVH for the patch, the traversal is straightfor-
ward. Pseudocode is shown in Listing 2.1. An overview of the process is depicted
in Figure 2.5.

2.4.2 OpenCL Implementation

To fully utilize the GPU, we have to parallelize the algorithm described in Sec-
tion 2.4.1. We implemented our algorithm using OpenCL, and we used AMD
GPUs; thus, we follow these respective terminologies in the next explanation.
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__global Node � gNodes ;
__global u32� gLinks ;
f l o a t f ;
u32 n , uv ;
i n t o = getOffset ( lodRes ) ;
wh i l e ( nodeIdx != breakIdx )
{

Aabb node = NodeGetAabb ( gNodes [ nodeIdx ] ) ; // r e c on s t ru c t AABB
f l o a t frac = AabbIntersect ( node , &from , &to , &invRay ) ;
bool isLeaf = nodeIdx >= o ;
i f ( frac < f )
{

i f ( isLeaf )
{

f = frac ;
n = gNodes [ nodeIdx ] . m_n ;
uv = gNodes [ nodeIdx ] . m_uv ;
nodeIdx = LinkGetSkip ( gLinks [ nodeIdx ] ) ;

}
e l s e

nodeIdx = LinkGetChild ( gLinks [ nodeIdx ] ) ;
}
e l s e

nodeIdx = LinkGetSkip ( gLinks [ nodeIdx ] ) ;
}

Listing 2.1. Bottom-level hierarchy traversal.

Before we start intersecting rays with VD patches, we gather all the rays
hitting the AABB of any VD patches. When a ray hits multiple VD patches, we
store multiple hits. These hits are sorted by a VD patch index. This results in a
list of VD patches, each of which has a list of rays.

We implemented a kernel doing both BVH build and its traversal. Work
groups are launched with the number of work items optimal for the respective
GPU architecture. We use AMD GPUs, which are 64-wide SIMD, so 64 work
items are executed for a work group. A work group first fetches a VD patch
from the list of unprocessed VD patches. This work group is responsible for the
intersection of all rays hitting the AABBs of the root patch. First, we use work
items executing in parallel for building the BVH. However, as we build a BVH
for the patch that has to be stored somewhere, we need to allocate memory for
it and therefore the question is where to allocate. The first candidate is in the
local data share (LDS), but it is too small if we build a BVH with six levels
(64 × 64 leaf nodes), which requires 108 KB (= 5400 nodes × 20 B). If we limit
the number of levels to five (32×32 leaf nodes), we only require 26 KB. Although
this is smaller than the maximum allocation size for the LDS (32 KB) for an
AMD FirePro W9100 GPU, we can only schedule two work groups per compute
unit. (A compute unit has 4 SIMD engines.) Thus, it cannot schedule enough
work groups for a SIMD to hide latencies, which results in poor performance.
Instead of storing it in the LDS, we store it in the global memory, whose access
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1. A work group executed (16 work items)

2. LOD computation (for each ray)

VD patch

Mesh
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Work buffer
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3. BVH build (for each node)

4. Ray cast (for each ray)
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Atomic Op.
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Figure 2.5. Overview of the algorithm. In this illustration, the VD patch has 24 rays
intersecting the root AABB; it builds a BVH with depth 3.

latency is higher than the LDS, but we do not have such a restriction in the size
for the global memory. Since we do not use the LDS for the storage of the BVH
data in this approach, the LDS usage is not the limiting factor for concurrent
work group execution in a SIMD. The limiting factor is now the usage of vector
general purpose registers (VGPRs). Our current implementation allows us to
schedule 12 work groups in a compute unit (CU), which is 3 per SIMD, as the
kernel uses 72 VGPRs per SIMD lane.

Because we know the maximum number of work groups executed concurrently
in a CU for this kernel, we can calculate the number of work groups executed in
parallel on the GPU. We used an AMD FirePro W9100 GPU, which has 44 CUs.
Thus, 528 work groups (44 CUs × 12 work groups) are launched for the kernel.
A work group processes VD patches one after another and executes until no VD
patch is left unprocessed. As we know the number of work groups executed, we
allocate memory for the BVH storage in global memory before execution and



466 VI Compute

assign each chunk of memory for a work group as a work buffer. In all the test
cases, we limit the maximum subdivision level to 5, and thus a 13-MB (= 26 KB
× 528) work buffer is allocated.

After work groups are launched and a VD patch is fetched, we first compute
the required subdivision level for the patch by comparing the extent of the AABB
of the root node to the area of a pixel at the distance from the camera. As we
allow instancing for shapes with vector displacement maps (e.g., the same patch
can be at multiple locations in the world), we need to compute the subdivision
level for all the rays. Work items are used to process rays in parallel at this step.
Once a subdivision level is computed for a ray, the maximum value is selected
using an atomic operation to an LDS value.

Then, work items compute the node data, which is the AABB, texture coordi-
nate, and normal vector of a leaf in parallel. If the number of leaf nodes is higher
than the number of work items executed, a work item processes multiple nodes
sequentially. Once the leaf level of the BVH is built, it ascends the hierarchy one
step and computes nodes at the next level of the hierarchy. Work items are used
to compute a node in parallel. Since we write node data to global memory at one
level and then read it at the next level, we need to guarantee that the write and
read order is kept. This is enforced by placing a global memory barrier, which
guarantees the order in a work group only; thus, it can be used for this purpose.
This process is repeated until it reaches the root of the hierarchy. Pseudocode
for the parallel BVH build is shown in Listing 2.2.

i n t localIdx = GET_LOCAL_IDX ;
i n t lIdx = localIdx%8;// Assuming 64 work items in a work group
in t lIdy = localIdx /8 ;
// Compute l e a f nodes
f o r ( i n t jj=lIdy �nn ; jj<(lIdy+1)�nn ; jj++)
f o r ( i n t ii=lIdx �nn ; ii<(lIdx+1)�nn ; ii++)
{

Aabb aabb ;
f o r ( i n t j=0; j<2; j++) f o r ( i n t i=0; i<2; i++)
{

float2 w = make_float2 ( ( ii+i ) /( f l o a t ) nSplit , ( jj+j ) /( f l o a t )←↩
nSplit ) ;

float2 uv = interpolateUv ( uv0 , uv1 , uv2 , uv3 , w ) ;
float4 v = interpolateVertex ( v0 , v1 , v2 , v3 , w ) ;
v += texture_fetch ( gVDispMap [ faceIdx ] , uv ) ; // Apply ←↩

d i sp lacement
AabbIncludePoint ( &aabb , v ) ;

}
i n t o = getOffset ( tessLevel ) ;
__global GridCell� dst = &myCells [ o + ii + jj� nSplit ] ;
dst−>m_aabb = quantizeAabb ( aabb ) ;
dst−>m_n = compressF4 ( computeNormal ( ii , jj ) ) ;
dst−>m_uv = compress ( computeUv ( ii , jj ) ) ;

}
GLOBAL_BARRIER ;
// Computes i n t e r n a l nodes l e v e l by l e v e l
f o r ( i n t level = tessLevel −1; level>=0; level−−)
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{
i n t nc = (1<<level ) ;
i n t nf = (1<<(level+1) ) ;
i n t oc = getOffset ( level ) ;
i n t of = getOffset ( level+1 ) ;
wh i l e ( localIdx < nc�nc )
{

i n t ii = localIdx%nc ;
i n t jj = localIdx/nc ;

GridCell g = myCells [ of + (2� ii )+(2� jj ) � nf ] ;
GridCell g1 = myCells [ of + (2� ii+1)+(2� jj+1)�nf ] ;
GridCell g2 = myCells [ of + (2� ii+1)+(2� jj ) � nf ] ;
GridCell g3 = myCells [ of + (2� ii )+(2�jj+1)� nf ] ;
myCells [ oc + ii + jj�nc ] = merge ( g , g1 , g2 , g3 ) ;
localIdx += WG_SIZE� WG_SIZE ;

}
GLOBAL_BARRIER ;

}

Listing 2.2. BVH build, starting with the leaf-level build and then the upper-level build.

Once the hierarchy is built, we switch the work item usage from a work item
for a node to a work item for a ray. A work item reads a ray from the list of rays
hitting the AABB of the VD patch. A ray is then transformed to the object space
of the model and traversed using the hierarchy information. If the current hit
is closer than the last found hit, the hit distance, element index, normal vector,
and texture coordinate at the hit point are updated. However, we cannot simply
write this hit information because a ray can be processed by more than one work
item in different work groups. The current OpenCL programming model does
not have a mechanism to have a critical section, which would be necessary for our
case.1 Instead, we used 64-bit atomic operations, which are not optimal in terms
of performance, but at least we avoided the write hazard. When the element
index, quantized normal vector, and quantized texture coordinate are all 32 bit
data, the hit distance is converted into a 32-bit integer and appended at the top
of those 32 bits to create 64-bit integers. By using an atomic min operation, we
can store the closest hit information (Figure 2.5).

Pseudocode for the entire kernel is shown in Algorithm 2.1.

2.5 Integration into an OpenCL Ray Tracer

Although ray tracing one mesh with a vector displacement map is simple, we want
to use several meshes with vector displacement maps, together with other triangle
meshes, as shown in Figure 2.1. This section describes how the ray tracing of a
VD patch is integrated into our OpenCL ray tracer.

1Note that barrier (CLK_GLOBAL_MEM_FENCE) only guarantee synchronization of global mem-
ory access from a work group but not for different work groups.
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while Unprocessed VD patch do
{Max LOD level computation}
for rays in parallel do

level← computeLODLevel(rayi)
maxLevel← max(level)

end for
{Build BVH}
for leaves in parallel do

computeLeafNode(leafi)
end for
for lv = maxLevel− 1, lv > 0 do

for nodes at level lv in parallel do
computeNode(nodei)

end for
end for
{BVH traversal and Ray VD patch intersection}
for rays in parallel do

level← computeLODLevel(rayi)
hit← rayCast(level)
storeHit(rayi, hit)

end for
end while

Algorithm 2.1. Bottom-level hierarchy build and traversal kernel.

2.5.1 Scene Description

We could store all the primitives in the scene in a single spatial acceleration
structure. However, this does not allow us to use techniques such as instancing,
which is a powerful method to increase the scene complexity with small overhead.
Therefore, we put meshes in the scene and build an acceleration structure storing
meshes at leaves. A mesh is a triangle mesh, a quad mesh (some of which might be
VD patches), or an instance of one of those with a world transformation. We then
build another hierarchy for each mesh in which primitives (e.g., triangles, quads)
are stored at leaf nodes. If a primitive is a VD patch, we build another hierarchy
in a patch, as we discussed in Section 2.4. Therefore, we have a three-level
hierarchy. (See Figure 2.6.) The top and middle stores meshes and primitives,
and the bottom exists only for a VD patch, which is generated on the fly.

2.5.2 Preparation

Before rendering starts, we compute AABBs for primitives and build top- and
middle-level BVHs. For VD patches, the computation of an accurate AABB
is expensive as it requires tessellation and displacement. Instead, we compute
the maximum displacement amount from a displacement texture and expand the
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Figure 2.6. Three-level hierarchy. A leaf of the top-level BVH stores an object, which
is a middle-level BVH and transform. A leaf of the middle-level BVH stores primitives
such as a triangle, a quad, or a VD patch. There is a bottom-level BVH that is built
on the fly during the rendering for a leaf storing a VD patch.

AABB of a quad using the value. Although this results in a loose-fitted AABB,
which makes ray tracing less efficient than when tight AABBs are computed, it
makes the preparation time short.

2.5.3 Hierarchy Traversal

We fused the traversal of top- and middle-level hierarchies into a traversal kernel.
When a ray reaches a leaf of the top-level hierarchy, the ray is transformed into
object space and starts traversing the middle-level hierarchy. Upon exiting the
middle-level hierarchy, the ray is transformed back to world space. Once a ray
hits a leaf node of the middle-level hierarchy, it computes a hit the primitive
stored at the leaf node immediately if the primitive is a triangle or a quad. As
discussed in Section 2.4, we do not compute the intersection of a ray with the
VD patch on a visit to a leaf node. Instead, a primitive index and ray index
are stored in a buffer for further processing. (Precisely, we also store the mesh
index, which is necessary to get its transform.) An atomic operation is used to
allocate space for a pair in the buffer. After the top- and middle-level hierarchy
traversals, the computed hits are only those computed with triangles and quads.
Thus, we need to determine if there are closer intersections with VD patches.

The primitive index and ray index are stored in random order. As we process
patch by patch, these values are sorted by the primitive index using a radix
sort [Harada and Howes 11], and the start and end indices of pairs for a primitive
are computed. The buffer storing the start indices is used as a job queue.



470 VI Compute

(a) Bark (b) Bark (base mesh)

(c) Barks (d) Barks (base mesh)

(e) Pumpkin (f) Pumpkin (base mesh)

Figure 2.7. Some of our test scenes with and without vector displacement mapping.

We then execute a kernel described in Section 2.4, which computes the in-
tersection with VD patches. The minimum number of work groups filling the
GPU is executed and each work group fetches an unprocessed VD patch from the
queue and then processes one after another.

2.6 Results and Discussion

We created models with vector displacement maps in Mudbox for evaluating
the method. Base meshes and vector displacement maps are exported in object
space. We created four test scenes with these models and models without vector
displacement maps (Figures 2.1 and 2.7). To stress the renderer, we intentionally
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Scene Pretessellation Direct Ray Tracing

Party 52 GB 16 MB
Bark 1.7 GB 0.47 MB
Barks 12 GB 3.3 MB
Pumpkin 380 MB 0.12 MB

Table 2.1. Memory usage for geometry and acceleration structure.

did not use instancing for these tests, although we could use it to improve the
performance for a scene in which a same geometry has been placed several times.
We used an AMD FirePro W9100 GPU for all the tests.

The biggest advantage of using vector displacement maps is their small mem-
ory footprints, as they create highly detailed geometry on the fly rather than
preparing a high-resolution mesh. The memory usages with the proposed method
and with pretessellation are shown in Table 2.1. The “Party” scene requires the
most memory and does not fit into any existing GPU’s memory with pretessel-
lation. Even if we could store such a large scene in memory, it takes time to
start the rendering because of the preprocess for rendering, such as IO and spa-
tial acceleration structure build. This prevents a fast iteration of modeling and
rendering. On the other hand, those overheads are low when direct ray tracing
of vector displacement maps is used. The difference is noticeable, even for the
simplest “Pumpkin” scene.

The advantage of the memory footprint is obvious, but the question is, “What
is the cost at runtime, (i.e., the impact for the rendering speed)?” Despite its
complexity in the ray-casting algorithm, direct ray tracing of vector displacement
maps was faster for most of the experiments. We rendered direct illumination of
the scene under an environment light (i.e., one primary ray cast and one shadow
ray cast) and measured the breakdown of the rendering time, which is shown
in Figure 2.8.2 Pretessellation is faster only for the “Pumpkin” scene whose
geometric complexity is the lowest among all tests. Pretessellation is slower for
the “Bark” scene and it fails to render the other two larger scenes. This is
interesting because direct ray tracing is doing more work than pretessellation.
This performance came from less divergent computation of direct ray tracing
(i.e.,the top- and middle-level hierarchies are relatively shallow, and we batch the
rays intersecting with a VD patch).

To understand the ray-casting performance for direct ray tracing better, we
analyzed the breakdown of each ray-cast operation for the scenes (Figure 2.9).
These timings include kernel launch overhead, which is substantial especially for
sorting that requires launching many kernels. Computation time for sorting is
roughly proportional to the number of hit pairs, although it includes the over-
head. Most of the time is spent on bottom-level BVH build and ray casting for

2The renderer is a progressive path tracer, and thus all screenshots are taken after it casts
some samples per pixel.
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Figure 2.8. Breakdown of computational time for a frame. There are two graphs for
each scene. One is with pretessellation and the other (VD) is with the proposed method.
Barks cannot render without using instancing with VD patches.
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Figure 2.9. Time for top and middle ray casts, sort, and bottom ray cast.

VD patches. The time does not change much when we compare primary and
shadow ray casts for the “Barks” scene, although the number of shadow rays is
smaller than the number of primary rays. This indicates the weakness of the
method, which is that the bottom-level BVH construction cost can be amortized
when there are a large number of rays intersecting with a VD patch, but it cannot
be amortized if this number is too low. This is why the ray casting for shadow
rays in the “Pumpkin” scene is so slow compared to the time with pretessella-
tion. The situation gets worse as the ray depth increases. We rendered indirect
illumination with five ray bounces (depths) for the “Bark” scene (Figure 2.10).
Figure 2.11 shows the ray casting time measured for each ray bounce. Although
the number of active rays decreases as it goes deeper, the ray casting time did
not decrease much. This can be improved by caching the generated bottom-level
BVH, which is disposed and computed again for each ray casting operation. This
is an opportunity for future research.
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Figure 2.10. The “bark” scene rendered with five-bounce indirect illumination.
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Figure 2.11. Ray casting time for each ray depth in indirect illumination computation.
Those marked (sh) are ray casts for shadow rays.

2.7 Conclusion

In this chapter, we have presented a method to ray-trace vector displacement-
mapped surfaces on the GPU. Our experiments show that direct ray tracing
requires a small memory footprint only, and ray tracing performance is competi-
tive or faster than ray tracing with pretessellation. The advantage gets stronger
as there are more VD patches in the scene.

From the breakdown of the rendering time, we think that optimizing the BVH
build for the scene and ray casting for simple geometries such as triangles and
quads are not as important as optimizing the bottom-level hierarchy build and
ray casting because the complexity of the bottom-level hierarchy easily becomes
higher than the complexity of the top- and middle-level hierarchies once we start
adding vector displacement to the scene.



474 VI Compute

Bibliography

[Hanika et al. 10] Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch.
“Two-Level Ray Tracing with Reordering for Highly Complex Scenes.” In
Proceedings of Graphics Interface 2010, pp. 145–152. Toronto: Canadian
Information Processing Society, 2010.

[Harada and Howes 11] T. Harada and L. Howes. “Introduction to GPU Radix
Sort.” Supplement to Heterogeneous Computing with OpenCL, edited by
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana
Schaa. San Francisco: Morgan Kaufmann, 2011. Available at http://www.
heterogeneouscompute.org/?page id=7.

[Smits et al. 00] Brian E. Smits, Peter Shirley, and Michael M. Stark. “Direct
Ray Tracing of Displacement Mapped Triangles.” In Proceedings of the Eu-
rographics Workshop on Rendering Techniques, pp. 307–318. Aire-la-Ville,
Switzerland: Eurographics Association, 2000.



3

VI

Smooth Probabilistic
Ambient Occlusion

for Volume Rendering
Thomas Kroes, Dirk Schut, and Elmar Eisemann

3.1 Introduction

Ambient occlusion [Zhukov et al. 98] is a compelling approach to improve depth
and shape perception [Lindemann and Ropinski 11, Langer and Bülthoff 99],
to give the illusion of global illumination, and to efficiently approximate low-
frequency outdoor lighting. In principle, ambient occlusion computes the light
accessibility of a point, i.e., it measures how much a point is exposed to its sur-
rounding environment.

An efficient and often-used version of ambient occlusion is screen-space am-
bient occlusion [Kajalin 09]. It uses the depth buffer to compute an approximate
visibility. This method is very appealing because its computational overhead
is minimal. However, it cannot be applied to direct volume rendering (DVR)
because voxels are typically semitransparent (defined via a transfer function).
Consequently, a depth buffer would be ambiguous and is not useful in this con-
text.

The first method to compute ambient occlusion in DVR, called vicinity shad-
ing, was developed by Steward [Stewart 03]. This method computes the ambi-
ent occlusion in each voxel by taking into account how much the neighboring
voxels obscure it. The resulting illumination is stored in an additional volume,
which needs to be recomputed after each scene modification. Similarly, Hernell
et al. [Hernell et al. 10] computed ambient occlusion by ray tracing inside a small
neighborhood around the voxel. Kroes et al. extended this method by taking the
entire volume into account [Kroes et al. 12].

Our approach tries to avoid costly ray tracing and casts the problem into a
filtering process. In this sense, it is similar in spirit to Penner and Mitchell’s
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Figure 3.1. The hemisphere around a point that determines ambient occlusion (left).
The blue part is unoccluded. Volumetric obscurance relies on a full sphere (right).

method [Penner and Mitchell 08], which uses statistical information about the
neighborhood of the voxels to estimate ambient occlusion, as well as the method
by Ropinski et al., which is similar and also adds color bleeding [Ropinski et al. 08].
Furthermore, our approach relates to Crassin et al.’s [Crassin et al. 10], which
proposes the use of filtering for shadow and out-of-focus computations.

Our Smooth Probabilistic Ambient Occlusion (SPAO) is a novel and easy-
to-implement solution for ambient occlusion in DVR. Instead of applying costly
ray casting to determine the accessibility of a voxel, this technique employs a
probabilistic heuristic in concert with 3D image filtering. In this way, ambient
occlusion can be efficiently approximated and it is possible to interactively modify
the transfer function, which is critical in many applications, such as medical and
scientific DVR. Furthermore, our method offers various quality tradeoffs regarding
memory, performance, and visual quality. Very few texture lookups are needed in
comparison to ray-casting solutions, and the interpretation as a filtering process
ensures a noise-free, smooth appearance.

3.2 Smooth Probabilistic Ambient Occlusion

There are various definitions for ambient occlusion. Here, we define it as the part
of a point that is accessible from the outside world. A 2D example is given in
Figure 3.1 and illustrates the ambient occlusion computation. More formally, the
ambient-occlusion value A(p, n) is given by the integral of the visibility function
over the hemisphere Ω centered around a point p in the direction of the normal
n of that point:

A(p, n) :=
1

π

∫
Ω(n)

V (p, ω)dω,

where V is the visibility function. In other words, V stems from the volume
data itself after it was transformed by the transfer function. Note that V (p, ω)
is 0 if the ray from point p in direction ω is blocked and 1 if it is unblocked; an
intermediate value attenuates the ray. To simplify the description, we will use
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only the notion of blocked and unblocked rays in the following. Please notice
that we can interpret intermediate values of V as a probability for a ray to be
blocked. For example, if V returns a value of 0.5, there is a 50% chance for a ray
to be blocked.

It is also possible to integrate the visibility function over the whole sphere
around a point, making Ω a full sphere, instead of a hemisphere and making
it independent of n. The result is called obscurance and denoted A(p), and it
produces similar effects. Calculating obscurance instead of ambient occlusion has
the advantage that it does not require a normal. However, this definition will
lead to parts of the volume that are located behind the point to intervene in the
computation. This property can be a disadvantage for standard scenes, as the
result might become too dark, but in the context of DVR, it is sometimes even
preferable, as it will unveil information below the surface, which is often desired.

Both ambient occlusion and obscurance only depend on the geometry of the
volume. Therefore, they can be stored in an additional volume that is then
used to modulate the original volume’s illumination. The occlusion values can
be calculated directly from the opacity of the original volume. Nonetheless, the
values have to be recomputed when the original volume changes—for example,
when the user changes the transfer function. This latter step can be very costly
and makes it impossible to interact with transfer functions while maintaining a
high visual fidelity. Our approach is fast to compute and enables a user to quickly
apply such modifications without having to wait a long time for the result.

Initially, our solution will be explained in the context of obscurance, but
in Section 3.3, we will extend our algorithm to approach ambient occlusion by
making use of the normals to reduce the influence of the part of the volume below
the surface.

3.2.1 Overview

To approximate obscurance at a certain point in the volume, we avoid ray casting.
Instead, we introduce an approximation that is based on the probability of the
rays being blocked by the volume. Instead of solving A(p) and its integral entirely,
we consider a limited region around p, formed by volumes of increasing size.
The volume between successive volumes forms a layer of voxels, a so-called shell
(Figure 3.2). We will show how to derive the probability of a random ray to be
blocked by a shell. From this result, we deduce an approximation of the integral
A(p) assuming that the entire volume is represented by a single shell. Finally, the
results for these various shells are combined heuristically to yield our occlusion
approximation for the entire volume.

First, we consider shells being represented by a sphere with a one-voxel-wide
boundary S. These shells are formed by a set of successive spheres, which each
grow in radius by one voxel. In this situation, if we consider one independent
shell, any random ray sent from its center will intersect exactly one voxel. If all
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Level 2

Level 1

– =

Shell (between Levels 1 and 2)

Figure 3.2. A shell is a layer of voxels formed by the difference between two differently
sized volumes. By creating a cascade of these volumes, a set of shells is formed. For
each shell, we approximate the probability of a ray to be blocked and combine these
probabilities heuristically to form the final obscurance value.

directions are equally likely, the probability for a ray to be blocked then boils
down to an average of all voxel values in the shell, averageS(p). Looking carefully
at this definition, it turns out that this probability is equivalent to solving for A
in the presence of a single shell.

If we now decompose the volume into such a set of shells around a point, we
can compute the probability of the rays to be blocked by each shell, but still
need to combine all these blocking contributions together. In order to do so, we
make use of a heuristic. We assume a statistical independence between the value
distributions in the various shells. The probability of rays originating at p to be
blocked by a set of n englobing shells {Si}ni=1 ordered from small to large is then
given by

n∏
i=1

(1 − averageSi
(p)).

To understand this formula, it helps considering only two layers {S1, S2} . A
random ray from p traverses S1 with probability (1 − averageS1

(p)). If this ray
passed S1, it is again, potentially, stopped by S2, this time with probability (1−
averageS2

(p)), yielding a total probability of (1−averageS1
(p))(1−averageS2

(p)).
In the following, we will describe an efficient and GPU-friendly approach to com-
pute an approximation of this solution.

3.2.2 Approximating Obscurance for Cube Shells

In practice, we will use box-shaped shells instead of spheres (Figure 3.3). We
will show in the next section that this choice will allow us to benefit from GPU
texture filtering to compute averageSi

, making the algorithm very efficient. The
cubes are chosen to be of increasing size and centered at each point p of the
volume. The shells are then defined by hollowing out these cubes by subtracting
the next-smaller cube from its successor. In reality, these cubes will never have
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Level 2

Level 1

Shell (between Levels 1 and 2)

=–

=– 4× Average16× Average 12× Average

Figure 3.3. In this 2D illustration, the shell on the right is a one-voxel-thick hull that
is formed by subtracting the average opacity from level 1 (in the middle) from level 2
(on the left).

Figure 3.4. Cube shells used to approximate obscurance.

to be constructed explicitly, but it is helpful to think of them for illustrative
purposes. The process is illustrated in Figure 3.4.

Following the previously described steps, we need to deduce averageSi
for

each of the shells, which in our new situation corresponds to the average of all
voxel values between two successive cubes. If we assume for now that we have a
quick way of determining the average inside of a complete cube, we can rapidly
determine averageSi

. To illustrate this computation, we will assume that we want
to determine averageS of a shell S defined by two cubes C1 and C2, with voxel-
value averages A1 and A2 and number of voxels S1, S2 (S1 < S2), respectively.
The solution is then given by

averageS =
S2A2 − S1A1

S2 − S1
. (3.1)

In other words, we can subtract from the total voxel sum of one cube S2A2 the
total voxel sum of the next-smaller one (S2A2) and normalize the result by the
number of voxels in the shell between both (Figure 3.3, lower row).
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(a) (b) (c)

Figure 3.5. Volumetric obscurance using (a) ray tracing (256 rays/voxel), (b) mipmap
filtering, and (c) N-buffer filtering.

Please note that Equation (3.1) can be rewritten as

averageS =
1

1 − S1

S2

(
A2 −

(
S1

S2

)
A1

)
.

Consequently, only the average and the relative change in size (S1/S2) is needed
to deduce averageS , which facilitates computations further. Imagine that each
cube is obtained by doubling the length of each edge of the predecessor. Then,
the ratio would be 1 : 8, resulting in averageS = 8

7 (A2 − 1
8A1).

3.2.3 Fast Cube Averages

In the previous section, we assumed to have a quick method to determine the
average inside of a cube. Here, we will propose two possible solutions to this
problem. Our observation is that, for a given cube size, the averages are equivalent
to a box filtering of the volume.

Determining averages of various kernel sizes is a common problem in com-
puter graphics in the context of texture mapping. These techniques translate to
corresponding operations in a 3D volume. The most common such approxima-
tion is mipmapping, but we will also present N-buffers [Décoret 05], which deliver
higher-quality filtering at an additional cost.

As mipmaps are rather standard, we will only focus on N-buffers here. Like
mipmaps, they consist of multiple levels l, each representing the average values of
the original volume inside cubes of width 2l. Unlike mipmaps, the resolution of an
N-buffer is not reduced in each level. Consequently, it is possible to retrieve the
exact filled part of a cube at every position in the volume, whereas for a mipmap
linear interpolation can provide only an approximation based on the eight closest
voxels, which reduces the quality (Figure 3.5).
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Figure 3.6. A 2D example of how N-buffers are calculated. A dataset is shown on the
left, with the first two N-buffer levels next to it. In each level, the average of four values
of the previous level is combined into one value.

The N-buffer construction is efficient, as each new level can be computed from
the previous using only eight lookups. A 2D example of the calculation is shown
in Figure 3.6. Nonetheless, N-buffers result in higher memory consumption, so
it can be useful to apply a few mipmap levels before processing the rest using
N-buffers.

3.3 Approximating Ambient Occlusion

In Section 3.2, we explained that ambient occlusion in comparison with obscu-
rance can provide cues that are closer to realistic lighting because voxels behind
the point of interest are not taken into account. To reduce this effect, we can
offset the lookup operations in the direction of the normal. When choosing the
offset carefully, the increase in size of the cubes and the offset can be correlated
to obtain shells that correspond now to hemispheres. This goal can be achieved
by multiplying the normal vector by half the size of the box. An example with a
shorter vector is illustrated in Figure 3.7.

Figure 3.7. The lookups of the cubes from a point with a normal of length 0.75 in the
upward direction.
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(a) Factor 0.0 (no normal cor-
rection)

(b) Factor 0.5

(c) Factor 1.0 (d) Factor 2.0

Figure 3.8. Effect of the normal factor

However, in DVR, a normal is not always clearly defined, e.g., inside a ho-
mogeneous semitransparent volume like jelly pudding. Similarly, between two
different semitransparent voxels, it might be less clear how to define a normal at
the interface between opaque and transparent materials. Consequently, we pro-
pose to scale the cube offset based on how strong the gradient is. Interestingly,
while most techniques derive normals from the normalized gradient via central
differences, we can use the gradient magnitude to determine if a normal is clearly
defined. Hence, we propose to remove the normalization operation and instead
normalize the voxel values themselves to the range [0,1], which will lead to the
gradient becoming an appropriately scaled normal. Additionally, we allow the
user to specify a global scale to either pronounce or reduce the impact of this
ambient-occlusion approximation (Figure 3.8).
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N-buffers Mipmaps Ray trace, 512 rays

Level 0 30.93 ms 33.00 ms -

Level 1 33.99 ms 4.58 ms -

Level 2 40.13 ms 0.66 ms -

Level 3 41.16 ms 0.17 ms -

Level 4 42.69 ms 0.14 ms -

Level 5 38.09 ms 0.13 ms -

Level 6 41.91 ms 0.12 ms -

Levels Total 268.90 ms 38.8 ms -

AO Computation 63.24 ms 110.39 ms 425.36 sec

Total 332.14 ms 149.19 ms 425.36 sec

Table 3.1. Performance measurements for the Macoessix data set (512× 512× 512) for
N-buffers and mipmap-based SPAO. For each technique we show the time it takes to
compute the individual levels and to combine them into an ambient occlusion volume.

3.4 Results

Our method has been implemented in a CUDA-based stand-alone software pro-
gram for DVR. The program and its source code are available under the original
BSD license. It is shipped with sample datasets. The transfer function and, thus,
the visual representation can be changed on the fly. Also, the user can select from
three different methods of ambient occlusion computation: mipmaps, N-buffers,
and ray tracing. Our program makes use of CUDA 3.0 texture objects and will
not support lower CUDA versions.

We tested the performance of our technique using the publicly available Ma-
coessix dataset from the Osirix website1 (see Table 3.1). All tests were peformed
on an Intel Xeon W3530 (2.80 GHz) workstation with 12 GB RAM and a GeForce
GTX TITAN Graphics Card with 4 GB of RAM. N-buffers are slightly more
costly than mipmaps, but both are orders of magnitude faster than a volumet-
ric ambient-occlusion ray tracer. The latter takes more than four minutes, see
Table 3.1.

Figure 3.9 shows some results of our approach on the Backpack and Manix
datasets.

3.5 Conclusion

This chapter presents a novel approach to compute ambient occlusion for DVR.
We demonstrate that by considering the ambient-occlusion computation as a
filtering process, we can significantly improve efficiency and make it usable in a
real-time DVR application. Such an approach is useful for medical visualization
applications, where transfer functions are very often subject to change.

1http://www.osirix-viewer.com/datasets/



484 VI Compute

(a) Backpack data set (b) Manix data set

Figure 3.9. SPAO applied to the Backpack (512×512×461) and Manix (512×512×460)
data sets.

Our approach is efficient and simple to implement and leads to a very good
quality/performance tradeoff. Nonetheless, we also experimented with more com-
plex combinations of the shells, especially, as the assumption of independence of
the occlusion probabilities is usually not true in most datasets. In practice,
it turns out that our solution seems to be a good choice, and any increase in
complexity also led to a significant performance impact. Nonetheless, this topic
remains interesting for future work. Furthermore, we would like to investigate
approximating physically plausible light transport, such as global illumination,
with our filtering technique, which could further enhance the volume depiction.
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VII

3D Engine Design

Welcome to the 3D Engine Design section of this edition of GPU Pro. The
selection of chapters you will find in here covers a range of engine design problems.

First, Holger Gruen examines the benefits of a block-wise linear memory lay-
out for binary 3D grids in the chapter “Block-Wise Linear Binary Grids for
Fast Ray-Casting Operations.” This memory layout allows mapping a number
of volumetric intersection algorithms to binary AND operations. Bulk-testing a
subportion of the voxel grid against a volumetric stencil becomes possible. The
chapter presents various use cases for this memory layout optimization.

Second, Michael Delva, Julien Hamaide, and Ramses Ladlani present the
chapter “Semantic-Based Shader Generation Using Shader Shaker.” This chapter
offers one solution for developing and efficiently maintaining shader permutations
across multiple target platforms. The proposed technique produces shaders auto-
matically from a set of handwritten code fragments, each responsible for a single
feature. This particular version of the proven divide-and-conquer methodology
differs in the way the fragments are being linked together by using a path-finding
algorithm to compute a complete data flow through shader fragments from the
initial vertex attributes to the final pixel shader output.

Finally, Shannon Woods, Nicolas Capens, Jamie Madill, and Geoff Lang
present the chapter “ANGLE: Bringing OpenGL ES to the Desktop.” ANGLE
is a portable, open-source, hardware-accelerated implementation of OpenGL ES
2.0 used by software like Google Chrome. The chapter provides a close insight
on the Direct3D 11 backend implementation of ANGLE along with how certain
challenges were handled, in addition to recommended practices for application
developers using ANGLE.

I hope you enjoy this edition’s selection, and I hope you find these chapters
inspiring and enlightening to your rendering and engine development work.

Welcome!

—Wessam Bahnassi
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VII

Block-Wise Linear Binary Grids
for Fast Ray-Casting Operations

Holger Gruen

1.1 Introduction

Binary grids only contain one bit of information per cell. Even reasonably high
grid resolutions (e.g., 4096 × 4096 × 256 amount to 512 MB of memory) still fit
into GPU memory and are thus practical in real-time situations.

This chapter examines the benefits of a block-wise linear memory layout for
binary 3D grids. This memory layout allows mapping a number of volumetric
intersection algorithms to binary AND operations. Bulk-testing a subportion of
the voxel grid against a volumetric stencil becomes possible. The number of
arithmetic operations and the amount of memory words to be accessed is lower
than for regular sampling schemes.

Below, techniques for rendering binary grids are discussed. The text then
describes how to use block-wise linear grids to cast rays through the grid to
detect occluded light sources in the context of an indirect illumination rendering
technique as a real-world use case. Finally, various other use cases for using
block-wise linear grids are discussed.

1.2 Overview

There is a wealth of work regarding the use of binary voxel grids in 3D graph-
ics: [Eisemann and Décoret 06] lists various applications, specifically some from
the area of shadowing; [Penmatsa et al. 10] describes a volumetric ambient occlu-
sion algorithm; and [Kasik et al. 08] presents the use for precomputed visibility
applications, to name a few.

The rendering of binary voxel grids (BVGs) is often realized by mapping the
third axis (e.g., the z-axis) of the grid to the bits of the pixels of a multiple render
target (MRT) setup. During rendering, voxels/bits along the z-axis are set using

489
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32-bit word 1

32-bit word 2

Figure 1.1. A 4× 4× 4 voxel grid fits into two consecutive 32-bit words.

blending operations of the graphics hardware. A pixel/fragment shader computes
which bit to set and computes the outputs accordingly.

Specifically, on more modern hardware and with modern graphics APIs, bi-
nary blend operations can be used to switch on specific bits in render targets
using unsigned integer pixel formats.

The downside of this approach is that voxelization is only possible along one
view direction per rendering pass.

With the use of scattering pixel/fragment shaders, this changes as one can
now render along three view directions and scatter to the same binary grid using
interlocked binary OR operations.

How to make use of the geometry shader stage to only render one geometry
pass to voxelize a scene is described in [Crassin and Green 12].

1.3 Block-Wise Linear Memory Layout

Block-wise memory layouts are used in GPU architectures to improve cache co-
herency during texturing operations. The idea is to store a small 2D block of
texels into a contiguous block of memory instead of using a scanline after scan-
line memory layout.

This idea extends into 3D textures and can also be applied to binary voxel
grids.

Trivially, any portion of the binary voxel grid of size 2N × 2N × 2N fits into
2N×2N×2N

32 32-bit integer words.
Figure 1.1 depicts a simple example and shows the simple case of a 4 × 4 × 4

subgrid being mapped to two 32-bit integer words.
Please note that the case of 2 × 2 × 2 voxels is not considered here as the

benefits of packing such a small part of the grid can be ignored in the context of
this chapter.

Subgrids of size 4×4×4 may seem small, but they can be used as the building
blocks for compositing the storage pattern for bigger blocks.
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8 × 8 × 8

Figure 1.2. Here, 8× 8× 8 voxels fit into eight 4× 4× 4 blocks.

These bigger blocks store each of the 4 × 4 × 4 subblocks—of which they are
comprised—in two consecutive 32-bit integer locations. Figure 1.2 depicts this
idea for a 8 × 8 × 8 block that maps to sixteen 32-bit integer words.

In order for readers to start using the described memory layout, Listing 1.1
provides an implementation of a function that can be used to compute the buffer
address and bit-value for a given grid size and block size.

Please note that the number of bits that are set in each 4 × 4 × 4 portion of
the grid can be used to compute a value for volumetric coverage. Modern GPUs
have operations that can count the nonzero bits in integer values—thus mapping
bits to coverage is efficient.

Another way to efficiently implement storing 4 × 4 × 4 bits in a memory
coherent way instead of using a 1D buffer of unsigned integer under Direct3D 11
can be the use of a RWTexture3D<uint2>. In this case, each texel can be used to
encode a 4 × 4 × 4 of the grid.

1.4 Rendering Block-Wise Linear Binary Voxel Grids

Assuming Direct3D 11 class hardware, a simplified version of voxelization can be
implemented very similar to what is described in [Crassin and Green 12].

In the following description, a geometry shader is used during rendering in
order to allow sending the voxelized geometry only once. The geometry shader
projects each triangle in a way that maximizes its rasterized surface area or the
number of pixels is covers. This is achieved by setting a per-triangle view matrix
that looks along the normal of the triangle.

In this chapter, a geometry shader is used for convenience only. It is also
possible to use a vertex shader (using ideas from [Gruen 12]) to get all the data
for a triangle directly from the vertex buffer. Alternatively, all data necessary to
set up the per-triangle view matrix can be stored per vertex, which also allows
skipping the use of the geometry shader stage.

Please note that the following code doesn’t implement a solid voxelization
strategy. Only the voxels that intersect the plane of the triangle are set.
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// Return the o f f s e t i n to the bu f f e r in byte s in . x and the
// va lue to OR to the 32−b i t i n t e g e r to s e t the g r i d pos in . y
uint2 computeOffsetAndVal ( f l o a t 3 pos , // 3D pos in the g r i d

f l o a t GridSize , // s i z e o f the g r i d
f l o a t BlockRes ) // block−s i z e ,

// e . g . , 8 to pack 8x8x8
{

// Compute which o f the BlockRes x BlockRes x BlockRes b locks
// �pos � i s in
f l o a t 3 block_pos = floor ( floor ( pos ) � ( 1 . 0 f/ BlockRes ) ) ;

// Compute 3D po s i t i o n with in subblock
f l o a t 3 sub_pos = floor ( floor ( pos ) % BlockRes ) ;

// Compute the s i z e o f a g r i d with g r i d c e l l s each BlockRes wide
f l o a t RGS = GridSize/ BlockRes ;

// b lock s i z e in byte s
u int block_size = uint ( BlockRes � BlockRes � BlockRes ) / 8 ;

// byte o f f s e t to the BlockRes x BlockRes x BlockRes �pos � i s in
u int block_off = block_size � u int ( block_pos . x +

block_pos . y � RGS +
block_pos . z � RGS � RGS ) ;

// Compute which o f the f i n a l 4x4x4 b locks the voxe l r e s i d e s in
f l o a t 3 sub_block_pos = floor ( sub_pos � 0 .25 f ) ;

// Compute the b i t p o s i t i on i n s i d e the f i n a l 4x4x4 b locks
f l o a t 3 bit_pos = sub_pos % 4.0 f ;

// Compute the s i z e o f a b lock in 4x4x4 un i t s
Float FBS = BlockRes � 0 .25 f ;

// Compute byte o f f s e t f o r f i n a l 4x4x4 subblock in the current
// BlockRes x BlockRes x BlockRes b lock
u int off = 8.0 f � ( sub_block_pos . x +

sub_block_pos . y � FBS +
sub_block_pos . z � FBS � FBS ) ;

r e turn uint2 (
// Add memory o f f s e t s and add f i n a l o f f s e t base on z
block_off + off + ( bit_pos . z > 1 . 0 f ? 0 x4 : 0x0 ) ,

// Compute b i t po s i t i o n in 32− b i t word
0x1 << u int ( bit_pos . x + bit_pos . y � 4 . 0 f +

( bit_pos . z % 2.0 f ) � 4 . 0 f � 4 . 0 f )
) ;

}

Listing 1.1. Compute the offset and bit position for a position in a block-linearly stored
binary grid.

Listing 1.2 shows shader fragments of such an implementation. Here, the
assumption is that tessellation isn’t enabled, as otherwise the domain shader
needs to take the role of the vertex shader fragment given below.

Assuming a viewport with a resolution sufficient to deliver a reasonable num-
ber of pixels to the pixels shader is set, Algorithm 1.1 is used. Listing 1.2 provides
the implementation details.
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1. Set up a viewport with sufficient resolution to grant a dense enough
rasterization of the triangles.

• Experiments have shown that a resolution of two times the
dimension of the grid is a good resolution.

• The application passes the dimension as a constant in
�g_ViewportResolution� to the shaders.

2. Disable back-face culling and depth testing.

3. Set up the UAV for the �RWByteAddressBuffer BinaryGrid� in the pixel
shader (see Listing 1.2).

4. The vertex shader (see Listing 1.2), on-top of what it does for vertex
processing, passes on the world-space position of each vertex.

5. The geometry shader sets up a viewing matrix that looks along the
world-space normal of the triangle, maximizing its projected area, and
passes grid-space positions to the pixel shader.

6. The pixel shader computes the offset into the grid buffer using the
function from Listing 1.1. It then uses an interlocked operation to set
the bit for the current grid position.

Algorithm 1.1. One-pass voxelization.

s t r u c t GS_RenderGridInput
{

f l o a t 3 f3WorldSpacePos : WSPos ;
. . .

} ;
GS_RenderGridInput VS_BinaryGrid ( VS_RenderSceneInput I )
{

GS_RenderGridInput O ;
// Pass on world−space pos i t i on−−−assuming WS i s passed in
O . f3WorldSpacePos = I . f3Position ;
// Compute/ pass on add i t i o n a l s t u f f
. . .

r e turn O ;
}
s t r u c t PS_RenderGridInput
{

f l o a t 4 f4Position : SV_POSITION ;
f l o a t 3 f3GridPosition : GRIDPOS ;

} ;
[ maxvertexcount ( 3 ) ]
void GS_BinaryGrid ( triangle GS_RenderGridInput input [ 3 ] ,

inout TriangleStream<PS_RenderGridInput> Triangles )
{

PS_RenderGridInput output ;
// g WorldSpaceGridSize c on ta in s the world−space s i z e o f the
// g r i d
f l o a t 3 f3CellSize = g_WorldSpaceGridSize . xyz �

( 1 . 0 f / f l o a t ( BINARY_GRID_RES ) . xxx ) ;
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f l o a t 3 gv [ 3 ] , v [ 3 ] ;

// Compute grid−space p o s i t i o n s from world−space p o s i t i o n s ;
// g SceneLBFbox con ta in s the l e f t , bottom , and f r on t po in t s
// o f world−space bounding box o f the g r i d
gv [ 0 ] = ( input [ 0 ] . f3WorldSpacePos − g_SceneLBFbox . xyz ) /

f3CellSize ;

gv [ 1 ] = ( input [ 1 ] . f3WorldSpacePos − g_SceneLBFbox . xyz ) /
f3CellSize ;

gv [ 2 ] = ( input [ 2 ] . f3WorldSpacePos − g_SceneLBFbox . xyz ) /
f3CellSize ;

// Compute t r i a n g l e edges
f l o a t 3 d0 = gv [ 1 ] − gv [ 0 ] ;
f l o a t 3 d1 = gv [ 2 ] − gv [ 0 ] ;

// Compute t r i a n g l e normal
f l o a t 3 N = normalize ( cross ( d0 , d1 ) ) ;
f l o a t 3 C = ( 1 . 0 f /3 .0 f ) � ( gv [ 0 ] + gv [ 1 ] + gv [ 2 ] ) ;

// Move eye po s i t i o n to 1 un i t away from the t r i a n g l e s c en t e r
f l o a t 3 Eye = C − N ;

// Set up view ax i s f o r l ook ing along the t r i a n g l e normal
f l o a t 3 xaxis = normalize ( d1 ) ;
f l o a t 3 yaxis = cross ( N , xaxis ) ;

// Set up view matrix f o r l ook ing along the t r i a n g l e normal
float4x4 ViewMatrix = {

xaxis . x , xaxis . y , xaxis . z , −dot ( xaxis , Eye ) ,
yaxis . x , yaxis . y , yaxis . z , −dot ( yaxis , Eye ) ,
N . x , N . y , N . z , −dot ( N , Eye ) ,
0 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f
} ;

// Compute view−space p o s i t i o n s
v [ 0 ] = mul ( ViewMatrix , f l o a t 4 ( gv [ 0 ] , 1 . 0 f ) ) . xyz ;
v [ 1 ] = mul ( ViewMatrix , f l o a t 4 ( gv [ 1 ] , 1 . 0 f ) ) . xyz ;
v [ 2 ] = mul ( ViewMatrix , f l o a t 4 ( gv [ 2 ] , 1 . 0 f ) ) . xyz ;

// Set up a p r o j e c t i o n matrix us ing a constant ;
// g ViewportReso lut ion i s a constant s e t by the app l i c a t i o n
float4x4 ProjMatrix =
{

2 . 0 f / g_ViewportResolution , 0 . 0 f , 0 . 0 f , 0 . 0 f ,
0 . 0 f , 2 . 0 f / g_ViewportResolution , 0 . 0 f , 0 . 0 f ,
0 . 0 f , 0 . 0 f , 1 . 0 f , −0.5f ,
0 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f

}

// Pro j e c t v e r t i c e s and pass on grid−space po s i t i o n
[ unroll ] f o r ( i n t i = 0; i < 3 ; ++i )
{

output . f4Position = mul ( ProjMatrix , f l o a t 4 ( v [ i ] , 1 . 0 f ) ) ;
output . f3GridPosition = gv [ i ] ;
Triangles . Append ( output ) ;

}
Triangles . RestartStrip ( ) ;

}

RWByteAddressBuffer BinaryGrid : r e g i s t e r ( u0 ) ;
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void PS_BinaryGrid ( PS_RenderGridInput I )
{

u int old ;
// BINARY GRID RES holds the r e s o l u t i o n / s i z e o f the binary g r i d
f l o a t 3 f3GridCoord = max ( ( 0 . 0 f ) . xxx ,

min ( ( BINARY_GRID_RES−1 ) . xxx ,
floor ( I . f3GridPosition ) ) ) ;

// Compute the o f f s e t and the va lue s o f the b i t to manipulate
uint2 off_val = computeOffsetAndVal ( f3GridCoord ) ;

// Turn on the b i t f o r the current g r i d po s i t i o n
BinaryGrid . InterlockedOr ( off_val . x , off_val . y , old ) ;

}

Listing 1.2. Vertex and geometry shader fragments for one-pass voxelization under
Direct3D 11.

1.5 Casting Rays through a Block-Wise Linear Grid

Algorithm 1.2 details one way to cast rays through the grid. It does it in a
way that benefits from the memory layout of block-wise linear grids. It tests for
intersections by building small ray segments in local registers holding grid-aligned
4 × 4 × 4 test blocks. The actual intersection test only amounts to doing two
binary AND operations. The memory cost for this ray intersection test is lower
than performing four isolated load operations into a grid that has a “normal”
memory layout.

1.6 Detecting Occlusions during Indirect Light Gathering

The article [Gruen 11] describes the implementation of a reflective shadow map
(RSM)–based one-bounce indirect illumination algorithm (see [Dachsbacher and
Stamminger 05]). An RSM, in a nutshell, is a G-buffer as seen from the point of
the light and usually consists of the combination of a depth buffer, a buffer that
contains surface normals, and a buffer that contains the colors of the lit scene.

In order to detect occluded RSM pixels, a grid of singly linked lists of triangles
is build. A set of rays is cast through this grid trying to find blocked RSM pixels
and to compute the color of the blocked indirect light. In a final pass, the blocked
indirect light is subtracted from the indirect light that is the result of running a
filter kernel over the RSM treating its pixels as virtual point lights (VPLs).

Replacing the grid of lists of triangles by a binary block-wise linear grid is
straightforward. Instead of using a compute shader for rasterizing blocker trian-
gles into the grid, the voxelization algorithm described in Algorithm 1.1 is used
to create a binary 3D grid.

Using the freely available assets and shaders from [Gruen 11], the scenario
was recreated using a block-wise linear binary grid for detecting occluded VPLs
to estimate blocked indirect light.
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For all voxels along the ray, start an iterator V (I) at the start point of
the ray.

1. Determine which 2N × 2N × 2N block B that V (I) sits in.

2. Determine which 4× 4× 4 subblock S of B that V (I) sits in.

3. Reserve two 32-bit integer registers R[2] to hold a ray subsection.

4. Build a ray segment in R.

(a) For all voxels v along the ray starting at V (I) that are still inside S,

i. set the bit in R to which v maps,

ii. advance I by 1.

5. Load two 32-bit integer words T [2] from the buffer holding G that
contain S.

6. Perform the following bitwise AND operations:

(a) R[0] & T [0],

(b) R[1] & T [1].

7. If any of the tests in Steps 6(a) or 6(b) return a nonzero result, the ray
has hit something.

Algorithm 1.2. Casting a ray in small segments.

Listing 1.3 provides the implementation details. In order to hide the fact that
a discrete binary grid is used, the edges cast through the grid are randomized
using pseudorandom numbers. Also, instead of computing unblocked and blocked
indirect light separately, the shaders in Listing 1.3 cast a ray segment toward each
VPL that is considered.

// Compute a long word s i z e d o f f s e t i n to the g r i d f o r a g r i d
// po s i t i o n � pos �

u int compute4x4x4BlockLWOffset ( f l o a t 3 pos , f l o a t GridRes , f l o a t
BlockRes )

{
f l o a t 3 block_pos = floor ( floor ( pos ) � ( 1 . 0 f/ BlockRes ) ) ;
// l o c a l addre ss in b lock
f l o a t 3 sub_pos = floor ( floor ( pos ) % BlockRes ) ;

u int block_off = ( BINARY_BOCK_SIZE / 4 ) �

u int ( block_pos . x + block_pos . y � ( GridRes/ BlockRes )
+ block_pos . z � ( GridRes/ BlockRes ) �

( GridRes/ BlockRes ) ) ;

f l o a t 3 sub_block_pos = floor ( sub_pos � f l o a t ( 1 . 0 f /4 .0 f ) ) ;

u int off = 2.0 f � ( sub_block_pos . x +
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sub_block_pos . y � ( BlockRes � 0 .25 f ) +
sub_block_pos . z � ( BlockRes � 0 .25 f ) �

( BlockRes � 0 .25 f ) ) ;
r e turn block_off + off ;

}

// Trace an edge through the binary g r i d in 4x4x4 b locks
f l o a t traceEdgeBinaryGrid ( f l o a t 3 f3CPos , // s t a r t pos o f ray

f l o a t 3 f3CN , // normal at s t a r t pos o f ray
f l o a t 3 f3D , // normal ized d i r e c t i o n o f ray
f l o a t 3 f3Pos , // end pos o f ray /egde
f l o a t 3 f3N ) // normal at end pos

{
f l o a t fCount = 0.0 f ;

// g SceneBoxSize i s the world−space s i z e o f the scene
f l o a t 3 f3CellSize = g_SceneBoxSize . xyz �

( 1 . 0 f / f l o a t ( BINARY_GRID_RES ) . xxx ) ;

// Step along normal to ge t out o f current c e l l
// to prevent s e l f−oc c l u s i on ;
// g SceneLBFbox i s the l e f t , bottom , and f r on t pos o f the world box
f l o a t 3 f3GridPos = ( f3CPos + ( f3CN � f3CellSize ) −−

g_SceneLBFbox . xyz ) / f3CellSize ;
f l o a t 3 f3DstGridPos = ( f3Pos + ( f3N � f3CellSize ) −−

g_SceneLBFbox . xyz ) / f3CellSize ;

// Clamp to the g r i d ;
// BINARY GRID RES holds the r e s o l u t i o n / s i z e o f the binary g r i d
f l o a t 3 f3GridCoord = max ( ( 0 . 0 f ) . xxx , min ( ( BINARY_GRID_RES−1 ) .

xxx , floor ( f3GridPos ) ) ) ;

f l o a t 3 f3DstGridCoord = max ( ( 0 . 0 f ) . xxx , min ( ( BINARY_GRID_RES −1).
xxx , floor ( f3DstGridPos ) ) ) ;

// Compute po s i t i o n in a g r i d o f 4x4x4 b locks
f l o a t 3 f3SubPos = f3GridCoord%4.0f ;
f l o a t 3 f3Dg = f3DstGridCoord − f3GridCoord ;
f l o a t 3 f3AbsD = abs ( f3Dg ) ;
f l o a t fMaxD = max ( max ( f3AbsD . x , f3AbsD . y ) , f3AbsD . z ) ;

// Sca le step to step 1 p i x e l ahead
f3Dg �= rcp ( fMaxD ) ;

// Where do we step out o f the l o c a l 4x4x4 g r i d ?
f l o a t 3 f3LocalDest = ( f3Dg < 0 . 0 f ? −1.0f : 4 . 0 f ) ;
f l o a t fLoopCount = 0.0 f ;

// Only step along two 4x4x4 segments
whi l e ( fMaxD >= 0.0 f && fLoopCount <= 2.0 f )
{

f l o a t 3 f3Steps = abs ( ( f3LocalDest − f3SubPos ) / f3Dg ) ;
f l o a t fSteps = floor ( min ( min ( f3Steps . x , f3Steps . y ) ,

f3Steps . z ) ) ;
u int offset = compute4x4x4BlockLWOffset ( f3GridCoord ,

BINARY_GRID_RES , BINARY_BLOCK_RES ) ;
uint2 lineseg = uint2 ( 0 ,0 ) ;
uint2 grid ;

fLoopCount += 1.0 f ;

// Load the l o c a l 4x4x4 g r i d
grid . x = g_bufBinaryGrid [ offset++ ] ;
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grid . y = g_bufBinaryGrid [ offset ] ;

// Bui ld l i n e mask f o r current 4x4x4 g r i d
[ unroll ] f o r ( i n t ss = 0; ss < 4 ; ++ss )

{
[ flatten ] i f ( fSteps > 0 . 5 f )
{

u int bitpos = uint ( f3SubPos . x + ( f3SubPos . y � 4 . 0 f ) +
( ( f3SubPos . z % 2.0 f ) � 16 .0 f ) ) ;

lineseg . x |= f3SubPos . z > 1 . 0 f ? 0x0 : ( 0 x1 << bitpos ) ;
lineseg . y |= f3SubPos . z < 2 . 0 f ? 0x0 : ( 0 x1 << bitpos ) ;

f3SubPos += f3Dg ;
f3GridCoord += f3Dg ;
fMaxD −= 1.0 f ;
fSteps −= 1.0 f ;

}
}

i f ( ( ( lineseg . x & grid . x ) | ( lineseg . y & grid . y ) ) != 0 x0 )
{

fCount += 1.0 f ;
break ;

}

// Recompute sub pos
f3SubPos = f3GridCoord%4.0f ;

}
re turn fCount ;

}

// pub l i c l y a v a i l a b l e pseudorandom number a lgor i thm
uint rand_xorshift ( u int uSeed )
{

u int rng_state = uSeed ;

rng_state \ = ( rng_state << 1 3 ) ;
rng_state \ = ( rng_state >> 1 7 ) ;
rng_state \ = ( rng_state << 5 ) ;

re turn rng_state ;
}

f l o a t computeFakeNoise ( u int uSeed )
{

u int uRand = rand_xorshift ( uSeed ) ;
uRand = rand_xorshift ( uRand ) ;
uRand = rand_xorshift ( uRand ) ;
r e turn f l o a t ( uRand ) / 4294967295.0 f ;

}

// Compute the i n d i r e c t l i g h t at f3CPosOrg ca s t i ng rays to t e s t
// f o r blocked VPLs
f l o a t 3 computeIndirectLight ( f l o a t 2 tc , // RSM tex tu r e coord

f l o a t 2 fc , // f r a c t i o n a l t e x tu r e coord
int2 i2Off , // o f f s e t f o r d i t h e r i n g
f l o a t 3 f3CPosOrg , // current pos
f l o a t 3 f3CN ) // normal at current pos

{
f l o a t 2 tmp ;
f l o a t 3 f3IL = (0 . 0 f ) . xxx ;
i n t 3 adr ;
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f l o a t 3 f3CPos = f3CPosOrg ;

adr . z = 0;
adr . y = in t ( tc . y � g_vRSMDimensions . y + (−LFS ) + i2Off . y ) ;

// Loop over spa r s e VPL ke rne l
f o r ( f l o a t row = −LFS ; row <= LFS ; row += 6.0 f , adr . y += 6 )

{
adr . x = in t ( tc . x � g_vRSMDimensions . x + (−LFS ) + i2Off . x ) ;

f o r ( f l o a t col = −LFS ; col <= LFS ; col += 6.0 f , adr . x += 6 )
{

f l o a t 3 f3Pos , f3Col , f3N ;

// Unpack G−bu f f e r data
f l o a t 3 f3Col , f3Pos , f3N ;
GetGBufferData ( f3Col , f3Pos , f3N ) ;

// Compute i n d i r e c t l i g h t c on t r i bu t i on
f l o a t 3 f3D = f3Pos . xyz − f3CPosOrg . xyz ;
f l o a t fLen = length ( f3D ) ;
f l o a t fInvLen = rcp ( fLen ) ;
f l o a t fDot1 = dot ( f3CN , f3D ) ;
f l o a t fDot2 = dot ( f3N , −f3D ) ;
f l o a t fDistAtt = saturate ( fInvLen � fInvLen ) ;

// Form f a c t o r l i k e term
fDistAtt �= saturate ( fDot1 � fInvLen ) �

saturate ( fDot2 � fInvLen ) ;

// Compute no i s e f o r c a s t i ng a no i sy ray
f l o a t fNoise1 = 0.15 f � computeFakeNoise ( u int ( adr . x

+ fc . x � 1 0 0 ) ) ;
f l o a t fNoise2 = 0.15 f � computeFakeNoise ( u int ( adr . y

+ fc . y � 1 0 0 ) ) ;

f3Pos −= f3D � fInvLen � fNoise1 ;
f3CPos += f3D � fInvLen � fNoise2 ;

i f ( fDistAtt > 0 . 0 f )
{

f3IL += f3Col � fDistAtt � traceRayBinaryGrid
( f3CPos . xyz , f3CN , f3D � fInvLen , f3Pos , f3N ) ;

}
}

}
re turn f3IL ;

}

Listing 1.3. Compute indirect light tracing rays through a binary grid for each VPL.

Please note that the noisy indirect light is computed at a reduced resolution,
as described in [Gruen 11]. The resulting indirect light gets blurred bilaterally
and is then up-sampled to the full resolution.

The screenshots in Figures 1.3, 1.4, and 1.5 have been generated with and
without the detection of occluded VPLs.
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Figure 1.3. Screenshot 1: the scene without indirect light.

1.7 Results

One goal of this chapter is to show that using block-wise binary grids does help
to speed up ray casting through a binary voxel grid.

In order to prove this, a standard implementation of traversing the grid has
been implemented as well.

Table 1.1 shows the performance of both methods on a 64×64×64 grid on an
NVIDIA GTX680 at 1024 × 768. In the final test, the standard implementation
is also allowed to operate on a packed grid in order to show that just the ability
to perform block-wise tests is already enough to generate a speedup.

In the test scene and the test application, block-wise tests allow for a speedup
of around 20%.

1.8 Future Work

The following describes future work that has not been implemented yet. The al-
gorithms are therefore not necessarily detailed enough to be directly implemented
but are an outlook to what would be interesting to implement next.

1.8.1 Casting Cone Stencils

The algorithm for casting a cone through a block-linear BVG G is detailed in
Algorithm 1.3. It performs intersections by intersecting small ray segments with
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Figure 1.4. Screenshot 2: the scene with indirect light but without detecting occluded
VPLs.

Figure 1.5. Screenshot 3: the scene with indirect light from only unoccluded VPLs.

Packed Grid + standard ray marching ∼ 180 fps

Packed Grid + block-wise tests ∼ 150 fps

Table 1.1. Performance comparison.
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1. Determine which 4× 4× 4 subblock S of G contains the position of the
current pixel.

2. Take the world-space tangent at the current pixel and divide it by the
world-space size of a 4× 4× 4 subblock of G⇒ T .

3. Take the world-space bi-tangent at the current pixel and divide it by the
world-space size of a 4× 4× 4 subblock of G⇒ BT .

4. Iterate along points P on a ray segment starting at S (stepping from one
4× 4× 4 block to the next).

(a) Compute cone radius r(P ).

(b) Divide r by the world-space size of a 4× 4× 4 subblock.

(c) Iterate points hp from P + r × (−T −BT ) to P + r × (T −BT ).

i. Iterate points vp from hp to hp+ r ×BT .

A. Zero an array of two integer registers R.

B. Set all bits in R (representing a 4× 4× 4 block of G) for
positions that intersect the original cone.

C. Load the 4× 4× 4 block at vp from G into registers T [2].

D. If (R[0] AND T [0]) or (R[1] AND T [1]), then the cone hits
the grid; Exit the test.

Algorithm 1.3. Casting a cone through a block-linear BVG.

the voxel grid. If this is not intended, it is possible to change the code to test
step by step. Please note that the coherency of memory accesses for this is still
higher than performing texture lookups for each step along the ray.

1.8.2 Arbitrary Other Stencils

If possible, one should try to construct any stencil in 4× 4× 4 subblocks in order
to perform the intersection test in block-wise way for efficiency.

If dynamic construction is not feasible, a number of stencils can be precom-
puted and stored in a buffer that is available to the GPU. This works especially
well if the stencils can be defined in grid space and don’t depend on data from
the test origin—e.g., they don’t depend on the per-pixel normal or other per pixel
attributes.

1.8.3 Using Grid Mipmaps

It is possible to build mipmaps of a block-wise–linear binary grid. The most
obvious way is to down-sample an 8 × 8 × 8 block into a 4 × 4 × 4 block. The
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strategies on how to down-sample each 2 × 2 × 2 block into just one bit do vary
depending on the application.

Similar in spirit to [Crassin et al. 11] one could switch to testing a lower mip
for intersections after a certain distance when, e.g., testing ray segments. This
would speed up the testing of longer rays.

1.9 External References

The assets and shaders used in [Gruen 11] are available in the “Downloads”
section of the CRC Press webpage for GPU Pro 2 at http://www.crcpress.com/
product/isbn/9781568817187.
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VII

Semantic-Based Shader
Generation Using Shader Shaker

Michael Delva, Julien Hamaide,
and Ramses Ladlani

2.1 Introduction

Maintaining shaders in a production environment is hard, as programmers have
to manage an always increasing number of rendering techniques and features,
making the amount of shader permutations grow exponentially. As an example,
allowing six basic features, such as vertex skinning, normal mapping, multitex-
turing, lighting, and color multiplying, already requires 64 shader permutations.

Supporting multiple platforms (e.g., HLSL, GLSL) does not help either. Keep-
ing track of the changes made for a platform and manually applying them to the
others is tedious and error prone.

This chapter describes our solution for developing and efficiently maintaining
shader permutations across multiple target platforms. The proposed technique
produces shaders automatically from a set of handwritten code fragments, each
responsible for a single feature. This divide-and-conquer methodology was al-
ready proposed and used with success in the past, but our approach differs from
the existing ones in the way the fragments are being linked together. From a
list of fragments to use and thanks to user-defined semantics that are used to
tag their inputs and outputs, we are using a pathfinding algorithm to compute
the complete data flow from the initial vertex attributes to the final pixel shader
output.

Our implementation of this algorithm is called Shader Shaker. It is used in
production at Fishing Cactus on titles such as Creatures Online and is open
source for you to enjoy.

505
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2.2 Previous Work

As mentioned earlier, there are two main categories of issues graphic programmers
may have to deal with at some point when it comes to shader maintenance: the
(possibly high) number of feature permutations and the multiple backends to
support (e.g., HLSL, GLSL).

2.2.1 The Permutation Hell Problem

The permutation hell problem is almost as old as the introduction of programmable
shaders in the early 2000s. [Kime 08] categorizes the solutions to this problem
into three main families (code reuse through includes, subtractive approaches,
and additive approaches). To these categories, we added a fourth one that we
will call template-based approaches.

Code reuse. This should be the solution that is the most familiar to program-
mers. It consists of implementing a library of utility functions that will be made
available to the shaders thanks to an inclusion mechanism (e.g., include prepro-
cessor directive) allowing code to be reused easily. The main function of the
shader can then be written using calls to these functions and manually feeding
the arguments. This is a natural way of editing shaders for programmers, but it
gets difficult for the less tech savvy to author new permutations and still requires
maintaining all permutations by hand.

A related solution is the one described in [Väänänen 13], where the Python-
based Mako templating engine is used to generate GLSL shaders.

Subtractive solutions. Über-shader solutions rely on one (or a few) mammoth
shader(s) containing all the code for all features. The different permutations
are generated using a preprocessor to select the relevant portions of code. This
technique has proved to be a valid solution for a long time and has been used
in countless productions. Nevertheless, its major drawback is that über-shaders
are usually hard to maintain (because of their length and the lack of readability
caused by the preprocessor directives), especially in a multilanguage environment.
Another problem with this approach is that shader semantics can also be tricky
to work with (their number is limited and they sometimes need to be sequentially
numbered, making it hard to use them with a simple preprocessor).

Additive solutions. These work the other way around by defining a series of el-
ementary nodes (or functions) to be aggregated later (either online or offline)
to produce the shader. The aggregation is performed by wiring nodes’ inputs
and outputs together, either visually using a node-based graph editor or pro-
grammatically. This approach has seen lots of implementations [Epic Games
Inc. 15, Holmér 15] largely because of its user friendliness, allowing artists to
produce visually pleasing effects without touching a single line of code. Its
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main drawback remains the difficulty to control the efficiency of the generated
shaders [Ericson 08,Engel 08b].

A complete system for generating shaders from HLSL fragments is described
in [Hargreaves 04] in which each shader fragment is a text file containing shader
code and an interface block describing its usage context. In this framework,
fragments are combined without actually parsing the HLSL code itself. The
system was flexible enough to support adaptive fragments, which could change
their behavior depending on the context in which they were used, but lacked the
support of a graph structure (i.e., the system was restricted to linear chain of
operations). Tim Jones implemented this algorithm for XNA 4.0 in [Jones 10].

Trapp and Döllner have developed a system based on code fragments, typed
by predefined semantics that can be combined at runtime to produce an über-
shader [Trapp and Döllner 07].

In [Engel 08a], Wolfgang Engel proposes a shader workflow based on maintain-
ing a library of files, each responsible for a single functionality (e.g., lighting.fxh,
utility.fxh, normals.fxh, skinning.fxh), and a separate list of files responsible for
stitching functions calls together (e.g., metal.fx, skin.fx, stone.fx, eyelashes.fx,
eyes.fx). This is similar to the node-based approach, but it is targeted more at
programmers. As will be shown later, our approach is based on the same idea but
differs from it (and the other node-based solutions) by the fact that the wiring is
done automatically based on user-defined semantics.

Template-based solutions. The last category finds its roots in the famous template
method pattern [Wikipedia 15b], where the general structure of an algorithm (the
program skeleton) is well defined but one is still allowed to redefine certain steps.

This is one of the higher-level techniques adopted by Unity (alongside the
regular vertex and fragment shaders), which is itself borrowed from Renderman:
the surface shader [Pranckevičius 14b]. By defining a clear interface (predefined
function names, input and output structures), the surface shader approach allows
the end user to concentrate on the surface properties alone, while all the more
complex lighting computations (which are much more constant across a game
title) remain the responsibility of the über-shader into which it will be injected.
It should be noted that it would be possible to combine this with any of the
previous three methods for handling permutations at the surface level only.

Taking the idea a bit further, [Yeung 12] describes his solution where he
extends the system with interfaces to edit also the vertex data and the lighting
formula. Unnecessary code is stripped by generating an abstract syntax tree and
traversing it to obtain the variables’ dependencies.

2.2.2 The Language Problem

Extensive reviews about the different techniques and tools available to maintain
shaders across different languages are available in [Pranckevičius 10a, Pranck-
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evičius 12, Pranckevičius 14a]. We refer the reader to these articles for more
information, but we summarize the approaches to handling this problem into the
following four families.

The manual way. This could eventually be performed with the help of macros
where the languages do differ, but it does not scale well. It is still tricky because
of subtle language differences and is hard to maintain.

Use another language. Use a language (eventually a graphical one) that will com-
pile into the target shader language as output.

Cross-compile from one language to another. Lots of tools are available to trans-
late from one language to the other at source code level. The problem can be
considered as solved for DirectX 9–level shaders, but there is still work to do
for supporting the new features that have appeared since then (e.g., compute,
geometry, etc.).

Compile HLSL to bytecode and convert it to GLSL. This is easier to do than the
previous technique but suffers from a partly closed tool chain that will run on
Windows only.

2.3 Definitions

Our technique is based around the concepts of fragments and user-defined seman-
tics (not to be confused with the computer graphics fragment used to generate a
single pixel data).

• Fragment: In this context, a fragment is a single file written in HLSL that
is responsible of implementing a single feature and that contains all the
information required for its execution, including uniforms and samplers
declarations, as well as code logic. A fragment example is provided in
Listing 2.1.

• User-defined semantic: A user-defined semantic is a string literal used to tag
a fragment input or output (e.g., MeshSpacePosition, ProjectedPosition).
This tag will be used during shader generation to match a fragment’s out-
put to another one’s input. User-defined semantics use the existing HLSL
semantic feature, used for mapping input and output of shaders.

2.4 Overview

Shader Shaker, our shader generator, uses a new idea to generate the shader.
User-defined semantics are added to intermediate variables, as shown in List-
ing 2.1. The generation algorithm uses those intermediate semantics to gener-
ate the list of call functions. The algorithm starts from expected output, e.g.,
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float4x4 WvpXf ;

void GetPosition (
in float3 position : VertexPosition ,
out float4 projected_position : ProjectedPosition
)

{
projected_position = mul ( float4 ( position , 1 ) , WvpXf ) ;

}

Listing 2.1. GetPosition fragment.

LitColor, and creates a graph of the function required to generate the semantic
up to the vertex attributes.

To generate a shader, one has to provide the system with a list of fragments
to use (vertex_skinning + projected_world_space_position + diffuse_texturing

+ normal_mapping + blinn_lighting, for example). Thanks to the semantics, it
is possible to link the desired fragments together to produce the final output
semantic required by the system (e.g., LitColor) and generate the corresponding
complete shader.

Fragments are completely uncoupled; code can be written without considera-
tion of where the data comes from. For example, for a fragment that declares a
function that needs an input argument with a semantic of type ViewSpaceNormal,
the tool will search another fragment with a function that has an output argu-
ment of the very same semantic to link to this one. In deferred rendering, the
fragment that provides this output argument with the semantic ViewSpaceNormal

would read the geometry buffer to fetch that value, whereas in forward render-
ing, a function could, for example, just return the value of the view-space normal
coming from the vertex shader. In any case, the fragment in the pixel shader that
uses this ViewSpaceNormal is agnostic to where the data it needs comes from.

To achieve this, the code generator adopts a compiler architecture, going
through separate phases:

• HLSL fragments are processed by Shader Shaker to generate for each of
them an abstract syntax tree (AST).

• The ASTs are processed to create a final AST, which contains all the needed
code (functions/uniforms/samplers). The algorithm (explained in detail in
the following section) generates this final AST from the required output
semantics (the output of the pixel shader), then goes upward to the input
semantics, calling successively all functions whose output semantic match
the input semantic of the previous function.

• Eventually, this final AST is converted to the expected output language
(e.g., HLSL, GLSL, etc.).

As the concept has been introduced, let’s dig into the algorithm.
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s t r u c t FunctionDefinition
{

set<string> InSemantic ;
set<string> OutSemantic ;
set<string> InOutSemantic ;

} ;

Listing 2.2. FunctionDefinition structure.

2.5 Algorithm Explanation

The algorithm used to generate the shader is inspired by the A* path-finding
algorithm [Wikipedia 15a]. The idea is to find a path from the required output
semantic to the existing input semantics, i.e., the vertex attributes. The path is
searched using open and closed semantic sets, in the same way as the open and
closed node lists of the original algorithm. To successfully generate the code, the
compiler must be provided the following information:

• the list of fragments to use, i.e., the feature list;

• the list of required output semantics (each of them will be mapped to a sys-
tem semantic such as COLOR0; multiple render target code can be generated
by defining multiple final output semantics);

• the list of available input semantics (this can change from mesh to mesh,
creating tailored shaders for a given vertex format).

After the parsing of all fragments, the AST is inspected to extract the signa-
ture of functions. Each function that declares one or more semantics for its argu-
ments is processed, others being considered as helper functions. A FunctionDef

inition structure describing the function is filled up with these semantics infor-
mation (see Listing 2.2). A fragment is then defined by a map of definitions
addressed by function names. It’s important to notice that inout function argu-
ments are supported. It’s useful when a fragment wants to contribute to a vari-
able, like summing different lighting into a final lit color or when transforming a
vertex position through several fragments. When processing an inout semantic,
the semantic is kept in the open set. As each function can only be used once,
another function outputting the semantic is required.

The code generation is done in two steps. The first step consists of the creation
of the call graph. The algorithm is described in Listing 2.3. This algorithm
generates a directed acyclic graph of all function calls from the output to the
input. The second step consists of code generation from the call graph. As the
graph represent the calls from the output, it must be traveled depth first. To
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open = { required semantic}
closed = {}

repeat until open is empty
f o r each fragment from last to first

f o r each semantic in open
i f unused function with semantic

in OutSemantic exists
add_function ( function )
restart

end
end

end

report error , semantics in open set do not resolve
end

add_function ( f )
node = { f , f . InSemantic , f . InOutSemantic }
open −= f . InSemantic
open += f . OutSemantic
//Add inout semantic back in the open se t
open += f . InOutSemantic
closed += f . InSemantic
//Link node that r e qu i r ed the semantic
f o r each semantic in { f . OutSemantic , f . InOutSemantic }

node [ semantic ] . children . add ( node )
end

//Report as r e qu i r i n g those semant i c s
f o r each semantic in { f . InSemantic , f . InOutSemantic }

node [ semantic ] = node
end
//Remove semantic provided by vertex
open −= Vertex . AttributeSemantics ;

end

Listing 2.3. Code generation.

simplify code generation and debugging, the semantic is used as the variable
name. The code generation algorithm is described in Listing 2.4. Finally, a map
of user semantics to system semantics is generated, information to be used in the
engine to bind vertex attributes accordingly.

To illustrate this algorithm, a toy example will be executed step by step. The
fragments are defined as shown in Listing 2.5, Listing 2.6, and Listing 2.7. The
function definitions are created as shown in Listing 2.8. The required semantic is
LitColor. The algorithm generates a graph as shown in Figure 2.1. One can see
the open and closed set populated as the algorithm creates the graph. Finally,
the graph is processed to create the code shown in Listing 2.9. It is important
to notice that the code just uses functions declared in fragments. The final code
aggregates all the fragments codes, only with semantic information removed. It’s
not the purpose of this module to prune unused code. This step can be left to
further modules.
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write function definition with required attributes / varyings
f o r each node in depth first order

f o r each output variable
i f variable has not been encountered yet

write variable declaration
end

end

write function call

end

Listing 2.4. Code generation.

Texture DiffuseTexture ;

sampler2D DiffuseTextureSampler
{

Texture = <DiffuseTexture>;
} ;

void GetDiffuseColor ( out float4 color : DiffuseColor ,
in float2 texcoord : DiffuseTexCoord
)

{
color = tex2D ( DiffuseTextureSampler , texcoord ) ;

}

Listing 2.5. Diffuse color from texture fragment.

void ComputeNormal ( in f l o a t 3 vertex_normal : VertexNormal ,
out f l o a t 3 pixel_normal : PixelNormal )

{
pixel_normal = normalize ( vertex_normal ) ;

}

Listing 2.6. Simple normal fragment.

f l o a t 4 SomeLighting ( in f l o a t 4 color : DiffuseColor ,
in f l o a t 3 normal : PixelNormal ) : LitColor

{
re turn ( AmbientLight

+ ComputeLight ( normal ) ) � color ;
}

Listing 2.7. Some lighting fragment.
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GetDiffuseColor :
{

InSemantic : { ”Dif fuseTexCoord” }
OutSemantic : { ” Di f f u s eCo l o r” }

}

ComputeNormal :
{

InSemantic : { ”VertexNormal” }
OutSemantic : { ”PixelNormal ” }

}

SomeLighting :
{

InSemantic : { ” Di f f u s eCo l o r” , ”PixelNormal ” }
OutSemantic : { ” Li tColor ” }

}

Listing 2.8. Function definition examples.

LitColor AmbientLighting

First Step : Open = {DiffuseColor, PixelNormal}
Closed = {LitColor}

LitColor AmbientLighting GetDiffuseColor

Second Step: Open = {DiffuseTexCoord, PixelNormal}
Closed = {LitColor, DiffuseColor}

LitColor AmbientLighting

GetDiffuseColor

ComputeNormal

Third Step: Open = {DiffuseTexCoord, VertexNormal}
Closed = {LitColor, DiffuseColor, PixelNormal}

Figure 2.1. Graph generation process.
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f l o a t 4 main ( in f l o a t 3 VertexNormal : NORMAL ,
in f l o a t 2 DiffuseTexCoord : TEXCOORD0 )

{
f l o a t 4 DiffuseColor ;
GetDiffuseColor ( DiffuseColor , DiffuseTexCoord ) ;
f l o a t 3 PixelNormal ;
ComputeNormal ( VertexNormal , PixelNormal ) ;
f l o a t 4 LitColor

= SomeLighting ( DiffuseColor , PixelNormal ) ;
r e turn LitColor ;

}

Listing 2.9. Generated code.

2.6 Error Reporting

2.6.1 Syntax Errors

Syntactic errors existing in fragments are reported as a shader compiler would.
Each fragment should be a valid compilation-wise shader. This is detected when
parsing the fragments.

2.6.2 Fragment Compliance

A fragment must comply to a list of rules:

• It must only output a given semantic once.

• It must define all constants and sampler it uses.

If either of these rules is broken, the generator reports the error and how to fix
it.

2.6.3 Missing Semantics

If any semantic is not found while generating the call graph, the user is informed
and the generation is stopped.

2.6.4 Graph Cycles

When a node is inserted in the graph, the graph is checked for cycles. If any are
found, the semantics found in the cycle are output.

2.6.5 Mismatching Types for a Semantic

After graph generation, a sanity check is run to ensure all occurrences of a se-
mantic are of the same type. No automatic casting is allowed (e.g., from float3

to float2).
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2.6.6 Target Code Restrictions

When targeting a specific platform, additional conditions are checked (e.g., sam-
pler count, vertex attribute count, unsupported texture fetch in vertex shader,
etc.)

2.7 Usage Discussions

On top of solving the permutation and the multiplatform problems mentioned
earlier, this technique offers the ability to support some noteworthy tricks and
features. This discussion lists how they can be leveraged to improve both pro-
grammers’ and artists’ experiences.

2.7.1 Fragments Variants

By using a system similar to [Frykholm 11], it becomes easy to allow your en-
gine file system to choose among multiple variants of a given fragment (e.g.,
lighting.fx, lighting.low.fx). We exploit this feature for various purposes:

Platform-specific code. When dealing with multiple graphic platforms, it may
happen that the default implementation of a fragment cannot be used natively
because the resulting shader is not compatible with the rendering API, or the
hardware (e.g., vertex texture fetch). This mechanism allows us to provide a
platform-specific version of a given fragment.

Graphic quality. The same principle can be used to manage graphic quality set-
tings. Depending on user settings or based on device capabilities, appropriate
fragments can be selected to balance quality against performance.

2.7.2 Fragment Metadata

Each fragment can be associated with a metadata file to ease its integration into
the tools. In our case, we chose to export this metadata automatically from the
fragments themselves and in JSON format. The available information includes
the list of uniforms, the list of textures, a description of what the fragment does,
etc.

Thanks to this information, it is easy to populate a combo box from which
the artists can select the fragment they want to add to the current material and
then tweak the settings the newly added fragment offers.

Furthermore, this metadata also allows us to match the required attributes
against the mesh vertex format. A missing component in the vertex format
triggers an error, whereas unused data can be stripped safely.
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2.7.3 Data-Driven Features

Adding a new rendering feature to the engine and the editor is as easy as adding
a new fragment file to the fragment library. As the editor is data-driven, no
intervention of a programmer is needed: reloading it is enough. Still, creating
a new fragment requires an understanding of the underlying concept. It also
requires knowledge of the set-defined semantic, as it could be project specific.

2.7.4 Programming

Accessing the metadata of generated shaders can be leveraged as a data-driven
feature, e.g., binding the vertex attributes and the uniforms without using the
rendering API to enumerate them. This is even more useful when the graphics
API doesn’t allow us to do so at all.

2.7.5 Debugging

Programmers can easily debug shaders that are generated by Shader Shaker.
Indeed, the output semantics are provided as arguments to the generation process.
If an issue is suspected at any level, the shader can be regenerated with an
intermediate semantic as the output semantic. For example, if we want to display
the view-space normal, the ViewSpaceNormal semantic is provided as the output
semantic. If the semantic variable type is too small to output (e.g., float2 while
ouputs should be float4), a conversion code is inserted.

2.7.6 Choice of Semantics

Semantics are just considered links by the algorithm. Nevertheless, the choice
of semantics is really important. If the set is not chosen correctly, new features
might require redesigning it, which would require existing fragments’ refactoring.
The set should be documented precisely to remove any ambiguity on the usage.

2.8 What’s Next

While Shader Shaker in its current form is already used with success in our games
and tools, there is still room for improvements.

• Use custom semantics for uniforms and samplers. For now, the semantic
resolution is only applied to functions and input/output arguments. Ap-
plying it to uniforms can be convenient, allowing some values to be passed
either at the vertex level or as uniforms.

• The concept of semantic could be augmented. Semantics could have addi-
tional properties, such as default values, ranges, normalization, etc. On top
of function calls, extra code would be emitted to answer extra specifications.
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• Some improvements can be made to the error reporting. In case of an error
when generating a shader, the exact position of the error in fragments could
be provided with the line number. Also, currently the tool is not yet able
to detect cycles in dependency between fragments. It will be of a great help
to be able to detect those. Another improvement related to error reporting
is a finer detection of grammar errors in the fragments.

• As said before, Shader Shaker does not do any optimizations over the gen-
erated shader. Converting Shader Shaker as a frontend to already existing
modules, which could take care of those optimizations, would be an in-
teresting improvement. In our toolchain at Fishing Cactus, we already
execute the GLSL optimizer [Pranckevičius 10b,Pranckevičius 15] over the
generated GLSL files produced by Shader Shaker. We could, for example,
integrate LLVM [LLVM 15] at different steps of the generation to optimize
the AST and/or the IR.

• We have designed Shader Shaker so that it’s really easy to support new
output shader languages. Currently, we only support output to HLSL and
GLSL, but new languages could be easily supported.

2.9 Conclusion

This technique and its user-semantic linking algorithm brings a new ways of cre-
ating shaders. It provides a new way to manage the complexity and combinatory
complexity. Each feature can be developped independently, depending only on
the choice of semantics. Shader Shaker, our implementation, is distributed as
open source software [Fishing Cactus 15].
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3.1 Introduction

The Almost Native Graphics Layer Engine (ANGLE) is a portable, open source,
hardware-accelerated implementation of OpenGL ES 2.0 used by software like
Google Chrome to allow application-level code to target a single 3D API, yet ex-
ecute on platforms where native OpenGL ES support may not be present. As of
this writing, ANGLE’s OpenGL ES 3.0 implementation is under active develop-
ment. Applications may choose among ANGLE’s multiple rendering backends at
runtime, targeting systems with varying levels of support. Eventually, ANGLE
will target multiple operating systems.

ANGLE’s original development was sponsored by Google for browser support
of WebGL on Windows systems, which may not have reliable native OpenGL
drivers. ANGLE is currently used in several browsers, including Google Chrome
and Mozilla Firefox. Initially, ANGLE provided only an OpenGL ES 2.0 imple-
mentation, using Direct3D 9 as its rendering backend. D3D9 was a good initial
target since it’s supported in Windows systems running XP or newer for a very
large range of deployed hardware.

Since that time, WebGL has been evolving, and ANGLE has evolved along
with it. The WebGL community has drafted new extensions against the current
WebGL specification, as well as draft specifications for WebGL 2.0. Some of the
features contained within these, such as sRGB textures, pixel buffer objects, and
3D textures, go beyond the feature set available to ANGLE in Direct3D 9. For
this reason, it was clear that we would need to use a more modern version of
Direct3D to support these features on Windows systems, which led us to begin
work on a Direct3D 11 rendering backend.

521



522 VII 3D Engine Design

While we use the Direct3D 11 API in our implementation, we target the 10 0
feature level. A feature level in D3D groups a set of limitations and capabilities;
see the D3D11 programming guide for more information [MSDN 14c]. All the
features of OpenGL ES 2.0, most of the extensions we expose via OpenGL ES 2.0
contexts, and even most of the features of OpenGL ES 3.0 are available within
10 0. A few features of OpenGL ES 3.0, however, are only available in hardware
at the 10 1 or 11 0 feature levels; we’ll cover those in more detail later in the
chapter.

We chose to implement the Direct3D 11 backend as an addition, not as a
replacement, for the original renderer; runtime renderer selection allows the ap-
plication to support new features when the hardware is available and fall back
to previous feature sets on older hardware. The abstraction necessary to allow
multiple backends to be easily swapped in and out would come with an additional
benefit: it would be relatively easy to add further backends in the future.

Koch and Capens [Koch and Capens 12] have discussed some of prior ANGLE
challenges in creating a conformant implementation of OpenGL ES 2.0 using Di-
rect3D 9. Recreating this implementation using Direct3D 11 presented challenges
of its own; while we found that the newer API reduced implementation complex-
ity in some areas, it raised it in others. We’ll discuss some of these differences
below. We’ll then discuss ANGLE’s shader translator in Section 3.3, give some
case studies of implementing OpenGL ES 3.0 features in Section 3.4, and discuss
the future directions of ANGLE in Section 3.5. We close off with recommended
practices for application developers in Section 3.6.

3.2 Direct3D 11

Of the API differences we encountered while implementing ANGLE’s new Di-
rect3D 11 backend, some were relatively minor. In the case of fragment coordi-
nates, for example, Direct3D 11 more closely aligns with OpenGL ES and related
APIs, in that pixel centers are now considered to be at half-pixel locations—i.e.,
(0.5, 0.5)—just as they are in OpenGL. This eliminates the need for half-pixel
offsets to be applied to fragment coordinates as in our Direct3D 9 implementa-
tion. There are quite a few places, however, where Direct3D 11 differs from both
Direct3D 9 and OpenGL, requiring ANGLE to find new workarounds for this
rendering backend.

3.2.1 Primitives

Direct3D 9’s available set of primitive types for draw calls is more limited than
OpenGL’s, and Direct3D 11’s is reduced slightly further by removing triangle
fans. ANGLE enables GL_TRIANGLE_FAN by rewriting the application-provided
index buffer to express the same polygons as a list of discrete triangles. This is
a similar tactic to the one we employed to support GL_LINE_LOOP in Direct3D 9
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(and which is still necessary in Direct3D 11), although the modification required
to index buffers for line loops is considerably simpler—we need only repeat the
initial point to close the line loop.

Direct3D 11 also removes support for large points, commonly used for ren-
dering point sprites. While point lists themselves are still supported, the size of
points is no longer configurable. This is a less trivial problem for ANGLE to
solve. Thankfully, Direct3D 11 also introduces geometry shaders, which allow us
to expand each point into a billboarded quad, achieving the same effect without
CPU overhead.

3.2.2 Texture Formats

One small change from Direct3D 9 to Direct3D 11 that provides a significant
benefit to ANGLE is the addition of native support for RGBA formats. While
Direct3D 9 had very limited support for texture and screen formats outside
of BGRA, Direct3D 11 provides a wide range of supported formats, including
RGBA. This reduces the amount of pixel-by-pixel copying and channel swizzling
that ANGLE needs to do to get textures from user space to the GPU. Direct3D
11 does lose a couple of formats used by OpenGL ES, though: native support
for luminance and luminance alpha textures is dropped, requiring ANGLE to
support them by storing to RGBA textures. Compressed texture formats, spec-
ified by ANGLE_texture_compression_dxt, and immutable textures, as defined in
EXT_texture_storage, continue to be supported as they were for Direct3D 9 [Koch
and Capens 12].

3.2.3 Vertex Buffers

One of the most significant differences between Direct3D 9 and Direct3D 11 from
the perspective of ANGLE is a change in the way that vertex and index buffers
are declared. In Direct3D 9, it’s necessary to specify whether a buffer will be used
to store vertex or index data at creation time. OpenGL has no such restriction—
it’s perfectly valid for an application to generate a buffer, fill it with data, bind it
for use as a vertex buffer in one draw call, and then rebind it as an index buffer
for a subsequent draw call. In our Direct3D 9 implementation, this meant that
we would need to cache the vertex data CPU-side until draw time, at which point
we could create vertex and index buffers based on the current bindings.

Additionally, Direct3D 9 supports a much more limited set of vertex element
types than OpenGL ES 2.0, which contributes significantly to the complexity of
our implementation for that API and can influence performance, as we must inter-
pret and convert application-provided vertex data on the CPU before uploading.
Additionally, our Direct3D 9 implementation unpacks interleaved vertex data to
avoid conversions on unused data in any given draw. For more information, refer
to Koch and Capens’s discussion of vertex data [Koch and Capens 12].
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Direct3D 11 removes these restrictions to some degree, albeit with some
caveats. It uses a single buffer class instead of specializations for index and vertex
buffers. Additionally, Direct3D 11 provides native support for all OpenGL ES
vertex formats. This frees ANGLE from its prior duty of expanding, converting,
and/or de-interleaving application-provided vertex data in many cases; instead,
we can forward this data directly to the GPU without manipulation.

One major exception to the automatic vertex format support in Direct3D 11
is unnormalized integer data. While supported in Direct3D 11, integer attributes
are not automatically converted to floating points when sent to a vertex shader
that accepts floating point inputs. This issue becomes moot in GLSL ES 3.00,
which does provide nonfloat vertex attribute types, but all vertex data, regardless
of how it is provided to the API, is accessed via floats in GLSL ES 1.00 shaders.
ANGLE’s initial Direct3D 11 implementation addressed this by converting vertex
attributes with the CPU before upload. This imposed the same performance
overhead that we’d seen in our Direct3D 9 implementation—but we could do
better. We will discuss our solution in Section 3.3.7.

One other caveat about Direct3D 11’s buffer handling became apparent af-
ter we deployed our initial implementation. While Direct3D 11 allows us to
bind a vertex buffer as both a source for vertex and index data, some hard-
ware would use the bind flags we provided as a hint for how the buffers should
be stored and processed. When we were initially flagging all buffers with both
D3D11_BIND_VERTEX_BUFFER and D3D11_BIND_INDEX_BUFFER, there was a clear per-
formance penalty for some hardware and some drivers. To avoid dual-flagged
buffers, we instead store application-provided vertex data in staging buffers until
draw time. At draw time, we know if the buffer is being used for index or vertex
data, and we can copy the data to an appropriately flagged buffer object. We
found this extra copy overhead was preferable to the performance drag introduced
by dual-flagging buffers.

What also caught us by surprise is that for Direct3D 11, a −1 in the index
buffer (corresponding to 65535 or 0xFFFF for a 16-bit index format) is always
interpreted as a triangle strip cut, also known as a primitive restart. In OpenGL
ES 2.0 and Direct3D 9, this is a valid index value, so we were seeing geometric
anomalies using the same index buffer data with Direct3D 11. We worked around
it by promoting buffers that contain this index value to 32 bits.

3.2.4 Moving Forward

For the most part, Direct3D 11 provides an opportunity for ANGLE to support
new features and improve performance. Old features that required emulation on
Direct3D 9 can often utilize hardware features exposed by the newer API to keep
the extra work on the GPU. Perhaps an even more interesting observation is that
adding a Direct3D 11 backend caused us to start abstracting things in a way
that opened the door for even more rendering backends in the future. This will
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turn ANGLE into a dependable implementation of OpenGL ES across multiple
operating systems and graphics API generations. We’ll discuss this vision and
the architectural implications in more detail in Section 3.5.

3.3 Shader Translation

Shaders play a major role in modern graphics APIs, and their complexity makes
translating between them challenging. Early on in ANGLE’s development, it
was decided that we should only translate between high-level shading languages
and not attempt to compile them down to assembly shaders. This was largely
motivated by the availability of Microsoft’s HLSL compiler and the fact that
unlike Direct3D 9, from Direct3D 10 onward there would no longer be assembly-
level shader support. Source-to-source translation was also what Chrome needed
for validating WebGL’s variant of GLSL ES and translating it into OpenGL
ES’s GLSL or desktop GLSL and for applying security measures or driver bug
workarounds.

This decision turned out to be a double-edged sword. The Direct3D 9 assem-
bly shading language has many quirks and restrictions, and the HLSL compiler
knows how to deal with those adequately, most of the time. This saved us from
duplicating that effort, and we did not have to deal with optimizations. However,
any shortcomings in the HLSL compiler turned out to be a bigger problem to us
than to someone directly targeting Direct3D. That’s because when a developer
encounters an issue with HLSL, he or she will simply rewrite the shader, and the
application that gets shipped will work on all the platforms it targets (often using
precompiled shaders). With ANGLE, it’s unacceptable to expect developers to
adjust their shaders just because this one implementation on this one platform
has a certain issue, no matter how understandable the limitation and no matter
how easy it is to work around. So the ANGLE team had to identify problematic
patterns and apply their workarounds as part of the ESSL-to-HLSL shader trans-
lator. We found out about most of the issues the hard way from bug reports, as
there is no systematic way to discover them. We’ll highlight some of the most
challenging issues later in this section, but first we’ll provide an overview of the
translator’s architecture and design.

3.3.1 Source-to-Source Translation

The general approach for source-to-source translation is to parse the input string(s)
and build an abstract syntax tree (AST) intermediate representation, and then
traverse the AST to systematically construct the output string. An example of
how some code is parsed and represented as an AST is illustrated in Figure 3.1.

ANGLE’s shader translator was founded on 3Dlab’s open source GLSL com-
piler framework [3Dlabs 05]. Out of the box, this framework only supported
desktop GLSL version 1.10, but its parser is generated by the Bison tool, which
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TIntermLoop(ELoopWhile)

“while (i < 4) { … }”

TIntermBinary(EOpLessThan) …

Condition Body

Left

TIntermSymbol(“i”) TIntermConstantUnion(4)

Right

Figure 3.1. Example of parsing a string into an abstract syntax tree.

makes it relatively easy to update the grammar. The GLSL ES specification
conveniently lists the entire grammar in its appendix. Also, 3DLab’s code was
clearly intended for assembly or binary output, but the AST traverser archi-
tecture is nicely object-oriented to allow for alternative implementations. The
biggest change that was required for outputting a high-level language was to
not just perform an implementation-dependent action before and after travers-
ing a tree node’s children (dubbed PreVisit and PostVisit), but also in between
them (InVisit). This allows for the instance to put commas in between a list of
arguments, or semicolons in between a sequence of statements.

We also defined new AST node types to preserve information from the GLSL
source code that would not have been required for assembly output, for instance,
predeclared functions. While traversing the AST to output the body of the HLSL
code, we also keep track of information that should be added to the top. This
gets written to the header stream and later prepended to the body. Examples of
things that have to be in the header include intrinsic function definitions, which
we’ll cover later, and structure constructors. In GLSL, structures have an im-
plicit constructor function that has the same name as the structure and takes the
field types as parameters. This allows us to create nameless instantiations in the
middle of an expression. HLSL does not support this directly. Instead, struc-
tures can only be initialized at declaration using an initializer list (similar to C).
Therefore, we explicitly generate functions that act as a constructor by declaring
and initializing a local variable of the required structure type and returning it.
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When we commenced the work to support OpenGL ES 3.0, an architectural
decision had to be made on how to deal with multiple input languages. Either
we duplicated a large portion of the translator, or we somehow had to support
both (significantly different) specifications while minimizing the entanglement.
The latter turned out to be feasible through two elegant modifications. First, the
lexer, which provides the parser with tokens from the input string, was adjusted
to ensure that new keywords in ESSL 3.00 would still be recognized as identi-
fier names for ESSL 1.00 input. Likewise, some keywords of ESSL 3.00 were
already reserved for ESSL 1.00 and thus would generate an error or not depend-
ing on the specified shader version. To avoid cluttering the lexer specification
itself, these decisions are delegated to a few functions that will return the proper
token type.

The second major change to support ESSL 3.00 was made to the symbol ta-
ble. The symbol table is essentially a map used by the parser to store previously
encountered variable, structure, or function names and their corresponding types.
This also includes predefined intrinsic function names, which greatly differ be-
tween ESSL 1.00 and 3.00. The symbol table has multiple layers to deal with
variables that are redefined at a different scope or become unavailable by going
out of scope. This led us to implement the difference between ESSL 1.00’s and
3.00’s intrinsics by defining a persistent symbol table layer specific to each spec-
ification, and a shared one for common intrinsics. When looking up an identifier
for ESSL 3.00 input, we would first look for it in its own layer, skip the ESSL 1.00
layer, then check the common layer, and afterward look into the scoped layers
for user-defined identifiers.

For the HLSL backend, no changes had to be made to deal with the two in-
put specifications differently. That’s because at this level the GLSL code is fully
validated, so we just have to generate any HLSL code that properly implements
each AST node, regardless of which version it originated from. ESSL 1.00 inter-
mediate code can be translated into either Shader Model 3.0 or Shader Model 4.0
HLSL, which needed few changes (except for texture intrinsics, discussed below),
while ESSL 3.00 constructs demand Shader Model 4.0 features, which we’re tar-
geting anyway for OpenGL ES 3.0, so the translator doesn’t explicitly have to
differentiate between anything at this level.

3.3.2 Shader Debugging

One of the added advantages of source-to-source compilation is that ANGLE’s
output is relatively easy to debug. Most shader constructs translate in a pre-
dictable way, and you can debug your application with Direct3D debugging tools.
To assist with this, several features of ANGLE and Chrome help expose its im-
plementation. First, Chrome can be launched with the --gpu-startup-dialog

command line flag. This halts its execution right after creating the GPU pro-
cess. This allows you to attach a debugger or other analysis tool to it before
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var debugShaders = gl . getExtension ( �WEBGL debug shaders � ) ;
var hlsl = debugShaders . getTranslatedShaderSource ( myShader ) ;

Listing 3.1. WEBGL_debug_shaders extension usage.

continuing (which is especially useful when you’ve set your WebGL application
as the startup page) or use --new-window yoursite.com. For HLSL compilation
issues, you can set a breakpoint at HLSLCompiler::compileToBinary() (function
name subject to change).

You can also retrieve the HLSL code from within WebGL through the WEBGL_

debug_shaders extension, as in Listing 3.1. Note that the format returned by this
extension is implementation specific.

You may notice that the original variable names have been replaced by hardly
legible _webgl_<hexadecimal> names. This circumvents bugs in drivers that can’t
handle long variable names, but makes the HLSL difficult to debug. To disable
this workaround, you can use Chrome’s --disable-glsl-translation flag. Note
that this merely disables Chrome’s ESSL-to-ESSL translation, meant only for
validation and driver workaround purposes, not ANGLE’s ESSL-to-HLSL trans-
lation. This may change in the future as more of the validation becomes ANGLE’s
responsibility and duplicate translation is avoided. Even with the aforementioned
flag, some variable names may have been modified to account for differences in
scoping rules between GLSL and HLSL.

3.3.3 Semantic Differences

Source-to-source translation meant that many workarounds could be handled with
some string manipulation. But what if the actual core semantics of the languages
differ? This was encountered when it turned out that the ternary operator (e.g.,
x = q ? a : b;) evaluates differently between GLSL and HLSL. GLSL conforms
to the C semantic specification by only evaluating the expression corresponding
with the condition, while HLSL evaluates both sides before selecting the correct
result. Similarly, the || and && operators have short-circuiting behaviors in GLSL
but not HLSL.

We actually did find a way to deal with this through mostly string operations.
For each expression containing a ternary operator, we’d create a new temporary
variable in HLSL to hold the ternary operator’s result and outputted an if...else

construct to evaluate only the desired result. Because ternary operators can
be nested, we handle this substitution in a separate AST traverser, which can
be called recursively, before the original statement, which contained the short-
circuiting operators, is outputted with the corresponding temporary variables
replacing the short-circuiting operators.
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More recently, we’ve started dealing with these differences at the AST level
itself instead of at the string output level. When a short-circuiting operator is
encountered, we replace it with a temporary variable node and move the node
representing the short-circuiting operator itself up through the tree before the
most recent statement and turn it into an if...else node. When the child
nodes are visited and they themselves contain short-circuiting operators, the same
process takes place. So this approach takes advantage of the naturally recursive
nature of AST traversal. This doesn’t work at the string level because that would
require inserting code into part of the string that has already been written.

3.3.4 Intrinsics Implementation and Emulation

Shading languages provide a large part of their built-in functionality that isn’t
basic arithmetic or flow control constructs through intrinsic functions. Examples
include min(), max(), trigonometric functions, and, most notably, texture sam-
pling operations. Intrinsic functions use the syntax of a function call but are
compiled into just one or very few assembly instructions. For ESSL-to-HLSL
translation, we had to implement intrinsics that don’t have a direct equivalent
as actual functions. This is fine because functions typically get inlined, so this
typically doesn’t have a performance impact compared to a native OpenGL im-
plementation.

ANGLE implements all ESSL texture-sampling intrinsics as functions in HLSL.
For ESSL 1.00, this was only a handful of intrinsics, so for each of them we had
a handwritten HLSL equivalent. When Direct3D 11 and ESSL 3.00 support was
added, there were so many variations of the intrinsics that this became impracti-
cal. For example, the ESSL 3.00 specification defines a gsampler virtual type to
signify sampler, isampler, and usampler types, and most of these texture intrinsics
also optionally take a bias parameter, resulting in six variants in HLSL for just
a single definition in the specification (and there are several dozen definitions).
To make this more manageable, we switched to generating the necessary HLSL
functions on the fly. Also, to avoid code duplication for predeclaring them in
the symbol table, we defined our own gsampler type, which causes the function
declaration to be expanded into the three actual variants.

While most ESSL 3.00 texture intrinsics have close relatives in HLSL, we
were surprised to find that HLSL has no support whatsoever for unnormalized
integer format cube maps. Of course, one might also question why ESSL offers
support for a feature for which no significant use case was found to make it a
feature of HLSL. Whichever stance is taken, we were stuck having to pass the
conformance tests for a feature for which there’s fundamentally no support in
Direct3D 11. The solution was to treat these cube maps as a six-element array
texture and to manually compute which face of the cube should be sampled from.
Fortunately, because unnormalized integers can’t be filtered in any meaningful
way and thus only point sampling is defined, we didn’t have to deal with finding
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the closest neighboring texels (potentially across multiple faces)! In any case, it
was an interesting exercise in software rendering on the GPU, and we expect to
encounter more occurrences like this in the future as graphics APIs become more
low level and the operations become more granular and software controlled.

3.3.5 HLSL Compiler Issues

Source-to-source compilation saved us from writing a compiler backend but made
us very dependent on Microsoft’s HLSL compiler. Bugs and intrinsic limitations
require our constant attention and intricate workarounds. Early on, we discovered
that for Direct3D 9, loops with more than 254 iterations would fail to compile.
While most common uses of WebGL and OpenGL ES 2.0 don’t require loops
with more iterations, the Khronos conformance test suite includes shaders with
512 iterations to create references to compare trigonometric operations against!
So, to obtain conformance certification, we needed a workaround. The solution
was to split these loops into multiple loops each with a duplicated body that
processes 254 or fewer iterations. Fortunately, the OpenGL ES 2.0 specification
limits loops to have statically determinable iteration counts with a single iterator
variable which cannot be modified within the loop. We also had to be careful
to ensure that a break; statement in a prior (split) loop would cause subsequent
loops to be skipped. Note that Direct3D 9’s assembly instructions are limited to
255 iterations due to its encoding format (an 8-bit field for the iteration count),
so a similar solution of splitting the loop would be required at the assembly level.
It’s just a low-level limitation the HLSL compiler doesn’t abstract away at the
high-level language.

Similarly, we hit several issues related to balancing the optimization level—not
really to achieve better performance (we found that it has little effect, probably
due to driver-level reoptimization), but to ensure that the optimizations try to
keep the number of instructions and registers within the limits, while not making
it take too long to compile. Chrome kills the GPU process after 10 seconds of
no progress to prevent attacks where your system would be made unresponsive.
Some optimization levels of the HLSL compiler appear to be very aggressive and
take a long time to complete. Some shaders even appear to cause the compiler
to get stuck in an infinite loop. These optimizations are probably aimed at being
used for offline compilation only. Still, we need some optimization to get relatively
poorly written ESSL shaders to fit the resource limits.

One particularly challenging issue is that of avoiding differential operations on
discontinuous execution paths. This includes explicit differential operations like
dFdx and dFdy, but also implicit ones for texture-sampling intrinsics to determine
the mipmap level. The way these gradients are computed is based on how pixels
are processed in 2 × 2 pixel quads in parallel and the value of the variable in
question is compared (subtracted) between the neighboring pixels. This works as
long as the code path executed by each pixel in the quad is the same. Any diver-
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gence caused by taking different branches may cause differentiated variables to
not have meaningful values for some of the pixels, and thus there’s an undefined
discontinuity in the differentiation. GLSL deals with this by simply stating that
the result is undefined, while for HLSL it causes a compilation error. You can
either use a texture-sampling intrinsic with an explicitly specified LOD value or
“flatten” the branches that contain texture sampling intrinsics. Flattening means
that all pixels execute all code blocks and the desired results are selected after-
ward. Until recently, there was no control over the HLSL compiler’s flattening
behavior, and results depended on the presence of texture-sampling intrinsics,
and the optimization levels. Nowadays, it can be controlled with the [flatten]

attribute, but for ANGLE it is hard to determine for which branches it is needed.
At the time of writing, we instead generate Lod0 texture-sampling functions that
always sample from the top-level mipmap, which is valid since GLSL defines the
derivatives to be undefined.

The HLSL compiler continues to be a source of various issues, most of which
are fairly small and affect few users. Ultimately, ANGLE has different design goals
than those of applications that target Direct3D directly, which is mostly games
with statically compiled shaders or shaders known to compile without issues for
a certain HLSL compiler version and optimization flags. Still, we manage to
isolate the user from these issues as much as possible, making ANGLE the de
facto robust and conformant OpenGL ES implementation on Windows. In the
future, we may have to resort to performing most optimizations at the AST level
ourselves and outputing only very basic HLSL statements closely corresponding
with assembly instructions.

3.3.6 Driver Bugs

We also encountered shader-related issues deeper into the graphics stack. A
number of them are related to robustness. Some graphics drivers would, for
example, attempt to compile shaders with arrays much larger than 4096 elements,
even though that’s a limit for many register resources in Direct3D 11, and they
would end up choking on it. In the best case, it just exceeds the 10-second time
limit of Chrome and the tab gets killed, but in the worst case the user-mode
graphics driver crashes and the entire screen goes black until the driver resets
itself. To prevent this, we had to limit the size of arrays within ANGLE. We
settled on 65,536 for now because optimizations may cause shaders with such a
large array to still fit within the actual resources, although it is low enough to
avoid the crashes.

One specific driver bug was caused by wrong optimization of if...else state-
ments on one brand of graphics cards, and only within vertex shaders. Values
of a variable that could only be computed in one branch would pop up in the
other branch. This was worked around by rewriting things as if(x) {} if(!x)
{}. Avoiding re-evaluation of x and dealing with one or more else if statements
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makes this nontrivial. Although issues like these are eventually addressed by the
graphics card vendors, it takes a while for these fixes to be deployed to all users,
so thus far we’ve always left these kinds of workarounds enabled.

Driver bugs are even less under our control than HLSL compiler issues, but
hopefully graphics APIs will continue to become more low level so that eventually
we get access to the bare instructions and data. Just like on a CPU, the behavior
of elementary operations is very tightly defined and verifiable so that compilers
can generate code that produces dependable results.

3.3.7 Dynamic Shaders

Because ANGLE can only generate full HLSL programs after we know the sig-
natures between the vertex and pixel stages, we cannot immediately call the
Direct3D compiler at GL compile time. Moreover, we also might modify our
shaders at draw time. For ESSL 1.00 shaders, which treat all vertex inputs as
floating point, we insert conversion code to transform unnormalized integer vertex
attributes in the shader preamble.

ANGLE is not the only program to do this kind of draw-time optimization.
A common complaint from application developers is that draw calls sometimes
perform very slowly due to dynamic shader re-compilation [AMD 14]. A future
design direction for ANGLE, when targeting a more modern API, is to perform
the vertex conversion in a separate shader pass, which would then be linked with
another compiled shader.

3.4 Implementing ES3 on Feature Level 10

3.4.1 Lessons Learned

The degree of similarity or difference between GLES 3 and Direct3D 11 varies
significantly depending on the graphics feature in question. ANGLE’s task of
implementing GLES 3 on top of Direct3D 11 feature level 10 ranged in difficulty
accordingly. We might describe some aspects of our translation as “squashing a
dog into a cat suit, and asking it to meow.” In other cases, the implementation
came naturally. Often the most challenging workarounds come from corner cases,
the little sneaky cases, instead of the most common usage. In this section, we’ll
discuss three examples of some conflicting limitations and corner cases: uniform
buffers, transform feedback, and pixel buffer objects.

In the future we might choose a simpler, more flexible approach. Instead of
mapping one high-level feature onto another high-level feature, we might improve
our lives by assembling the high-level features from simple compute shader com-
ponents. ANGLE’s stars align with the direction of many modern APIs, such
as the recently announced (as of this writing) Direct3D 12 [McMullen 14], Ap-
ple’s Metal [Apple 14], and AMD’s Mantle [AMD 14]; with these modern APIs,
ANGLE could use the features we discuss in this section as compute shaders.
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Figure 3.2. Example HLSL packing of a simple uniform block.

3.4.2 Uniform Buffers

Uniform buffer objects (UBOs) are a marquee feature of OpenGL ES3. UBOs
give applications the ability to upload blocks of uniform data as typed, mappable
buffer objects. UBOs are particularly useful for applications, such as skinning,
that deal with large arrays of bone and joint matrices. Moreover, UBOs are
a more complex part of the ESSL 3.00 specification. This complexity is due
partially to the intricate packing and unpacking rules for getting data out of the
buffer to the active vertex or fragment shader.

Here’s a simple UBO with four members:

uniform sampleBlock
{

mat2 m ;
vec2 v ;
f l o a t a [ 2 ] ;
f l o a t f ;

} ;

The GL API defines three layouts for unpacking data from UBOs to the
shader. We treat the packed and shared layouts identically; in both, the details are
left to the GL implementation. The std140 layout, however, is defined precisely
by the GL specification. Because it’s an application, you can choose the simplicity
of the standardized layout or the benefit of a memory-saving packed layout. With
a GL implementation, you must at the very least support the std140 layout.

UBOs map relatively closely to Direct3D 11’s concept of constant buffers
[MSDN 14d]. We chose to implement UBOs on top of constant buffers and
offer the memory-saving benefits of the packed layout, while maintaining the
necessary std140 layout. In both cases, good performance is also a requirement.
Unsurprisingly, HLSL’s default unpacking scheme for constant buffers differs from
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the std140 layout; thus, we have two competing requirements.

The (somewhat undocumented) HLSL unpacking algorithm reads subsequent
variables from the empty space left over from unpacking prior variables. See
Figure 3.2, where the vec2 is folded into the prior mat2, and the float is folded
into the prior array.

Thus, to support both std140 and packed layouts, we insert invisible padding
variables into the uniform block definition for std140 layouts. We leave packed
blocks as the default HLSL definition. This works well, except for the case of
nested structures. Nested structures, because they can be used in both std140 and
other layouts, require us to create two internal struct definitions: one definition
with the extra std140 padding and one without.1 Nested structures also prevent
us from using HLSL’s register offset specifiers to specify the unpacking scheme.

While our implementation offers a choice between space and generality, both
with good performance, it suffers from complexity. A future direction is to skip
the specialized API for constant buffers entirely; we could opt to bind our UBOs
as structured buffers and unpack the data manually in the shader preamble. Using
a more modern feature level in Direct3D, or MANTLE or Metal, would give us
access to the necessary tools.

3.4.3 Transform Feedback

GLES 3 adds a method for the application to capture the vertex data stream’s
output from the vertex shader stage. GLES calls this operation transform feed-
back, while Direct3D 11 has a very analogous operation called Stream output
[MSDN 14e]. In both, the application can even skip rasterization completely.
Vertex stream capture has a few notable use cases; inspecting vertex outputs for
debugging is much easier by capturing streams directly. GPGPU applications,
such as particle systems, often need to transform vertex data (particle position,
velocity, etc.) in their update step.

Direct3D’s stream output has many similarities, and some notable differences—
particularly notable in their limitations on the number of active capture buffers.
Under feature level 10, our low-specification feature set, we are limited to writing
a single four-component vector output per stream-output buffer2. Feature level
10 also imposes a limit of no more than four Stream-Output buffers per draw call.
These limits, fortunately enough, exactly match the minimum/maximum values
in the GLES 3 Specification, Table 6.24 [Lipchak 13].

In the future, under more flexible APIs, we could implement GL’s transform
feedback from more general shaders. Instead of mapping to the high-level stream
output, we could implement stream output in a compute shader kernel. This

1We also end up with two additional struct permutations to handle unpacking row-major
and column-major matrices from nested structs.

2Note that the stream-output buffer at slot zero has a larger upper bound.
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Figure 3.3. Asynchronous readback with PBOs: (a) Simple GL implementation.
(b) ANGLE–Direct3D 11 implementation.

simple shader approach would fit naturally into a MANTLE/Metal-like API, or
even with a higher feature level in Direct3D 11.

3.4.4 Pixel Pack Buffers

Pixel pack and unpack buffers, collectively known as pixel buffer objects (PBOs),
round out the new data copying operations in GLES 3. Of particular interest
to us are pack buffers, which are buffer objects that receive pixel data from
a texture object. A primary use case for pack buffers is reading back texture
data asynchronously. The application first triggers the pixel copy operation to
the pack buffer without blocking the application layer. Next, it creates a fence
sync object (see Section 5.2 of the OpenGL ES 3 specification [Lipchak 13]) to
detect when the GPU is finished. The application then reads back the pixel data,
while spending minimal time blocked waiting for the GPU. Figure 3.3(a) gives
an example of asynchronous readback.

PBOs map to Direct3D 11’s notion of staging resources [MSDN 14b]. Staging
resources act as CPU-accessible memory; they proxy data to and from the GPU.
They are not orthogonal; Direct3D places several limitations on staging (and also
nonstaging) resources, making life for our PBO implementation a bit tougher.

First, Direct3D 11 does not allow direct copies between texture and buffer
resources. Thus, when we implement a copy from a texture to a buffer, we can’t
rely on Direct3D 11’s CopyResource methods. Another option might be stream
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output, as we described in Section 3.4.3, to capture texture data into a buffer
using a vertex shader. Direct3D’s constraints on stream output notably lack
support for some data types, making this quite challenging. Compute shaders
also offer a promising and elegant solution. Since we are limited to supporting
Shader Model 4 as a minimum, we unfortunately couldn’t rely on compute shaders
in all cases.

More problems arise from the different requirements GL and Direct3D 11
both enforce on the data packing after the asynchronous copy step. GL gives a
set of fine-grained pack parameters, which control how the pixel data packs into
the pack buffer (see Table 4.4 of the OpenGL ES 3 specification [Lipchak 13]).
Direct3D 11, on the other hand, packs pixels row by row with a gap at the end
of each row, specified by a stride [MSDN 14a].

The intended use of staging buffers and pack buffers is to copy from CPU to
GPU memory; this similarity makes the use of staging buffers a suitable start-
ing point. The differences in details lead us to choose a simple, nonoptimal
implementation. After copying back to the staging texture, we do an extra CPU-
side packing step that requests the data, usually via a call to glMapBufferRange.
We run the GL packing algorithm, resolving the GL pack parameters with the
Direct3D 11 offsets, into a CPU memory buffer. This process is illustrated in
Figure 3.3(b). The net result cleanly dresses up Direct3D in a GL suit, at the
cost of a bit of extra work.

A compute shader could lead to a simple, preferable implementation; running
the packing algorithm on the GPU give more work to the GPU. On feature level
11 or other modern APIs, such as Metal or MANTLE, we could make better use
of compute shaders.

3.5 Future Directions: Moving to New Platforms

Since early 2014, the ANGLE team has been redesigning ANGLE to cover a
broader scope and to provide a conformant and fast OpenGL ES 2/3 and EGL
implementation across as many platforms as possible.

3.5.1 Creating a Cross-Platform OpenGL ES Driver

The last year has seen the announcements of at least three new major graphics
APIs, most of them tied to specific hardware or platforms. The new APIs are
typically very low level, attempting to abstract very little of the hardware, and
are a great opportunity for graphics engines to write specialized code for targeted
devices. For writing simple applications and games, this can be a big burden;
ANGLE hopes to alleviate this by being able to provide a common API that can
translate to the lower-level APIs without a significant performance impact. See
Figure 3.4 for a high-level diagram of an application’s interaction with ANGLE
and the native graphics API.
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3.5.2 An Extensible Architecture

To easily support multiple rendering backends, ANGLE needed an architecture
that did as much work as possible before sending work to the native renderer.
The library has been split into three distinct layers to create the simplest possible
interface that a new renderer must implement. See Figure 3.5 for a high-level
diagram of ANGLE’s architecture.

Layers. The layers are the following:

1. The entry point/validation layer exports all of the EGL and OpenGL ES
entry point functions and handles validation of all paramters. All values
passed to the layers below this are assumed to be valid.

2. The object layer contains C++ representations of all EGL and OpenGL ES
objects and models their interactions. Each object contains a reference to
a native implementation for forwarding actions to the native graphics API.

3. The renderer layer provides the implementation of the EGL and GL objects
in the native graphics API; the interfaces are simplified to only action calls
such as drawing, clearing, setting buffer data, or reading framebuffer data.
All queries and validation are handled by the layers above.
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c l a s s BufferImpl
{

pub l i c :
v i r t u a l void setData ( size_t size , void �data ,

GLenum usage ) = 0 ;
v i r t u a l void setSubData ( size_t offset , size_t size ,

void � data ) = 0 ;
v i r t u a l void � map ( GLenum access ) = 0 ;
v i r t u a l void unmap ( ) = 0 ;

} ;

Listing 3.2. The Buffer interface.

The buffer object. A simple example of a renderer layer object that requires a
native implementation is the OpenGL ES 3.0 Buffer (see Listing 3.2). ANGLE’s
Direct3D 9 implementation simply stores the supplied memory in CPU-side mem-
ory until the first use of the Buffer in a draw call when the data is uploaded to a
IDirect3DVertexBuffer9 or IDirect3DIndexBuffer9. The Direct3D 11 implemen-
tation stores the data in a ID3D11Buffer with the D3D11_USAGE_STAGING flag and
will copy the buffer data lazily to one of several specialized buffers for use as an
index buffer, vertex buffer, transform feedback buffer, or pixel buffer.
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c l a s s Renderer
{

pub l i c :
v i r t u a l BufferImpl � createBuffer ( ) = 0 ;
v i r t u a l TextureImpl � createTexture ( ) = 0 ;
. . .

v i r t u a l void drawArrays ( const gl : : State &state , GLenum mode ,
size_t first , size_t count ) = 0 ;

. . .
v i r t u a l void clear ( const gl : : State &state ,

GLbitfield mask ) = 0 ;
. . .

} ;

Listing 3.3. A snippet of the Renderer interface.

const char �ex = eglQueryString ( EGL_NO_DISPLAY , EGL_EXTENSIONS ) ;
i f ( strstr ( ex , ”EGL ANGLE platform angle” ) != NULL &&

strstr ( ex , ”EGL ANGLE platform angle d3d” ) != NULL )
{

EGLint renderer = EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE ;
const EGLint attribs [ ] =
{

EGL_PLATFORM_ANGLE_TYPE_ANGLE , renderer ,
EGL_NONE ,

} ;
display = eglGetPlatformDisplayEXT ( EGL_PLATFORM_ANGLE_ANGLE ,

nativeDisplay , attribs ) ;
}

Listing 3.4. Example ANGLE Renderer selection.

The renderer object. The Renderer object is the main interface between the object
layer and the renderer layer. It handles the creation of all the native implementa-
tion objects and preforms the main actions, such as drawing, clearing, or blitting.
See Listing 3.3 for a snippet of the Renderer interface.

Runtime renderer selection. Specific renderers can be selected in EGL by using the
EGL_ANGLE_platform_angle extension. Each renderer implemented by ANGLE has
an enum that can be passed to eglGetDisplayEXT or a default enum that can be
used to allow ANGLE to select the best renderer for the specific platform it is
running on. See Listing 3.4 for an example of selecting the Direct3D 11 renderer
at runtime.

3.5.3 The Next Step: Creating an OpenGL Renderer

The first non-Direct3D renderer to be implemented by the ANGLE team will use
desktop OpenGL. This will allow the project to quickly expand to other desktop
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platforms and allow users to write OpenGL ES applications that run on all mobile
and desktop platforms.

Despite the ANGLE project originally being created to work around the poor
quality of OpenGL drivers on the Windows desktop, the quality has improved
enough over the last five years that offering an OpenGL renderer is viable. With
having the Direct3D renderer fallback, ANGLE will be able to offer OpenGL
renderers on driver versions that are known to be stable and fast with less CPU
overhead than a Direct3D renderer.

Dealing with the enormous number of permutations of client version and ex-
tension availability in desktop OpenGL will be a complicated aspect of imple-
menting an OpenGL renderer. Loading function pointers or using texture format
enumerations may involve checking a client version and up to three extensions.
For example, creating a framebuffer object could be done via glGenFramebuffers,
glGenFramebuffersEXT, glGenFramebuffersARB, or glGenFramebuffersOES (when
passing through to OpenGL ES), depending on the platform.

Driver bugs are notoriously common in OpenGL drivers, and working around
them will be necessary. In order to promise a conformant OpenGL ES imple-
mentation, ANGLE will have to maintain a database of specific combinations of
driver versions, video card models, and platform versions that have known con-
formance issues and attempt to work around these issues by avoiding the issue or
manipulating inputs or outputs. In the worst case, when a driver bug cannot be
hidden, EGL offers the EGL_CONFORMANT configuration field to warn the user that
there are issues that cannot be fixed.

3.6 Recommended Practices

ANGLE is an important implementation of OpenGL ES for desktops and powers
the majority of WebGL usage. So it pays off to try to take a few of its preferred
and less preferred rendering practices into account.

• Avoid line loops and triangle fans. Instead try using line lists and triangle
lists.

• Wide lines are not supported. Many native OpenGL implementations also
don’t support them, because there’s no consensus on how to deal with corner
cases (pun intended). Implement wide lines using triangles.

• Avoid having an index value of 0xFFFF in a 16-bit index buffer. Configure
your tool chain to create triangle strips with a maximum index of 65534.

• Keep geometry that uses different vertex formats in separate buffers.

• Avoid using luminance and luminance-alpha texture formats. Try to use
four-channel texture formats instead.
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• Make use of the EXT_texture_storage extension (only applies to desktop
applications).

• Avoid using texture-sampling intrinsics within control flow constructs (e.g.,
if, else, switch). Instead, sample the texture outside of these constructs.

• Test your WebGL application with early releases of Chrome (Beta, Dev,
and Canary). It’s the best way to catch bugs early, fix them, and create a
conformance test for it so it will never affect your users.
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tion technology engineering at Budapest University of Technology and Economics.
His professional interests include computer graphics and web development. In his
free time, he enjoys photography and various sports.
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“Heterogeneous Image Systems” at the University of Erlangen-Nuremberg, Ger-
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received a PhD in computer science from the University of Cambridge in 2008
and an MSc in applied mathematics and physics (summa cum laude) from the
Moscow Institute for Physics and Technology in 2004.
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time. He graduated with a master’s degree in computer science from Carleton
University in 2012.
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a dozen games, with the most-recent being Baja: Edge of Control. You can find
him on twitter @mcnabbd.
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Matthias Nießner is a visiting assistant professor at Stanford University affiliated
with the Max Planck Center for Visual Computing and Communication. Previ-
ous to his appointment at Stanford, he earned his PhD from the University of
Erlangen-Nuremberg, Germany, under the supervision of Günther Greiner. His
research focuses on different fields of computer graphics and computer vision,
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10 Studios. He received his BSc in computer engineering and MSc in computer
graphics from Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil. He
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holds a bachelor of computer science from Universidade Federal de São Carlos
(UFSCar). He runs the blog www.versus-software.com, where he writes about
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at the University of Erlangen-Nuremberg. His research interests include realistic
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Dirk Schut is a student at Delft University of Technology. He worked on the chap-
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Peter Sikachev graduated from Lomonosov Moscow State University in 2009,
majoring in applied mathematics and computer science. He started his career
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Shannon Woods is the project lead for ANGLE at Google. Prior to her current
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Bart�lomiej Wroński is a senior staff programmer at Sony Computer Entertain-
ment America. He started his career at the Polish game development studio CD
Projekt RED in Warsaw, working as an engine and graphics programmer for The
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and developing new rendering and lighting techniques for upcoming titles The
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The latest edition of this bestselling game development reference offers proven tips and techniques for the real-
time rendering of special effects and visualization data that are useful for beginners and seasoned game and 
graphics programmers alike. 

Exploring recent developments in the rapidly evolving field of real-time rendering, GPU Pro6: Advanced 
Rendering Techniques assembles a high-quality collection of cutting-edge techniques for advanced graphics 
processing unit (GPU) programming. It incorporates contributions from more than 45 experts who cover the latest 
developments in graphics programming for games and movies. 

The book covers advanced rendering techniques that run on the DirectX or OpenGL runtimes, as well as on any 
other runtime with any language available. It details the specific challenges involved in creating games across  
the most common consumer software platforms such as PCs, video consoles, and mobile devices.

The book includes coverage of geometry manipulation, rendering techniques, handheld devices programming, 
effects in image space, shadows, 3D engine design, graphics-related tools, and environmental effects. It also 
includes a dedicated section on general purpose GPU programming that covers CUDA, DirectCompute, and  
OpenCL examples.

In color throughout, GPU Pro6 presents ready-to-use ideas and procedures that can help solve many of your daily 
graphics programming challenges. Example programs with downloadable source code are also provided on the 
book’s CRC Press web page.
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